
M.P. COWLISHAW 
THE: 



The REXX Language 
A Practical Approach 
to Programming 

Second Edition 

MICHAEL COWLISHAW 
IBM UK Laboratories Ltd. 

Prentice Hall, Englewood Cliffs, New Jersey 07632 



Library of Congress Cata1oglng-1n-Pub11cat1on Data 

C0•11Shaw, M. F. 
The REXX language a practical approach to prograa•lng I Ml~t 

Cow11shaw. -- 2nd td. 
p, Cl. 

lSBN 0-13-780851-5 
1. REXX <Co•puter progra• language> I. Title. 

QA76.73.R24C69 1990 
oos. 13·3--dc20 

Editorial/production supervision: Karen Bernhaut 
Manufacturing buyer: Kelly Behr 

© 1990 by Prentice-Hall, Inc. 
A Division of Simon & Schuster 
Englewood Cliffs, New Jersey 07632 

The publisher offers discounts on this book when ordered 

in bulk quantities. For more information, write: 

Special Sales/College Marketing 
Prentice-Hall, Inc. 
College Technical and Reference Division 
Englewood Cliffs, New Jersey 07632 

All rights reserved. No part of this book may be 
reproduced, in any form or by any means, 
without permission in writing from the publisher. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 I 

ISBN 
ISBN 

0-13-780651-5 
0-13-779067-8 

{PH} 
{MANSFIELD} 

Prentice-Hall International (UK) Limited, London 

Prentice-Hall of Australia Pty. Limited, Sydney 

Prentice-Hall Canada Inc., Toronto 
Prentice-Hall Hispanoamericana, S.A., Mexico 
Prentice-Hall of India Private Limited, New Delhi 

Prentice-Hall of Japan, Inc., Tokyo 
Simon & Schuster Asia Pte. Ltd., Singapore 

Editora Prentice-Hall do Brasil, Ltda.! Rio de Janeiro 

89-71130 
CIP 



To Kittredge 



Contents 

Preface ix 

Part 1 : Background 1 
Section 1: What Kind of a Language is REXX? 1 
Section 2: Summary of the REXX Language 3 
Section 3: Fundamental Language Concepts 7 
Section 4: Design Principles 13 
Section 5: History 15 

Part 2: REXX Language Definition 17 
Section 1: Characters and Encodings 17 
Section 2: Structure and General Syntax 18 
Section 3: Expressions and Operators 24 
Section 4: Clauses and Instructions 31 
Section 5: Assignments and Variables 32 
Section 6: Commands to External Environments 37 
Section 7: Keyword Instructions 39 

ADDRESS 40 
ARG 42 
CALL 43 
DO 47 
DROP 53 
EXIT 54 
IF 54 
INTERPRET 55 
ITERATE 57 

vii 



viii Contents 

LEAVE 58 
NOP 59 
NUMERIC 59 
OPTIONS 61 
PARSE 62 
PROCEDURE 65 
PULL 67 
PUSH 68 
QUEUE 69 
RETURN 69 
SAY 70 
SELECT 71 
SIGNAL 72 
TRACE 73 

Section 8: Function Calls 77 
Section 9: Built-in Functions 81 
Section 10: Parsing for ARG, PARSE, and PULL 118 
Section 11: Numbers and Arithmetic 127 
Section 12: Input and Output Streams 139 
Section 13: Conditions and Condition Traps 145 
Section 14: Interactive Tracing 151 
Section 15: Reserved Keywords and Language Extendibility 154 
Section 16: Special Variables 156 
Section 17: Error Numbers and Messages 157 

Appendix A: REXX Syntax Diagrams 165 

Appendix B: A Sample REXX Program 171 

Appendix C: Language Changes since First Edition 175 

Appendix D: Glossary 179 

Index 189 



Preface 

The REXX programming language has been designed with just one objective. 
It has been designed to make programming easier than it was before, in the 
belief that the best way to foster high quality programs is to make writing 
them as simple and as enjoyable as possible. Each part of the language has 
been devised with this in mind; getting the design right for people to use is 
more important than providing for easy implementation. 

Inevitably I have made compromises in ten years of working on REXX. 
Despite this, I believe that the language has achieved its objective and truly 
makes programming easier. I also believe (and hope) that future languages 
will improve on it - REXX is just a start in the direction of languages 
designed for people rather than for computers. 

A programming language is a complex structure, typically characterized by 
its most visible aspect - its syntax. Of equal importance is its semantics, the 
meaning behind the instructions. But perhaps most important of all is the 
philosophy behind the language - the guiding principles that governed the 
decisions made as the language was designed. 

The purpose of this book is to describe and define the REXX language, as of 
October 1989. I try to present the whole language; the syntax, the semantics, 
and the philosophy. It is intended that this will form a suitable reference for 
those planning for, using, or implementing REXX language processors. The 
background information will also provide a basis for discussions on the future 
of the language, and should help to answer the questions raised by students 
of the language. 

ix 



x Preface 

This book is divided into two parts. The first, background, part includes a 
short introduction to REXX and a summary of its features, for those new to 
the language. This introduction is followed by descriptions of the concepts 
behind the language, the principles behind its design, and its history. 

The second and major part is the language definition. This definition is 
mainly in prose, though a collection of syntax diagrams is provided as an 
appendix. The building blocks of the language are described first, followed 
by the control constructs and built-in functions. The final sections treat the 
semantics of the more complex areas in detail. There are numerous examples 
throughout, and also a "real" program which forms the second appendix. 

There are two new appendices in this edition: one lists the changes since the 
first edition of this book, and the other is a glossary of the technical terms 
used in the book. 

This second edition of the book does not include any major change of direction 
in the language. Rather, the additions are relatively small, but are powerful; 
they are made in ways consistent with the philosophy of the language and 
make it easier to write larger and more portable programs. There are also 
a number of minor improvements and clarifications. 

Although this book is a complete and definitive description of the language, 
there is much more that can be said about REXX. For a general introduction 
to the language, and a description of some of its implementations, I recom­
mend the companion volume to this work, Modern Programming Using 
REXX. 1 

Acknowledgments 

The most important influence on the development of the REXX language was 
the IBM internal electronic network, VNET. Without the network (and the 
people who keep it running), there would have been little incentive to start 
a task of this magnitude; and without the constant flow of ideas and feedback 
from people using the network REXX would have been a much poorer lan­
guage. Much credit for the effectiveness of VNET as a communication 
medium for this sort of work is due to Peter Capek who created the VM 
Newsletter (1977-1983). Today, REXX language design is carried out over the 
same network almost entirely with the aid of the TOOLS computer confer­
ence system2 - appropriately enough, a system written in REXX. 

Many languages and people have influenced the design of REXX, and it is 
difficult to say where many of the features originated. Perhaps the most 
significant is the language EXEC 2, by C. J. Stephenson. This, together 

1 R. P. O'Hara and D. R. Gomberg, Modern Programming Using REXX, Pren­
tice-Hall, Second edition (1988) ISBN 0-13-579329-5. 

2 D. M. Chess and M. F. Cowlishaw, A Large Scale Computer Conferencing 
System, IBM Systems Journal, Volume 26, No. 1 (1987). 



Preface xi 

with an interface program known as the Yorktown SVC package (by Michel 
Hack), has strongly influenced the language; particularly in the area of gen­
eralized external interfaces. I am indebted to Michel Hack for numerous 
extensive discussions on the philosophies and features of both the REXX 
language and its interfaces. 

One of the features of the language is its rich set of built-in functions. Their 
high quality is largely due to Steve Davies, who was responsible for their 
design and implementation for many years. Steve has made significant con­
tributions throughout the language. 

Members of the IBM Endicott Programming Laboratory (New York), espe­
cially Gary Brodock, Rick McGuire, Steve Price, and their colleagues, have 
also contributed much to REXX implementations. They have shown a rare 
sensitivity to the philosophy of the language; their implementations closely 
follow the concepts that originally led to the REXX language. I am happy to 
note that the same is true of all the REXX implementations I have seen -
my thanks to those who have made this so. As REXX is implemented in 
increasingly diverse environments it seems that the fundamental philosophy 
and concepts remain valid. 

A landmark in REXX history has been the development of a REXX compiler. 
This was based on research at IBM's Haifa Scientific Center in Israel and 
was then developed as a commercial product by the IBM Vienna Software 
Development Laboratory, in Austria. This new look at implementing REXX 
has led to numerous improvements in this book. 

Over the years, hundreds of people have made constructive criticisms and 
comments on the REXX language and many have contributed code and doc­
umentation. Members of the informal REXX Language Committee, coordi­
nated by Wes Christensen, were of special help in the decisions leading to 
major enhancements to the REXX language in the early 1980s. 

All REXX users are indebted to those people from all over the world who have 
contributed help, suggestions, and time. I regret that I cannot give individual 
thanks to everybody, but I would like to mention those people who have con­
tributed code or documentation to my original REXX implementation or to 
this book: 

Chuck Berghorn, Dave Betker, Reed Bittinger, Ian Brackenbury, Gary 
Brodock, Peter Capek, Steve Davies, Roderic Davis, Bertrand Denoix, 
Forrest Garnett, John Godwin, Rob Golden, Laurie Griffiths, Alfred 
Gschwend, Michel Hack, Rick Haeckel, Klaus Hansjakob, Gerry 
Hoernes, Ray Holland, Skip Knoble, Burn Lewis, Derek Lieber, Michael 
Lovelace, Ray Mansell, Brian Marks, Bob Marshall, Rick McGuire, Jim 
Mehl, Bert Moser, Simon Nash, Mike Nicholson, Walter Pachl, Steven 
Powell, Dick Snow, Nora Stevenson, Coyt Tillman, Carol Thompson, Jay 
Tunkel, Russ Williams. 

This book has been edited entirely electronically, first using the STET 
(Structured Editing Tool) and XEDIT (System Product Editor) text editing 



xii Preface 

programs, and later the LEXX Live Parsing Editor. 3 It was type-set using 
SCRIPTNS, the Document Composition Facility. To Xavier de Lamberterie, 
Geoff Bartlett, Mike Kay, and to everyone else who has contributed to these 
tools, I offer my thanks. My thanks, too, to the experts at Prentice-Hall who 
have encouraged and advised me. 

I must also thank IBM for permission to use the new material for the second 
edition of this book and for permission to use the material from my first paper 
describing REXX. 4 

Finally, I should like to thank Bob O'Hara for the original inspiration for this 
book, and for his considerable assistance with the formatting of both editions. 

Mike Cowlishaw 

3 M. F. Cowlishaw, LEXX - A programmable structured editor, IBM Journal 
of Research and Development, Volume 31, No. 1 (1987). 

4 M. F. Cowlishaw, The design of the REXX language, IBM Systems Journal, 
Volume 23, No. 4 (1984). 



The REXX Language 



Part 1 

Background 

This introductory part of the book is in five sections. The first two sections 
introduce the REXX language, the next two sections describe the concepts 
and design principles that shaped it, and the final section reviews the history 
of the language. 

SECTION 1: WHAT KIND OF A LANGUAGE IS REXX? 

REXX is a procedural language that allows programs and algorithms to be 
written in a clear and structured way. The primary design goal has been that 
it should be genuinely easy to use both by computer professionals and by 
"casual" general users. A language that is designed to be easy to use must 
be effective at manipulating the kinds of symbolic objects that people nor­
mally deal with: words, numbers, names, and so on. Most of the features in 
REXX are included to make this kind of symbolic manipulation easy. REXX 
is also designed to be independent of its supporting system software, but with 
the capability of issuing both commands and conventional inter-language 
calls to its host environment. 

The REXX language covers several application areas that traditionally have 
been served by fundamentally different types of programming language. 

Personal programming 

REXX is a language that provides powerful character and arithmetical 
abilities in a simple framework. You may write short programs with a 
minimum of overhead, yet facilities exist to allow the writing of robust 
large programs. The language is well adapted to interpretation, and is 
therefore rather suitable for many of the applications for which lan­
guages such as BASIC are currently used. 

1 



2 Background Part 1 

REXX has proved to be an easy language to learn and to teach. As a 
first language for students, it has the advantage of being a practical and 
structured programming language which is also easy to use and to 
debug. 

Tailoring user commands 

Command program interpreters are an important component of modern 
operating systems. Nearly all operating systems include some form of 
Executive, Shell, or Batch language. In many cases the language is so 
embedded into the operating system that it is unlikely to be of use out­
side its primary environment, but there is a clear trend towards pro­
viding command programming languages that are both powerful and 
capable of more general usage. REXX carries this principle further by 
being a language that is designed primarily for generality but also for 
suitability as a command programming language. 

Over the years, many REXX programs for tailoring operating systems 
have been written - originally for the Conversational Monitor System 
component of the IBM Virtual Machine/System Product, and later for 
other operating systems. Many of these programs run to hundreds or 
thousands of lines, and some are in the tens of thousands. One labora­
tory that uses REXX has over four million lines of code written in REXX, 
with more than ten percent of the files on its main computer system 
being REXX programs. 

Macros 

Many applications are programmable by means of macros. In the data 
processing world there is a different macro language for almost every 
type of application. There are macro languages for editors, assemblers, 
interactive systems, text processors, spreadsheets, databases, and of 
course for other languages. The work of Stephenson5 and others has 
highlighted the similarities between these applications, and the need for 
a common language. Since REXX is essentially a character manipu­
lation language, it can provide the macro language for all these appli­
cations. 

Macro languages often have unusual qualities and syntax that restrict 
their use to skilled programmers. REXX has a more conventional syn­
tax and is a flexible language, and so makes it possible for the same jobs 
to be done in less time by less skilled personnel. 

Prototype development 

Interpreter implementations of REXX can be highly interactive, and 
permit rapid program development. This productivity advantage, 
together with the ease of interfacing REXX to system utilities for display 

5 Stephenson, C. J. On the structure and control of commands. ACM Oper­
ating Systems Review (SIGOPS), Vol 7, No 4, pp22-26 and 127-136 (1973). 



Section 2 Summary of the REXX Language 3 

and for data input and output, makes the language very suitable for 
modelling applications and products. It has also proved useful for set­
ting up experimental systems for human factors studies. 

The design of REXX is such that the same language can effectively and effi­
ciently be used for many different applications that previously required the 
learning of several languages. 

SECTION 2: SUMMARY OF THE REXX LANGUAGE 

REXX is a language that is superficially similar to earlier languages. How­
ever, every aspect of the language has been critically reviewed and usually 
differs from other languages in ways that make REXX more suited to general 
users. It was possible to make these improvements because REXX was 
designed as an entirely new language, without the requirement that it be 
compatible with any earlier design. 

The structure of a REXX program is extremely simple. This sample program, 
TOAST, is complete, documented, and executable as it stands. 

TOAST 
/* This wishes you the best of health. */ 
say 'Cheers! ' 

TOAST consists of two lines: the first is a comment that describes the purpose 
of the program, and the second is an instance of the SAY instruction. SAY 
simply displays the result of the expression following it - in this case a literal 
string. 

Of course, REXX can do more than just display a character string. Although 
the language is composed of a small number of instructions and options, it is 
powerful. Where a function is not built-in it can be added by using one of the 
defined mechanisms for external interfaces. 

The rest of this section introduces most of the features of REXX. It is 
intended as a brief introduction to the language to serve as a background for 
the rest of the book. Since many of the subtleties of REXX are best appreci­
ated with use, you are urged to use the language yourself. 

REXX provides a conventional selection of control constructs. These include 
IF ... THEN ... ELSE for simple conditional processing, SELECT ... WHEN ... 
OTHERWISE ... END for selecting from a number of alternatives, and several 
varieties of DO ... END for grouping and repetition. These constructs are 
similar to those of PL/I, but with several enhancements and simplifications. 
The DO (looping) construct can be used to step a variable TO some limit, FOR 
a specified number of iterations, and WHILE or UNTIL some condition is 
satisfied. DO FOREVER is also provided. Loop execution may be modified 
by LEAVE and ITERATE instructions that significantly reduce the complex­
ity of many programs. No GOTO instruction is included, but a SIGNAL 



4 Background Part 1 

instruction is provided for abnormal transfer of control, such as error exits 
and computed branching. 

REXX expressions are general, in that any operator combinations may be 
used (provided, of course, that the data values are valid for those operations). 
There are 9 arithmetic operators (including integer division, remainder, and 
power operators), 3 concatenation operators, 12 comparative operators, and 
4 logical operators. All the operators act upon strings of characters, which 
may be of any length (typically limited only by the amount of storage avail­
able). 

This sample program shows both expressions and a conditional instruction: 

GREET 
/* A short program to greet you. */ 
/* First display a prompt: */ 
say 'Please type your name and then press ENTER:' 
parse pull answer /* Get the reply into ANSWER */ 

/* If nothing was typed, then use a fixed greeting, */ 
/* otherwise echo the name politely. */ 
if answer='' then say 'Hello Stranger!' 

else say 'Hello' answer'!' 

The expression on the last SAY (display) instruction concatenates the string 
'Hello' to the value of variable ANSWER with a blank in between them 
(the blank is here a valid operator, meaning "concatenate with blank"). The 
string ' ! ' is then directly concatenated to the result built up so far. These 
simple and unobtrusive concatenation operators make it very easy to build 
up strings and commands, and may be freely mixed with the other operators. 

The layout of control constructs is very flexible. In the GREET example, for 
instance, the IF construct could be laid out in a number of ways, according 
to personal preference. Line breaks can be added at either side of the THEN 
(or following the ELSE), or multiple instructions can be placed on one line 
with the aid of the semicolon separator. 

In REXX, any string or symbol may be a number. Numbers are all "real" and 
may be specified in exponential notation if desired. (An implementation may 
use appropriately efficient internal representations, of course.) The arith­
metic operations in REXX are designed for people rather for the machine, so 
are decimal rather than binary and have a number of user-oriented features. 
The operations are completely defined so that different implementations will 
always give the same results. 

The NUMERIC instruction may be used to select the arbitrary precision of 
calculations (you may calculate with one thousand significant digits, for 
example). The same instruction may also be used to set the fuzz to be used 
for comparisons (that is, the number of significant digits of error permitted 



Section 2 Summary of the REXX Language 5 

when making a numerical comparison) and the exponential notation (scien­
tific or engineering) that REXX will use to present results. 
Variables all hold strings of characters, and cannot have aliases under any 
circumstances. The simple compound variable mechanism allows the use of 
arrays (many-dimensional) that have the property of being indexed by arbi­
trary character strings. These are in effect content-addressable data struc­
tures, which can also be used for building lists and trees. Groups of variables 
(arrays) with a common stem to their name can be set, reset, or manipulated 
by references to that stem alone. 

This example is a routine that removes all duplicate words from a string of 
words: 

JUSTO NE 

/* This removes duplicate words from a string, and */ 
/* shows the use of a compound variable (HADWORD) */ 
/* which is indexed by arbitrary data (words). */ 
Justone: procedure /• make all variables private */ 

parse arg wordlist /* get the list of words */ 
hadword.=O /* show all possible words as new •/ 
outlist='' /• initialize the output list •/ 
do while wordlist~=·' /• loop while we have data */ 

/• split WORDLIST into first word and remainder •/ 
parse var wordlist word wordlist 
if hadword.word then iterate /* loop if had word */ 
hadword.word=l /* remember we have had this word */ 
outlist=outlist word /* add word to output list •/ 
end 

return outlist /• finally return the result */ 

This example also shows some of the built-in string parsing available with the 
PARSE instruction. This provides a fast and simple way of decomposing 
strings of characters using a primitive form of pattern matching. A string 
may be split into parts using various forms of patterns, and then assigned to 
variables by words or as a whole. 

A variety of internal and external calling mechanisms are defined. The most 
primitive is the command (which is quite similar to a message in the Small­
talk-806 system and in other object-oriented systems), in which a clause that 
consists of just an expression is evaluated. The resulting string of characters 
is passed to the currently selected external environment, which might be an 
operating system, an editor, or any other functional object. This ability to 
send commands to different environments is a primary concept of the lan­
guage and is especially important when REXX is used as a "macro" language 
for extending applications. 

6 See, for example: Xerox Learning Research Group, The Smalltalk-SO system, 
Byte 6, No. 8, pp36-4 7 (August 1981). 



6 Background Part 1 

The REXX programmer can also invoke functions and subroutines. These 
may be internal to the program, built-in (part of the language), or external. 
Within an internal routine, variables may be shared with the caller, or pro­
tected by the PROCEDURE instruction (that is, be made local to the routine). 
If protected, selected variables or groups of variables belonging to the caller 
may be exposed to the routine for read or write access. 

Certain types of exception handling are supported. A simple mechanism 
(associated with the CALL and SIGNAL instructions) allows the trapping of 
run-time errors, halt conditions (external interrupts), command errors (errors 
resulting from external commands), stream (input and output) errors, and the 
use of uninitialized variables. Where appropriate it is possible to call a sub­
routine to handle the exception, and error handling is supported by a useful 
set of built-in functions. 

The INTERPRET instruction (expected to be supported by interpreters only) 
allows any string of REXX instructions to be interpreted dynamically. It is 
useful for some kinds of interactive or interpretive environments, and can be 
used to build the following SHOWME program - an almost trivial "instant 
calculator": 

SHOWME 

/* Simple calculator 
numeric digits 20 
parse arg input 
interpret 'Say' input 

that evaluates REXX expressions. */ 
/* Work to 20 digits */ 
/* Get expression into INPUT */ 
/* Build and execute SAY */ 

This program first sets REXX arithmetic to work to 20 digits. It then assigns 
the first argument string (perhaps typed by a user) to the variable INPUT. 
The final instruction evaluates the expression following the keyword 
INTERPRET to build a SAY instruction which is then executed. If you were 
to call this program with the argument "2 2 I 7" then the instruction 
"Say 22/7" would be built and executed. This would therefore display the 
result 

3.1428571428571428571 

Input and output functions in REXX are defined only for simple character­
based operations. Included in the language are the concepts of named char­
acter streams (whose actual source or destination are determined externally). 
These streams may be accessed on a character basis or on a line-by-line basis. 
One input stream is linked with the concept of an external data queue that 
provides for limited formal communication with external programs. 

A rich set of built-in functions is included. These provide extensive string and 
word manipulations, date and time extraction (in a variety of formats), con­
versions, bit manipulations, number manipulation and formatting, state and 
error handling, input and output, and random number generation. 



Section 3 Fundamental Language Concepts 7 

The language defines an extensive tracing (debugging) mechanism, though 
it is recognized that some implementations may be unable to support the 
whole package or may prefer to provide an alternative process. The tracing 
options allow various subsets of instructions to be traced (Commands, Labels, 
All, and so on), and also control the tracing of various levels of expression 
evaluation results (intermediate calculation results, or just the final results). 
Furthermore, for a suitable implementation, the language describes an 
interactive tracing option, in which the execution of the program may be 
halted selectively. Once execution has paused, you may then type in any 
REXX instructions (to display or alter variables, and so on), step to the next 
pause, or re-execute the last clause traced. 

An example, longer than those shown above, of a REXX program is included 
as the second appendix to this book, on page 171. 

SECTION 3: FUNDAMENTAL LANGUAGE CONCEPTS 

Language design is always subtly affected by unconscious biases and by his­
torical precedent. To minimize these effects a number of concepts were cho­
sen and used as guidelines for the design of the REXX language. The 
following list includes the major concepts that were consciously followed 
during the design of REXX. 

A complete treatment of some of these topics would fill another book, so 
unfortunately these paragraphs can only be summaries of the extensive dis­
cussions that led to the current design. 

Readability 

If there is one concept that has dominated the evolution of REXX 
syntax, it is readability (used here in the sense of perceived legibility). 
Readability in this sense is a rather subjective quality, but the gen­
eral principle followed in REXX is that the tokens which form a pro­
gram can be written much as one might write them in Western 
European languages (English, French, and so forth). Although the 
semantics of REXX is, of course, more formal than that of a natural 
language, REXX is lexically similar to normal text. 

The structure of the syntax means that the language readily adapts 
itself to a variety of programming styles and layouts. This helps 
satisfy user preferences and allows a lexical familiarity that also 
increases readability. Good readability leads to enhanced under­
standability, thus yielding fewer errors both while writing a program 
and while reading it for information, debugging, or maintenance. 
Important factors here are: 

1. There is deliberate support throughout the language for upper 
and lower case letters, both for processing data and for the pro­
gram itself. 



8 Background Part 1 

2. The essentially free format of the language (and the way blanks 
are treated around tokens and so on) lets you lay out the pro­
gram in the style that you feel is the most readable. 

3. Punctuation is required only when absolutely necessary to 
remove ambiguity (though it may often be added according to 
personal preference, so long as it is syntactically correct). This 
relatively tolerant syntax has proved to be less frustrating than 
the syntax of languages such as Pascal. 

4. Modern concepts of structured programming are available in 
REXX, and can undoubtedly lead to programs that are easier to 
read than they might otherwise be. The structured program­
ming constructs also make REXX a good language for teaching 
the concepts of good structure. 

5. Loose binding between lines and program source ensure that 
even though programs are affected by line ends, they are not 
irrevocably so. You may spread a clause over several lines or 
put it on just one line. Clause separators are optional (except 
where more than one clause is put on a line), again letting you 
adjust the language to your own preferred style. 

Natural data typing 

"Strong typing", in which the values that a variable may take are 
tightly constrained, first became a fashionable attribute for languages 
in the 1970s. I believe that the greatest advantage of strong typing 
is for the interfaces between program modules, where errors may be 
difficult to catch. Errors within modules that would be detected by 
strong typing (and would not be detected from context) are much 
rarer, certainly when compared with design errors, and in the 
majority of cases do not justify the added program complexity. 

REXX, therefore, treats types as naturally as possible. The meaning 
of data depends entirely on their usage. All values are defined in the 
form of the symbolic notation (strings of characters) that a user would 
normally write to represent that data. Since no internal or machine 
representation is exposed in the language, the need for many data 
types is reduced. There are, for example, no fundamentally different 
concepts of integer and real; there is just the single concept of 
number. The results of all operations have a defined symbolic repre­
sentation, so you can always inspect values (for example, the inter­
mediate results of an expression evaluation). Numeric computations 
and all other operations are precisely defined, and will therefore act 
consistently and predictably for every correct implementation. 

This language definition does not exclude the future addition of a data 
typing mechanism for those applications that require it, though there 
seems to be little call for this. The mechanism could perhaps be in 
the form of ASSERT-like instructions that assign data type checking 



Section 3 Fundamental Language Concepts 9 

to variables during execution flow. An optional restriction, similar to 
the existing trap for uninitialized variables, could be defined to pro­
vide enforced assertion for all variables. 

Emphasis on symbolic manipulation 

The values that REXX manipulates are (from the user's point of view, 
at least) in the form of strings of characters. It is extremely desirable 
to be able to manage this data as naturally as you would manipulate 
words on a page or in a text editor. The language therefore has a rich 
set of character manipulation operators and functions. 
Concatenation, the most common string operation, is treated specially 
in REXX. In addition to a conventional concatenate operator (" I I"), 
there is a novel blank opera'tor that concatenates two data strings 
together with a blank in between. Furthermore, if two syntactically 
distinct terms (such as a string and a variable name) are abutted, 
then the data strings are concatenated directly. These operators 
make it especially easy to build up complex character strings, and 
may at any time be combined with the other operators available. 
For example, the SAY instruction consists of the keyword SAY fol­
lowed by any expression. In this instance of the instruction, if the 
variable N has the value '6' then 

say n*l00/50'%' ARE REJECTS 

would display the string 

12% ARE REJECTS 

Concatenation has a lower priority than the arithmetic operators. 
The order of evaluation of the expression is therefore first the multi­
plication, then the division, then the direct concatenation, and finally 
the two "concatenate with blank" operations. 

Since the concatenation operators are distinct from the arithmetic 
operators, very natural coercion (automatic conversion) between 
numbers and character strings is possible and has become a highly 
valued feature of the language. 

Dynamic scoping 

Most languages (especially those designed to be compiled) rely on 
static scoping, where the physical position of an instruction in the 
program source may alter its meaning. Languages that are inter­
preted (or that have advanced compilers) generally have dynamic 
scoping. Here, the meaning of an instruction is only affected by the 
instructions that have already been executed (rather than those that 
precede or follow it in the program source). 

REXX scoping is purely dynamic. This implies that it may be effi­
ciently interpreted because only minimal look-ahead is needed. It 



10 Background Part 1 

also implies that a compiler is harder to implement, so the semantics 
includes restrictions that ease the task of the compiler writer. Most 
importantly, though, it implies that in general a person reading the 
program need only be aware of the program above the point which is 
being studied. Not only does this aid comprehension, but it also 
makes programming and maintenance easier when only a computer 
display terminal is being used. 

The GOTO instruction is a necessary casualty of dynamic scoping. 
In a truly dynamically scoped language, a GOTO cannot be used as 
an error exit from a loop. If it were, the loop would never become 
inactive. 7 REXX instead provides an "abnormal transfer of control" 
instruction, SIGNAL, that terminates all active control structures 
when it is executed. Note that it is not just a synonym for GOTO 
since it cannot be used to transfer control within a loap (for which 
alternative instructions are provided). 

Nothing to declare 

Consistent with the philosophy of simplicity, REXX provides no 
mechanism for declaring variables. Variables may of course be doc­
umented and initialized at the start of a program, and this covers the 
primary advantages of declarations. The other, data typing, is dis­
cussed above. 

Implicit declarations do take place during execution, but the only true 
declarations in the REXX language are the markers (labels) that 
identify points in the program that may be used as the targets of 
SIGNAL instructions or internal routine calls. 

System independence 

The REXX language is independent of both system and hardware. 
REXX programs, though, must be able to interact with their envi­
ronment. Such interactions necessarily have system dependent 
attributes. However, these system dependencies are clearly bounded 
and the rest of the language has no such dependencies. In some cases 
this leads to added expense in implementation (and in language 
usage), but the advantages are obvious and well worth the penalties. 

As an example, string-of-characters comparison is normally inde­
pendent of leading and trailing blanks. (The string " Yes " means the 
same as "Yes" in most applications.) However, the influence of 
underlying hardware has subtly affected this kind of decision, so that 
many languages only allow trailing blanks but not leading blanks. 
By contrast, REXX permits both leading and trailing blanks during 
general comparisons. 

Some interpreted languages detect control jumping outside the body of the loop and 
terminate the loop if this occurs. These languages are therefore relying on static 
scoping. 



Section 3 Fundamental Language Concepts 11 

Limited span syntactic units 

The fundamental unit of syntax in the REXX language is the clause, 
which is a piece of program text terminated by a semicolon (usually 
implied by the end of a line). The span of syntactic units is therefore 
small, usually one line or less. This means that the syntax parser in 
the language processor can rapidly detect and locate errors, which in 
turn means that error messages can be both precise and concise. 

It is difficult to provide good diagnostics for languages (such as Pascal 
and its derivatives) that have large fundamental syntactic units. For 
these languages, a small error can often have a major or distributed 
effect on the parser, which can lead to multiple error messages or 
even misleading error messages. 

Dealing with reality 

A computer language is a tool for use by real people to do real work. 
Any tool must, above all, be reliable. In the case of a language this 
means that it should do what the user expects. User expectations are 
generally based on prior experience, including the use of various 
programming and natural languages, and on the human ability to 
abstract and generalize. 

It is difficult to define exactly how to meet user expectations, but it 
helps to ask the question "Could there be a high astonishment factor 
associated with this feature?". If a feature, accidentally misused, 
gives apparently unpredictable results, then it has a high astonish­
ment factor and is therefore undesirable. 

Another important attribute of a reliable software tool is consistency. 
A consistent language is by definition predictable and is often elegant. 
The danger here is to assume that because a rule is consistent and 
easily described, it is therefore simple to understand. Unfortunately, 
some of the most elegant rules can lead to effects that are completely 
alien to the intuition and expectations of a user who, after all, is 
human. 

Consistency applied for its own sake can easily lead to rules that are 
either too restrictive or too powerful for general human use. During 
the design process, I found that simple rules for REXX syntax quite 
often had to be rethought to make the language a more usable tool. 

REXX originally allowed almost all options on instructions to be var­
iable (and even the names of functions were variable), but many users 
fell into the pitfalls that were the side-effects of this powerful gener­
ality. For example, the TRACE instruction allows its options to be 
abbreviated to a single letter (as it needs to be typed often during 
debugging sessions). Users therefore often used the instruction 
"TRACE I", but when I had been used as a variable (perhaps as a loop 
counter) then this instruction could become "TRACE 10" - a correct 
but unexpected action. The TRACE instruction was therefore 



12 Background Part 1 

changed to treat the symbol as a constant (and the language became 
more complex as a consequence) to protect users against such hap­
penings; a VALUE option on TRACE allows variability for the expe­
rienced user. There is a fine line to tread between concise (terse) 
syntax and usability. 

Be adaptable 

Wherever possible the language allows for extension of instructions 
and other language constructs. For example, there is a useful set of 
common characters available for future extensions, since only a 
restricted set is allowed for the names of variables (symbols). Simi­
larly, the rules for keyword recognition allow instructions to be added 
whenever required without compromising the integrity of existing 
programs that are written in the appropriate style. There are no 
globally reserved words (though a few are reserved within the local 
context of a single clause). 

A language needs to be adaptable because it certainly will be used for 
applications not foreseen by the designer. Although proven effective 
as a command programming and personal language, REXX may 
(indeed, probably will) prove inadequate in certain future applica­
tions. Room for expansion and change is included to make the lan­
guage more adaptable. 

Keep the language small 

Every suggested addition to the language has been considered only 
if it would be of use to a significant number of users. The intention 
has been to keep the language as small as possible, so that users can 
rapidly grasp most of the language. This means that: 

• The language appears less formidable to the new user. 

• Documentation is smaller and simpler. 

• The experienced user can be aware of all the abilities of the 
language, and so has the whole tool at his or her disposal to 
achieve results. 

• There are few exceptions, special cases, or rarely used embell­
ishments. 

• The language is easier to implement. 

No defined size or shape limits 

The language does not define limits on the size or shape of any of its 
tokens or data (although there may be implementation restrictions). 
It does, however, define the minimum requirements that must be 
satisfied by an implementation. Wherever an implementation 
restriction has to be applied, it is recommended that it should be of 
such a magnitude that few (if any) users will be affected. 



Section 4 Design Principles 13 

Where implementation limits are necessary, the language encourages 
the implementer to use familiar and memorable values for the limits. 
For example 250 is preferred to 255, 500 to 512, and so on. There is 
no longer any excuse for forcing the artifacts of the binary system 
onto a population that uses only the decimal system. Only a tiny 
minority of future programmers will need to deal with base-two-der­
ived number systems. 

SECTION 4: DESIGN PRINCIPLES 

A good philosophy for a language is of little use if there is not an effective 
process for testing the resulting design and tuning it to the needs of its users. 
As REXX evolved, so too did a certain design ethic; these principles are still 
followed today for REXX - other projects, too, are using similar techniques. 

The design process started rather conventionally - the language was first 
designed and documented; this initial informal specification was then circu­
lated to a number of appropriate reviewers. The revised initial description 
then became the basis for the first specification and implementation. 

From then on, other less common design principles were followed. The most 
significant was the intense use of a communications network, but all three 
items in this list have had a considerable influence on the evolution of REXX. 

Communications 

Once an initial implementation was complete, the most important 
factor in the development of REXX began to take effect. IBM has an 
internal network, known as VNET, that at the time linked nearly 
1000 mainframe computers in 40 countries. REXX rapidly spread 
throughout this network, so from the start many hundreds of people 
were using the language. All the users, from temporary staff to pro­
fessional programmers, were able to provide immediate feedback to 
the designer on their preferences, needs, and suggestions for changes. 
(At times it seemed as though most of them did - at peak periods I 
was replying to an average of 350 pieces of electronic mail each day.) 

An informal language committee soon appeared spontaneously, com­
municating entirely electronically, and the language discussions grew 
to be hundreds of thousands of lines. 

On occasions it became clear as time passed that incompatible 
changes to the language were needed. Here the network was both a 
hindrance and a help. It was a hindrance as its size meant that 
REXX was enjoying very wide usage and hence many people had a 
heavy investment in existing programs. It was a help because it was 
possible to communicate directly with the users to explain why the 
change was necessary, and to provide aids to help and persuade peo­
ple to change to the new version of the language. The decision to 
make an incompatible change was never taken lightly, but because 
changes could be made relatively easily the language was able to 



14 Background Part 1 

evolve much further than would have been the case if only upwards 
compatible extensions were considered. 

Documentation before implementation 

Every major section of the REXX language was documented (and cir­
culated for review) before implementation. The documentation was 
not in the form of a functional specification, but was instead complete 
reference documentation that in due course became part of this lan­
guage definition. At the same time (before implementation) sample 
programs were written to explore the usability of any proposed new 
feature. This approach resulted in the following benefits: 

• The majority of usability problems were discovered before they 
became embedded in the language and before any implementa­
tion included them. 

• Writing the documentation was found to be the most effective 
way of spotting inconsistencies, ambiguities, or incompleteness 
in a design. (But the documentation must itself be complete, to 
"final draft" standard.) 

• I deliberately did not consider the implementation details until 
the documentation was complete. This minimized the 
implementation's influence upon the language. 

• Reference documentation written after implementation is likely 
to be inaccurate or incomplete, since at that stage the author 
will know the implementation too well to write an objective 
description. 

The language user is usually right 

User feedback was fundamental to the process of evolution of the 
REXX language. Although users can occasionally be nai:ve in their 
suggestions, even those suggestions which appeared to be shallow 
were considered carefully since they often acted as pointers to defi­
ciencies in the language or documentation. The language has often 
been tuned to meet user expectations; some of the desirable quirks 
of the language are a direct result of this necessary tuning. Much 
would have remained unimproved if users had had to go though a 
formal suggestions procedure instead of simply sending a piece of 
electronic mail directly to me. All of this mail was reviewed some 
time after the initial correspondence in an effort to perceive trends 
and generalities that might not have been apparent on a day-to-day 
basis. 

Many (if not most) of the good ideas embodied in the language came 
directly or indirectly from suggestions made by users. It is impossible 
to overestimate the value of the direct feedback from users that was 
available while REXX was being designed. 



Section 5 History 15 

SECTION 5: HISTORY 

The REXX language (originally called "REX") borrows from many earlier 
languages; PL/I, Algol, and even APL have had their influences, as have 
several unpublished languages that I developed during the 1970's. 

The language has developed in two distinct phases: the first being the rapid 
evolution of the language in an essentially experimental environment, and 
the second being a more cautious series of enhancements following the com­
mercial availability of implementations of the language. 

The first phase took place as a personal project of about four thousand hours 
during the years 1979 through 1982, at the IBM UK Laboratories near Win­
chester (England) and at the IBM T. J. Watson Research Center in New 
York (USA). With this background REXX has an international flavour, with 
roots in both the European and North American programming cultures. 

In 1983, my own System/370 implementation became part of the Virtual 
Machine/System Product, as the System Product Interpreter for the Conver­
sational Monitor System (CMS). This implementation of the language is 
described in the Reference Manual for that product. 8 In 1985 the first edition 
of this book was published, and soon after that the pioneer non-IBM imple­
mentation of REXX was announced by the Mansfield Software Group: this 
implementation runs under the MS-DOS and PC-DOS operating systems for 
Personal Computers. A number of other implementations have followed from 
a variety of suppliers: one which perhaps best demonstrates the suitability 
of REXX for different environments is a version for the Commodore Amiga 
computer. 

The next milestone for REXX was its choice by IBM as the Procedures Lan­
guage for the Systems Application Architecture (SAA).9 This 1987 announce­
ment implies a common REXX language across all the SAA operating 
systems: VM, MVS, OS/400, and OS/2. 10 The language interpreter develop­
ment for all these environments is coordinated at the IBM Endicott Pro­
gramming Laboratory, New York. 

All the first implementations of REXX were interpreters: notable, then, was 
the announcement in 1989 of IBM's CMS REXX Compiler, developed at the 
IBM Vienna Software Development Laboratory in Austria with help from the 
IBM Scientific Centre at Haifa in Israel. 

8 IBM Virtual Machine/System Product: System Product Interpreter Refer­
ence. IBM Reference Manual, Order No. SC24-5239, IBM (1983). 

9 The Procedures Language for SAA comprises the REXX language, Double Byte 
Character Set support, and a series of common interfaces to the language. 

10 More formally: CMS in the VM/System Product or VM/Extended Architecture, 
TSO/E in the Enterprise Systems Architecture/370, Operating System/400 for the 
Application System/400 (AS/400), and Operating System/2 Extended Edition. 



16 Background Part 1 

Inevitably the commercial exploitation of the language has required a stable 
language definition - the radical changes in the language that were charac­
teristic of its first years are no longer possible. Fortunately, those early years 
of heavy use and rapid evolution probably mean that such radical changes 
are no longer necessary: rather one would expect to see incremental changes 
and adjustments consistent with the philosophy of keeping the language 
small and approachable. Even so it is not impossible that major enhance­
ments could be added to the base REXX language: over the years there have 
been research proposals for both a REXX "systems programming language" 
and an object-oriented REXX. REXX will doubtless continue to evolve as 
software technology itself evolves. I hope, and expect, that even as it changes 
it will always remain true to its original goal. 



-- --------------------------

Part 2 

REXX Language Definition 

This part of the book describes the REXX language, version 4.00. Changes 
to the language since the first edition of this book (version 3.60) are described 
in the appendix on page 175. 

The language is described first in terms of the characters from which it is 
composed and its low-level syntax, and then progressively through more 
complex constructions. Finally, special sections describe the semantics of the 
more complicated areas. 

SECTION 1: CHARACTERS AND ENCODINGS 

Characters have meaning for REXX in two ways: 

1. A REXX program is itself built from characters. 

2. A REXX program manipulates data which are also characters. 

In the definition of a programming language it is important to emphasise the 
distinction between a character and the coded representation11 (encoding) of a 
character. The character "A", for example, is the first letter of the English 
alphabet, and this meaning is independent of any specific coded represen­
tation of that character. Different coded character sets (such as, for example, 
ASCII and EBCDIC)12 use quite different encodings for this character (deci­
mal values 65 and 193, respectively). 

11 These terms have the meanings as defined by the International Organization for 
Standardization, in ISO 2382 Data processing - Vocabulary. 

12 American Standard Code for Information Interchange, and Extended Binary Coded 
Decimal Interchange Code. 

17 



18 REXX Language Definition Part 2 

Except where stated otherwise, this book uses characters to convey meaning 
and not to imply a specific character code (the exceptions are certain built-in 
functions that specifically convert between characters and their represent­
ations). At no time is REXX concerned with the glyph (actual appearance) 
of a character. 

Character Sets 

Programming in the REXX language can be considered to involve the use of 
two character sets. The first is used for expressing the REXX program itself, 
and is the relatively small set of characters described in the next section. 
The second character set is the set of characters that can be used as data by 
a particular implementation of a REXX language processor. This character 
set may be limited in size (often to a limit of 256 different characters, which 
have a convenient 8-bit representation), or it may be much larger. Usually, 
most or all of these characters are also allowed within a REXX program, but 
only within commentary or immediate (literal) data. 

The REXX language explicitly defines the first character set, in order that 
programs will be portable and understandable; at the same time it avoids 
restrictions due to the language itself on the character set used for data. 
However, where the language itself manipulates or inspects the data (as 
when carrying out arithmetic operations), there may be requirements on the 
data character set (for example, numbers can only be expressed if there are 
digit characters in the set). 

SECTION 2: STRUCTURE AND GENERAL SYNTAX 

A REXX program is built up out of a series of clauses that are composed of: 
zero or more blanks (which are ignored); a sequence of tokens (described in 
this section); zero or more blanks (again ignored); and the delimiter ";" 
(semicolon) which may be implied by line-end, certain keywords, or the colon 
":" (if it follows a single symbol). Conceptually, each clause is scanned from 
left to right before execution and the tokens composing it are identified. 
Instruction keywords are recognized at this stage, comments (described 
below) are removed, and multiple blanks (except within literal strings) are 
reduced to single blanks. Blanks adjacent to operator characters and special 
characters (see below on page 22) are also removed. 

Comments 

Commentary is included in a REXX program by means of comments. A com­
ment is started by the sequence of characters "/ *", and is ended by "* /". 
Within these delimiters any characters are allowed. Comments may be 
nested, which is to say that "I*" and "* /" must pair correctly. Comments 
may be anywhere, and may be of any length. They have no effect on the 
program, except that they do act as separators (i.e., two tokens with just a 
comment in between are not treated as a single token). 



Section 2 Structure and General Syntax 19 

Example: 

/* This is a valid comment */ 

Note: It is recommended that REXX programs start with a comment 
describing the program. Not only is this good programming practice, but 
some implementations may use this to distinguish REXX programs from 
other languages. 

Implementation minimum: Implementations should support nested com­
ments to a depth of at least 10. The length of a comment should not be 
restricted, in that it should be possible to "comment out" an entire program. 

Tokens 

The essential components of clauses are called tokens. These may be of any 
length, unless limited by implementation restrictions, 13 and are separated by 
blanks or by the nature of the tokens themselves. 

The tokens are: 

Literal strings 

A sequence including any characters and delimited by the sirigle quote 
character ( ' ) or the double-quote ( "). Use "" to include a " in a literal 
string delimited by ", and similarly use two single quotes to include a 
single quote in a literal string delimited by single quotes. A literal 
string is a constant and its contents will never be modified by REXX. 
Literal strings must be complete on a single line (this means that 
unmatched quotes may be detected on the line that they occur). 
Any string with no characters (i.e., a string of length 0) is called a null 
string. 

Examples: 

'Fred' 
"Don't Panic!" 
'You shouldn' 't' 
I I 

/• Same as "You shouldn't" */ 
/* A null string */ 

Implementation minimum: Implementations should support literal 
strings of at least 100 characters. (But note that the length of 
expression results, etc., should have a much larger minimum, normally 
only limited by the amount of storage available.) 

Note: Literal strings may also be defined in hexadecimal or in binary, 
if required. Anywhere that a literal string is allowed it may be followed 

13 Where implementation restrictions are applied, the size of the restriction should 
be a number that is readily memorable in the decimal system. 500 is preferred to 
512, the number 250 is more natural than 256, and so on. 



20 REXX Language Definition Part 2 

immediately by an "X" symbol (in which case it is taken to be a hexade­
cimal-defined literal string) or by a "B" symbol (in which case it is a 
binary-defined literal string). These forms are now described in detail. 

Hexadecimal Strings 

Any sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped 
in pairs. The first group may have an odd number of digits, in which 
case a ' o ' digit is assumed to the left of the first digit. The groups of 
digits are optionally separated by one or more blanks, and the whole 
sequence is delimited by single quotes or double-quotes and immediately 
followed by the character "x" or "X". (The X may not be part of a longer 
token.) The blanks, which may only be present at byte boundaries (and 
may not be present at the beginning or end of the string), are to aid 
readability and are ignored. 

A hexadecimal string is a literal string formed by packing the hexade­
cimal codes given. It allows characters to be included in a program even 
if the characters themselves cannot be entered directly. 

Examples: 

'ABCD'x 
"ld ec f8"X 
'123 45'x 
I 'X 

/* Same as '01 23 4S'x */ 
/* Same as '' */ 

Implementation minimum: Implementations should support hexade­
cimal strings whose packed length is at least 100 characters. 

Binary Strings 

Any sequence of zero or more binary digits (0 or 1), grouped in fours. 
The first group may have fewer than four digits, in which case up to 
three ' O ' digits are assumed to the left of the first digit, to make a total 
of four digits. The groups of digits are optionally separated by one or 
more blanks, and the whole sequence is delimited by single quotes or 
double-quotes and immediately followed by the character "b" or "B". 
(The B may not be part of a longer token.) The blanks, which may only 
be present between the groups of digits (and may not be present at the 
beginning or end of the string), are to aid readability and are ignored. 

A binary string is a literal string formed by packing the binary codes 
given. If there are an odd number of groups of binary digits, four 'O' 
digits are added on the left before the digits are packed. Binary strings 
allow characters to be specified explicitly, bit-by-bit. 



Section 2 Structure and General Syntax 

Examples: 

'llllOOOO'b 
"101 llOl"b 
'l'b 
'10000 10101010'b 
I 'b 

'fO'x */ 
'5d'x */ 

21 

'OOOOOOOl'b and 'Ol'x •/ 
'0001 0000 1010 1010'b •/ 
' ' *I 

Implementation minimum: Implementations should support binary 
strings whose packed length is at least 50 characters. 

Symbols 

Symbols are groups of any characters, selected from the English alpha­
betic and numeric characters (A-Z, a-z, 0-9) and/or from the characters 
. ! ? and underscore. 14 Any lower case alphabetic character in a sym­
bol is translated to upper case before use. 

Examples: 

fred 
Dan.Yr.Ogof 
HI! 

A symbol may include other characters in one situation only. If a symbol 
starts with a digit (0-9) or period it may end with the sequence "E" (or 
"e"), followed immediately by an optional sign ("+" or "-"), followed 
immediately by one or more digits (which may not be followed by any 
other symbol characters). 15 The symbol thus defined may be a number 
in exponential notation, for example: 

17.3E-12 
.03E+9 

The meaning of a symbol depends on the context in which it is used. A 
symbol may be a constant (such as a number), a keyword, or the name 
of a variable. For details, see pages 32-37. 

Implementation minimum: Implementations should support symbols 
of at least 50 characters. (But note that the length of its value, if it is 
a variable, should have a much larger limit.) 

14 Implementations may also informally allow characters such as national currency 
symbols (including the symbols for dollar, cent, and pound-sterling), accented and 
other language-specific characters, or the characters @ or #. Use of these charac­
ters is best avoided, however, as programs written using them are often not port­
able between different countries and between different computer systems. 

l5 The sign in this context is part of the symbol; it is not an operator. 



22 REXX Language Definition Part 2 

Operator characters 

The characters + - * I % I & = • \ > < are used (sometimes in 
combination) to indicate operations in expressions (see pages 25-27). A 
few of these are also used in parsing templates, and the equal sign is 
also used to indicate assignment. Blanks adjacent to operator charac­
ters are removed, so, for example, the sequences: 

345)=123 
345 >=123 
345 >= 123 
345 > = 123 

are identical in meaning. 

Some of these characters may not be available in all character sets, and 
if this is the case appropriate translations may be used. 

Note that throughout the language, the not symbol,".'', is synonymous 
with the backslash("\"). The two symbols may be used interchangeably 
according to availability and personal preference. 

Special characters 

The characters , ; ) ( together with the operator characters 
have special significance when found outside of literal strings, and con­
stitute the set of "special" characters. They all act as token delimiters, 
and blanks adjacent to any of these are removed, with the exception that 
a blank adjacent to the outside of a parenthesis is only deleted if it is 
also adjacent to another special character (unless this is a parenthesis 
and the blank is outside it, too). 

To illustrate how a clause is composed out of tokens, consider this example: 

'REPEAT' B + 3; 

This is composed of six tokens: a literal string, a blank operator (described 
later), a symbol (which may have a value), an operator, a second symbol (a 
number), and a semicolon. The blanks between the "B" and the "+" and 
between the "+" and the "3" are removed. However one of the blanks between 
the "REPEAT" and the "B" remains as an operator. Thus the clause is treated 
as though written: 

'REPEAT' B+3; 



Section 2 Structure and General Syntax 23 

Implied semicolons and continuations 

REXX will normally assume (imply) a semicolon at the end of each line, 
except if: 

1. The line ends in the middle of a comment. 

2. The last token was a comma. In this case the comma is functionally 
replaced by a blank, and hence acts as a continuation character. 16 

This means that semicolons need only be included to separate multiple 
clauses on a single line. 

Notes: 

1. Semicolons are added automatically by REXX after colons (when fol­
lowing a single symbol, a label) and after certain keywords when in the 
correct context. The keywords that may have this effect are ELSE, 
OTHERWISE, and THEN. These special cases reduce program entry 
errors significantly. 

2. The two characters forming the comment delimiters"/*" and"*/" must 
not be split by a line-end since they could not then be recognized cor­
rectly: an implied semicolon would be added. 

16 Note that a comment is not a token, so therefore a comment may follow the con­
tinuation character on a line. 



24 REXX Language Definition Part 2 

SECTION 3: EXPRESSIONS AND OPERATORS 

Many clauses can include expressions. Expressions in REXX are a general 
mechanism for combining one or more pieces of data in various ways to pro­
duce a result, usually different from the original data. 

Expressions consist of one or more terms (literal strings, symbols, function 
calls, or sub-expressions), and zero or more operators that denote operations 
to be carried out on terms. Most operators act on two terms, and there will 
be at least one of these dyadic operators between every pair ofterms. 17 There 
are also prefix (monadic) operators, that act on the term that is immediately 
to the right of the operator. There may be one or more prefix operators to the 
left of any term. 

Terms may be 

• Literal strings (character strings delimited by quotes), which are constants. 

• Symbols (no quotes), which are translated to upper case. Those that do 
not begin with a digit or a period may be the name of a variable, in 
which case the value of that variable is used. Otherwise they are 
treated as a constant string. A symbol may also be compound. See page 
32. 

• Function calls, which are of the form 

symbol( [expression] [, [expression]] ... ) 

or 

string( [expression] [, [expression]] ... ) 

See page 77. 

• Sub-expressions, which consist of any expression bracketed by a left and 
a right parenthesis. 

Evaluation of an expression is left to right, modified by parentheses and by 
operator precedence in the usual "algebraic" manner (see page 28). 
Expressions are wholly evaluated, except when an error occurs during eval­
uation. 

As each term is used in an expression, it is evaluated as appropriate. The 
result is a "typeless" character string. 18 Consequently, the result of evaluating 
any expression is itself a typeless character string. All terms and results may 
be the null string (a character string oflength 0). Note that the REXX language 

11 One operator, direct concatenation, is implied if two terms abut. 
18 These strings are described as typeless because they are not (as in many other 

programming languages) of a particular, declared type, such as binary, hexadeci­
mal, integer, or array. 



Section 3 Expressions and Operators 25 

imposes no restriction on the maximum length of results, but there will usu­
ally be some practical limitation dependent upon the amount of storage and 
other resources available during execution. 

The operators are constructed from one or more operator characters (see page 
22). Blanks (and comments) adjacent to operator characters have no effect 
on the operator, and so the operators constructed from more than one char­
acter may have embedded blanks and comments. In addition, one or more 
blank characters, where they occur within expressions but are not adjacent 
to another operator, also act as an operator. 

The operators may be subdivided into four groups: concatenation, arithmetic, 
comparative, and logical operators. 

Concatenation 

The concatenation operators are used to combine two strings to form one 
string by appending the second string to the right-hand end of the first 
string. The concatenation may occur with or without an intervening 
blank: 

(blank) 

11 

Concatenate terms with one blank in between. 

Concatenate without an intervening blank. 

(abuttal) Concatenate without an intervening blank. 

Concatenation without a blank may be forced by using the I I operator, 
but it is useful to remember that when two terms are adjacent and are 
not separated by an operator,19 they will be concatenated in the same 
way. This is the abuttal operation. For example, if the variable TOTAL 
had the value '3 7 . 4', then Total '%' would evaluate to '3 7 . 4 % '. 

Arithmetic 

Character strings that are numbers (see page 27) may be combined 
using the arithmetic operators: 

+ 

* 

I 

% 

II 

Add. 

Subtract. 

Multiply. 

Divide. 

Integer divide. 
Divide and return the integer part of the result. 

Remainder. 
Divide and return the remainder (not modulo, as the result 
may be negative). 

19 This can occur when the terms are syntactically distinct (such as a literal string 
and a symbol), or when they are separated only by a comment. 



26 REXX Language Definition 

* * Power. 
Raise a number to a whole number power. 

Prefix - Same as the subtraction: "O-number". 

Prefix + Same as the addition: "O+number". 

Part 2 

See the section on Numbers and Arithmetic (page 127) for details of 
numeric precision, the format of valid numbers, and the operation rules 
for arithmetic. Note that if an arithmetic result is shown in exponential 
notation, then it is likely that rounding has occurred. 

Comparative 

The comparative operators compare two terms and return the value 
' 1 ' if the result of the comparison is true, or ' O ' otherwise. Two sets 
of operators are defined: the strict comparisons and the normal compar­
isons. 

The strict comparative operators all have one of the characters defining 
the operator doubled. The"==","-,==", and"\==" operators test for strict 
equality or inequality between two strings. Two strings must be iden­
tical to be considered strictly equal. Similarly, the other strict compar· 
ative operators (such as "> >" or "< <") carry out a simple 
character-by-character comparison, with no padding of either of the 
strings being compared. If one string is shorter than, and is a leading 
sub-string of, another then it is smaller (less than) the other. 

For all the other comparative operators, if both the terms involved are 
numeric,20 a numeric comparison (in which leading zeros are ignored, 
etc. - see page 134) is effected; otherwise, both terms are treated as 
character strings. For this character string comparison, leading and 
trailing blanks are ignored, and then the shorter string is padded with 
blanks on the right. The character comparison operation is case sensi­
tive, and (as for strict comparisons) the exact collating order may depend 
on the character set used for the implementation.21 

The comparative operators return true (' 1 ')if the terms are: 

Normal comparative operators: 

-i= \= 

> 
< 

Equal (numerically or when padded, etc.). 

Not equal (inverse of=). 

Greater than. 

Less than. 

20 That is, if they can be compared numerically without error. 

21 For example, in an ASCII environment, the digits 0-9 are lower than the alpha­
betics, and lower case alphabetics are higher than upper case alphabetics. In an 
EBCDIC environment, lower case alphabetics precede upper case, but the digits 
are higher than all the alphabetics. 



Section 3 Expressions and Operators 

><. <> 
>=. -i<. \< 

<=. -i), \> 

Greater than or less than (same as "Not equal"). 

Greater than or equal to, not less than. 

Less than or equal to, not greater than. 

Strict comparative operators: 

-i== \== 

» 
« 

Strictly equal (identical). 

Strictly not equal (inverse of==). 

Strictly greater than. 

Strictly less than. 

27 

> >=. -i< < . \ < < Strictly greater than or equal to, strictly not less than. 

« =. ...,» , \ » Strictly less than or equal to, strictly not greater than. 

Logical (Boolean) 

A character string is taken to have the value "false" if it is 'o ', and 
"true" if it is ' 1 ' . The logical operators take one or two such values 
(values other than 'O' or '1' are not allowed) and return 'O' or '1' 
as appropriate: 

& And. 
Returns 1 if both terms are true. 

Inclusive or. 
Returns 1 if either term is true. 

&& Exclusive or. 
Returns 1 if either (but not both) is true. 

Prefix ..., \ Logical not. 
Negates; 1 becomes 0 and vice versa. 

Numbers 

The arithmetic operators above require that both terms involved be numbers; 
similarly some of the comparative operators carry out a numeric comparison 
if both terms are numbers. 

Numbers are introduced and defined in detail on pages 127-138. In sum­
mary, numbers are character strings consisting of one or more decimal digits 
optionally prefixed by a plus or minus sign, and optionally including a single 
period (". ") which then represents a decimal point. A number may also have 
a power of ten suffixed in conventional exponential notation: an "E" (upper 
or lower case) followed optionally by a plus or minus sign then followed by 
one or more decimal digits defining the power of ten. 

Numbers may have leading blanks (before and/or after the sign, if any) and 
may have trailing blanks. Blanks may not be embedded among the digits of 
a number or in the exponential part. 



28 REXX Language Definition Part 2 

Examples: 

'12' 
I -17, 9 I 

'127.0650' 
'73e+128' 
I + 7.9E5 I 

'OEOOO' 

Note that the sequence -17. 9 (without quotes) in an expression is not simply 
a number. It is a minus operator (which may be prefix minus if there is no 
term to the left of it) followed by a positive number. The result of the oper­
ation will be a number. 

A whole number in REXX is a number that has a zero (or no) decimal part, and 
which would not normally be expressed by REXX in exponential notation -
that is, it has no more digits before the decimal point than the current setting 
of NUMERIC DIGITS (the default is nine digits). See also page 137. 

Implementation minimum: All implementations must support 9-digit 
arithmetic. In unavoidable cases this may be limited to integers only, and in 
this case the divide operator (" /") must not be supported. If exponents are 
supported in an implementation, then they must be supported for exponents 
whose absolute value is at least as large as the largest number that can be 
expressed as an exact integer in default precision, i.e., 999999999. 

Parentheses and operator precedence 

Expression evaluation is from left to right; this is modified by parentheses 
and by operator precedence: 

• When parentheses are encountered,22 the entire sub-expression between 
the parentheses is evaluated immediately when the term is required. 

• When the sequence 

term1 operator1 term2 operator2 term3 

is encountered, and operator2 has a higher precedence than 
operator1, then the sub-expression (term2 operator2 term3 ) is 
evaluated first. The same rule is applied repeatedly as necessary. 

Note, however, that individual terms are evaluated from left to right in 
the expression (that is, as soon as they are encountered). It is only the 
order of operations that is affected by the precedence rules. 

For example, "*" (multiply) has a higher precedence than "+" (add), so 
3+2 * 5 will evaluate to 13 (rather than the 25 that would result if strict left 
to right evaluation occurred). To force the addition to be performed before the 

22 Other than those that identify function calls - see below, on page 77. 



Section 3 Expressions and Operators 29 

multiplication the expression would be written ( 3+2) * 5, where the first 
three tokens have been formed into a sub-expression by the addition of 
parentheses. 

The order of precedence of the operators is (highest at the top): 

Prefix operators 

+ -, \ 

Power operator 

** 

Multiplication and division 

* I % II 
Addition and subtraction 

+ 

Concatenation 

(blank) 11 

Comparative operators 

(abuttal) 

> < >= •> « \» etc. 

And 

& 

Or, exclusive or 

&& 

If, for example, the symbol A is a variable whose value is '3 ', and DAY is 
a variable with the value 'Monday' (others are uninitialized), then: 

a+5 '8' 
a-4*2 I - 5 I 

al2 '1. 5' 
0.5**2 '0. 25' 
(a+1))7 '0' I* that is, False *I 
' '='I '1' I* that is, True *I 
' '==='' '0' I* that is, False *I 
' '-i=='' '1' I* that is, True *I 
(a+l)*3=12 '1' I* that is, True *I 
'077')'11' I 1 I I* that is, True *I 
'077'))'11' '0' I* that is, False *I 
'abc'))'ab' '1' I* that is, True *I 
Today is day 'TODAY IS Monday' 
'If it is' day 'If it is Monday' 
substr(day,2,3) 'ond' I* Subs tr is a function *I 
'! 'xxx' ! ' I !XXX! I 



30 REXX Language Definition Part 2 

Note: The REXX order of precedence usually causes no difficulty, as it is the 
same as in conventional algebra and other computer languages. There are 
two differences from some common notations; the prefix minus operator 
always has a higher priority than the power operator, and power operators 
(like other operators) are evaluated left-to-right. Thus 

-3**2 
-(2+1)**2 
2**2**3 

9 
9 
64 

I• not -9 •/ 
/• not -9 •/ 
/• not 256 •/ 



2 Section 4 Clauses and Instructions 31 

SECTION 4: CLAUSES AND INSTRUCTIONS 

Clauses (see page 18) may be classified as follows: 

Null clauses 

A clause consisting of only blanks and/or comments is a null clause and 
is completely ignored by REXX (except that if it includes a comment it 
will be traced, if appropriate). 

Note: A null clause is not an instruction, so (for example) putting an 
extra semicolon after the THEN or ELSE in an IF instruction is not 
equivalent to putting a dummy instruction (as it would be in PL/I). The 
NOP instruction is provided for this purpose. 

Labels 

A clause that consists of a single symbol followed by a colon is a label. 
The colon in this context implies a semicolon (clause separator), and so 
a label is a clause in its own right and no semicolon is required. Labels 
are used to identify the targets of CALL instructions, SIGNAL 
instructions, and internal function calls; and more than one label may 
precede any instruction. Labels are treated as null clauses, and may 
be traced selectively to aid debugging. 

Any number of successive clauses may be labels. This permits multiple 
labels before other clauses. Duplicate labels are permitted, but control 
will only pass to the first of any duplicates in a program. Others may 
be traced but cannot be used as a target of a CALL, SIGNAL, or function 
invocation. 

Instructions 

An instruction consists of one or more clauses that describe some course 
of action to be taken by the language processor. Instructions may be 
either Assignments, Keyword Instructions, or Commands: 

Assignments 

Single clauses with the form symbol = expression are instructions 
known as assignments. An assignment gives a variable a (new) value. 
See page 32. 

Keyword Instructions 

A keyword instruction consists of one or more clauses, the first of which 
starts with a keyword that identifies the instruction. Keyword 
instructions control the external interfaces, the flow of control, and so 
on. Some keyword instructions (such as DO) can include nested 
instructions. See page 39. 



32 REXX Language Definition Part 2 

Commands 

Single clauses consisting of just an expression are instructions known 
as commands. The expression is evaluated and the result is passed as a 
command string to some external environment. See page 37. 

SECTION 5: ASSIGNMENTS AND VARIABLES 

A variable is a named object whose value may be changed during the course 
of execution of a REXX program. The process of changing the value of a 
variable is called assigning a new value to it. The value of a variable is a single 
character string, of any length, that may contain any characters. 

Variables may be assigned a new value by the ARG, PARSE, or PULL 
instructions, but the most common way of changing the value of a variable 
is the assignment clause itself. Any clause of the form: 

I symbol = expression ; 

is taken to be an assignment. The result of the expression becomes the new 
value of the variable named by the symbol to the left of the equals sign. The 
symbol is the name of the variable. 

Example: 

/• Next line gives FRED the value 'Frederic' •/ 
fred='Frederic' 

The symbol naming the variable cannot begin with a digit (0-9) or a period.23 

Symbols may be used in an expression even if they have not been assigned 
a value, since they have a defined value at all times. When a variable has 
not been assigned a value it is uninitialized, and its value is the character(s) of 
the symbol itself, translated to upper case (unless it is a compound symbol, 
as described below, in which case its value is the derived name of the symbol). 

Example: 

I• If "freya" has not yet been assigned a value, •/ 
/• then next line gives FRED the value 'FREYA' •/ 
fred=f reya 

The meaning of a symbol in REXX varies according to its context. When used 
as a term in an expression (rather than as a keyword of some kind, for 
example), symbols may be subdivided into four groups: constant symbols, simple 
symbols, compound symbols, and stems. Constant symbols are those that cannot 

23 Without this restriction on the first character of a variable name, it would be pos­
sible to redefine a number, in that for example the assignment "3=4;" would give 
a variable called "3" the value '4'. 



2 Section 5 Assignments and Variables 33 

be assigned a new value. Simple symbols may be used for variables where the 
name corresponds to a single value. Compound symbols and stems are used for 
more complex collections of variables, such as arrays and lists. 

Constant symbols 

The symbol starts with a digit (0-9) or a period. 

The value of a constant symbol cannot be changed, and is simply the 
string consisting of the characters of the symbol with any alphabetic 
characters translated to upper case. 

These are constant symbols: 

77 
827.53 
.12345 
12e5 /• Sarne as 12E5 •/ 
3D 

Simple symbols 

The symbol itself does not contain any periods, and does not start with 
a digit (0-9). 

By default its value is the characters of the symbol (translated to upper 
case). If the symbol has been assigned a value, it names a variable and 
its value is the value of that variable. 

These are simple symbols: 

FRED 
Whatagoodidea! 
?12 

Compound symbols 

/• Sarne as WHATAGOODIDEA! •/ 

The symbol itself contains at least one period, and at least two other 
characters. It may not start with a digit or a period, and if there is only 
one period it may not be the last character. 

The name begins with a stem (that part of the symbol up to and includ­
ing the first period). This is followed by the tail - parts of the name 
(delimited by periods) that are constant symbols,24 simple symbols, or 
null. 

These are compound symbols: 

fred.3 
Array.I.J 
AMES SY .. One. 2. 

24 Note that constant symbols with embedded signs cannot be used here, because 
with the stem prefixed the whole would not be a valid symbol. 



34 REXX Language Definition Part 2 

Before the symbol is used (that is, at the time of reference), the values 
of any simple symbols in the tail ("I", "J", and "ONE" in the example) 
are substituted into the symbol, thus generating a new derived name. The 
value of a compound symbol is by default its derived name (used exactly 
as is), or (if it has been used as the target of an assignment) its value 
is the value of the variable named by the derived name. 

The substitution into the symbol that takes place permits arbitrary 
indexing (subscripting) of collections of variables that have a common 
stem. Note that the values substituted may contain any characters 
(including periods and blanks). Substitution is only done once. 

More formally, the derived name of a compound variable that is refer­
enced by the symbol 

is given by 

do. v 1 • v 2. - - - • v n 

where d0 is the upper case form of the symbol s0, and v1 to vn are the 
values of the constant or simple symbols s1 through sn. Any of the 
symbols s1-sn may be null. The values v1-vn may also be null and may 
contain any characters (in particular, lower case characters will not be 
translated to upper case, blanks will not be removed, and periods have 
no special significance). 

Some examples follow in the form of a small extract from a RE.XX pro­
gram: 

a=3 /* Assigns '3' to the variable 'A' */ 
b=4 f * '4' to 'B' */ 
c='Fred' /* 'Fred' to 'C' */ 
a.b='Fred' /* 'Fred' to 'A.4' */ 
a.fred=S /* '5' to 'A.FRED' *f 
a.c='Bill' f * 'Bill' to 'A.Fred' *f 
c.c=a.fred /* '5' to 'C.Fred' */ 
x.a.b='Caver' f * 'Caver' to 'X. 3. 4' */ 

say a b c a.a a.b a.c c.a a.fred x.a.4 

f * Will display the string: •/ 
/* '3 4 Fred A.3 Fred Bill C.3 5 Caver' •/ 

Compound symbols may be used to set up arrays and lists of variables, 
in which the subscript is not necessarily numeric, and thus offer great 
scope for the creative programmer. A useful application is to set up an 
array in which the subscripts are taken from the value of one or more 
variables, so effecting a form of associative memory ("content address-



Section 5 Assignments and Variables 35 

able"). See the JUSTONE routine on page 5 for one example, and later 
in this section (page 35) for another. 

Implementation minimum: Implementations should support variable 
names whose length, after substitution, may become at least 50 charac­
ters. 

Stems 

The symbol itself contains just one period, which is the last character. 
It may not start with a digit or a period. 

These are stems: 

fred. 
A. 
Woodstock. 

By default, the value of a stem is the characters of its symbol, translated 
to upper case. If the symbol has been assigned a value, it names a 
variable and its value is the value of that variable. 

Further, when a stem is used as the target of an assignment, all pos­
sible compound variables whose names begin with that stem are given 
the new value, whether they had a previous value or not. Following the 
assignment, a reference to any compound symbol with that stem will 
return the new value until another value is assigned to the stem or to 
the individual variable. 

Example: 

hole. 
hole.19 

"empty" 
"full" 

say hole.l hole.mouse hole.19 

/* Says "empty empty full" */ 

Thus a whole collection of variables may be given the same value. 

Example: 

total. = 0 
do forever 

say "Enter an amount and a name:" 
pull amount name 
if datatype(amount)='CHAR' then leave 
total.name = total.name + amount 
end 

(Another example may be found in Part 1 of this book, on page 5.) 

Note: The value that has been assigned to the whole collection of vari­
ables can always be obtained by using the stem. However, this is not 



36 REXX Language Definition Part 2 

the same as using a compound variable whose derived name is the same 
as the stem. 

Example: 

total. = 0 
null = ' ' 
total.null =total.null+ 5 
say total. total.null /• says "0 5" •I 

Collections of variables, referred to by their stem, can also be manipu­
lated by the DROP and PROCEDURE instructions. "DROP FRED . " will 
drop all variables with that stem (see page 53), and "PROCEDURE 

EXPOSE FRED." will expose all possible variables with that stem (see 
page 65). 

Notes: 

1. When a variable is changed by the ARG, PARSE, or PULL instructions, 
the effect is identical to an assignment. A stem used in a parsing tem­
plate will therefore set an entire collection of variables. 

2. Since an expression may include the operator "='', and an instruction 
may consist purely of an expression (see next section), there is a poten­
tial ambiguity which is resolved by the following rule: any clause that 
starts with a symbol and whose second token is (or starts with) "=" is 
an assignment, rather than an expression. This is not a restriction, 
since the clause may be executed as a command in several ways, such 
as by putting a null string before the first name or by enclosing the first 
part of the expression in parentheses. 

Similarly, if a programmer unintentionally uses a REXX keyword as the 
variable name in an assignment, this should not cause confusion - for 
example the clause: 

address='lO Downing Street'; 

would be an assignment, not an ADDRESS instruction. 

3. The SYMBOL function (see page 108) may be used to test whether a 
symbol has been assigned a value. In addition, SIGNAL ON NOVALUE 
can be set to trap the use of any uninitialized variable (see page 145). 



Section 6 Commands to External Environments 37 

SECTION 6: COMMANDS TO EXTERNAL ENVIRONMENTS 

A command is a simple mechanism for sending a message to some functional 
unit external to a REXX program. It is usually a request for some service or 
action, and consists of a single character string. Many operating systems and 
other programs have a command language interface of this nature. 

The system under which a REXX program runs will usually include at least 
one active environment for executing commands. One of these is selected by 
default on entry to a REXX program. The active environment may be 
changed using the ADDRESS instruction, and the name of the currently 
selected environment may be found with the ADDRESS built-in function. 
Environments are defined externally to the REXX program by the underlying 
operating system. 

Sending commands to the currently addressed environment may be achieved 
with a clause of the form: 

I expression ; 

The expression is evaluated, resulting in a character string (which may be the 
null string) that is then submitted to the underlying system. 

The underlying operating system will then obey the command (which may 
have side-effects such as placing data on the external data queue). It will 
eventually return control to REXX, after setting a return code (typically an 
integer, passed in an implementation-dependent way). REXX will place this 
return code in the special variable RC. 

In addition to setting a return code, the underlying system may also indicate 
to the language processor whether an error or a failure occurred. An error in 
a command is a condition for which a program that uses that command would 
normally be expected to be prepared. (For example, a Locate command to an 
editor might report "requested string not found" as an error.) A command 
failure is a condition from which a program that uses that command would not 
normally be expected to recover (for example, if the command was not exe­
cutable or could not be found). 

Errors and failures in commands can directly affect REXX execution if a 
condition trap for ERROR or FAILURE is ON (see page 145). They may also 
cause the command to be traced if "TRACE Error" or "TRACE Failure" 
respectively are set. "TRACE Normal" means the same as "TRACE 
Failure", and is the default - see page 73. 

These matters are perhaps best illustrated with a specific example. 

If the underlying system were the VM/CMS operating system, then the 
sequence 



38 REXX Language Definition 

filename=' CAVES'; filetype='VISITED' 
'STATE' filename filetype 

Part 2 

would result in the command string "STATE CAVES VISITED" being sub­
mitted to VM/CMS. Of course, the simpler clause 

'STATE CAVES VISITED' 

would have the same effect in this case. 

The operating system would then obey this command (which tests for the 
existence of the file CAVES VISITED), and on return the return code would 
be placed in the variable RC. RC would then normally have the value 'O' 
if the file CAVES VISITED existed, or ' 2 8 ' if it did not. By convention in 
VM/CMS, a return code of 0 means successful completion, and a negative 
return code indicates a failure. Positive return codes usually indicate errors 
and often convey additional information, depending upon the command and 
the environment. 



Section 7 Keyword Instructions 39 

SECTION 7: KEYWORD INSTRUCTIONS 

A keyword instruction is one or more clauses, the first of which starts with a 
keyword that identifies the instruction. Some keyword instructions affect the 
flow of control; the remainder just provide services to the programmer. Some 
keyword instructions (such as DO) can include nested instructions. Appendix 
B, on page 171, shows an example of a REXX program using many of the 
instructions available. 

In the syntax diagrams in this section (and, indeed, throughout the book), 
words (symbols) in capitals denote keywords or sub-keywords, and other 
words (such as expression) denote a collection of tokens as defined elsewhere. 
The brackets [ and ] delimit optional (and possibly alternative) parts of the 
instructions, whereas the braces { and J indicate that one of a number of 
alternatives must be selected. An ellipsis following a bracket indicates that 
that bracketed part of the clause may optionally be repeated. 

Note that the keywords and sub-keywords in the syntax diagrams are not 
case dependent: the symbols "if' "If' and "iF" would all identify the instruc­
tion shown below as "IF". Note also that most of the clause delimiters (;) 
shown may usually be omitted as they will be implied by the end of a line. 

Appendix A, on page 165, collects together the syntax diagrams for ease of 
reference. 

As indicated earlier, a keyword instruction is recognized only if its keyword 
is the first token in a clause, and if the second token neither starts with an 
= character (implying an assignment) nor a colon (implying a label). The 
keywords ELSE, END, OTHERWISE, THEN, and WHEN are recognized in 
the same situation.25 It is an error if these keywords are found other than in 
their correct position in a DO, IF, or SELECT instruction. Note that any 
clause that starts with a keyword defined by REXX cannot be a command, 
so, for example, the clause 

arg(fred) rest 

is an ARG keyword instruction, not a command that starts with a call to the 
ARG built-in function. 

Other than in the context just described, keywords are not reserved and may 
be used as labels or as the names of variables (though this is not recom­
mended). 

Certain other keywords, known as sub-keywords, may be reserved within the 
clauses of individual instructions - for example the symbols TO and WHILE 
in the DO instruction. (For details, refer to the description of each instruc­
tion.) For a general discussion on reserved words, see page 154. 

25 The keyword THEN may also be recognized in the body of an IF or WHEN clause. 



40 REXX Language Definition Part 2 

Blanks adjacent to keywords have no effect other than that of separating the 
keyword from the subsequent token. For example, this applies to the blanks 
next to the sub-keyword WHILE in 

do while a'""3 

Here at least one blank was required to separate the symbols forming the 
keywords and variable name. However the blank following the WHILE is 
not necessary in 

do while 'Me'=a 

though it does aid readability. 

ADDRESS 

ADDRESS [environment [exprc]J. 
[VALUE] exprv ' 

where environment is a symbol or literal string, which is taken as a 
constant, and exprc and exprv are expressions. 

The ADDRESS instruction is used to effect a temporary or permanent change 
to the destination of commands. Commands are strings sent to an external 
environment, and may be sent by clauses consisting of just an expression (see 
page 37) as well as by the ADDRESS instruction. 

To send a single command to a specified environment, an environment name 
followed by an expression, exprc, is given. The expression is evaluated, and 
the resulting command string is submitted to the given environment. After 
execution of the command the previously selected environment will be 
unchanged. 

Example: 

address DOS 'DIR MDVl.ALL' 

would send the command "DIR MDVl. ALL" to the environment called DOS. 
The special variable RC is set, just as it would be for other commands (see 
page 37). Errors and failures in commands executed in this way are trapped 
or traced as usual. 

If only an environment name is specified, a new environment for commands 
is selected. All following commands will be routed to the new command 
environment, until the next ADDRESS instruction is executed. The previ­
ously selected environment is saved. 



Section 7 Keyword Instructions 41 

Example: 

address CMS /* Send following commands to CMS */ 
'STATE PROFILE EXEC' 
if rc=O then 'COPY PROFILE EXEC A TEMP = =' 
address XEDIT /* And now all commands to XEDIT */ 

Similarly, the VALUE form may be used to select a new environment - here 
the expression exprv (which of course may be simply a reference to a variable) 
is evaluated, and the result forms the name of the new environment. The 
sub-keyword VALUE may be omitted if the expression does not begin with a 
symbol or literal string (i.e., if it starts with a special character, such as an 
operator character or parenthesis). 

If ADDRESS is specified without either an environment name or an 
expression, then commands will be routed back to the environment that was 
selected before the previous lasting change of environment was made (and the 
current environment name is saved). Repeated execution of just 
"ADDRESS" will therefore switch the command destination between two 
alternative environments. 

The two environment names maintained by REXX are automatically saved 
across internal subroutine and function calls. See the CALL instruction (page 
43) for more details. 

The current ADDRESS setting may be retrieved using the ADDRESS built-in 
function. See page 82. 

Note: The null string may be used as an environment name. Like all envi­
ronment names, its meaning (if any) is defined by the underlying operating 
system. 



42 REXX Language Definition Part 2 

ARG 

ARG [template]; 

where template is a list of symbols separated by blanks and/or patterns. 

ARG is used to retrieve the argument string or strings provided to a program 
or internal routine and put them into variables. It is just a shorter form of 
the instruction 

PARSE UPPER ARG [ternplateJ; 

Unless a subroutine or internal function is being executed, the strings passed 
as parameters to the program will be translated to upper case and then 
parsed into variables according to the rules described in the section on pars­
ing (page 118). Use the PARSE ARG instruction if upper case translation is 
not desired. 

If a subroutine or internal function is being executed, then the data used will 
be the argument string(s) passed to the routine. 

The ARG (and PARSE ARG) instructions may be executed repeatedly (typi­
cally with different templates) and will always parse the same current data. 
There are no restrictions on the length or content of the data parsed except 
those imposed by the caller. 

Example: 

/• String passed to FRED EXEC is 'Easy Rider' •/ 

arg adjective noun 

/• Now: 
/• 

ADJECTIVE contains 'EASY' 
NOUN contains 'RIDER' 

If more than one string is expected to be available to the program or routine, 
then each may be selected in turn by using a comma in the parsing template. 

Example: 

/• Function is invoked by FRED('Ogof X' ,1,5) •/ 

Fred: arg string, nurnl, nurn2 

I• Now: STRING contains 'OGOF X' 
/• NUMl contains I 1 I 

/• NUM2 contains I 5 I 

The argument string(s) to a REXX program or internal routine may also be 
retrieved or checked by using the ARG built-in function. See page 83. 



Section 7 Keyword Instructions 43 

Note: A description of the source of the data being interpreted is also made 
available on entry to the program. See the PARSE instruction (SOURCE 
option) on page 63 for details. 

CALL 

{

name [expression] [, [expression]] .. ·} 
CALL ON condition [NAME trap name] ; 

OFF condition 

where name is a symbol or literal string which is taken as a constant, 
and condition and trapname are single symbols which are taken as con­
stants. 

CALL is used to invoke a routine, or (if ON or OFF is specified) may be used 
to control the trapping of certain conditions (see page 145). 

If neither ON nor OFF is specified, CALL invokes a subroutine which may be 
an internal routine, a built-in function, or an external routine. The subrou­
tine may optionally return a result, and so the CALL instruction is func­
tionally identical to the clause 

resul t=name ([expression] [,[expression]] ... ); 

except that the variable RESULT will become uninitialized if no result is 
returned by the routine invoked. 

The name given in the CALL instruction must be a symbol, which is treated 
literally, or a literal string. If a literal string is used for the name (that is, 
the name is specified in quotes) the search for internal labels is bypassed, and 
only a built-in function or an external routine will be invoked. Note that the 
names of built-in functions (and often the names of external routines too) are 
in upper case, and hence the name in the literal string should be in upper 
case. 

The expressions following the name are evaluated in order from left to right, 
and form the argument string(s) during execution of the routine. The ARG 
and PARSE ARG instructions (and the ARG built-in function) will access 
these strings rather than any active previously, until control returns to the 
CALL instruction. Expressions may be omitted, if appropriate, by including 
"extra" commas. 

The CALL then causes a branch to the routine called name using exactly the 
same mechanism as function calls. Therefore the CALL instruction may be 
used to invoke internal routines, external routines, or even built-in functions. 
The order of search for these routines is described in the section on functions 
(page 79), but briefly is as follows: 



44 REXX Language Definition Part 2 

Internal (Unless the routine name is specified in quotes.) Internal routines 
are sequences of REXX instructions inside the same program, which 
start at the label that matches the symbol following the keyword 
CALL. A form of multi-way call to internal routines can be effected 
with the aid of the SIGNAL instruction (see page 73). The RETURN 
instruction is used to complete the execution of an internal routine. 

Built-in These are routines defined as part of the language. Most are usu­
ally called as functions, and all return a string that contains the 
result of the routine. (See page 81.) 

External It is usually possible to write or make use of routines that are 
external to a program. These external routines may be written in 
any language (including REXX) which supports the implementa­
tion-dependent interfaces used by the REXX language processor to 
invoke them. If the external routine is written in REXX then any 
argument strings may be retrieved in the usual way by using the 
ARG or PARSE ARG instructions (or the ARG built-in function). 

During execution of an internal routine, all variables previously known are 
normally accessible. However, the PROCEDURE instruction may be used to 
set up a local variables environment to protect the subroutine and caller from 
each other. The EXPOSE option on the PROCEDURE instruction may fur­
ther be used to expose selected variables to a routine. 26 

When control reaches an internal routine, the line number of the CALL 
instruction is assigned to the special variable SIGL (in the caller's variable 
environment). This can be used as an aid to debugging, as it may be used to 
determine the source of a call to a routine. 27 

Eventually the subroutine should execute a RETURN instruction, and at that 
point control will return to the original CALL instruction for completion. If 
the RETURN instruction specified an expression, then the variable RESULT 
will be set to the value of that expression. Otherwise the variable RESULT 
is dropped (becomes uninitialized). 

Internal routines may include calls to other internal routines. If a routine 
calls itself (either directly, or indirectly via one or more other routines), this 
is termed a recursive call. 

26 Calling an external REXX program as a subroutine is similar to calling an internal 
routine. The external routine is however an implicit PROCEDURE in that all the 
caller's variables are always hidden, and the state of internal values (NUMERIC 
settings, etc.) starts with their defaults (rather than inheriting those of the caller). 
In addition, EXIT may be used to return from the routine. 

27 Note that if the internal routine uses the PROCEDURE instruction then it will 
need to EXPOSE SIGL to get access to the line number of the CALL. 



Section 7 Keyword Instructions 45 

Example: 

FACTOR! 

/• Example of recursive subroutine execution. •/ 
arg x 
call factorial x 
say x' ! =' result 
exit 

Factorial: procedure 
arg n 
if n=O then return 1 
call factorial n-1 
return result*n 

I* calculate factorial by. . *I 
/* .. recursive invocation. •/ 

(This example may be compared with the example on page 79 in which a 
similar factorial routine is invoked as a function.) 

State saved across calls: 

During internal subroutine (and function) execution the following pieces of 
information are automatically saved and are then restored upon return from 
the routine. 

• The state of DO loops and other structures. Executing a SIGNAL 
while within a subroutine is "safe" in that DO loops etc. that were active 
when the routine was called are not deactivated (but those active within 
the current routine will be). 

• NUMERIC settings (The DIGITS, FUZZ, and FORM of arithmetic 
operations described on page 59.) A subroutine may therefore set the 
precision etc. that it needs to use without fear of affecting the caller. 

• ADDRESS settings (The current and saved destinations for commands 
- see the ADDRESS instruction on page 40.) 

• Condition traps (Described on page 145). CALL ON, CALL OFF, 
SIGNAL ON, and SIGNAL OFF may be used in a subroutine without 
affecting the state of the condition traps or trap names set up by the 
caller. 

• Condition information The information returned by the CONDI­
TION built-in function (see pages 89 and 149). 

• OPTIONS settings (Some or all of the options set by the OPTIONS 
instruction - see page 61.) Note that options settings and their meaning 
are implementation dependent, and they are not necessarily saved 
across calls. 

• Elapsed time clocks. A subroutine inherits the elapsed time clock 
from its caller (see the TIME function on page 108), but since the time 



46 REXX Language Definition Part 2 

clock is saved across routine calls a subroutine or internal function may 
independently restart and use the clock without affecting its caller. For 
the same reason, a clock started within an internal routine is not 
available to the caller. 

• Trace settings. Once a subroutine is debugged, you may insert a 
"TRACE Normal" at the beginning of it, and this will not affect the 
tracing of the caller. Conversely, if you only wish to debug a subroutine, 
you could insert a "TRACE Results" at the start - tracing will auto­
matically be restored to the conditions at entry (for example, "Off') upon 
return. Interactive tracing state is included in the saved setting. 

Implementation minimum: Nesting of control structures (which includes 
internal routine calls) should be allowed up to a depth of at least 100. 

Implementation minimum: At least 10 argument expressions should be 
allowed on a CALL instruction. 

bz 



-
Section 7 Keyword Instructions 

DO 

DO [repetitor] [conditional] ; 
[instructionlist] 
END [symbol]; 

where repetitor is one of 

name = expri [TO exp rt] [BY exprb] [FOR exprf] 
exprr 
FOREVER 

and conditional is either of 

WHILE exprw 
UNTIL expru 

and instructionlist is 

any sequence of instructions 

and expri, exprt, exprb, exprf, exprr, exprw, and expru are expressions. 

47 

The DO instruction is used to group instructions together and optionally to 
execute them repetitively. During repetitive execution, a control variable, 
name, may be stepped through some series of values. 

Syntax notes: 

• expri, exprt, exprb, exprf, and exprr may be any expression that evalu­
ates to a number. If necessary, the number will be rounded according 
to the setting of NUMERIC DIGITS before it is used. exprr and exprf 
are further restricted to result in a non-negative whole number. 

• exprw or expru may be any expression that evaluates to ' 1 ' or ' o ' . 
• The TO, BY, and FOR phrases may be in any order, if used, and will be 

evaluated in the order they are written. 

• Any instruction is allowed in instructionlist, including assignments, 
commands, and keyword instructions (including any of the more com­
plex constructions such as IF, SELECT, or the DO instruction itself). 

• The sub-keywords WHILE and UNTIL are reserved within a DO 
instruction, in that they cannot be used as symbols in any of the 
expressions. Similarly, TO, BY, and FOR cannot be used in expri, 
exprt, exprb, or exprf. FOREVER is also reserved, but only if it imme­
diately follows the keyword DO. 

• exprb defaults to '1 ', if relevant. 



48 REXX Language Definition Part 2 

DO is the most complicated of the REXX keyword instructions. It can be 
treated as a simple grouping construct, a pre-determined repetitive loop, and 
as a loop with a bounding condition that is recalculated on each iteration. 

Simple DO group 

If neither repetitor nor conditional is given, then the construct merely groups 
a number of instructions together: these are executed once. 

Example: 

/* The two instructions between DO and END will both */ 
/* be executed if A has the value 3. */ 
if a=3 then do 

a=a+2 
say 'Smile! ' 
end 

Repetitive DO loops 

If either repetitor or conditional is given, the group of instructions forms a 
repetitive DO loop, and the instruction list is executed according to any repetitor 
phrase, optionally modified by a conditional phrase. 

Simple repetitive loops 

If the repetitor is FOREVER (or if no repetitor is given, but there is a 
conditional, see below), then the instruction list will nominally be exe­
cuted "for ever", that is, until the condition is satisfied or a LEAVE, 
SIGNAL, EXIT, or RETURN instruction is executed. 

Example: 

/* This displays "Go caving!" at least once */ 
do forever 

say 'Go caving!' 
if random(S)=l then leave 
end 

Alternatively, in the numeric form of repetitor, the expression exprr is 
evaluated immediately (and must result in a whole number that is zero 
or positive), and the loop is then executed that many times: 

Example: 

/* This displays "Hello" five times */ 
do 5 

say 'Hello' 
end 

Note that, similar to the distinction between a command and an 
assignment, if the first token of exprr is a symbol and the second token 



2 

IS 

3. 

•r 

l 

Section 7 Keyword Instructions 49 

is (or starts with) an "=" then the controlled form of repetitor is 
expected. 

Controlled repetitive loops 

A controlled repetitive loop specifies a control variable, name, which is 
given an initial value (the result of expri, formatted as though 'o' had 
been added) before the first execution of the instruction list. The vari­
able is then stepped (by adding the result of exprb) before the second 
and subsequent times that the instruction list is executed. 

The instruction list is executed repeatedly while the end condition 
(determined by the result of exprt) is not met. If exprb is positive or 
zero, then the loop will be terminated when name is greater than the 
result of exprt. If negative, then the loop will be terminated when name 
is less than the result of exprt. 

The expressions expri, exprt, and exprb must result in numbers. They 
are evaluated once only, before the loop begins and before the control 
variable is set to its initial value. The default value for exprb is 1. If 
no exprt is given then the loop will execute indefinitely unless it is 
terminated by some other condition. 

Example: 

do i=3 to -2 by -1 
say i 
end 

I* Would display: 3 , 2, 1, 0, - 1, - 2 *I 

Note that the numbers do not have to be whole numbers: 

Example: 

x=0.3 
do y=x to x+4 by 0.7 

say y 
end 

/*Would display: 0.3, 1.0, 1.7, 2.4, 3.1, 3.8 */ 

The control variable may be altered within the loop, and this may affect 
the iteration of the loop. Altering the value of the control variable in 
this way is normally considered to be suspect programming practice, 
though it may be appropriate in certain circumstances. 

Note that the end condition is tested at the start of each iteration (and 
after the control variable is stepped, on the second and subsequent 
iterations). It is therefore possible for the instruction list to be skipped 
entirely if the end condition is met immediately. 

Note also that the control variable is referenced by name. If (for 
example) the compound name "A.I" was used for the control variable, 



50 REXX Language Definition Part 2 

then altering "I" within the loop will cause a change in the control 
variable. 

The execution of a controlled loop may further be bounded by a FOR 
phrase. In this case, exprf must be given and must evaluate to a non­
negative whole number. This acts just like the repetition count in a 
simple repetitive loop, and sets a limit to the number of iterations 
around the loop if it is not terminated by some other condition. Like 
the TO and BY expressions it is evaluated once only, when the DO 
instruction is first executed and before the control variable is given its 
initial value. Like the TO condition, the FOR count is checked at the 
start of each iteration. 

Example: 

do y=0.3 to 4.3 by 0.7 for 3 
say y 
end 

/*Would display: 0.3, 1.0, 1.7 */ 

In a controlled loop, a symbol that describes the control variable may 
be specified on the END clause. REXX will then check that this symbol 
exactly matches the name of the control variable in the DO clause (in 
all respects except case). Note that no substitution for compound var­
iables is carried out. If the symbol does not match, then the program 
is in error - this enables the nesting of loops to be checked automat­
ically. 

Example: 

do k=l to 10 

end k /* Checks this is the END for K loop */ 

Note: The values taken by the control variable may be affected by the 
NUMERIC settings, since normal REXX arithmetic rules apply to the 
computation of stepping the control variable. 

Conditional phrases (WHILE and UNTIL) 

Any of the forms of repetitor (none, FOREVER, numeric, or controlled) 
can be followed by a conditional phrase which may cause termination 
of the loop. If WHILE or UNTIL is specified, the expression following 
it is evaluated each time around the loop using the latest values of all 
variables (and must evaluate to either ' 0 ' or ' 1 ' ), and the instruction 
list will be repeatedly executed either while the result is ' 1 ' , or until 
the result is ' 1 ' . 

For a "WHILE" loop, the condition is evaluated before the instruction 
list is executed, and for an "UNTIL" loop the condition is evaluated 



2 Section 7 Keyword Instructions 51 

after the instruction list is executed - before the control variable has 
been stepped. 

Example: 

do i=l to 10 by 2 until i)6 
say i 
end 

/* Would display: 1, 3, 5, 7 */ 

Note that the execution of repetitive loops may also be modified by 
using the LEAVE or ITERATE instructions. 



52 REXX Language Definition Part 2 

Programmer's model - how a typical DO loop is executed 

This model forms part of the definition of the DO instruction. 

For the following DO: 

DO name=expri TO exprt BY exprb WHILE exprw 

instruction list 

END 

REXX will execute the following: 28 

$tempi=expri 
$tempt=exprt 
$tempb=exprb 
name=$tempi+O 
Transfer control 

/* ($variables are internal and 
/* are not accessible.) 

to label $start 

$loop: 
/* An UNTIL expression would be tested here, with: */ 
/* if expru then leave */ 
name=name + $tempb 

$start: 
if name > $tempt then leave /* leave quits a loop */ 
/* A FOR count would be checked here */ 
if •exprw then leave 

instruction list 

Transfer control to label $loop 

Note: This example is for exprb >= O. For negative exprb, the test at the 
start of the loop would be "<" rather than")". 

2s Note that the only action directly corresponding to the END clause is an upwards 
transfer of control. 



Section 7 Keyword Instructions 

DROP 

DROP variablelist ; 

where variablelist is one or more symbols (optionally enclosed in paren­
theses) separated by blanks. 

53 

DROP is used to "un-assign" variables. It restores them to their original 
uninitialized state. 

The symbols in variablelist must be valid variable names. Each variable 
named will be dropped from the collection of known variables, unless the 
variable name is enclosed in parentheses. In this latter case, a variable refer­
ence, the parentheses enclose a single name (blanks are not necessary either 
inside or outside the parentheses, but may be added if desired), and the value 
of the variable is used as a subsidiary variable list which must follow the 
same rules as the original list except that no parentheses are allowed.29 

The variables named in the original list (outside of parentheses) or in sub­
sidiary lists are dropped in sequence from left to right (with variables in 
subsidiary lists dropped as soon as the value of the list variable has been 
found). It is not an error to specify a name more than once, or to DROP a 
variable that is not known. If an exposed variable is named (see the PRO­
CEDURE instruction on page 65), then the variable owned by the original 
caller will be dropped. 

Examples: 

j=4 
drop a x. 3 x. j 
/*would reset the variables: "A", "X.3", and "X.4" *I 
I* A reference to them now returns their derived name *I 

mylist='a b c' 
drop (mylist) d 
I* would reset the variables: "A", "B", "C", and "D" *I 

If a variable specified is the stem of a compound variable (i.e., it is a symbol 
that contains only one period, as the last character), then all variables start­
ing with that stem are dropped. 

Example: 

drop x. 
/* resets all variables whose names start with "X." */ 

29 That is, it is a list of symbols that must be valid variable names, separated by 
blanks. Leading and trailing blanks are allowed. 



54 REXX Language Definition Part 2 

EXIT 

I EXIT [expression] ; 

EXIT is used to unconditionally leave a program, and optionally return a 
character string to the caller. The program is terminated immediately, even 
if an internal routine is currently being executed. If no internal routine is 
active, then RETURN (see page 69) and EXIT are identical in their effect on 
the program that is being executed. 

If an expression is given, it is evaluated and the string resulting from the 
evaluation is then passed back to the caller when the program terminates. 
If no expression is given, no character string is passed back to the caller. 

Example: 

j=3 
exit j*4 
/*Would exit with the string '12' */ 

"Running off the end" of a program is always equivalent to the instruction 
"EXIT;", in that it terminates the whole program and returns no result string. 

IF 

IF expression[;] THEN[;] instruction [ELSE[;] instruction] 

The IF construct is used to conditionally execute an instruction or group of 
instructions. It can also be used to select between two alternatives. 

The expression is evaluated and must result in ' o ' or ' 1 ' . If the result was 
' 1 ' then the instruction after the THEN is executed. If the result was ' O ' 

and an ELSE was given then the instruction after the ELSE is executed. 

Example: 

if answer='YES' then say 'OK!' 
else say 'Why not?' 

Remember that if the ELSE clause is on the same line as the last clause of 
the THEN part, then you need a semicolon to terminate that clause. 

Example: 

if answer='YES' then say 'OK!'; else say 'Why not?' 

The ELSE binds to the nearest IF at the same level. This means that any 
IF that is used as the instruction following the THEN in an IF construct that 



l 
f 

y 
.t 

Section 7 Keyword Instructions 55 

has an ELSE clause, must itself have an ELSE clause (which may be followed 
by the dummy instruction, NOP). 

Example: 

if answer='YES' then if name=' FRED' then say 'OK, Fred.' 
else say 'OK.' 

else say 'Why not?' 

Notes: 

1. An instruction may be any assignment, command, or keyword instruction, 
including any of the more complex constructions such as DO and 
SELECT and the IF instruction itself. A null clause is not an instruc­
tion, however, so putting an extra semicolon (or label) after the THEN 
or ELSE is not equivalent to putting a dummy instruction (as it would 
be in PL/I). The NOP instruction is provided for this purpose. 

2. The keyword THEN is treated specially, in that it need not start a 
clause. This allows the expression on the IF clause to be terminated by 
the THEN, without a ";" being required - were this not so, people used 
to other computer languages would experience considerable difficulties. 
Hence the symbol THEN cannot be used within the expression. 

INTERPRET 

I INTERPRET expression ; 

INTERPRET is used to execute instructions that have been built dynamically 
by evaluating an expression (in contrast to those that already exist in the 
program). 

The expression is evaluated, and will then be executed (interpreted) just as 
though the resulting string were a line inserted into the program (and 
bracketed by a DO; and an END;). 

Any instructions (including INTERPRET instructions) are allowed, but note 
that constructions such as DO ... END and SELECT ... END must be complete. 
For example, a string of instructions being interpreted cannot contain a 
LEAVE or ITERATE instruction (valid only within a repetitive DO loop) 
unless it also contains the whole repetitive DO ... END construct. Label 
clauses are not permitted in the interpreted character string. 

A semicolon is implied at the end of the expression during execution, if one 
was not supplied. 



56 REXX Language Definition 

Example: 

data='FRED' 
interpret data '= 4' 
/* Will a) build the string "FRED = 4" */ 
I* b) execute "FRED 4;" *I 
/* Thus the variable FRED will be set to '4' */ 

Part 2 

Note: If you are new to the concept of the INTERPRET instruction and are 
getting results that you do not understand, then you may find that executing 
it with "TRACE R" or "TRACE I" set is helpful. 

Example: 

The program: 

I* Here we have a small program. */ 
name=' Kitt' 
indirect=' name' 
interpret 'say "Hello"' indirect'"!"' 

when run gives the trace: 

2 

3 

* - * 
>1> 
* - * 
>1> 

name='Kitt' 
"Kitt" 

indirect='name' 
"name" 

trace inter 

4 * - * 
>1> 

interpret 'say "Hello"' indirect'"!"' 
"say "Hello"" 

>v> 
>o> 
>1> 
>o> 
* - * 
)L) 

>v> 
>o> 
>1> 
>o> 

Hello Kitt! 

"name" 
"say "Hello" name" 
"" ! "" 
"say "Hello" name"!"" 

say "Hello" name"!" 
"Hello" 
"Kitt" 
"Hello Kitt" 
"!" 
"Hello Kitt!" 

Here, as shown in the trace, lines 2 and 3 set the variables used in line 4. 
Execution of line 4 then proceeds in two stages. First the string to be inter­
preted is built up, using a literal string, a variable (INDIRECT), and another 
literal string. The resulting pure character string is then interpreted, just 
as though it were actually part of the original program. Since it is a new 
clause, it is traced as such (the second "* - *" trace flag under line 4) and is 
then executed. Again a literal string is concatenated to the value of a variable 
(NAME) and another literal string, and the final result ("Hello Kitt!") is 
then displayed. 

-------------------- --
L 



Section 7 Keyword Instructions 57 

For many purposes, the VALUE function (see page 112) may be used instead 
of the INTERPRET instruction. Line 4 in the last example could have been 
replaced by: 

say "Hello" value(indirect)"!" 

INTERPRET is usually required only in special cases such as when more 
than one instruction is to be interpreted at once, or when an expression is to 
be evaluated dynamically (as in the SHOWME program on page 6). 

ITERATE 

ITERATE [name]; 

where name is a symbol, taken as a constant. 

ITERATE alters the flow of control within a repetitive DO loop (i.e., any DO 
construct other than that with a plain DO). 

Execution of the instruction list stops, and control is passed back up to the 
DO clause just as though the END clause had been encountered. The control 
variable (if any) is then stepped (iterated) as normal and the instruction list 
is executed again, unless the loop is terminated by the DO clause. 

If no name is specified, then ITERATE will step the innermost active repeti­
tive loop. If a name is specified, then it must be the name of the control 
variable of a currently active loop (which may be the innermost), and this is 
the loop that is iterated. Any active loops inside the one selected for iteration 
are terminated (as though by a LEAVE instruction). 

Example: 

do i=l to 4 
if i=2 then iterate 
say i 
end 

/* Would display the numbers: 1, 3, 4 */ 

Notes: 

1. The name symbol, if specified, must exactly match the symbol naming 
the control variable in the DO clause (in all respects except case). No 
substitution for compound variables is carried out when the comparison 
is made. 

2. A loop is active if it is currently being executed. If a subroutine is called 
(or if an INTERPRET instruction is executed) during execution of a loop, 
then the loop becomes inactive until the subroutine has returned or the 
INTERPRET instruction has completed. ITERATE cannot be used to 
step an inactive loop. 



58 REXX Language Definition Part 2 

3. If more than one active loop uses the same control variable, then the 
innermost will be the one selected by the ITERATE. 

LEAVE 

LEAVE [name]; 

where name is a symbol, taken as a constant. 

LEAVE causes immediate exit from one or more repetitive DO loops (i.e., any 
DO construct other than that with a plain DO). 

Execution of the instruction list is terminated, and control is passed to the 
instruction following the END clause, just as though the END clause had 
been encountered and the termination condition had been met normally, 
except that on exit the control variable (if any) will contain the value it had 
when the LEAVE instruction was executed. 

If no name is specified, then LEAVE will terminate the innermost active 
repetitive loop. If a name is specified, then it must be the name of the control 
variable of a currently active loop (which may be the innermost), and that 
loop (and any active loops inside it) is then terminated. Control then passes 
to the clause following the END that matches the DO clause of the selected 
loop. 

Example: 

do i=l to 5 
say i 
if i=3 then leave 
end 

/•Would display the numbers: 1, 2, 3 •/ 

Notes: 

1. The name symbol, if specified, must exactly match the symbol naming 
the control variable in the DO clause (in all respects except case). No 
substitution for compound variables is carried out when the comparison 
is made. 

2. A loop is active if it is currently being executed. If a subroutine is called 
(or if an INTERPRET instruction is executed) during execution of a loop, 
then the loop becomes inactive until the subroutine has returned or the 
INTERPRET instruction has completed. LEA VE cannot be used to ter­
minate an inactive loop. 

3. If more than one active loop uses the same control variable, then the 
innermost will be the one selected by the LEAVE. 

I 

_____ l 



Section 7 Keyword Instructions 59 

NOP 

I NOP; 

NOP is a dummy instruction that has no effect. It can be useful as the target 
of a THEN or ELSE clause. 

Example: 

select 
when a=b then nop /• Do nothing •/ 
when a>b then say 'A > B' 
otherwise say 'A < B' 
end 

Note: Putting an extra semicolon instead of the NOP would merely insert a 
null clause, which would just be ignored by REXX. The second WHEN clause 
would then immediately follow the THEN, and hence would be treated as a 
syntax error. NOP is a true instruction, however, and is therefore a valid 
target for the THEN clause. 

NUMERIC 

DIGITS [exprd] 

[

SCIENTIFIC ] 
NUMERIC FORM ENGINEERING 

[VALUE] exprf 

FUZZ [exprz] 

where exprd, exprf, and exprz are expressions. 

The NUMERIC instruction is used to change the way in which arithmetic 
operations are carried out. The effects of this instruction are described in 
more detail on pages 127-138. 

NUMERIC DIGITS 

controls the precision under which arithmetic operations and arithmetic 
built-in functions will be evaluated - see pages 129 and 81. If no 
expression exprd is given then the default value of 9 is used. Otherwise 
the result of the expression is rounded, if necessary, according to the 
current setting of NUMERIC DIGITS before it is used. The value used 
must be a positive whole number that is larger than the current 
NUMERIC FUZZ setting. 

There is normally no limit to the value for NUMERIC DIGITS (except 
the constraints imposed by the amount of storage and other resources 



60 REXX Language Definition Part 2 

available) but note that high precisions are likely to be expensive in 
processing time. It is recommended that the default value be used 
wherever possible. 

Note that small values of NUMERIC DIGITS (for example, values less 
than 6) are generally only useful for specialized applications. The setting 
of NUMERIC DIGITS affects all computations, so even the operation of 
loops may be affected by rounding if small values are used. 

If an implementation does not support a requested value of DIGITS then 
the NUMERIC DIGITS instruction will fail (and may, as usual, be 
trapped using SIGNAL ON SYNTAX). The current setting of NUMERIC 
DIGITS may be retrieved with the DIGITS built-in function - see page 
94. 

NUMERIC FORM 

controls which form of exponential notation is to be used by REXX for 
the results of operations and arithmetic built-in functions. This may be 
either scientific (in which case only one, non-zero, digit will appear before 
the decimal point), or engineering (in which case the power of ten will 
always be a multiple of three). See page 136 for examples. The default 
is scientific. 

The form is set either directly by the sub-keywords SCIENTIFIC or 
ENGINEERING, or is taken from the result of evaluating the 
expression, exprf, that follows VALUE. The result in this case must be 
either 'SCIENTIFIC' or 'ENGINEERING'. The sub-keyword VALUE 
may be omitted if the expression does not begin with a symbol or a literal 
string (i.e., if it starts with a special character, such as an operator 
character or parenthesis). 

The current setting of NUMERIC FORM may be retrieved with the 
FORM built-in function - see page 96. The FORM option may not be 
supported by all implementations. If it is not supported, the instruction 
will fail. 

NUMERIC FUZZ 

controls how many digits, at full prec1s10n, will be ignored during a 
numeric comparison - see page 135. If no expression exprz is given then 
the default value of 0 is used. Otherwise the result of the expression is 
rounded, if necessary, according to the current setting of NUMERIC 
DIGITS before it is used. The value used must be zero or a positive 
whole number that is smaller than the current NUMERIC DIGITS set­
ting. 

The effect of NUMERIC FUZZ is to temporarily reduce the value of 
NUMERIC DIGITS by the NUMERIC FUZZ value during every numeric 
comparison, so that the numbers are subtracted under a precision of 
DIGITS minus FUZZ digits during the comparison and are then com­
pared with 0. 



.... 

Section 7 Keyword Instructions 61 

The current setting of NUMERIC FUZZ may be retrieved with the FUZZ 
built-in function - see page 97. The FUZZ option may not be supported 
by all implementations. If it is not supported, the instruction will fail. 

Note: The three numeric settings are automatically saved across internal 
subroutine and function calls. See the CALL instruction (page 43) for more 
details. 

OPTIONS 

I OPTIONS expression ; 

The OPTIONS instruction is used to pass special requests to the language 
processor (for example, an interpreter or compiler). 

The expression is evaluated, and individual words in the result that are 
meaningful to the language processor will be obeyed (these might control 
optimizations, enforce standards, enable implementation-dependent features, 
etc.). Words in the result that are not recognized will be ignored (they are 
assumed to be instructions to a different language processor). 

For example: 

options 'Speed Notrace 4.00' 

might tell a compiler to optimize for speed, that no tracing will be used in this 
program, and that the rules for version 4.00 of the language definition should 
be enforced. A processor that did not recognize any of the words would ignore 
them. 

Note: Some or all of the options set by the OPTIONS instruction may be 
automatically saved across internal subroutine and function calls, in a man­
ner appropriate to the option and language processor. See page 43 for infor­
mation on subroutine calls. 



62 REXX Language Definition Part 2 

PARSE 

ARG 
LINE IN 
PULL 

PARSE [UPPER] SOURCE [template]; 
VALUE [expression] WITH 
VAR name 
VERSION 

where template is a list of symbols separated by blanks and/or patterns. 

The PARSE instruction is used to assign data (from various sources) to one 
or more variables according to the rules and templates described in the sec­
tion on parsing (page 118). 

If UPPER is specified, then any character strings to be parsed are first 
translated to upper case. Otherwise no translation takes place during the 
parsing. 

If no template is given, then no variables will be set but action will be taken 
to get the data ready for parsing if necessary. Thus for PARSE LINEIN and 
PARSE PULL a line will be removed from the appropriate character stream 
or data queue, for PARSE VALUE the expression will be evaluated, and for 
PARSE VAR the variable will be checked to ensure that it has a value. 

The following list describes the data used for each variant of the PARSE 
instruction. 

For PAR.SE ARG 

The string(s) passed to the program, subroutine, or function as the input 
arguments are parsed. (See the ARG instruction on page 42 for details 
and examples.) 

The argument string(s) to a REXX program may also be retrieved or 
checked by using the ARG built-in function. See page 83. 

For PARSE LINEIN 

The next line from the default character input stream is parsed. (See 
page 139 for a discussion of the REXX input/output model.) 
PARSE LINE IN is a shorter form of the instruction 

PARSE VALUE LINE IN () WITH [template]; 

See page 99 for a description of the LINEIN function. If no line is 
available, program execution will normally pause until a line is complete. 
Note that PARSE LINEIN should only be used when direct access to the 
character input stream is necessary. Normal line-by-line dialogue with 



Section 7 Keyword Instructions 63 

the user should be carried out with the PULL or PARSE PULL 
instructions, to maintain generality and programmability. 

The number of lines available in the default character input stream may 
be found with the LINES built-in function. See page 101. 

As an example, under the VM/CMS operating system, PARSE LINEIN 
will read directly from the terminal input buffer (as opposed to the pro­
gram stack). If the input buffer is empty, then a console read results. 

For PARSE PULL 

The next string from the external data queue is parsed. (See page 139 
for a discussion of the REXX input/output model.) This queue is imple­
mentation defined, but will at least support the ability to save a series 
of arbitrary data strings of reasonable length. If the external data queue 
is empty, lines will be read from the default character input stream, and 
the program will pause if necessary until a line is complete. 

Strings can be added to the head or tail of the queue using the PUSH 
and QUEUE instructions respectively. The queue may also be altered 
by other programs in the system, and may be usable as a means of 
communication between programs. See also the PULL instruction, on 
page 67. 

The number of lines currently in the data queue may be found with the 
QUEUED built-in function. See page 103. 

As an example, under VM/CMS, PULL and PARSE PULL read from the 
program stack. If that is empty, they read from the terminal input buf­
fer. 

For PARSE SOURCE 

The character string parsed describes the source of the program being 
executed in some implementation-dependent way. The string is fixed 
(will not change) during execution of the program. The first word will 
identify the system or implementation under which execution is pro­
gressing, the second should state how the program was invoked, and the 
remainder is entirely implementation-dependent but would normally 
include the full name of the program. 

For example, under VM/CMS, the string contains the characters "CMS", 

followed by either "COMMAND", "FUNCTION", or "SUBROUTINE" depending 
on whether the program was invoked as some kind of command (for 
example, an Exec or an editor Macro), or from a function call in an 
expression, or via the CALL instruction. These two words are followed 
by the program filename, filetype, and filemode; each is separated from 
the previous word by one or more blanks. (The filetype and filemode 
may be blank if the program is being executed from storage, in which 
case the SOURCE string will have one or two asterisks as place holders.) 
Following the filemode is the name by which the program was invoked 
(which may not be the same as the filename). 



64 REXX Language Definition Part 2 

The string parsed might therefore look like this: 

CMS COMMAND REXXTRY XEDIT * rexxt 

For PARSE VALUE 

The expression is evaluated, and the resulting character string is parsed. 
If no expression is given, then the null string is used. Thus, for example: 

parse value time() with hours ':' mins ':' secs 

will get the current time and split it up into its constituent parts. 

Note: WITH is a sub-keyword in this context and is reserved because it 
marks the end of the expression. It cannot be used as a symbol within 
the expression. 

For PARSE VAR name 

The value of the variable specified by name is parsed. The name must 
be a symbol that is valid as a variable name (i.e., it may not start with 
a period or a digit). 

The variable itself is not changed unless it appears in the template, so 
that for example: 

parse var string wordl string 

will remove the first word from STRING and put it in the variable 
WORDl, and assign the remainder back to STRING. Similarly 

parse upper var string wordl string 

will also translate the data from STRING to upper case before it is 
parsed. 

For PARSE VERSION 

Information describing the language level and the date of the language 
processor is parsed. This consists of five words delimited by blanks. 

1. A word describing the language. The first four letters will be the 
characters "REXX", and the remainder may be used to identify a 
particular implementation or language processor. This word may 
not include any periods. 

2. The language level description. For example, "4. 00". Numbers 
smaller than this may be assumed to indicate a subset of the lan­
guage defined here. 

3. Three tokens describing the language processor release date in the 
same format as the default for the DATE() function (see page 92). 
For example, "16 Oct 1989". 

' .. 



Section 7 Keyword Instructions 

PROCEDURE 

PROCEDURE [EXPOSE variablelist] ; 

where variablelist is one or more symbols (optionally enclosed in paren­
theses) separated by blanks. 

65 

The PROCEDURE instruction may be used within an internal routine (sub­
routine or function) to protect all the existing variables by making them 
unknown to following instructions. Selected variables may be exposed to the 
internal routine by using the EXPOSE option. On executing a RETURN 
instruction, the original variables environment is restored, and any variables 
used in the routine which were not exposed are dropped. 

A routine need not include a PROCEDURE instruction, in which case the 
variables it is manipulating are those "owned" by the caller. If a PROCE­
DURE instruction is included, it must be the first instruction executed after 
the CALL or function invocation - that is, it must be the first instruction 
following the label. 

If the EXPOSE option is used, then the specified variables of the caller are 
exposed, so that any references to them (including setting them and dropping 
them) refer to the variables environment owned by the caller. Hence the 
values of existing variables are accessible, and any changes are persistent 
even on RETURN from the routine. 

The symbols in variablelist must be valid variable names and are exposed in 
sequence from left to right. If the variable name is enclosed in parentheses 
(blanks are not necessary either inside or outside the parentheses, but may 
be added if desired) then it is a variable reference. The variable itself is exposed 
and then its value is immediately used as a subsidiary variable list which 
must follow the same rules as the original list except that no parentheses are 
allowed.30 There must be only one variable name between the parentheses in 
each variable reference, though there may be more than one variable refer­
ence in variablelist. The variables named in subsidiary lists are also exposed 
in sequence from left to right. 

It is not an error to specify a name more than once, or to specify a name that 
has not been used as a variable by the caller. 

30 That is, it is a list of symbols that must be valid variable names, separated by 
blanks. Leading and trailing blanks are allowed. 



66 REXX Language Definition Part 2 

Example: 

/• This is the main program •/ 
j=l; x.l='a' 
call somevars 
say j k m 
exit 

/• would display "l 7 M" •/ 

/• This is a subroutine •/ 
Somevars: procedure expose j k x.j 

say j k x.j /• would display "1 K a" •/ 
k=7; m=3 /• note "M" is not exposed •/ 
return 

Note that if the "X.J" in the EXPOSE list had been placed before the "J'', then 
the caller's value of "J" would not have been visible at that time, so "X.l'' 
would not have been exposed. 

Subsidiary lists can be used simply to make it easier to expose a number of 
variables at once, or (in conjunction with the VALUE built-in function - see 
page 112) can be used to allow the manipulation of dynamically named vari­
ables. 

Example: 

/• This is the main program •/ 
a=ll; b=l2; c=l3 
showlist='a b' /• but not C •/ 
call playvars 
say a b c d /• would display "11 New 13 9" •/ 
exit 

/• This is a subroutine •/ 
Playvars: procedure expose (showlist) d 

say word(showlist,2) /• would display "b" •/ 
/• next line would display "12" and set new value •/ 
say value(word(showlist,2), 'New') 
/• next line would display "New" •/ 
say value(word(showlist,2)) 
c=8 I• "C" is not exposed •/ 
d=9 /• "D" was exposed explicitly •/ 
return 

An entire collection of compound variables (see page 33) may be exposed by 
specifying their stem in the variable list (or in a subsidiary list). Again, the 
variables are exposed for all operations. 



Section 7 Keyword Instructions 

Example: 

procedure expose j k a. b. 
I* This exposes "J", "K", and all variables whose *I 
/* name starts with "A." or "B." */ 
a.1='7' /* This will set "A.1" in the caller's */ 

I* environment, even if it did not */ 
/• previously exist. */ 

Notes: 

67 

1. Variables may be exposed through several generations of routines, if 
desired, by ensuring that they are included (exposed) on all intermediate 
PROCEDURE instructions. 

2. See the CALL instruction and Function descriptions on pages 43 and 
77 for details and examples of how routines are invoked. 

PULL 

PULL [template] ; 

where template is a list of symbols separated by blanks and/or patterns. 

PULL is used to read a string from the external data queue. (See page 139 
for a discussion of the REXX input/output model.) It is just a shorter form 
of the instruction 

PARSE UPPER PULL [template]; 

The current head-of-queue will be read as one string. If no template is spec­
ified, no further action is taken (and the string is thus effectively discarded). 
Otherwise, the string is translated to upper case and then parsed into vari­
ables according to the rules described in the section on parsing (page 118). 
Use the PARSE PULL instruction if upper case translation is not desired. 

Example: 

say 'Do you want to erase the file? Answer Yes or No:' 
pull answer . 
if answer='YES' then Erase oldfile 

Here the dummy placeholder "." is used on the template so the first word 
entered by the user is isolated, ready for the comparison. Since the word 
assigned to ANSWER was translated to upper case, the comparison is robust 
even though the original response may have been entered in mixed case. 



68 REXX Language Definition Part 2 

If the external data queue is empty, a line will be read from the default 
character input stream, and the program will pause if necessary until a line 
is complete.31 

The number of lines currently in the external data queue may be found with 
the QUEUED built-in function, described on page 103. 

PUSH 

I PUSH [expression]; 

The string resulting from the evaluation of the expression will be stacked 
LIFO (Last In, First Out) onto the external data queue. (See page 139 for a 
discussion of the REXX input/output model.) If no expression is specified, a 
null string is stacked. 

Example: 

a=' Soup' 
push 
push a 4 2 

/* Puts a null line onto the queue */ 
/* Puts "Soup 4 2" onto the queue */ 

The number of lines currently in the external data queue may be found with 
the QUEUED built-in function, described on page 103. 

31 That is, as though PARSE UPPER LINEIN had been executed instead (see page 
62). 



Section 7 Keyword Instructions 69 

QUEUE 

I QUEUE [expression]; 

The string resulting from the evaluation of the expression will be queued onto 
the external data queue ("stacked" FIFO - First In, First Out). If no 
expression is specified, a null string is queued. See page 139 for a discussion 
of the REXX input/output model. 

Example: 

a='Send me' 
queue a 2 /• Enqueues "Send me 2" •/ 
queue /• Enqueues a null line behind the last •/ 

The number of lines currently in the external data queue may be found with 
the QUEUED built-in function, described on page 103. 

RETURN 

I RETURN [expression]; 

RETURN is used to return control (and possibly a result) from a REXX pro­
gram or internal routine to the point of its invocation. 

If no internal routine (subroutine or function) is active, then RETURN has 
the identical effect on the program that is being executed as EXIT (see page 
54). 

If a subroutine is being executed (see the CALL instruction, on page 43) 
then the expression (if any) is evaluated, active control constructs are termi­
nated, control passes back to the caller, and the special variable RESULT is 
set to the value of the expression. If no expression was specified, the variable 
RESULT is dropped (becomes uninitialized). The various settings saved at 
the time of the CALL (tracing, addresses, etc.) are restored. 

If a function is being executed, then the action taken is the same, except that 
an expression must be specified on the RETURN instruction. The result of 
the expression is then used in the original expression at the point where the 
function was invoked. See the description of functions on page 77 for more 
details. 

Note: If a PROCEDURE instruction was executed within the routine (sub­
routine or internal function), then all local variables are dropped (and the 
previous generation is exposed) after the expression is evaluated and before 
the result is used or assigned to the special variable RESULT. 



70 REXX Language Definition Part 2 

SAY 

I SAY [expression] ; 

SAY writes a line to to the default output character stream. This typically 
causes it to be displayed (or spoken, or typed, etc.) to the user. 

Example: 

data=lOO 
say data 'divided by 4 =>' data/4 
/• would display: "100 divided by 4 => 25" •/ 

The result of evaluating the expression is written from the program via the 
default character output stream, using the appropriate implementation-de­
pendent mechanism for terminating lines. See page 139 for a discussion of 
the REXX input/output model. The result of the expression may be of any 
length, and if no expression is specified, the null string is written. 

The SAY instruction is a shorter form of the instruction 

CALL LINEOUT • [expression]; 

except that SAY does not affect the special variable RESULT. See page 100 
for details of the LINEOUT function. 



2 

] 
r 

Section 7 Keyword Instructions 

SELECT 

SELECT; whenlist [OTHERWISE[;] [instructionlist]] END; 

where whenlist is: 

one or more whenconstructs 

and whenconstruct is: 

WHEN expression[;] THEN[;] instruction 

and instructionlist is: 

any sequence of instructions 

71 

SELECT is used to conditionally execute one of several alternative 
instructions. 

Each expression following a WHEN is evaluated in turn and must result in 
' O ' or ' 1 ' . If the result is ' 1 ' , then the instruction following the associated 
THEN (which may be a complex instruction such as IF, DO, or SELECT) is 
executed and control will then pass directly to the END. If the result is 
'O ',control will pass to the next WHEN clause. 

If none of the WHEN expressions result in ' 1 ' , then control will pass to the 
instruction list (if any) following OTHERWISE. In this situation, the absence 
of an OTHERWISE is an error (but note that the instruction list that follows 
may still be omitted). 

Example: 

Testfile myfile 
select 

Notes: 

when rc=O then do 
Erase myfile 
say 'File' myfile 'existed, now erased' 
end 

when rc=28 I rc=36 then say myfile 'does not exist' 
otherwise 

say 'Unexpected return code "'re'" from TESTFILE' 
exit re 

end /* Select */ 

1. An instruction may be any assignment, command, or keyword instruc­
tion, including any of the more complex constructions such as DO and 
IF and the SELECT instruction itself. A null clause is not an instruc­
tion, however, so putting an extra semicolon (or label) after a THEN 
clause is not equivalent to putting a dummy instruction (as it would be 
in PL/I). The NOP instruction is provided for this purpose. 



72 REXX Language Definition Part 2 

2. The keyword THEN is treated specially, in that it need not start a 
clause. This allows the expression on the WHEN clause to be termi­
nated by the THEN, without a ";" being required - this is consistent 
with the treatment of THEN following an IF clause. Hence the symbol 
THEN cannot be used within the expression. 

SIGNAL 

SIGNAL 
{

label name } 
[VALUE] expression . 
ON condition [NAME trap name] ' 
OFF condition 

where labelname is a symbol or literal string which is taken as a con­
stant, and condition and trapname are single symbols which are taken 
as constants. 

The SIGNAL instruction causes an abnormal change in the flow of control, 
or (if ON or OFF is specified) controls the trapping of certain conditions (see 
page 145). 

If neither ON nor OFF is specified, a label name is derived directly from 
labelname. This must be a symbol, which is treated literally, or a literal 
string. Alternatively, the label name is taken from the result of evaluating 
the expression following VALUE. The sub-keyword VALUE may be omitted 
if the expression does not begin with a symbol or a literal string (i.e., if it 
starts with a special character, such as an operator character or parenthesis). 

All active pending DO loops, DO groups, IF constructs, SELECT constructs, 
and INTERPRET instructions in the current routine are then terminated 
(i.e., they cannot be reactivated). Control then passes to the first label in the 
program that matches the given name, as though the search had started from 
the top of the program. If labelname is a symbol, the matching takes place 
independently of alphabetic case, but otherwise the label must match exactly. 

Example: 

signal bill; /* Jump to label BILL below */ 

Bill: say 'Hi! ' 

When control reaches the specified label, the line number of the SIGNAL 
instruction is assigned to the special variable SIGL. This can be used as an 
aid to debugging, as it may be used to determine the source of a jump to a 
label. 



12 

.a 
ni­
mt 
>ol 

1, 
'e 

n 
Ll 
g 
rl 
t 
I, 

' l 

Section 7 Keyword Instructions 73 

Using SIGNAL VALUE 

The VALUE form of the SIGNAL instruction allows a branch to a label whose 
name is determined at the time of execution. This can safely be used to effect 
a form of multi-way CALL (or function call) to internal routines, because any 
DO loops, etc., in the calling routine are protected against termination by the 
call mechanism. 

Example: 

fred='pete' 
call multiway fred, 7 

Multiway: procedure 
arg label . /* One word, upper case */ 
/* Could add checks for valid labels here */ 
signal value label /* Jump to wherever */ 

Pete: say arg(l) '!' arg(2) 
I* Would display: pete ! 7 *I 
return 

TRACE 

TR E · Ac [
tracesetting ] 
[VALUE] expression ' 

where tracesetting is a symbol or literal string which is taken as a con­
stant. 

The TRACE instruction is used to control the tracing of execution of a REXX 
program, and is primarily used for debugging. Its syntax is more concise than 
other REXX instructions, since it is commonly entered manually during 
interactive tracing. For this use economy of keystrokes is considered to be 
more important than readability. 

The trace setting is either taken directly from tracesetting, or is taken from 
the result of evaluating the expression following VALUE. The sub-keyword 
VALUE may be omitted if the expression does not begin with a symbol or a 
literal string (i.e., if it starts with a special character, such as an operator 
character or parenthesis). 

The setting may be a whole number. If this is positive, then (if tracing 
interactively) that number of interactive pauses are skipped (see the section 
on interactive tracing, page 151, for further information). If the setting is a 
negative whole number, then all tracing (including interactive pauses) is 
temporarily inhibited for that number of clauses that would otherwise be 



74 REXX Language Definition Part 2 

traced. For example, "TRACE -100" means that the next 100 clauses that 
would normally be traced will not in fact be displayed, but then tracing will 
resume as before. 

If the setting is not a whole number, then it may start with one or more "?" 
characters. If so, these will either switch on or switch off interactive tracing 
(see below). If any other characters are in the setting then TRACE will take 
action according to the first of them. 

Example: 

trace ?r 
/• Results of expressions will now be traced, and •/ 
/• interactive tracing is switched on if it was •/ 
/•off before (or vice versa). •/ 

The permitted values for the alphabetic part of the setting are: 

A (e.g., "All") all clauses are traced before execution. 

c (e.g., "Commands") all commands are traced before execution. If the 
command results in an error or failure, then the return code from the 
command is also shown. 

E (e.g., "Error") any command resulting in an error or failure is traced 
(after execution) together with the return code from the command. 

F (e.g., "Failure") any command resulting in a failure is traced (after exe­
cution) together with the return code from the command. This is the 
same as the default setting, "TRACE N". 

I (e.g., "Intermediates") as "R" except that all terms and intermediate 
results during expression evaluation (and substituted names) are also 
traced. 

L (e.g., "Labels") only traces labels passed during execution. This is espe­
cially useful while tracing interactively, when the language processor 
will pause after each label; or if one wishes to note all internal subrou­
tine calls and jumps due to the SIGNAL instruction. 

N (e.g., "Normal") nothing is traced except for commands resulting in fail­
ure. These are traced (after execution) together with the return code 
from the command. This is the default setting. 

O (e.g., "Off') nothing is traced, and interactive tracing is also switched off. 

R (e.g., "Results") all clauses are traced before execution, together with the 
final result of any expression evaluated. Values assigned during PULL, 
ARG, and PARSE instructions are also displayed. This setting is 
recommended for general debugging. 

If no setting is specified, or if the setting is the null string, then tracing is 
reset to its initial (default) setting, that is, "Normal" tracing with "Interactive 
tracing OFF". 



2 

t 
l 

.. 
Section 7 Keyword Instructions 75 

The current trace·setting may be retrieved by using the TRACE built-in 
function. See page 110. 

If available at the time of execution, comments included in a traced clause 
appear in the trace, as do comments in a null clause if TRACE "A", "I", or 
"R" is specified. 

For "TRACE A" and for "TRACE C", commands traced before execution have 
the final value of the command (that is, the string passed to the environment) 
traced as well as the clause generating it. Whenever any command which 
results in an error or failure is traced the return code from the command is 
also traced. 

Note: The trace setting is automatically saved across internal subroutine 
and function calls. See the CALL instruction (page 43) for more details. 

Interactive trace setting 

The "?" prefix on the trace setting is used to control interactive tracing. 
During normal execution, executing a TRACE instruction with a "?" setting 
prefix causes interactive tracing to be switched on (see separate section on 
page 151 for details). While tracing interactively, interpretation will pause 
after most clauses that are traced; and TRACE instructions in the program 
are ignored (this is so you are not taken out of interactive tracing unexpect­
edly). The state of interactive tracing (i.e., whether it is on or om is saved 
and restored across internal routine calls. 

As an example, the instruction: "TRACE ?Errors" will make the language 
processor pause for input after executing any command that returns a non­
zero return code. 

Interactive tracing may be switched off by executing a TRACE instruction 
with a prefix "?" during an interactive pause, or by executing "TRACE Off'. 
Using the"?" prefix therefore switches you alternately in or out of interactive 
tracing. The prefix may be specified more than once in the same setting, if 
desired, and each occurrence of the prefix reverses the previous setting. 

The format of TRACE output 

Every clause traced will be displayed with automatic formatting (indentation) 
according to its logical depth of nesting etc., and any control codes in the 
encoding of the data (for example, EBCDIC values less than '40 'x, or ASCII 
values less than '20 'x) may be replaced by a question mark ("?") to avoid 
console interference. Results (if requested) are indented an extra two spaces 
and have a double quote prefixed and suffixed so that leading and trailing 
blanks are apparent. The first clause traced on any line will be preceded by 
its line number. 

All lines displayed during tracing have a three character prefix to identify the 
type of data being traced. These may be: 



76 REXX Language Definition Part 2 

* - * identifies the source of a single clause, i.e., the data actually in the 
program. 

+++ identifies a trace message. This may be an error or failure return code 
from a command (for example, +++ RC=27 +++), a prompt message 
when interactive tracing starts, an indication of a syntax error when 
tracing interactively, or the traceback clauses after a syntax error in 
the program (see below). 

> > > identifies the result of an expression (for TRACE Results), or the value 
assigned to a variable during parsing, or the value returned from a call 
to a subroutine or function. 

> . > identifies the value "assigned" to a placeholder during parsing (see 
page 122). 

The following prefixes are only used if "TRACE Intermediates" is in effect: 

>v> The string traced is the contents of a variable. 

>1> The string traced is literal (constant symbol, uninitialized variable, or 
literal string). 

> F > The string traced is the result of a function call. 

>P> The string traced is the result of a prefix operation. 

>o> The string traced is the result of an operation on two terms. 

>c> The string traced is the name of a compound variable. It is traced after 
substitution and before use, provided that the name had the value of 
another variable substituted into it. 

Please see page 56 for an example of trace output. 

If a syntax error occurs and it is not trapped by SIGNAL ON SYNTAX, then 
the clause in error will be traced, as will any CALL or INTERPRET 
instructions or clauses with function invocations active at the time of the 
error. If the error was caused by an attempted jump to a label that could not 
be found, that label is also included in the traceback. These traceback lines 
are identified by the special trace prefix"+++". 

Notes: 

1. When a loop is being traced, the DO clause itself will be traced on every 
iteration of the loop. 

2. With some implementations it may be possible to switch tracing on 
externally, without requiring modification to the program. 



l 

Section 8 Function Calls 77 

SECTION 8: FUNCTION CALLS 

Calls to internal and external routines that return a single result string 
(called functions) may be included in an expression anywhere that a term (such 
as a literal string) would be valid, using the notation: 

functionname ([expression] [, [expression]] ... ) 

where functionname is a symbol or literal string which is taken as a 
constant. 

The expressions (separated by commas) between the parentheses are called 
the arguments to the function. Each argument expression may include further 
function calls. 

It is important to note that the name of the function, functionname, must be 
followed immediately by the "(", with no blank in between, or the construct 
will not be recognized as a function call. (A blank operator would be assumed 
at that point instead.) Only a comment (which has no effect) can appear 
between the name and the left parenthesis. 

The argument expressions are evaluated in turn from left to right and the 
resulting strings are then passed to the function. This then executes some 
algorithm (usually dependent on any argument strings passed, though argu­
ments are not mandatory) and will eventually return a single character 
string. This string is then included in the original expression just as though 
the entire function reference had been replaced by the name of a variable 
which contained that returned data. 

For example, the function SUBSTR is built-in to the REXX language (see 
below, page 107) and could be used as: 

c='abcdefghijk' 
a='Part of C is:' Substr(c,3,7) 
I* would set A to "Part of C is: cdefghi" */ 

A function may have a variable number of arguments: only those required 
need be specified. For example, Substr ( 'ABCDEF' , 4) would return 
'DEF'. 

The function calling mechanism is identical to that for subroutines, and 
indeed the only difference in execution between functions and subroutines is 
that functions must return data, whereas subroutines need not. The various 
types of routines that can be called as functions may be: 

Internal If the routine name exists as a label in the program, then the cur­
rent state of interpretation is saved, so that it will later be possible 
to return to the point of invocation to resume execution. Control is 
then passed to the first label in the program that matches the name. 



78 REXX Language Definition Part 2 

As with routines invoked by the CALL instructions, certain other 
state information (TRACE and NUMERIC settings, etc.) is saved 
too. Please see the CALL instruction (page 43) for details. A mul­
ti-way function call to internal routines can be effected with the aid 
of the SIGNAL instruction (see page 73). 

If an internal routine is to be called as a function, then any 
RETURN instruction executed to return from it must have an 
expression specified. This is not necessary if it is only called as a 
subroutine. 

Built-in A rich set of functions are "built-in" as part of the REXX language: 
these are always available, and are defined in the next section 
(pages 81-117). 

External It is usually possible to write or make use of functions that are 
external to a program. These external routines may be written in 
any language (including REXX:) which supports the implementa­
tion-dependent interfaces used by REXX to invoke it. A REXX pro­
gram may be invoked as a function, and in this case may be passed 
more than one argument string. These may be retrieved by using 
the ARG or PARSE ARG instructions, or the ARG built-in function. 
Since the program is called as a function it must return data to the 
caller. 

Calling an external REXX program as a function is similar to calling 
an internal routine. The external routine is however an implicit 
PROCEDURE in that all the caller's variables are always hidden, 
and the state of internal values (NUMERIC settings, etc.) starts 
with their defaults (rather than inheriting those of the caller). In 
addition, EXIT may be used to return from the routine. 



Section 8 Function Calls 

Here is an example of a call to an internal function. 

Example: 

FACTOR2 

/*Recursive internal function execution ... */ 
arg x 
say x' ! =' factorial(x) 
exit 

Factorial: procedure I* calculate factorial by. . *I 
arg n /* .. recursive invocation. */ 
if n=O then return 1 
return factorial(n-l)*n 

79 

FACTORIAL is unusual in that it invokes itself (this is known as "recursive 
invocation"). The PROCEDURE instruction ensures that a new variable N is 
created for each call. (This example may be compared with the example on 
page 45 in which CALL is used to invoke a similar factorial routine.) 

If an external or built-in function detects an error of any kind, then REXX is 
informed, and a syntax error is raised. Execution of the clause that included 
the function call is therefore terminated. Similarly, if an external function 
fails to return data correctly, this will be detected by the language processor 
and reported as an error. 

If a syntax error occurs during the execution of an internal function, it may 
be trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. 
If the error is not trapped, then execution of the whole program is terminated 
in the usual way. 

Implementation minimum: As for the CALL instruction, at least 10 argu­
ment expressions should be allowed in a function call. 

The search order for functions 

REXX searches for functions in the order given above - that is, internal labels 
take precedence, then built-in functions, and finally external functions (the 
last may have their own search order, but this is an implementation-depen­
dent matter). However, internal labels are not used if the function name is 
given as a literal string (i.e., is specified in quotes) - in this case the function 
must be built-in or external. This lets you usurp the name of (say) a built-in 
function to extend its capabilities, yet still be able to invoke the built-in 
function when needed. 



80 REXX Language Definition Part 2 

Example: 

/* Modified DATE to return standard date by default */ 
Date: procedure 

arg in 
if in='' then in=' Standard' 
return 'DATE' (in) 

Note that the built-in functions have upper case names, and so the name in 
the literal string must be in upper case for the search to succeed, as in the 
example. The same is often true of external functions. 

Note: Execution of a function with a variable function name may be achieved 
by careful use of the INTERPRET instruction, however this should be avoided 
if possible as it reduces the clarity of the program. A better strategy is to pass 
the varying parameter as an argument to the function, if possible. 



Section 9 Built-in Functions 81 

SECTION 9: BUILT ·IN FUNCTIONS 

There is a rich set of built-in functions defined as part of the REXX language. 
These include character manipulation, conversion, and information functions. 
Further external functions are generally available, as appropriate for the 
system under which the REXX language processor runs. 

General notes on the built-in functions: 

• The parentheses in a function call are always needed, even if no argu­
ments are required. The first parenthesis must immediately follow the 
name of the function, with no space in between. 

• The arguments named as a number are rounded, if necessary, according 
to the current setting of NUMERIC DIGITS (just as though the number 
had been added to 0), and checked for validity before use.32 Except for 
these uses, the built-in functions work internally with NUMERIC DIG­
ITS 9 and NUMERIC FUZZ 0 and are unaffected by changes to the 
NUMERIC settings. 

• Any argument named as a string may be a null string. 

• If an argument specifies a length, then it must be a non-negative whole 
number. Ifit specifies a start character or word in a string, then it must 
be a positive whole number unless otherwise stated. 

• Where the last argument is optional, a comma may always be included 
to indicate that it has been omitted. For example, DATATYPE ( 1.) 
would return ' NUM ' . 

• A pad argument, if specified, must be exactly one character long. 

• If a function has a sub-option selected by the first character of a string, 
that character may be in upper or lower case. 

• Conversion between characters and hexadecimal is dependent on the 
machine representation (encoding) of character strings, and hence will 
return appropriately different results for ASCII, EBCDIC, and other 
encodings. The examples below use an EBCDIC encoding. 

32 These are used in the mathematical functions ABS, FORMAT, MAX, MIN, SIGN, 
and TRUNC, and also apply to certain options of the DATATYPE function. 



82 REXX Language Definition Part 2 

ABBREV(information,info[,length]) 

returns 1 if info is equal to the leading characters of information and 
info is not less than the minimum length, length. Returns 0 if either of 
these conditions is not met. The minimum length may be specified as 
the third argument; the default is the length of info. 

Examples: 

ABBREV('Print', 'Pri') 1 
ABBREV ('PRINT' , 'Pri') 0 
ABBREV('PRINT', 'PRI' ,4) 0 
ABBREV('PRINT', 'PRY') 0 
ABBREV ( 'PRINT' , ' ' ) 1 
ABBREV('PRINT','' ,1) 0 

Note: A null string will always match if a length of 0 (or the default) 
is used. This allows a default keyword to be selected automatically if 
desired. 

Example: 

ABS(number) 

say 'Enter option:'; pull option . 
select /• keyword! is to be the default •/ 

when abbrev('keywordl' ,option) then 
when abbrev('keyword2' ,option) then ... 

otherwise 
end 

returns the absolute value of number. The result has no sign and is 
formatted according to the current NUMERIC settings. 

Examples: 

ADDRESS() 

ABS('12.3') 
ABS ( ' - 0 . 3 0 7 ' ) 

12.3 
0.307 

returns the name of the environment to which commands are currently 
being submitted. See the ADDRESS instruction (page 40) for more 
information. 

Examples: 

ADDRESS() 
ADDRESS() 

'PCDOS' 
'XEDIT' 

/• perhaps •/ 
/• perhaps •/ 



Section 9 Built-in Functions 83 

ARG([ n[,option]]) 

returns an argument string, or information about the argument strings 
to a program or internal routine. 

If n is not specified, the number of arguments passed to the program or 
internal routine is returned (see note below). 

If only n is specified, the nth argument string is returned. If the argu­
ment string does not exist, the null string is returned. n must be a 
positive whole number. 

If option is specified, the function tests for the existence of the nth argu­
ment string. Possible values for option (of which only the first character 
is significant) are: 

E (Exists); returns 1 if the nth argument exists; that is, if it was 
explicitly specified as an argument string when the routine was 
invoked. Returns 0 otherwise. 

O (Omitted); returns 1 if the nth argument was omitted; that is, if it 
was not explicitly specified when the routine was invoked. Returns 
0 otherwise. 

Examples: 

/* Following "Call name;" (no arguments) */ 
ARG() 0 
ARG(l) I I 

ARG(2) I I 

ARG( 1, 'e') 0 
ARG(l, I 0 I) 1 

/* Following "Call name 1,, 2;" */ 
ARG() 3 
ARG ( 1) 1 
ARG(2) I I 

ARG(3) 2 
ARG(n) I I /* for n>=4 */ 
ARG ( 1, 'e') 1 
ARG (2. IE I) 0 
ARG (2. I 0 I) 1 
ARG(3. I 0 I) 0 
ARG(4. I 0 I) 1 

Notes: 

1. The number of argument strings is the largest number n for which 
ARG (n, 'e') would return 1. That is, the position of the last 
explicitly specified string. 



84 REXX Language Definition Part 2 

2. The argument strings to a program may be retrieved and parsed 
directly using the ARG or PARSE ARG instructions - see pages 
42 and 62. 

3. Programs called as commands can only have 0 or 1 argument 
strings. 

BITAND(stringl[,[string2][,pad]]) 

returns a string composed of the two input strings logically ANDed 
together, bit by bit. (That is, it is the encodings of the strings that are 
used in the logical operation.) 

The length of the result is the length of the longer of the two strings. 
If no pad character is provided, then the AND operation terminates 
when the shorter of the two strings is exhausted and the unprocessed 
portion of the longer string is appended to the partial result. If pad is 
provided, it is used to extend the shorter of the two strings on the right, 
before carrying out the logical operation. The default for string2 is the 
zero length (null) string. 

Examples: 

BITAND('73'x, '27'x) 
BITAND('13'x, 'SSSS'x) 
BITAND('13'x,'SSSS'x, '74'X) 

BITOR(stringl [,[ string2] [,pad]]) 

'23'x 
'llSS'x 
'1154'x 

returns a string composed of the two input strings logically (inclusively) 
ORed together, bit by bit. (That is, it is the encodings of the strings that 
are used in the logical operation.) 

The length of the result is the length of the longer of the two strings. 
If no pad character is provided, then the OR operation terminates when 
the shorter of the two strings is exhausted and the unprocessed portion 
of the longer string is appended to the partial result. If pad is provided, 
it is used to extend the shorter of the two strings on the right, before 
carrying out the logical operation. The default for string2 is the zero 
length (null) string. 

Examples: 

BITOR('lS'x, '24'x) 
BITOR('lS'x, '2456'x) 
BITOR(' 15 'x, '2456'x, 'FO'x) 
BITOR('llll'x,, '4D'x) 

'35 'x 
'3556'x 
'35F6'x 
'SDSD'x 



Section 9 Built-in Functions 85 

BITXOR(stringl[,[string2][,pad]]) 

returns a string composed of the two input strings logically eXclusive 
ORed together, bit by bit. (That is, it is the encodings of the strings that 
are used in the logical operation.) 

The length of the result is the length of the longer of the two strings. 
If no pad character is provided, then the XOR operation terminates 
when the shorter of the two strings is exhausted and the unprocessed 
portion of the longer string is appended to the partial result. If pad is 
provided, it is used to extend the shorter of the two strings on the right, 
before carrying out the logical operation. The default for string2 is the 
zero length (null) string. 

Examples: 

BITXOR('12'x, '22'x) 
BITXOR('1211'x, '22'x) 
BITXOR('C7ll'x. '222222'x,' ') 
BITXOR('llll'x, '444444'x) 
BITXOR('llll'x, '444444'x, '40'x) 
BITXOR('llll'x,, '4D'x) 

,AJ2X(binary-string) 1 ,_ 

I 30 1 X 

'3011'x 
'E53362'x 
'555544'x 
'555504'x 
'5C5C 'x 

Binary to Hexadecimal. Converts binary-string, a string of binary (0 
and/or 1) digits, to an equivalent string of hexadecimal characters. The 
returned string will use upper case alphabetics for the values A-F, and 
will not include any blanks. 

binary-string may be of any length, and if it is the null string then a null 
string is returned. If the number of binary digits in the string is not a 
multiple of four, then up to three 'O' digits will be added on the left 
before conversion to make a total that is a multiple of four. 

Blanks may optionally be included in binary-string (at four-digit boun­
daries only, corresponding to the returned hexadecimal character boun­
daries, and not leading or trailing) to aid readability; they are ignored. 

Examples: 

B2X( I 11000011') 
B2X('l0111') 
B2X (I 101 I) 
B2X('l 1111 0000') 

'C3' 
I 17 I 

I 5 I 

'lFO' 

B2X may be combined with the X2D or X2C functions to convert binary 
strings into other forms. 

Example: 

X2D(B2X('l0111')) I 23 I 



86 REXX Language Definition Part 2 

CENTRE(string,length[,pad]) 

or 

CENTER(string,length[,pad]) 

returns a string of length length with string centered in it, with pad 
characters added as necessary to make up the required length. length 
must be zero or positive. The default pad character is blank. If the 
string is longer than length, it will be truncated at both ends to fit. If 
an odd number of characters are truncated or added, the right hand end 
loses or gains one more character than the left hand end. 

Examples: 

CENTRE (abc, 7) 
CENTRE(abc,8, '-') 
CENTER('The blue sky' ,8) 
CENTER('The blue sky' ,7) 

ABC 
'--ABC---' 
'e blue s' 
'e blue ' 

Note: This function may be called either CENTRE or CENTER, which 
avoids errors due to the difference between the British and American 
spellings. 

CHARIN([name][,[start][,length]]) 

returns a string of up to length characters read from the character input 
stream name. (See page 139 for a discussion of the REXX input/output 
model.) The form of the name is implementation-dependent. If name 
is omitted, then characters will be read from the default input stream. 
The default length is 1. 

For persistent streams, a read position is maintained for each stream. 
Any read from the stream will by default start at the current read 
position. When the read is completed the read position is increased by 
the number of characters read. A start value may be given to specify 
an explicit read position. This read position must be positive and within 
the bounds of the stream, and must not be specified for a transient 
stream. A value of 1 for start refers to the first character in the stream. 

If a length of 0 is given, then the read position will be set to the value 
of start but no characters will be read and the null string is returned. 

If there are fewer than length characters available, then execution of the'" 
program will normally stop until sufficient characters do become avail­
able. If, however, it is impossible for those characters to become avail­
able due to an error or other problem then the NOTREADY condition is 
raised (see page 142) and CHARIN will return with fewer than the 
requested number of characters. 



Section 9 Built-in Functions 

Examples: 

CHARIN(mine,1,3) 
CHARIN(mine,1,0) 
CHARIN(mine) 
CHARIN (mine, , 2) 
CHARIN () 
CHARIN (,, 5) 

CHAROUT([name][,[string][,startJ]) 

'MFG' 
I I 

'M' 
'FC' 
'a' 
'abc 

/* 
/* 
/* 
/* 
/* 

d' /* 

87 

perhaps */ 
now at start */ 
after last */ 
after last */ 
perhaps •/ 
perhaps */ 

returns the count of characters remaining after attempting to write 
string to the character output stream name. (See page 139 for a dis­
cussion of the REXX input/output model.) The form of the name is 
implementation-dependent. If name is omitted, then the characters in 
string will be written to the default output stream. string may be the 
null string, in which case no characters are written to the stream and 
0 is always returned. 

For persistent streams, a write position is maintained for each stream. 
Any write to the stream will by default start at the current write posi­
tion. When the write is completed the write position is increased by the 
number of characters written. The initial write position is the end of the 
stream, so that calls to CHAROUT will normally append to the end of 
the stream. 

A start value may be given to specify an explicit write position for a 
persistent stream. This write position must be positive and within the 
bounds of the stream (though it may specify the character position 
immediately after the end of the stream). A value of 1 for start refers 
to the first character in the stream. 33 

The string may be omitted for persistent streams. In this case the write 
position will be set to the value of start that was given, no characters 
are written to the stream, and 0 is returned. If neither start nor string 
are given, then the write position will be set to the end of the stream. 
This use of CHAROUT may also have the side-effect of closing or fixing 
the file in environments which support this concept. Again, 0 is 
returned. 

Execution of the program will normally stop until the output operation 
is effectively complete. If, however, it is impossible for all the characters 
to be written, then the NOTREADY condition is raised (see page 142) 
and CHAROUT will return with the number of characters that could 
not be written (the residual count). 

33 In some environments overwriting a stream with CHAROUT or LINEOUT may 
erase (destroy) all existing data in the stream. 



88 REXX Language Definition Part 2 

Examples: 

CHAROUT(mine, 'Hi') 0 /* normally •/ 
CHAROUT(mine, 'Hi' ,5) 0 /• normally */ 
CHAROUT(mine, ,6) 0 /* now at char 6 •/ 
CHAROUT (mine) 0 /• end of stream */ 
CHAROUT ( . I Hi I ) 0 /* normally •/ 
CHAROUT(, 'Hello') 2 /* maybe •/ 

Note: This routine is often best called as a subroutine. The residual 
count is then available in the variable RESULT. 

Examples: 

Call CHAROUT myfile, 'Hello' 
Call CHAROUT myfile, 'Hi' ,6 
Call CHAROUT myfile 

CHARS([ name]} 

returns the total number of characters remaining in the character input 
stream name. The count includes any line separator characters, if these 
are defined for the stream, and in the case of persistent streams is the 
count of characters from the current read position. (See page 139 for a 
discussion of the REXX input/output model.) 

The form of the name is implementation-dependent. If name is omitted, 
then the number of characters available in the default input stream is 
returned. 

If an implementation cannot determine the count accurately or effi­
ciently, then it may return 1 for any non-zero count or when the count 
is unknown. An actual character count may therefore be used only in 
programs specific to a particular environment in which CHARS is fully 
supported for the specified stream. 

Examples: 

CHARS (myfile) 
CHARS(nonfile) 
CHARS() 

42 /• perhaps */ 
0 /* perhaps */ 
27 /* perhaps •/ 

Note: The LINES function may be used to return the number of com­
plete lines (rather than individual characters) remaining in the stream. 

COMP ARE(stringl,string2[,pad]) 

returns 0 if string 1 and string2 are the same. If they are not, the 
returned number is positive and is the position of the first character that 
is not the same in both strings. If one string is shorter than the other, 
one or more pad characters are added on the right to make it the same 
length for the comparison. The default pad character is a blank. 



Section 9 Built-in Functions 89 

Examples: 

COMPARE('abc', 'abc') 0 
COMPARE ( 'abc' , 'ak') 2 
COMPARE ('ab ' , 'ab') O 
COMPARE ('ab ' , 'ab' , ' ') O 
COMPARE ('ab ' , 'ab' , 'x') 3 
COMPARE('ab-- ','ab','-') 5 

CONDITION([ option]) 

returns the condition information associated with the current trapped 
condition. (See page 145 for a description of condition traps.) Four 
pieces of information may be requested: the name of the current trapped 
condition, any descriptive string associated with that condition, whether 
the trap caused a SIGNAL or a CALL, and the state of the trapped 
condition (if any). The following option strings (of which only the first 
letter is needed) may be supplied to select the information returned: 

c (Condition name); returns the name of the current trapped condi­
tion. 

D (Description); returns any descriptive string associated with the 
current trapped condition. The possible strings are listed on page 
149. If no description is available, a null string is returned. 

I (Instruction); returns the keyword for the instruction executed 
when the current condition was trapped, being either 'CALL' or 
' SIGNAL ' . This is the default if no option was specified. 

S (State); returns the state of the current trapped condition. This 
may change during execution, and will be one of: ON (the condition 
is enabled); OFF (the condition is disabled); or DELAY (any new 
occurrence of the condition will be delayed or ignored). 

If no condition has been trapped (that is, there is no current trapped 
condition) then the CONDITION function returns a null string in all 
four cases. 

Examples: 

CONDITION() 
CONDITION (I c I) 
CONDITION (I I I) 
CONDITION (ID I) 
CONDITION (Is I) 

'CALL' 
'FAILURE' 
'CALL' 
'FailureTest' 
'OFF' 

I* perhaps */ 

Note: The condition information returned by the CONDITION built-in 
function is saved and restored across subroutine calls (including those 
caused by a CALL ON condition trap). Therefore, once a subroutine 
invoked due to a CALL ON trap has returned, the current trapped con­
dition will revert to that which was current before the CALL took place 



90 REXX Language Definition Part 2 

(which may be none); the CONDITION built-in function will then return 
the values it returned before the condition was trapped. 

v6oPIES(string,n) 

returns n directly concatenated copies of string. n must be positive or 
0. 

Examples: 

COPIES ( 'abc' , 3) 
COPIES ( 'abc'. 0) 

/c2D(string[,n]) yc-

'abcabcabc' 

'' 

Character to Decimal. Returns the decimal value of the binary repre­
sentation (encoding) of string. If the result cannot be expressed as a 
whole number, an error results - that is, the result must not have more 
digits than the current setting of NUMERIC DIGITS. 

string may be the null string, in which case 0 is returned. 

If n is not specified, string is taken to be an unsigned number: 

Examples: 

C2D('09'x) 
C2D('8l'x) 
C2D('a') 
C2D('FF8l'x) 
C2D (' ') 

9 
129 
129 

65409 
0 

If n is specified, the string is taken as a signed number expressed in n 
characters. If the most significant (left-most) bit is zero then the num­
ber is positive; otherwise it is a negative number in two's complement 
form. In both cases it is converted to a REXX whole number which may 
therefore be negative. If n is 0, 0 is always returned. 

The string is padded on the left with characters of '00 'X (note, not 
"sign-extended") or truncated on the left to length n characters, if nec­
essary - that is, as though RIGHT (string,n,' 00 'x) had been executed. 

Examples: 

C2D('8l'x,l) 
C2D('8l'x,2) 
C2D('FF8l'x,2) 
C2D('FF8l'x,l) 
C2D('FF7F'x,l) 
C2D( 'F081 'x,2) 
C2D('F08l'x,l) 
C2D('003l'x,O) 

-127 
129 

-127 
-127 
127 

-3967 
-127 

0 



Section 9 Built-in Functions 91 

vC2X(string) P £ 

Character to Hexadecimal. Converts the encoding of a character string 
to its hexadecimal representation (unpacks). The returned string will 
use upper case alphabetics for the values A-F, and will not include any 
blanks. The string to be unpacked may be of any length, and if it is the 
null string then a null string is returned. 

Examples: 

C2X('72s') 
C2X('0123'x) 

DATATYPE(string[,type]) 

'F7F2A2' 
'0123' 

If only string is specified, the returned result is 'NUM' if string is a 
syntactically valid REXX number that can be added to ' 0 ' without 
error, or 'CHAR' otherwise. 

If type is specified, the returned result is 1. if string matches the type, 
or 0 otherwise. If string is null, 0 is returned (except when type is "X", 
which returns 1 for a null string). The valid types (of which only the one 
letter is needed) are: 

A (Alphanumeric); returns 1 if string only contains characters from 
the ranges "a-z", "A-Z", and "0-9". 

B (Binary); returns 1 if string only contains the characters "O" and/or 
"l". 

L (Lower case); returns 1 if string only contains characters from the 
range "a-z". 

M (Mixed case); returns 1 if string only contains characters from the 
ranges "a-z" and "A-Z". 

N (Number); returns 1 if DATATYPE (string) would return 'NUM'. 

S (Symbol); returns 1 if string only contains characters that are valid 
in REXX symbols (see page 21). Note that lower case alphabetics 
are permitted. 

u (Upper case); returns 1 if string only contains characters from the 
range "A-Z". 

W (Whole number); returns 1 if string is a REXX whole number (see 
page 137) under the current setting of NUMERIC DIGITS. 

X (heXadecimal); returns 1 if string only contains characters from the 
ranges "a-f', "A-F", "0-9", and blank (so long as blanks only appear 
between pairs of hexadecimal characters, as usual.) Also returns 
1 if string is a null string, which is a valid hexadecimal string. 



92 

Examples: 

DATATYPE(' 12 ') 
DATATYPE ( I I) 
DATATYPE('l23*') 
DATATYPE('l2.3', 'N') 
DAT A TYPE ( I 12 . 3 I • ' w ' ) 
DATATYPE('Fred', 'M') 
DATATYPE( I I. 'M') 
DATATYPE ('Minx' , 'L') 
DATATYPE('3d?', 's') 
DATATYPE('BCd3', 'X') 
DATATYPE('BC d3', 'X') 

REXX Language Definition 

'NUM' 
'CHAR' 
'CHAR' 
1 
0 
1 
0 
0 
1 
1 
1 

Part 2 

Note: The DATATYPE function tests the meaning, or type, of charac­
ters in a string, independent of the encoding of those characters. 

vDATE([option]) ~ i? 

by default returns the local date in the format 'dd Mmm yyyy' (for 
example, the value might be ' 2 7 Aug 19 8 9 '), with no leading zero or 
blank on the day. The first three characters of the English name of the 
month are used. 

The following option strings (of which only the first letter is needed) may 
be supplied to obtain alternative formats: 

B (Base); returns the number of complete days (that is, not including 
the current day) since and including the base date, 1 Jan 0001, in 
the format 'dddddd' (no leading zeros or blanks). This base date 
is determined by extending the current Gregorian calendar back­
wards (365 days each year, with an extra day every year that is 
divisible by 4 except century years that are not divisible by 400). 

Note: The expression DATE ( 'B') I 17 returns a number corre­
sponding to the day of the week, with 0 indicating Monday. 
DATE ( 'B') would have returned 6935 95 on 1 Jan 1900. 

D (Days); returns the number of days, including the current day, so 
far in this year in the format 'ddd' (no leading zeros or blanks). 

E (European); returns the date in the format 'dd/mm/yy'. 

M (Month); returns the full English name of the current month, m 
mixed case (first letter a capital). 

N (Normal); explicitly returns the date in default format, as described 
above. 

O (Ordered); returns the date in the format 'yy I mm/ dd' (suitable for 
sorting, etc.). 



Section 9 Built-in Functions 93 

S (Standard); returns date in the format 'yyyymmdd' (suitable for 
sorting, etc.). Note that this is one of the three forms recommended 
in the International Standards Organization Recommendation 
ISO/R 2014-1971 (E). The other two forms recommended in that 
document can be derived from this form by separating the month 
from the year and day using either blanks or hyphens, thus: 
'1989 08 27' or '1989-08-27'. 

U (USA); returns the date in the format 'mm/ dd I yy'. 

W (Week day); returns the English name for the day of the week, in 
mixed case (first letter a capital). 

Examples: 

DATE () 
DATE (I BI) 
DATE (ID I) 
DATE (IE I) 
DATE ( 'M') 
DATE (IN I) 
DATE (I 0 I) 
DATE (Is I) 
DATE (I u I) 
DATE('w') 

'27 Aug 1989' 
726340 
239 
'27/08/89' 
'August' 
'27 Aug 1989' 
'89/08/27' 
'19890827' 
'08/27/89' 
'Saturday' 

Note: The first call to DATE or TIME in one clause causes a record of 
the time to be made which is then used for all calls to these functions 
within that clause. Hence if multiple calls to DATE and/or TIME are 
made in a single expression or clause, then they are guaranteed to be 
consistent with each other. 

DELSTR(string,n[,length]) 

deletes the sub-string of string that begins at the nth character, and is 
of length length. If length is not specified, the rest of the string is 
deleted (including the nth character). length must be non-negative, and 
n must be positive. If n is greater than the length of string, the string 
is returned unchanged. 

Examples: 

DELSTR('abcd' ,3) 
DELSTR('abcde' ,3,2) 
DELSTR('abcde' ,6) 

'ab' 
'abe' 
'abcde' 



94 REXX Language Definition Part 2 

DELWORD(string,n[,length]) 

deletes the sub-string of string that starts at the nth word, and is of 
length length blank-delimited words. If length is omitted it defaults to 
be the remaining words in the string (including the nth word). length 
must be non-negative, and n must be positive. If n is greater than the 
number of words in string, the string is returned unchanged. The string 
deleted includes any blanks following the final word involved, but none 
of the blanks preceding the first word involved. 

Examples: 

DIGITS() 

DELWORD('Now is the time' ,2,2) 
DELWORD('Now is the time ',3) 
DELWORD('Now time' ,5) 

'Now time' 
'Now is ' 
'Now time' 

returns the current setting of NUMERIC DIGITS. See the NUMERIC 
instruction (page 59) for more information. 

Example: 

DIGITS() == 9 

vD2C(whole-number[,n]) r 1;; 

/* if default •/ 

Decimal to Character. Returns a character string of length as needed, 
or oflength n, which is the binary representation of the decimal number. 

Whole-number must be a non-negative number unless n is specified, or 
an error will result. If n is not specified, the length of the result 
returned is such that there are no leading '00 'x characters. 

If n is specified it is the length of the final result in characters; that is, 
after conversion the input string will be sign-extended to the required 
length. If the number is too big to fit into n characters, it will be trun­
cated on the left. n must be non-negative. 

Examples: 

D2C(9) 
D2C(l29) 
D2C(l29,l) 
D2C(l29,2) 
D2C(257,1) 
D2C(-127,l) 
D2C(-127,2) 
D2C(-l,4) 
D2C(l2,0) 

'09'x 
I 81 'X 

I 81 'X 

'0081'x 
'01 'x 
I 81 IX 

'FF81 'x 
'FFFFFFFF'x 
I I 



Section 9 Built-in Functions 95 

vD2X(whole-number[,n]) c t 

Decimal to Hexadecimal. Returns a string of hexadecimal characters 
oflength as needed or of length n, which is the hexadecimal (unpacked 1 

representation of the decimal number. The returned string will use 
upper case alphabetics for the values A-F, and will not include any 
blanks. 

Whole-number must be a non-negative number unless n is specified, or 
an error will result. If n is not specified, the length of the result 
returned is such that there are no leading ' O ' characters. 

If n is specified it is the length of the final result in characters; that is, 
after conversion the input string will be sign-extended to the required 
length. If the number is too big to fit into n characters, it will be trun­
cated on the left. n must be non-negative. 

Examples: 

D2X(9) 
D2X(129) 
D2X(129,l) 
D2X(l29,2) 
D2X(129,4) 
D2X(257,2) 
D2X(-127,2) 
D2X(-127,4) 
D2X(12,0) 

I 9 I 

I 81' 
'l' 
'81' 
'0081' 
'01'. 
'81' 
'FF81' 
'' 

Note: A call to D2X is similar to a call to D2C followed by a call to C2X, 
except that an odd number of characters can be returned. 

ERRORTEXT(n) 

returns the REXX error message associated with error number n. n 
must be in the range 0-99, and any other value is an error. If n is in the 
allowed range, but is not a defined REXX error number, the null string 
is returned. The text will be returned in the language appropriate to the 
implementation. 

Examples: 

ERRORTEXT(l6) 
ERRORTEXT(60) 

'Label not found' 
I I 



96 REXX Language Definition Part 2 

FORM() 

returns the current setting of NUMERIC FORM. See the NUMERIC 
instruction (page 59) for more information. 

Example: 

FORM() == 'SCIENTIFIC' 

/ FORMA T(number[,[before] [,[after]]]) 

rounds and formats number. 

/* if default */ 

The number is first rounded according to standard REXX rules, just as 
though the operation "number+O" had been carried out. If only number 
is given, the result is precisely that of this operation. 

The arguments before and after may be specified to control the number 
of characters to be used for the integer part and decimal part of the 
result respectively. If either of these is omitted the number of charac­
ters used will be as many as are needed for that part. 

If before is not large enough to contain the integer part of the number, 
an error results. If after is not the same size as the decimal part of the 
number, the number will be rounded (or extended with zeros) to fit. 
Specifying 0 will cause the number to be rounded to an integer (that is, 
it will have no decimal part). 

Examples: 

FORMAT ( I 3 I • 4) 
FORMAT('l.73' ,4,0) 
FORMAT('l.73' ,4,3) 
FORMAT('-.76' ,4,1) 
FORMAT('3.03' ,4) 
FORMAT(' - 12.73' ,,4) 
FORMAT(' - 12.73') 
FORMAT (I 0. 000 I) 

== I 31 
2 I 

==I 1.730 1 

== I -0.8' 
== I 3 o 03 I 

'-12.7300' 
'-12.73' 
IO I 

A further two arguments may be passed to the FORMAT function to 
control the use of exponential notation. The full syntax of the function 
is therefore: 

FORMAT(number[,[before][,[after][,[expp][,expt]]]]) 

The first three arguments are as described above, and in addition expp 
and expt control the exponent part of the result, which by default is 
formatted according to the current NUMERIC settings of DIGITS and 
FORM. expp sets the number of places (digits) to be used for the expo­
nent part, the default being to use as many as are needed. expt sets the 
trigger point for use of exponential notation. If the number of places 
needed for the integer or decimal part exceeds expt or twice expt 
respectively, exponential notation will be used. The default is the cur-



---------------------------------------

Section 9 Built-in Functions 97 

rent setting of NUMERIC DIGITS. If 0 is specified for expt, exponential 
notation is always used unless the exponent would be 0. 

If 0 is specified for the expp field, no exponent will be supplied, and the 
number will be expressed in "simple" form with added zeros as neces­
sary. 34 Otherwise, if expp is not large enough to contain the exponent, 
an error results. If expp is non-zero and the exponent will be 0, then 
expp+2 blanks are supplied for the exponent part of the result. 

Examples: 

FORMAT('12345.73',, ,2,2) 
FORMAT('12345.73', ,3, ,0) 
FORMAT('l.234573', ,3, ,0) 
FORMAT(-'123.45', ,3,2,0) 
FORMAT('l.2345' ,,3,2,0) 
FORMAT('12345.73' ,, ,3,6) 
FORMAT('1234567e5', ,3;0) 

'1.234573E+04' 
'1.235E+4' 
'1.235' 
'1.235E+02' 
I 1. 235 
'12345.73' 
'123456700000.000' 

Note: If NUMERIC FORM ENGINEERING is in effect, up to 3 digits 
may be needed for the integer part of the result (before). 

Implementation minimum: If exponents are supported in an imple­
mentation, then they must be supported for exponents whose absolute 
value is at least as large as the largest number that can be expressed 
as an exact integer in default precision, i.e., 999999999. Therefore, 
values for expp of up to 9 should also be supported. 

FUZZ() 

returns the current setting of NUMERIC FUZZ. See the NUMERIC 
instruction (page 59) for more information. 

Example: 

FUZZ() == 0 /• if default •/ 

,.INSERT(new,target[,[n][,[length][,pad]]]) , 

inserts the string new, padded to length length, into the string target 
after the nth character. length and n must be non-negative. If n is 
greater than the length of the target string, padding is added before the 
new string also. The default value for n is 0, which means insert before 
the beginning of the string. The default value for length is the length 
of new. The default pad character is a blank. 

34 This overrides a 0 value of expt if necessary. 



98 

Examples: 

REXX Language Definition Part 2 

INSERT(' ','abcdef',3) 
INSERT('123', 'abc' ,5,6) 
INSERT('123', 'abc' ,5,6, '+') 
INSERT('l23', 'abc') 
INSERT (' 123' , 'abc' , , 5, ' - ') 

'abc def' 
'abc 123 
'abc++123+++ 1 

'123abc' 
'123--abc' 

LASTPOS(needle,haystack[,start]} , 

returns the position of the last occurrence of one string, needle, in 
another, haystack. (See also POS.) If the string needle is not found, or 
is the null string, 0 is returned. By default the search starts at the last 
character of haystack and scans backwards. This may be overridden by 
specifying start, the point at which to start the backwards scan. start 
must be a positive whole number, and defaults to LENGTH (string) if 
larger than that value or if not specified. 

Examples: 

LASTPOS ( ' ' , 'abc def ghi' ) 8 
LASTPOS (' ' , 'abcdefghi') 0 
LASTPOS (' ' , 'abc def ghi' , 7) 4 

LEFT(string,length[,pad]) 

returns a string of length length containing the left-most length charac­
ters of string. The string is padded with pad characters (or truncated) 
on the right as needed. The default pad character is a blank. length 
must be non-negative. This function is exactly equivalent to 
SUBS TR (string, 1,length [,pad]). 

Examples: 

LEFT ( 'abc d' , 8) 
LEFT('abc d' ,8,'. ') 
LEFT('abc def' ,7) 

/LENGTH(string) 

returns the length of string. 

Examples: 

LENGTH('abcdefgh') 8 
LENGTH( I I) 0 

'abc d 
'abc d ... ' 
'abc de' 



l 

Section 9 Built-in Functions 99 

LINEIN([name][,[line][,count]]) 

returns count (0 or 1) lines read from the character input stream name. 
(See page 139 for a discussion of the REXX input/output model.) The 
default count is 1. The form of the name is implementation-dependent. 
If name is omitted, then the line will be read from the default input 
stream. 

For persistent streams (such as random-access files), a read position is 
maintained for each stream. Any read from the stream will by default 
start at the current read position.35 When the read is completed the read 
position is increased by the number of characters read. A line number 
may be given to set the read position to the start of a specified line. This 
line number must be positive and within the bounds of the stream, and 
must not be specified for a transient stream. A value of 1 for line refers 
to the first line in the stream. 

If a count of 0 is given, then the read position will be set to the start of 
the specified line but no characters will be read and the null string is 
returned. 

If a complete line is not available in the stream, then execution of the 
program will normally stop until the line is complete. If, however, it is 
impossible for a line to be completed due to an error or other problem 
then the NOTREADY condition is raised (see page 142) and LINEIN 
will return with whatever characters are available. 

Examples: 

LINE IN (mine) 'MFC' /* perhaps */ 
LINE IN (mine, S) 'Lines• /* perhaps */ 
LINEIN(mine,S,O) I I 

LINEIN(mine) 'Lines' /* after last */ 
LINE IN() 'Hello' /* perhaps */ 

Note: If the intention is to read complete lines from the default char­
acter stream, as in a simple dialogue with a user, then the PULL or 
PARSE PULL instructions should be used instead for simplicity and for 
improved programmability. The PARSE LINEIN instruction may also 
be used in certain cases. 

35 Under certain circumstances, therefore, a call to LINEIN will return a partial line 
if the stream has already been read with the CHARIN function, and part but not 
all of a line (and its termination, if any) has been read. 



100 REXX Language Definition Part 2 

LINEOUT([narne][,[string][,line]]) 

returns the count of lines remaining after attempting to write string as 
a line to the character output stream name. (See page 139 for a dis­
cussion of the REXX input/output model.) The count will be either 0 
(meaning the line was successfully written) or 1 (meaning that an error 
occurred while writing the line). string may be the null string, in which 
case only the action associated with completing a line is taken. 

The form of the name is implementation-dependent. If name is omitted, 
then the line will be written to the default output stream. 

For persistent streams, a write position is maintained for each stream. 
Any write to the stream will by default start at the current write posi­
tion. 36 When the write is completed the write position is increased by the 
number of characters written. The initial write position is the end of the 
stream, so that calls to LINEOUT will normally append lines to the end 
of the stream. 

A line number may be given to set the write position to the start of a 
particular line in a persistent stream. This line number must be posi­
tive and within the bounds of the stream (though it may specify the line 
number immediately after the end of the stream). A value of 1 for line 
refers to the first line in the stream. 37 The string may be omitted for 
persistent streams. In this case the write position will be set to the start 
of the line that was given, nothing is written to the stream, and 0 is 
returned. If neither line nor string are given, then the write position 
will be set to the end of the stream. This use of LINEOUT may also 
have the side-effect of closing or fixing the file in environments which 
support this concept. Again, 0 is returned. 

Execution of the program will normally stop until the output operation 
is effectively complete. If, however, it is impossible for a line to be 
written, then the NOTREADY condition is raised (see page 142) and 
LINEOUT will return with a result of 1 (this is the residual count of 
lines written). 

36 Under certain circumstances, therefore, the characters written by a call to LINE­
OUT may be added to a partial line previously written to the stream with the 
CHAROUT routine. LINEOUT conceptually terminates a line at the end of each 
call. 

37 In some environments overwriting a stream with LINEOUT or CHAROUT may 
erase (destroy) all existing data in the stream. 



Section 9 Built-in Functions 

Examples: 

LINEOUT(mine, 'Hi') 
LINEOUT(mine, 'Hi' ,5) 
LINEOUT(mine, ,6) 
LINEOUT (mine) 
LINEOUT (, 'Hi' ) 
LINEOUT(, 'Hello') 

0 /• 
0 /• 
0 /• 
0 /• 
0 /• 
1 /• 

101 

normally •/ 
normally •/ 
now at line 6 •/ 
at end stream •/ 
normally •/ 
maybe •/ 

This routine is often best called as a subroutine. The residual line count 
is then available in the variable RESULT. 

Examples: 

Call LINEOUT 'Output file', 'Hello' 
Call LINEOUT 'A:rexx.bat', 'Shell' ,12 
Call LINEOUT , 'Hello' 

Note: If the lines are to be written to the default output stream and no 
error is possible, then the SAY instruction would usually be used 
instead. 

LINES([name]) 

returns the number of complete lines remaining in the character input 
stream name. If the stream has already been read with the CHARIN 
function, this may include an initial partial line. In the case of persist­
ent streams the count starts at the current read position. (See page 139 
for a discussion of the REXX inputJoutput model.) 

The form of the name is implementation-dependent. If name is omitted, 
then the number of complete lines available in the default input stream 
is returned. 

If an implementation cannot determine the count accurately or effi­
ciently, then it may return 1 for any non-zero count or when the count 
is unknown. An actual line count may therefore be used only in pro­
grams specific to a particular environment in which LINES is fully 
supported for the specified stream. 

Examples: 

LINES (myfile) 
LINES(nonfile) 
LINES() 

7 
0 
2 

/• perhaps •/ 
/• perhaps •/ 
/• perhaps •/ 

Note: The CHARS function may be used to return the number of char­
acters (rather than lines) remaining in the stream. 



102 REXX Language Definition Part 2 

MAX(number[,number ] ... ) 

returns the largest number from the given list of numbers - that is, the 
first number in the list which is equal to the result of adding a positive 
number or zero to any of the other numbers in the list. The result is 
formatted according to the current NUMERIC settings. 

Examples: 

MAX(12,6,7,9) 12 
MAX(17.3,19,17.03) 19 
MAX(-7,-3,-4.3) -3 

MIN(number[,number ] ... ) 

returns the smallest number from the given list of numbers - that is, 
the first number in the list which is equal to the result of subtracting a 
positive number or zero from any of the other numbers in the list. The 
result is formatted according to the current NUMERIC settings. 

Examples: 

MIN (12 , 6 , 7 , 9) 
MIN(17.3,19,17.03) 
MIN ( - 7 , - 3 , - 4 . 3) 

6 
17. 03 
-7 

OVERLAY(new,target[,[n][,[length][,pad]]]) 

overlays the string new, padded or truncated to length length, onto the 
string target starting at the nth character. If length is specified it must 
be positive or zero. If n is greater than the length of the target string, 
padding is added before the new string also. The default pad character 
is a blank, and the default value for n is 1. n must be greater than 0. 
The default value for length is the length of new. 

Examples: 

OVERLAY(' ', 'abedef' ,3) 
OVERLAY('.', 'abedef' ,3,2) 
OVERLAY('qq', 'abed') 
OVERLAY('qq', 'abed' ,4) 
OVERLAY('123', 'abe' ,5,6, 1 + 1

) 

J POS(needle,haystack[,start ]) 

'ab def' 
'ab. ef' 
'qqed' 
'abeqq' 
'abe+123+++• 

returns the position of one string, needle, in another, haystack. (See also 
the LASTPOS function.) If the string needle is not found, or is the null 
string, 0 is returned. By default the search starts at the first character 
of haystack (that is, start has the value 1). This may be overridden by 
specifying start (which must be positive), the point at which to start the 
search. 



Section 9 Built-in Functions 103 

Examples: 

POS ('day' , 'Saturday') 6 
POS('x' ,'abc def ghi') 0 
POS (' ' , 'abc def ghi' ) 4 
POS (' ' , 'abc def ghi' , 5) 8 

QUEUED() 

returns the number of lines remaining in the external data queue when 
the function is invoked. (See page 139 for a discussion of the REXX 
input/output model.) 

Example: 

QUEUED () == 5 

RANDOM([min][,[max][,seed]]) 

/* perhaps */ 

or 

RANDOM(max) 

returns a quasi-random non-negative whole number in the range min 
to max inclusive. If only the first argument is specified it is taken as a 
maximum, and the range will be from 0 through that number. If no 
arguments or more than one argument are specified, the default values 
for min and max are 0 and 999 respectively. A specific seed (which must 
be a whole number) for the random number may be given as the third 
argument to start a repeatable sequence of results. 

The magnitude of the range (that is, max minus min) may not exceed 
100000. 

Examples: 

I* Possible results might be: */ 
RANDOM() 305 
RANDOM(5,8) 7 
RANDOM(,,1989) 420 /* reproducible*/ 
RANDOM(2) 0 

Notes: 

1. To obtain a predictable sequence of quasi-random numbers, call 
RANDOM a number of times, but only specify a seed on the first 
call. For example, to simulate ten throws of a six-sided dice: 

/• Start by invoking with any number for seed •/ 
say random(l,6,12345) 
do 9 

say random ( 1. 6) 
end 



104 REXX Language Definition Part 2 

The numbers are generated mathematically, using the initial 
seed, so that as far as possible they appear to be random. Running 
the program again will produce the same sequence; using a differ­
ent initial seed will almost always produce a different sequence. 
If you do not supply a seed, then the first time RANDOM is called 
an arbitrary (and probably time-varying) seed will be used. Typi­
cally it will be derived from the time-of-day clock, and hence your 
program will almost always give different results each time it is 
run. 

2. The random number generator is global for an entire program - the 
current seed is not saved across internal routine calls. 

3. The actual random number generator used may differ from imple­
mentation to implementation. 

REVERSE(string) 

returns string, swapped end for end. 

Examples: 

REVERSE ( 'ABc . ' ) 
REVERSE ( I XYZ I ) 

REVERSE('Tranquility') 

/RJGHT(string,length[,pad]) 

'. cBA' 
I ZYX' 
'ytiliuqnarT' 

returns a string of length length containing the right-most length char­
acters of string - that is, padded with pad characters (or truncated) on 
the left as needed. The default pad character is a blank. length must 
be non-negative. 

Examples: 

SIGN(nurnber) 

RIGHT('abc d' ,8) 
RIGHT('abc def' ,5) 
RIGHT('l2' ,5, '0') 

abc d' 
'c def' 
'00012' 

returns a number that indicates the sign of number. If the number is 
less than 0 then ' - 1 ' is returned; if it is 0 then ' o ' is returned; and if 
it is greater than 0 then ' 1 ' is returned. 

Examples: 

SIGN('l2.3') 1 
SIGN(O.O) 0 
s I GN ( I - 0 . 3 0 7 I ) - 1 



Section 9 Built-in Functions 105 

SOURCELINE([n]) 

If n is omitted, returns the line number of the final line in the program, 
or 0 if no source lines are available. 

If n is given, the nth line in the program is returned, if available at the 
time of execution (otherwise the null string is returned). 

n must be a positive whole number, and must not exceed the number 
returned by a call to SOURCELINE with no arguments. 

Examples: 

SOURCELINE () 
SOURCELINE ( 1) 

v"SPACE(string[,[n][,pad]]) 

10 
'/*A 10-line program*/' 

formats the blank-delimited words in string with n (and only n) pad 
characters between each word. n must be non-negative. If it is 0, all 
blanks are removed. Leading and trailing blanks are always removed. 
The default for n is 1, and the default pad character is a blank. 

Examples: 

SPACE('abc def ') 
SPACE(' abc def' ,3) 
SPACE('abc def ',1) 
SPACE('abc def ',0) 
SPACE('abc def ',2, '+') 

STREAM(name[,operation[,streamcommand]]) 

'abc def' 
'abc def' 
'abc def' 
'abcdef' 
'abc++def' 

returns a string describing the state of, or the result of an operation 
upon, the character stream name. (See page 139 for a discussion of the 
REXX input/output model.) 

This function is used to request information on the state of an input or 
output stream, or to carry out some particular implementation-depen­
dent operation on the stream. The first argument, name, specifies the 
stream to which the function refers - the form of this name is imple­
mentation-dependent. The second argument may be one of the following 
operation strings (of which only the first letter is needed) which 
describes the action to be carried out: 

C (Command); an operation, specified by the streamcommand given 
as the third argument, is applied to the selected input or output 
stream. The stream command string describes an implementa­
tion-dependent command that may be necessary or useful for cer­
tain operating environments but which may not be applicable for 
all REXX implementations (for example, the operation of opening, 
closing, or committing a change to a stream). The returned string 
will depend on the operation performed, and may be the null string. 



106 REXX Language Definition Part 2 

D (Description); returns any implementation-dependent descriptive 
string associated with the current state of the stream. If none is 
available the null string is returned. streamcommand must not be 
supplied. 

S (State); returns an indication of the current state of the specified 
stream. This is the default operation; streamcommand must not 
be supplied. One of the following is returned: 

ERROR 
The stream has been subject to an erroneous operation (possi­
bly during input, output, or via the STREAM function - see 
page 142). Additional information about the error may be 
available by invoking the STREAM function with a request for 
the implementation-dependent description. 

NOTREADY 
The stream is known to be in a state such that normal input 
or output operations attempted upon it would raise the 
NOTREADY condition (see page 142). For example, a simple 
input stream may have a defined length; an attempt to read 
that stream (with the CHARIN or LINEIN built-in functions, 
perhaps) beyond that limit may make the stream unavailable 
until some operation resets the state of the stream. 

READY 
The stream is known to be in a state such that normal input 
ot output operations may be attempted (this is the usual state 
for a stream, though it does not guarantee that any particular 
operation will succeed). 

UNKNOWN 
The state of the stream is unknown. This response is used 
when the state of the stream cannot be determined. For 
example, in some operating environments, the state of the 
stream can only be determined by carrying out some operation 
on the stream - this operation might have a side-effect that 
alters the state of the stream, and so the state will only be 
known after that operation has been carried out. 

Examples: 

/* Possible results might be: */ 
STREAM(myfile) 'READY' 
STREAM(readitall) 
STREAM(readitall, 'D') 
STREAM(myfile, 'C', 'SHARE') 

'ERROR' 
'END INPUT' 
'SHARED BY 5' 

Note: The state (and operation) of an input or output stream is external 
to a REXX program, in that it is not saved and restored across internal 



Section 9 Built-in Functions 107 

function and subroutine calls (including those caused by a CALL ON 
condition trap). 

vSTRIP(string[,[ option] [,char]]) 

removes Leading, Trailing, or Both leading and trailing characters from . 
string when the first character of option is L, T, or B respectively (these 
may be given in either upper case or lower case). The default is B. The 
third argument, char, specifies the character to be removed, with the 
default being a blank. If given, char must be exactly one character long. 

Examples: 

STRIP (' ab e ') 
STRIP(' ab e ','L') 
STRIP(' ab e ','t') 
STRIP('l2.7000', ,0) 
STRIP('0012.700', ,0) 

vSUBSTR(string,n[,[length] [,pad]]) 1' 

I ab e I 

'ab e 
ab e' 

I 12, 7 I 

'12.7' 

returns the sub-string of string that begins at the nth character, and is 
of length length, padded with pad characters if necessary. n must be 
positive. If n is greater than LENGTH (string), then only pad characters 
can be returned. 

If length is omitted it defaults to be the rest of the string. The default 
pad character is a blank. 

Examples: 

SUBS TR ( 'abe' , 2) 
SUBSTR('abe' ,2,4) 
SUBSTR('abe' ,2,6,'. ') 

'be' 
'be 
'be,,.• I 

Note: In some situations the positional (numeric) patterns of parsing 
templates are more convenient for selecting sub-strings, especially if 
more than one sub-string is to be extracted from a string. See also the 
LEFT and RIGHT functions . 

.. ·SUBWORD(string,n[,length]) 

returns the sub-string of string that starts at the nth word, and is up to 
length blank-delimited words long. n must be positive. If length is 
omitted it defaults to be the remaining words in the string. The 
returned string will never have leading or trailing blanks, but will 
include all blanks between the selected words. 

Examples: 

SUBWORD('Now is the 
SUBWORD('Now is the 
SUBWORD('Now is the 

time', 2, 2) 
time' , 3) 
time' , 5) 

'is the' 
'the time' 
I I 



108 REXX Language Definition Part 2 

SYMBOL(name) 

returns the state of the symbol named by name. If name is not a valid 
REXX symbol, 'BAD' is returned. If it is the name of a variable (that 
is, a symbol that has been assigned a value), 'VAR' is returned. Oth­
erwise 'LIT' is returned, which indicates that it is either a constant 
symbol or a symbol that has not yet been assigned a value (that is, a 
Literal). 

Like symbols appearing normally in REXX expressions, lower case 
characters in the name will be translated to upper case and substitution 
in a compound name will occur if possible. 

Note: Normally name should be specified as a literal string (or derived 
from an expression), to prevent substitution by its value before it is 
passed to the function. 

Examples: 

/* Following: Drop A.3; J=3 */ 
SYMBOL ( I J I ) 'VAR' 
SYMBOL(J) 'LIT' /* has tested II 3 II */ 
SYMBOL ( 'a. j ' ) 'LIT' /* has tested 11 A. 3 11 */ 
SYMBOL(2) 'LIT' /* a constant symbol */ 
SYMBOL ( I * I ) 'BAD' /* an invalid symbol *I 

TIME([ option]) 

by default returns the local time in the 24-hour clock format 
'hh: mm: s s' (hours, minutes, and seconds); for example, '04: 41: 3 7 '. 

The following option strings (of which only the first letter is significant) 
may be supplied to obtain alternative formats, or to gain access to the 
elapsed time clock. 

C (Civil); returns 'hh: mmxx', the time in Civil format, in which the 
hours may take the values 1 through 12, and the minutes the val­
ues 00 through 59. The minutes are followed immediately by the 
letters "am" or "pm" to distinguish times in the morning (midnight 
12:00am through 11:59am) from noon and afternoon (noon 12:00pm 
through 11:59pm). The hour will not have a leading zero. The 
minute field shows the current minute (rather than the nearest 
minute) for consistency with other TIME results. 

E (Elapsed); returns 'sssssssss. uuuuuu', the number of seconds 
(and microseconds) since the elapsed time clock was started or reset 
(see below). The number will have no leading zeros or blanks, and 
is not affected by the setting of NUMERIC DIGITS. The fractional 
part will always have six digits. 

H (Hours); returns the number of completed hours since midnight in 
the format 'hh ' (no leading zeros or blanks, except for a result of 
IQ I). 



Section 9 Built-in Functions 109 

L (Long); returns the time in the format 'hh: mm: s s. uuuuuu' 
( uuuuuu is the fraction of seconds, in microseconds). The first eight 
characters of the result follow the same rules as for the Normal 
form, and the fractional part will always be six characters. 

M (Minutes); returns the number of completed minutes since midnight 
in the format 'mmmm' (no leading zeros or blanks, except for a result 
of I 0 I). 

N (Normal); explicitly returns the time in the default format 
'hh: mm: s s ' , as described above. The hours may take the values 
00 through 23, and minutes and seconds may take 00 through 59; 
these are all always two digits. Any fractions of seconds are ignored 
(times are never rounded up). 

R (Reset); returns 'sssssssss. uuuuuu', the number of sec­
onds.microseconds since the elapsed time clock was started or reset 
(see below), and also simultaneously resets the elapsed time clock 
to zero. The number will have no leading zeros or blanks, and is 
not affected by the setting of NUMERIC DIGITS. The fractional 
part will always have six digits. 

S (Seconds); returns number of completed seconds since midnight in 
the format ' s s s s s ' (no leading zeros or blanks, except for a result 
of I 0 I). 

Examples: 

TIME() 
TIME ( I c I) 
TIME (IHI) 
TIME (IL I) 
TIME (IM I) 
TIME ( 'n') 
TIME (Is I) 

The elapsed time clock 

'16:54:22' /* perhaps */ 
'4:54pm' 
16 
'16:54:22.123456' 
1014 /* 54 + 60*16 */ 
'16:54:22' 
60862 /* 22+60*(54+60*16) */ 

The TIME function may be used for measuring real (elapsed) time 
intervals. On the first call in a program to TIME ( 'E') or TIME ( 'R'), 
the elapsed time clock is started and either call would return 0. From 
then on, calls to TIME ( 'E' ) and to TIME ( 'R') will return the elapsed 
time since that first call or since the last call to TIME ( 'R' ) . 



110 REXX Language Definition Part 2 

An example of the elapsed time calculator: 

TIME (IE I) == 0 
/* pause of one second 
TIME('E') == 1.002345 
/* pause of one second 
TIME('R') == 2.004690 
/* pause of one second 
TIME('R') == 1.002345 

/* The first call */ 
here */ 
/* or thereabouts */ 
here */ 
/* or thereabouts */ 
here */ 
/* or thereabouts */ 

The clock is saved across internal routine calls, which is to say that an 
internal routine will inherit the time clock started by its caller, but if it 
should reset the clock then any timing being done by the caller will not 
be affected. 

Note: See the note under DATE about the consistency of times within 
a single clause. The elapsed time clock is synchronized to the other calls 
to TIME and DATE, so multiple calls to the elapsed time clock in a 
single clause will always return the same result. Since the clock is 
synchronized, the interval between two normal TIME/DATE results may 
be calculated exactly using the elapsed time clock. 

Implementation minimum: An elapsed time counter of at least 9 
digits in seconds (equivalent to over 31.6 years) should be supported. 
The fractional part of the seconds should, if possible, provide at least 
millisecond precision, with any remaining digits being set to 0. 

TRACE([setting]} 

returns the trace setting currently in effect, and optionally alters the 
setting. 

If setting is supplied, it is used to select the trace setting. The setting 
must be a valid prefix ("? ") and/or one of the alphabetic character set­
tings (i.e., starting with A, C, E, F, I, L, N, 0, or R) associated with the 
TRACE instruction. See the TRACE instruction, on page 73, for details. 

Unlike the TRACE instruction, the TRACE function alters the trace 
action even if interactive tracing is active. Also unlike the TRACE 
instruction, setting may not be a number. 

Examples: 

TRACE () 
TRACE (I 0 I) 
TRACE ( I ? A I ) 

'?R' /* maybe */ 
'?R' /* also sets tracing off */ 
'0' /* now interactive */ 



Section 9 Built-in Functions 111 

> TRANSLATE(string[,[tableo ][,[tablei] [,pad]]]) 

returns the characters in string with each character either unchanged 
or translated to another character. 

The TRANSLATE function acts by searching the input translate table, 
tablei, for each character in string. If the character is found (the first 
(leftmost) occurrence being used if there are duplicates) then the corre­
sponding character in the output translate table, tableo, is used in the 
result string; otherwise the original character found in string is used. 
The result string is always the same length as string. 

If neither translate table is given, string is simply translated to upper 
case. Otherwise, the translate tables may be of any length. The input 
translate table defaults to XRANGE ( '00 'x. 'FF' x). The output table 
defaults to the null string, and is padded with pad or truncated as nec­
essary to be the same length as tablei. The default pad is a blank. 

Examples: 

TRANSLATE('abedef') 
TRANSLATE('abbe', '&', 'b') 
TRANSLATE('abedef', '12', 'ee') 
TRANSLATE('abedef'. '12', 'abed','.') 
TRANSLATE('4123', 'abed', '1234') 

'ABCDEF' 
'a&&e' 
'ab2dlf' 
'12 .. ef' 
'dabe' 

Note: The last example shows how the TRANSLATE function may be 
used to reorder the characters in a string. In the example any 4-char­
acter string could be specified as the second argument and its last 
character would be moved to the beginning of the string. 

TRUNC(number[,n]) 

returns the integer part of the number, and n decimal places (digits after 
the decimal point). n must be non-negative, and defaults to zero. The 
number is first rounded according to standard REXX rules, just as 
though the operation "number+O" had been carried out. The number is 
then truncated ton decimal places (or trailing zeros are added if needed 
to make up the specified length). If n is 0 (the default) then an integer 
with no decimal point is returned. The result will never be in expo­
nential form. 

Examples: 

TRUNC (12 . 3) 
TRUNC(127.09782,3) 
TRUNC(127.l,3) 
TRUNC (12 7 , 2) 

12 
127.097 
127.100 
127.00 



112 REXX Language Definition Part 2 

V ALUE(name[,[ newvalue ]] [,selector]) 

returns the value of the symbol named by name (which often will be 
constructed dynamically), and optionally assigns it a new value. By 
default, the function refers to the current REXX variables environment, 
but other, external, collections of variables may be selected. If the 
function is used to refer to REXX variables, then name must be a valid 
REXX symbol,38 and (as with symbols used in REXX expressions) lower 
case characters in the name will be translated to upper case and sub­
stitution in a compound name will occur if possible. 

If newualue is supplied, then the named variable is assigned this new 
value. This does not change the the result returned by the function, 
which will be the value as it was before the assignment. 

Examples: 

/* After: */ 
/* Drop A3; A33=7; K=3; fred=' K'; list.5='?' */ 
VALUE ( ' a ' k) 'A3' 
VALUE ( ' a ' k I I k) I 7 I 

VALUE ( 'fred') 'K' /* looks up FRED */ 
VALUE(fred) I 3 I /* looks up K */ 
VALUE(fred,5) I 3 I /* and sets K=5 */ 
VALUE(fred) I 5 I 

VALUE( 'LIST. 'k) I? I /* looks up LIST.5 */ 

The VALUE function may be used to access external collections of vari­
ables (sometimes called pools); selector, if specified, names an imple­
mentation-defined external collection of variables (if the specified 
external collection does not exist, an error results). In this case, name 
does not have to be a valid REXX symbol; if the name is invalid for the 
specified collection of variables, then the action taken is implementa­
tion-defined (as appropriate for the particular collection of variables). 
As before, if newualue is specified then the named variable is assigned 
this new value, without affecting the result of the function. 

Examples: 

/* Possible results might be: */ 
/* Look up and set "toy" in SHARED 
VALUE('toy', 'Buxton', 'SHARED') 
/* Look up "toy" in SHARED pool */ 
VALUE('toy',, 'SHARED') 
/* Look up "toy" in SYSTEM pool */ 
VALUE('toy',, 'SYSTEM') 

pool */ 
'Calistoga' 

'Buxton' 

'Bath Spa' 

38 The SYMBOL function may be used to test for the validity of a symbol, and takes 
the same form of name. 



Section 9 Built-in Functions 113 

Notes: 

1. If the VALUE function refers to an uninitialized REXX variable 
then the default value of the variable is always returned; the 
NOVALUE condition is not raised. NOV ALUE is never raised by 
a reference to an external collection of variables. 

2. If the name is specified as a single literal string and neither of the 
other arguments is given, the symbol is a constant and so the whole 
function call could usually be replaced directly by the string 
between the quotes. (For example, "fred=VALUE ( 'k') ; "is iden­
tical to the assignment "fred=k ;",unless the NOVALUE condition 
is being trapped - see page 145.) 

VERIFY(string,reference[,[ option] [,start]]) 

verifies that the string is composed only of characters from reference, by 
returning the position of the first character in string that is not also in 
reference. If all the characters were found in reference, 0 is returned. 

The option may be either 'Nomatch' (the default) or 'Match'. Only 
the first character of option is significant and it may be in upper case 
or in lower case, as usual. If 'Match' is specified, the position of the 
first character in string that is in reference is returned, or 0 if none of 
the characters were found. 

The default for start is 1, i.e., the search starts at the first character of 
string. This can be overridden by giving a different start point, which 
must be positive. 

If string is null, the function returns 0, regardless of the value of the 
third argument. Similarly if start is greater than LENGTH (string), 0 is 
returned. 

If reference is null, then the returned value is the value used for start, 
unless 'Match' is specified (in which case 0 is returned). 

Examples: 

VERIFY( I 123 I. I 1234567890 I) 0 
VERIFY( I 1Z3 I. I 1234567890 I) 2 
VERIFY( 'AB4T'. I 1234567890'. 'M') 3 
VERIFY('1P3Q4'. '1234567890'. ,3) 4 
VERIFY('ABCDE'. I I. ,3) 3 
VERIFY('AB3CD5', '1234567890', 'M' ,4) 6 



114 REXX Language Definition Part 2 

V'woRD(string,n) 

returns the nth blank-delimited word in string. n must be positive. If 
there are fewer than n words in string, the null string is returned. This 
function is exactly equivalent to SUB WORD (string,n, 1). 

Examples: 

WORD('Now is the time' ,3) 
WORD('Now is the time' ,5) 

'the' 
I I 

iVoRDINDEX(string,n) 

returns the character position of the nth blank-delimited word in string. 
n must be positive. If there are fewer than n words in the string, 0 is 
returned. 

Examples: 

WORDINDEX('Now is the time' ,3) 8 
WORDINDEX('Now is the time' ,6) 0 

v WORDLENGTH(string,n) 

returns the length of the nth blank-delimited word in string. n must be 
positive. If there are fewer than n words in the string, 0 is returned. 

Examples: 

WORDLENGTH('Now is the time' ,2) 2 
WORDLENGTH('Now comes the time' ,2) 5 
WORDLENGTH('Now is the time' ,6) 0 

/ WORDPOS(phrase,string[,start]) 

searches string for the first occurrence of the sequence of blank-delim­
ited words phrase, and returns the word number of the first word of 
phrase in string. Multiple blanks between words in either phrase or 
string are treated as a single blank for the comparison, but otherwise 
the words must match exactly. If phrase is not found, or contains no 
words, 0 is returned. 

By default the search starts at the first word in string. This may be 
overridden by specifying start (which must be. positive), the word at 
which to start the search. 



Section 9 Built-in Functions 

Examples: 

WORDPOS('the', 'now is the time') 3 
WORDPOS('The', 'now is the time') 0 
WORDPOS('is the', 'now is the time') 2 
WORDPOS('is the', 'now is the time') 2 
WORDPOS ('is time ' , 'now is the time') 0 
WORDPOS('be', 'To be or not to be') 2 
WORDPOS('be', 'To be or not to be' ,3) 6 

VWORDS(string) ' 

returns the number of blank-delimited words in string. 

Examples: 

WORDS('Now is the time') 4 
WORDS (I I) 0 

XRANGE([start][,end]) 

115 

returns a string of all valid character encodings, in ascending order, 
between and including the characters start and end. start defaults to 
'00 'x, and end defaults to 'FF' x. If start is greater than end, the 
values will wrap from 'FF' x to '00 'x. start and end must be single 
characters. 

Examples: 

XRANGE ( ' a ' , ' f ' ) 
XRANGE('03'x, '07'x) 
XRANGE (, '04 'x) 
XRANGE ('FE' x, '02 'x) 

'abcdef' 
'0304050607'x 
'0001020304'x 
'FEFF000102'x 

V'X2B(hex-string) ~ 1 

Hexadecimal to Binary. Converts hex-string (a string of hexadecimal 
characters) to an equivalent string of binary digits. hex-string may be 
of any length; each hexadecimal character with be converted to a string 
of four binary digits. The returned string will have a length that is a 
multiple of four, and will not include any blanks. 

hex-string may be the null string, in which case a null string is returned. 

Blanks may optionally be included in hex-string (at byte boundaries 
only, not leading or trailing) to aid readability; they are ignored. 

Examples: 

X2B (I C3 I) 
X2B('7') 
X2B('l Cl') 

I 11000011' 
'0111' 
'000111000001' 



116 REXX Language Definition Part 2 

X2B may be combined with the D2X or C2X functions to convert num­
bers or character strings to binary form. 

Examples: 

X2B(C2X('C3'x)) 
X2B(D2X(' 129')) 
X2B(D2X(' 12')) 

'11000011' 
'10000001' 
'1100' 

./ X2C(hex-string), ~, 

Hexadecimal to Character. Converts hex-string (a string of hexadecimal 
characters) to character (packs). hex-string may be of any length and 
will be padded with a leading 0 if necessary to make an even number 
of hexadecimal digits. 

hex-string may be the null string, in which case a null string is returned. 

Blanks may optionally be included in hex-string (at byte boundaries 
only, not leading or trailing) to aid readability; they are ignored. 

Examples: 

X2C('F7F2 A2') 
X2C ( 'F7f2a2') 
X2C('F') 

.;X2D(hex-string[,n]) , , 

'72s' 
'72s' 
'OF'x 

Hexadecimal to Decimal. Converts hex-string (a string of hexadecimal 
characters) to decimal. If the result cannot be expressed as a whole 
number, an error results - that is, the result must have no more digits 
than the setting of NUMERIC DIGITS. hex-string may be the null 
string, in which case ' O ' is returned. 

Blanks may optionally be included in hex-string (at byte boundaries 
only, not leading or trailing) to aid readability; they are ignored. 

If n is not specified, hex-string is taken to be an unsigned number. 

Examples: 

X2D ('OE') 
X2D ( '81') 
X2D( 'F81') 
X2D('FF81') 
X2D('c6 fO'X) 

14 
129 
3969 
65409 
240 

If n is specified, the string is taken as a signed number expressed in n 
hexadecimal characters. If the most significant (left-most) bit is zero 
then the number is positive; otherwise it is a negative number in two's 
complement form. In both cases it is converted to a REXX whole num­
ber which may, therefore, be negative. If n is 0, 0 is always returned. 



Section 9 Built-in Functions 117 

If necessary, hex-string is padded on the left with 0 characters (rtote, not 
"sign-extended"), or truncated on the left, to length n characters; (that 
is, as though RIGHT (string,n,' o') had been executed.) 
Examples: 

X2D ( ' 81 ' , 2) 
X2D('81',4) 
X2D('F081' ,4) 
X2D('F081',3) 
X2D( 'F081' ,2) 
X2D('F081' ,1) 
X2D('0031',0) 

See also the C2D function. 

-127 
129 
-3967 
129 
-127 
1 
0 



118 REXX Language Definition Part 2 

SECTION 10: PARSING FOR ARG, PARSE, AND PULL 

Three instructions (ARG, PARSE, and PULL) allow a selected string to be 
parsed (split up) and assigned to variables, under the control of a template. 
The various mechanisms in the template allow a string to be split up by 
words (delimited by blanks), or by explicit matching of strings (called 
patterns), or by specifying numeric positions (positional patterns) - for example, 
to extract data from particular columns of a line read from a character 
stream. 

This section first gives some informal examples of how the parsing template 
can be used, then describes in more detail the mechanisms used. 

Introduction to parsing 

The simplest form of parsing template consists of a list of variable names. 
The string being parsed is split up into words (characters delimited by 
blanks), and each word from the string is assigned to a variable in sequence 
from left to right. The final variable is treated specially in that it will be 
assigned whatever is left of the original string and may therefore contain 
several words. For example, in the PARSE instruction 

parse value 'This is a sentence.' with vl v2 v3 

Vl would be assigned the value "This", V2 would be assigned the value 
"is", and V3 would be assigned the value "a sentence.". 

Leading blanks are removed from each word in the string before it is assigned 
to a variable, as is the blank that delimits the end of the word. Thus vari­
ables set in this manner (Vl and V2 in the example) will never have leading 
or trailing blanks, though V3 could have both leading and trailing blanks. 
In addition, if PARSE UPPER (or the ARG or PULL instruction) is used, the 
whole string is translated into upper case before parsing begins. 

Note that the variables mentioned in a template are always given a new 
value and so if there are fewer words in the string than variables in the 
template then the unused variables will be set to null. 

A literal string may be used in a template as a pattern to split up the string. 
For example 

parse value 'To be, or not to be?' with wl ',' w2 

would cause the string to be scanned for the comma, and then split at that 
point: thus Wl would be set to "To be", and W2 is set to 
" or not to be?". Note that the pattern itself (and only the pattern) is 
removed from the string. In fact each section is treated in just the same way 
as the whole string was in the previous example, and so either section may 
be split up into words. 



Section 10 Parsing for ARG, PARSE, and PULL 119 

Thus, in: 

parse value 'To be, or not to be?' with wl ',' w2 w3 w4 

W2 and W3 would be assigned the values "or" and "not", and W4 would be 
assigned the remainder: "to be?". If UPPER was specified on the instruc­
tion, then all the results would be in upper case. 

If the string in the previous example did not contain a comma, then the pat­
tern would effectively "match" the end of the string, so the variable to the left 
of the pattern would get the entire input string, and the variables to the right 
would be set to null. 

The pattern may be specified as a variable, by putting the variable name in 
parentheses. The following instructions therefore have the same effect as the 
last example: 

c=' '' 
parse value 'To be, or not to be?' with wl (c) w2 w3 w4 

The third kind of parsing mechanism is the numeric positional pattern. This 
works in the same way as the string pattern except that it specifies a column 
number. So: 

parse value 'Flying pigs have wings' with xl 5 x2 

would split the string at column 5, so Xl would be "Flyi" and X2 would start 
at column 5 and so be "ng pigs have wings". 

More than one pattern is allowed, so for example: 

parse value 'Flying pigs have wings' with xl 5 x2 10 x3 

would split the string at columns 5 and 10, so X2 would be "ng pi" and X3 
would be "gs have wings". 

The numbers can be relative to the last number used, so 

parse value 'Flying pigs have wings' with xl 5 x2 +s x3 

would have exactly .the same effect as the last example: here the "+s" may 
be thought of as specifying the length of the string to be assigned to X2. 

As with literal string patterns, the positional patterns can be specified as a 
variable by putting the name of a variable, in parentheses, in place of the 
number. An absolute column number can be indicated by using an equals 
sign ("=") instead of a plus or minus sign. The last example could therefore 
be written 

start=S 
length=S 
data='Flying pigs have wings' 
parse var data xl =(start) x2 +(length) x3 



120 REXX Language Definition Part 2 

String patterns and positional patterns can be mixed (in effect the beginning 
of a string pattern just specifies a variable column number) and some very 
powerful things can be done with templates. The next section describes in 
more detail how the various mechanisms interact. 

Finally, it is possible to parse more than one string. An internal function or 
subroutine may have more than one argument string, for example. To get 
at each string in turn, you just put a comma in the parsing template, so if the 
invocation of the function FRED was: 

fred('This is the first string' ,2) 

then the instruction 

parse arg first, second 

would put the string 'This is the first string' into the variable 
FIRST, and the string '2' into the variable SECOND. Between the commas 
you can put any normal template with patterns (and so on) to do more com­
plex parsing on each of the argument strings. 

Parsing definition 

This section describes the rules that govern parsing. 

In its most general form, a template consists of alternating pattern specifi­
cations and variable names. Blanks may be added between patterns and 
variable names to separate the tokens and to improve readability. The pat­
terns and variable names are used strictly in sequence from left to right, and 
are used once only. In practice, various simpler forms are used in which 
either variable names or patterns may be omitted: we can therefore have 
variable names without patterns in between, and patterns without interven­
ing variable names. 

In general, the value assigned to a variable is that sequence of characters in 
the input string between the point that is matched by the pattern on its left 
and the point that is matched by the pattern on its right. 

If the first item in a template is a variable, then there is an implicit pattern 
on the left that matches the start of the string, and similarly if the last item 
in a template is a variable then there is an implicit pattern on the right that 
matches the end of the string. Hence the simplest template consists of a 
single variable name which in this case is assigned the entire input string. 

Setting a variable during parsing is identical to setting a variable in an 
assignment. It is therefore possible to set an entire collection of compound 
variables during parsing. (See pages 32 and 35.) 

The constructs that may appear as patterns fall into two categories; patterns 
that act by searching for a matching string (literal patterns), and numeric 
patterns that specify an absolute or relative position in the string (positional 
patterns). Either of these can be specified explicitly in the template, or 



Section 10 Parsing for ARG, PARSE, and PULL 121 

alternatively by a reference to a variable whose value is to be used as the 
pattern. 

For the following examples, assume that the following sample string is being 
parsed; note that all blanks are significant - there are two blanks after the 
first word "is" and also after the second comma: 

'This is the text which, I think, is scanned.' 

Parsing with literal patterns 

Literal patterns cause scanning of the data string to find a sequence that 
matches the value of the literal. Literals are expressed as a quoted string. 
The null string matches the end of the data. 

The template: 

wI ' , ' w2 ' , ' rest 

when parsing the sample string, results in: 

WI has the value "This is the text which" 
W2 has the value " I think" 
REST has the value " is scanned." 

Here the string is parsed using a template that asks that each of the vari­
ables receive a value corresponding to a portion of the original string between 
commas; the commas are given as quoted strings. Note that the patterns 
themselves are removed from the data being parsed. 
A different parse would result with the template: 

wl I • I w2 I • I w3 

which would result in: 

I I . rest 

WI has the value "This is the text which" 
W2 has the value " I think" 
W3 has the value " is scanned." 
REST has the value "" (null) 

This illustrates an important rule. When a match for a pattern cannot be 
found in the input string, it instead "matches" the end of the string. Thus, 
no match was found for the third ' , ' in the template, and so W3 was 
assigned the rest of the string. REST was assigned a null value because the 
pattern on its left had already reached the end of the string. 
Note that all variables that appear in a template in this way are assigned a 
new value. 



122 REXX Language Definition Part 2 

Parsing strings into words 

If a variable is directly followed by one or more other variables, then the 
string selected by the patterns is assigned to the variables in the following 
manner. Each blank-delimited word in the string is assigned to each variable 
in turn, except for the last variable in the group (which is assigned the 
remainder of the string). The values of the variables which are assigned 
words will have neither leading nor trailing blanks. 

Thus the template: 

wl w2 w3 rest ' ' . 
would result in: 

Wl has the value "This' 
W2 has the value "is" 
W3 has the value "the" 
REST has the value "text which" 

Note that the final variable (REST in this example) could have had both 
leading blanks and trailing blanks, since only the blank that delimits the 
previous word is removed from the data. 

Also observe that this example is not the same as specifying explicit blanks 
as patterns, as the template: 

wl ' ' w2 ' ' w3 ' ' rest ' ' . 
would in fact result in: 

Wl has the value "This' 
W2 has the value "is" 
W3 has the value "" (null) 
REST has the value "the text which" 

since the third pattern would match the third blank in the data. 

In general, when a variable is followed by another variable then parsing of 
the input into individual words is implied. The parsing process may be 
thought of as first splitting the original string up into other strings using the 
various kinds of patterns, and then assigning each of these new strings to 
(zero or more) variables. 

Use of the period as a placeholder 

The symbol consisting of a single period acts as a placeholder in a template. 
It has exactly the same effect as a variable name, except that no variable is 
set. It is especially useful as a "dummy variable" in a list of variables, or to 
collect (ignore) unwanted information at the end of a string. Thus the tem­
plate: 

... word4 . 



Section 10 Parsing for ARG, PARSE, and PULL 123 

would extract the fourth word ('text') from the sample string and place it 
in the variable WORD4. 

Parsing with positional patterns 

Positional patterns may be used to cause the parsing to occur on the basis 
of position within the string, rather than on its contents. They take the form 
of whole numbers, optionally preceded by a plus, minus, or equals sign which 
indicate relative or absolute positioning. These may cause the matching 
operation to "back up" to an earlier position in the data string, which can only 
occur when positional patterns are used. 

Absolute positional patterns: A number in a template that is not pre­
ceded by a sign refers to a particular (absolute) character column in the input, 
with 1 referring to the first column. For example, the template 

sl 10 s2 20 s3 

results in 

Sl has the value "This is " 
S2 has the value "the text w" 
S3 has the value "hich, I think, is scanned." 

Here Sl is assigned characters from the first through the ninth character, 
and S2 receives input characters 10 through 19. As usual the final variable, 
S3, is assigned the remainder of the input. An equals sign ("=") may be 
placed before the number to indicate explicitly that it is to be used as an 
absolute column position; the last template could have been written 

sl =10 s2 =20 s3 

A positional pattern that has no sign or is preceded by the equals sign is 
known as an absolute positional pattern. 

Relative positional patterns: A number in a template that is preceded by 
a plus or minus sign indicates movement relative to the character position 
at which the previous pattern match occurred. This is a relative positional pat­
tern. 

If a plus or minus is specified, then the position used for the next match is 
calculated by adding (or subtracting) the number given to the last matched 
position. The last matched position is the position of the first character of the 
last match, whether specified numerically or by a string. For example, the 
instructions: 

a= '123456789' 
parse var a 3 wl +3 w2 3 w3 

result in 



124 

Wl has the value "345" 
W2 has the value "6789" 
W3 has the value "3456789" 

REXX Language Definition Part 2 

The +3 in this case is equivalent to the absolute number 6 in the same 
position, and may also be considered to be specifying the length of the data 
string to be assigned to the variable Wl. 

This example also illustrates the effects of a positional pattern that implies 
movement to a character position to the left of (or to) the point at which the 
last match occurred. The variable on the left is assigned characters through 
the end of the input, and the variable on the right is, as usual, assigned 
characters starting at the position dictated by the pattern. 

A useful effect of this is that multiple assignments can be made: 

parse var x 1 wl 1 w2 1 w3 

results in assigning the (entire) value of X to Wl, W2, and W3. (The first 
"1" here could be omitted as it is effectively the same as the implicit starting 
pattern described at the beginning of this section.) 

If a positional pattern specifies a column that is greater than the length of 
the data, it is equivalent to specifying the end of the data (i.e., no padding 
takes place). Similarly, if a pattern specifies a column to the left of the first 
column of the data, this is not an error but instead is taken to specify the first 
column of the data. 

Any pattern match sets the "last position" in a string to which a relative 
positional pattern can refer. The "last position" set by a literal pattern is the 
position at which the match occurred, that is, the position in the data of the 
first character in the pattern. The literal pattern in this case is not removed 
from the parsed data. Thus the template: 

will: 

' ' . -1 x +1 

1. Find the first comma in the input (or the end of the string if there is no 
comma). 

2. Back up one position. 

3. Assign one character (the character immediately preceding the comma 
or end of string) to the variable X. 

One possible application of this is looking for abbreviations in a string. Thus 
the instruction: 

/* Ensure options have leading blank & are upper case */ 
parse upper value ' 'opts with ' PR' +1 prword ' ' 

will set the variable PRWORD to the first word in OPTS that starts with 
"PR" or will set it to null if no such word exists. 



Section 10 Parsing for ARG, PARSE, and PULL 125 

Notes: 

1. The positional pattern +o is valid, and may be used to include the whole 
of a previous literal (or variable) pattern within the data string to be 
parsed into any following variables. 

2. As illustrated in the last example, patterns may follow each other in the 
template without intervening variable names. In this case each pattern 
is obeyed in turn from left to right, as usual. 

3. There may be blanks between the sign in a positional pattern and the 
number, because REXX defines that blanks adjacent to special charac­
ters are removed. 

Parsing with variable patterns 

It is sometimes desirable to be able to specify a pattern by using the value 
of a variable instead of a fixed string or number. This may be achieved by 
placing the name of the variable to be used as the pattern in parentheses 
(blanks are not necessary either inside or outside the parentheses, but may 
be added if desired). This is called a variable reference. 

If the parenthesis to the left of the variable name is not preceded by an 
equals, plus, or minus sign("=","+", or"-") the value of the variable is then 
used as though it were a literal (string) pattern. The variable may be one 
that has been set earlier in the parsing process, so for example: 

input="L/look for/1 10" 
parse var input verb 2 delim +1 string (delim) rest 

will set: 

VERB 
DEL IM 
STRING 
REST 

'L' 
I I I 

'look for' 
'1 10' 

If the left parenthesis is preceded by an equals, plus, or minus sign then the 
value of the variable is used as an absolute or relative positional pattern 
(instead of as a literal string pattern). In this case the value of the variable 
must be a non-negative whole number, and (as before) it may have been set 
earlier in the parsing process. 

Parsing multiple strings 

A parsing template can parse multiple strings. This is effected by using the 
special pattern "," (comma) in the template - each comma is an instruction 
to the parser to move on to the next string. Other patterns and variables 
may be specified for each string parsed, as usual. The only time that multiple 
strings are available for parsing is in the ARG (or PARSE ARG) instruction; 
when an internal function or subroutine is invoked it may have several 



126 REXX Language Definition Part 2 

argument strings, and a comma is used to parse each in turn. Thus the 
template: 

wordl restl, string2, num 

would put the first word of the first argument string into the variable 
WORDl, the rest of that string into RESTl, and the next two strings into 
STRING2 and NUM. If insufficient strings were specified in the invocation, 
unused variables are set to null. Similarly, if only one string was available 
(as on the other PARSE variations) then any variables that follow a comma 
pattern are set to null. 

If preferred, this use of commas in REXX may be thought of as a limited form 
of list notation. 



Section 11 Numbers and Arithmetic 127 

SECTION 11: NUMBERS AND ARITHMETIC 

REXX arithmetic attempts to carry out the usual operations (including addi­
tion, subtraction, multiplication, and division) in as "natural" a way as pos­
sible. What this really means is that the rules followed are those that are 
conventionally taught in schools and colleges. However, it was found that 
unfortunately the rules used vary considerably (indeed much more than 
generally appreciated) from person to person and from application to appli­
cation and in ways that are not always predictable. The REXX arithmetic 
described here is therefore a compromise which (although not the simplest) 
should provide acceptable results in most applications. 

Introduction 

Numbers can be expressed in REXX very flexibly (leading and trailing 
blanks are permitted, exponential notation may be used) and follow conven­
tional syntax. Some valid numbers are: 

12 /* A whole number */ 
' - 7 6' /* A signed whole number */ 

12.76 /* Some decimal places */ 

' + 0.003 ' /* Blanks around the sign, etc. */ 
17. /* Equal to 17 */ 

. 5 /* Equal to 0.5 */ 
4E9 /* Exponential notation */ 

0.73e-7 /* Exponential notation */ 

(Exponential notation means that the number includes a power of ten fol­
lowing an "E" that indicates how the decimal point will be shifted. Thus 4E9 
above is just a short way of writing 4000000000, and o. 7 3e- 7 is short for 
0. 000000073.) 

The arithmetic operators include addition ("+"), subtraction ("-"), multi­
plication ("*"), power ("* *"), and division (" /"). There are also two further 
division operators: integer divide ("%") which divides and returns the integer 
part, and remainder ("I/") which divides and returns the remainder. Prefix 
plus and prefix minus operators are also available. 

When two numbers are combined by an operation, REXX uses a set of rules 
to define what the result will be (and how the result is to be represented as 
a character string). These rules are defined in the next section, but in sum­
mary: 

• Results will be calculated with up to some maximum number of signif­
icant digits. For example, if a result required more than 9 digits it 
would normally be rounded to 9 digits. (The default is 9, but this may 
be altered with the NUMERIC instruction to give however many digits 
that you need.) For instance, the division of 2 by 3 would result in 



128 REXX Language Definition Part 2 

0.666666667 (it would require an infinite number of digits for perfect 
accuracy). 

• Except for the power and division operators, trailing zeros are preserved 
(this is in contrast to most electronic calculators, which remove all 
trailing zeros in the decimal part of results). So, for example: 

2.40 + 2 => 4.40 
2.40 - 2 => 0.40 
2.40 * 2 => 4.80 
2.40 I 2 => 1. 2 

This preservation of trailing zeros is desirable for most calculations (and 
especially financial calculations). 

If necessary, trailing zeros may be easily removed with the STRIP 
function (see page 107), or by division by 1. 

• A zero result is always expressed as the single digit ' o ' . 
• Exponential form is used for a result depending on its value and the 

setting of NUMERIC DIGITS (the default is 9 digits). If the number of 
places needed before the decimal point exceeds this setting, or the 
number of places after the point exceeds twice the NUMERIC DIGITS 
setting, then the number will be expressed in exponential notation; thus 

le6 * le6 =) 1E+12 
/* not 1000000000000 */ 

1 I 3E10 => 3.33333333E-11 
/* not 0.0000000000333333333 •/ 



Section 11 Numbers and Arithmetic 129 

Definition 

This definition describes arithmetic in the REXX language. 

Numbers 

A number in REXX is a character string that includes one or more decimal 
digits, with an optional decimal point. The decimal point may be embedded 
in the digits, or may be prefixed or suffixed to them. The group of digits (and 
optional point) thus constructed may have leading or trailing blanks, and an 
optional sign ("+" or " -") which must come before any digits or decimal point. 
The sign may also have leading or trailing blanks. Thus: 

sign .. + 
I 

-

digit .. 0 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

digits . . digit [digit] ... 
numeric . ·= digits [digits] 

I [.] digits 
number .. [blank] ... [sign [blank] ... ] numeric [blank] ... 

Note that a single period alone is not a valid number. 

Precision 

The maximum number of significant digits that can result from an arithmetic 
operation is controlled by the instruction: 

NUMERIC DIGITS [expression]; 

The expression is evaluated and must result in a positive whole number. 
This defines the precision (number of significant digits) to which arithmetic 
calculations will be carried out; results will be rounded to that precision, if 
necessary. 

If no expression is specified, then the default precision is used. The default 
precision is 9, that is, all implementations must support at least nine digits 
of precision. An implementation-dependent maximum (equal to or larger 
than 9) may apply: an attempt to exceed this will cause execution to termi­
nate with an error message. Thus if an algorithm is defined to use more than 
9 digits then if the NUMERIC DIGITS instruction succeeds then the compu­
tation will proceed and produce identical results to any other implementation. 

Note that NUMERIC DIGITS may set values below the default of nine. 
Small values, however, should be used with care - the loss of precision and 
rounding thus requested will affect all REXX computations, including (for 
example) the computation of new values for the control variable in DO loops. 



130 REXX Language Definition Part 2 

Arithmetic operators 

REXX arithmetic is effected by the operators"+","-","*","/","%","//", and 
"* *" (add, subtract, multiply, divide, integer divide, remainder, and power) 
which all act upon two terms, together with the prefix plus and minus oper- .

1 

ators which both act on a single term. This section describes the way in 
which these operations are carried out. 

Before every arithmetic operation, the term or terms being operated upon 
have leading zeros removed (noting the position of any decimal point, and 
leaving just one zero if all the digits in the number are zeros) and are then 
truncated to DIGITS+l significant digits39 (if necessary) before being used in 
the computation. The operation is then carried out under up to double that 
precision, as described under the individual operations below. When the 
operation is completed, the result is rounded if necessary to the precision 
specified by the NUMERIC DIGITS instruction. 

Rounding is done in the "traditional" manner, in that the extra (guard) digit 
is inspected and values of 5 through 9 are rounded up, and values of 0 
through 4 are rounded down. 40 

A conventional zero is supplied preceding a decimal point if otherwise there 
would be no digit before it. Trailing zeros are retained for addition, sub­
traction, and multiplication, according to the rules given below, except that 
a result of zero is always expressed as the single character ' 0 ' . For division, 
insignificant trailing zeros are removed after rounding. 

The FORMAT built-in function is defined (see page 96) to allow a number to 
be represented in a particular format if the standard result provided by REXX 
does not meet requirements. 

Arithmetic operation rules - basic operators 

The basic operators (addition, subtraction, multiplication, and division) 
operate on numbers as follows: 

Addition and subtraction 

If either number is zero then the other number, rounded to NUMERIC 
DIGITS digits if necessary, is used as the result (with sign adjustment 
as appropriate). Otherwise, the two numbers are extended on the right 
and left as necessary up to a total maximum of DIGITS+l digits41 and 
are then added or subtracted as appropriate. For example: 

39 That is, to the precision set by the NUMERIC DIGITS instruction, plus one extra 
"guard" digit. 

40 Even/odd rounding would require the ability to calculate to arbitrary precision 
(that is, to a precision not governed by the setting of NUMERIC DIGITS) at any 
time and is therefore not the mechanism defined for REXX. 

41 The number with smaller absolute value may therefore lose some or all of its digits 

! I 
! 



Section 11 Numbers and Arithmetic 

xxxx.xxx + yy.yyyyy 

becomes: 

xxxx.xxxOO 
+ OOyy.yyyyy 

zzzz.zzzzz 

131 

The result is then rounded to NUMERIC DIGITS digits if necessary, 
taking into account any extra (carry) digit on the left after an addition, 
but otherwise counting from the position corresponding to the most sig­
nificant digit of the terms being added or subtracted. Finally, any 
insignificant leading zeros are removed. 

The prefix operators are evaluated using the same rules; the operations 
"+number" and "-number" are calculated as "O+number" and 
"0-number'', respectively. 

Multiplication 

The numbers are multiplied together ("long multiplication") resulting in 
a number which may be as long as the sum of the lengths of the two 
operands. For example: 

xxx.xxx * yy.yyyyy 

becomes: 

zzzzz.zzzzzzzz 

and the result is then rounded to the number of digits set by the 
NUMERIC DIGITS instruction, counting from the first significant digit 
of the result. 

Division 

For the division: 

yyy I xxxxx 

the following steps are taken: First the number "yyy" is extended with 
zeros on the right until it is larger than the number "xxxxx" (with note 
being taken of the change in the power of ten that this implies). Thus 
in this example, "yyy" might become "yyyOO". Traditional long division 
then takes place, which can be written: 

zzzz 
xxxxx ) yyyOO 

The length of the result ("zzzz") is such that the rightmost "z" will be 
at least as far right as the rightmost digit of the (extended) "y" number 

on the right. In the example, the number yy. yyyyy would have three digits 
truncated if NUMERIC DIGITS 5 were in effect. 



132 REXX Language Definition Part 2 

in the example. During the division, the "y" number will be extended 
further as necessary, and the "z" number (which will not include any 
leading zeros) may increase up to DIGITS+l digits, at which point the 
division stops and the result is rounded. Following completion of the 
division (and rounding if necessary), insignificant trailing zeros are 
removed. 

Examples: 

/* With NUMERIC DIGITS 5 */ 
12+7.00 19.00 
1.3-1.07 0.23 
1.3-2.07 -0. 77 
1.20*3 3.60 
7*3 21 
0.9*0.8 0.72 
1/3 0.33333 
2/3 0.66667 
5/2 2.5 
1/10 0.1 
12/12 1 
8.0/2 4 

Note: With all the basic operators, the position of the decimal point in the 
terms being operated upon is arbitrary. The operations may be carried out 
as integer operations with the exponent being calculated and applied after­
wards. Therefore the significant digits of a result are not in any way 
dependent on the position of the decimal point in either of the terms involved 
in the operation. 

Arithmetic operation rules - additional operators 

The operation rules for the power("**"), integer divide ("%"), and remainder 
("I/") operators are as follows: 

Power 

The "* *" (power) operator raises a number to a whole number power, 
which may be positive or negative.42 If negative, the absolute value of 
the power is used, and then the result is inverted (divided into 1). For 
calculating the power, the number is effectively multiplied by itself for 
the number of times expressed by the power, and finally trailing zeros 
are removed (as though the result were divided by one). 

In practice (see note below for the reasons), the power is calculated by 
the process ofleft-to-right binary reduction. For "x * *n": "n" is converted 
to binary, and a temporary accumulator is set to 1. If "n" has the value 

42 The second term in the operation must be a whole number and is therefore rounded 
to DIGITS digits (if necessary), as described on page 137. 



. I 

Section 11 Numbers and Arithmetic 133 

0 then the initial calculation is complete. Otherwise each bit (starting 
at the first non-zero bit) is inspected from left to right. If the current 
bit is 1 then the accumulator is multiplied by "x". If all bits have now 
been inspected then the initial calculation is complete, otherwise the 
accumulator is squared and the next bit is inspected for multiplication. 
When the initial calculation is complete, the temporary result is divided 
into 1 if the power was negative . 

The multiplications and division are done under the normal arithmetic 
operation rules, detailed above, using a precision of DIGITS+L+l digits. 
Here, L is the length in digits of the integer part of the whole number 
n (i.e., excluding any decimal part, as though the built-in function 
TRUNC (n) had been used). Finally, the result is rounded to NUMERIC 
DIGITS digits, if necessary, and insignificant trailing zeros are removed. 

Integer division 

The "%" (integer divide) operator divides two numbers and returns the 
integer part of the result. The result returned is defined to be that 
which would result from repeatedly subtracting the divisor from the 
dividend while the dividend is larger than the divisor. During this 
subtraction, the absolute values of both the dividend and the divisor are 
used: the sign of the final result is the same as that which would result 
if normal division were used. 

The result returned will have no fractional part (that is, no decimal 
point or zeros following it). If the result cannot be expressed as a whole 
number, the operation is in error and will fail - that is, the result must 
not have more digits than the current setting of NUMERIC DIGITS. 
For example, 10000000000%3 requires 10 digits for the result 
(3333333333) and would therefore fail if NUMERIC DIGITS 9 were in 
effect. 

Remainder 

The "/ /" (remainder) operator will return the remainder from integer 
division, and is defined as being the residue of the dividend after the 
operation of calculating integer division as just described. The sign of 
the remainder, if non-zero, is the same as that of the original dividend. 
This operation will fail under the same conditions as integer division 
(that is, if integer division on the same two terms would fail, the 
remainder cannot be calculated). 



134 REXX Language Definition Part 2 

Examples: 

/* Again with NUMERIC DIGITS 5 *I 
2**3 8 
2**-3 0.125 
1. 7**8 69.758 
2%3 0 
2.1//3 2.1 
10%3 3 
10//3 1 
-10//3 - 1 
10.2//1 0.2 
10//0.3 0.1 
3.6//1.3 1. 0 

Notes: 

1. A particular algorithm for calculating powers is described, since it is 
efficient (though not optimal) and considerably reduces the number of 
actual multiplications performed. It therefore gives better performance 
than the simpler definition of repeated multiplication. Since results 
could possibly differ from those of repeated multiplication, the algorithm 
must be defined here so that different implementations will give identi­
cal results for the same operation on the same values. Other algorithms 
for this (and other) operations may always be used, so long as they give 
identical results to those described here. 

2. The integer divide and remainder operators are defined so that they 
may be calculated as a by-product of the standard division operation 
(described above). The division process is ended as soon as the integer 
result is available; the residue of the dividend is the remainder. 

Numeric comparisons 

Any of the comparative operators (see page 26) may be used for comparing 
numeric strings. However, the strict comparisons (for example, "==" and 
">>")are not numeric comparative operators and should not normally be used 
for comparing numbers, since leading and trailing blanks (and leading zeros) 
are significant for these operators. 

Numeric comparison is effected by subtracting the two numbers (calculating 
the difference) and then comparing the result with 'o' - that is, the opera­
tion 

A ? B 

where "?" is any numeric comparative operator, is identical to: 

(A - B) ? I 0' 



, I 

Section 11 Numbers and Arithmetic 135 

It is therefore the difference between two numbers, when subtracted under 
REXX subtraction rules, that determines their equality. 

Comparison of two numbers is affected by a quantity called fuzz, that controls 
the amount by which two numbers may differ before being considered equal 
for the purpose of comparison. The fuzz value is set by the instruction: 

NUMERIC FUZZ [expression]; 

Here the expression must result in a whole number that is zero or positive. 
The default is 0. 

The effect of NUMERIC FUZZ is to temporarily reduce the value of 
NUMERIC DIGITS by the NUMERIC FUZZ value for each numeric com­
parison - that is, the numbers are subtracted under a precision of DIGITS­
FUZZ digits during the comparison. Clearly the NUMERIC FUZZ setting 
must be less than the setting of NUMERIC DIGITS. 

Thus if DIGITS = 9, and FUZZ = 1, then the comparison will be carried out 
to 8 significant digits, just as though "NUMERIC DIGITS 8" had been put 
in effect for the duration of the operation. 

Example: 

numeric digits 5 
numeric fuzz 0 
say 4.9999 5 
say 4.9999 < 5 

numeric fuzz 1 
say 4.9999 = 5 
say 4.9999 < 5 

f * would display: 0 *f 
f * would display: 1 */ 

/* would display: 1 */ 
/* would display: 0 */ 

An implementation-dependent maximum value for NUMERIC FUZZ (which 
could be 0) may apply: an attempt to exceed this will cause execution toter­
minate with an error message. Thus if an algorithm is defined to require a 
non-zero value of NUMERIC FUZZ then if the NUMERIC FUZZ instruction 
succeeds then the computation will proceed and produce identical results to 
any other implementation. 

Exponential notation 
The definition of numbers above (on page 129) describes "pure" numbers, in 
the sense that the character strings that describe numbers can be very long. 

Examples: 

say 10000000000 * 10000000000 
/* would display: 100000000000000000000 */ 

say .00000000001 * .00000000001 
/* would display: 0.000000000000000000001 */ 



136 REXX Language Definition Part 2 

For both large and small numbers some form of exponential notation is use­
ful, both to make such long numbers more readable and to make execution 
possible in extreme cases. In addition, exponential notation is used whenever 
the "pure" form would give misleading information. For example: 

numeric digits 5 
say 54321*54321 

would display "2950800000" if long form were to be used. This is clearly 
misleading, and so REXX would express the result in exponential notation, 
in this case "2. 9508E+9". 

The definition of numbers (see above) is therefore extended by replacing the 
description of numeric by the following: 

mantissa 

numeric 

digits . [digits] 
I [.J digits 
mantissa [E [sign] digits] 

In other words, the numeric part of a number may be followed by an "E" 
(indicating an exponential part), an optional sign, and an integer following 
the "E" (or sign) that represents a power of ten that is to be applied. The 
"E" may be in upper or lower case. Note that no blanks are permitted within 
this numeric part of a number. 

Examples: 

12Ell 
12E-5 

12e4 

1200000000000 
0.00012 
120000 

All valid numbers may be used as data for arithmetic. The results of calcu­
lations will be returned in exponential form depending on the setting of 
NUMERIC DIGITS. If the number of places needed before the decimal point 
exceeds NUMERIC DIGITS, or ifthe number of places after the point exceeds 
twice NUMERIC DIGITS, then exponential form will be used. The expo­
nential form generated by REXX always has a sign following the "E" in order 
to improve readability. If the exponent is 0 then the exponential part is 
omitted - that is, an exponential part of "E+O" will never be generated. 

If the default format for a number is not satisfactory for a particular appli­
cation, then the FORMAT function may be used to control its format. Using 
this, numbers may be explicitly converted to exponential form or even forced 
to be returned in "pure" form. See page 96. 

Different exponential notations may be selected with the NUMERIC FORM 
instruction. This instruction allows the selection of either scientific or engi­
neering notation - see page 60. Scientific notation adjusts the power of ten 
so there is a single non-zero digit to the left of the decimal point. Engineering 
notation causes powers of ten to be expressed as a multiple of 3 - the integer 
part may therefore range from 1 through 999. 



i ' 
i 

Section 11 Numbers and Arithmetic 

Examples: 

numeric form scientific 
say 123.45 * lell 
/*would display: l.2345E+l3 */ 

numeric form engineering 
say 123.45 * lell 
/* would display: 12.345E+12 */ 

The default exponential notation is scientific. 

Whole numbers 

137 

Within the set of numbers understood by REXX it is useful to distinguish the 
subset defined as whole numbers. A whole number in REXX is a number that 
has a decimal part which is all zeros (or that has no decimal part). In addi­
tion, it must be possible to express its integer part simply as digits within the 
precision set by the NUMERIC DIGITS instruction. (Larger numbers would 
be expressed by REXX in exponential notation, after rounding, and hence 
could no longer be safely described or used as "whole numbers".) 

Numbers used directly by REXX 

As discussed above, the result of any arithmetic operation is rounded (if nec­
essary) according to the setting of NUMERIC DIGITS. Similarly, when a 
number (which has not necessarily been involved in an arithmetic operation) 
is used directly by REXX then the same rounding is also applied, just as 
though the operation of adding the number to 0 had been carried out. 

In the following cases, the number used must be a whole number and an 
implementation restriction on the largest number that can be used may 
apply: 

positional patterns in parsing templates (including variable positional 
patterns) 
the power value (right hand operand) of the power operator 
the values of exprr and exprf in the DO instruction 
the values given for DIGITS or FUZZ in the NUMERIC instruction 
any number used in the tracesetting in the TRACE instruction. 

Implementation minimum: A minimum length of 9 digits must be sup­
ported for these uses of whole numbers by a REXX language processor. 



138 REXX Language Definition Part 2 

Implementation independence 

The REXX arithmetic rules are defined in detail, so that when a given pro­
gram is run the results of all computations are sufficiently defined that the 
same answer will result for all correct implementations. Differences due to 
the underlying machine architecture will not affect computations. 

This contrasts with most other programming languages, where the result 
obtained may depend on the implementation because the precision and algo­
rithms used by the language processor are defined by the implementation 
rather than by the language. 

Errors 

Two kinds of errors may occur during arithmetic: 

• Overflow/Underflow 

This error will occur if the exponential part of a result would exceed the 
range that may be handled by the language processor, when the result 
is formatted according to the current settings of NUMERIC DIGITS and 
NUMERIC FORM. The language defines a minimum capability for the 
exponential part, namely exponents whose absolute value is at least as 
large as the largest number that can be expressed as an exact integer 
in default precision. Thus, since the default precision is 9, implemen- I ' 
tations must support exponents in the range -999999999 through 
999999999. 

• Insufficient storage 

Storage is needed for calculations and intermediate results, and on 
occasion an arithmetic operation may fail due to lack of storage. This 
is considered a terminating error as usual, rather than an arithmetical 
error. 

-------------- _____________ ... ___ 



! ! 

! I 

Section 12 Input and Output Streams 139 

SECTION 12: INPUT AND OUTPUT STREAMS 

The REXX language defines only simple, character oriented, forms of input 
and output. In general, communication to or from the user is in the form of 
a stream of characters. These streams may be manipulated either charac­
ter-by-character or line-by-line. In addition to these character streams, a 
mechanism called the external data queue is defined for inter-program com­
munication. This queue can only be accessed on a line-by-line basis. 

In this discussion, input and output will be described as though communi­
cating with a human user, but in many environments the character streams 
manipulated might have a variety of sources or destinations, such as files, 
serial interfaces, displays, or networks. The character streams may therefore 
be transient (for example, data sent or received over a serial interface) or they 
may be persistent (for example, files and objects). Housekeeping for the 
character streams (opening and closing files, for example) is not explicitly 
part of the language since in most environments these operations will be 
automatic; however, a function is provided for miscellaneous stream com­
mands for those operating environments that require them. 

It is assumed that there is one default input stream and one default output 
stream.43 Simple instructions are provided to manipulate these default 
streams. The more general input and output routines allow the specification 
of a name for a stream, as well as other options. The name of the stream is 
necessarily implementation-dependent, but as illustrated below it is possible 
to write programs that use the input and output routines and yet are effec­
tively independent of the underlying operating environment. 

Error handling during input and output is necessarily heavily implementa­
tion-dependent; support for stream errors is provided by REXX in the form 
of a NOTREADY condition (that may be trapped by CALL ON or 
SIGNAL ON) and by a defined mechanism for determining the state of a 
named stream. 

Components of inpui and output 

The model of input and output for REXX consists of three logically distinct 
parts, namely one or more character input streams, one or more character 
output streams, and one external data queue. These are manipulated by the 
REXX instructions and built-in routines as follows: 

Character input streams 

A character mput stream is a serial character stream conceptually gen­
erated by user interaction, or having the characteristics of a stream 
generated in that manner. Characters may be added to the end of some 
streams asynchronously, whereas other streams may be static or syn-

43 These are often called the "standard input" and "standard output" streams. 



140 REXX Language Definition Part 2 

chronous. A stream may be read directly as characters by the CHARIN 
function, or may be read as lines by the LINEIN function. The default 
input character stream will be read as lines by the PULL or 
PARSE PULL instructions if the external data queue is empty or is not 
implemented (PULL is the same as PARSE PULL except that upper 
case translation takes place). The PARSE LINEIN instruction may be 
used to read lines from the default input character stream regardless 
of the state of the external data queue, though normally the default 
input stream is read by using the PULL or PARSE PULL instructions. 

The current read position in a stream is known to the REXX language 
processor (or, in some environments, is known to the system). The 
CHARS function will return the number of characters currently avail­
able in an input character stream from the read position through the 
end of the stream (including any line-end characters, if these are defined 
for the stream), and the LINES function similarly returns the number 
of complete lines available should the same stream be read as a series 
of lines. 

Character output streams 

Character output streams provide for output from a REXX program. A 
stream may be written with the CHAROUT routine (which usually 
provides complete control over the output stream), or may be written as 
lines using the LINEOUT routine. The default output stream may also 
be written as lines with the SAY instruction. The LINEOUT routine 
and the SAY instruction imply an appropriate line-end sequence at the 
end of each line. Depending on the stream being written other imple­
mentation-dependent modifications or formatting may apply, especially 
for line output. 

The current write position in a stream, independent of the read position, 
is also known to the REXX language processor (or, in some environ­
ments, is known to the system). This is usually the end of the stream 
but for persistent files it may be possible to use this for sequential out­
put from some arbitrary point. 

The STREAM built-in function 

The STREAM function is used to determine the state of an input or 
output stream, and may also be used to carry out implementation-de­
fined stream operations (described by stream commands). This stream 
command mechanism is provided to allow for operating environments 
that have special requirements for the manipulation of certain input or 
output streams. 

The external data queue 

The external data queue is a queue of character strings that can only 
be accessed by line operations. It is external to REXX programs in that 
other programs may have access to the queue whenever REXX relin­
quishes control to some other program. Apart from the explicit REXX 



Section 12 Input and Output Streams 141 

instructions described here, and in a single-process environment,44 no 
detectable change to the queue will occur during the execution of a 
REXX program except when control leaves the program (for example 
when an external command or routine is called). The queue therefore 
forms a language-defined channel of communication between programs. 

Data in the queue is arbitrary; no characters have any special meaning 
or effect. Lines may be removed from the queue using the PULL or 
PARSE PULL instructions (PULL is the same as PARSE PULL except 
that upper case translation takes place). When the queue is empty, 
these instructions will read lines from the default character input 
stream. This mechanism allows the external data queue to be used as 
a source for user input, provided that the user input is read as lines with 
these instructions. 

Lines may be added to the head of the queue using the PUSH instruc­
tion, or to the tail of the queue using the QUEUE instruction. The 
QUEUED function returns the number of lines currently in the queue. 

In many cases, a dialogue with a user will take place on a line-by-line basis. 
This kind of dialogue should be carried out with the SAY and PULL (or 
PARSE PULL) instructions. This technique considerably enhances the usa­
bility of many programs, as they may be converted to programmable 
dialogues by using the external data queue to provide the input normally 
entered by a user. PARSE LINEIN should only be used when it is necessary 
to bypass the external data queue. 

When a dialogue is not on a line-by-line basis, the explicitly serial interfaces 
provided by the CHARIN and CHAROUT functions will be appropriate. 
These functions are especially important for input and output in the serial 
character stream environments provided by many operating environments. 

Note: Input and output operations are necessarily implementation-depen­
dent. Any implementation will therefore have to make decisions on the 
meaning of this description in a given environment. It is recognized that 
some implementations will not be able to follow this definition precisely. The 
input and output model here is intended to provide a framework which will 
allow for many environments and applications, but more complex situations 
may require routines and commands that are external to the REXX language. 
As usual, any such routines should be clearly identified in an implementation 
rather than being presented as part of (or an extension to) the language. 

44 That is, an environment in which (from the point of view of the program) queues 
are not shared by more than one process. 



142 REXX Language Definition Part 2 

Errors During Input and Output 

The REXX language offers implementations and programmers considerable 
flexibility in the handling of errors during input or output; this flexibility is 
necessary due to the wide variety of input and output streams that may be 
supported in different implementations. 

When an error occurs during an input or output operation, the function being 
called will normally continue without interruption (with, for example, a non­
zero count being returned by an output function). Depending on the nature 
of the operation the implementation has the option of raising the 
NOTREADY condition. The NOTREADY condition is similar to the ERROR 
and FAILURE conditions associated with commands in that it does not cause 
a terminating error if the condition is raised but is not trapped. Once 
NOTREADY has been raised, the following possibilities exist: 

1. The NOTREADY condition is not being trapped: in this case execution 
continues without interruption; the NOTREADY condition remains in 
the OFF state. 

2. The NOTREADY condition is being trapped by SIGNAL ON 
NOTREADY: in this case, the NOTREADY condition is raised, execution 
of the current clause ceases immediately, and the SIGNAL takes place 
as usual for condition traps. 

3. The NOTREADY condition is being trapped by CALL ON NOTREADY: 
in this case the NOTREADY condition is raised, but execution of the 
current clause is not halted - the NOTREADY condition is put into the 
delayed state, and execution continues until the end of the current 
clause. While execution continues, input functions that refer to the 
same stream may return the null string, and output functions may 
return an appropriate count, depending on the form and timing of the 
error. At the end of the current clause, the CALL takes place as usual 
for condition traps. 

4. The NOTREADY condition is being trapped (by CALL ON NOTREADY) 
but is already in the DELAY state (due to NOTREADY already having 
been raised): in this case execution continues, as in the first case, and 
the NOTREADY condition remains in the DELAY state. 

Once the NOTREADY condition has been raised and is in DELAY state, the 
CONDITION function will return (for a "Description" invocation) the name 
of the stream being processed when the stream error occurred.45 

The STREAM function will then usually show that the state of the stream is 
ERROR or NOTREADY, and additional information on the state of the stream 
will normally be available via the implementation-dependent "Description" 
option of the STREAM function. 

45 If the stream is a default stream and has no defined name, then the null string 
may be returned in this case. 



Section 12 Input and Output Streams 143 

Examples of input and output 

In most circumstances, communication with a user running a REXX program 
will be via the default input and output streams. For a question and answer 
dialogue, the recommended technique is to use the SAY and PULL 
instructions (using PARSE PULL if case sensitive input is required). 
Examples of this have been given earlier, on pages 4 and 67. 

More generally, though, it is necessary to write to or read from streams other 
than the default. For example, to copy the contents of one file to another one 
might use the following program: 

FILECOPY 

/* This routine copies the stream or file named by */ 
/* the first argument to the stream or file named */ 
/* by the second, as lines. */ 
parse arg inputname, outputname 

do while lines(inputname)>O 
call lineout outputname, linein(inputname) 
end 

While there are still some lines remaining in the named input stream, a line 
is read and is then immediately written out to the named output stream. It 
is easy to modify this program so that it filters the lines in some way before 
they are written. Note that this program has no dependency on the form of 
the names of the streams, which are likely to be implementation-dependent. 

To illustrate how character and line operations might be mixed in a commu­
nications program, consider this example in which a character stream is 
converted into lines: 

COLLECTOR 

/* This routine collects characters from the stream */ 
/* named by the first argument until a line is */ 
/* complete, and then places the line on the */ 
/* external data queue. */ 
/* The second argument is the single character that */ 
/* identifies the end of a line. */ 
parse arg inputname, lineendchar 

buffer='' /* zero-length character accumulator */ 
do forever 

nextchar=charin(inputname) 
if nextchar=lineendchar then leave 
buffer=bufferl lnextchar /* add to buffer */ 
end 

queue buffer /* place it on the external data queue */ 



144 REXX Language Definition Part 2 

Here each line is built up in a variable called BUFFER. When the line is 
complete (for example, if the stream comes from a user this might be when 
the RETURN or ENTER key is pressed) the loop is ended and the contents 
of BUFFER are placed on the external data queue. The program then ends. 

Summary of the input and output instructions and functions: 

CHARIN 

CHARO UT 

CHARS 

LINEIN 

LINEOUT 

LINES 

Reads one or more characters from a character input stream. 
A start position may be specified for persistent streams. 
(Function, see page 86.) 

Writes zero or more characters to a character output stream. 
A start position may be specified for persistent streams. 
(Function, see page 87.) 

Returns the number of characters currently remaining in a 
character input stream. (Function, see page 88.) 

Reads one line from a character input stream. A line number 
may be specified for persistent streams. (Function, see page 
99.) 

Writes one line to a character output stream. A line number 
may be specified for persistent streams. (Function, see page 
100.) 

Returns the number of complete lines currently remaining in 
a character input stream. (Function, see page 101.) 

PARSE LINEIN Reads one line from the default character input stream. 
(Instruction, see page 62.) 

PARSE PULL Reads one line from the external data queue. If the queue is 
empty it reads a line from the default character input stream 
instead. (Instruction, see page 63.) 

PULL The same as PARSE PULL except that the string read is 
translated to upper case. (Instruction, see page 67.) 

PUSH Writes one line to the head of the external data queue, as in 
a stack. (Instruction, see page 68.) 

QUEUE Writes one line to the tail of the external data queue. 
(Instruction, see page 69.) 

QUEUED Returns the number of lines currently available in the 
external data queue. (Function, see page 103.) 

SAY Writes one line to the default character output stream. 
(Instruction, see page 70.) 



2 

is 
!n 
ts 

l. 

;. 

I. 

Section 13 Conditions and Condition Traps 145 

STREAM Returns a string describing the state of, or the result of an 
operation upon, a named character stream. (Function, see 
page 105.) 

SECTION 13: CONDITIONS AND CONDITION TRAPS 

The flow of execution in a REXX program is normally explicitly determined 
by the instructions in the program. Under certain conditions, however, the 
explicit flow may be modified by condition traps. 

Condition traps are turned on or off using the ON or OFF sub-keywords of 
the CALL and SIGNAL instructions: 

{
CALL } {ON condition [NAME trapname]}; 
SIGNAL OFF condition 

where condition and trapname are single symbols which are taken as 
constants. 

Following one of these instructions, a condition trap is set to be either ON 
(enabled) or OFF (disabled). The initial setting for all condition traps is OFF. 

If a condition trap is enabled, then if the specified condition occurs, control 
will pass to the routine or label trapname. CALL or SIGNAL will be used, 
depending on whether the most recent trap for the condition was set ON 
using CALL ON or SIGNAL ON respectively. 

The specified condition must be one of the following: 

ERROR raised if a command indicates an error condition upon return (see 
page 37). It is also raised if any command indicates failure and 
neither CALL ON FAILURE nor SIGNAL ON FAILURE are 
active. The condition is raised at the end of the clause that 
invoked the command, but will be ignored if the ERROR condition 
trap is already in the delayed state (see below). 

FAILURE raised if a command indicates a failure condition upon return (see 
page 37). The condition is raised at the end of the clause that 
invoked the command, but will be ignored if the FAILURE con­
dition trap is already in the delayed state (see below). 

HALT raised if an external attempt is made to interrupt and terminate 
the execution of the program. The condition is normally raised 
at the end of the clause that was being executed when the 
external interruption took place. 

NOVALUE raised if a symbol (other than a constant symbol) is used as 

• a term in an expression, 



146 REXX Language Definition Part 2 

• the name following the VAR sub-keyword of a PARSE 
instruction, 

• a variable reference in a parsing template, a PROCEDURE 
instruction, or a DROP instruction, 

but does not have an assigned value. The NOVALUE condition 
may only be specified for SIGNAL ON (that is, CALL ON 
NOV ALUE is not allowed). 

NOTREADY raised when an error occurs during an input or output operation 
(see page 142). As for ERROR and FAILURE, the condition will 
be ignored if the NOTREADY condition trap is already in the 
delayed state (see below). 

SYNTAX raised if any language processing error is detected while the pro­
gramming is running. This includes all kinds of processing 
errors, including true syntax errors and "run time" errors (such 
as attempting an arithmetic operation on non-numeric terms). 
The SYNTAX condition may only be specified for SIGNAL ON 
(that is, CALL ON SYNTAX is not allowed). 

Any ON or OFF reference to a condition trap will replace the previous state 
(ON, OFF, or DELAY, and any trap name) of that condition trap. Thus a 
CALL ON HALT would replace any current SIGNAL ON HALT (and vice 
versa), a CALL ON or SIGNAL ON with a new trap name would replace any 
previous trap name, any OFF reference will disable the trap for either CALL 
or SIGNAL, and so on. 

Action taken when a condition is not trapped 

When a condition trap is currently disabled (OFF) and the specified condition 
occurs, then the default action taken depends on the condition: 

• For HALT and SYNTAX, the execution of the program is ended, and the 
condition is usually indicated by a message describing the nature of the 
event that occurred (see page 157). 

• For all other conditions, the condition is ignored and its state remains 
OFF. 



Section 13 Conditions and Condition Traps 147 

Action taken when a condition is trapped 

When a condition trap is currently enabled (ON) and the specified condition 
occurs, then instead of the usual flow of control a "CALL trapname" or "SIG­
NAL trapname" is executed automatically. The trap name may be specified 
following the NAME sub-keyword of the CALL ON or SIGNAL ON instruc­
tion that enabled the condition trap. If no explicit trap name was given, then 
the name of the condition itself will be used as the trap name. 
For example, the instruction 

call on error 

would enable the condition trap for the ERROR condition. If the condition 
occurred, then a call to the routine identified by the name ERROR would be 
made. If the instruction were 

call on error name commanderror 

then the trap would be enabled and the routine COMMANDERROR would be 
called if the condition occurred. 

The sequence of events, once a condition has been trapped, varies depending 
on whether a SIGNAL or CALL is to be made: 

• If the action taken is a SIGNAL, then execution of the current instruc­
tion ceases immediately, the condition is disabled (set to OFF), and the 
SIGNAL takes place in exactly the same way as usual (see page 72). 
If any new occurrence of the condition is to be trapped, a new CALL ON 
or SIGNAL ON instruction for the condition is required to re-enable it 
once the label is reached. For example, if SIGNAL ON SYNTAX is 
enabled when a SYNTAX condition occurs, then if the SIGNAL ON 
SYNTAX label name is not found a normal syntax error termination will 
occur. 

• If the action taken is a CALL (which can only take place at a clause 
boundary), then the "CALL trapname" is made in the usual way (see page 
43) except that the special variable RESULT is not affected by the call. 
If the routine should RETURN any data, then the returned character 
string is ignored. 

Immediately the condition is raised, and before the CALL is made, the 
condition trap is put into a delayed state. This state persists until the 
RETURN from the CALL, or until an explicit CALL (or SIGNAL) ON (or 
OFF) is made for the condition. The delayed state prevents a premature 
condition trap at the start of a routine called to process a condition trap. 
When a condition trap is in the delayed state it remains enabled, but if 
the condition is raised again it is either ignored (for ERROR, FAILURE, 
or NOTREADY) or (for the other conditions) any action to be taken 
(including the updating of the condition information) will be delayed 
until one of the following events: 



148 REXX Language Definition Part 2 

1. A CALL ON or SIGNAL ON, for the delayed condition, is executed. 
In this case a CALL or SIGNAL will take place immediately after 
the new CALL ON or SIGNAL ON instruction has been executed. 

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is exe­
cuted. In this case the condition trap is disabled and the default 
action (see above) for the condition will occur at the end of the 
CALL OFF or SIGNAL OFF instruction. 

3. A RETURN is made from the subroutine. In this case the condition 
trap is no longer delayed and the subroutine will be called again 
immediately. 

On RETURN from the CALL, the original flow of execution is resumed 
(that is, is not affected by the CALL). 

Notes: 

1. In all cases, the condition will be raised immediately upon detection of 
the condition, and if trapped by SIGNAL ON the current instruction 
will be terminated (if necessary). Therefore the instruction during 
which such an event occurs may be only partly executed (for example. 
if SYNTAX is raised during the evaluation of the expression in an 
assignment, the assignment will not take place). 

Note that the CALL for ERROR, FAILURE, HALT, and NOTREADY 
traps (the conditions for which CALL ON is allowed) can only occur at 
clause boundaries. Since these conditions can arise during execution of 
an INTERPRET instruction, execution of the INTERPRET may be 
interrupted and later resumed if CALL ON was used. Similarly, other 
instructions may be temporarily interrupted by a CALL at a clause 
boundary. 

2. The state (ON, OFF, or DELAY, and any trap name) of each condition 
trap is saved on entry to a subroutine and is then restored on RETURK. 
This means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF 
may be used in a subroutine without affecting the conditions set up by 
the caller. See the CALL instruction (page 43) for details of other 
information that is saved during a subroutine call. 

3. The state of condition traps is not affected when an external routine is 
invoked by a CALL, even if the external routine is a REXX program. 
On entry to any REXX program all condition traps have an initial set­
ting of OFF. 

4. While user input is executed during interactive tracing, all condition 
traps are temporarily disabled (set OFF). This prevents any unexpected 
transfer of control should (for example) the user accidentally use an 
uninitialized variable while SIGNAL ON NOV ALUE is active. For the 
same reason, a syntax error during interactive tracing will not cause 
exit from the program, but is trapped specially and is then ignored after 
a message is given. 



Section 13 Conditions and Condition Traps 149 

5. Certain execution errors may be detected by the system interface either 
before execution of the program starts or after the program has ended. 
These errors cannot be trapped by SIGNAL ON SYNTAX, and are out­
side the scope of the language. 

Condition Information 

When any condition is trapped and causes a SIGNAL or CALL, it becomes 
the current trapped condition and certain condition information associated with it is 
recorded. This information may be inspected by using the built-in function 
CONDITION (see page 89). 

The condition information includes the name of the current trapped condition, 
the name of the instruction executed as a result of the condition trap ( ' CALL ' 
or 'SIGNAL'), the state of the condition, and a descriptive string. The 
descriptive string varies, depending on the condition trapped: 

ERROR The string which, when passed to the external environment as a 
command, was processed and resulted in the error condition. 

FAILURE The string which, when passed to the external environment as a 
command, was processed and resulted in the failure condition. 

HALT Any string associated with the halt request by the external envi­
ronment. This may be the null string if no specific string was 
provided. 

NOVALUE The derived name of the variable whose attempted reference 
caused the NOVALUE condition. 

NOTREADY The name of the stream being manipulated when the error 
occurred and the NOTREADY condition was raised. If the stream 
was a default stream with no defined name then the null string 
may be returned. 

SYNTAX Any string associated with the error by the language processor. 
This may be the null string if no specific string was provided. 
Note that the special variables RC and SIGL provide information 
on the nature and position of the processing error. 

The current condition information is replaced when control is passed to a 
label as the result of a condition trap (CALL ON or SIGNAL ON). Condition 
information is saved and restored across subroutine or function calls, includ­
ing one due to a CALL ON trap. Therefore, a routine invoked due to CALL 
ON can access the appropriate condition information and any previous con­
dition information will still be available after the routine returns. 



150 REXX Language Definition Part 2 

The special variable RC 

When an ERROR or FAILURE condition is trapped the special variable RC 
is set to the command return code, as usual, before control is transferred to 
the target label (whether by CALL or by SIGNAL). 

Similarly, when a SYNTAX condition is trapped by SIGNAL ON SYNTAX, 
the special variable RC is set to the syntax error number before control is 
transferred to the target label. 

The special variable SIGL 

Following the execution of any jump due to a CALL or SIGNAL, the program 
line number of the instruction causing the jump is stored in the special vari­
able SIGL. Where the jump is due to a condition trap, the line number 
assigned to SIGL is that of the last clause executed (at the current subroutine 
level) before the CALL or SIGNAL actually took place. 

The setting of SIGL is especially useful after a SIGNAL ON SYNTAX trap 
(see above) when the number of the line in error can be used, for example, to 
control a text editor. Typically code following the SYNTAX label may 
PARSE SOURCE to find the source of the data, then invoke an editor to edit 
the source program, positioned at the line in error. 46 

Alternatively SIGL may be used to help determine the cause of an error (such 
as the occasional failure of a function call), using the following section of code 
(or something similar): 

/* Standard handler for SIGNAL ON SYNTAX */ 
Syntax: 

say 'REXX error' re 'in line' sigl':' errortext(rc) 
say sourceline(sigl) 
trace '?r'; nop 

This code displays the error code, line number, and error message, then dis­
plays the line in error, and finally drops into interactive tracing to allow you 
to inspect the values of the variables used at the line in error (for example). 
This could be followed by instructions to place the user into an editor at the 
line in error, as just described. 

46 Depending upon the implementation, the program may have to be recompiled 
and/or re-invoked before any changes made in the editor can take effect. 

_ ........ 



Section 14 Interactive Tracing 151 

SECTION 14: INTERACTIVE TRACING 

The REXX language includes a mechanism for interactively controlling the 
execution of a program. This interactive tracing mechanism is optional, in 
that not all implementations will include it, but implementations should 
remain consistent with it wherever appropriate. 

Changing the TRACE setting to one with a prefix "?" (for example, 
"TRACE ?All", or using the TRACE built-in function) turns on interactive 
tracing, and also informs the user that tracing is now interactive. The lan­
guage processor will then ignore further TRACE instructions in the program, 
and will pause after nearly all clauses that are traced (see below for 
exceptions). Once the processor has paused then three actions are possible: 

1. Entering a null line (no blanks even) will make the language processor 
continue execution until the next pause for interactive input. Repeat­
edly entering a null line will therefore step from pause point to pause 
point. For "TRACE ?All", for example, this is equivalent to single-step­
ping through the program. 

2. Entering an equals sign ("=") will make the language processor re­
execute the clause last traced. If an IF clause is about to take the wrong 
branch, for example, you can change the value of the variable(s) on 
which it depends and then re-execute it. 

Once the clause has been re-executed, the processor will pause again. 
The equals sign may not have leading or trailing blanks. 

3. Anything else entered will be treated as a string of one or more 
clauses to be interpreted immediately. They are executed by the same 
mechanism as the INTERPRET instruction, and the same rules apply 
(for example, DO ... END constructs must be complete, etc.). If an 
instruction has a syntax error in it, a standard message will be dis­
played and you will be prompted for input again - the error will not be 
trapped by SIGNAL ON SYNTAX or cause exit from the program. 
Similarly all the other condition traps are temporarily disabled while 
the string is interpreted, to prevent unintentional transfer of control. 
During interpretation of the string, no tracing takes place, except that 
error return codes from commands are displayed. The special variable 
RC is not set by commands executed from the string. 
Once the string has been interpreted, the language processor pauses 
again for further interactive input unless a TRACE instruction was 
executed during the interpretation. In this latter case the processor will 
immediately alter the trace setting (if necessary) and then continue 
executing until the next pause point (if any). Hence to alter the trace 
setting (from "All" to "Results" for example) and then re-execute the 
instruction, you must use the built-in TRACE function (see page 110). 
For example, "CALL TRACE I" will ensure that the trace setting is "I" 



152 REXX Language Definition Part 2 

and allow re-execution of the clause after which the pause was made. 
Interactive tracing will be turned off only if a TRACE instruction uses 
a"?" prefix (or is "TRACE Oft'' or "TRACE"). 

The numeric form of TRACE setting may be used to allow sections of the 
program to be executed without pause for interactive input. 
"TRACE n", (i.e., positive result) will allow execution to continue, with 
the next "n" pauses (when tracing is interactive) being skipped. 
"TRACE -n", (i.e., negative result) will allow execution to continue 
without pause and with tracing inhibited for "n" clauses that would 
otherwise be traced. 

The trace action selected by a TRACE instruction is saved and restored across 
subroutine calls. This means that if you are stepping through a program (say 
after using "TRACE ?Results") then enter a subroutine in which you have 
no interest, you can then enter "TRACE Off'. No further instructions in the 
subroutine will be traced, but on return to the caller tracing will be restored. 

Similarly, if you are interested only in a subroutine, you can put a 
"TRACE ?R" instruction at its start. Having traced the routine, the original 
state of tracing will be restored and hence (if tracing was off on entry to the 
subroutine) all tracing will be turned off until the next entry to the subrou­
tine. 

Interactive tracing is usefully controlled externally, so that it may be 
switched on without modifying the program. Under the VM/CMS operating 
system, for example, tracing may be switched on, without requiring modifi­
cation to a program, by using the SET EXECTRAC ON command (which will 
turn the system tracing bit on or ofl). Tracing may be also turned on asyn­
chronously, (i.e., while a program is running) using the "ts" immediate com­
mand. 

Since any instructions may be executed during interactive tracing you have 
considerable control over execution. 

Examples: 

say expr will display the result of evaluating the expression. 

name=expr will alter the value of a variable. 

trace off (or just "TRACE") will turn off all tracing. 

trace ?all 

trace L 

exit 

will tum off interactive tracing but continue tracing all clauses. 

will make the language processor pause at labels only. This is 
similar to the traditional ''breakpoint" function, except that you 
do not have to know the exact name and spelling of the labels 
in the program. 

will terminate execution of the program. 



! : 

I 

! 

Section 14 Interactive Tracing 153 

do i=l to 10; say stem.i; end; 
would display ten elements of the array "STEM.". 

Exceptions: Some clauses may not be safely re-executed, and therefore a 
language processor would not pause after them even if they are traced. These 
are: 

• Any repetitive DO clause, on the second or subsequent time around the 
loop. 

• All END clauses (not a useful place to pause in any case). 

• All THEN, ELSE, OTHERWISE, or null clauses. 

• All RETURN and EXIT clauses. 

• All SIGNAL and CALL clauses (but the processor can pause after the 
target label has been traced). 

• Any clause that raises a condition which is trapped by a CALL ON or 
SIGNAL ON (that is, the pause will take place after the target label for 
the CALL or SIGNAL has been traced). 

• Any clause that causes a syntax error. (These may be trapped by SIG­
NAL ON SYNTAX, but cannot be re-executed.) 



154 REXX Language Definition Part 2 

SECTION 15: RESERVED KEYWORDS AND LANGUAGE EXTENDIBILITY 

The free syntax of REXX implies that the language must reserve a few sym­
bols in certain contexts. These will always be simple symbols (see page 33) -
other forms of symbol are never reserved. 

Within particular instructions, some symbols may be reserved to separate the 
parts of the instruction: for example the sub-keyword WHILE in a DO 
instruction, or the keyword THEN (which acts as a clause terminator in this 
case) following an IF or WHEN clause. 

Apart from these cases, only simple symbols that are the first token in a 
clause and that are not followed by a token that starts with an "=" or ":" are 
checked to see if they are instruction keywords - the symbols may be freely 
used elsewhere in clauses without being taken to be keywords. 

Therefore keywords can only adversely affect the user when it is desired to 
execute a command with the same name (for example "QUEUE") as a REXX 
keyword. This is potentially a problem for any programmer whose REXX 
programs might be used for some time and in circumstances outside his or 
her control, and who wishes to make the programs absolutely "watertight". 
When this is required, a REXX program should be written with (at least) the 
first word in every command enclosed in quotes. 

Example: 

'ERASE' fn ft 

This also has an advantage in that it is more efficient; and with this style, 
the SIGNAL ON NOV ALUE condition trap may be used to assure the integ­
rity of a program. 

An alternative strategy is to precede such command strings with two adjacent 
quotes, which will have the effect of concatenating the null string on to the 
front. 

Example: 

' 'Erase fn ft 

A third but perhaps more ugly option is to enclose the entire expression (or 
the first symbol) in parentheses. 

Example: 

(Erase fn ft) 

Importantly, the choice of strategy (if it is to be done at all) is a personal one 
by the programmer, and is not imposed by the REXX language. 

The possibility of identifying all REXX keywords by starting them with a 
unique character (for example ". ") was most seriously considered, however 
this: 



I ,, 

Section 15 Reserved Keywords and Language Extendibility 155 

• does not solve the problem in the case of an addressed environment that 
supports commands starting with that character. 

• destroys the natural look of the language that was one of the prime 
reasons for its design. 

In addition to this, it was felt that the problem is rather less severe than that 
of changes to the commands invoked by the program: these are often far less 
controlled and may even have totally different effects in different locations 
and environments. The problem is also less severe than the problem of sub­
keywords within instructions. Attempts to define a mechanism so that sub­
keywords need not be reserved led to even less desirable properties. 



156 REXX Language Definition Part 2 

SECTION 16: SPECIAL VARIABLES 

There are three special variables that may be set automatically during exe­
cution of a REXX program: 

RC is set to the return code from any executed command (including 
those submitted with the ADDRESS instruction). Following the 
trapping of the conditions ERROR or FAILURE it is also set to the 
command return code. When the SYNTAX condition is trapped, RC 
is set to the syntax error number (1-99). RC is unchanged when a 
NOVALUE or HALT condition is trapped. 

Note: Commands executed manually while tracing interactively do 
not cause the value of RC to change. 

RESULT is set by a RETURN instruction in a subroutine that has been 
called, if the RETURN instruction specifies an expression. If the 
RETURN instruction has no expression on it then RESULT is 
dropped (becomes uninitialized). 

s I GL contains the line number of the last instruction that caused a jump 
to a label (i.e., any SIGNAL, CALL, internal function invocation, or 
trapped condition). 

None of these variables has an initial value. They may be altered by the user, 
just like any other variable, but will continue to be set automatically by 
REXX when appropriate. The PROCEDURE and DROP instructions also 
affect these variables in their usual way. 

Certain other information is available to a REXX program. This usually 
includes the name by which the program was invoked and the source of the 
program (which are available using the PARSE SOURCE instruction, see 
page 63). In addition, PARSE VERSION (see page 64) makes available the 
language version and date of the language processor that is running; and the 
built-in functions ADDRESS, DIGITS, FUZZ, FORM, and TRACE return 
other settings that affect the execution of a program. 



Section 17 Error Numbers and Messages 157 

SECTION 17: ERROR NUMBERS AND MESSAGES 

The error numbers produced by errors during execution of REXX programs 
are all in the range 1-99 (and this is the value placed in the variable RC when 
SIGNAL ON SYNTAX is trapped). 

The recommended error numbers with their meaning and suggested mes­
sages are as follows. An implementation should normally use the recom­
mended error number wherever possible, though the message itself may 
change as appropriate (for instance, to a language that is not English). The 
text of the error message is available using the ERRORTEXT built-in func­
tion (see page 95). 

In general an error message will also include other information, such as a line 
number or more specific information describing where in the program the 
error occurred. 

4 - Program interrupted 

The system interrupted execution of a REXX program because of some 
error, or by user request. 

Unless trapped by CALL ON HALT or SIGNAL ON HALT, this will 
make the language processor immediately cease execution with this 
message. 

5 - Machine resources exhausted 

While attempting to execute a REXX program, the language processor 
was unable to obtain the resources it needs to continue execution. (For 
example, it could not obtain the space needed for its work areas, vari­
ables, etc.) 

6 - Unmatched"/*" or quote 

A comment or literal string was started but never finished. This may be 
detected at the end of the program (or end of data in an INTERPRET 
instruction) for comments, or at the end of a line for strings. 

7 - WHEN or OTHERWISE expected 

Within a SELECT construct, at least one WHEN construct (and possibly 
an OTHERWISE clause) is expected. If any other instruction is found (or 
no WHEN construct is found before the OTHERWISE) then this message 
results. 

This is commonly caused by forgetting the DO and END around the list 
of instructions following a WHEN. For example: 



158 

select 
when a=b then 

say "A Equals B" 
exit 

otherwise nop 
end 

should be: 

select 
when a=b then do 

say "A Equals B" 
exit 
end 

otherwise nop 
end 

REXX Language Definition Part 2 

8 - Unexpected THEN or ELSE 

A THEN or an ELSE has been found that does not match a corresponding 
IF (or WHEN) clause. 

This error often occurs because of a missing END or DO ... END in the 
THEN part of a complex IF ... THEN ... ELSE construction. For example: 

if a=b then do 
say "Equals" 
exit 

else 
say "Not equals" 

should have an END immediately following the EXIT instruction. 

9 - Unexpected WHEN or OTHERWISE 

A WHEN or an OTHERWISE has been found outside of a SELECT con­
struct. It may have been enclosed unintentionally in a DO ... END con­
struct by leaving off an END instruction; or an attempt may have been 
made to branch to it with a SIGNAL instruction (which cannot work as 
a SELECT is terminated by a SIGNAL). 

10 - Unexpected or unmatched END 

There are more ENDs in the program than DOs and SELECTs, or the 
ENDs are wrongly placed so they do not match the DOs and SELECTs. 

Putting the name of the control variable on ENDs that close repetitive 
loops helps to avoid or locate this kind of error. 

A common mistake that causes this error is attempting to jump into the 
middle of a loop using the SIGNAL instruction. Since the previous DO 
will not have been executed, the END is unexpected. Remember, too, that 



• 
Section 17 Error Numbers and Messages 159 

SIGNAL deactivates any current loops, so it may not be used to jump 
from one place inside a loop to another. 

This error will also be generated if an END immediately follows a THEN 
or an ELSE. 

11 - Control stack full 

An implementation limit of levels of nesting of control structures 
(DO ... END, IF ... THEN ... ELSE, INTERPRET, etc.) has been exceeded 
(the message should state the actual restriction). 

This could be due to a looping INTERPRET instruction, for example: 

line='INTERPRET line' 
interpret line 

which would otherwise loop forever. Similarly a recursive subroutine or 
internal function that does not terminate correctly could loop forever. 

12 - Clause too long 

There may be an implementation restriction that limits the length of the 
internal or external representation of a clause - this message is generated 
if this limit is exceeded (the message should state the actual restriction 
size, for example: "Clause > 1000 Characters"). 

13 - Invalid character in program 

The program includes a character outside of a literal (quoted) string that 
is not a blank or one of the following: 

A-Z, a-z, 0-9 (Alphanumerics) 
? ! . underscore (Name chars) 
& * ( ) - + = ..., \ I I ' " ; : < , > % (Specials) 

The most common cause for this error is the use of accented and other 
language-specific characters in symbols when not permitted by the 
implementation. 

14 - Incomplete DO I SELECT I IF 

On reaching the end of the program (or end of the string in an INTER­
PRET instruction), it has been detected that there is a DO or SELECT 
without a matching END, or an IF that is not followed by a THEN clause 
to execute. 

Putting the name of the control variable on ENDs that close repetitive 
loops helps to avoid or locate this kind of error. 



160 REXX Language Definition Part 2 

15 - Invalid hexadecimal or binary string 
Hexadecimal strings may not have leading or trailing blanks, and may 
only have embedded blanks at byte boundaries. Only the digits 0-9 and 
the letters a-f and A-F are allowed. Similarly, binary strings may only 
have blanks added at the boundaries of groups of four binary digits, and 
only the digits 0 and 1 are allowed. 

The error may also be caused by following a literal string by the one­
character symbol "X" (for example the name of the variable X) when the 
string is not intended to be taken as a hexadecimal specification, or by 
the symbol "B" when the string is not intended to be taken as a binary 
specification. Use the explicit concatenation operator, "11 ", in these sit­
uations to concatenate the string to the value of the symbol. 

16 - Label not found 

A SIGNAL instruction has been executed (or an event for which a trap 
was set has occurred), and the label specified cannot be found in the 
program. 

The name of the label for which the search was made should be included 
in the message or in the error traceback. 

17 - Unexpected PROCEDURE 

A PROCEDURE instruction was encountered which was not the first 
instruction executed after a CALL or function invocation. 
A possible cause of this is "dropping through" into an internal routine 
rather than invoking it properly. 

18 - THEN expected 

All IF clauses and WHEN clauses in REXX must be followed by a THEN 
clause. Some other clause was found when a THEN was expected. 

19 - String or symbol expected 

On the SIGNAL or CALL instructions a literal string or a symbol was 
expected but neither was found. 

20 - Symbol expected 

In the clauses CALL ON, END, ITERATE, LEAVE, NUMERIC, PARSE, 
and SIGNAL ON, a symbol can be expected. Either it was not present 
when required, or some other token was found. 
Alternatively, DROP, and the EXPOSE option of PROCEDURE, expect 
a list of symbols or variable references. Some other token was found. 

•· 



• 

I 
ii 
Ii 

Section 17 Error Numbers and Messages 161 

21 - Invalid data on end of clause 

A clause such as SELECT or NOP is followed by some token other than 
a comment. 

22 - Invalid character string 

This error results if a literal string contains character codes that are not 
valid in a particular implementation. This might be because some char­
acters are "impossible", or because the character set is extended in some 
way and certain character combinations are not allowed. 

23 - Invalid data string 

This error results if a data string (result of an expression, etc.) contains 
character codes that are not valid in a particular implementation. This 
might be because some characters are "impossible", or because the char­
acter set is extended in some way and certain character combinations are 
not allowed. 

24 - Invalid TRACE request 

The setting specified on a TRACE instruction starts with a character that 
does not match one of the valid TRACE settings (i.e., A, C, E, F, I, L, N, 
0, or R). 

25 - Invalid sub-keyword found 

An unexpected token has been found in the position in an instruction 
where a particular sub-keyword was expected. 

For example, in a NUMERIC instruction, the second token must be 
DIGITS, FUZZ, or FORM, and anything else is in error. 

26 - Invalid whole number 

One of the following did not evaluate to a whole number (or is greater 
than the implementation limit, for these uses): 

positional patterns in parsing templates (including variable posi­
tional patterns) 
the power value (right hand operand) of the power operator 
the values of exprr and exprf in the DO instruction 
the values given for DIGITS or FUZZ in the NUMERIC instruction 
any number used in the tracesetting in the TRACE instruction. 

This error is also raised if the value is not permitted (for example, a 
negative repetition count in a DO instruction), or when the division per­
formed during an integer divide (or remainder) operation does not result 
in a whole number. 



162 REXX Language Definition Part 2 

27 - Invalid DO syntax 

Some syntax error has been found in the DO instruction. This might be 
using BY, TO, or FOR twice, or using BY, TO, or FOR when there is no 
control variable specified, etc. 

28 - Invalid LEAVE or ITERATE 

A LEAVE or ITERATE instruction was encountered in an invalid posi­
tion. Either no loop is active, or the name specified on the instruction 
does not match the control variable of any active loop. Note that since 
internal routine calls and the INTERPRET instruction protect DO loops, 
they become inactive. Therefore, for example, a LEA VE in a subroutine 
cannot affect a DO loop in the calling routine. 

A common cause for this error message is attempting to use the SIGNAL 
instruction to transfer control within or into a loop. Since SIGNAL ter­
minates all active loops, an ITERATE or LEA VE would then be in error. 

29 - Environment name too long 

The environment name specified by the ADDRESS instruction is longer 
than permitted for the system under which REXX is executing. The 
message should state the maximum permitted length. 

30 -Name or string too long 

This error results if there is an implementation limit on the length of a 
variable name or label name (or on the length of a literal string) and it 
is exceeded. 

The limit exceeded should be included in the message, for example: 
"Name or String> 100 characters". 

31 - Name starts with number or "." 

A value may not be assigned to a variable whose name starts with a 
numeric digit or a period (since if it were permitted one could re-define 
numeric constants). 

33 - Invalid expression result 

The result of an expression in an instruction was found to be invalid in 
the particular context in which it was used. · This may be due to an illegal 
FUZZ or DIGITS value in a NUMERIC instruction (FUZZ may not 
become larger than DIGITS). 

34 - Logical value not 0 or 1 

The expression in an IF, WHEN, DO WHILE or DO UNTIL phrase must 
result in a 'O' or a '1 ', as must any term operated on by a logical 
operator (that is, • \ I & &&). 



Section 17 Error Numbers and Messages 163 

35 - Invalid expression 

This is due to a grammatical error in an expression, such as ending it 
with an operator, or having two operators adjacent with nothing in 
between. It may also be due to an expression that is missing when one 
is required. 

A common error is to include special characters (such as operators) in an 
intended character expression without enclosing them in quotes. 

36 - Unmatched "(" in expression 

This is due to not pairing parentheses correctly within an expression. 
There are more left parentheses than right parentheses. 

37 - Unexpected ''," or ")" 

In an expression, either a comma has been found outside a function 
invocation, or there are too many right parentheses. 

38 - Invalid template or pattern 

Within a parsing template, a special character that is not allowed (for 
example, "%") has been found, or the syntax of a variable pattern is 
incorrect (i.e., no symbol was found after a left parenthesis). This error 
may also be raised if the WITH sub-keyword is omitted in a 
PARSE VALUE instruction. 

39 - Evaluation stack overflow 

The expression is too complex to be evaluated by the language processor. 
There are too many nested parentheses, functions, and so on. (The mes­
sage should state the actual restriction.) 

40 - Incorrect call to routine 

The specified built-in or external routine does exist, but it has been used 
incorrectly. Either invalid arguments were passed to the routine, or the 
program invoked was not compatible with the REXX language processor, 
or more than an implementation-limited number of arguments were 
passed to the routine. 

41 - Bad arithmetic conversion 

One of the terms involved in an arithmetic operation is not a valid num­
ber, or its exponent exceeds the implementation limit (often 9 digits). 

42 - Arithmetic overflow I underflow 

The result of an arithmetic operation requires an exponent that is outside 
the range supported by the implementation, perhaps greater than 
999999999, or less than -999999999. 

This can happen during evaluation of an expression (commonly an 
attempt to divide a number by 0), or possibly during the stepping of a 
DO loop control variable. 



164 REXX Language Definition Part 2 

43 - Routine not found 

A function has been invoked within an expression (or a subroutine has 
been invoked by CALL) but it cannot be found. No label with the speci­
fied name exists in the program, it is not the name of a built-in function, 
and the language processor has been unable to locate it externally. The 
name has probably been mis-typed, or it is possible that a symbol or 
literal string is adjacent to a "(" when it was meant to be separated by 
a blank or some other operator. This will be understood as a function 
invocation. For example: 

3(4+5) should be written 3*(4+5) 

44 - Function did not return data 

An external function has been invoked within an expression, but even 
though it appeared to end without error, it did not return data for use 
within the expression. 

45 -No data specified on function RETURN 

The program has been called as a function, but an attempt is being made 
(by RETURN; ) to return without passing back any data. 

Similarly, if an internal routine is called as a function then the RETURN 
instruction that ends it must specify an expression. 

46 - Invalid variable reference 

Within an ARG, DROP, PARSE, PULL, or PROCEDURE instruction, the 
syntax of a variable reference (a variable whose value is to be used, 
indicated by its name being enclosed in parentheses) is incorrect. The 
right parenthesis that should immediately follow the variable name is 
missing. 

48 - Failure in system service 

Some system service used by the REXX language processor (such as 
stream input or output, or manipulation of the external data queue) has 
failed to work correctly and hence normal execution cannot continue. 

49 - Interpretation error 

Implementations of the language will normally carry out internal self­
consistency checks during execution. This message indicates that some 
kind of severe error has been detected within the language processor or 
execution process. 



Appendix A: REXX Syntax 
Diagrams 

This appendix collects together the syntax diagrams of the REXX instructions 
presented earlier in this book. They include general terms defined on the 
following pages: 

expression Page 24. 

instruction Page 31. 

name 

pattern 

string 

symbol 

template 

Pages 21 and 32-37. 

Page 118. 

Page 19. 

Page 21. 

Page 118. 

Other terms specific to individual instructions are explained in the section 
describing that instruction. 

165 



166 REXX Syntax Diagrams Appendix A 

Assignment: 

I symbol =expression ; 

Command: 

I expression ; 

Keyword Instructions: 

ADDRESS [environment [exprc]J. 
[VALUE] exprv ' 

where environment is a symbol or literal string, which is taken as a 
constant, and exprc and exprv are expressions. 

ARG [template]; 

where template is a list of symbols separated by blanks and/or patterns. 

{

name [expression] [, [expression]] ···} . 
CALL ON condition [NAME trap name] ' 

OFF condition 

where name is a symbol or literal string which is taken as a constant, 
and condition and trapname are single symbols which are taken as con­
stants. 



REXX Syntax Diagrams 

DO [repetitor] [conditional]; 
[instructionlist] 
END [symbol] ; 

where repetitor is one of 

name =expri [TO exprt] [BY exprb] [FOR exprf] 
exprr 
FOREVER 

and conditional is either of 

WHILE exprw 
UNTIL expru 

and instructionlist is 

any sequence of instructions 

and expri, exprt, exprb, exprf, exprr, exprw, and expru are expressions. 

DROP variablelist ; 

167 

where variablelist is one or more symbols (optionally enclosed in paren­
theses) separated by blanks. 

EXIT [expression]; 

IF expression[;] THEN[;] instruction [ELSE[;] instruction] 

INTERPRET expression ; 

ITERATE [name]; 

where name is a symbol, taken as a constant. 

LEAVE [name]; 

where name is a symbol, taken as a constant. 



168 REXX Syntax Diagrams Appendix A 

NOP; 

DIGITS [exprd] 

[

SCIENTIFIC ] 
NUMERIC FORM ENGINEERING 

[VALUE] exprf 

FUZZ [exprz] 

where exprd, exprf, and exprz are expressions. 

OPTIONS expression ; 

ARG 
LINEIN 
PULL 

PARSE [UPPER] SOURCE [template]; 
VALUE [expression] WITH 
VAR name 
VERSION 

where template is a list of symbols separated by blanks and/or patterns. 

PROCEDURE [EXPOSE variablelist] ; 

where variablelist is one or more symbols (optionally enclosed in paren­
theses) separated by blanks. 

PULL [template]; 

where template is a list of symbols separated by blanks and/or patterns. 

PUSH [expression]; 

QUEUE [expression J ; 



REXX Syntax Diagrams 

RETURN [expression]; 

SAY [expression]; 

SELECT; whenlist [OTHERWISE[;] [instructionlist]] END; 

where whenlist is: 

one or more whenconstructs 

and whenconstruct is: 

WHEN expression[;] THEN[;] instruction 

and instructionlist is: 

any sequence of instructions 

SIGNAL [VALUE] expression . 

{

labelname } 

ON condition [NAME trapname] ' 
OFF condition 

169 

where labelname is a symbol or literal string which is taken as a con­
stant, and condition and trapname are single symbols which are taken 
as constants. 

TRACE [tracesetting J . 
[VALUE] expression ' 

where tracesetting is a symbol or literal string which is taken as a con­
stant. 



Appendix B: A Sample REXX 
Program 

This appendix includes a short program, called QT, which is an example of 
a "real" REXX program. The programs included elsewhere in this book have 
been contrived to illustrate specific points. By contrast, QT is a simple but 
heavily used tool that genuinely improves the human factors of computer 
systems. People frequently wish to know the time of day, and QT presents 
this information in a natural way. 

The style used for this example is the same as that used throughout the book, 
with all symbols except labels being written in lower case. Other REXX 
programming styles are possible, of course; for another successful style, see 
O'Hara and Gomberg's Modern Programming Using REXX. 

QT has the distinction of being one of the first REXX programs ever written. 
It has been changed, however, since it was first written - early versions of 
REXX did not allow multiple argument strings. 

171 



172 A Sample REXX Program Appendix B 

QT - Query Time 

/•--------------------------------------------------------•/ 
/• QT: This program displays the time in natural English. •/ 
/• Two argument strings may be supplied. If "?" is given •/ 
/• as the first argument then the program displays a •/ 
/• description of itself. If a second argument is given •/ 
/• it is used as a test value to check that the program •/ 
/• works. This second value must be a time in the format •/ 
/• HH:MM:SS; it does not have its syntax checked. •/ 
/•--------------------------------------------------------•/ 

/•--------- First process the argument strings -----------•/ 
parse arg parm, testtime . /• get the argument strings •/ 
select 

when parm='?' then call tell 
when parm='' then nop 
otherwise 

/• say what we do •/ 
/• OK (no first argument) •/ 

say 'Only "?" 
say 'that you 
call tell /• 

is a valid argument to QT. The argument' 
supplied ("'parm'") has been ignored.' 
usually helpful to describe the program •/ 

end 

if testtime='' then now=time() /• default; use time now •/ 
else now=testtime /• caller's test value •/ 

/•--------- Now start 
/• Nearness phrases -
near. O='' 
near.1=' just gone'; 
near.3=' nearly'; 

processing in earnest --------------*/ 
use compound variable, as example */ 

/• exact •/ 
near. 2=' 
near.4=' 

just after' 
almost' 

/• after */ 
/• before */ 

/• Extract the hours, minutes, and seconds from the time. •/ 
parse var now hour': 'min': 'sec 

if sec)29 then min=min+l /• round up minutes */ 
mod=min//S /•where we are in 5 minute bracket •/ 
out="It's"near.mod /• start building the result •/ 
if min)32 then hour=hour+l /•we are TO the hour ... •/ 
min=min+Z /• shift minutes to straddle 5-minute point •/ 

/• Now special-case the result for Noon and Midnight •/ 
if hour//12=0 & min//60(=4 then do 

if hour=12 then say out 'Noon.' 
else say out 'Midnight.' 

exit; end /• we are finished here •/ 

continued ... 



A Sample REXX Program 

min=min-(min//5) 
if hour)12 
then hour=hour-12 
else 
if hour=Q then hour=12 

173 

/* find nearest 5 mins •/ 

/• get rid of 24-hour clock •/ 

/• .. and allow for midnight •/ 

/• Determine the phrase to use for each 5-minute segment •/ 
select 

when min= 0 then nop /• add "o'clock" later •/ 
when min=60 then min=O /• ditto •/ 
when min= 5 then out=out 'five past' 
when min=lQ then out=out 'ten past' 
when min=15 then out=out 'a quarter past' 
when min=20 then out=out 'twenty past' 
when min=25 then out=out 'twenty-five past' 
when min=30 then out=out 'half past' 
when min=35 then out=out 'twenty-five to' 
when min=4Q then out=out 'twenty to' 
when min=45 then out=out 'a quarter to' 
when min=50 then out=out 'ten to' 
when min=55 then out=out 'five to' 
end 

numbers='one two three four five six', /• (continuation) •/ 
'seven eight nine ten eleven twelve' 

out=out word(numbers,hour) /• add the hour number •/ 
if min=O then out=out ''o'clock" /• and o'clock if exact •/ 

say out'.' 
exit 

/• display the final result •/ 

/•--------------------------------------------------------•/ 
/• Subroutine that describes the purpose of the program •/ 
/•--------------------------------------------------------•/ 
Tell: 

say 'QT will display the current time in natural English.' 
say 'Call without arguments to display the time, or with' 
say '"?" to display this information. A second argument' 
say ' (in the format "HH: MM: SS") will test the program. ' 
say 'British English idioms are used in this program.' 
say /• space - we are about to continue and show time •/ 
return 

/• Mike Cowlishaw, December 1979 - September 1989 



Appendix C: Language 
Changes since First Edition 

This appendix summarizes the changes in the REXX language in this edition 
(language version 4.00) compared to that defined in the first edition of this 
book (version 3.60). 

The majority of changes are simply clarifications or improvements to the 
wording of the language definition (such as the more rigorous use of technical 
terms) which were generally made in response to feedback from readers and 
language implementers. These clarifications are not detailed here, though a 
glossary has been added (see page 179). 

The remaining changes, listed here by relevant page number, are significant 
enhancements and improvements to the language or clarifications of 
description that could have been misinterpreted. 

18 An implementation minimum for comments (nesting of at least 10 
allowed) has been added. 

20 Binary-defined literal strings have been added (for example, ' 111 O 
0111 'b). 

21 Characters defined as ambiguous in the ISO standard 7-bit encoding 
(ISO 646 - Information processing - ISO 7-bit coded character set for 
information interchange) have been removed from the set of characters 
valid for symbols to aid portability of REXX programs. The characters 
affected are the currency symbols (pound, dollar, and cent) and the hash 

175 



176 Language Changes since First Edition Appendix C 

("pound", number) sign. The "at" sign has also been removed as this 
character is often ambiguous in national encodings. 

43 ON and OFF have a special meaning for the CALL instruction (as noted 
on page 40 of the first edition) which has now been defined. CALL ON 
and CALL OFF are used to provide enhanced error handling (similar to 
SIGNAL ON and SIGNAL OFF, but with the possibility of return from 
the error routine). 

45 Additional information (called condition information) is saved across a sub­
routine call. 

47 TO, BY, and FOR are no longer reserved names within the WHILE or 
UNTIL phrases of the DO instruction. (This was an unnecessary 
restriction.) 

49 The format of the initial value of a DO loop control variable is explicitly 
described. 

53 DROP can now indirectly specify variables to be dropped (see also the 
PROCEDURE instruction, on page 65). 

65 The EXPOSE list on a PROCEDURE instruction may indirectly include ; 1 a list of variable names (using a syntax consistent with that of parsing 
templates). This makes it easier to share a list of variables to be exposed 
among several subroutines, and also permits a routine to deal with 
exposed variables whose names vary or are not known at the time of 
programming. 

72 SIGNAL ON and SIGNAL OFF may specify the name of a label to which 
control will be passed if the condition occurs. This permits multiple 
handlers for the same condition in one REXX program; the name of the 
routine is no longer fixed. (The same flexibility is also allowed for CALL 
ON and CALL OFF.) 

74 TRACE SCAN has been removed because it can be very expensive to 
implement and its function is better provided directly by modern smart 
editing systems, etc. 

81 The treatment of numbers by "mathematical" functions was not always 
precisely described. It is now defined that numbers are reduced to 
standard format before use by these built-in functions. 

83 The number of argument strings passed to a routine is now defined 
precisely. 

85 B2X (binary to hexadecimal conversion) function has been added. 

89 CONDITION function has been added. This is used for access to addi­
tional information about conditions that have been trapped: the name, 
description, and state of the condition, and the kind of trap (CALL or 
SIGNAL) are made available. 



Language Changes since First Edition 177 

92 The Base option has been added to the DATE function. This returns a 
count of days since a theoretical base date of 1 January 0001. 

The Century option for the DATE function has been removed because it 
is made obsolete by the Base option and its use is likely to lead to pro­
gram errors at the start of a century. 

105 The definition of the SOURCELINE function has been relaxed to permit 
flexibility in situations where the source of a REXX program is unavail­
able. 

105 The STREAM function has been added. This function is used for que­
rying the state of a stream or for carrying out system-dependent oper­
ations (commands) defined for a stream. 

108 The elapsed time counter (used via the TIME function) implementation 
minimum has been relaxed to allow for operating systems with only 
coarse timing facilities. 

112 The VALUE function has been enhanced to allow the setting of variables 
(hence avoiding many uses of INTERPRET). It can also now be used to 
retrieve or set variables selected from "pools" external to the language 
processor. 

115 X2B (hexadecimal to binary conversion) function has been added. 

123 An absolute column number in a parsing template can be indicated 
explicitly by an equals sign. 

125 Variable references in parsing templates can now be used as column 
(positional) patterns by preceding the left parenthesis by an equals, plus, 
or minus sign. 

130 The algorithm to be used for addition and subtraction has been clarified. 

133 The power operator specifies a higher precision for the intermediate 
operations in the algorithm, in order to guarantee a comparable accuracy 
to the other arithmetic operations. 

133 The Integer Division and Remainder operators are defined to fail (as an 
error) if the result of integer division cannot be expressed as a whole 
number. This prevents misleading or erroneous results being propa­
gated through a calculation. 

137 The description of whole numbers, and their use, has been consolidated 
and clarified. 

138 The description of an overflow/underflow error has been made more rig­
orous. 

142 Error handling during input and output has been enhanced by the 
addition of the NOTREADY condition. This state can be detected by 
condition trapping or by using the STREAM function. 



178 Language Changes since First Edition Appendix C 

145 The new section on conditions and condition traps consolidates the CALL 
ON and SIGNAL ON instructions and includes a number of clarifica­
tions and enhancements to the language. 

160 Error 15 has been extended to allow for errors in binary strings. 

161 Error 23 has been added to allow for character sets in which some 
encodings are invalid. 

164 Error 46 has been added to allow better reporting of a common error in 
parsing templates. 



Appendix D: Glossary 

This glossary describes but does not define the technical terms used in the 
definition of the REXX language. 

absolute positional pattern: A positional pattern that has no sign or has an 
equals sign; this specifies an absolute column position. 

abuttal operator: When two terms in an expression are adjacent and art 
not separated by an operator, they are said to abut. Abutting two terrlli' 
in this way implies the abuttal operator which has the same effect as the 
operator, that is, it concatenates the two terms (without a blank). 

address setting: The currently selected environment name. 

arguments: The expressions (separated by commas) between the parcr:.­
theses on a function call or following the name on a CALL instruction. T::,: 
arguments to a program, function, or subroutine can be retrieved by us·-: 
the ARG or PARSE ARG instructions, or the ARG built-in function. 

arithmetic operator: Character strings that are numbers (see page 2-:­
may be combined using the arithmetic operators: add, subtract, muh:::.:;:~: 
divide, integer divide, remainder, power, prefix minus, and prefix plu...;;. 

ASCII: American Standard Code for Information Interchange; a set of :::x:a= 
representations for a specific set of characters. 

assignment: A clause with the form symbol = expression is an instrx::,:c 
known as an assignment. An assignment gives a variable a (ne" .-a:.::.= 



180 Glossary Appendix D 

binary string: A literal string, expressed using a binary representation of its 
encoding. The binary representation is a sequence of zero or more binary 
digits (the characters 0 or 1), grouped in fours. 

blank operator: A concatenation operator that concatenates two strings with 
a blank in between, and which is represented by a blank. 

built-in function: A function (which may be called as a subroutine) that is 
defined as part of the REXX language (see pages 81-117). 

character: A member of a defined set of elements that is used for the con­
trol or representation of data. Often entered with a single keystroke. 

character input stream: A character input stream is a serial character 
stream conceptually generated by user interaction, or having the charac­
teristics of a stream generated in that manner, from which characters 
and/or lines may be read. See stream. 

character output stream: A character output stream is a serial character 
stream to which characters and/or lines may be written. See stream. 

character string: See string. 

clause: The fundamental grouping of REXX syntax. Clauses are composed 
of: zero or more blanks (which are ignored); a sequence of tokens; zero or 
more blanks (again ignored); and the delimiter ";" (semicolon) which may 
be implied by line-end, certain keywords, or the colon ":" (if it follows a 
single symbol). 

coded representation: The representation of a character established by a 
set of unambiguous rules specifying the manner in which the character can 
be represented in a discrete (digital) form. 

command: A clause consisting of just an expression is an instruction known 
as a command. The expression is evaluated and the result is passed as a 
command string to some external environment. 

comment: A piece of commentary that is started by the sequence of char­
acters" I•", and is ended by"*/". Within these delimiters any characters 
are allowed. Comments may be nested. 

comparative operator: An operator that compares two terms and returns 
the value 1 if the result of the particular comparison is true, or 0 otherwise. 

compound symbol: A symbol that allows for the substitution of variables 
within its name, when referred to. It contains at least one period, and at 
least two other characters. It may not start with a digit or a period, and 
if there is only one period it may not be the last character. The name 
begins with a stem (that part of the symbol up to and including the first 
period). This is followed by the tail - parts of the name (delimited by peri­
ods) that are constant symbols, simple symbols, or null. Compound sym­
bols allow the construction of arrays, associative tables, lists, etc. 



Glossary 181 

concatenation operator: An operator used to combine two strings to form 
one string by appending the second string to the right-hand end of the first 
string. The concatenation may occur with or without an intervening blank. 

condition: A specific event, or state, which can be trapped by CALL ON or 
SIGNAL ON. See page 145. 

condition information: Information describing the state and origin of the 
current trapped condition. This information may be inspected by using the 
built-in function CONDITION (see page 89). 

condition trap: The flow of execution in a REXX program is normally 
explicitly determined by the instructions in the program. Under certain 
conditions, however, the explicit flow may be modified by a condition trap. 
Condition traps are enabled or disabled using the ON or OFF sub-key­
words of the CALL and SIGNAL instructions, and can be used to trap a 
variety of conditions, such as errors in commands, input, or output. 

conditional phrase: A phrase in a DO instruction, introduced by the sub­
keyword WHILE or UNTIL, that is used to modify the iteration of a repet­
itive DO loop. 

constant symbol: A symbol that starts with a digit (0-9) or a period. The 
value of a constant symbol cannot be changed, and is simply the string 
consisting of the characters of the symbol with any alphabetic characters 
translated to upper case. 

continuation character: If the last token on a line is a comma, it has the 
effect of disabling the implied semicolon normally added at the end of a 
line, and hence allows a clause to be continued across lines. The contin­
uation character is replaced by a blank, and may be followed by one or 
more comments before the end of the line. 

controlled repetitive loop: A repetitive do loop in which the repetitor phrase 
specifies a control variable. This variable is given an initial value before 
the first execution of the instruction list and is then stepped (by adding the 
result of an optional expression) before the second and subsequent times 
that the instruction list is executed. 

current trapped condition: The most recently trapped condition. 

delayed state: The state of a condition trap when the condition has been 
raised but the trap has not yet been reset to the enabled (ON) or disabled 
(OFF) state. 

derived name: The default value of a compound symbol. This is the stem 
of the symbol, in uppercase, followed by the tail in which all simple sym­
bols have been replaced by their value. 

do group: The simplest form of DO instruction, in which no repetitor phrase 
or conditional phrase is specified. This construct groups a number of 
instructions together: these are executed once. 



182 Glossary Appendix D 

do loop: See repetitive do loop. 

dyadic operator: An operator that acts on two terms. 

EBCDIC: Extended Binary Coded Decimal Interchange Code; a set of coded 
representations for a specific set of characters. 

encoding: A coded representation. 

engineering notation: An exponential notation in which from one to three 
digits (but not just "0") will appear before the decimal point, and in which 
the power of ten will always be a multiple of three. Engineering notation 
can be selected using the NUMERIC FORM instruction. See also scientific 
notation. 

environment name: The name of an external procedure or process that can 
execute commands. Commands are sent to the current environment, ini­
tially selected externally but then alterable by using the ADDRESS 
instruction. 

error: A condition raised by a command for which a program that uses that 
command would normally be expected to be prepared. (For example, a 
Locate command to an editing system might report "requested string not 
found" as an error.) See also failure. 

error number: The number, defined by the REXX language, assigned to 
errors that might be detected during processing of a REXX program. A 
description of the error can be retrieved using the ERRORTEXT built-in 
function. 

exponential notation: A notation for expressing a number that includes 
an exponent (a power often by which the number is multiplied before use). 
See also engineering notation, scientific notation. 

exposed variable: A variable belonging to an ancestor (caller) of a routine 
that has been made accessible by the PROCEDURE instruction. When 
referred to or altered by the routine, it is the original (ancestor's) copy of 
the variable that is used or affected. 

expression: An expression in REXX is a general mechanism for combining 
one or more pieces of data in various ways to produce a result, usually 
different from the original data. Expressions include a mixture of terms 
and operators. 

external data queue: A queue of character strings that is external to 
REXX programs in that other programs may have access to the queue 
whenever REXX relinquishes control to some other program. It can only 
be accessed by line operations. 

external routine: A function or subroutine that is neither a built-in routine nor 
is in the same program as the CALL instruction or function call that 
invokes it. 



Glossary 183 

failure: A condition raised by a command for which a program that uses that 
command would not normally be expected to recover (for example, if the 
command was not executable or could not be found). See also error. 

function: An internal, built-in, or external routine that returns a single 
result string and is invoked by a function call. A function can also be invoked 
by the CALL instruction, in which case it is being called as a subroutine. 

function call: A term in an expression which invokes a routine that carries 
out some procedure and then returns a string. This string then replaces 
the function call for the continuing evaluation of the expression. A func­
tion call is identified by a symbol that is immediately followed by a left 
parenthesis. 

fuzz: The amount by which two numbers may differ before being considered 
equal for the purpose of comparison. The fuzz value is set by the 
NUMERIC FUZZ instruction; its effect is to temporarily reduce the value 
of NUMERIC DIGITS by the NUMERIC FUZZ value for each numeric 
comparison. See page 135. 

guard digit: An extra digit used during arithmetic operations to improve 
the accuracy of the computation. The guard digit is inspected at the end 
of the operation when the number is rounded to the required precision. 

hexadecimal string: A literal string, expressed using a hexadecimal repre­
sentation of its encoding. The hexadecimal representation is a sequence 
of zero or more hexadecimal digits (the characters 0-9, a-f, A-F) grouped in 
pairs. 

implied semicolon: REXX will normally assume (imply) a semicolon at the 
end of each line, except if the line ends in the middle of a comment or the 
last token was a continuation character (comma). 

instruction: One or more clauses that describe some course of action to be 
taken by the language processor. Instructions may be either Assignments, 
Keyword Instructions, or Commands. 

interactive trace: A form of trace during which the programmer is given 
the opportunity of interacting with the language processor as the program 
is executed. 

internal routine: A function or subroutine that is in the same program as the 
CALL instruction or function call that invokes it. 

keyword instruction: One or more clauses, the first of which starts with 
a keyword that identifies the instruction. Keyword instructions control the 
external interfaces, the flow of control, and so on. Some keyword 
instructions (such as DO) can include nested instructions. 

label: A clause that consists of a single symbol followed by a colon. The colon 
in this context implies a semicolon (clause separator), and so a label is a 
clause in its own right and no semicolon is required. Labels are used to 
identify the targets of CALL instructions, SIGNAL instructions, and 



184 Glossary Appendix D 

internal function calls; more than one label may precede any instruction. 
Labels are treated as null clauses, and may be traced selectively to aid 
debugging. 

literal pattern: See pattern. 

literal string: A sequence including any characters and delimited by the 
single quote character ( ' ) or the double-quote (" ). Literal strings are con­
stant (cannot be modified) and are used to express data within a REXX 
program. 

monadic operator: See prefix operator. 

name: A symbol that names some component of the REXX language, such 
as a variable or a function. 

normal comparison: An operation that compares two strings in different 
ways depending on their content: if both strings are numbers then a 
numeric comparison is used, otherwise a character comparison (in which 
leading and trailing blanks are ignored) is effected. See also strict compar­
ison. 

null clause: A clause consisting of only blanks and/or comments. Null 
clauses are ignored by REXX, except for tracing. 

null string: A string with no characters (that is, a string of length 0). 

number: A character string consisting of one or more decimal digits 
optionally prefixed by a plus or minus sign, and optionally including a 
single period (". ") which then represents a decimal point. A number may 
also have a power of ten suffixed in conventional exponential notation: an 
"E" (upper or lower case) followed optionally by a plus or minus sign then 
followed by one or more decimal digits defining the power of ten. Numbers 
may have leading blanks (before and/or after the sign, if any) and may 
have trailing blanks. Blanks may not be embedded among the digits of a 
number or in the exponential part. 

operator: A representation of an operation, such as addition, that is to be 
carried out on one or two terms. Operators are specified using various 
combinations of operator characters. 

operator character: One of the characters + - * I % I & = • \ > 
< which are used (sometimes in combination) to indicate operators in 
expressions (see pages 25-27). 

pad character: A character used to extend a string, usually on the right. 
See, for example, the LEFT built-in function (on page 98). 

parse: To decompose a string into parts; in REXX this can be done by 
function calls or by using a parsing template on the ARG, PARSE, or PULL 
instructions. 

pattern: The parts of a parsing template that allow a string to be split up 
by the explicit matching of strings (literal patterns) or by the specification of 



Glossary 185 

numeric positions (positional patterns). Parentheses may be supplied to cre­
ate a variable pattern - a pattern whose value is derived from a variable. 

placeholder: The symbol consisting of a single period acts as a placeholder 
in a parsing template. It has exactly the same effect as a variable name, 
except that no variable is set. 

positional pattern: See pattern. 

precision: The maximum number of significant digits that can result from 
an arithmetic operation. This is controlled by the NUMERIC DIGITS 
instruction; the default is 9 digits. 

prefix (monadic) operator: An operator that acts on a single term, which 
is immediately to the right of the operator. There may be one or more 
prefix operators to the left of any term. 

read position: The position in a character input stream from which the next 
character or line will be read. 

recursive routine: A subroutine or function that calls or invokes itself 
(possibly indirectly). 

relative positional pattern: A positional pattern that uses a plus or minus 
sign to indicate movement relative to a previous pattern match. 

repetitive do loop: Any DO instruction that has either a repetitor phrase 
or a conditional phrase (or both). The instruction list within the instruc­
tion is executed zero or more times, controlled by any repetitor phrase 
which is optionally modified by a conditional phrase. 

repetitor phrase: A phrase in a DO instruction that is used to specify the 
iteration of a repetitive DO loop. This may be an expression that evaluates 
to a whole number, a control variable and its bounds, or the sub-keyword 
FOREVER. 

return code: A string, typically a number passed in an implementation­
dependent way, that conveys some information about the command that 
has been executed. Return codes usually indicate the success or failure of 
the command but can also be used to represent other information. 

scientific notation: An exponential notation in which only one, non-zero, digit 
will appear before the decimal point. Scientific notation can be selected 
using the NUMERIC FORM instruction, and is the default. See also engi­
neering notation. 

simple do group: See do group. 

simple repetitive loop: A repetitive do loop in which the repetitor phrase is 
simply an expression that evaluates to a count of iterations. 

simple symbol: A symbol that does not contain any periods and does not 
start with a digit (0-9). By default its value is the characters of the symbol 



186 Glossary Appendix D 

(translated to upper case). If the symbol has been assigned a value, it 
names a variable and its value is the value of that variable. 

special character: The characters ) ( together with the 
operator characters have special significance when found outside of literal 
strings, and constitute the set of "special" characters. 

special variable: A variable that may be set automatically during exe­
cution of a REXX program. There are three: RC, RESULT, and SIGL. 
None of these has an initial value. They may be altered by the program, 
just like any other variable, but will continue to be set automatically by 
REXX when appropriate. 

stem: That part of a compound symbol up to and including the first period. 
If used alone (so that the symbol itself contains just one period, which is 
the last character) the default value of a stem is the characters of its 
symbol, translated to upper case. A reference to a stem can also be used 
to manipulate all variables sharing that stem (PROCEDURE EXPOSE, 
DROP, and so on). 

stream: The REXX language defines only simple, character oriented, forms 
of input and output. In general, communication to or from the user is in 
the form of a stream of characters. These streams may be manipulated 
either character-by-character or line-by-line. They may be a channel of 
communication with a human user, but in many environments the char­
acter streams manipulated might have a variety of sources or destinations, 
such as files, serial interfaces, displays, or networks. They may be tran­
sient (for example, data sent or received over a serial interface) or they 
may be persistent (for example, files and objects). 

stream command: An implementation-defined stream operation, issued 
using the STREAM built-in function. The stream command mechanism is 
provided to allow for operating environments that have special require­
ments for the manipulation of certain input or output streams. 

strict comparison: An operation that compares two strings on a strict 
character-by-character basis. Two strings must be identical for them to 
be considered strictly equal. See also normal comparison. 

string: A linear (one-dimensional) series of characters. 

sub-expression: A term in an expression that consists of any expression 
bracketed by a left and a right parenthesis. 

sub-keyword: A keyword that is reserved within the context of some par­
ticular instruction - for example the symbols TO and WHILE in the DO 
instruction. For a general discussion on reserved words, see page 154. 

subroutine: An internal, built-in, or external routine that may or may not 
return a result string and is invoked by the CALL instruction. If it returns 
a result string, a subroutine can also be invoked by a function call, in which 
case it is being called as a function. 



Glossary 187 

symbol: A symbol is a group of any characters selected from the English 
alphabetic and numeric characters (A-Z, a-z, 0-9) and/or from the charac­
ters . ! ? and underscore. Symbols are used to name variables, func­
tions, instructions, etc. 

tail: The part of a compound symbol that follows the stem. It may include 
constant symbols, simple symbols, and periods. 

template: Three instructions (ARG, PARSE, and PULL) allow a selected 
string to be parsed (split up) and assigned to variables, under the control 
of a template. The various mechanisms in the template allow a string to 
be split up by words (delimited by blanks), or by explicit matching of 
strings (called literal patterns), or by specifying numeric positions - for 
example to extract data from particular columns of a line read from a 
character stream (positional patterns). 

term: A literal string, symbol, function call, or sub-expression, which 
represents a character string used within an expression. Terms are com­
bined using operators. 

token: The unit of low-level syntax from which clauses are built. Tokens 
include literal strings, symbols, operator characters, and special charac­
ters. See page 19. 

trace: A description of some or all of the clauses in a program, produced as 
each is executed. Tracing is the simplest form of debugging aid. 

typeless character string: A string. REXX strings are described as "type­
less" because they are not (as in many other programming languages) of 
a particular, declared type, such as binary, hexadecimal, integer, or array. 

uninitialized variable: A variable that has not yet been assigned a value. 
If referred to, its value is the character(s) of the symbol itself, translated 
to upper case (unless it is a compound symbol, in which case its value is 
the derived name of the symbol). 

variable: A variable is a named object whose value may be changed during 
the course of execution of a REXX program. The process of changing the 
value of a variable is called assigning a new value to it. The value of a 
variable is a single character string, of any length, that may contain any 
characters. 

variable pattern: See pattern. 

variable reference: An indirect reference to a variable in which the value 
of the variable is used rather than its name. This is indicated by enclosing 
the name in parentheses, and can be used on the DROP and PROCEDURE 
instructions, and in parsing templates. 

whole number: A number that has a zero (or no) decimal part, and which 
would not normally be expressed by REXX in exponential notation - that 
is, it has no more digits before the decimal point than the current setting 
of NUMERIC DIGITS (the default is nine digits). 



188 Glossary Appendix D 

word: A sequence of characters that does not include any blanks. Words 
are used as units for manipulation during parsing and by many built-in 
functions. 

write position: The position in a character output stream at which the next 
character or line will be written. 



Index 

A 

ABBREV function 82 
Abbreviations 

testing with ABBREV function 82 
ABS function 82 
Absolute 

column specification in parsing 123 
positional pattern 123, 179 
value, finding using ABS 

function 82 
Abuttal concatenation operation 25, 

179 
Acknowledgments x 
Active loops 57 
Adaptability 12 
Addition 25 

definition 130 
ADDRESS 

function 82 
instruction 40 
setting 179 
settings saved during subroutine 

calls 45 
Algebraic precedence 28 
Algol language 15 
Alphabetics 

checking with DATATYPE 91 

Alphanumerics 
checking with DATATYPE 91 

Amiga implementation 15 
AND 

bit-by-bit (BITAND) 84 
logical operator 27 

APL language 15 
Application areas for REXX 1 
Arbitrary precision arithmetic 127 
ARG 

function 83 
instruction 42 
option of PARSE instruction 62 

Arguments 1 79 
of functions 42, 77 
of programs 42 
of subroutines 42, 43 
passing to functions 77 
retrieving with ARG function 83 
retrieving with ARG instruction 42 
retrieving with PARSE ARG 
instruction 62 

Arithmetic 127-138 
comparisons 134 
errors 138 
implementation indepeadence 138 
NUMERIC settings 59 
operation rules 130 

189 



190 

operators 25, 127, 130, 179 
overflow 138 
prec1s10n 129 
underflow 138 

Arrays 33 
initialization of 35 

ASCII 179 
coded character set 1 7 

Assignment 31, 32, 179 
of compound variables 35 
to compound variables 33 

Associative storage 33 
Astonishment factor 11 
AS/400 implementation 15 

B 

Background 1 
Base date for calculation 92 
BASIC language 1 
Batch languages 2 
Binary 

See also Conversion 
checking with DATATYPE 91 
conversion to hexadecimal 85 
strings 20, 180 

BIT AND function 84 
BITOR function 84 
Bits 

See also Binary 
checking with DATATYPE 91 

BITXOR function 85 
Blank 

adjacent to operator character 18 
adjacent to special character 18 
as concatenation operator 25 
operator 25, 180 
removal with SP ACE function 105 
removal with STRIP function 107 

Boolean operations 27 
Bottom of program 

reaching during execution 54 
Built-in functions 44, 77, 81-117, 180 

See also Function, built-in 
BY phrase of DO instruction 4 7 
B2X function 85 

c 
CALL 

instruction 43-46 

multi-way 73 
returned by CONDITION 

function 89 
CALLON 

See Condition trap 
CENTER function 86 
CENTRE function 86 
Changes in this edition 175 
Character 1 7, 180 

Index 

conversion to decimal 90 
conversion to hexadecimal 91 
input and output 139-145 
removal with STRIP function 107 

Character encodings 17 
Character input 

streams 139, 180 
using CHARIN 86 
using LINEIN 99 

Character output 
streams 140, 180 
using CHAROUT 87 
using LINEOUT 100 

Character sets 18 
Characters 

See Strings 
CHARIN function 86 

role in input and output 139 
CHAROUT function 87 

role in input and output 139 
CHARS function 88 

role in input and output 139 
Civil time format 108 
Clauses 18, 180 

as labels 31 
continuation of 23 
null 31 

Clocks 
See also TIME function 
saved during subroutine calls 45 

Closing output streams 87, 100 
CMS 2 

implementation 15 
Coded representation of a 
character 17, 180 

Codes, error 157-164 
Collating sequence, using 

XRANGE 115 
Collections of variables 112 
COLLECTOR example program 143 
Colons 

as label terminators 31 
Column specification in parsing 123 
Combination, arithmetic 130 



Index 

Comma 
as continuation character 23 
in CALL instruction 43 
in function calls 77 
in parsing 125 

Command errors, trapping 
See CALL instruction 
See SIGNAL instruction 

Commands 32, 37, 180 
alternative destinations 37 
destination of 40 
disable delayed ERROR or FAIL­

URE 148 
Comments 18, 180 

starting a program with 19 
Communications 13 
Comparative operators 26, 180 
COMP ARE function 88 
Comparison 

of numbers 26, 134 
of strings 

using COMPARE 88 
of strings and numbers 26 

Compiler 
first for RE.XX 15 
options 61 

Compound 
symbols 33, 180 
variables 33 
variables, setting initial value 35 

Computed branches 73 
Computer conferencing x 
Concatenation of strings 25, 181 
CONDITION function 89 

use after condition trap 149 
Condition information 149, 181 

returned by CONDITION 
function 89 

saved during subroutine calls 45 
Condition trap 145-150, 181 

action taken on 146, 147 
delayed state 147 
name of 147 
replacing 146 
saved during subroutine calls 45 

Conditional loops 4 7 
Conditional phrase 48, 50, 181 
Conditions 145-150, 181 

ERROR 145 
FAILURE 145 
HALT 145 
NOTREADY 145 
NOVALUE 145 

SYNTAX 145 
trapping of 72 

Consistency 11 
Console 

reading from with CHARIN 86 
reading from with LINEIN 99 
reading from with PARSE 

LINEIN 62 
reading from with PULL 67 
writing to with CHAROUT 87 
writing to with LINEOUT 100 
writing to with SAY 70 

Constant symbols 33, 181 
Content addressable storage 33 
Continuation 

character 23, 181 
of clauses 23 

Control variable 49 
Controlled loops 49, 181 
Conversion 

binary to hexadecimal 85 
character to decimal 90 
character to hexadecimal 91 
decimal to character 94 
decimal to hexadecimal 95 
formatting numbers 96 
hexadecimal to binary 115 
hexadecimal to character 116 
hexadecimal to decimal 116 

Conversion functions 81-117 
COPIES function 90 
Copying a string using COPIES 90 
Counting 

See Arithmetic 

191 

Counting words in a string 115 
Current trapped condition 89, 149, 181 
C2D function 90 
C2X function 91 

D 

Data 
length of 24, 98 
terms 24 
type checking 8, 24 

Data string error 161 
DATATYPE function 91 
Datatyping 8, 24 
Date and Version of the language pro­

cessor 64 
DATE function 92 
Days 



192 

See DATE function 
DCF document composition facility xii 
Dealing with reality 11 
Debugging REXX programs 

See Interactive tracing 
See TRACE instruction 

Decimal 
arithmetic 127-138 
conversion to character 94 
conversion to hexadecimal 95 

Declarations, why none in REXX 10 
Default action when conditions 

raised 146 
Default character streams 

See Character, input and output 
DELAY 

returned by CONDITION 
function 89 

state of a condition 14 7 
Delayed state 

of a condition 147, 181 
of NOTREADY condition 142 

Deleting 
part of a string 93 
words from a string 94 

Delimiters 
for comments 18 
for strings 19 

Delimiters, clause 
See Colons 
See Semicolons 

DELSTR function 93 
DELWORD function 94 
Derived names of variables 34, 181 
Description of event 

See CONDITION function 
Description of NOTREADY condition 

See STREAM function 
Design principles for REXX 13 
DIGITS 

effect on whole numbers 137 
function 94 
in numbers 129 
option of NUMERIC 

instruction 59, 129 
rounding when numbers used 137 

Displaying data 
See Character input and output 
See CHAROUT function 
See LINEOUT function 
See SAY instruction 

Division 25 
definition 131 

integer 127 
DO group 48, 181 
DO instruction 4 7-52 

See also loops 
DO loop 48, 182, 185 
Document composition facility xn 
Documentation before 

implementation 14 
Double-quotes in strings 19 
DROP instruction 53 
Dummy instruction, NOP 59 
Dyadic operators 24, 182 
Dynamic scoping 9 
D2C function 94 
D2X function 95 

E 

E-notation 27, 136 
definition 136 
in symbols 21 

EBCDIC 182 
coded character set 1 7 

Elapsed time 
format 108 
measuring 108 

Index 

saved during subroutine calls 45 
Electronic mail 13 
ELSE keyword 

See IF instruction 
Encodings, of characters 17 
END clause 

See also DO instruction 
See also SELECT instruction 
specifying control variable 50 

End condition of a DO loop 49 
End of stream 

See also STREAM function 
testing with CHARS 88 
testing with LINES 101 

End-of-file 
See End of stream 

Engineering notation 60, 136, 182 
ENGINEERING value for NUMERIC 

FORM 59 
Environments 

addressing of 40 
default 41, 63 
determining current using 
ADDRESS function 82 

name 182 
temporary change of 40 



Index 

Equality, testing of 26 
Equals operator 26 
ERROR 

condition of CALL and SIGNAL 
instructions 145 

returned by STREAM function 106 
Error messages 157-164 

retrieving with ERRORTEXT 95 
Error numbers 157-164, 182 
Errors 

during execution of functions 79 
during stream input and 
output 142 

from commands 37, 182 
syntax 157-164 
traceback after 76 
trapping with CALL and SIGNAL 

instruction 145 
ERRORTEXT function 95 
European date format 92 
Evaluation of expressions 24 
Event string 

See CONDITION function 
Even/odd rounding 130 
Examples 

of programs 3, 4, 5, 6, 45, 79, 143, 
171 

Exception conditions 
See Conditions 

Exclusive OR 
bit-by-bit (BITXOR) 85 
logical operator 27 

EXEC 2 language x 
Execution of data 55 
Executive languages 2 
EXIT instruction 54 
Exponential notation 27, 60, 127, 136, 

182 
definition 136 
in symbols 21 

Exponentiation 25 
definition 132 

EXPOSE option of PROCEDURE 
instruction 65 

Exposed variable 182 
Expressions 182 

evaluation 24 
examples 29 
parsing of 64 
results of 24 
tracing results of 76 

External character streams 
See Character, input and output 

External data queue 140, 182 
counting lines in 103 
reading from with PULL 67 
writing to with PUSH 68 
writing to with QUEUE 69 

External routines 44, 182 

193 

External variables, access with VALUE 
function 112 

Extracting 
a sub-string 107 
words from a string 107 

F 

FACTORl example program 45 
FACTOR2 example program 79 
FAILURE condition 

on CALL and SIGNAL 
instructions 145 

Failures 
from commands 37, 183 
trapping with CALL and SIGNAL 
instruction 145 

"False" value 27 
Feedback from users, value of 14 
FIFO stacking 69 
File name of a program 63 
FILECOPY example program 143 
Files 

See Character, input and output 
Finding a mismatch using 

COMPARE 88 
Finding a string in another string 98, 

102 
Fixing output streams 87, 100 
Flow control 

abnormal, with SIGNAL 72 
with CALLJRETURN 43 
with DO construct 47 
with IF construct 54 
with SELECT construct 71 

FOR phrase of DO instruction 4 7 
FOREVER repetitor on DO 

instruction 4 7 
FORM 

function 96 
option of NUMERIC 

instruction 59, 136 
FORMAT function 96 
Formatting 

numbers for display 96 
numbers with TRUNC 111 



194 

of output during tracing 75 
text centering 86 
text left justification 98 
text right justification 104 
text spacing 105 

Function, built-in 
ABBREV 82 
ABS 82 
ADDRESS 82 
ARG 83 
BITAND 84 
BITOR 84 
BITXOR 85 
B2X 85 
CENTER 86 
CENTRE 86 
CHARIN 86 
CHAROUT 87 
CHARS 88 
COMPARE 88 
CONDITION 89 
COPIES 90 
C2D 90 
C2X 91 
DATATYPE 91 
DATE 92 
DELSTR 93 
DELWORD 94 
DIGITS 94 
D2C 94 
D2X 95 
ERRORTEXT 95 
FORM 96 
FORMAT 96 
FUZZ 97 
INSERT 97 
LASTPOS 98 
LEFT 98 
LENGTH 98 
LINEIN 99 
LINEOUT 100 
LINES 101 
MAX 102 
MIN 102 
OVERLAY 102 
POS 102 
QUEUED 103 
RANDOM 103 
REVERSE 104 
RIGHT 104 
SIGN 104 
SOURCELINE 105 

SPACE 105 
STREAM 105 
STRIP 107 
SUBSTR 107 
SUBWORD 107 
SYMBOL 108 
TIME 108 
TRACE 110 
TRANSLATE 111 
TRUNC 111 
VALUE 112 
VERIFY 113 
WORD 114 
WORDINDEX 114 
WORDLENGTH 114 
WORDPOS 114 
WORDS 115 
XRANGE 115 
X2B 115 

· X2C 116 
X2D 116 

Functions 77, 183 
built-in 77, 81-117 
external 77 
forcing built-in or external 

reference 79 
internal 77 
invocation of 77, 183 
multi-way call of 73 
numeric arguments of 137 
return from 69 
variables in 65 

FUZZ 

G 

controlling numeric 
comparison 135, 183 

function 97 
option of NUMERIC 

instruction 59, 135 

Index 

Global external variables, access with 
VALUE function 112 

GOTO, abnormal 
See SIGNAL instruction 

GOTO instruction, why not in 
REXX 10 

GREET example program 4 
Group, DO 48 
Guard digit in arithmetic 130, 183 



Index 

H 

HALT condition of CALL and SIGNAL 
instructions 145 

Halt, trapping 
See SIGNAL instruction 

Hexadecimal 
See also Conversion 
checking with DATATYPE 91 
conversion to binary 115 
conversion to character 116 
conversion to decimal 116 
strings 20, 183 

History of REXX 15 
Host system 

issuing commands to 37 
Hours 

See TIME function 

IF instruction 54 
Implementations of REXX 15 
Implied semicolons 23, 183 
Imprecise numeric comparison 135 
Inclusive OR operator 

See OR logical operator 
Incompatible changes 13 
Indefinite loops 4 7 
Indention during tracing 75 
Indirect evaluation of data 55 
Inequality, testing of 26 
Infinite loops 47 
Initialization 

of arrays 35 
of compound variables 35 

Input 
counting characters in 88, 101 
errors during 142 
from the user 139 

Input and output 
model 139 
streams 139-145 

INSERT function 97 
Inserting a string into another 97 
Instructions 31, 39, 183 

ADDRESS 40 
ARG 42 
assignment 31, 32 
CALL 43 
command 32, 37 

DO 47 
DROP 53 
EXIT 54 
IF 54 
INTERPRET 55 
ITERATE 57 
keyword 31 
LEAVE 58 
NOP 59 
NUMERIC 59 
OPTIONS 61 
PARSE 62 
PROCEDURE 65 
PULL 67 
PUSH 68 
QUEUE 69 
RETURN 69 
SAY 70 
SELECT 71 
SIGNAL 72 
TRACE 73 

Integer arithmetic 127-138 
Integer division 25, 127 

definition 133 
Interactive tracing 73, 75, 151-153, 

183 
See also TRACE,,instruction 

Internal functions 
return from 69 
variables in 65 

Internal routines 44, 183 
INTERPRET instruction 55 
Interpreter options 61 
Interpretive execution of data 55 
Introduction to REXX 3 
ITERATE instruction 57 

J 

See also DO construct 
use of variable on 57 

JUSTONE example program 5 

K 

Keyword instructions 31, 39, 183 
Keywords 

conflict with commands 154 
mixed case 39 
reservation of 154 

195 



196 

L 

Labels 31, 183 
as targets of CALL 43 
as targets of SIGNAL 72 
duplicate 31 
in INTERPRET instruction 55 
search algorithm 72 

Language committee 13 
Language concepts 7 
Language date and version 64 
LASTPOS function 98 
Leading blanks 

removal with STRIP function 107 
Leading zeros 

adding with the RIGHT 
function 104 

removal with STRIP function 107 
LEA VE instruction 58 

See also DO construct 
use of variable on 58 

LEFT function 98 
Legibility, perceived 7 
LENGTH function 98 
Length of comments 18 
LEfOC live parsing editor x1 
LIFO stacking 68 
Limits of size 12 
Line input and output 

See Character, input and output 
LINEIN function 99 

role in input and output 139 
LINE IN option of PARSE 

instruction 62 
LINEOUT function 100 

role in input and output 139 
Lines from program 

retrieving with SOURCELINE 105 
LINES function 101 

role in input and output 139 
Lists 33 
Literal patterns 121 
Literal strings 19, 184 

See also Strings 
Live parsing editor xi 
Locating 

a string in another string 98, 102 
a word or phrase in a string 114 

Logical operations 27 
Long time format 108 
Loops 

See also DO instruction 
active 57 

M 

execution model 52 
modification of 57 
repetitive 4 7 
termination of 58 

Macros 2 
Mail, electronic 13 

Index 

Mantissa of exponential numbers 136 
Mathematical function 

ABS 82 
DATATYPE options 91 
FORMAT 96 
MAX 102 
MIN 102 
SIGN 104 

MAX function 102 
Messages, error 157-164 
Microseconds 

See TIME function 
Milliseconds 

See TIME function 
MIN function 102 
Minutes 

See TIME function 
Model 

of input and output 139 
of loop execution 52 

Modern Programming Using REXX x 
Monadic (prefix) operators 24 
Month 

See DATE function 
MS-DOS implementation 15 
Multi-way CALL and function call 73 
Multiple strings 

parsing of 125 
Multiplication 25 

definition 131 
MVS implementation 15 

N 

NAME keyword 
for condition traps 145 
of CALL instruction 43 
of SIGNAL instruction 72 

Names 184 
of functions 77 
of programs 63 
of subroutines 43 



Index 

of variables 32 
Natural data typing 8 
Negation 

oflogical values 27 
of numbers 25 

Nesting of comments 18 
Network, electronic 13 
NOP instruction 59 
Normal comparative operators 26, 184 
Normal date format 92 
Normal time format 109 
Not 

symbols used for 22 
NOT operator 27 
Notation 

engineering 60, 136 
scientific 60, 136 

Nothing to declare 10 
NOTREADY 

condition 105 
condition on CALL and SIGNAL 

instructions 145 
condition raised by stream 

errors 142 
condition trapping 142 
returned by STREAM function 106 

NOV ALUE condition 
not raised by VALUE function 113 
on SIGNAL instruction 145 
use of 154 

Null clauses 31, 184 
Null instruction, NOP 59 
Null strings 19, 24, 184 
Numbers 27, 127, 184 

See also Conversion 
arithmetic on 25, 127, 130 
checking with DATATYPE 91 
comparison of 26, 134 
conversion to character 94 
conversion to hexadecimal 95 
definition 129, 136 
error 157-164 
examples of 28 
formatting for display 96 
in DO instruction 4 7 
truncating 111 
use of by REXX 137 

NUMERIC 
DIGITS 129 
FORM 136 
FUZZ 135 

0 

instruction 59 
part of a number 129, 136 
settings saved during subroutine 

calls 45 

197 

OFF 
returned by CONDITION 

function 89 
OFF sub-keyword 

for disabling condition traps 145 
of CALL instruction 43 
of SIGNAL instruction 72 

ON 
returned by CONDITION 

function 89 
ON sub-keyword 

for enabling condition traps 145 
of CALL instruction 43 
of SIGNAL instruction 72 

Operators 24, 184 
arithmetic 25, 127, 130, 179 
blank 25 
characters used for 22, 184 
comparative 26, 134, 180 
composition of 25 
concatenation 25, 181 
logical· 27 
precedence (priorities) of 28 
tracing results of 76 

OPTIONS 
instruction 61 

OR 

settings saved during subroutine 
calls 45 

bit-by-bit (BITOR) 84 
logical exclusive 27 
logical inclusive 27 

Ordered date format 92 
OS/2 implementation 15 
OS/400 implementation 15 
OTHERWISE clause 

See SELECT instruction 
Output 

errors during 142 
to the user 139 

Overflow, arithmetic 138 
OVERLAY function 102 
Overlaying a string onto another 102 



198 

p 

Packing a string 
with B2X 85 
with X2C 116 

Pad character 184 
Parameters 

See Arguments 
Parentheses 

adjacent to blanks 22 
in expressions 24, 28 
in function calls 77 
in parsing templates 125 

PARSE instruction 62 
role in input and output 139 

Parsing 118-126, 184 
absolute columns 123 
definition 120 
general rules 118, 120 
introduction 118 
literal patterns 121 
multiple strings 125 
patterns 121 
positional patterns 123 
selecting words 122 
variable patterns 125 

Parsing templates 118-126 
in ARG instruction 42 
in PARSE instruction 62 
in PULL instruction 67 

Patterns 184 
in parsing 121-126 

Pausing during execution 
See Interactive tracing 

PC-DOS implementation 15 
Perceived legibility 7 
Period 

as placeholder in parsing 122 
causing substitution in variable 

names 33 
in numbers 129 

Persistent input and output 139 
Personal programming 1 
Philosophy of REXX ix 
Placeholder 185 
PL/I language 15 
Pools of external variables, access with 

VALUE function 112 
POS position function 102 
Positional patterns 123 
Power operator 25 

definition 132 
Powers of ten in numbers 27, 136 

Precedence of operators 28 
Precision 

of arithmetic 129, 185 
Preface ix 
Prefix operators 24, 185 

definition 130 

Index 

Presumed command destinations 40 
Priorities of operators 28 
PROCEDURE instruction 65 
Procedures Language 15 
Processing errors 

treated as SYNTAX 146 
Program 

retrieving lines with 
SOURCELINE 105 

Programmer's model of DO loop 52 
Programming style 7, 154 
Programs 

arguments to 42 
calling as functions 78 
examples 3, 4, 5, 6, 45, 79, 143, 171 
retrieving name of 63 

Prototype development 2 
Prototyping 

See Prototype development 
Pseudorandom number function, RAN­

DOM 103 
PULL 

instruction 67 
option of PARSE instruction 63 
role in input and output 139 

Pure numbers 135 
See also Numbers 

Purpose of the book ix 
PUSH 

instruction 68 
role in input and output 139 

Q 

QT example program 171 
Quasi-random number function, RAN­

DOM 103 
Queue 

counting lines in 103 
reading from with PULL 67 
role in input and output 139 
writing to with PUSH 68 
writing to with QUEUE 69 

QUEUE instruction 69 
role in input and output 139 

QUEUED function 103 



Index 

role in input and output 139 
Quotes in strings 19 

R 

RANDOM function 103 
RC 

not set during interactive 
tracing 151 

set by commands 37 
special variable 156 
use by an error trap 150 

Re-ordering data 
with TRANSLATE function 111 

Read position in a stream 140, 185 
Readability, of programs 7 
READY 

returned by STREAM function 106 
Reality, dealing with 11 
Recursion 44, 185 
Relative column specification in 

parsing 123 
Relative positional pattern 123, 185 
Reliability, of a language 11 
Remainder operator 25, 127 

definition 133 
Repeating a string with COPIES 90 
Repetitive DO loops 48, 185 
Repetitor phrase 48, 185 
Reservation of keywords 154 
Reset, of elapsed time 109 
Resetting streams 

input 86, 99 
output 87, 100 

Residual count 
returned by CHAROUT 87 
returned by LINEOUT 100 

Residue 
See Remainder operator 

RESULT 
not set by CALL ON condition 147 
set by RETURN instruction 44, 69 
special variable 156 

Results 
length of 24 

Return code 185 
as set by commands 37 
setting on exit 54 

RETURN instruction 69 
Return string 

setting on exit 54 
REVERSE function 104 

REXX 
background 1 
changes in this edition 175 
compiler 15 
design principles 13 
history 15 
implementations 15 
language committee xi 
language concepts 7 
language definition 17 
object-oriented 16 
summary of the language 3 
syntax diagrams 165 

RIGHT function 104 
Rounding 127 

definition 130 
when numbers used 137 

Routines 
See Functions 
See Subroutines 

199 

Running off the end of a program 54 

s 
SAA 

See Systems Application Architec­
ture 

Sample programs 
See Examples 

SAY -
instruction 70 
role in input and output 139 

Scientific notation 60, 136, 185 
SCIENTIFIC value for NUMERIC 

FORM 59 
SCRIPTNS document composition facil­

ity xii 
Search order 

for functions 79 
for labels 72 
for subroutines 43 

Searching a string for a word or 
phrase 102, 114 

Seconds 
See TIME function 

Seed 
for RANDOM function 103 

SELECT instruction 71 
Semicolons 18 

implied 23, 183 
omission of 39 

Serial input and output 



200 

See Character, input and output 
Sharing variables 

with VALUE function 112 
Shell languages 2 
SHOWME example program 6 
SIGL 

set by CALL instruction 44 
set by SIGNAL instruction 72 
special variable 156 
use by an error trap 150 

SIGN function 104 
SIGNAL 

execution of in subroutines 45 
instruction 72-73 
returned by CONDITION 

function 89 
SIGNAL ON 

See Condition trap 
Significant digits 

in arithmetic 129 
Signs in parsing templates 123 
Simple DO' group 48, 181 
Simple number 

See Numbers 
Simple repetitive loops 48, 185 
Simple symbols 33, 185 
Single stepping 

See Interactive tracing 
Size 

See also Length 
of language 12 

Sorted date format 93 
Source of a program 63 
SOURCE option of PARSE 

instruction 63 
SOURCELINE function 105 
SP ACE function 105 
Sparse arrays 

See Compound variables 
Special characters 22, 186 

used for operators 22 
Special variables 186 

RC 156 
RESULT 156 
set during condition trap 150 
SIGL 156 

Stack 
See PUSH instruction 

Standard date format 93 
Standard input and output 139 
State 

information returned by STREAM 
function 105 

of a condition 89, 147 
saved across calls 45 

Stem of a variable 33, 186 
assignment to 35 
used in DROP instruction 53 
used in PROCEDURE 

instruction 65 
Stepping through programs 

See Interactive tracing 
STET structured editing tool xi 
STREAM 

function 105 
function overview 140 

Stream command 105, 140, 186 
Streams 186 

Index 

See also Character, input and output 
errors 142 
state returned by STREAM 
function 105 

Strict comparative operators 26, 186 
Strings 19, 186 

as literal constants 19 
as names of functions 77 
as names of subroutines 43 
binary specification of 20 
comparison of 26 
concatenation of 25 
hexadecimal specification of 20 
interpretation of 55 
length of 24, 98 
null 19, 24 
quotes in 19 
verifying contents of 113 

STRIP function 107 
Strong typing 8 
Structured programming concepts 8 
Style, programming 7, 154 
Sub-expressions 24, 186 
Sub-keywords 39, 186 
Subcommands 

See Commands 
Subroutines 43, 186 

calling of 43 
forcing built-in or external 

reference 43 
multi-way call of 73 
naming of 43 
passing back values from 69 
return from 69 
use of labels 43 
variables in 65 

Substitution 
in expressions 24 



Index 

in variable names 33 
SUBSTR function 107 
Subtraction 25 

definition 130 
SUBWORD function 107 
Summary of the REXX language 3 
SYMBOL function 108 
Symbolic manipulation 9 
Symbols 21, 187 

assigning values to 32 
constant 33 
simple 33 
upper case translation 21 
use of 32 
valid names 21 

Syntactic units 11 
Syntax checking 

See TRACE instruction 
SYNTAX condition of SIGNAL instruc­

tion 145 
Syntax diagrams 165 

See also Instructions 
grammar of 39 

Syntax errors 
traceback after 76 
trapping with SIGNAL 

instruction 145 
System data queue 

See External data queue 
System independence 10 
System-dependent options 61 
Systems Application Architecture 15 

T 

Tail of a variable 33, 187 
Tailoring user commands 2 
Templates, parsing 118-126, 187 

general rules 118 
in ARG instruction 42 
in PARSE instruction 62 
in PULL instruction 67 

Ten, powers of 135 
Terminal 

reading from with PULL 67 
writing to with SAY 70 

Terms 24, 187 
Text formatting 

See Formatting 
See Words 

THEN 
as free standing clause 39 

following IF clause 54 
following WHEN clause 71 

TIME function 108 
Time-of-day 

See TIME function 
TO phrase of DO instruction 4 7 
TOAST example program 3 
Tokens 19, 187 

201 

TOOLS computer conference system x 
Tools, reliability of 11 
TRACE 

See also Interactive tracing 
function 110 
instruction 73 

Trace setting 
altering with TRACE function 110 
altering with TRACE 

instruction 73 
querying 110 
saved during subroutine calls 46 

Traceback, on SYNTAX error 76 
Tracing 187 

action saved during subroutine 
calls 46 

data identifiers 75 
execution of programs 73 
interactive 73, 151-153 

Trailing blanks 
removal with STRIP function 107 

Trailing zeros 130 
Transient input and output 139 
TRANSLATE function 111 
Translation 

See also Upper case translation 
with TRANSLATE function 111 

Trap names 
for condition traps 147 

Trapping of conditions 
See Condition trap 

"True" value 27 
TRUNC function 111 
Truncating numbers 111 
TSO/E implementation 15 
Type of data 

checking with DATATYPE 91 
Type-ahead lines 

counting characters with 
CHARS 88 

counting characters with 
LINES 101 

Typeless strings 24, 187 
Typewriter input and output 

See Character, input and output 



202 

Typing data 
See SAY instruction 

Typing of data strings 24 

u 
Underflow, arithmetic 138 
Uninitialized variables 32, 187 

value of 32, 34 
UNKNOWN 

returned by STREAM function 106 
Unpacking a string 

with C2X 91 
with X2B 115 

UNTIL phrase of DO instruction 4 7 
Upper case translation 

during ARG instruction 42 
during PULL instruction 67 
of symbols 21 
with PARSE UPPER 62 
with TRANSLATE function 111 

UPPER in PARSE instruction 62 
USA date format 93 
User input and output 139-145 
User is usually right 14 
Utility functions 81-117 
Utterances 139 

v 
VALUE 

function 112 
option of ADDRESS instruction 40 
option of PARSE instruction 64 
option of SIGNAL instruction 72 
option of TRACE instruction 73 

VAR option of PARSE instruction 64 
Variable reference 187 

in DROP instruction 53 
in parsing template 125 
in PROCEDURE instruction 65 

Variables 32, 187 
compound 33 
controlling loops 49 
dropping of 53 
exposing to caller 65 
external collections 112 
getting value with VALUE 112 
global 112 

in internal functions 65 
in parsing patterns 125 
in subroutines 65 
names of 32 
new level of 65 
parsing of 64 
resetting of 53 
setting new value 32 

Index 

setting value with VALUE 112 
simple 33 
special 

RC 156 
RESULT 156 
SIGL 156 

testing for initialization 108 
valid names 32 

VERIFY function 113 
VERSION option of PARSE 

instruction 64 
VM Newsletter x 
VM/CMS implementation 15 
VNET x, 13 

w 
Weekday 

See DATE function 
WHEN clause 

See SELECT instruction 
WHILE phrase of DO instruction 4 7 
Whole numbers 28, 187 

checking with DATATYPE 91 
definition 137 

WORD function 114 
Word processing 

See Formatting 
See Words 

WORDINDEX function 114 
WORDLENGTH function 114 
WORDPOS function 114 
Words 187 

counting in a string 115 
deleting from a string 94 
extracting from a string 107, 114 
finding in a string 114 
finding length of 114 
in parsing 122 
locating in a string 114 

WORDS function 115 
Write position in a stream 140, 188 



Index 

x 
XEDIT system product editor x1 
XOR 

bit-by-bit (BITXOR) 85 
logical 27 

XRANGE function 115 
X2B function 115 
X2C function 116 
X2D function 116 

y 

Year 
See DATE function 

Yorktown SVC package x 

z 
Zeros 

adding on the left 104 
removal with STRIP function 107 

Other Characters 

. (period) 
as placeholder in parsing 122 
causing substitution in variable 

names 33 
in numbers 129 

< less than operator 26 
<< strictly less than operator 27 
<<= strictly less than or equal 

operator 27 
<>less than or greater than 

operator 26 
<= less than or equal operator 26 
+ 

addition operator 25, 130 
sign in parsing template 123 

+++tracing flag 76 
I or operator 27 
I I concatenation operator 25 
& and operator 27 
&& exclusive or operator 27 
* multiplication operator 25, 131 

*-* tracing flag 76 
** power operator 25, 132 
..., not operator 27 
...,< not less than operator 26 

203 

...,<< strictly not less than operator 27 

...,>not greater than operator 26 

...,>> strictly not greater than 
operator 27 

...,= not equal operator 26 

...,== strictly not equal operator 27 
I division operator 25, 131 
II remainder operator 25, 133 
% integer division operator 25, 133 
>greater than operator 26 
>C> tracing flag 76 
>F> tracing flag 76 
>L> tracing flag 76 
>0> tracing flag 76 
>P> tracing flag 76 
> V> tracing flag 76 
>.> tracing flag 76 
>< greater than or less than 

operator 26 
>> strictly greater than operator 27 
>>> tracing flag 76 
>>= strictly greater than or equal oper-
ator 27 

>= greater than or equal operator 26 
? prefix on TRACE instruction 75 
= equals sign 

as equality operator 26 
assignment indicator 32 
immediate interactive 

command 151 
in DO instruction 4 7 
in parsing template 123 

== strictly equal operator 27 

sign in parsing template 123 
subtraction operator 25, 130 

\ not operator 27 
\ < not less than operator 26 
\<< strictly not less than operator 27 
\>not greater than operator 26 
\>> strictly not greater than 
operator 27 

\ = not equal operator 26 
\== strictly not equal operator 27 


	Cover
	Contents
	Preface
	The REXX Language
	Part 1Background
	Part 2REXX Language DefinitionThis

