
25th International Rexx Language Symposium, Memphis TN, 2014-05-04

Things to Do with Rexx
When You’re on Z

René Vincent Jansen

Previously

❖ There was EXEC2 on VM!

❖ There was CLIST on TSO!

❖ But the console typewriter ran out of
&&&&ersands

1979, REX is born

❖ Yes, it is 35 years old today!

❖ A second X was bought for one million $!

❖ Introduced publicly in 1981, Houston, TX!

❖ IBM Product 1982 due to customer demand

It is a high-level language

❖ Scripts!

❖ Applications!

❖ Scientific and Commercial Programming!

❖ Without resorting to an assembler language

The most useful command ever: Rexx’ read-evaluate-print

Command line scripting In this case, the Julian date

ISPF Edit Macro Language
❖ ISREDIT enables quick writing of edit macros!

!

!

!

!

!

❖ An example isredit macro in Rexx!

❖ Note the “address isredit” to set the environment

Write an ISPF application in Rexx

❖ ISPF shares its variable pool with Rexx: A Rexx ISPF application has “nothing
to declare”!

❖ Define your panels using GML or just the old fashioned way!

❖ Implement the logic in Rexx

DB2

❖ Can execute SQL and make complete applications!

❖ Stored procedures!

❖ DB2 command procedures!

❖ Formatting traces

Supported DB2 statements
 • CALL
 • CLOSE
 • CONNECT
 • DECLARE CURSOR
 • DESCRIBE prepared statement or table
 • DESCRIBE CURSOR
 • DESCRIBE INPUT
 • DESCRIBE PROCEDURE
 • EXECUTE
 • EXECUTE IMMEDIATE
 • FETCH
 • OPEN
 • PREPARE
 • RELEASE connection
 • SET CONNECTION
 • SET CURRENT PACKAGE PATH
 • SET CURRENT PACKAGESET
 • SET host-variable = CURRENT DATE
 • SET host-variable = CURRENT DEGREE
 • SET host-variable = CURRENT MEMBER
 • SET host-variable = CURRENT PACKAGESET
 • SET host-variable = CURRENT PATH
 • SET host-variable = CURRENT SERVER
 • SET host-variable = CURRENT SQLID
 • SET host-variable = CURRENT TIME
 • SET host-variable = CURRENT TIMESTAMP
 • SET host-variable = CURRENT TIMEZONE

 123 SIGNAL ON ERROR!
 124!
 125 SELECT_STMT = 'SELECT EMPPROJACT.PROJNO, PROJNAME, COUNT(*), ',!
 126 ' SUM((DAYS(EMENDATE) - DAYS(EMSTDATE)) * EMPTIME * ',!
 127 ' DECIMAL((SALARY / ?),8,2)) ',!
 128 'FROM CORPDATA/EMPPROJACT, CORPDATA/PROJECT, CORPDATA/EMPLOYEE',!
 129 'WHERE EMPPROJACT.PROJNO = PROJECT.PROJNO AND ',!
 130 ' EMPPROJACT.EMPNO = EMPLOYEE.EMPNO AND ',!
 131 ' PRENDATE > ? ',!
 132 'GROUP BY EMPPROJACT.PROJNO, PROJNAME ',!
 133 'ORDER BY 1 '!
 134 EXECSQL,!
 135 'PREPARE S3 FROM :SELECT_STMT'!
 136 11EXECSQL,!
 137 'DECLARE C2 CURSOR FOR S3'!
 138 EXECSQL,!
 139 'OPEN C2 USING :WORK_DAYS, :RAISE_DATE'!
 140!
 141 /* Handle the FETCH errors and warnings inline */!
 142 SIGNAL OFF ERROR!
 143!
 144 /* Fetch all of the rows */!
 145 DO UNTIL (SQLCODE <> 0)!
 146 12EXECSQL,!
 147 'FETCH C2 INTO :RPT2.PROJNO, :RPT2.PROJNAME, ',!
 148 ' :RPT2.EMPCOUNT, :RPT2.TOTAL_COST '!
 149!
 150 /* Process any errors that may have occurred. Continue so that */!
 151 /* we close the cursor for any warnings. */!
 152 IF SQLCODE < 0 THEN!
 153 SIGNAL ERROR!
 154!
 155 /* Stop the loop when we hit the EOF. Don't try to print out the */!
 156 /* fetched values. */!
 157 IF SQLCODE = 100 THEN!
 158 LEAVE!
 159!
 160 /* Print out the fetched row */!
 161 SAY RPT2.PROJNO ' ' RPT2.PROJNAME ' ' ,!
 162 RPT2.EMPCOUNT ' ' RPT2.TOTAL_COST!
 163 END;!
 164!
 165 EXECSQL,!
 166 'CLOSE C2'!
 167

Format DB2 Traces

❖ Start a monitor trace!

❖ Dest OPX!

❖ format an IFCA block

Format DB2 traces (continued)

use linkpgm to call the db2
attachment facility

DB2 - El Cheapo Lock Monitor

❖ This actually worked!

❖ Solved a nasty timeout!

❖ It was the first day on the job

CICS

❖ Make complete applications in Rexx!
"CICS XCTL PROGRAM('PGMA') COMMAREA(COMA)"

Systems Programming Language

!

/* REXX */ !
ascb = C2D(Storage(224,4)) !
assb = C2D(Storage(D2X(ascb+336),4)) !
jsab = C2D(Storage(D2X(assb+168),4)) !
jbnm = Storage(D2X(jsab+28),8) !
jbid = Storage(D2X(jsab+20),8) !
usid = Storage(D2X(jsab+44),8) !
Say 'JOBNAME='jbnm' JOBID='jbid' USERID='usid !
!

System Rexx

❖ Since z/OS 1.09!

❖ Automate all console commands!

❖ See the 2010 symposium materials

NetView Rexx

❖ This is here for a long time already!

❖ Take care of monitoring and network automation!

The Rexx Compiler

❖ Delivers performance benefits!

❖ Provides CEXEC modules for the Rexx environment!

❖ Provides native z/OS load modules to be linked with other programs

JCL Replacement

❖ Fred Brooks called JCL the worst language
ever designed and has stated he is sorry it
happened on his watch!

❖ True JCL opponents could rewrite most of
the jobs in Rexx; this is very seldom seen!

❖ ADDRESS LINKMVS is your main tool
here

Calling DFSORT
❖ As an example, call a sort from a Rexx exec without using JCL!
!

❖ "FREE FI(SYSOUT SORTIN SORTOUT SYSIN)"!

❖ "ALLOC FI(SYSOUT) DA(*)"!

❖ "ALLOC FI(SORTIN) DA('Y897797.INS1') REUSE"!

❖ "ALLOC FI(SORTOUT) DA('Y897797.OUTS1') REUSE"!

❖ "ALLOC FI(SYSIN) DA('Y897797.SORT.STMTS') SHR REUSE"!

❖ ADDRESS LINKMVS ICEMAN!

❖ Here are the DFSORT control statements that might appear in the Y897797.SORT.STMTS data set:!

!
❖ SORT FIELDS=(5,4,CH,A)!

❖ INCLUDE COND=(21,3,SS,EQ,C'L92,J82,M72')!

!
!
!

❖ the DFSort Manual calls this a “Rexx CLIST”

Calling ICETOOL
❖ "FREE FI(TOOLMSG DFSMSG VLR LENDIST TOOLIN)"!

❖ "ALLOC FI(TOOLMSG) DA(*)"!

❖ "ALLOC FI(DFSMSG) DUMMY"!

❖ "ALLOC FI(VLR) DA('Y897797.VARIN') REUSE"!

❖ "ALLOC FI(LENDIST) DA(*)"!

❖ "ALLOC FI(TOOLIN) DA('Y897797.TOOLIN.STMTS') SHR REUSE"!

❖ ADDRESS LINKMVS ICETOOL!

❖Here are the ICETOOL statements that might appear in the Y897797.TOOLIN.STMTS data set:!

!
❖ OCCURS FROM(VLR) LIST(LENDIST) -!

❖ TITLE('LENGTH DISTRIBUTION REPORT') BLANK -!

❖ HEADER('LENGTH') HEADER('NUMBER OF RECORDS') -!

❖ ON(VLEN) ON(VALCNT)!
!

Scripting your apps

❖ In order to make your application scriptable, you define Rexx function
packages that execute code in your application!

❖ This interface is highly standardized and exhaustively documented!

❖ Its is usual to define these in Assembler but C can also be used

Calling Rexx from COBOL
❖ procedure division.!

❖ 000-do-main-logic.!

❖ display "PROGRAM COBPRG - Beginning".!

❖ display "Return code before call is " RETURN-CODE.!

❖ *!

❖ * Pass the procedure parm HELLO to IRXJCL.!

❖ * Pass 3 to REXX procedure 'HELLO'.!

❖ * Set the size of the argument.!

❖ *!

❖ move "HELLO 3" to ARG-CHAR.!

❖ move 8 to arg-size.!

❖ * Call "IRXJCL" in order to execute the REXX procedure!

❖ move "IRXJCL" to PGM-NAME.!

❖ CALL PGM-NAME USING ARGUMENT.!

❖ * Display the return code.!

❖ display "Return code after call is " RETURN-CODE.!

❖ display "PROGRAM COBPRG - Normal end".!

❖ stop run.

Calling Rexx from PL/1
❖ FETCH IRXEXEC;!

❖ ! CALL IRXEXEC(EXECBLK_PTR,!

❖ ! ARGTABLE_PTR,!

❖ ! flags,!

❖ ! INSTBLK_PTR,!

❖ ! reserved_parm5,!

❖ ! EVALBLK_PTR,!

❖ ! reserved_workarea_ptr,!

❖ ! reserved_userfield_ptr,!

❖ ! reserved_envblock_ptr,!

❖ ! REXX_return_code_ptr);!

❖ ! /* Handle the return code. */!

❖ ! RETURN_CODE = PLIRETV;!

❖ ! PUT SKIP EDIT (' RETURN CODE: ' , RETURN_CODE) (A, F(4));!

❖ ! PUT SKIP EDIT ('REXX RETURN CODE: ' , REXX_RETURN_CODE) (A, F(4));!

❖ ! PUT SKIP EDIT ('REXX RESULT IS: ' ||!

❖ ! SUBSTR(EVALBLK_EVDATA,1,EVALBLK_EVLEN)) (A);!

❖ ! PUT SKIP EDIT ('End of PLIPROG') (A);!

❖ ! RETURN;!

❖ ! END PLIPROG;

This is an impression of the main call; there is some DCL overhead needed

ZOC and its Rexx interface

❖ Zap-o-com is a 3270 (+5250+Unix) emulator and as such is on-topic for this
talk!

❖ It has a well maintained Rexx interface that enables use of ooRexx and
Regina!

❖ It is highly recommended (I have no stake in it, it is from a German company!

❖ All emulator actions can be scripted

Using Unix System Services with Rexx

❖ Ever tried to make an exec sleep for 10 seconds?!

❖ This is how it is done the easy way: !

❖ ADDRESS SYSCALL!

❖ "sleep" 10

Of course, z/OS is UNIX

❖ Young persons: read right to left

…and has been a looong time …

Wait, does it have Stream-IO?

❖ Of course, it has them, the UNIX way!

❖ It is ironic that this environment has these calls, years after they did not made
the source-freeze when Rexx went to Endicott!

❖ Let us look a bit deeper into this very modern way to write Rexx on z/OS

Classic Rexx into the 21st Century

z/OS Unix adds three
environments to ADDRESS
SYSCALL - for, erm, System Calls!
!
SH - The Unix Shell!
!
TSO - The (very non-optional) Time Sharing Option

File System Considerations

❖ A Rexx program that is invoked from a z/OS shell or from a program must
be a text file or a compiled Rexx program that resides in the z/OS Unix file
system!

❖ It must be readable and writeable!

❖ CEXEC output can be executed in the z/OS shell environment. The
catalogued procedure REXXOEC can be used to compile and OCOPY the
program to the Unix filesystem in one go

SYSCALL

SYSCALL can be run from TSO/E or Unix Shell

❖ start program with syscall(‘on’)

❖ ensures that ADDRESS syscall is enabled!

❖ ensures that the address space is a process (this is called ‘dubbing’)!

❖ initializes the Rexx variables in the initial variable pool!

❖ sets the process signal mask to block all blockable signals!

❖ clears the argc and argv variables

SH

The SH environment
For a REXX program with syscall commands that will be
run from a z/OS shell or from a program, SH is the initial
host environment. The SYSCALL environment is
automatically initialized as well, so you do not need to
begin the REXX program with a syscalls(’ON’) call. !
!

Syscall commands within the REXX program (for
example, chmod) are interpreted as z/OS shell
commands, not as syscall commands.!

Using external functions and subroutines
❖ The search path for subroutines and external functions is similar to that for a Rexx program

that is used from a z/OS shell or a program!

❖ The PATH variable is used to locate programs that are called by only using the file name!

❖ For executable programs, LPA, link list and STEPLIB are searched!

❖ If the name contains special or lowercase characters, quotes must be used!

❖ ans=‘myfunc’(p1,p2)!

❖ Otherwise, the name is folded to uppercase!

❖ Only interpreted Rexx programs are found in the z/OS Unix filesystem, other languages and
compiled Rexx is not found in the filesystem (but is found in STEPLIB or LPA, link list)

TSO

The TSO environment

A REXX program can run TSO/E commands, but you cannot use TSO commands to
affect your REXX environment, or have REXX statements or other host command
environments affect your TSO process. !
Commands that are addressed to TSO will be run in a TMP running in a separate
address space and process from your REXX program. !
The TSO process is started when the first TSO command is run, and persists until
your REXX program terminates or you run the TSO LOGOFF command.!

ADDRESS TSO

❖ The TSO command environment can be used from a z/OS Unix Rexx
environment, and is initialized with:!

❖ address tso [command]

❖ where [command] may be any TSO command, clist, exec that can run in a
TSO batch tmp!

❖ the started program can be observed with ps as process bpxwrtso

TSO Input

❖ Most TSO programs use TGET for input and will fail!

❖ For commands that are able to read input, first data is what is on the stack,
and then any data that is in your Rexx exec’s standard input stream!

❖ The standard input stream may also be queued as part of the input stream!
!
!

For example, if you have a file redirected as input and you run a TSO command before processing that file, some or all of the
file may be queued to the TSO command. If input is the terminal, queued input may be queued to the TSO command. !
This characteristic can be used to interact with some TSO commands.

TSO Output

❖ The standard output stream of the Rexx exec will be used!

❖ The outtrap() function can be used to store output in a variable

TSO Examples
To run the TSO/E TIME command:	

address tso ’time’	

To trap command output and print it:	

call outtrap out.	

 address tso ’listc’	

 do i=1 to out.0	

say out.i end	

To run a REXX exec in TSO/E:	

address tso	

 "alloc fi(sysexec) da(’schoen.rexx’) shr"	

 "myexec"	

More examples

Variable Scope
When the REXX program is initialized and the SYSCALL environment is
established, the predefined variables are set up. If you call an internal
subroutine that uses the PROCEDURE instruction to protect existing
variables by making them unknown to that subroutine (or function), the
predefined variables also become unknown. If some of the predefined
variables are needed, you can either list them on the PROCEDURE
EXPOSE instruction or issue another syscalls(’ON’) to reestablish the
predefined variables. The predefined variables are automatically set up for
external functions and subroutines. For example:	

subroutine: procedure	

junk = syscalls(’ON’)	

parse arg dir	

’readdir (dir) dir. stem.’	

Running Rexx in z/OS Unix from a C program
#pragma strings(readonly)	

#include <stdlib.h>	

#include <string.h>	

#include <stdio.h>	

typedef int EXTF();	

#pragma linkage(EXTF,OS)	

int main(int argc, char **argv) {	

extern char **environ;	

EXTF *irxjcl;	

EXTF *bpxwrbld;	

/* access environ variables */	

/* pointer to IRXJCL routine */	

/* pointer to BPXWRBLD routine */	

/* addr of REXX environment */	

/* temps */	

/* return code */	

/* ptr to env length pointers */	

/* ptr to env lengths */	

/* OE MVS env work area */	

/* name of exec up to 8 chars */	

char *penvb;	

int i,j;	

long rcinit;	

int **environlp;	

int *environl;	

char rxwork[16000];	

char *execname="execname";	

char *execparm="exec parameter string"; /* parm to exec */	

struct s_rxparm {	

 short len;	

 char name[8];	

 char space;	

 char text[253];	

 } *rxparm;	

/* parm to IRXJCL */	

/* halfword length of parm */	

/* area to hold exec name */	

/* one space */	

/* big area for exec parm */	

/* if stdin or stdout are not open you might want to open file */	

/* descriptors 0 and 1 here */	

/* if no environ, probably tso or batch - make one */	

if (environ==NULL) {	

environ=(char **)malloc(8);	

environ[0]="PATH=.";	

environ[1]=NULL;	

};	

/* create one */	

/* set PATH to cwd */	

/* env terminator */	

/* need to build the environment in the same format as expected by */	

/* the exec() callable service. See	

/* Assembler Callable Services for UNIX System Services.	

/* the environ array must always end with a NULL element	

*/ 
*/	

*/	

for (i=0;environ[i]!=NULL;i++);	

environlp=(int **)malloc(i*4+4);	

environl=(int *)malloc(i*4+4);	

for (j=0;j<i;j++) {	

 environlp[j]=&environl[j];	

 environl[j]=strlen(environ[j])+1;	

 };	

/* count vars	

/* get array for len ptrs */	

/* get words for len vals */	

/* point to len */	

/* set len word */	

/* null entry at end */	

 */	

environlp[j]=NULL;	

environl[j]=0;	

/* load routines	

 irxjcl=(EXTF *)fetch("IRXJCL	

");	

Chapter 2. z/OS UNIX REXX programming services 17	

*/	

bpxwrbld=(EXTF *)fetch("BPXWRBLD ");	

/* build the REXX environment */	

rcinit=bpxwrbld(rxwork,	

argc,argv,	

 i,environlp,environ,	

 &penvb);	

if (rcinit!=0) {	

 printf("environment create failed rc=%d\n",rcinit);	

 return 255;	

 };	

/* if you need to add subcommands or functions to the environment, */	

/* or create a new environment inheriting the current one, this is */	

/* the place to do it. The user field in the environment is used */	

 /* by the z/OS UNIX REXX support and must be preserved.	

 /* run exec	

 rxparm=(struct s_rxparm *)malloc(strlen(execname)+	

 strlen(execparm)+	

 sizeof(struct s_rxparm));	

 memset(rxparm->name,’ ’,sizeof(rxparm->name));	

 memcpy(rxparm->name,execname,strlen(execname));	

 rxparm->space=’ ’;	

 memcpy(rxparm->text,execparm,i=strlen(execparm));	

 rxparm->len=sizeof(rxparm->name)+sizeof(rxparm->space)+i;	

 return irxjcl(rxparm);	

}	

*/ 
*/	

For example, to define your external functions for an application support package

chmod

assume that pathname was assigned a value earlier
in the exec. This example changes the mode of the
file to read-write-execute for the owner, and read-
execute for all others:	

"chmod (pathname) 755"	

Rexx I/O Functions

❖ lineout() and charout()!

❖ linein() and charin()!

❖ stream()!

❖ streams can be opened implicitly and explicitly

Example Rexx I/O Functions

To read the next 256 characters:	

say charin(file,,256)
!

To set the read location to the sixth 80-byte record:	

call charin file,5*80+1,0

This example opens a stream for the file mydata.txt: !
file=stream(’mydata.txt’,’c’,’open write’)

!

This example opens a stream for the file mydata.txt, but replaces the file if it exists:	

file=stream(’mydata.txt’,’c’,’open write replace’)

Submit a Job to JES2

do i=1 by 1 while lines(fn)>0
 fn.i=linein(fn)
 end
 fn.0=i-1
 say submit(’fn.’)

BPXWDYN, interface to dynamic allocation
This example allocates SYS1.MACLIB to SYSLIB and directs messages to z/OS UNIX standard error (sdterr):	

!
call bpxwdyn "alloc fi(syslib) da(sys1.maclib) shr msg(2)”

!
This example requests that the name of the data set allocated to ddname SYSLIB be returned in the REXX variable dsnvar.	

call bpxwdyn "info fi(syslib) inrtdsn(dsnvar)"

!

This example frees SYSLIB and traps messages in stem S99MSG.:	

call bpxwdyn "free fi(syslib)"

!

This example concatenates SYS1.SBPXEXEC to SYSPROC:	

if bpxwdyn("alloc fi(tmp) da(sys1.sbpxexec) shr msg(2)")=0 then
 call bpxwdyn "concat ddlist(sysproc,tmp) msg(2)"

Rexx for the 21st Century

❖ Pervasive on z/OS!

❖ Support for USS!

❖ Reuse these interfaces for ooRexx on z/OS

