
Accessing SDSF data using Rexx and
Java

Chip Wood
SDSF Design/Development

IBM Poughkeepsie
chipwood@us.ibm.com

Thursday, August 9, 2012
Session 11701

© 2007, 2009 IBM Corporation 1

2

Trademarks
The following are trademarks of the International B usiness Machines Corporation in the United States a nd/or other countries.

IBM®
MVS
JES2
JES3
RACF®
REXX
z/OS®
zSeries®

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademar ks of other companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes :
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will
vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can
be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice.
Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility,
or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

3

Overview

• With SDSF’s REXX and Java support, you can perform most of the
tasks that you can perform interactively, such as:
• Display and modify jobs
• Display and modify resources and devices
• Browse SYSOUT data sets
• Print SYSOUT data sets

• REXX (added in z/OS 1.9) uses the same panel commands, action
characters and column overtypes as with interactive SDSF

• Java (added in z/OS 1.12) ultimately uses a similar interface into
SDSF but the programming interface is a collection of objects and
methods which are more Java-friendly.

• This presentation will discuss the REXX techniques first, since they
more closely resemble the interactive commands, then discuss the
equivalent function in Java

4

Getting Started with REXX

In a basic SDSF REXX exec, you:
1. Add the REXX host command environment; before

issuing any SDSF commands, using ISFCALLS
• Allows use of “Address SDSF” for commands

2. Issue an SDSF command to access a panel, using
ISFEXEC

3. Issue an action character or “overtype” a column
using ISFACT

• Data is returned in stem variables
• Use special variables to control results

• These correspond to SDSF commands such as
PREFIX and OWNER

5

Rexx Example – Cancel a Job

rc=isfcalls(”ON”)

isfowner = “D96CLW1”
Address SDSF “ISFEXEC ST”
do ix=1 to JNAME.0 /* variable names same as FLD names */

if pos(“CHIP”,JNAME.ix) = 1 then
Address SDSF “ISFACT ST TOKEN(‘”TOKEN.ix”’) PARM(NP P)”

[…lines omitted…]
end

rc=isfcalls(“OFF”)

Add host command environmentAdd host command environment

Access the ST panelAccess the ST panel

Find the jobFind the job

Take an action on the jobTake an action on the job

Remove the host command environment (after closing the loop)Remove the host command environment (after closing the loop)

6

• Update CLASSPATH environment variable to reference
SDSF jar file:
• export CLASSPATH=/usr/include/java_classes/isfjcall.jar:$CLASSPATH

• Update LIBPATH to reference SDSF DLL:
• export LIBPATH=/usr/lib/java_runtime:$LIBPATH (31-bit)

• export LIBPATH=/usr/lib/java_runtime64:$LIBPATH (64-bit)

• SDSF requires Java SDK V6
• Either 31-bit or 64-bit mode

Getting Started with Java

7

Getting Started with Java …

• Create a runner that corresponds to the panel you want to
work with
• A runner is a Java class that provides access to SDSF
• Contains a results object describing completion of request

• Create request settings and associate it with runner
• Invoke SDSF to create a list of objects
• Process the returned objects and obtain column values for

each row
• Invoke methods on a row object to retrieve information or

modify the object

8

// Create optional settings object
ISFRequestSettings settings = new ISFRequestSettings();
settings .addISFOwner(“D96CLW1"); // Set owner

// Get a runner used to access SDSF ST panel
ISFStatusRunner runner = new ISFStatusRunner(settings);

List<ISFStatus> statObjList = null;

statObjList = runner .exec();
// Missing exception handling – more on that later

// Cancel job
if (statObjList != null) {

for (ISFStatus statObj : statObjList) {
String jobname= statObj. getValue(“jname”)
if (jobname.startsWith(“CHIP”))

statObj .cancel();
}

Access the ST panelAccess the ST panel

Find the jobFind the job

Take an action on the jobTake an action on the job

Example Java Application

9

Accessing an SDSF Panel with REXX

• Use ISFEXEC to access a panel

• Syntax:
Address SDSF "ISFEXEC sdsf-command (options)"
• sdsf-command is the same SDSF command as you use

interactively, including parameters, for example:

• Address SDSF “ISFEXEC DA”
• Address SDSF “ISFEXEC CK ALL”

CK command with the ALL
parameter

CK command with the ALL
parameter

DA commandDA command

10

Java Runners and Settings

• A runner provides access to SDSF similar to SDSF
commands
• Choose the runner corresponding to the panel you want to

access
• ISFStatusRunner – ST (status panel)
• ISFOutputRunner – O (output panel)
• ISFHealthCheckRunner – CK (health checks)
• etc.
• ISFRunner – slash command, WHO, QUERY

• Complete cross reference of runners to panels contained in
the Javadoc

11

Accessing an SDSF Panel with Java

• Create a runner for the panel
• Each panel has a different one, for example:

• ISFStatusRunner for ST
• ISFHealthCheckRunner for CK
• Etc.

• Execute the runner using exec() method
• Output is a list of objects (Java.util.List)

• ISFStatus for ST
• ISFHealthCheck for CK

ISFStatusRunner runner = new ISFStatusRunner();

List<ISFStatus> statObjList = null;

statObjList = runner.exec(); ST command exampleST command example

12

Accessing an SDSF Panel – Options (REXX)

Options you can use when accessing a panel with ISFEXEC
or ISFACT:

• PREFIX: specify a prefix for column variables that are
created

• PRIMARY: use the primary field list
• ALTERNATE : use the alternate field list
• DELAYED : include delayed-access columns
• NOMODIFY: don’t return row tokens for use in modifying

values
• VERBOSE: add diagnostic messages to the isfmsg2. stem

variable (more on this later)

13

Accessing an SDSF Panel – Options (Java)

Options are specified within a ISFRequestSettings object, via
specific methods for each

• settings.addPrimary(): use the primary field list
• settings.addAlternate() : use the alternate field list
• settings.addDelayed(): include delayed-access columns
• settings.addNoModify(): don’t return row tokens for use in

modifying values
• settings.addVerbose(): add diagnostic messages to the

ISFRequestResults object (more on this later)

14

Special Variables to Control SDSF

• Special variables for use with SDSF REXX
• Defined by SDSF
• Some correspond to SDSF commands
• Others provide access to fields or data, such as the title

line on an SDSF panel
• Some input only, some output only, some both

• Names start with “ISF”

15

Special Variables – Input

• Special variables with panel commands:
• Limit the response when accessing a panel
• Use before invoking ISFEXEC or ISFACT

• Examples
isfprefix=*
isfowner=ken
isffilter=“jprio gt 5”

isfcols=“JNAME JOBID OWNERID ACTSYS”

isfsort = “TGNUM D”

Corresponds to the command PREFIX *Corresponds to the command PREFIX *

Corresponds to the command OWNER KENCorresponds to the command OWNER KEN

Corresponds to the command
FILTER PRTY GT 5

Corresponds to the command
FILTER PRTY GT 5

Limits the column variables createdLimits the column variables created

Corresponds to the command
SORT TGNUM D

Corresponds to the command
SORT TGNUM D

16

Java Runners and Settings …

• Settings are used to qualify the request
• Job name prefix, owner, destination
• Most settings correspond to SDSF commands
• Limit the column values retrieved

• Represented by ISFRequestSettings class
• Create an instance of settings and associate it with runner
• Various addISFxxxx methods to add a setting to the object

• settings.addISFPrefix("**");
settings.addISFOwner("ibmuser");
settings.addISFCols(“jname jobid”);

17

Java Runners and Settings …
// Create optional settings object
ISFRequestSettings settings = new ISFRequestSettings();

settings.addISFPrefix("**");

settings.addISFOwner("ibmuser");

settings.addISFCols(“jname jobid”);

// Get a runner used to access SDSF ST panel using settings
ISFStatusRunner runner = new ISFStatusRunner(settings);

Note that both Rexx and Java use column names rather than
column titles for sorting and filtering. See COLSHELP to see the
relationship between names and titles.

Corresponds to PREFIX **
command

Corresponds to PREFIX **
command

Corresponds to OWNER IBMUSER
command

Corresponds to OWNER IBMUSER
command

Requests just the JOBNAME and
JobID columns

Requests just the JOBNAME and
JobID columns

18

Special variables and settings (input)

settings.addISFCols(“jname jobid”)
settings.removeISFCols()

isfcols = ‘jname jobid’n/a (limit columns returned)

settings.addISFServer(“SDSF”)
settings.removeISFServer()

isfserver = ‘SDSF’s.server(SDSF)

… and lots more

settings.setResponseLimit(1000)
settings.removeResponseLimit()

isflinelim = 1000n/a (limit number of data
rows returned)

settings.addISFSort(“tgnum d”)
settings.removeISFSort()

isfsort = ‘tgnum d’SORT TGNUM D

settings.addISFFilter(“jprio gt 5”)
settings.removeISFFilter()

isffilter = ‘jprio gt 5’FILTER JPRIO GT 5

settings.addISFOwner(“D96CLW1”)
settings.removeISFOwner()

isfowner = ‘D96CLW1’SET OWNER D96CLW1

settings.addISFPrefix(“*”)
settings.removeISFPrefix()

isfprefix = ‘*’SET PREFIX *

JavaRexxInteractive

19

Accessing an SDSF Panel – Data (Rexx)

• SDSF builds stem variables/objects that correspond to the
panel’s rows and columns
• column-name.index format

• column-name is the name used on an FLDENT statement (not the
column title), for example:

FLDENT COLUMN(OWNERID),TITLE(OWNER),WIDTH(8)

- index is the number of the row
- 0 index is the number of variables in the stem

�Display the column names with the COLSHELP command

20

Stem Variables for Panel Data - Example

REXX Stem variables and values for columns on
the Status panel:

JNAME.0=2
JNAME.1=KENA
JNAME.2=BOBB
OWNERID.0=2
OWNERID.1=KEN
OWNERID.2=BOB

… and so on

Count of owner variablesCount of owner variables

Job name for row 1Job name for row 1

Job name for row 2Job name for row 2

Count of job name variablesCount of job name variables

21

Working with Row Objects in Java

• SDSF creates one object per row
• Column values are contained within the object
• Use getValue() method to retrieve a column value

• Use the SDSF column name (FLD name), not the column title
• String jobname=statObj.getValue(“jname”)
• String owner=statObj.getValue(“ownerid”)

• Use getFixedField() method for fixed field
• String fixedField=statObj.getFixedField();

• Convenience methods exist for certain columns
• String jobname=statObj.getJName();

22

Working with Objects …

…

statObjList = runner.exec();

…

for (ISFStatus statObj : statObjList) {

String jobname = statObj.getValue(“jname”)

or String jobname = statObj.getJName();

System.out.println(statObj);

System.out.println(statObj.toVerboseString());

}

Get job nameGet job name

Print short form of row
properties

Print short form of row
properties

Print all properties for
row

Print all properties for
row

23

Special Variables – Output

• Return data not associated with a particular row
• Examples

isftline – title line
isfrows – number of rows returned
isfcols – list of columns returned
isfmsg – short message
isfmsg2. (stem variable) –detailed message information
isfulog. (stem variable) – contents of user log (ULOG)

24

Request Results (Java)

• The runner references an ISFRequestResults object that is
updated after each request
• Contains messages describing completion of request
• Return and reason codes
• List of columns returned
• Convenience methods to print messages

• Always check the results after each request
• ISFRequestResults results = runner.getRequestResults();
• string = results.getTitleLine()
• string = results.getColumnNames()
• results.printMessageList(print stream)

25

Rexx error handling

Should also check the return code from the
SDSF command, for example: if rc<>0 then …

Return codes for ISFEXEC and ISFACT:
• 00 The request completed successfully.
• 08 An incorrect or invalid parameter was specified for

an option or command.
• 12 A syntax error occurred parsing a host environment

command.
• 16 The user is not authorized to invoke SDSF.
• 20 A request failed due to an environmental error.
• 24 A request failed due to an environmental error.

26

Rexx Message Variables

• Message variables contain SDSF messages
• isfmsg contains the SDSF short message

(displayed in the upper right corner on an SDSF
panel)

• isfmsg2. stem contains the SDSF numbered
messages

• isfulog. stem is for the user log (ULOG)

• Check after each SDSF request to ensure the request
was successful

27

Java error handling

• Invocation of the exec() method on a runner can cause an
exception, so those exceptions need to be handled
• Exceptions generally represent a non-zero return code from

SDSF

try {
statObjList = runner.exec();

} catch (ISFException ie) {
ie.printStackTrace();
System.out.println(ie.toVerboseString());
System.out.println(ie.getMessage());
System.out.println(ie.getRequestResults().getMessageList());

}

Access the panelAccess the panel

Issue any messages
that were generated

Issue any messages
that were generated

Handle exceptionHandle exception

28

Message Variables Example with Slash

Address SDSF “ISFEXEC ‘/$da’ (WAIT”

if isfmsg<> “” then
Say “isfmsg is:” isfmsg

do ix=1 to isfmsg2.0
Say “isfmsg2.”ix “is:” isfmsg2.ix

end

do ix=1 to isfulog.0
Say "isfulog."ix "is" isfulog.ix

end

Issue the w/$da command
with WAIT option

Issue the w/$da command
with WAIT option

Check for a short messageCheck for a short message

Check for a numbered message.
The 0 stem contains a count of
the numbered messages.

Check for a numbered message.
The 0 stem contains a count of
the numbered messages.

Check the ULOGCheck the ULOG

29

ISFSLASH Command

• Simplifies issuing system commands

• Similar to ISFEXEC, but:
• Multiple commands can be entered on same invocation
• Use either a stem variable or list of commands
• All responses come back together in isfulog stem variables

• Syntax:
• Address SDSF “ISFSLASH (stemname) | command-list

(options”

30

ISFSLASH Command Syntax

• Address SDSF “ISFSLASH (stemname) | command-list (options”

• stemname names a stem variable containing the commands to be
issued
• stemname.0 contains the count of variables that follow

• command-list is a list of one or more commands to issue

• isfcmdlim special variable
• Specifies a command limit to prevent excessive number of

commands from being issued.
• Default is no limit

31

Using ISFSLASH to Issue Multiple
Commands

rc=isfcalls(”ON”)

cmd.0=2
cmd.1=“$da”
cmd.2=“$dq”

Address SDSF “ISFSLASH (cmd.) (WAIT)”

do ix=1 to isfulog.0
say “isfulog.”ix “is:” isfulog.ix

end

rc=isfcalls(“OFF”)

Add the host command environmentAdd the host command environment

Add commands to the stem variableAdd commands to the stem variable

Issue the commandsIssue the commands

Display messages from ULOGDisplay messages from ULOG

Remove the host command environment Remove the host command environment

32

ULOG Variables Example - Results

isfulog.1 is: SY1 2009061 12:47:58.49 ISF031I CONSOLE KJONAS

isfulog.2 is: SY1 2009061 12:47:58.49 -$da

isfulog.3 is: SY1 2009061 12:47:58.49 J0000032 $HASP890 JOB(KJONASR)
isfulog.4 is: $HASP890 JOB(KJONASR)

isfulog.5 is: $HASP890

isfulog.6 is: SY1 2009061 12:47:58.50 -$dq
isfulog.7 is: SY1 2009061 12:47:58.50 $HASP643 10 PPU LO

isfulog.8 is: SY1 2009061 12:47:58.54 $HASP646 24.0000 PERCE

33

MVS Commands from Java

• Can issue one or more MVS commands

• Use ISFRunner with system method
• Takes an array of string commands

String[] commands = new String[] {"$da","$dq"};
runner.system(commands)

• Get ISFRequestResults object using getRequestResults()
• Get command responses using

• results.getResponseList() or
• results.printResponseList(print stream)

34

Actions and Overtypes (Rexx)

• Use the ISFACT command to issue an action
character or modify a value (overtype a column)

• Syntax:
Address SDSF “ISFACT SDSF-command
TOKEN((stemname) | token.1, token.2, … ,
token.n) PARM(parms) (options”

• SDSF-command is the same SDSF command you
used with ISFEXEC to access the panel

35

Actions and Overtypes - continued

TOKEN(stemname) is the name of stem variable
containing row tokens

• Name is enclosed in parentheses
• stemname.0 contains the count of variables that follow
• A stem variable can be null to skip a row

• TOKEN(token.1 , token.2, … token.n) is a list of row
tokens

PARM(parms)
• Describes the action or modification

• PARM(OCLASS A FORMS 1234)

• PARM(NP C)

Change both
class & forms

Change both
class & forms

Use NP for action charactersUse NP for action characters

36

Example - Change Output Forms

isfprefix=“**”
isfowner=“RJONES”

Address SDSF “ISFEXEC O”
do ix=1 to JNAME.0
if pos(“BOB”,JNAME.ix) = 1 then
do
Address SDSF “ISFACT O TOKEN(‘”TOKEN.ix“’)

PARM(FORMS 1234)”
end

end

Access O panel to set variablesAccess O panel to set variables

Find a row with job name BOBFind a row with job name BOB

Use the token for that
row to identify it,
enclosing it in single
quotes

Use the token for that
row to identify it,
enclosing it in single
quotes

Change
forms

Change
forms

Set filtersSet filters

37

Actions (Java)

• You can modify an object similar to an action character
• Rows are represented by objects, lists of which are

retrieved by executing runners
• Actions are represented by methods

• Available actions defined in the interface for the object
• See the Javadoc for com.ibm.zos.sdsf.core

• For example:
• ISFStatus.cancel()
• ISFInitiator.start()
• ISFHealthCheck.activate()
• etc.

38

Overtypes (Java)

• You can modify an object similar to an overtype
• Use the requestPropertyChange method
• Method takes two input arrays:

• Column name array
• Column value array

• Each column in the name array is changed to the
corresponding value in the value array

39

Overtypes (Java) …

// Change job class to class A

// Build column name array
String[] propName = { "jclass" };

// Build column value array
String[] propValue = { "a" };

// Change the job class
statObj.requestPropertyChange(propName, propValue);

40

Browse Job Data Sets (Rexx)

• Use ISFACT to issue the SA action character against
a job
• Allocates the data set (free=close)
• SA action is not allowed interactively

• Allocated ddname is returned in isfddname. stem
variable

• Data set name is in isfdsname. stem variable

• Use EXECIO to read the data set

41

Example: Browse Job Data Sets

Address SDSF “ISFEXEC ST”
…
Address SDSF “ISFACT ST TOKEN(‘”TOKEN.ix”’) PARM(NP SA)”

do jx=1 to isfddname.0
Say "Now reading" isfdsname.jx

"EXECIO * DISKR" isfddname.jx "(STEM line. FINIS“

Say “Lines read” line.0
do kx=1 to line.0

Say " line."kx "is:" line.kx
end

end

Access the ST panel, then use
logic to find a job (not shown)

Access the ST panel, then use
logic to find a job (not shown)

Loop through ddnamesLoop through ddnames
Issue SA actionIssue SA action

EXECIO reads the data setEXECIO reads the data set

42

Browse Job Data Sets (Java)

• Use results.getAllocationList() method to obtain an array of
allocated DD names
• Allocates the data sets (free=close)

• Use ZFile.read() method to read the data set

• See ISFBrowseSample.java for an example

43

SDSF/Rexx SYSLOG/OPERLOG

• Syntax of ISFLOG command:
• ISFLOG ALLOCATE

• Returns isfddname. stem variable, similar to data set browsing
• Use EXECIO to read data
• SYSLOG only (no OPERLOG)

• ISFLOG READ TYPE(SYSLOG | OPERLOG)
• Can read either SYSLOG or OPERLOG
• Data returned in isfline. stem variable

IBM Presentation Template Full Version

44

Java SYSLOG/OPERLOG

• Create ISFLogRunner object

• Allocate using runner.browseAllocate()
• Similar to browsing data sets

OR

• Get lines using runner.readSyslog() or
runner.readOperlog()
• results.getResponseList() retrieves array of lines

IBM Presentation Template Full Version

45

rc=isfcalls(“on”)

Address SDSF “ISFLOG ALLOCATE”
do ix=1 to isfddname.0

"EXECIO 10 DISKR" isfddname.ix "(FINIS STEM log."
do jx=1 to log.0
Say mid "log."jx "is:" log.jx

end
end

rc=isfcalls(“off”)

Allocate the logical SYSLOGAllocate the logical SYSLOG

Loop through DD namesLoop through DD names

Read contents into log. stem variableRead contents into log. stem variable

Report the log dataReport the log data

ISFLOG Allocate Example

46

rc=isfcalls(“on”)

Address SDSF “ISFLOG READ”

do ix=1 to isfline.0
Say mid "isfline."left(ix,5)":" isfline.ix

end

rc=isfcalls(“off”)

Read the logical SYSLOG into the
isfline. stem

Read the logical SYSLOG into the
isfline. stem

Report the log dataReport the log data

ISFLOG Read Example

47

ISFLOG Special Variables

• Used only by READ (not by ALLOCATE)
• Starting date and time

• isflogstarttime (hh:mm:ss.th) / settings.addLogStartTime
• Default is 00:00:00.00

• isflogstartdate (mm/dd/yy) / settings.addLogStartDate
• Default is current day

• Ending date and time
• isflogstoptime (hh:mm:ss.th) / settings.addLogStopTime

• Default is 23:59:59.59

• isflogstopdate (mm/dd/yy) / settings.addLogStopDate
• Default is current day

• isfdate (specify date format) / settings.addISFDate

48

ISFLOG Special Variables …

• isflinelim / settings.addISFLinelim
• Specifies the maximum number of variables to be created
• Default is no limit

• isflinelim=10000 / settings.addISFLineLim(10000)
• Create a maximum of 10,000 variables

49

rc=isfcalls(“on”)

isfdate="mmddyyyy /"
currday=date("C")
currday=currday-1 /* yesterday */
isflogstartdate=date("U",currday,"C") /* yesterday in mm/dd/yy */
isflogstarttime=time("N") /* current time */
isflogstopdate=date("U") /* current date in mm/dd/yy */
isflogstoptime=time("N") /* current time */

isflinelim=1000

Address SDSF “ISFLOG READ TYPE(OPERLOG)”

Set time and date parametersSet time and date parameters

Set maximum number of variables to createSet maximum number of variables to create

Read the OPERLOG
This example also works if

you specify TYPE(SYSLOG)

Read the OPERLOG
This example also works if

you specify TYPE(SYSLOG)

ISFLOG Read Example By Time/Date

50

do ix=1 to isfline.0
Say mid "isfline."left(ix,5)":" isfline.ix

end

do ix=1 to isfmsg2.0
Say isfmsg2.ix

end

rc=isfcalls(“off”)

Report the log dataReport the log data

Report any messagesReport any messages

ISFLOG Read Example By Time /Date

51

// Get date formatters for the time and date
•final Calendar calendar = Calendar.getInstance();
•final DateFormat dateFormat = new SimpleDateFormat("MM/dd/yyyy");
•final DateFormat timeFormat = new SimpleDateFormat("hh:mm:ss");

•final Date today = calendar.getTime();
•calendar.add(Calendar.DATE, -1);
•final Date yesterday = calendar.getTime();

•// Set the start and stop times to limit records obtained
•ISFRequestSettings settings = new ISFRequestSettings();
•settings.addISFLogStartTime(timeFormat.format(today));
•settings.addISFLogStartDate(dateFormat.format(yesterday));
•settings.addISFLogStopTime(timeFormat.format(today));
•settings.addISFLogStopDate(dateFormat.format(today));
•settings.addISFDate(“mmddyyyy /”);

•settings.addISFLineLim(1000);

Set time and date parametersSet time and date parameters

Set maximum number of lines to createSet maximum number of lines to create

Java LOG Read Example By Time/Date

52

•ISFLogRunner runner = new ISFLogRunner(settings);

•// Read the system log
•runner.readSyslog();

•ISFRequestResults results = runner.getRequestResults();

•results.printMessageList(System.err);

results.printResponseList(System.out);

Report the log dataReport the log data

Report any messagesReport any messages

Java LOG Read Example By Time/Date

Read the SYSLOG
This example also works if
you specify readOperlog()

Read the SYSLOG
This example also works if
you specify readOperlog()

53

Avoiding Duplicate Variable Names (Rexx)

• Use the PREFIX option on ISFEXEC and ISFACT to
add a prefix to variable names created by SDSF

• Prevents duplicate variable names in existing scripts

� Needed when accessing the job data set panel, so that column
variables don’t conflict

• Format: (PREFIX prefix)

• PREFIX only applies to column variables, not to
special ISF variables.

54

Address SDSF “ISFACT ST TOKEN(‘”TOKEN.ix”’) PARM(NP ‘?’)
(PREFIX jds _)”

do jx=1 to jds_DDNAME.0
say “DSName is” jds_DSNAME.jx
Say “Stepname is” jds_STEPN.jx
Say “Procstep is” jds_PROCS.jx

end

Access JDS using NP ? and define a
prefix for all JDS variables.

Access JDS using NP ? and define a
prefix for all JDS variables.

References to variables
all include the prefix

References to variables
all include the prefix

Example: Using the PREFIX Option

55

isfreset() Function

• REXX function to drop SDSF special variables
• Useful when multiple invocations of SDSF in same exec
• Syntax:

• rc=isfreset(“ALL” | “INPUT” | “OUTPUT” | “INOUT”)
• Drops all special variables of the type given
• ALL (default)

• rc=isfreset() will drop all SDSF special variables

• Not dependent on isfcalls(), can be placed anywhere in exec

• Not as interesting in Java as each runner can have its own unique
ISFRequestSettings and ISFRequestResults objects
• settings.reset() and results.reset() to clear them

56

Using SDSF with SYSREXX

• SDSF REXX Support works with System REXX
• Need proper security environment to access SDSF

• Logon from console to get security environment
• Need access to all commands used by EXEC

• Need to specify ISFJESNAME or ISFSERVER
• ISFSERVER defaults to ‘SDSF’

57

Security

• SDSF security applies to REXX and Java usage

• No changes to ISFPARMS or SAF

� IBM recommends SAF for security instead of
ISFPARMS for better control and auditing

58

Security – Assigning a User to a Group

• SDSF assigns users to a group in
ISFPARMS with:
• SAF: checks resource

GROUP.group-name .server-name in the SDSF class

• ISFPARMS: Uses user ID, logon proc, etc. to
determine which group to use
–With REXX, special values are assigned as follows:

• Logon proc name: Set to REXX
• TSO authority: Set to JCL authority
• Terminal name: Derived from SAF or TSO based on the

current environment

59

Diagnosing Problems

• Check ISFMSG variables and ISFMSG2. stem variable, or
results.printMessageList()

• Use the VERBOSE option on ISFEXEC and ISFACT
(settings.addVerbose())
• Issues a message for each variable that is set
• Useful in diagnosing problems such as ‘why doesn’t my job

name comparison work?’
• Example: Address SDSF “ISFEXEC DA (VERBOSE)”

Results (in isfmsg2. stem variable):
ISF146I REXX variable JOBID.1 set, return code 00000001 value is

‘J0000040’.

ISF146I REXX variable OWNERID.1 set, return code 00000001 value is
‘RJONES’.

60

Diagnosing Problems (cont.)

• ISFDIAG variable/results.getDiagxxx methods
• Intended for use by IBM Service
• Contains internal reason codes for each request
• You may be asked to employ it if you call IBM with a

problem

61

COLSHELP

• Interactive command to relate column titles to column names
• Column names (FLD name) are used anyplace in Rexx or Java a

specific column is referenced, rather than column titles.
• isffilter, isfsort, isfcols, ISFACT PARM(column value)
• addISFFilter(), addISFSort(), getValue(), requestPropertyChange()

• For example, JNAME for JobName column

• Context sensitive
• Lists only columns for the panel
• COLSH on DA lists only DA columns

• Option to display all values

• Locate command to locate start of panel entries
• Filter command to filter by panel, name, or description

62

COLSHELP Example

Columns on SDSF Panels
Command ===>

Sort with F5 (panel), F6 (column), F10 (title). Use Filter to filter
rows.

_ All panels _ Descriptions

Panel Column Title Delayed?
DA JNAME JOBNAME
DA STEPN StepName
DA PROCS ProcStep
DA JTYPE Type
DA JNUM JNum
DA JOBID JobID

DA OWNERID Owner

Option to display columns from all panels

Columns for DA only

Sorting indicated by underscore

63

Java samples

• Sample Java scripts in com.ibm.zos.sdsf.sample
• ISFBrowseSample
• ISFChangeJobPrioritySample
• ISFGetJobsSample
• ISFHealthCheckSample
• ISFSearchSyslogSample
• ISFSlashCommandSample
• ISFWhoCommandSample

64

Installing Javadoc

• Download isfjcallDoc.jar to your workstation (in binary)

• Unzip the file
• jar –xf isfjcallDoc.jar

• You can now access the index.html file in your web
browser and navigate the Javadoc that way.
• All the documentation for SDSF Java constructs reside here.

• You may also be able to access context-sensitive help,
depending on tools you use to develop Java (e.g. RSA)

65

Javadoc example (web browser)

66

Javadoc example (RSA)

67

References

• Issue the REXXHELP command while using SDSF under ISPF
• Issue the SEARCH command while using SDSF under ISPF

• All Java documentation can be found in the Javadoc.

• See SDSF Operation and Customization:
http://publibz.boulder.ibm.com/epubs/pdf/isf4cs70.pdf

• SDSF Web page, which will include examples for use with ISPF’s
MODEL command:
http://www.ibm.com/servers/eserver/zseries/zos/sdsf/

• Redbook!
• Loaded with interesting examples and experiences

68

SDSF REXX Redbook

Title: Implementing REXX Support in SDSF,
SG24-7419-00

http://www.redbooks.ibm.com/abstracts/sg247419.html

Abstract:
This IBM Redbooks publication describes the new
support and provides sample REXX execs that exploit
the new function and that perform real-world tasks
related to operations, systems programming, system
administration, and automation.

69

SDSF REXX Redbook - Topics

Chapter 1. Issuing a system command
Chapter 2. Copying SYSOUT to a PDS
Chapter 3. Bulk job update processor
Chapter 4. SDSF support for the COBOL language
Chapter 5. Searching for a message in SYSLOG
Chapter 6. Viewing SYSLOG
Chapter 7. Reviewing execution of a job
Chapter 8. Remote control from other systems
Chapter 9. JOB schedule and control
Chapter 10. SDSF data in graphics
Chapter 11. Extended uses

70

SDSF REXX Redbook - Examples

71

SDSF REXX Redbook - Examples

72

Summary

• Rexx
• Use ISFCALLS to enable

“Address SDSF”
• Use ISFEXEC to access

SDSF data
• Use isfxxxx special variables

to set up parameters
• Use isfxxxx special variables

to check results
• Use stem variables to access

row and column data
• Use ISFACT TOKEN(token)

PARM(xx) for actions and
overtypes

• Java
• Point CLASSPATH and

LIBPATH to SDSF libraries
• Use runners and exec()

method to access SDSF data
• Use ISFRequestSettings

object to set up parameters
• Use ISFRequestResults

object to check results
• Use list of row objects to

access row and column data
• Use methods on row objects

for actions and overtypes

