
Writing Simple Programs
with REXX
VMllntegrated System
Release 5

SC24-5357 -00

--------- - ---- --- - ---- - - ----------_ .-

•

•

Writing Simple Programs
with REXX
VMllntegrated System
Release 5

SC24-5357 -00

--------- - ------- - ---- - - ----------_.-

First Edition (April 1987)

This edition, SC24-5357-0, applies to the VM/lntegrated System that is based on
Release 5 of VM/lntegrated System BASE (Program 5664-301). This edition applies to
all subsequent releases until otherwise indicated in new editions. Changes are
periodically made to the information herein; before using this publication in connection
with the operation of IBM systems , consult the latest IBM Systeml370, 30xx, and 4300
Processors Bibliography, GC20-0001, for the ed itions that are applicable and cu rrent.

References in this publication to IBM products, programs, or services
do not imply that IBM intends to make these available in all countr ies
in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM' s
licensed program may be used. Any functionally equivalent program
may be used instead.

In thi s manual are illustrations in which names a re used. These names are fanc iful and
fictitious, created by the author ; they are used so lely for illustrative purposes and not
for identificat ion of any person or compa ny.

Ordering Publications

Requests for IBM pu blicat ions should be made to your IBM rep resentati ve or to th e IBM
branch off ice se rv ing your loca lity . Pub li cations a re not stocked at th e ad dress given
below .

A fo rm for reade r 's com ments is provided at the bac k of this publ ication. If the fo rm
has bee n removed, comments may be addressed to IBM Corporat ion, Information
Development, Dept. G60, P.O. Box 6, End icott , NY, U.S.A. 13760 . IBM may use or
distribute whateve r informati on you supp ly in any way it believes appropri ate without
incurr ing any ob li gati on to you

,© Copyright Internat iona l Business Mach ines Corporat ion 1987

•

About This Book

When you hear that someone is a computer programmer, do you
think of a wizard performing magic through a terminal keyboard? Do
you think that only a scientist or a mathematician can unravel the
complexities of computers?

Programming is not so mysterious or complicated. Even if you are
just learning about computers, you can be a programmer.

This book introduces you to programming through the Restructured
Extended Executor language, called REXX for short. Learning REXX
doesn't require a special skill . All you need is a terminal connected
to the VM/IS system, and a willingness to learn. By learning the
essentials of REXX, you can write programs to simplify your daily
tasks.

It's easy-that's the magic of REXX.

Who Should Read This Book

You should read this book if you are interested in learning a
computer programming language. You do not need any previous
programming experience.

Abou t Th is Boo k Iii

Nhat This Book Contains

This book contains three parts and an appendix.

Part 1. Getting to Know REXX includes two chapters. The
chapte rs contain information on what REXX programming is,
what you need to get started, and some basic rules and
concepts.

Part 2. Writing Your Own Programs includes four chapters.
The chapters explain how to write your first three programs,
how to correct errors, how to work with arithmetic and true
and false , and more. You can test yourself through some
exercises.

Part 3. Improving Your Skills includes two chapters. These
chapters discuss writing more advanced programs , and
where to find additional information on REXX.

The Appendix contains the answers to all the exercises
throughout the book.

The back cover of this book has a wrap-around flap that you
can use as a bookmark . The flap contains a summary of the
REXX instructions used in this book.

Wri ti ng Simple Progra ms with REXX

Conventions Used In This Book

Convention Meaning

sample Information that you type is shown like this .

sample Information that appears on the screen is shown like
this.

sample Words shown in bold italics appear in the glossary.

sample Bold type is used for emphasis.

Related Information

As a user of VM and REXX, you may find the following books helpful :

The VM/IS Learning to Use Your System: Getting Started book
shows you how to use the VM/IS system.

The Virtual Machine/System Product eMS Primer shows you how
to create and edit files .

The Virtual Machine/System Product System Product Interpreter
User's Guide explains more about REXX through three reading
levels: from beginner to advanced user.

The Virtual Machine/System Product System Product Interpreter
Reference contains reference material for the experienced
programmer, particularly those who have used other
programming languages.

About This Book v

••••••• ••••••• ••••••• ••••••• ••••••• ••••••• •••••••

••••••• ••••••• ••••••• ••••••• ••••••• ••••••• •••••••

• • I

Learning to Use
Your System

••••••• ••••••• ••••••• ••••••• ••••••• ••••••• • ••••••

•

I

••••••• ••••••• ••••••• ••••••• ••••••• ••••••• •••••••

••••••• ••••••• ••••••• ••••••• ••••••• ••••••• •••••••

• •

The following information is illustrated in "VM/IS The Road to
Discovery" :

VMllntegrated System:

Planning for Your System SC24-5337
Installing Your System SC24-5341
Managing Your System SC24-5338
Reporting System Problems SC24-5339
Learning to Use Your System:

Getting Started SC24-5343
Using FORTRAN and Advanced Graphics SC24-5344
Using IBM BASIC and PascallVS SC24-5345
Performing Office Tasks SC24-5346
Using APL2 SC24-5347
Using a Data Base SC24-5348
Using Your IBM Personal Computer as a Display Station
SC24-5349
Communicating with Other VM Systems SC24-5350
Error and Information Messages SC24-5351
A Day in the Life of an Engineering Firm SC24-5352

VMISystem Product CMS Primer STOO-1992
Writing Simple Programs with REXX SC24-5357
Composing Documents with the Generalized Markup
Language S544-3421

Managing Your System: The Practice Diskette SV21-5273
Managing Your System (videotape 3/4/1 U-Matic) SV26-1012
Managing You r System (videotape 1/2/1 VHS) SV26-1013
Introducing VMIIS (videotape 3/4/1 U-Matic) SV26-1016
Introducing VMIIS (videotape 112/1 VHS) SV26-1017

viii Writin g Simple Programs with REXX

•
• • •
•
• • •

Contents

Part 1. Getting to Know REXX 1
Chapter 1. Introduction 3
What Can REXX Do for You? 4
Getting Started 5
Conversing with Your Computer 6
Running Your First Program 9
What's Next? 10

Chapter 2. Learning a Few Rules 11
Comments 12
Strings 13
What's ina REXX Program 14
Instructions 15

The SAY Instruction 15
The PULL and PARSE PULL Instructions 16
The EXIT Instruction 17

Assignments 18
Labels 19
Commands 20
Writing in Mixed Case 20
USing Quotes for Spacing 21
Adding Blank Lines 22
Summary 23

Part 2. Writing Your Own Programs 25
Chapter 3. Writing Your First Program 27
Putting the Pieces Together 28

Writing the EXEC 28
Creating the File for Your List 30
Running the Program 31

Fixing Errors 32

Con tents ix

Exercises 34
Summary 35

Chapter 4. Working with Variables and Arithmetic 37
Using Variables 38

Choosing Names for Variables 38
Assigning Values 39

Working with Arithmetic 42
Addition 43
Subtraction 43
Multiplication 43
Division 44
Operators 46

Evaluating Expressions 46
Creating a Program 48

Writing the Program 48
Running the Program 50

Using Comments 51
Exercises 52
Summary 53

Chapter 5. More about Expressions 55
Making Decisions 56

The IF Instruction 57
Grouping Instructions 58
The ELSE Keyword 59
The SELECT Instruction 61
The NOP Instruction 64

True and False Operators 65
Comparisons 65
Equal 67
Using Comparisons 67
The Logical NOT Operator 68
The Logical AND Operator 68
The Logical OR Operator 69

Exercises 70
Summary 71

Chapter 6. Automating Repetitive Tasks 73
Using Loops 74
Repetitive Loops 75

Writing Simple Programs with REXX

Conditional Loops 78
The DO WHILE and DO UNTIL Instructions 78
The LEAVE Instruction 82
The DO FOREVER Instruction 83

Getting Out of Loops 84
Parsing Words 85
Creating Another Program 86

Writing the Program 87
Running the Program 91

Exercises 92
Summary 92

Part 3. Improving Your Skills 95
Chapter 7. Using More Advanced Features 97
Using Functions 98

Built-in Functions 99
User-Written Functions 102

Using Subroutines 102
The CALL Instruction 104
The ARG Instruction 106
The RETURN Instruction 107

Issuing Commands from an EXEC 107
Working with Return Codes 108
Exercises 110
Summary 111

Chapter 8. Learning More About REXX 113
Enhancing Your Programs 114

Modifying the NOTEPAD Program 114
Modifying the CALC Program 116

Designing New Programs 119
The QTIME EXEC 120
Finding More Information 123
Conclusion 124

Appendix. Answers to Exercises 125
Chapter 3 Answers 125

Contents xi

Chapter 4 Answers
Chapter 5 Answers
Chapter 6 Answers
Chapter 7 Answers

126
127
127
128

Glossary ... 131

Index 133

xii Wr itin g Simple Programs with REXX

Contents xiii

·

Writing Simple Programs with REXX

Chapter 1. Introduction

Learning a new programming language is like meeting someone for
the first time: the first step is to get acquainted . In this chapter , you
will be introduced to the Restructured Extended Executor
language-REXX. Once you feel comfortable with REXX , you can
begin to learn how to use it.

Ch a pte r 1. Int roduct ion 3

What Can REXX Do for You?

Programs are lists of instructions to a computer . For example,
someone has to write a program to tell the computer how to add and
subtract numbers to produce your bank balance. Someone has to
put codes and prices into the computer at the grocery store so the
price appears when the code is given.

Programming has many uses in your everyday life . It can be fun and
educational. It can make your work easier.

Several languages are used to write programs. BASIC, a language
widely used in home computing, has very few rules. However,
writing an intricate program in BASIC usually involves writing a

•

great many lines. Languages like PUI, APL, and PASCAL have more •
rules but allow you to do more in fewer lines.

REXX is a programming language that combines the simplicity of a
language such as BASIC with the ability to write fewer lines as in a
more powerful language. It is easy to learn because it uses familiar
words and concepts. REXX allows you to do simple tasks, yet has
the ability to handle complex tasks .

A REXX program is processed by the System Product Interpreter. All
you do to run a REXX program is type in the program's name.

As you become more experienced with REXX, you can include VM
commands to enhance a program 's capability.

4 Wr iti ng Si mple Progra ms with REXX

Getting Started

To begin using REXX, you should have access to a terminal
connected to the VMllntegrated System (VM/IS). Once you are set
up with a terminal, here ' s what you need to do :

• Ask your system administrator for a system userid and password
if you don' t have them . The system administrator also can
answer any questions you may have about the computer.

• Familiarize yourself with VM . You need to know what a CMS file
is , and how to create a file using an editor. If you need help , or
want to brush up on your computer skills, see the eMS Primer or
the Learn ing to Use Your System: Getting Started book.

• This book assumes you are NOT working with the menus and
panels of the VM/IS Productivity Facility . If you are in the
PRIMARY MENU or one of the panels , press the PF3 key to leave.
You may have to press PF3 more than once . When you reach the
CONFIRM END panel , follow the instructions to leave it, too.

• When you feel comfortable working with files , start the next
section of this book, "Conversing with Your Computer."

Chapter 1 Introduction 5

Conversing with Your Computer

Now let's look at a REXX program. First, study the explanation of the
sample program to see what the program contains. Later, you can
try it out.

The sample program is called the HELLO EXEC. HELLO is the
filename, and EXEC is the filetype. REXX programs in this book
have a filetype of EXEC. Sometimes people use the word "exec"
interchangeably with the word "program." The program looks like
this:

/* An introduction to REXX */
say "Hello! I am REXX."
say "What's your name?"
pull who
if who = ""
then
say "Hello stranger"

else
say "Hello" who

exit

Figure 1. HELLO EXEC, a sample REXX program

A brief description of each part of the sample program follows:

'* An introduction to REXX *'
This comment explains what the program is about. A comment
starts with a /* and ends with a */. All REXX programs must start
with a comment.

say "Hello! I am REXX."
say "What's your name?"

These instructions display the words between the quotes on the
screen.

6 Writing Simple Programs with REXX

pull who
The PULL instruction reads the response entered from the
keyboard and puts it into the computer's memory. Who is the
name of the place in memory where the user's response is put.
Any name can be used with the PULL instruction.

if who = ""
The IF instruction tests a condition. The test in this example
determines if who is empty. It is empty if the user types in a blank
space and presses the ENTER key, or just presses the ENTER
key.

then
This direction executes the instruction that follows, if the tested
condition is true .

say "Hello stranger"
This instruction displays Hello s t r a nger on the screen.

else
If the tested condition is not true, this direction executes the
instruction that follows.

say "Hello" who
This instruction displays Hello on the screen , followed by
whatever is in who .

exit
This instruction causes the program to stop at this point.

Chapter 1. Introd uc ti on 7

Hello! I am
What's REXX.

your name?

Here's what happened when Mike tried the HELLO program:

Read y ;
he llo
He l lo ! I am REXX .
What's your n a me?
Mi ke
He llo MI KE
Read y ;

B Writing Simple Programs with REXX

If Mike did not enter his name, but entered a blank space, this is
what would have happened:

Ready;
hello
Hellol I am REXX.
What's your name?

Hello stranger
Ready;

Running Your First Program

Not all REXX programs are this small , of course, but many are just
as easy. To try this program, first type on the command line:

xedit hello exec

and press the ENTER key.

If you already have a file with the filename of HELLO and the filetype
of EXEC, just use another name for the file (for example, HELL01
EXEC). Keep this in mind whenever you write a program or try one
of the sample programs.

This creates a file using the System Product Editor (XEDIT). You can
also use an "x" for the XEDIT command. For example:

x hello exec

Next, type in the REXX program exactly as it appeared in Figure
on page 6 and file it by typing on the terminal:

file

Chapter 1. Introduction 9

To run the program, enter the name of your program, or use

hello

When the program requests it , you can enter your name, or you can
press the ENTER key to see the other response.

What's Next?

If you tried the HELLO EXEC and it ran without any errors, you now
have run your first program . Congratulations! If it didn't work,
compare your program with the sample program and see if you
typed something incorrectly.

The next chapter includes some rules for creating your own
programs. To learn the concepts quickly, follow as we write some
programs together. To reinforce what you have learned, try the
exercises throughout the book. Don't worry about making mistakes
because you will be guided through the steps .

10 Writing Simple Programs with REXX

Chapter 2. Learning a Few Rules

When you are trying a new sport or card game, it is usually easier to
understand the plays if someone explains the rules. Learning is a
step-by-step process . If you know the rules in the beginning, you can
follow when the activity or action gets more complicated. We won't
show you any complicated moves here, just the easiest way to write
programs that will execute correctly .

The System Product Interpreter works on your REXX program, line
by line , word by word , doing what you have written. This chapter
includes a few rules to get you started .

Chapter 2. Learning a Few Rules 11

Comments

From the first chapter, you may remember that all REXX programs
must begin with a comment.

A Comment is a group of words that tell what the program is for,
what kind of input it can handle, and what kind of output it produces.
Comments help you understand the program when you read it over
later, perhaps to improve it.

With VM/IS, there are three languages for writing EXECs: REXX,
EXEC 2, and CMS EXEC. The system distinguishes a REXX program
from the other types because it contains a REXX comment on the
first line.

The symbols used for comments are:

/* to mark the start of a comment

*/ to mark the end of a comment.

When the interpreter finds a /*, it stops interpreting; when it
encounters a */, it begins interpreting again with the information
following the symbol. The comment can be a few words or several
lines, as in the following examples:

/* This is a comment. */

or,

say "Hello!" / * This commen t is on the same line as the instructio n */

or,

/ * Comme nts can
also o ccupy
more than one line. */

12 Writing Simple Program s with REXX

Strings

The /* */ is sufficient to start a program, but it is better to put a brief
description of the program in the space.

A string is any group of characters inside single quotes or double
quotes. Single and double quotes are interchangeable but the
beginning and the ending must match. The interpreter stops
interpreting when it sees a quote and looks for the matching quote.
The characters inside the quotes remain as they are typed, with
uppercase and lowercase letters. For example:

'number'
"Live and let live."

are both strings.

If you want to use a quotation mark or an apostrophe within a string,
you should use different quotation marks around the whole string.
For example:

"Don't cross the bridge until you corne to it."

You can also use a pair of quotes (the same as those used to mark
the string):

say "Look outl ""He's"" here."

This is interpreted by REXX as:

Look outl "He's" here.

Chapter 2. Learning a Few Rules 13

What's in a REXX Program

In addition to comments, a REXX program can contain the following
items:

Instructions
Assignments
Labels
Commands.

It's best to use one line for each item. If you want an item (for
example, an instruction) to span more than one line, you must put a
comma at the end of the line to indicate that the instruction continues
on the next line. If you want to put more than one item on a line, you
must use a semicolon to separate the items.

The following program contains seven instructions. Can you find
them?

/ *Find the it e ms a nd cheer! */
s ay "Ev e r ybody c he e r !"
s ay "2"; s ay "4"; say " 6 "; say " 8 ";
say "Who d o we",
" appr e c i at e ?"
exit

Figure 2. RAH EXEC, identifying items in a program

Did you remember that e xi t is an instruction?

As you read this book, you will encounter instructions, assignments,
labels, and commands in more detail. In this chapter, they are
explained briefly so you can see how they contribute to a REXX
program .

14 Writing Simp le Prog ram s with REXX

•

Instructions

An instruction tells the computer to do something :

say "Time is of the essenc e "

The computer displays Time is of the ess e nce on your screen .
Instructions can contain one or more assignments, labels or
commands and usually start on a new line . Some instructions that
you will use often in your programs follow.

The SAY Instruction

The example above uses the SAY instruction . The format is:

say e xpression

The expression can be something you want displayed on the screen
or something to be computed, such as an equation:

say 4 + 3 "= seven"

This will display 7 = seven on the screen. With the SAY
instruction, anything not in quotes gets changed to uppercase. If you
want something to appear "as is," use quotes.

Chapter 2. Lea rni ng a Few Rules 15

The PULL and PARSE PULL Instructions

In a program, the usual sequence of instructions is to use SAY to ask
a question and use PULL to receive the answer. The response typed
in by the user is put in the computer's memory. The following
program would not work correctly if the PULL instruction came
before you requested information with the SAY instruction.

What do you think happens when the following program is run?

/*Using the PULL Instruction */
say "Enter your name"
pull name /* Puts response from user into memory */
say "Hello" name
exit

Figure 3. NAME EXEC puts a name in memory

Let's examine how this program works. You type name on the
terminal, and Enter your name appears on the screen. You enter
your name, and the program responds with a Hello to yOU.

If you were curious and tried the NAME program, you probably
noticed that your name was CHANGED TO UPPERCASE. If you want to
keep the characters as you typed them, you can use the PARSE
PULL instruction.

Here's an example using PARSE PULL.

16 Writing Simple Programs with REXX

/* Using the PARSE PULL Instruction */
say "Hello! Are you still there?"
say "I forgot your name. What is it?"
parse pull name
say name", are you going to the mov ies?"
pull answer
if answer = "YES"
then
say "Good. See you there!"

exit

Figure 4. CHITCHAT EXEC, how PULL and PARSE PULL work

The PARSE PULL instruction reads everything from the keyboard "as
is" in uppercase or lowercase. In this program, the name is
repeated just as the user (you) typed it. However, "answer" is
changed to uppercase characters because the PULL instruction was
used . This ensures that if "yes," "Yes," or "YES" is typed, the same
action is taken .

In "Parsing Words " on page 85, you can find more information about
what "PARSE" does.

The EXIT Instruction

By putting an EXIT in a program, you tell the program to end . The
EXIT instruction should be used in a program that contains
subroutines (subroutines are explained in "Using Subroutines " on
page 102), or if an error occurs. Although the EXIT instruction is
optional in some programs, it is good programming practice to use it
at the end of every program.

Chapter 2. Learning a Few Ru les 17

Assignments

An assignment says that the string should be put in a special place
in the computer's memory. In the example :

Home = '3600 Castle Way'

the string 3600 Castle Way is put in Home. Because Home can have
different values (be reassigned to mean different things) in different
parts of the program, it is called a variable. Variables will be
discussed in "Using Variables" on page 38.

18 Writing Simple Programs with REXX

Labels

Any word followed by a colon (with no space between the word and
the colon) and not in quotes, is treated as a label. For example:

MYNAME:

A label marks the start of the subroutine. The following example
shows one use of a label (called error) within a program:

if probl em 'yes' then call error

e rror:
say 'Problem ln your data'
exit

Figure 5. This part of a program shows how labels identify subroutines

For more information on labels, see "The CALL Instruction" on
page 104.

Chapter 2. Learn ing a Few Rules 19

Commands

A command is a word, phrase, or abbreviation that tells the system
to do something. In REXX, anything that is not a REXX instruction,
assignment, or label is considered a command. For example, you
can use the CMS commands of COPYFILE, QUERY, PRINT, or TYPE
in your programs.

The CMS command type may appear in a REXX program like this:

/* Issuing commands in REXX */
type hello exec
exit

Figure 6. COMMAND EXEC, using commands in programs

Although a variety of commands can be used in REXX, only CMS
commands will be discussed in this book. In" Issuing Commands
from an EXEC" on page 107, you can find more information on
issuing commands from programs.

Writing in Mixed Case

You can use mixed case in REXX programs. Mixed case letters
helps you distinguish instructions from variables, and helps you to
find errors quickly.

'0 Writing Simple Programs with REXX

Here's what the HELLO program looks like using mixed case:

/* An introduction to REXX */
SAY "Hellol I am REXX."
SAY "What 's your name?"
PULL who

IF who = ""

THEN
SAY "Hello stranger"

ELSE
SAY "Hello" who

EXIT

Figure 7. New HELLO EXEC, using mixed case

Using Quotes for Spacing

If you put several spaces between words in your program, the
interpreter keeps only one space between words. If you want more
space, you should use quotes, as in this program:

/* Example of
say Brevity
say "Brevity
say of"
exit

cases and spaces */
i s the soul of wit. /*On e space between words*/

1S the soul"
"wit.

Figure 8. QUOTES EXEC, putting spaces between words

Chapter 2. Learning a Few Rules 21

When run, the program looks like this on the screen:

Re ady;
quotes
BREVITY IS THE SOUL OF WIT.
Brevity
OF
Ready;

Adding Blank Lines

is t he soul
WIT.

To leave a blank line between lines displayed in the output, you can
use the SAY instruction with nothing following it. For example:

/* Examples of cases and sp a ces */
say Brevity is the soul of wit.
say /*This displays a blank line.*/
say "Brevity is the soul"
say of" "wit
exit

Figure 9. QUOTES EXEC, adding blank lines

It looks like this on the screen:

Ready;
quotes
BREVITY IS THE SOUL OF WIT .

Brevity
OF
Ready;

is the
WIT.

22 Writi ng Sim ple Prog rams with REXX

soul

Summary

You learned the following in this chapter:

Term/Concept Description Page

Comment Explains what the program will do . All 12
REXX programs start with a comment.
Identified by 1* ... */.

String Groups of characters within matching single 13
or double quotes .

Instruction Tells the interpreter to do something . 15

SAY Tells the interpreter to d isplay words , or 15
something computed , on the screen.

PULL Puts an answer in memory . Response read 16
from keyboard is put in uppercase .

PARSE PULL Puts an answer in memory . Reads 16
everything from the keyboard " as is" in
uppercase or lowercase so the response
appears as you typed the input.

EXIT Tells the interpreter to leave the program. 17

Assignment Gives a value to a variable. 18

Label A name followed by a colon . Used in 19
subroutines .

Command Anything not identified as a REXX 20
instruction , assignment or label.

Mixed Case Not changed to uppercase . Use quotes 20
around strings to keep upper- and
lowercase letters and words.

Quotes for Blanks To maintain blank spaces in what's 21
displayed when the program is run.

Adding Blank Lines Use the SAY instruction with nothing 22
following it.

Chapter 2. Learn ing a Few Rules 23

•

•

26 Writing Simple Programs with REXX

Chapter 3. Writing Your First Program

Do you remember the first time you drove a car? "Firsts" often make
us feel uncertain. But writing your first program can be easier than
you think.

Chapter 3. Writing Your First Program 27

Putting the Pieces Together

Let's try writing a simple program to give you a list of things to do
today, and call it the NOTEPAD EXEC. You will receive hints along
the way to help you write the program.

The basic steps to writing a program are:

1. Identify the problem to solve and translate it into a step-by-step
procedure

2. Write the REXX instructions to solve each step

3. Run the program to see if the results meet the requirements

4. Revise the program to correct errors.

The steps outlined above will help you understand the process in
writing a program. As a first hint, you can use two files for the
NOTEPAD program: one for the EXEC and one to contain your list.
Using a separate file for the list allows you to update the "things to
do" every day without changing the EXEC.

Writing the EXEC

To help you get started, here are the requirements for the NOTEPAD
EXEC. The items are in the proper sequence for the program.

The NOTEPAD EXEC should do the following:

1. Identify and describe the REXX program

2. Print a heading for your list of things to do

28 Writing Simple Programs with REXX

3. Print on the screen the file where you maintain the list

Another hint: use the CMS command TYPE for this step. The
TYPE command has this format: TYPE fn ft. For the filename
(fn), name the file for your list anything you want, or use
NOTEPAD. For filetype (ft), use LIST .

4. Tell the interpreter to leave the program.

Now, read each item and see if you can write an instruction or
command for it.

If you feel comfortable with the four lines you have written, type the
EXEC and file it. Continue with the section, "Creating the File for
Your List."

If you had trouble writing the program, continue with the following
discussion of how to put it together.

1. First, which of the following identifies a REXX program? Select
one and write a statement for it.

Choices : Assignment, String, Comment, Instruction

2. Which instruction should you use to print a heading or message
on the screen? Select one and write a statement for it.

Choices: PULL, SAY, EXIT, PARSE PULL

3. Next, how can you use the TYPE command to print the file with
your list? Select a sequence . Insert your filename and the
filetype "list" in the appropriate place.

Chapter 3. Wri ting Your First Program 29

Choices:

say type fn ft

pull fn ft type
parse pull type ft fn
type fn ft

4. For the last step, which of the following instructions tells the
interpreter to leave a program? Select one and write a statement
fo r it.

Choices: EXIT, END, LEAVE, STOP

Now you can create a file for the EXEC. Enter:

xedit notepad exec

In input mode, type the program and file it. Congratulations! You
have written your first REXX program.

Creating the File for Your List

Now you need to create a file with things to do. The file for your list
can contain anything you want. If you are not sure what to write, use
the following :

1 . Answer mai l .
2. Call George about tr ip.
3. Order book .

Create the file for your list. Use the name you have used in your
NOTEPAD EXEC for the name of the file.

xedit notepad list

Enter your list or our sample list , and file it. Now you are ready to
try running your first program.

30 Writing Simp le Programs wi th REXX

•

Running the Program

To run the NOTEPAD EXEC, enter:

notepad

Did you see a list of "things to do" on your screen? If not, take a
look at our sample program and compare it to the one you wrote.
Remember, there are many ways to write the same program. Your
program may be correct, too!

This is the program:

/* A reminder of things to do. */
say 'Things to do today:'
type notepad list
exit

Figure 10. NOTEPAD EXEC, listing things to do

If you ran our program, you would see this displayed on your
terminal:

Ready;
notepad
Things to do today:

1. Answer mail.
2. Call George about trip.
3. Order book.

Ready;

Chapter 3. Writing Your First Program 31

Fixing Errors

If you had trouble running your program, you may have typed
something wrong which caused the interpreter to stop running the
program. Most errors are simply syntax errors. (The syntax of a
language is the way in which words are put together to form
phrases, instructions, or sentences. The rules discussed in this book
are part of the syntax for interpreting REXX .)

12 Writ ing Simple Programs with REXX

Ready;
not err

Suppose you typed as the NOTEPAD EXEC:

/* A reminder of things to do. */
say 'Things to do today:'
type notepad l ist /*Types out your l ist
exit

Figure 11. NOTERR EXEC, finding the error

The program has a syntax error: the missing *j to end the second
comment. When you run the program , this appears on the screen:

Things to do today:
3 +++ type notepad list

Error 6 running NOTERR EXEC,
R(20006) ;

/* Types out your listexit
line 3: Unmatched "/*" or quote

This screen shows that the error occurred on line 3 of the program.
The line that caused the error is printed on your screen:

3 +++ type notepad l ist /*Types out your list exit

The next line contains an error message and number:

Error 6 running NOTE RR EXEC, l ine 3: Unmatched "/* " or quot e

You can find all REXX error numbers and messages in the VMjSP
System Product Interpreter Reference if you need more information
about the error. To correct the program, add the end *j to the
comment. The line now looks like this:

type notep ad l ist /* Types out your list */

Chapter 3. Writing Your First Program 33

Exercises

A syntax error also occurs if you leave off a quote in an instruction.
This program would cause a similar error:

/* A program with a syntax error. */
say 'This program does absolutely nothing
exit

Figure 12. ERROR EXEC, missing an end quote

To correct the SAY instruction, add the end quote or remove the first
quote.

You can find the answers to these exercises in the Appendix.

1. Read the following program, MADAM EXEC, carefully. On a
piece of paper, write down what each word is (for example, an
instruction), and what the interpreter will do with it.

MADAM EXEC:

/* A polite enquiry */
J ane = "Mr s . Doe"
say "How" is jane ?
exit

Now, use XEDIT to create a file called MADAM EXEC and tryout
the program. Did everything happen as you expected it? If not,
read Chapter 2 again and study the explanation in the Appendix.

34 Wri ting Sim ple Programs with REXX

Summary

2. The next program, TROUBLE EXEC, has an error in it. Type the
program in and run it. Note the error number and write down
what you think caused the error.

TROUBLE EXEC:

/* Finding error s */
say Look c los ely , and fi nd the error her e
exit

You learned the following in this chapter:

Term/Concept Description/Solution

Writing Programs Follow the basic steps: Identify the
problem; write the instructions; run the
program; revise the program .

Running the Type the program name and press the
Program ENTER key.

Fixing Errors Correct the syntax of the program .

Page

28

31

32

Chapter 3. Writ ing You r First Prog ram 35

:6 Writing Simple Programs with REXX

Chapter 4. Working with Variables and Arithmetic

By now we hope you are feeling comfortable with REXX
programming. In this chapter you will write another program that
you can use repeatedly. Before you write the program, you will
learn how to use variables and arithmetic. You also will learn how
to add comments throughout a program to describe how it works.

Chapter 4. Work ing with Variables and Arithmetic 37

Using Variables

A variable is a particular piece of data, used by a program in a
particular way, but whose value may vary. Within a program, each
variable is known by its own unique name and is always referred to
by that name.

Choosing Names for Variables

When you choose a name for a variable, you must follow these rules :

• The first character must be one of:

ABC ... Z @ # $ ¢ ! ? _

Lowercase letters such as a b c ... z are also allowed . The
interpreter changes them to uppercase.

• The rest of the characters can be any of the above, plus these:

0-9

A period can also be used as a special kind of variable. You will
not learn how to use a period for variables in this book.

38 Writing Simple Programs with REXX

Assigning Values

A variable 's value may vary, but not its name. When you name a
variable and give it a value , it is an assignment . For example , any
statement of the form :

symbol = e xpress i on

is an assignment statement. You are telling the interpreter to
compute what the e xp r ess i o n is and put the result into a variable
called symbol. It is the same as saying :

"Let symbol be made equal to the result of e xpress i on .

The idea of assigning a value to a variable is the same as the
difference between a post office box and the contents of the box.
The box number does not change , but the contents of the box may be
changed at any time. Another example of an assignment is:

n u ml = 10

One way to give the variable num1 a new value is by adding to the
old value in the assignment:

num1 = num1 + 3

The PULL instruction can also be used to assign a variable . Do you
remember the YOURNAME EXEC? The pu ll name says to give name

whatever value the user types.

Chapter 4. Work ing with Variab les and Arithme tic 39

A special concept in REXX is that any variable which has not
received a value will have the uppercase version of the variable as
its initial value . For example, if you wrote in a program,

list = 2 20 40
say l ist

you would see this on the screen:

2 20 40

As you can see, list receives the values it is ass igned . But if you
wrote:

say list

·0 Writing Simple Programs with REXX

you would see this :

LIST

Let's look at some ways of assigning values to variables. Here is a
simple program:

/* Ass ignin g a v a lue to a variab le */
a = 'ab c '
s ay a
b = 'def'
s a y a b
exit

Figure 13. VARIABLE EXEC assigns values

When you run the program, it looks like this:

Ready ;
variab l e
ab c
ab c d e f
Re ady ;

Assigning values is easy, but you have to make sure a variable is not
used unintentionally, as in this example:

/ * Unint ent i o na l i nterpr etat ion o f a v ari abl e */
a = 'abc'
say Today wou l d be much n i c er if it were a Friday
exit

Figure 14. VAROOPS EXEC, assigning a variable unintentionally

Chapter 4. Work ing with Variab les an d Arith metic 41

What do you think you will see when the program is run? It looks like
this :

Ready ;
varoops
TODAY WOULD BE MUCH NI CER IF IT WERE ab c FRIDAY
Ready;

To avoid unintentionally substituting a variable for the word, all you
have to do is put the sentence in quotes.

/ * No interpretat i on o f a var i able */
a = 'abc'
say 'Today would be mu ch n icer i f it were a Friday'
exit

Figure 15. New VAROOPS EXEC, assigning a variable correctly

Working with Arithmetic

Your REXX programs may need to include arithmetic operations of
addition , subtraction, multiplication, and division.

For example, you may want to assign a numeric value to two
variables and add the variables together .

Arithmetic operations are performed the usual way. You can use
whole numbers and decimal fractions. A whole number is a number
that has a zero (or no) decimal part (for example, 1 or 29). A decimal
fraction contains a decimal point (for example, 1.5 or 0.5) .

Before you see how these four operations are handled in a program ,
we will explain what the operations look like and the symbols used.

42 Writin g Simple Prog rams wit h REXX

Addition

These are just a few of the arithmetic operations used in REXX. The
examples contain a blank space between numbers and operators so
you can see the equations better, but the blank is optional.

The symbol to add numbers is the plus sign (+). An instruction to
add two numbers is:

say 4 + 2

The answer you see on the screen is : 6.

Subtraction

The symbol to subtract numbers is the minus sign (-) . An instruction
to subtract two numbers is:

say 8 - 3

The answer on the screen is: 5.

Multiplication

The symbol to multiply numbers is the asterisk (*) . An instruction to
multiply two numbers is:

say 2 * 2

The answer on the screen is: 4.

Chapter 4. Working with Variables and Arithmet ic 43

Division

With division, there are several operators you can use , depending on
whether or not you want the answer expressed as a whole number.
For example :

• To divide, the symbol is one slash (I) . An instruction is:

say 7 I 2

The answer on the screen is 3.5.

• To divide, and return just a remainder, the symbol is two slashes
(II). An instruction is:

say 7 II 2

The answer on the screen is 1.

• To divide , and return only the whole number portion of an answer
and no remainder, the symbol is the percent sign (%). An
instruction is:

say 7 % 2

The answer on the screen is: 3.

44 Writ ing Simple Programs with REXX

This sample program shows you how to perform four arithmetic
operations on variables:

/* Performing arithmetic on variables */
a 4
b = 2
c = a + b
say 'The result of' a '+' b 'is' c
say
c = a * b
say 'The result of' a '*' b 'is' c
say
c = a - b
say 'The result of' a ' , b 'is' c
say
c = a / b
say 'The result of' a ' / ' b 'is' c
exit

Figure 16. MATH EXEC, using arithmetic

On the screen, you see this:

Ready;
math
The result of 4 + 2 is 6

The result of 4 * 2 is 8

The result of 4 - 2 is 2

The result of 4 / 2 is 2
Ready;

Chapter 4. Working with Variables and Arithmetic 45

Operators

The symbols used for arithmetic (+, -, *, /) are also called operators
because they "operate " on the adjacent terms. In the following
example, the operators act on the numbers (terms) 4 and 2:

say 4 + 2
say 4 * 2
say 4 / 2

/ * says '6'
/* says '8'
/* says '2'

*/
*/
*/

When you are attempting to do arithmetic from data you enter from
the keyboard (in response to a prompt to enter numbers, for
example), you should check that the data is valid. You can do this
using the DATATYPEO function. This function and how to use other
built-in functions is explained in "Using Functions" on page 98.

Evaluating Expressions

In REXX, expressions are normally evaluated left to right. An
equation helps to illustrate this point. Until now, you have seen
equations with only one operator and two terms, such as: 4 + 2.
Suppose you had this equation :

9 - 5 + 4

The 9 - 5 would be computed first. The answer, 4, would be added to
4 for a final value : 8. However, some operations are given priority
over others. In general, the rules of algebra apply to equations. In
this equation, the division is handled before the addition:

10 + 8 / 2

the value is: 14.

46 Writi ng Simple Programs with REXX

If you use parentheses in an equation, the interpreter evaluates
what's in the parentheses first. For example:

(10 + 8) / 2

The value is : 9.

~~*QE~
10 + 8/2

Chapter 4. Working wi th Variables and Ari th metic 47

:;reating a Program

For your second program, let' s put some of the rules you have
learned into a program that you might use every day. You have just
learned how REXX handles arithmetic. How about writing a program
to add two numbers? Let's call it the ADD EXEC.

Keeping in mind the basic steps to writing a program, here is a list of
what you need to do in this program:

1. Identify and describe the REXX program

2. Tell the user to enter numbers

3. Read the numbers entered from the keyboard and put the
numbers into the computer's memory

4. Add the two numbers and display the answer on the screen

5. Tell the interpreter to leave the program.

IVriting the Program

As you know, there are many ways to write programs to accomplish
the same task. See if you can write instructions for each step. To
make it easier, ask the user for each number separately, then add
the numbers together .

If you have written some instructions and want to try them, create a
file for the ADD EXEC. Type your lines in and file it. Now run the
program. Did it work?

If your program worked, skip to the section on " Running the
Program " to see how the sample program. If you had trouble writing

8 Wr iti ng Simple Programs wi th REXX

the program, continue with the following discussion of how to put the
program together.

1. First, what identifies a REXX program? If you thought of a
comment, you were right. Take a minute to write a brief
comment now.

2. Next, you need to ask the user to enter numbers. What
instruction displays a message on the screen? Did you think of
the SAY instruction? Write an instruction to ask for the firs t

n umber.

3. If the number is entered, it needs to be put in the computer's
memory. Do you know the instruction that collects an answer
and puts it in memory? If you guessed the PULL instruction, you
are correct. Write your next instruction.

4. Now, write an instruction to ask for a se c o n d number .

5. Write another instruction to put the second number in memory.

6. The next instruction is similar to one in the MATH program. In
one statement, you can tell the interpreter to add the two values
kept in memory, and display the sum on the screen. Hint: this is
one instruction. It contains a string and the addition operation.

7. Finally, write the instruction to finish the program.

Now you can type the program and file it. Congratulations! You
have written another REXX program.

Ch apter 4. Workin g wit h Va ria b les and Arit hmeti c 49

Running the Program

To test the ADD EXEC, enter add and try some numbers. Were the
numbers added together and the sum displayed on the screen? If
not, try to correct your program by looking at the error messages.

Take a look at the following sample program to see the ADD EXEC:

/* This program adds two numbers */
say 'Enter the first number.'
pull numl
say 'Enter the second number.'
pull num2
say 'The sum of the two numbers is' numl + num2
exit

Figure 17. ADD EXEC, adds two numbers and displays the sum

Here's what happened when Mike tried it:

Ready;
add
Enter the first number.
3
Enter the second number.
12
The sum of the two numbers is 15
Ready;

50 Writing Simple Programs with REXX

Using Comments

When you write programs, keep in mind that other people may want
to modify them. It's a good idea to add comments to the instructions
so that anyone can understand each step. If you don't use a
program for a while, you might be glad to have the reminder too.
The ADD EXEC could have these comments:

/* This program adds two numbers */
say 'Enter the first number.'
pull numl
say 'Enter the second number.'
pull num2

say 'The sum of the two numbers is'
exit

Figure 18. Comments in the ADD EXEC

/* Enter a number */
/* Store number */
/ * Enter another number */
/* Store second number */
/* Add numbers and display */
num l + num2

Longer programs may require a block of comments to explain a
group of instructions. For example:

/* */
/* Subroutine starts here to repeat shout three times. */
/* The first argument is displayed on the screen three */
/* times, with punctuation. */
/* */

In general, if you explain your program well, everyone will
understand it.

Chapter 4. Worki ng wit h Variab les and Arithmetic 51

- - ------------,

Exercises

You can find the answer to these exercises in the Appendix.

1. Which of the following could be used as the name of a REXX
variable?

a. Scroll

b. KP

d. 28

e. #1

2. The following program, ASSIGN EXEC, assigns a value to a
variable. However, something is missing in the program . Write
down what you think the error is and how you would correct it.

ASSIGN EXEC:

/* This program has something missing! */
say input
exit

Now, type the program in with your correction. Does it work?

52 Writing Simple Programs with REXX

Summary

3. What will this program display on the screen?

FAMILY EXEC

/* Simple arithmetic using variables */
pa 1
rna = 1
kids = 3
say "There are " pa+ma+kids " people in this family"

You learned the following in this chapter:

Term/Concept Description Page

Variable A piece of data given a unique name. 38

Value What a variable contains. 39

Addition + operator 43

Subtraction - operator 43

Multi pi ication * operator 43

Division I, II, % operators 44

Arithmetic Follow the rules of algebra. 46
Expressions

Chapter 4. Wo rking with Variables and Arithmet ic 53

54 Writing Simple Programs with REXX

Chapter 5. More about Expressions

.... -

So far you have seen several REXX programs and you have created
two of your own programs. You know how to communicate with the
computer in simple terms, just as you might learn to talk in brief
sentences to someone who speaks another language.

In this chapter, you will see how to take advantage of some features
of REXX that can help you write more involved programs. You will
learn how to have a program make decisions by testing a value with
the IF instruction. You will see how to compare values and

Chapter 5. More about Expressions 55

determine if an expression is true or false. All these features help
you communicate more fluently with REXX.

Making Decisions

All the programs you have seen or written so far have executed
"sequentially." This means that each instruction is processed in the
order it is written , beginning with the first line of the program. An
important feature of programming is that you can control the order in
which statements are run.

Two instructions that let you make decisions in your programs are
the IF and SELECT Instructions. The IF instruction lets you control
whether the next instruction should be run or skipped. The SELECT

56 Wri ti ng Simple Programs w ith REXX

•

instruction lets you choose one instruction to run from a group of
instructions.

The IF Instruction

The IF instruction is used with a THEN keyword to make a decision.
The interpreter executes the instruction if the expression is true. For
example:

if answer
then
s ay "OK!"

"YES"

In the above example, the SAY instruction is run only if a n swe r has
the value of YES.

Notice , too, that the instructions above are indented. Use
indentation, especially for longer programs, because it groups
related lines and makes your program easier to read . The number
of spaces to indent the instructions is up to you.

The following diagram illustrates making a decision with the IF-THEN
format.

Chapte r 5. Mo re abo ut Expre ss io ns 57

True

False

Grouping Instructions

False

True

DO
instruction1
instruction2
instruction3

END

To tell the interpreter to execute a list of instructions following the
THEN keyword, use:

DO

END

instructionl
instruction2
instruction3

58 Writing Simple Program s with REXX

The DO instruction and its END keyword tell the interpreter to treat
any enclosed instructions as a single instruction.

The ELSE Keyword

To tell the interpreter to select from one of two possible instructions,
use:

if expression
then instructionl

else instruction2

Chapter 5. More about Expressions 59

You could include the IF-THEN-ELSE format in a program like this:

if answer = 'YES'
then say 'OK!'

else say 'Why not?'

Try this example to see how it works:

/* Using IF-THEN-ELSE */
say "Do you like me?"
pull answer
if answer = "YES"
then
say "I like you too."

else
say "I don't like you either."

exit

Figure 19. LlKEME EXEC, choosing between two instructions

When Mike tried the program, he saw:

Ready;
likeme
Do you like me?
yes
I like you too.
Ready;

Writing Simple Programs wi th REXX

The SELECT Instruction

The SELECT Instruction tells the interpreter to select one of a
number of instructions. It is used only with the keywords WHEN,
THEN, END and sometimes, OTHERWISE. The END statement marks
the end of every SELECT group.

The SELECT instruction looks like this:

SELECT

END

WHEN expressionl
THEN instructionl

WHEN expression2
THEN instruction2

WHEN expression3
THEN instruction3

OTHERWISE
instruction
instruction
instruction

Note that an IF-THEN instruction cannot be used with a SELECT
instruction, unless it follows a WHEN or OTHERWISE instruction.
You can read this format as follows:

• If expressionl is true, instructionl is run. After this,
processing continues with the instruction following the END. The
END keyword signals the end of the SELECT instruction.

• If expression l is false, expression2 is tested. Then, if
expre s sion2 is true , instruction2 is run and processing
continues with the instruction following the END.

• If, and only if, all of expressionl, expression2, etc., are false,
then processing continues with the instruction following the
OTHERWISE.

Chapter 5. More about Expressions 61

This diagram shows the SELECT instruction:

SELECT
WHEN

WHEN

WHEN

OTHERWISE

END

THEN
True

instruction1

THEN
True instruction2

THEN
True

instruct ion3

instruction(s)

A DO-END could be included inside a SELECT instruction like this:

SELECT
WHEN expressionl THEN

DO
instructionl
instruction2
instruction3

END

,2 Writing Simple Programs with REXX

You can use the SELECT instruction when you are looking at one
variable that can have several different values associated with it.
With each different value, you can set a different condition.

How does the SELECT instruction fit a program you might use?
Suppose you wanted a reminder of weekday activities. For the
variable "day", you can have a value of Monday through Friday.
Depending on the day of the week (the value of the variable), you
can list a different activity (instruction). You could use a program
like this:

/* Selecting weekday activities */
say 'What day is it today?'
pull day
select

when day = 'MONDAY'
then
say 'Exercise class today'

when day = 'TUESDAY'
then
say 'Do the laundry'

when day = 'WEDNESDAY'
then
say 'Exercise class again'

when day = 'THURSDAY'
then
say 'Clean the house'

when day = 'FRIDAY'
then
say 'Happy Hour!'

otherwise
say "It's the weekend!"

end
exit

Figure 20. SELECT EXEC, choosing from several instructions

Mike tried this program too. Here's his reminder:

Chapter 5. More about Expressions 63

Ready;
select
What day is it today?
Thursday
Clean the house
Ready;

rhe NOP Instruction

In a program, a THEN or ELSE keyword must be followed by an
instruction. If you are using an instruction such as SELECT, and you
intend that nothing should happen for one expression, you can use
the NOP (No Operation) instruction.

This example uses the previous SELECT program:

/* Selecting weekday activities */
say 'What day is it today?'
pull day
select

when day = 'MONDAY'
then
say 'Exercise class today'

when day = 'TUESDAY'
then nop /* Nothing happens here */

when day = 'WEDNESDAY'
then
say 'Exercise class again'

when day = 'THURSDAY'
then
say 'Clean the house'

when day = 'FRIDAY'
then
say 'Happy Hour! '

otherwise
say "It's the weekend!"

end
exit

gure 21. SELECT EXEC with NOP

Writing Simple Programs with REXX

True and False Operators

Determining if an expression is true or false is useful in your
programs. If an expression is true , the computed result is "1". If an
expression is false, the computed result is "0". The following
sections show several ways to check for true or false.

Comparisons

Some operators you can use for comparisons are:

> Greater than
< Less than

Equal to

Comparisons can be made with numbers, or they can be character
by character. Some numeric comparisons are:

The value of 5 > 3 is 1 This result is true.

The value of 2.0 = 002 is 1 This result is true .

The value of 332 < 299 is 0 This result is false .

If the terms being compared are not numbers, the interpreter
compares characters. For example, the two words (strings)
"airmail" and "airplane" are compared as follows:

Chapter 5. More about Expressio ns 65

pad

+
I I I a I i I r I ml a I i II I

I I I I
= = = * ~I m < p so airmail < airplane I
I I I I . .

If this seems confusing, think of the REXX interpreter comparing the
words like this:

• Leading and trailing blanks are ignored. These are the blank
spaces before or after the word.

• The shorter word (airmail) is padded on the right with blanks.

• The words are compared from left to right , character by
character.

• If the strings are not equal, the first pair of characters that do not
match are used to determine the result.

A character is less than another character according to this
sequence of lowest to highest value:

Lowest

!
--------------------------------------.. Highest

blank
special characters (for example: &, !, $, %, ?, # , @)
a ... z
A Z
o .. 9

Highest

When "airmail" and "airplane" are compared, the first character that
is different is the "m" of airmail and the "p" of airplane. The "m" is
less than the "p," so "airmail" is less than "airplane."

66 Writing Simple Programs with REXX

Equal

An equal sign (=) can have two meanings in REXX, depending on its
position. For example:

amount = 5 /* This is an assignment */

says the variable amount gets the value of 5, as discussed in
"Assigning Values" on page 39. If an equal sign is in a statement
other than as an assignment, it means the statement is a
comparison. For example:

say amount = 5 /* This is a comparison */

compares the value of amount with 5. If they are the same, a "1" is
displayed, otherwise, a "0" is displayed.

Using Comparisons

This program uses comparisons and an equal expression to
determine if numeric expressions are true or false.

/* Determining if expression lS

/* 1 is true; 0 is false
a 4
b = 2
c = a > b
say 'The result of' a '> ' b 'is'
c = a < b
say 'The result of' a '< ' b 'is'
c = a = b
say 'The result of' a '=' b 'is'
exit

Figure 22. TF EXEC, checking for true or false

true or false */
*/

c

c

c

Chapter 5. More about Expressions 67

When you run the program, it looks like this:

Ready;
tf
The result of 4 > 2 is 1
The result of 4 < 2 is 0
The result of 4 2 is 0
Ready;

The Logical NOT Operator

Logical operators can only return the values of 1 or O. The NOT
operator (,) in front of a term reverses its value from true to false,
or from false to true.

say -, 0
say -, 1
say -, (4
say -, 2

/* says '1' */
/* says '0' */

4) /* says '0' */
/* gives a syntax error */

The Logical AND Operator

The AND operator (&) between two terms gives a value of true only if
both terms are true.

say (3 3) & (5 5) /* says ' I' */
say (3 4) & (5 5) /* says '0 ' */
say (3 3) & (4 5) /* says '0 ' */
say (3 4) & (4 5) /* says '0 ' */

68 Writing Simple Programs with REXX

The following program shows the AND operator:

/* Using the AND (&) Operator */
/* 0 is false; 1 lS true */
a 4
b 2
c 5
d (a > b) & (b > c)
say 'The result of (a > b) & (b > c) is' d
d = (a > b) & (b < c)
say 'The result of (a > b) & (b < c) is' d
exit

Figure 23. AND EXEC, checking for two true statements

On the screen, the program looks like this:

Ri
and
The result of (a > b) & (b > c) is 0
The result of (a > b) & (b < c) lS 1
Ri

The Logical OR Operator

The OR operator (I) between two terms gives a value true, unless
both terms are false.

say (3 3) (5 5) /* says ' I' */
say (3 4) (5 5) /* says ' I' */
say (3 3) (4 5) /* says ' I' */
say (3 4) (4 5) /* says '0 ' */

Chapter 5. More about Expressions 69

Exercises

The following program shows the OR operator:

/* Using the OR (I) Op e rator */
/* 0 is false; 1 is true */
a 4
b 2
c 5
d (a > b) I (b > c)
say 'The r e sult of (a > b) & (b > c) is ' d
d = (a > b) I (b < c)
say 'The r esult of (a > b) & (b < c) is' d
exit

Figure 24. OR EXEC, statement true unless both values false

On the screen, the program looks like this:

Re ady;
or
The result of (a > b) & (b > c) is 1
The result of (a > b) & (b < c) lS 1
Ready;

You can find the answer to these exercises in the appendix.

1. Read the following program, MEASURES EXEC. Write down what
you think will appear on the screen when the program is run.

70 Writing Simple Programs with REXX

Summary

MEASURES EXEC:

/* Comparing numbers */
dozen = 12
score = 20
say score = dozen + 8
say
/* Using the AND operator */
say dozen = 12 & score = 21
exit

2. What is the value of each of the following expressions?

"5" > "five"
"Kilogram" > "kilogram"
Ita" > H#"
Hq" > "?"
"gal! > "9"
"?" > " "

You learned the following in this chapter:

Term/Concept Description

IF Used with THEN. Checks if the expression
is true. Makes a decision about a single
instruction.

THEN Identifies the instruction to be executed if
the expression is true.

ELSE Used with the IF instruction. Tells the
interpreter to select one of two instructions.

Page

57

57

59

Chapter 5. More about Expressions 71

Term/Concept Description Page

DO-END Indicates that a group of instructions should 58
be executed.

SELECT Tells the interpreter to select one of a 61
number of instructions.

WHEN Used with SELECT. Identifies an expression 61
to be tested.

OTHERWISE Used with SELECT. Indicates the 61
instructions to be executed if expressions
tested are false.

NOP Used with an instruction when you want 64
nothing to happen for one expression.

Comparisons > < Greater than , less than , equal to 65
=

NOT Operator --, Changes the value of a term from true to 68
false, or from false to true.

AND Operator & Gives the value of true if both terms are 68
true.

OR Operator I Gives the value of true unless both terms 69
are false . •

Writing Simple Programs with RE XX

Chapter 6. Automating Repetitive Tasks

Do you often do one task over and over again?

Within a program, you can automatically repeat a task by using
loops. Through loops, you can keep adding or subtracting numbers
until you want to stop. You can define how many times you want a
program to handle an operation.

In this chapter, you will learn how to use some simple loops. And,
you will write your third program.

Chapter 6. Automating Repetitive Tasks 73

Using Loops

If you want to repeat several instructions in a program, you can use
a loop . Loops are often used in programming because they
condense many lines of instructions into a group that can be
executed more than once. Loops make your programs more
concise. And, with a loop, you can keep asking for input from a user
until the correct answer is given.

The two types of loops you may find useful are repetitive loops and
conditional loops. Loops begin with a DO statement and end with
the END statement.

Simple repetitive loops can be executed a number of times. You can
specify the number of repetitions for the loop, or use a variable that

Writing Simple Programs with REXX

has a changing value. Conditional loops are executed when a true
or false condition is met.

Repetitive Loops

To repeat a loop a fixed number of times you can use the following
simple loop:

DO num
instructionl
instruction2
instruction3

END

The num is a whole number, which is the number of times the loop is
to be executed.

Here is an example of a simple repetitive loop:

/* A simple loop */
do 5

say 'Ho'
end
exit

Figure 25. LOOP EXEC, an example of a simple loop

Chapter 6. Automating Repetitive Tasks 75

When you run the LOOP EXEC, you will see this on your screen:

Ready;
loop
Ho
Ho
Ho
Ho
Ho
Ready;

Another format is:

DO I == 1 to 10

This format numbers each pass through the loop so you can use it as
a variable. The value of I is changed (increased by 1) each time you
pass through the loop. The" 1" (or some number) gives the value
you want the variable to have the first time through the loop . The
"10" (or some number) gives the value you want the variable to have
the last time through the loop.

An example is:

/* Another loop */
sum == 0
Do I = 1 to 10

say 'Enter value' I
pull value
sum = sum + value

e nd
say 'The tota l is' sum
exit

Figure 26. NEWLOOP EXEC, an example 01 another loop

Writing Simple Prog ram s with REXX

Here's the results when Mike tried this program:

Ready;
newloop
Enter value 1
2
Enter value 2
4
Enter value 3
6
Enter value 4
8
Enter value 5
10
Enter value 6
12
Enter value 7
14
Enter value 8
16
Enter value 9
18
Enter value 10
20
The total is 110
Ready;

When a loop ends, the program continues with the next instruction
following the end of the loop, identified by the END keyword.

Chapter 6. Automating Repetitive Tasks 77

Conditional Loops

Conditional loops are executed as long as a condition is met. The
following sections describe some instructions used for conditional
loops.

The DO WHILE and DO UNTIL Instructions

The DO WHILE and DO UNTIL instructions are run "while" or "until"
some condition is met. A DO WHILE loop is:

DO WHILE expression
instructionl
instruction2
instruction3

END

With the DO WHILE instruction, the program evaluates if the
expression is true before processing the instructions that follow . If
the expression is true, the instructions are executed. If the
expression is false, the loop ends and moves to the instruction
following the END inst ruction. The DO WHILE instruction tests for a
true or false condition at the top of the loop.

78 Wr iting Sim ple Progra ms with REXX

This diagram shows the DO WHILE instruction:

DO WHILE

expression
True

False
instruction1
instruction2
instruction3

END

A program using a DO WHILE loop is:

/* Using a DO WHILE loop */
say 'Enter the amount of money available'
pull salary
spent = 0
do while spent < salary

say 'Type in cost of item'
pull cost
spent = spent + cost

end
say 'Empty pockets.'
exit

Figure 27. DOWHILE EXEC tests for true or false at top of loop

Chapter 6. Automating Repetitive Tasks 79

After running the DOWHILE program, it looks like this:

Ready;
dowhile
Enter the amount of money available
100
Type in cost of
57
Type in cost of
24
Type In cost of
33
Empty pockets.
Ready;

i t em

it e m

item

A DO UNTIL instruction differs from the DO WHILE because it
processes the body of instructions first, then evaluates the
expression. If the expression is false, the instructions are repeated
(a loop). If the expression is true, the program ends or moves to the
next step outside the loop.

The DO UNTIL instruction tests at the bottom of the loop and,
therefore, the instructions within the DO loop are executed at least
once.

A DO UNTIL loop looks like this:

DO UNTIL e xpres s ion
instruction1
instruction2
instruction3

END

80 Wri ti ng Simple Programs with REXX

This diagram shows the DO UNTIL instruction:

DO UNTIL

END

instruction1
instruction2
instruction3

expression
False

The DOWHILE program can be changed to process a DO UNTIL loop
like this:

/ * Us i ng a DO UNTI L loop */
s ay 'Ente r t h e amoun t o f mo ney avai l ab le '
pull s a l ar y
s pent = 1 0 /* Sets spent to a v a l ue o f 10 * /
d o u n t i l s p e n t > sa lary

say 'Type i n cost of it em'
pull c o st
spent = spent + co s t

end
s ay 'Empty po cket s .'
e xit

Figure 28. DOUNTIL EXEC tests for true or false at bottom of loop

Cha pter 6. Auto matin g Repetit ive Tas ks 81

It looks like this on your screen:

Ready;
dountil
Enter the amount o f money available
50
Type in cost of item
37
Type In cost of item
14
Empty pockets.
Ready;

The LEAVE Instruction

In the above example, you may want to end the loop before the
ending conditions are met (before you run out of money). You can
accomplish this with the LEAVE instruction . This instruction ends the
loop and and continues processing with the instruction following the
END.

/* Using the LEAVE instruction in a loop */
say 'Enter the amount of money availabl e '
pull salary
spent = 10 /* Sets sp e nt t o a value of 10 */
do until sp ent > salary

say 'Type in cost of item or END to quit'
pull cost

if cost 'END'
then
l e ave

spent = spe nt + cost
end
say 'Empty pocke t s.'
exit

Figure 29. LEAVE EXEC causes the interpreter to end the loop

82 Wri ting Simple Programs with REXX

The DO FOREVER Instruction

There may be situations when you don't know how many times to
repeat a loop. For example, you may want a user to enter specific
numeric data (numbers to add together), and you want the loop to
perform the calculation until the user says to quit. For this program,
you can use the DO FOREVER instruction with the LEAVE instruction.

A simple use of a DO FOREVER loop is:

/ * Us ing a DO FOREVER loop to a dd numb er s */
sum = 0
do f orever

say 'En t er numbe r o r END to qu i t'
pu ll va l ue
i f value 'END '

the n
l eave / * Program quits when u ser ent er s 'end ' * /

s um = s um + va lue
e nd
say ' The s um is' sum
ex i t

Figure 30. FOREVER EXEC ends when the user quits

Chapter 6. Autom at ing Re petiti ve Tasks 83

Getting Out of Loops

To stop most programs, you can enter the command:

HI

However, if you tried a program like the one below, the HI command
will not work.

84 Writing Simple Prog rams with REXX

/* Guess the secret password! */
do until answer = "I quit!"

say "What is your answer?"
pull answer

end
exit

Figure 31. SECRET EXEC, a program that may never end

If you were not familiar with the program, you would not know the
correct response to end it. Typing HI will not stop the program. The
HI just gets compared with I quit!, and because they are not
equal, entering HI will never work.

You can recognize this situation because, whatever you do, the
words VM READ continue to appear in the bottom right hand corner of
your screen. If you don't know the answer, the simplest way out is to
enter:

#cp ipl cms

For more information on this command, see the VMISP eMS Primer.

Parsing Words

In "The PULL and PARSE PULL Instructions" on page 16 you
learned that the PULL instruction collects a response and puts it in
the computer's memory as a variable. PULL can also be used to
fetch several words and put each word into a different variable . In
REXX, this is called parsing. The variable names used in the next
example are: FIRST, SECOND, THIRD, and REST.

say 'Please enter three or more words: I

pull first second third rest

Chapter 6. Automating Repetitive Tasks 85

Suppose you entered this as your response:

garba ge in garbage out

When you pressed the ENTER key, the program would continue.
However, the variables would be assigned as follows:

The variable FIRST is given the value "GARBAGE"
The variable SE COND is given the value "IN"
The variable THIRD is given the value "GARBAGE"
The variable REST is given the value" OUT"

In general, each variable gets a word, without blanks, and the last
variable gets the rest of the input, if any, with blanks. If there are
more variables than words, the extra variables are assigned the null,
or empty, value.

Creating Another Program

The third program you will create combines several concepts from
this part of the book. It's something you can use every day: a
simple desk calculator. The CALC EXEC will handle the four
arithmetic operations of addition , subtraction, multiplication, and
division . Let's also incorporate a loop in the program so you can
enter calculations without restarting the program.

Think about the requirements for this program. Cover up the next
section with a piece of paper, and try writing a list of what the
program should do line by line.

Did you have trouble writing a list? Now look at the requirements
below and see if you understand them.

86 Writi ng Simp le Programs with REXX

In the program, you will:

1. Identify and describe the program.

2. Tell the user to enter numbers and operators (like an equation).

3. Put the numbers and operators in the computer's memory.

4. Tell the interpreter to select one of the arithmetic operations to
perform and process the arithmetic operator.

5. Display the answer on the screen.

6. Allow the user to keep entering calculations without starting the
program again, or allow the user to end the program .

Writing the Program

You probably know several instructions to write for this program.
Write down as many statements as you can for the steps. If you can't
complete an entire instruction or statement, write as much as you
can. Think about the program from beginning to end, and the proper
sequence of the steps.

If you think you have a complete program, type it in and run it. If you
need more explanation, continue with the following section.

1. Write a statement to identify the REXX program. You should feel
confident in completing this required first step.

2. The next step requires asking for input. With a piece of paper,
cover the paragraphs that follow so you can think through this
step before you see our suggestions. Remember, the user
should enter numbers and arithmetic operators. Write
instructions to tell users to enter numbers and an operator, what

Chapter 6. Automating Repetitive Tas ks 87

form they should use, and what symbols represent the operators.
These instructions should be informative so the user knows how
to use the program.

Hint: Use a block of SAY instructions to display all the
information on the screen.

Write down your ideas. When you are finished, look at our
suggestions below. If your instructions are somewhat different,
remember, they may work too!

1* This program is your desk calculator. *1
say 'This program acts as a desk calculator.'
say 'Enter calculations in the form of:'
say 'number operation number'
say 'where operation is the symbol: + - * I'
say 'for ADD, SUBTRACT, MULTIPLY, or DIVIDE'
say
say 'Enter your calculation (or press ENTER to quit)'

3. Now the equation (numbers and an operator) needs to be put in
the computer's memory. Write an instruction to do this.

4. Next, if valid numbers and an operator are given, you want the
interpreter to "se lect" the appropriate instruction to perform.
What instruction would you use?

Hint: Write a separate statement for each operation. Include an
instruction to display the answer on the screen. Look back at the
MATH EXEC and the ADD EXEC for ideas.

5. To keep entering calculations without having the program stop
requires repetition of a group of instructions. If you thought of
using a loop, you're right! Write down the instruction for a DO
FOREVER loop.

6. Suppose the user doesn't enter a number. Let's provide a way of
exiting the program if no numbers are given.

88 Writing Simple Programs with REXX

Hint: You can use the IF instruction with a THEN keyword.

7. You are almost finished. Write the instruction to end the
program.

You now have worked through the steps for the CALC EXEC. It's
important, however, to put the instructions in the proper sequence.
Think about the placement of the loop. Remember to end the loop
and the SELECT instruction. When you have finished putting the
CALC EXEC together, type the program in and file it.
Congratulations again on writing a program!

Chapter 6. Automating Repetitive Tasks 89

When the instructions discussed above are put together, the program
looks like this:

1* This program is your desk calculator. *1
say 'This program acts as a desk calculator.'
say 'Enter calculations in the form of:'
say 'number operation number'
say 'where operation is the symbol: + - * I'
say 'for ADD, SUBTRACT, MULTIPLY, or DIVIDE'
say
do forever
say 'Enter your calculation (or press ENTER to quit)'
pull numl op num2 1* Gets numbers and operator
if numl = " 1* If user presses ENTER key or

then 1* program ends.
leave

select
when op = '+'

then
say numl op num2 'is' numl + num2

when op = '-'
then
say numl op num2 'is' numl - num2

when op = '*'
then
say numl op num2 'is' numl * num2

when op = 'I'
then
say numl op num2 'is' numl I num2

otherwise

*1
space *1

*1

say numl op num2 'is not a valid calculation, Try again!'
end
end
exit

Figure 32. CALC EXEC uses the DO FOREVER and SELECT instructions

90 Writing Simple Programs with REXX

Running the Program

To test the CALC program, enter calc on the command line. Mike
tried some numbers and here's the result:

Ready;
calc
This program acts as a desk calculator.
Enter calculations in the form of:
number operation number
where operation is the symbol: + - * /
for ADD, SUBTRACT, MULTIPLY, or DIVIDE

Enter your calculation (or press ENTER to quit)
56 / 9
56 / 9 is 6.22222222
Enter your calculation (or press ENTER to quit)
12 * 12
12 * 12 is 144
Enter your calculation (or press ENTER to quit)
17 - 6
17 - 6 is 11
Enter your calculation (or press ENTER to quit)

Ready;

Chapter 6. Automating Repetitive Tasks 91

Exercises

Summary

You can find the answer to this exercise in the appendix.

Write a program to say the days of the week repeatedly. Use:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday

To stop the program, use the eMS command HI (Halt Interpretation).

You learned the following in this chapter:

Term/Concept Description Page

DO num Loop Repeats loop a fixed number of times. 75

DO I = 1 to 10 Loop Each pass through the loop is numbered. 75
Sets a starting and ending value for
variable .

DO WHILE Tests for true or false at top of loop. 78
Repeats loop on true. On false, continues
processing after END.

92 Writing Simple Programs with REXX

Term/Concept Description Page

DO UNTIL Tests for true or false at bottom of loop. 78
Repeats loop on false. On true, continues
processing after END.

LEAVE Causes interpreter to exit a loop. 82

DO FOREVER Repeats instructions until the user says to 83
quit.

Getting Out of Loops Use commands: HI or #cp ipl cms 84

Parsing Words Assigns a different variable to each word in 85
a group.

Chapter 6. Automating Repetitive Tasks 93

36 Writing Simple Programs with REXX

•

•

•
• •
• •
•
• •
•

Chapter 7. Using More Advanced Features

As you become more skilled at programming, you will want to create
programs that do more and run more efficiently. Sometimes this
means adding a special function to your program or calling a
subroutine.

This chapter explains how these tools will help you build a better
foundation in REXX.

Chapter 7. USing More Advanced Features 97

Using Functions

In REXX, a function call can be written anywhere in an expression.
The function performs the requested computation and returns a
result. REXX then uses the result in the expression in place of the
fu nction call .

Think of a function like this: You are trying to find someone's
telephone number (complete a function) . You call the telephone
operator and ask him to look up the number. He gives you a
number, and you call the person .

Generally, if the interpreter finds this in an expression:

name(expression)

it assumes that name is the name of a function and that this is a call
to the function name (). There is no space between the end of the
name and the left parenthesis. If you leave out the right parenthesis
it is an error.

The expressions inside the parentheses are the arguments. The
argument can itself be an expression; the interpreter computes the
value of this expression before passing it to the function. If a
function requires more than one argument, use commas to separate
each argument.

8 Writing Simple Programs with REXX

Built-in Functions

More than fifty functions are "built-in" to REXX. In this book, only a
few will be introduced. You will find a dictionary of built-in functions
in the VMISP System Product Interpreter Reference.

Let's continue the discussion of functions by looking at the built-in
function to obtain the greatest number of a set of numbers:

MAX(number,number, ...)

For example :

MAX(2,4,8,6) 8

Chapter 7. Usin g More Advanced Featu res 99

MAX(2,4 + 5,6) = 9

Note that in the second example, the 4+5 is an expression. A
function call, like any other expression, usually appears in a clause
as part of an assignment or instruction.

The DATATYPEO Function

When attempting to do arithmetic on data entered from the keyboard,
you can use the DATA TYPEO function to check that data is val id.

This function has several forms. The simplest form returns the word,
NUM, if the argument (the expression inside the parenthesis) would
be accepted by the interpreter as a number that could be used in
arithmetical operations. Otherwise, returns the word, CHAR. For
example:

The value of DATATYPE(56) is NUM
The value of DATATYPE(6.2) is NUM
The value of DATA TYPE($5.50) is CHAR

This program asks the user to keep entering a valid number until he
succeeds:

/* Using the DATATYPE() Function */
do until datatype(howmuch) = 'NUM'

say 'Enter a number'
pull howmuch
if datatype(howmuch) = 'CHAR'
then
say 'That was not a number. Try again!'

end
say 'The number you entered was' howmuch
exit

Figure 33. DATATYPE EXEC, using a REXX built-in function

00 Writing Simple Programs with REXX

If you want the user to enter only whole numbers, you could use
another form of the DATATYPEO function:

DATATYPE(number,whole)

The arguments for this form are:

1. number refers to the data to be tested.

2. whole refers to the type of data to be tested. In this example, the
data must be a whole number.

This form returns a "1" if number is a whole number, or a "0"
otherwise.

The SUBSTRO Function

The value of any REXX variable can be a string of characters. To
select a part of a string, you can use the SUBSTRO function.
SUBSTR is an abbreviation for substring. The first three arguments
are:

1. The string from which a part will be taken

2. The position of the first character that is to appear in the result
(characters are numbered 1, 2, 3 ... in the string)

3. The length of the result.

For example:

S = 'reveal'
say substr(S,2,3)

say substr(S,3,4)

/* Says 'eve'. Beginning with the second
/* character, takes three characters.
/* Says 'veal'. Beginning with the third
/* charact e r, takes four characters.

*/
*/
*/
* /

Chapter 7. Usi ng Mo re Advanced Features 101

User-Written Functions

You can also write your own functions in REXX. You can use
functions written by others in your organization. As a new
programmer, you should learn more about the built-in functions,
before attempting to write your own .

For more information, see user-written functions in the VMISP
System Product Interpreter User's Guide.

Using Subroutines

A subroutine is a group of statements that can be called from more
than one place in your main program. Subroutines can be in the
same file as the main program, or they can be in a separate EXEC
file . The advantage of using a subroutine is that you can reuse
blocks of instructions in several places in a program.

102 Writing Simple Programs with REXX

The following diagram shows a subroutine that is included in the
same EXEC file as the main program.

CALL mysub --------,

Main Program

EXIT

MYSUB:

Subroutine

RETURN

Chapter 7. Using More Advanced Features 103

The CALL Instruction

The CALL instruction causes the interpreter to look through your
program until it finds a label that marks the start of the subroutine.
Remember, a label (word) is a symbol followed by a colon (:), as
shown in the diagram above. Processing continues from there until
the interpreter finds a RETURN or an EXIT instruction.

A subroutine can be CALLed from more than one place in a
program. When the subroutine is finished , the interpreter always
RETURNs to the instruction following the CALL instruction from
which it came.

Often each CALL instruction supplies data, called arguments, that
the subroutine is to use. In the subroutine, you can find out what
data has been supplied by using the ARG instruction .

The CALL instruction appears in this form:

CALL name (argume ntl, a rgume nt2 ... J

For the name, the interpreter looks for the corresponding label
(name) in your program. If no label is found , the interpreter looks for
a built-in function or an EXEC file of that name.

The arguments are expressions. You can have up to ten arguments
in a CALL instruction. An example of a program that calls a
subroutine follows. Note that the EXIT instruction causes a return to
CMS. It stops the main program from running on into the subroutine .

104 Writing Sim ple Programs w ith REXX

For example, this is your program:

/* Calling a subroutine from a program */
do 3
call triple "R"
call triple "E"
call triple "X"
call triple "X"
say

end
say "R ... !"
say "E ... !"
say "X ... !"
say "X ... !"
say I I

say "REXX!"
exit /* This ends the main program. */
/* */
/* Subroutine starts here to repeat shout three times. */
/* The first argument is displayed on the screen three */
/* times, with punctuation. */
/* */
TRIPLE:
sayarg(l)",
return

"arg(l)", "arg(l)"!"
/* This ends the subroutine. */

Figure 34. CHEER EXEC calls a subroutine from a main program

Chapter 7. Using More Advanced Features 105

On the screen, the CHEER EXEC looks like this:

Ready;
cheer
R, R, Rl
E, E, E!
X, X, Xl
X, X, Xl

R, R, Rl
E, E, El
X, X, Xl
X, X, X!

R, R, R!
E, E, E!
X, X, X!
X, X, X!

R ... l
E ... !
X ... !
X ... l

REXXl
Ready;

The ARG Instruction

To assign the arguments to variables (and make the program easier
to read), you can use the PARSE ARG instruction or the PARSE
UPPER A RG instruction.

For example, if you have the following CALL instruction:

CALL DINNER ' apple ', 'coffee', 'steak ' , ' p i e '

106 Writ ing Simple Programs with REXX

and you want the results of the four expressions in this instruction to
be assigned to appetizer, drink, main_course, and dessert, you can
write:

PARSE ARG appetizer, drink, main_cours e , dessert

The other form of the instruction, PARSE UPPER ARG, can be
shortened to ARG. Use this instruction if you want the four
arguments changed to uppercase. For example:

ARG appetizer, drink, main_course, dessert

Notice that, just as there are commas between the expressions in the
CALL instruction, so there are commas between the symbols in the
PARSE ARG or ARG instruction when used this way.

The RETURN Instruction

As previously noted, the RETURN instruction takes you back to the
main part of the program . Processing continues with the instruction
following the CALL. The form of the instruction is simply:

RETURN

Issuing Commands from an EXEC

REXX works in a number of environments (for example, CMS or
XEDIT). To keep things simple, only CMS commands will be
discussed in the examples.

As discussed in "What's in a REXX Program" on page 14, anything
not recognized as an instruction, assignment, or a label, is
considered a command. The statement recognized as a command is

Chapter 7. USing More Advanced Features 107

treated as an expression . The expression is evaluated first, then the
result is passed to CMS.

The following example, COPYLIST EXEC, shows how a command is
treated as an expression. Note how the special character (*) is put
in quotes.

/ * Issuing a command from a program. This example copies */
/* all files that have a filetype of LIST from your */
/* A-disk to your B-disk. */
say
copy '*' list a ' = =' b /* This statement is trea ted as */

/* an express ion. */
/* The result is passed to eMS. */

exit

Figure 35. COPYLIST EXEC copies files from your A-disk to your B-disk

In the above example, if the asterisk (*) were not in quotes, the
interpreter would attempt to multiply copy by list.

Norking with Return Codes

When you write commands in your programs, you should consider
what would happen if the command failed to execute correctly. For
example, a COPYFILE command might fail because the user's disk
was full . After this failure, you should at least EXIT from the
program.

Here's how you discover such a failure. When commands have
finished executing, they always provide a return code. A return code
of zero nearly always means "ali's well." Any other number usually
means that something is wrong. You can see these codes on your
screen when you issue commands from the CMS command line.

08 Writing Simple Programs with REXX

copyfile
if rc = 0
then

If the command worked normally (the return code was 0), you will
see the "Ready" message, like this:

Ready;

If the command did not work, you will see the "Ready" message with
a return code, like this:

Ready(00028) ;

Any command that would be valid on the command line is valid in a
REXX program. The interpreter treats the command statement like
any other expression, substituting the values of variables, and so on .
(The rules are the same as for commands on the command line . For
more information, see "The CMS Environment" in the VMISP System
Product Interpreter Reference.)

When the interpreter has issued a command and CMS or CP has
finished running it, the interpreter gets the return code and stores it
in the REXX special variable RC. In your program, you should test
this variable to see what happened when the command was
executed.

The following example shows a few lines from a program where the
return code is tested:

'* , list a '= =' b
/* RC contains the return code from COPYFILE command */

say 'All ,,* list" files copied'
else

say 'Error occurred copying files'

Ch apter 7. Us ing More Advanced Features 109

Exercises

You can find the answers to these exercises in the Appendix.

1. Suppose someone wrote a function called HALF(). The function
returns half of a number. If a number is not even, the result
returned is rounded high.

What is the value of:

a.HALF(100)
b.HALF (100)
c.HALF(19)
d.HALF(HALF(26) + HALF(3 + 3))

2. The RANDOM() function can be used for games and for statistical
models. For example, to obtain a number, chosen at random
from the range 1 through 6, you could write:

random(1,6)

Write a program called TOSS that will display either the word
"Heads" or (just as likely) the word "Tails". (Hint: The range is
from 1 to 2) . Run your program a number of times to see if the
results are the same as if tOSSing a coin.

3. This program prints a list of items ordered for an office. Write
the subroutine ASTERISK to print a line of asterisks between
each item.

110 Writing Simple Programs wi th REXX

ASTERISK EXEC:

/* This EXEC calls a subroutine to print a line of asterisks */
call asterisk
say 'Item I Notebook'
call asterisk
say 'Item 2
call asterisk
say 'Item 3
call asterisk
say 'Item 4
call asterisk
exit

Black Pens'

Calendar'

Staples'

Copy the program with your subroutine into an EXEC file and test
the program .

Summary

You learned the following in this chapter:

Term/Concept Description Page

Functions Perform a computation and returns a result. 98

DATATYPEO Built-in function : verifies if the data is a 99
specific type.

SUBSTRO Built-in function: selects part of a string. 101

Subroutines Sequenced group of statements that can be 102
called from more than one place in a
program.

CALL Causes the program to look for a subroutine 104
label and begin running the instructions
following the label.

ARG Assigns arguments to variables. 106

Chapter 7. Using More Advanced Features 111

Term/Concept Description Page

RETURN Ends a subroutine; causes the interpreter to 107
go to the next line following the CALL.

Issuing Commands Commands are treated like expressions. 107
from An EXEC

Return Codes Tells you if the command executed 108
correctly. A zero return code means "all's
well."

12 Writing Simple Program s with REXX

Chapter 8. Learning More About REXX

You have just completed a basic introduction to REXX, but your
education doesn't have to stop here. In this chapter, you will see
how to add to previously developed programs, and put ideas to work
in brand-new programs. You ' ll find some suggestions for getting
help, too. Just as you may continue special studies beyond
graduation from school, your knowledge of REXX can grow even
after you close the pages of this book.

Chapter 8. Lea rn ing More Abou t REXX 11 3

Enhancing Your Programs

The key to a successful program is that it can be used frequently. As
your needs change, you may want to add more function to a
program. Or, you may want to modify a program so it handles a
different task. In the following examples, we will show you some
ways to enhance two programs you wrote : the NOTEPAD EXEC and
CALC EXEC.

Modifying the NOTEPAD Program

The NOTEPAD program can be modified several ways. For a simple
change, you can have the program tell what day it is when the
reminders are listed . To do this, you can use the DATEO function.
The original program contained these lines:

say 'Things to do today:'
type notepad script
exit

Adding the date requires a new assignment of a variable with the
DATEO function, and the modification of the SAY instruction . The
DATEO function has these options:

• Basedate

• Century

• Days

• European

• Julian-OS

• Month

• Ordered

• Sorted

• USA

• Weekday.

114 Writing Simple Programs wi th REXX

For more information on the options, see the VMISP System Product
Interpreter Reference.

You can assign the variable today a weekday like this:

today = date(weekday)

Remember, to indicate a REXX function, there should be no space
between the name of the function (DATE) and the left parenthesis.
The SAY instruction also needs to be changed so that today is
treated as a variable.

say 'Things to do' today

The last line of the program remains the same:

'type notepad script'

The new program is:

/* A reminder of things to do */
today = dat e(we ekday) / * Assigns a weekday */
say 'Things to do' today
type notepad script
exit

Figure 36. NEWNOTE EXEC, modifying a program

When Mike tried the new program, it looked like this:

Ready;
newnote
Things to do Wednesday

1. Answer mail.
2. Call George about trip.
3. Order book.

Ready;

Chapter 8. Learn ing More Abo utREXX 115

Modifying the CALC Program

Let's look at two changes you can make to the CALC program. The
first change allows you to enter a character or the symbol for an
arithmetic operator. The original program contained these lines:

1* This p r ogram is your de sk calculator. *1
say 'This program acts a s a desk calculator.'
say 'Enter calculations in the form of:'
s a y 'number operation number'
say 'where operation is the symbol: + - * I'
say 'for ADD, SUBTRACT, MULTIPLY, or DIVIDE'
say
do forever
say 'Enter your calculation (or press ENTER to quit) ,
pull numl op num2 1* Gets numbers and operator *1
if nurnl = I I / * If user presses ENTER key or space */

then 1* program ends. *1
leave

select
when op = '+'

then
say numl op num2 'is' numl + num2

when op = '-'
then
say numl op num2 'is' numl - num2

when op = '*'
then
say numl op num2 'is' numl * num2

when op = 'I'
then
say numl op num2 'is' numl I num2

otherwise
say numl op num2 'is no t a valid calculation, Try again!'
end

end
exit

You can add this SAY instruction to the program:

say 'or enter the first character: A, S, M, D.'

116 Writing Simp le Programs with REXX

To make this change work, you also have to modify the SELECT
instruction as follows:

select

end

when op='A'
then say

when op='S'
then say

when op='M'
then say

when op='D'
then say

otherwise

I op=
numl
I op=
numl
I op=
numl
I op=
numl

'+ '
'+'
'- ,

'- ,
'* ,

'* ,
'/ '

' /'

num2 'is' numl + num2

num2 'is' numl - num2

num2 'is' numl * num2

num2 'is' numl / num2

say numl op num2 'is not a valid calculation, try again!'

The second change lets you check the input from the user to see if
numbers are entered for the variables numl and num2. To do this,
you can use the OAT ATYPEO function with the IF instruction, as
shown:

if datatype(numl) ,= 'NUM' I datatype(num2) ,= 'NUM'
then say numl op num2 'is not a valid calculation, try again!'

Chapter 8. Learning More About REXX 117

With the changes added to the CALC EXEC the new program is:

1* This program is your desk calculator. *1
say 'This program acts as a desk calculator.'
say
say 'Enter calculations ln the form
say
say number operation number'
say
say 'where operation is
say
say
say
say
say

'for

'or

ADD,

enter

do forever

SUBTRACT,

the first

t he symbol:
MU LTIPLY, or

character:

of: '

+ - * I'
DIVIDE'

A, S, M, D. ,

say 'Enter your calculation (or press ENTER to quit)'
pull numl op num2
if numl = " then leave

1* *1
1* Checking that numbers were entered *1
1* *1

i f datatype(numl) , = ' NUM' I datatype(num2) , = 'NUM'

end
exit

then say numl op num2 'is not a valid calculation, try again!'
else

select
when op='A'

then say
when op='S'

then say
when op='M'

then say
when op='D'

then say
otherwise

I op=
numl

op=
numl
I op=
numl

op=
numl

'+ '
' + '
'-'

' -'
'* ,

' * ,
' I'

' I'

num2 'is' numl + num2

num2 'is' numl - num2

num2 'is' numl * num2

num2 'is' numl I num2

say numl op num2 'is not a valid calculation, try again!'
end

Figure 37. NEWCALC EXEC, enhancing the calculator program

118 Writing Simple Programs with REXX

•

When Mike tried the new program, it looked like this:

Ready;
newcalc
This program acts as a desk calculator.

Enter calculations in the form of:

number operation number

where operation is the symbol: + - * /
for ADD, SUBTRACT, MULTIPLY, or DIVIDE

or enter the first character: A, S, M, D.

Enter your calculation (or press ENTER to quit)
7 a 5
7 + 5 is 12
Enter your calculation (or press ENTER to quit)
30 / 3
30 / 3 is 10
Enter your calculation (or press ENTER to quit)
16 m 4
16 * 4 is 64
Enter your calculation (or press ENTER to quit)

R;

Designing New Programs

As you progressed through this book, you may have thought of other
programs you would like to write. Experienced programmers use
several techniques to develop a program, such as flowcharts and
block diagrams. Remember, though, that as a beginning
programmer, you can design simple REXX programs by following
these steps:

1. Identify the problem to solve, and translate it into a step-by-step
procedure.

Chapter 8. Learning More About REXX 119

- - - - - - ---- ---,

2. Write REXX instructions to solve each step .

3. Test the program to see if the results meet the requirements .

4. Revise the program to correct errors.

Sometimes a simple problem requires many instructions to solve it.
A program with many instructions is not necessarily more difficult
than one with few instructions. The simple program may require
more instructions because steps cannot be combined. A more
difficult program may use built-in functions or subroutines to handle
complex steps easily .

rhe QTIME EXEC

The following program provides a solution to the question, "How can
I check what time it is through my computer?" It contains some
familiar instructions and functions, as well as two or three new
items. Although this program may look complicated, you have
already learned many of the steps in this book. Putting the
instructions together just requires some practice. You may want to
try this program and keep it for your everyday use.

20 Writing Simple Programs with REXX

This is the QTIME EXEC:

/*--*/
/* QTIME EXEC * /
/* */
/* Displays the current time in words and numbers. */
/*--*/
/* Assign words to compound variables. */
near.O=" /* Exactly. */
near.l='till' /* Till the hour. */
near.2='after' /* After the hour. */
now=time() /* Get the current system time */
/* * /
/*Split the hours, minutes, and seconds into separate variables.*/
/* */
parse var now hour': 'min': 'sec
/*
/*
/*

If seconds are 30 or more, round up to the next minute.
*/
*/
*/

if sec > 29
then min=min+l

/*
/*
/*
select

when

when

*/
Adjust the hour and minutes if we are past the half hour.*/

*/

min > 30 then /* If we are past the half */
do /* hour, set the hour */
hour=hour+l /* variable to the next hour, */
min=60-min /* subtract current minutes */

/* from 60 to get minutes */
/* "till" the next hour. */

if min=O /* If minutes turn out to be */
then mod=O /* 0, then it is on the hour */

/* (not exactly, but close */
/* enough) . If minutes are */

else mod=l /* not 0, then prepare to */
end /* select the "till" compound */

/* variable. */
min > 0 then mod=2 /* If we are not past the */

/* half hour, but not exactly */
/* on the hour, it's "after" */

Figure 38 (Part 1 of 3). QTIME EXEC displays the time

Chapter 8. Learning More About REXX 121

otherwise
mod=O

end
if min , =OO /*

then min=strip(min, 'L' ,0)

/* Check for special case
/*
if hour//12 =0 & min=OO

t hen
do
if hour=12
then

say 'It' 's 12 No on .
else

,

say 'It' 's 12 Mi dnight. '
ex i t

end
e lse

nop
/ *

/* Otherwise, it's exactly on
/* the hour.

If the minu te s are not */
/* z e ro, remove leading zeros
/* (if any) from the minutes.
/* Strip is a built-in
/* function.

of noon or midnight.

/* Check if it' s noon or
/* midnight.
/* If so, which one?
/* If the hour e quals 12,

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* It's noon. */

/* Otherwise, it's midnight. */
/* We are finished now. */

/* If not noon or midnight,
/* con t inue processing.

/ * Otherwise,
/*

st art building the appropriate respons e string.

*/
*/
*/
*/
*/

se lect
when min= l then minute= 'minute' /* One minute after or till. */
when min>l t hen minu t e = 'minutes'/* More t han one minut e . */
when min=OO the n /* Zero minutes, we need not */

othe rwis e
nop

end

do /* display the minutes. */
minute=' , /* Make the min and minut e */
min=" /* variables nu ll so they do */

e nd /* not disp l ay. * /

Figure 38 (Part 2 of 3). QTIME EXEC displays the time

122 Wr iting Simple Programs with REXX

out='It' 's' min minute near.mod

if hour > 12
then hour = hour - 12
else if hour=O

then hour = 12

hour = strip(hour, 'L' ,0)

out=out hour

if min="
then out=out '0' 'clock'

out=space(out,l)

say out'.'
exit

/* Compound variable, variable*/
/* used as special character. */
/* Build the output string as */
/* it stands so far. */

/* Get rid of 24-hour clock */

/* ... and allow for midnight */

/* Remove any leading zeros */
/* from the hour, if any. */
/* Attach the hour to the */
/* output string. */

/* Add o'clock if exactly on */
/* the hour. */
/* Make sure there is only */
/* one space between each */
/* word. */
/* Space is a built-in */
/* function. */
/* Display the final result. */
/* Now we're done. */

Figure 38 (Part 3 of 3). QTIME EXEC displays the time

Finding More Information

When learning something new, most of us make mistakes or have a
problem now and then. Sometimes it is difficult to ask for help. If
you have trouble with REXX programming, see if you can talk to
someone about it. Sources to consider are:

• Your system administrator

• A programmer working in your organization

Chapter 8. Learning More About REXX 123

• An instructor in the computer science department at a local high
school or college.

Conclusion

We hope this book took the mystery out of computer programming in
REXX for you . You may have already thought of new ways REXX can
help you with your tasks. If you tried the exercises in the book, and
wrote a program , you can be pleased with your accomplishment.

124 Writing Sim pie Programs wit h REXX

Appendix. Answers to Exercises

Chapter 3 Answers

1. The syntax of the MADAM EXEC is:

/* Polite inquiry * / This is a comment.

Jane = "Mr s. Doe " This is an assignment. The variable Jane
gets the value of Mrs. Doe.

say This is an instruction. The rest of the line is
interpreted and the result is displayed.

How

is

jane

?

This is a string.

This is changed to uppercase because it is
not in quotes .

This is the name of a variable. The value of
Mrs . Doe is substituted.

This is the name of a variable.

Here's what appears on the screen :

madam
How IS Mrs. Doe ?

Appendix. Answers to Exerc ises 125

2. There is a syntax error in the TROUBLE EXEC. It was caused by
line 2, which contained an unexpected comma. To correct the
program, remove the comma or add quotes around the comma.

Chapter 4 Answers

1. REXX variables are:

a. Yes
b. Yes
c. Yes. It's the same as OLD_WORLD.
d. No, because the first character is a number.
e. Yes

2. The ASSIGN EXEC is missing the assignment of a value to the
variable "input." We assigned input a value of 10 as follows:

/* This program has something missing! */
input = 10
say input
exit

3. The FAMILY program displays:

There are 5 people in this family

126 Writing Simple Programs with REXX

Chapter 5 Answers

1. For MEASURES EXEC, this is displayed when the program is run:

measures
1

o
Ready;

2. The values of the expressions are "1" (true).

Chapter 6 Answers

• A simple solution to say the days of the week repeatedly is:

DAYS EXEC:

/* This program says days of the week indefinitely */
do forever

say "Sunday"
say "Monday"
say "Tuesday"
say "Wednesday"
say "Thursday"
say "Friday"
say "Saturday"

end
exit

Appendix. Answers to Exercises 127

Chapter 7 Answers

1. The values using the HALFO function are:

a. 50
b. HALF 100. This is not a function because there is a space
between the HALF and the left parenthesis.
c. 10. The result (9) gets the remainder (1).
d.8.

2. A simple solution for the TOSS EXEC, using the RANDOMO
function, is:

/* Th i s pro gram simulate s tossing a co in */
if r a n dom(1 ,2) = 1

t h e n
say "He ads "

e l s e
s ay "Ta ils"

e xit

128 Writin g Simple Prog rams with REXX

3. A possible solution for the ASTERISK subroutine is:

/* This EXEC calls a subroutine to print a line of asterisk */
call asterisk
say 'Item 1
call asterisk
say 'Item 2
call asterisk
say 'Item 3
call asterisk
say 'Item 4
call asterisk
exit
asterisk:

Notebook'

Black Pens'

Calendar'

Staples'

/* This prints a line of asterisk */
say '**************************'
return

Appendix. Answers to Exerc ises 129

130 Writing Simple Programs with REXX

Glossary

argument. In a function, the expression inside
the parenthesis.

assignment. Putting a string in a special
place in the computer's memory.

command. A command is a word , phrase or
abbreviation that tells the system to do
something. In REXX, anything that is not
identified as a REXX instruction, assignment,
or label is considered a command.

comment. In a REXX program, words that tell
what a program is for, what kind of input it can
handle, and what kind of output it produces.

decimal fraction. A number with a decimal
point (for example, 1.5)

function call. A procedure that performs a
requested computation and returns a result.

instruction. Tells the REXX interpreter to do
something.

label. A name followed by a colon. Used with
subroutines.

loop. A group of instructions that can be
executed more than once . A s imp Ie
repetitive loop can be executed a fixed
number of times. A conditional loop is
executed when a true or false condition is met.

program. A list of instructions to a computer.

string. In a REXX program, a group of
characters inside single or double quotes.

subroutine. A sequenced group of statements
that can be called from more than one place in
a main program.

syntax. The way in which words are put
together to form phrases or sentences.

value. What a variable is assigned.

variable. A particular piece of data, used by a
program in a particular way, but whose value
may vary.

whole number. A number with a zero (or no)
decimal part.

Glossary 131

132 Writing Simple Programs with REXX

Index

answers to exercises 125
apostrophe 13
ARG instruction 106
arguments

of a CALL instruction 104
arithmetic

addition 43
division 44
multiplication 43
operations 42
operators 46, 116
subtraction 43

assignments
definition of 18
of variables 39, 115

blank lines 22

character priority when comparing 66
characters in variable names 38
CMS commands 20
comma 14
commands

CMS 20

COPYFILE 108
definition of 20
to stop a loop 85
to stop a program 84
TYPE 29
used in REXX 20
XEDIT 9

comments
adding 51
blocks 51
definition of 12
placement 6,13
required 12
symbols for 12

comparisons
characters 65
numeric 65
operators 65
using 67

CONFIRM END panel in VM/IS 5
COPYFILE command 108

DATATYPE function 100
DATE function 114
decimal fractions 42
decisions

instructions for 56
definitions 131
DO FOREVER instruction 83
DO instruction 58
DO UNTIL instruction 80
DO WHILE instruction 78

Index 133

ELSE keyword 59
END keyword 58, 61
equal

as a comparison 67
as an assignment 67

errors
fixing 32

EXECS
ADD 50
AND 69
CALC 90
CHEER 105
CHITCHAT 17
COMMAND 20
COPYLIST 108
DATATYPE 100
definition of 6
DOUNTIL 81
DOWHILE 79
ERROR 34
FOREVER 83
HELLO 6
HELLO with mixed case 21
LEAVE 82
LlKEME 60
LOOP 75
MATH 45
NAME 16
NEWCALC 118
NEWLOOP 76
NEWNOTE 115
NOTEPAD 31
NOTERR 33
OR 70
QTIME 121
QUOTES 21 , 22
RAH 14

134 Wri ting Si mple Programs wi th REXX

SECRET 85
SELECT 63
SELECT with NOP 64
TF 67
VARIABLE 41
VAROOPS 41

EXIT instruction 6, 17
expressions

evaluating 46

file

in parentheses 47

creating 30
naming 9

finding more information 123
flowcharts and block diagrams 119
function call 98
functions

built-in 99
DATATYPE 46, 100,117
DATE 114
definition of 98
MAX 99
SUBSTR 101
user-written 102
using 98

getti ng started
using REXX 5

grouping instructions 58

HI (Halt Interpretation) command 84

IF instruction 6, 57
indentation 57
instructions

ARG 106
CALL 104
definition of 15
DO 59
DO FOREVER 83
DO UNTIL 80
DO WHILE 78
EXIT 17
grouping 58
IF 57
indentation in 57
LEAVE 82
NOP (No Operation) 64
PARSE PULL 17
PARSE UPPER ARG 107
processing 56
PULL 16
RETURN 107
SAY 15
SELECT 61, 117

interpreter 12

keywords
ELSE 59
OTHERWISE 61
THEN 57
WHEN 61

labels
definition of 19
in subroutine 19

LEAVE instruction 82
logical operators

AND 68
NOT 68
OR 69

loops
beginning and ending 74
conditional 78
DO FOREVER instruction 83
DO I = 1 to 10 76
DO UNTIL instruction 80
DO WHILE instruction 78
DO-END 75
ending 82
halting endless loops 85
LEAVE instruction 82
repetitive 74, 75
using 74

lowercase 17

Index 135

matching quotes 13
MAX function 99
mixed case 20

NOP instruction 64

operators
arithmetic 116
comparing 65
logical AND 68
logical NOT 68
logical OR 69
true and false 65

OTHERWISE keyword 61

parentheses 47
PARSE PULL instruction 16
PARSE UPPER ARG instruction 106
parsing

words 85
password and userid 5
PRIMARY MENU in VM/IS 5
Productivity Facility

136 Writing Simple Programs with REXX

in VMIIS 5
program

comma and semicolon in 14
comments in 12
creating 48, 86
definition of 4
designing new programs 119
enhancing 114
fixing 32
modifying CALC 116
modifying NOTEPAD 114
parts of 14
running 4,9,31,50,91
sample 6
steps to writing 28, 119
writing 48, 87

programming
flowcharts and block diagrams 119
languages 4

PULL instruction 6, 16

quotes
for spacing 21
single and double 13
using 15

RETURN instruction 107
REXX (Restructured Extended Executor)

language
definition 4

SAY instruction 6, 15,114
SELECT instruction 61, 117
semicolon 14
spacing

between lines 22
between words 21
entering a blank space 9

strings
definition of 13

subroutines
definition of 102
label in 19
used with EXIT 17

SUBSTR function 101
syntax 32
system administrator 5, 123
System Product Editor (XEDIT)

command 9
System Product Interpreter

for REXX language 4, 11

THEN keyword 58, 61
true and false operators 65
TYPE command 20 , 29

uppercase 16, 17
user-written functions
use rid and password

value of variables 39
variables

102
5

assigning values 39
assigning with PULL 39
definition of 38
initial value 40
rules for naming 38
unintentionally assigning 41

VM/lntegrated System (VM/IS)
EXEC languages in 12
getti ng out of 5

WHEN keyword 61
whole numbers 42

XEDIT (System Product Editor) 9
XEDIT command 9

Index 137

International Business
Machines Corporation
P.O. Box 6
Endicott, New York 13760

File No. 5370/4300-40
Printed in U.S.A.

SC24-5357 -00

-------------, -

®

VM/IS Writing Simple Programs with REXX
Order No. SC24-5357-00

Is there anything you especially like or dislike about this book? Feel free to comment on
specific errors or omissions, accuracy, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you, and all such information will be
considered non confidential.

Note: Do not use this form to report system problems or to request copies of publications.
Instead, contact your IBM representative or the IBM branch office serving you.

Would you like a reply? _ YES _ NO

Please print your name, company name, and address:

IBM Branch Office serving you:

READER'S
COMMENT
FORM

Thank you for your cooperation. You can either mail this form directly to us or give this form to
an IBM representative who will forward it to us.

24-5357-00

Id and tape Please Do Not Staple Fold and tape

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK. NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

lId and tape

--.. - -------. ---­---. ---- - ------------- - , -
®

11111 1111111111111111" 111111II1111I1111111I1 " 11111

Please Do Not Staple Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

VM/IS Writing Simple Programs with REXX
Order No. SC24-5357-00

Is there anything you especially like or dislike about this book? Feel free to comment on
specific errors or omissions, accuracy, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you, and all such information will be
considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications.
Instead, contact your IBM representative or the IBM branch office serving you.

Would you like a reply? _ YES _ NO

Please print your name, company name, and address:

IBM Branch Office serving you:

READER'S
COMMENT
FORM

Thank you for your cooperation. You can either mail this form directly to us or give this form to
an IBM representative who will forward it to us.

C24-5357-00

Fo ld and t ape Please Do Not Staple Fold and tape

BUSINESS REPLY MAil
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - -----------'-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

I ••• II •• 11. I ••• I. II •• II ••• I. I •• I. I •• I •• I. I ••• III ••• I

Fold and tape Please Do Not Staple Fold and tape

--...- ------- - - ------ -. ---- - - -------------, -
®

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

11""11
11;11;11

'!::IIII
11,,111

International Business
Machines Corporation
P.O. Box 6
Endicott, New York 13760

File No . S370/4300-40
Printed in U.S.A .

SC24-5357-00

-------- - --~ ---
~ ---- - - --------_~_1'

'Rl

5C24-5357-00

