
The Power of Associative Arrays

By Howard Fosdick, Dr Dobbs Journal July 25, 2006

Associative arrays, also referred to as maps, hashes, dictionaries, finite
maps, lookup tables, and the like, are abstract data types composed of a
collection of keys and values

Here's a problem for you. You need to match all the names in two lists, and
create a third list consisting of names in the second list but not in the first. Only
exact matches count. How do you do it?

You could read the names into two arrays (tables). Then read each name in one
of the arrays, and search through the entire other array for a match. Copy names
that don't match into a third array.

You might consider sorting the arrays to speed up the searching and matching
process. And you might eliminate I/O time by processing only in memory.

Les Koehler faced this problem in the real world. He had an accounting program
on his hands, written by a predecessor, that matched the accounting records they
had accumulated against the accounting records that a vendor sent them daily.
The format and field definitions varied between the two files. The program ran for
several hours to process 25,000 records using the simple "walk the list" technique
I just described. Les reduced the run time to less than a minute using associative
arrays. In this article, I explain how he did it.

Associative Arrays

Conventional arrays or tables are simply lists of items indexed by numeric
subscripts. For example, a simple list or one-dimensional array might look like
this:

array_name.1
array_name.2
 ...etc...

Subscripts can be variables, but those variables must resolve to numeric values.

Associative arrays genericize this concept. They permit entry into the array by
arbitrary strings. So entries in the array are referenced by their name, rather
than by their location in the array. The array can be considered a collection of
keys and related values. For example, you might have:

Subscripts, such as string_index_a, could either be a literal value or a variable
that resolves into some value. That value could be anything--string or numeric.

The relationship between a key and its value is sometimes called a "mapping" or
"binding." The most important associative operation is the simple lookup or
"indexing."

A Solution Coded in Rexx

Most modern scripting languages support associative arrays, including Perl,
Python, and Tcl/Tk. Les used Rexx for his solution. Rexx brings together
readability and power--two characteristics few languages combine. It enjoys an
ANSI standard and comes in procedural, object-oriented, and Java-compatible
forms.

Object-oriented Rexx is a true super-set of classic procedural Rexx. It runs
procedural Rexx programs without alteration. Open Object Rexx has garnered
significant interest since its open-sourcing by IBM and subsequent hand-over to
the Rexx Language Association.

Rexx is internationally popular and runs under virtually all operating systems.
Open Object Rexx runs on Windows, Linux, and Unix. Classic procedural Rexx is
the predominate scripting language on mainframes (z/OS, z/VM, and z/VSE), the
IBM iSeries (i5/OS and AS/400), OS/2 (including eCS and osFree), AmigaOS
(including AROS and MorphOS), and IBM PC-DOS (versions 2000 and 7). Java-
compatible Rexx runs with any Java Virtual Machine (JVM).

A Solution

Here’a solution to the problem, coded in Rexx using associative arrays. I'll walk
through the code, line by line, in the discussion that follows.

array_name.string_index_a
array_name.string_index_b
 ... etc ...

/* Create an associative array reflecting */
/* the values in the first list of names */

flag. = 0 /* Create array, initialize elements to 0 */
do a = 1 to list_a.0 /* Process all the names in LIST_A array */
 aa = strip(list_a.a) /* Strip out any preceding/trailing blanks */
 flag.aa = 1 /* Mark the name with a 1 */
end

/* Try to match names in the second list */
/* against those in the associative array */

m = 0 /* M counts the number of missing names */
do b = 1 to list_b.0 /* Look for matching name from LIST_B */
 bb = strip(list_b.b) /* Put LIST_B name into variable BB */
 if \ flag.bb then do /* If the name isn’t in FLAG array */
 m = m+1 /* add 1 to the count of missing names */
 missing.m = bb /* add missing name to MISSING array */
 end
end
missing.0 = m /* Save the count of unmatched names */

In Rexx, arrays are expressed in the form of compound variables, two or more
variable names strung together by periods. The entire array is referenced by the
name of the array followed by a period.

The first line of code in the above program refers to an array named flag,
denoted by the array name flag followed immediately by a period. So this first
line creates the associative array named flag and initializes all possible elements
to 0:

All Rexx arrays are dynamic, so we do not need to specify a size for the flag
array.

In Rexx, you commonly store the number of array elements in the first array
position (denoted by the 0 subscript). So for an array named list_a, array
element list_a.0 holds the number of items in the array. This do loop thus
processes all the names in the array named list_a:

flag. = 0 /* Create an array, initialize elements to 0 */

do a = 1 to list_a.0 /* Process all the names in LIST_A array */

The first line inside the do loop removes any leading or trailing blanks from the
name through the strip function. It places the result in the variable:

Next we mark the presence of the name in the flag array by flagging it. Here you
see the use of the associative array. We denote that a value exists simply by
using that value as the subscript into the flag array:

At the conclusion of the do loop, the flag array consists of a group of name
indexes that are flagged as present.

The second do loop looks at each name in the second array, called list_b, and
sees if it exists as a flagged member in the flag array. If so, we have matched
names between the two lists, list_a and list_b.

The first line in the second do loop processes all names in the second array,
called list_b:

The next line in the second do loop removes leading and trailing blanks from a
name in list_b, and places that name into the variable bb:

Now we can subscript the flag array with this name from the second list. If it
does not exist in the flag array (denoted by the backslash symbol "\" meaning
"NOT"), then we know we have a name from the second list that does not exist in
the first list:

If the name does not exist, we add 1 to the count of unmatched names. We also
add the missing name to the list of missing names in the array we've named
missing:

aa = strip(list_a.a) /* Strip out preceding/trailing blanks */

flag.aa = 1 /* Mark the name with a 1 */

do b = 1 to list_b.0 /* Look for matching name from LIST_B */

bb = strip(list_b.b) /* Put LIST_B name into variable BB */

if \ flag.bb then do /* If the name isn't in FLAG array */

m = m+1 /* add 1 to the count of missing names */
missing.m = bb /* add missing name to MISSING array */

There is no need to "declare" or pre-define an array in Rexx. Define it simply by
using it, as we do above in our first reference to the missing array.

The last line in the routine sets the total count of missing names in the missing
array. In Rexx, by convention we store this value as element 0 in that array:

After the code executes, the missing array contains all names from the second list
that are not in the first list. The first element of the missing array, missing.0,
contains the number of unmatched names.

More Real-World Examples
The coding solution above, implemented in Rexx, is pretty flexible. Arrays can be
defined in advance or through first use. Array sizes do not have to be specified;
they are dynamic up to the size of available memory.

Rexx allows any value for indexing an associative array, including numeric values
and character, bit, or hex strings. Rexx indexing even works with strings that
contain illegal character values! This was key to the solution Les devised because
the two input files were in different formats and had different data type
definitions.

While associative arrays are straightforward, they have many useful applications.
As Les observes, "with a little imagination, ... this technique can be applied to a
lot of situations where you want to associate one or more sets of data with some
arbitrary index for lookup purposes."

Frank Clarke faced just such a situation. He used associative array processing to
drive an 11-minute process down to 9 seconds. Frank dryly notes, "The reduced
code ran so fast everyone assumed it had failed."

Bob Hamilton's rewrite of an ADABAS/Natural script with associative arrays
produced similar benefits. The 17-hour program tied up the entire system while
reading through 900,000 records looking for student ID matches. Since
associative arrays enabled a single scan of the data, his result was a five-minute
run.

And now we present a possible world record-holder: Steve Coalbran who faced a
legacy PL/I program that took 18 hours to compare about 10,000 records in a
standard table to a database. He scrapped the program and rewrote the
application using list processing with associative arrays and far fewer file OPENs

missing.0 = m /* Save the count of unmatched names */

and CLOSEs. The program's run time dropped to 4.7 seconds. Steve ended up
having to prove his solution really worked to two disbelieving operations analysts!

For more information on Rexx – including free downloads – go to
www.RexxInfo.org.

