
Subroutines, Functions, and
Modularity

Overview
Rexx fully supports structured programming. It encourages modularity — breaking up large, com-
plex programs into a set of small, simple, interacting components or pieces. These components fea-
ture well-defined interfaces that render their interaction clear. Modularity underlies good program
structure. Modularity means more easily understood and maintained programs than ill-designed
“spaghetti” code, which can quickly become unmaintainable on large programming projects.
Structured programming practices and modularity together reduce error rates and produce more
reliable code.

Rexx provides the full range of techniques to invoke other programs and to create subroutines and
functions. The basic concept is that there should be ways to link together any code you create, buy,
or reuse. This is one of the fundamental advantages to using a “glue” language like Rexx.

With Rexx, you can develop large, modular programs that invoke routines written in Rexx or other
languages, which issue operating system commands and utilize functions packaged in external func-
tion libraries. This article describes the basic ways in which one writes modular Rexx programs.

This article investigates how to write internal subroutines and functions, and how to call them
from within the main program. Passing arguments or values into subroutines is an important
issue, as is the ability to pass changed values back to the calling program. Variable scoping refers to
the span of code from within which variables can be changed. This article explores the rules of
scoping and how they affect the manner in which scripts are coded. Finally, we introduce the idea
of recursion, a routine that calls itself as its own subroutine. While this may at first seem confusing,
in fact it is a simple technique that clearly expresses certain kinds of algorithms. Not all program-
ming languages support recursion; Rexx does. The article includes a brief script that illustrates
how recursion operates.

By Howard Fosdick

[Excerpted from The Rexx Programmer’s Reference, (Wiley, 2005) by Howard Fosdick]

The Building Blocks
As Figure 8-1 shows, any Rexx script can invoke either internal or external routines. Internal means that
the code resides in the same file as the script that calls or invokes the routines. Those routines that are
external reside in some file other than that of the invoking script.

Figure 8-1

Internal routines are classified as either functions or subroutines. Functions include those that are pro-
vided as part of the Rexx language (the built-in functions) and those that you write yourself (user-defined
functions). Functions are distinct from subroutines in that functions must return a single result string to
the caller through the return instruction with which they end. Rexx replaces the function code in any
statement with the returned value from the function. Subroutines may or may not send back a value to
their caller via their return instruction. The returned value from a subroutine, if there is one, is placed
into the special variable named result.

External routines can be functions, too. Often, these come in the form of a package designed to support a
particular functionality and are called extensions or function libraries. External routines might also be the
equivalent of internal subroutines, written in Rexx, except that they reside in a different file than that of
the caller.

Rexx makes it easy to invoke external programs from your script, regardless of the language in which
they are written. If the Rexx interpreter encounters a string in a script that does not correspond to its
instruction set, it evaluates that expression and then passes it to the operating system for execution. So, it
is simple to run operating system commands or other programs from a Rexx script. Chapter 14 illus-
trates how to do this. One of Rexx’s great strengths is its role in issuing, controlling, and coordinating
operating system commands. It is also easy to direct commands to other outside “environments” such as

How Rexx Supports Modularity

– Built-in Functions

– Functions you develop

– Subroutines

– Extensions and Function Libraries

– Operating System Commands

– Commands to other environments

– External Programs

– API Interfaces to external features

– API into Rexx

Modularity

Internal
Routines

External
Resources

110

Chapter 8

text editors or other tools. Rexx is called a macro language because it is often used to provide programma-
bility for various tools. For example, on mainframes Rexx is used as the macro language to program the
widely used editors, XEDIT and the ISPF Editor.

There are a large variety of Rexx extensions and packages. For example, the open-source Rexx/SQL pack-
age provides an interface to a variety of relational databases from within Rexx scripts. Other examples
include interfaces to curses, the text-screen control package; to RexxXML, for XML programming; to
ISAM, the indexed sequential access method; to TK and DW, for easy GUI programming; to gd, for
graphics images; RxSock, for TCP/IP sockets, and many other interfaces. Chapters 15 through 18 discuss
and demonstrate some of these free and open-source packages. Chapter 29 discusses a few of the many
interfaces to mainframe Rexx and how Rexx offers a high-level macro and interface language for main-
frame interfaces and facilities. Appendix H lists several dozen of the many free and open-source inter-
faces that are available and tells how to locate them for downloading.

Internal Functions and Subroutines
Functions must always return exactly one result to the caller. Use the return instruction to do this.
Subroutines may or may not send a result back to the caller via return, but they, too, end with the
return instruction.

Functions may be invoked in either of two ways. One method codes the function name, immediately fol-
lowed by arguments, wherever one might encode an expression:

returned_string = function_name(parameter_1, parameter_2)

The function is resolved and the string it returns is plunked right into the expression where it was
coded. In this case, the assignment statement then moves that value to the variable returned_string.
Since you can code a function anywhere you can code an expression, nesting the function within an if
or do instruction is common:

if (balanced_parentheses(string_in)) = ‘YES’ then

Here the call to the function balanced_parentheses is nested within an if instruction to provide a
result for the comparison. After the function balanced_parentheses has been run, its result is plunked
right where it was encoded in the if instruction.

You can nest functions within functions, as shown in this return instruction from one of the sample
scripts we discuss later in this chapter:

return substr(string,length(string),1) || ,
reverse(substr(string,1,length(string)-1))

Recall that the comma is the line continuation character. So, both of these lines constitute a single statement.

This return instruction features a complex expression that returns a single character string result to the
caller. The first part of the expression nests the length function within the substr function; the second
part nests length within substr within reverse. Yikes! Nesting is very powerful, but for the sake of
clarity we don’t recommend getting too fancy with it. Deeply nested expressions may show cleverness

111

Subroutines, Functions, and Modularity

but they become unintelligible if too complex. When complex code is developed for corporate, govern-
mental, or educational institutions, the value of that code drops the moment the programmer who wrote
it leaves the organization.

The second basic way to invoke a function is through the call instruction:

call function_name parameter_1, parameter_2

For example, to duplicate the code we looked at earlier where the invocation of the balanced_paren-
theses routine was nested within an if statement, we could have alternatively coded:

call balanced_parentheses string_in
if result = ‘YES’ then /* inspect the result returned from the function call */

The result string from the function is automatically placed into the special variable named result and
may be accessed from there.

Special variable result will be set to uninitialized if not set by a subroutine. In this case its value will be
its own name in capitals: RESULT.

Subroutines may only be invoked by the call instruction. Encode this in the exact same manner as the
second method for invoking functions:

call subroutine_name parameter_1, parameter_2

The special variable result contains a value if the subroutine passed back a value on its return instruc-
tion. Otherwise result will be set to uninitialized (the value RESULT). All uninitialized variables are
their own names set to uppercase, so use this test to see if result was not set:

if result = ‘RESULT’ then say ‘RESULT was not set by the subroutine.’

The built-in function symbol can also be used to see if any variable is uninitialized or whether it has
been assigned a value. It returns the character string VAR if a variable has a value or the string LIT other-
wise. We can apply it to see if result was assigned a value:

if symbol(‘RESULT’) == ‘VAR’ then say ‘A result was returned’
if symbol(‘RESULT’) == ‘LIT’ then say ‘No result was returned’

To summarize, here’s a code snippet that shows how to organize a main routine (or driver) and its sub-
routine. The code shows that the call to the internal subroutine did not set special variable result:

/* Show whether RESULT was set by the CALL */

call subroutine_name

if result = ‘RESULT’
then say ‘No RESULT was returned’
else say ‘A RESULT was returned’

if symbol(‘RESULT’) == ‘VAR’
then say ‘A RESULT was returned’

112

Chapter 8

if symbol(‘RESULT’) == ‘LIT’
then say ‘No RESULT was returned’

exit 0

subroutine_name:
return

The return instruction ends the subroutine, but does not include an operand or string to send back to
the calling routine. The code snippet displays these messages when it returns from the subroutine:

No RESULT was returned
No RESULT was returned

Now change the last statement in the code, the return instruction in the subroutine, to something like
this:

return ‘result_string’

Or, change it to this:

return 0

Either encoding means that the special variable result is set to the string returned. After invoking the
internal routine, the code snippet now displays:

A RESULT was returned
A RESULT was returned

When encoding subroutine(s) and/or functions after the main routine or driver, code an exit instruc-
tion at the end of the code for the main routine. This prevents the flow of control from rolling right off
the end of the main routine and going into the subroutines.

Here is another example that is the exact same as that seen in the preceding example. However, we have
coded it incorrectly by commenting out the exit instruction that follows the main routine. We have also
added a statement inside the subroutine that displays the message: Subroutine has been entered.

Here’s the code:

/* Show whether RESULT was set by the CALL */

call subroutine_name

if result = ‘RESULT’
then say ‘No RESULT was returned’
else say ‘A RESULT was returned’

if symbol(‘RESULT’) == ‘VAR’
then say ‘A RESULT was returned’

if symbol(‘RESULT’) == ‘LIT’
then say ‘No RESULT was returned’

113

Subroutines, Functions, and Modularity

/* exit 0 */ /* now commented out */

subroutine_name:
say ‘Subroutine has been entered’ /* new line of code */
return 0

This script displays this output:

Subroutine has been entered
A RESULT was returned
A RESULT was returned
Subroutine has been entered <= this line results from no EXIT instruction!

This shows you must code an exit instruction at the end of the main routine if it is followed by one or
more subroutines or functions. The last line in the sample output shows that the subroutine was entered
incorrectly because an exit instruction was not coded at the end of the main routine. As with the sub-
routine’s return instruction, it is optional whether or not to code a return string on the exit statement.
In the preceding example, the exit instruction passed a return code of 0 to the environment.

What if we place the code of subroutines prior to that of the main routine? Here we located the code of
the subroutine prior to the driver:

/* Shows why subroutines should FOLLOW the main routine */

subroutine_name:
say ‘Subroutine has been entered’
return 0

call subroutine_name

if result = ‘RESULT’
then say ‘No RESULT was returned’
else say ‘A RESULT was returned’

if symbol(‘RESULT’) == ‘VAR’
then say ‘A RESULT was returned’

if symbol(‘RESULT’) == ‘LIT’
then say ‘No RESULT was returned’

exit 0

Running this script displays just one line:

Subroutine has been entered

What happened was that Rexx starts at the top of the file and proceeds to interpret and execute the code,
line by line. Since the subroutine is first in the file, it executes first. Its instruction return 0 caused exit
from the program before we ever got to the main routine! Oops. Always place the code for any internal
subroutines or functions after the main routine or driver.

114

Chapter 8

We’ll cover program structure in more detail later. For now, here are some basic rules of thumb:

❑ End each subroutine or function with the return instruction.

❑ Every function must have an operand on its return instruction.

❑ Subroutines may optionally have a result on their return instruction.

❑ Encode the exit instruction at the end of the code of the main routine or driver.

❑ Place subroutines and functions after the main routine or driver.

We saw that Rexx uninitializes special variable result when a called subroutine does not pass back a
result string. If you ever need to uninitialized a Rexx variable yourself, code the drop instruction:

drop my_variable

This sets a variable you may have used back to its uninitialized state. It is now equal to its own name in
all uppercase.

You can drop multiple variables in one instruction:

drop my_variable_1 my_variable_2 my_variable_3

Passing Parameters into a Script from the
Command Line

Passing data into a script is important because this provides programs with flexibility. For example, a
script that processes a file can retrieve the name of the file to process from the user. You can pass data
elements into scripts by coding them on the same command line by which you run the script. Let’s
explore how this is accomplished.

Data passed into a script when it is invoked are called command-line arguments or input parameters. To
invoke a Rexx script and pass it command-line arguments or parameters, enter something like this:

c:\Regina\pgms> script_name parameter_1 2 parameter_3

The script reads these three input strings parameter_1, 2, and parameter_3 with the arg instruction.
arg automatically translates the input parms to uppercase. It is the equivalent of the instruction parse
upper arg. If no uppercase translation is desired, use parse arg. Remember that a period following
either of these instructions discards any more variables than are encoded on the arg or parse arg
instruction. This example discards any arguments beyond the third one, if any are entered:

arg input_1 input_2 input_3 . /* read 3 arguments, translate to capitals */

Here is the same example coded with the parse arg instruction:

parse arg input_1 input_2 input_3 . /* read 3 arguments, no upper translation */

115

Subroutines, Functions, and Modularity

By default, the arg and parse arg instructions splice the input parameters into pieces based on their
separation by one or more intervening spaces. If you ran the program like this:

c:\Regina\pgms> script_name parameter_1 2 parameter _3

You’d want to code this statement in the script to pick up the input arguments:

parse arg input_1 input_2 input_3 input_4 .

The resulting variable values would be:

input_1 = parameter_1
input_2 = 2
input_3 = parameter
input_4 = _3

As per the basic rules of parsing, encoding too many input parameters puts all the overflow either into
the placeholder variable (the period) or into the last specified input variable on the parse arg instruction.

Entering too few input parameters to match the parse arg statement means that the extra variables on
the parse arg will be set to uninitialized. As always, an uninitialized variable is equal to its own name
in uppercase.

Passing Parameters into Subroutines and
Functions

Say that our sample script needs to run a subroutine or function, passing it the same three input parame-
ters. Code the subroutine or function call as:

call sub_routine input_1, input_2, input_3

Code a comma between each of the parameters in the call instruction. The string (if any) sent back
from the call will be available in the special variable named result.

Code a function call just like the call to the previous subroutine. Or encode it wherever you would an
expression, as illustrated earlier, in the form:

result_string = function_name(input_1, input_2, input_3)

Inside the function or subroutine, use either arg or parse arg to retrieve the arguments. The function
or subroutine picking up the input parameters should encode commas that parallel those of the call in
its arg or parse arg instruction:

arg input_1, input_2, input_3 .

or

parse arg input_1, input_2, input_3 .

116

Chapter 8

The period or placeholder variable is optional. Presumably, the subroutine or function knows how many
input parameters to expect and does not need it.

These examples illustrate the arg instruction retrieving the argument string passed to a script and splic-
ing it apart into its individual pieces. There is also an arg built-in function. The arg function returns
information about input arguments to the routine. For scripts called as functions or subroutines, the arg
function either:

❑ Tells how many argument strings were passed in

❑ Tells whether a specific-numbered argument was supplied

❑ Supplies a specified argument

Let’s look at a few examples. To learn how many arguments were passed in, code:

number_of_arguments = arg()

To retrieve a specific argument, say the third one, code:

get_third_argument = arg(3)

To see if the third argument exists (was passed or encoded in the call), write:

if (arg(3) == ‘’) then say ‘No third argument was passed’

or

if arg(3,’O’) then say ‘No third argument was passed’

The first of the two sample lines show that an input argument read by an internal routine will be the null
string if it is not supplied to the routine. This differs from a command-line input argument that is read
but not supplied, which is set to uninitialized (its own name in uppercase).

The second sample line shows one of the two options that can be used with the arg function:

❑ E (Exists) — Returns 1 if the nth argument exists. Otherwise returns 0.

❑ O (Omitted) — Returns 1 if the nth argument was Omitted. Otherwise returns 0.

The arg function only supplies this information for scripts that are called as functions or subroutines. For
scripts invoked from the operating system’s command line, the arg function will always show only 0 or
1 argument strings. In this respect Rexx scripts invoked as commands from the operating system behave
differently than scripts invoked as internal routines (functions or subroutines). This is one of the very
few Rexx inconsistencies you’ll have to remember: the arg function tells how many arguments are
passed into an internal routine, but applied to the command-line arguments coming into a script, it
always returns either 0 or 1.

117

Subroutines, Functions, and Modularity

A Sample Program
To see how parameters are passed into programs, and how code can be modularized, let’s look at a cou-
ple sample programs. The first sample program consists of a brief script that reads information from the
command line. This main routine or “driver” then turns around and calls a subroutine that performs the
real work of the program. Then the driver displays the result from the subroutine on the user’s screen.

Of course, the driver could actually be part of a larger application. For example, it might be a “service
routine” shared among programs in the application. Whatever its use, the important principles to grasp
are how code can be modularized and how information can be passed between modules.

The first sample program tells whether parentheses in a string are balanced. A string is said to be bal-
anced if:

❑ Every left parenthesis has a corresponding closing right parenthesis

❑ No right parenthesis occurs in the string prior to a corresponding left parenthesis

Here are some examples. These input strings meet the two criteria and so are considered balanced:

(())
() () ()
return (qiu(slk) ())
(((((()())))))
if (substr(length(string,1,2)))

These are unbalanced strings. Either the numbers of left and right parentheses are unequal, or a right
parenthesis occurs prior to its corresponding left parenthesis:

)alkjdsfkl(/* right paren occurs before its left paren */
((akljlkfd) /* 2 left parens, only 1 right paren */
if (substr(length(string,1,2)) /* 3 left parens, only 2 right parens */

The last example shows that a script like this could be useful as a syntax-checker, or as a module in a
language interpreter. You can actually use it to verify that your scripts possess properly encoded, bal-
anced sets of parentheses.

To run the program, enter the string to verify as a command-line argument. Results appear on the next
line:

C:\Regina\pgms> call_bal.rexx if(substr(length(string,1,2))
Parentheses are NOT balanced

Try again, this time adding one last right parenthesis to the input string:

C:\Regina\pgms> call_bal.rexx if(substr(length(string,1,2)))
Parentheses are balanced!

Here’s the code for the caller. All it does is read the user’s command-line input parameter and pass that
character string to a function named balanced_parens that does the work. The function
balanced_parens may be either internal or external — no change is required to its coding regardless of

118

Chapter 8

where you place it. (However, you must be sure the operating system knows where to locate external
functions. This often requires setting an environmental variable or the operating system’s search path for
called routines. We’ll discuss this in detail later.)

/* CALL BAL: */
/* */
/* Determines if the parentheses in a string are balanced. */

arg string . /* the string to inspect */

if balanced_parens(string) = ‘Y’ then /* get answer from function */
say ‘Parentheses are balanced!’ /* write GOOD message ..or..*/

else
say ‘Parentheses are NOT balanced’ /* write INVALID message */

exit 0

Here’s the internal or external function that figures out if the parentheses are balanced. The algorithm
keeps track of the parentheses simply by adding 1 to a counter for any left parenthesis it encounters, and
subtracting 1 from that counter for any right parenthesis it reads. A final counter (ctr) equal to 0 means
the parentheses are balanced — that there are an equal number of left and right parentheses in the input
string. If at any time the counter goes negative, this indicates that a right parenthesis was found prior to
any possible matching left parenthesis. This represents another case in which the input string is invalid.

/* BALANCED PARENS: */
/* */
/* Returns Y if parentheses in input string are balanced, */
/* N if they are not balanced. */

balanced_parens:

arg string . /* the string to inspect */

ctr = 0 /* identifies right paren BEFORE a left one */
valid = 1
endstring = length(string) /* get length of input string */

do j=1 to endstring while (valid)
char = substr(string,j,1) /* inspect each character */
if char = ‘(‘ then ctr = ctr + 1
if char = ‘)’ then ctr = ctr - 1
if ctr < 0 then valid = 0

end

if ctr = 0 then return ‘Y’
else return ‘N’

Another way to code this problem is for the subroutine to return 1 for a string with balanced parenthe-
ses, and 0 if they are unbalanced. Then you could code this in the caller:

if balanced_parens(string) then
say ‘Parentheses are balanced!’

else
say ‘Parentheses are NOT balanced’

119

Subroutines, Functions, and Modularity

This allows coding the function as an operatorless condition test in a manner popular in programming in
languages like C, C++, or C#. But remember that the expression in an if instruction must evaluate to 1
(TRUE) or 0 (FALSE) in Rexx, so the function must return one of these two values. A nonzero, positive
integer other than 1 will not work in Rexx, unlike languages in the C family. A positive value other than
1 results in a syntax error in Rexx (we note, though, that there are a few Rexx interpreters that are
extended to allow safe coding of operatorless condition tests).

Coding operatorless condition tests also runs counter to the general principle that a function or subrou-
tine returns 0 for success and 1 for failure. Wouldn’t balanced parentheses be considered “success”? This
coding works fine but contravenes the informal coding convention.

The Function Search Order
Given that Rexx supports built-in functions, internal functions, and external functions, an important
issue is how Rexx locates functions referred to by scripts. For example, if you write an internal function
with the same name as a built-in function, it is vital to understand which of the two functions Rexx
invokes when some other routine refers to that function name.

This issue is common to many programming languages and is called the function search order. In Rexx the
function search order is:

1. Internal function — The label exists in the current script file.

2. Built-in function — Rexx sees if the function is one of its own built-in functions.

3. External function — Rexx seeks an external function with the name. It may be written in Rexx or
any language conforming to the system-dependent interface that Rexx uses to invoke it and
pass the parameter(s).

Where Rexx looks for external functions is operating-system-dependent. You can normally place exter-
nal functions in the same directory as the caller and Rexx will find them. On many platforms, you must
set an environmental variable or a search path parameter to tell the operating system where to look for
external functions and subroutines.

The function search order means that you could code an internal function with the same name as a Rexx
built-in function and Rexx will use your function. You can thus replace, or override, Rexx’s built-in
functions.

If you want to avoid this, code the function reference as an uppercase string in quotation marks. The
quotation marks mean Rexx skips Step 1 and only looks for built-in or external functions. Uppercase is
important because built-in functions have uppercase names.

With this knowledge, you can override Rexx functions with your own, while still invoking the built-in
functions when you like. You can manage Rexx’s search order to get the best of both worlds.

120

Chapter 8

Recursion
A recursive function or routine is one that calls itself. Any recursive function could be coded in traditional
nonrecursive fashion (or iteratively), but sometimes recursion offers a better problem solution. Not all
programming languages support recursion; Rexx does.

Since a recursive function invokes itself, there must be some end test by which the routine knows to stop
recursing (invoking itself). If there is no such end test, the program recurses forever, and you have effec-
tively coded an “endless loop!”

Figure 8-2 pictorially represents recursion.

Figure 8-2

This sample recursive function reverses the characters within a given string — just like Rexx’s reverse
built-in function. If you feed it the character string abc, it returns the string cba.

The function calls itself to process each character in the input string and finds its “end test” when there
are no more characters left in the string to process. Each time the function is entered, it returns the last
character in the string and recurses to process the remaining string.

/* REVERSE: */
/* */
/* Recursive routine that reverses the characters in a string. */

reverse: procedure

parse arg string /* read the string to reverse */

if string == ‘’ /* here’s the ‘end recursion’ condition */

End Test
Fufilled ?

Script X

How Recursion Works

Call
Script X

Yes

No

121

Subroutines, Functions, and Modularity

then return ‘’
else

return substr(string,length(string),1) || ,
reverse(substr(string,1,length(string)-1))

The reverse function uses the strictly equal operator (==). This is required because the regular “equals”
operator pads item with blanks for comparisons, something that might not work in this function. The
line that uses the strictly equal operator compares the input string to the null string, the string that con-
tains no characters, represented by two back-to-back quotation marks (‘’). This is the “end test” that
tells the function to return, because it has processed all the characters in the original input string:

if string == ‘’ /* here’s the ‘end recursion’ condition */
then return ‘’

The last two lines of the function show how to continue a statement across lines. Just code a comma (,)
and the return instruction’s expression spans into the next line. The comma is Rexx’s line continuation
character. Code it at any natural breakpoint in the statement. Between parts of a statement is fine; within
the middle of a character string literal would not work. This is valid:

say ‘Hi ‘ ,
‘there!’ /* valid line continuation */

But this will fail with a syntax error, because the line continuation character appears in the middle of a
quoted literal:

say ‘Hi ,
there!’ /* invalid line continuation, syntax error! */

Of course, the trick to this program to reverse character strings is this one, heavily nested line of code:

return substr(string,length(string),1) || ,
reverse(substr(string,1,length(string)-1))

The first portion of this statement always returns the last character in the substring being inspected:

substr(string,length(string),1)

An alternative way to code this is to use the right function, as in: right(string, 1).

The second portion of the return statement recursively invokes the reverse function with the remain-
ing substring to process. This is the original string passed in, minus the last character (which was just
returned to the caller):

reverse(substr(string,1,length(string)-1))

To test a program like this, you need a simple driver or some “scaffolding” to initially invoke the new
reverse function. Fortunately, the rapid development that Rexx enables makes this easy. Coding a
driver to test the new reverse function is as simple as coding these few lines:

122

Chapter 8

/* Simple “test driver” for the REVERSE function. */

parse arg string .
call reverse string /* call the REVERSE function */
say ‘The reversed string is:’ result /* display the RESULT */
exit 0

This code reads an input string from the user as an input command-line argument. It invokes the recur-
sive, user-written reverse function and displays the result to the user.

The say instruction in this code uses the special variable result to display the string returned from the
reverse function on the user’s display screen:

say ‘The reversed string is:’ result /* display the RESULT */

Our new reverse function has the same name and functionality as Rexx’s own, built-in reverse func-
tion. Which will Rexx run? The function search order tells us. Assuming that the reverse function we
coded is internal, Rexx invokes it, because user-written internal functions have priority over Rexx’s
built-in functions in the function search order. If we want to use the built-in Rexx reverse function
instead, we would code the name of the function in quoted uppercase letters. These two lines show the
difference. This line invokes our own reverse function:

call reverse string /* call our own REVERSE function */

In contrast, this statement runs Rexx’s built-in reverse function:

call ‘REVERSE’ string /* use the Rexx built-in REVERSE function */

More on Scoping
Developers place internal functions and subroutines after the main routine or driver in the script file.
Here’s the basic prototype for script structure where the main script has subroutines and/or functions:

main_routine:
call my_function parameter_in
call my_subroutine parameter_in
exit 0

my_function: procedure
return result_string

my_subroutine: procedure
return

Rexx does not require any label for the main routine or driving portion of the script, but we recommend
it as a good programming practice. A Rexx label is simply a name terminated with a colon. In this script,
we’ve identified the driver routine with the label main_routine: . This is good programming practice
in very large programs because it may not always be obvious where the logic of the driver really starts.
In other words, if there is a long list of variable declarations or lots of initialization at the top of a script,
identifying where the “real” work of the main routine begins can sometimes be helpful.

123

Subroutines, Functions, and Modularity

A key issue in any large program is scoping — which of the caller’s variables are available for reading
and/or updating by a called function or subroutine. In Rexx, the procedure instruction is the basic tool
for managing variable scoping. procedure is encoded as the first instruction following the label in any
function or subroutine for which it’s used.

The procedure instruction protects all existing variables by making them unknown to any instructions
that follow. It ensures that the subroutine or function for which it is encoded cannot access or change
any of its caller’s variables. For example, in the reverse function, we coded this first line:

reverse: procedure

This means the reverse routine cannot read or update any variables from its caller — they are protected
by the procedure instruction. This is a good start on proper modularity, but of course, we need a way to
give the reverse routine access to those variables it does need to access. One approach is to pass them in
as arguments or parameters, as we did in calling the reverse function, with this general structure:

calling routine:
parse arg parm_1 parm_2 . /* get command-line arguments from the user */
call function_name parm_1, parm_2 /* pass them to the internal routine */
say ‘The function result is:’ result /* retrieve RESULT from the routine */
exit 0

function_name: procedure
parse arg parm_1, parm_2 /* get parameters from the caller */
return result_string /* return result to caller */

The procedure instruction protects all variables from the function or subroutine. This function cannot
even read any of the caller’s variables. It knows only about those passed in as input parameters, parm_1
and parm_2. It can read the variables that are passed in via arg, and it sends back one result string via
the return instruction. It cannot change the value of any of the arg variables in the caller. These are passed in
on a read-only basis to the function or subroutine, which can only pass back one string value by a
return instruction.

Another approach to passing data items between routines is to specify exposed variables on the proce-
dure instruction. These variables are available for both reading and updating by the invoked routine:

function_name: procedure expose variable_1 array_element.1

In this case the function or subroutine can read and manipulate the variable variable_1 and the spe-
cific array element array_element.1. The function or subroutine has full read and update access to
these two expose’d variables.

With this knowledge, here’s an alternative way to structure the relationship between caller and called
routine:

calling_routine:
parse arg parm_1 parm_2 . /* get command-line arguments from the user */
call subroutine_name /* call the subroutine (or function) */
say ‘The function result is:’ result /* retrieve RESULT from the routine */
say ‘The changed variables are:’ parm_1 parm_2 /* see if variables changed */

124

Chapter 8

exit 0

subroutine_name: procedure expose parm_1 parm_2
/* refer to and update the variables parm_1 and parm_2 as desired */
parm_1 = ‘New value set by Sub. ‘
parm_2 = ‘2nd new value set by Sub.’
return result_string /* return result to caller */

The output from this code demonstrates that the subroutine changed the values the caller originally set
for variables parm_1 and parm_2:

The function result is: RESULT_STRING
The changed variables are: New value set by Sub. 2nd new value set by Sub.

The procedure instruction limits variable access in the called function or subroutine. Only those vari-
ables specifically named on the procedure expose instruction will be available to the called routine.

To summarize, there are two basic approaches to making caller variables available to the called routine.
Either pass them in as input arguments, or code the procedure expose instruction followed by a vari-
able list. The called function or subroutine cannot change input arguments — these are read-only values
passed by the caller. In contrast, any variables listed on the procedure expose statement can be both
read and updated by the called function or subroutine. The calling routine will, of course, “see” those
updated variable values.

Two brief scripts illustrate these principles. This first demonstrates that the called routine is unable to
change any variables owned by its caller because of the procedure instruction coded on the first line of
the called routine:

/* This code shows that a PROCEDURE instruction (without an EXPOSE */
/* keyword) prevents a called function or subroutine from reading */
/* or updating any of the caller’s variables. */
/* */
/* Argument-passing and the ARG instruction gives the called */
/* function or subroutine READ-ONLY access to parameters. */

calling_routine:

variable_1 = ‘main’
variable_2 = ‘main’

call my_subrtn(variable_1)

say ‘main:’ variable_1 variable_2 /* NOT changed by my_subrtn */
exit 0

my_subrtn: procedure

arg variable_1 /* provides read-only access */

say ‘my_subrtn:’ variable_1 variable_2 /* variable_2 is not set */

variable_1 = ‘my_subrtn’

125

Subroutines, Functions, and Modularity

variable_2 = ‘my_subrtn’

say ‘my_subrtn:’ variable_1 variable_2
return

This is the output from this script:

my_subrtn: MAIN VARIABLE_2
my_subrtn: my_subrtn my_subrtn
main: main main

The first output line shows that the subroutine was passed a value for variable_1, but variable_2
was not passed in to it. The subroutine accessed the single value passed in to it by its arg instruction.
The second line of the output shows that the called routine locally changed the values of variables
variable_1 and variable_2 to the string value my_subrtn— but the last line shows that these assign-
ments did not affect the variables of the same names in the caller. The subroutine could not change the
caller’s values for these two variables. This is so because the procedure instruction was encoded on the
subroutine but it did not list any variables as expose’d.

This next script is similar but illustrates coding the procedure expose instruction to allow a called rou-
tine to manipulate the enumerated variables of its caller:

/* This code shows that ONLY those variables listed after EXPOSE */
/* may be read and updated by the called function or subroutine. */

calling_routine:

variable_1 = ‘main’
array_name. = ‘main’ /* The called routine can update */
array_element.1 = ‘main’ /* array elements if desired. */
not_exposed = ‘main’

call my_subrtn /* don’t pass parms, use EXPOSE */

say ‘main:’ variable_1 array_name.4 array_element.1 not_exposed
exit 0

my_subrtn: procedure expose variable_1 array_name. array_element.1

say ‘my_subrtn:’ variable_ 1 array_name.4 array_element.1 not_exposed

variable_1 = ‘my_subrtn’ /* These will be set back in the */
array_name.4 = ‘my_subrtn’ /* caller, since they were */
array_element.1 = ‘my_subrtn’ /* on the PROCEDURE EXPOSE. */

say ‘my_subrtn:’ variable_1 array_name.4 array_element.1 not_exposed
return

The output from this script is:

my_subrtn: main main main NOT_EXPOSED
my_subrtn: my_subrtn my_subrtn my_subrtn NOT_EXPOSED
main: my_subrtn my_subrtn my_subrtn main

126

Chapter 8

The first output line shows that the subroutine accessed the three caller’s variables listed on the proce-
dure expose instruction. This shows the three variables set to the string value main. The fourth vari-
able shows up as NOT_EXPOSED because the subroutine did not list it in its procedure expose
statement and cannot access it.

The second output line shows that the subroutine set the value of the three variables it can change to the
value my_subrtn. This line was displayed from within the subroutine.

The last output line confirms that the three variables set by the subroutine were successfully passed back
to and picked up by the caller. Since only three variables were passed to the subroutine, the fourth vari-
able, originally set to the string value main by the caller, still retains that same value.

What about external routines? Invoke them just like internal routines, but the Rexx interpreter always
assigns them an implicit procedure instruction so that all the caller’s variables are hidden. You cannot
code a procedure expose instruction at the start of the external routine. Pass information into the exter-
nal routine through input arguments. Code a return instruction to return a string from the external rou-
tine. Or, you can code an exit instruction with a return value.

For internal routines, if you code them without the procedure instruction, all the caller’s variables are
available to the internal routines. All the caller’s variables are effectively global variables. Global variables
are values that can be changed from any internal routine. Global variables present an alternative to pass-
ing updatable values into subroutines and functions via the procedure expose instruction.

Developers sometimes like using global variables because coding can be faster and more convenient.
One does not have to take the time to consider and encode the correct procedure expose instructions.
But global variables are not considered a good programming practice because they violate one of the key
principles of modularity — that variables are explicitly assigned for use in specific modules. So that you
recognize this scenario when you have to maintain someone else’s code, here is the general script structure
for using global variables:

/* Illustrate that Global Variables are accessible to ALL internal routines */
main_routine:

a = ‘this is a global variable!’
call my_subroutine
say ‘Prove subroutine changed the value:’ a
feedback = my_function()
say ‘Prove the function changed the value:’ a
exit 0

my_subroutine:
/* all variables from MAIN_ROUTINE are available to this routine for

read and or update */
a = ‘this setting will be seen by the caller’
return

my_function:
/* all variables from MAIN_ROUTINE are available to this routine for read

and or update */
a = ‘this new value will be seen by the caller’
return 0

127

Subroutines, Functions, and Modularity

The program output shows that the two internal routines are able to change any variable values in the
calling routine at will. The two output lines are displayed by the driver. The latter portion of each line
shows that the subroutine and function were able to change the value of the global variable named a:

Prove subroutine changed the value: this setting will be seen by the caller
Prove the function changed the value: this new value will be seen by the caller

All you have to do to use global variables is neglect to code the procedure instruction on subroutines
on functions. This is convenient for the developer. But in large programs, it can be extremely difficult to
track all the places in which variables are altered. Side effects are a real possibility, unexpected problems
resulting from maintenance to code that does not follow the principles of structured programming and
modularity.

To this point, we’ve discussed several ways to pass variables into and back from functions and subrou-
tines. This chart summarizes the ways to pass information to and from called internal subroutines and
functions:

Technique Internal Routine’s Variable Access Comments

Pass arguments as Read-only access to the passed Standard for passing in
input parameters variables only read-only values

procedure expose Read and update access to expose’d Standard for updating
variables only some variables while

hiding others

procedure Hides all the caller’s variables Standard for hiding all
(without expose) caller’s variables

Global variables Read and update access to all the Violates principles of
caller’s variables modularity; works fine

but not recommended

return expression Send back one string to the caller Standard for passing
back one item of
information

Whichever approach(es) you use, consistency is a virtue. This is especially the case for larger or more
complex programming applications.

Another Sample Program
This next sample script illustrates a couple of the different ways to pass information into subroutines.
One data element is passed in as an input argument to the routine, while the other data item is passed in
via the procedure expose instruction.

128

Chapter 8

This program searches a string and returns the rightmost occurrence of a specified character. It is a recur-
sive function that duplicates functionality found in the built-in lastpos function. It shows how to pass
data items to a called internal routine as input parameters and how to use the procedure expose
instruction to pass in updateable items.

/* RINDEX: */
/* */
/* Returns the rightmost position of a byte within a string. */

rindex: procedure expose search_byte

parse arg string /* read the string */

say string search_byte /* show recursive trace for fun */

string_length = length(string) /* determine string length */
string_length_1 = length(string) -1 /* determined string length - 1 */

if string == ‘’ /* here’s the ‘end recursion’ condition */
then return 0

else do
if substr(string,string_length,1) == search_byte then

return string_length
else

new_string_to_search = substr(string,1,string_length_1)
return rindex(new_string_to_search)

end

This script requires two inputs: a character string to inspect for the rightmost occurrence of a character,
and the character or “search byte” to look for.

When invoked, the function looks to see if the last character in the string to search is the search character.
If yes, it returns that position:

if substr(string,string_length,1) == search_byte then
return string_length

If the search character is not found, the routine calls itself with the remaining characters to search as the
new string to search:

new_string_to_search = substr(string,1,string_length_1)
return rindex(new_string_to_search)

The end condition for recursion occurs when either the character has been found, or there are no more
characters in the original string to search.

129

Subroutines, Functions, and Modularity

The function requires two pieces of input information: the string to inspect, and the character to find
within that string. It reads the string to inspect as an input parameter, from the parse arg instruction:

parse arg string /* read the string */

The first line in the function gives the program access to the character to locate in the string:

rindex: procedure expose search_byte

The two pieces of information are coming into this program in two different ways. In a way this makes
sense, because the character to locate never changes (it is a global constant), but the string that the func-
tion searches is reduced by one character in each recursive invocation of this function. While this pro-
gram works fine, it suggests that passing in information through different mechanisms could be
confusing. This is especially the case when a large number of variables are involved.

For large programs, consistency in parameter passing is beneficial. Large programs become complicated
when programmers mix internal routines that have procedure expose instructions with routines that
do not include this instruction. Rexx allows this but we do not recommend it. Consistency underlies
readable, maintainable code. Coding a procedure or procedure expose instruction for every internal
routine conforms to best programming practice.

Summary
This chapter describes the basic mechanisms by which Rexx scripts are modularized. Modularity is a
fundamental means by which large programs are rendered readable, reliable, and maintainable.
Modularity means breaking up large, complex tasks into a series of smaller, discrete modules. The inter-
faces between modules (the variables passed between them) should be well defined and controlled to
reduce complexity and error.

We covered the various ways to pass information into internal routines and how to pass information
from those routines back to the caller. These included passing data elements as input arguments, the
procedure instruction and its expose keyword, and using global variables. We discussed some of the
advantages and disadvantages of the methods, and offered sample scripts to illustrate each approach.
The first sample script read a command-line argument from its environment and passed this string as an
input argument to its subroutine. The subroutine passed a single value back up to its caller by using the
return instruction. The last sample script was recursive. It invoked itself as a subroutine and illustrated
how the procedure expose instruction could be used to pass values in recursive code. This latter
example also suggests that consistently encoding the procedure expose instruction on every routine is
a good approach for large programming projects. This consistent approach reduces errors, especially
those that might otherwise result from maintenance on large programs that use global variables.

130

Chapter 8

Test Your Understanding
1. Why is modularity important? How does Rexx support it?

2. What’s the difference between a subroutine and function? When should you use one versus the
other?

3. What is the difference between internal and external subroutines? How is the procedure
instruction used differently for each?

4. What is the function search order, and how do you override it?

5. What are the basic ways in which information is passed to/from a caller and its internal
routines?

6. What happens if you code a procedure instruction without an expose keyword? What’s the
difference between parameters passed in to an internal subroutine and read by the arg instruc-
tion versus those that are exposed by the procedure expose instruction?

7. In condition testing, TRUE is 1 and FALSE is 0. What happens when you write an if instruction
with a condition that evaluates to some nonzero integer other than 1?

131

Subroutines, Functions, and Modularity

