
IBM Compiler and Library for REXX on IBM Z
Version 1 Release 4

User’s Guide and Reference

IBM

SH19-8160-06

Note

Before using this information and the product it supports, be sure to read the general information under
Appendix G, “Notices,” on page 267.

Seventh Edition, August 2013

This edition applies to version 1 release 4 of IBM Compiler for REXX on IBM Z (product number 5695-013) and the IBM
Library for REXX on IBM Z (product number 5695-014), and to all subsequent releases and modifications until otherwise
indicated in new editions.

This edition replaces SH19-8160-04.
© Copyright International Business Machines Corporation 1991, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About This Book..xix
How to Read the Syntax Notation... xix
How This Book Is Organized... xix
How to Send Your Comments.. xx

What's New in Release 4... xxi
IBM Compiler for REXX on IBM Z..xxi
IBM Library for REXX on IBM Z.. xxii

Part 1. Programming Reference Information...1

Chapter 1. Overview...3
Background information about compilers... 3
The Level of REXX Supported by the Compiler..3
Using the Compiler in Program Development..3

Background information about error checking.. 4
Forms and Uses of Output..4
Porting and Running Compiled REXX Programs.. 5
Calling and Linking REXX Programs... 5
Running above 16 Megabytes in Virtual Storage...6
SAA Compliance... 6
Choosing the National Language..6
Alternate Library Overview...6
Stream I/O for TSO/E REXX Function Package..7
Alias Definitions and Member Names under z/OS...7

Chapter 2. Invoking the Compiler..9
Invoking the Compiler under z/OS... 9

Invoking the Compiler with the REXXC (FANC) EXEC.. 9
Invoking the Compiler with ISPF Panels..11
Invoking the Compiler with JCL Statements..12
Invoking the Compiler with Cataloged Procedures... 13
Invoking the Compiler with the 'REXXCOMP' Command...13
Standard Data Sets Provided for the Compiler.. 13

Invoking the Compiler under z/VM.. 14
Invoking the Compiler with REXXD.. 14
Invoking the Compiler with the REXXC EXEC.. 16
Batch Jobs...17

Chapter 3. Compiler Options and Control Directives..19
Compiler Options..19

ALTERNATE... 19
BASE..19
CEXEC..20
COMPILE... 21
CONDENSE..21
DDNAMES..22
DLINK.. 23
DUMP...24
FLAG.. 25
FORMAT...25

 iii

IEXEC...26
LIBLEVEL...27
LINECOUNT...28
MARGINS.. 29
OBJECT... 29
OLDDATE... 31
OPTIMIZE..32
PRINT.. 32
SAA..33
SLINE...33
SOURCE...33
TERMINAL... 34
TESTHALT..34
TRACE..35
XREF.. 35

Control Directives... 36
%COPYRIGHT... 36
%INCLUDE.. 37
%PAGE.. 38
%STUB.. 39
%SYSDATE.. 39
%SYSTIME.. 40
%TESTHALT.. 40

Chapter 4. Runtime Considerations.. 43
Organizing Compiled and Interpretable EXECs under z/OS..43
Organizing Compiled and Interpretable EXECs under z/VM... 43
Organizing Compiled and Interpretable EXECs under VSE/ESA...44
Use of the Alternate Library (z/OS, z/VM)..44
Other Runtime Considerations...45

Chapter 5. Understanding the Compiler Listing..49
Compilation Summary..49
Source Listing... 49
Messages.. 51
Cross-Reference Listing... 52
Compilation Statistics.. 54
Examples with Column Numbers...55
Example of a Complete Compiler Listing...59

Chapter 6. Using Object Modules and TEXT Files...65
Initial Considerations... 65
Object Modules (z/OS)... 65

Invoking a REXX Program as a Command or a Program..66
Improving Packaging and Performance... 66
Building Function Packages..67
Writing Parts of Applications in REXX.. 67
REXXL (z/OS)...67

TEXT Files (z/VM)... 69
Object Modules (VSE/ESA)...70

REXXPLNK Cataloged Procedure (VSE/ESA)..71
REXXLINK Cataloged Procedure (VSE/ESA).. 71
REXXL Cataloged Procedure (VSE/ESA)...72

Linking External Routines to a REXX Program...73
Resolving External References—An Example.. 73

Chapter 7. Converting CEXEC Output between Operating Systems.. 77
Compiling on One System and Running on Another System.. 77

iv

Converting from z/OS to MVS OpenEdition.. 77
Converting from z/OS to z/VM.. 77
Converting from z/OS to VSE/ESA.. 77
Converting from z/VM to z/OS.. 78
Converting from z/VM to VSE/ESA... 78

Copying CEXEC Output...78
REXXF (FANCMF) under z/OS... 79
REXXF under z/VM..79
REXXV (FANV) under z/OS..80
REXXV under z/VM..80

Chapter 8. Language Differences between the Compiler and the Interpreters.......................................81
Differences from the Interpreters on VM/ESA Release 2.1, TSO/E Version 2 Release 4, and

REXX/VSE.. 81
Compiler Control Directives..81
Halt Condition... 81
NOVALUE Condition.. 82
OPTIONS Instruction.. 83
PARSE SOURCE Instruction..83
PARSE VERSION Instruction.. 83
RANDOM Built-In Function...84
SOURCELINE Built-In Function.. 84
Start of Clause...85
SYSVAR Function.. 85
TRACE Instruction and TRACE Built-In Function...85
TS (Trace Start) and TE (Trace End) Commands..86

Differences to Earlier Releases of the Interpreters...86
SIGNAL Instruction...86
Integer Divide (%) and Remainder (//) Operations.. 86
Exponentiation (**) Operation.. 87
Location of PROCEDURE Instructions..87
Binary Strings..87
Templates Used by PARSE, ARG, and PULL... 87
PROCEDURE EXPOSE and DROP..87
DO LOOPs.. 87
DBCS Symbols.. 87
VALUE Built-In Function... 88
Argument Counting... 88
Options of Built-In Functions... 88
Built-In Functions... 89
Options of Instructions... 89
Strict Comparison Operators..90
LINESIZE Built-In Function in Full-Screen CMS.. 90
Enhancement to the EXECCOMM Interface... 90

Chapter 9. Limits and Restrictions.. 91
Implementation Limits...91
Technical Restrictions.. 92

z/OS Restrictions...92
z/VM restrictions...92
VSE/ESA restrictions...92
C restriction...92

Chapter 10. Performance and Programming Considerations...93
Performance Considerations... 93

Optimization, Optimization Stoppers, and Error Checking..93
Arithmetic..95
Literal Strings.. 95

 v

Variables..96
Compound Variables...96
Labels within Loops.. 96
Procedures.. 96
TESTHALT Option..97
Frequently Invoked External Routines...97

Programming Considerations...97
Verifying the Availability of the Library...97
VALUE Built-In Function... 98
Stream I/O...98
Determining whether a Program is Interpreted or Compiled..99
Creating REXX Programs for Use with the Alternate Library (z/OS, z/VM)....................................99
Limits on Numbers..100

Part 2. Customizing the Compiler and Library... 101

Chapter 11. Customizing the IBM Compiler and Library for REXX on z/OS... 103
Modifying the Cataloged Procedures Supplied by IBM...103
Customizing the REXXC EXEC..103
Customizing the REXXL EXEC.. 103
Message Repository... 104

Chapter 12. Customizing the IBM Compiler and Library for REXX on z/VM.. 105
Customizing the Compiler Invocation Shells.. 105

Modifying the Function of the Compiler Invocation Shells..105
Setting Up Installation Defaults for the Compiler Options..105

Customizing the Compiler Invocation Dialog.. 106
Customizing the Library... 106

Defining the Library as a Physical Segment...106
Saving the Physical Segment... 106
Defining the Library as a Logical Segment... 107
Selecting the Version of the Library... 108
Customizing the Message Repository to Avoid a Read/Write A-Disk..109
Files Needed to Run Compiled REXX Programs.. 109

Chapter 13. Customizing the Library under VSE/ESA...111

Part 3. Stream I/O for TSO/E REXX...113

Chapter 14. How to Read the Syntax Diagrams..115

Chapter 15. Installing the Function Package..117
Preparation...117
Assembly, Link-Edit, and Verification.. 117
Installations with Multiple Function Packages... 118
Usage Considerations.. 118

Chapter 16. Understanding the Stream I/O Concept... 119
The Basic Elements of Stream I/O ..119
The TSO/E REXX Stream I/O Implementation.. 120

The Stream I/O Functions.. 120
Naming Streams... 120
Transient and Persistent Streams.. 121
Opening and Closing Streams.. 122
Stream Formats.. 123
Position Pointer Details.. 124
End-of-Stream Treatment.. 124

vi

Error Treatments...125
Multiple Read Operations...125

Chapter 17. Stream I/O Functions.. 127
CHARIN (Character Input)... 127
CHAROUT (Character Output)..128
CHARS (Characters Remaining)...129
LINEIN (Line Input)..129
LINEOUT (Line Output).. 130
LINES (Lines Remaining)..131
STREAM (Operations)...132

Part 4. Messages... 135

Chapter 18. Message Format and Return Codes.. 137
Message Format... 137
Return Codes..138

Chapter 19. Compilation Messages.. 139
FANCON0050T...139
FANFMU0051T...139
FANCON0052T...139
FANTOK0053T... 139
FANxxx0054T...139
FANxxx0055T...139
FANPAR0056I.. 139
FANCON0060T...139
FANPAR0071W.. 140
FANGAO0072S...140
FANPAR0073S..140
FANPAR0074W.. 140
FANPAR0075W.. 140
FANPAR0076W.. 140
FANPAR0077W.. 140
FANPAR0078W.. 140
FANPAR0079S..140
FANPAR0080S..141
FANPAR0081W.. 141
FANPAR0082W.. 141
FANGAO0083S...141
FANGAO0084W..141
FANPAR0090S..141
FANPAR0150S..141
FANPAR0151S..141
FANPAR0152S..142
FANPAR0153S..142
FANPAR0154S..142
FANPAR0155S..142
FANPAR0156S..142
FANPAR0157S..142
FANPAR0158S..142
FANPAR0159S..142
FANPAR0160S..142
FANPAR0161S..142
FANPAR0162S..142
FANPAR0163S..143
FANPAR0164S..143

 vii

FANPAR0180S..143
FANPAR0181S..143
FANPAR0182S..143
FANPAR0190S..143
FANPAR0191S..143
FANPAR0192S..143
FANPAR0193S..143
FANPAR0194S..144
FANPAR0250I.. 144
FANPAR0253S..144
FANPAR0254S..144
FANPAR0255S..144
FANPAR0256S..144
FANPAR0257S..144
FANPAR0258S..144
FANPAR0259S..145
FANPAR0260S..145
FANPAR0270S..145
FANPAR0271S..145
FANPAR0272S..145
FANPAR0273S..145
FANPAR0274S..145
FANPAR0275S..145
FANPAR0276S..145
FANPAR0277S..146
FANPAR0278S..146
FANPAR0279S..146
FANPAR0280S..146
FANPAR0281S..146
FANPAR0282S..146
FANPAR0283S..146
FANPAR0284S..146
FANPAR0285W.. 146
FANPAR0290S..146
FANPAR0350S..147
FANPAR0352S..147
FANPAR0353S..147
FANPAR0354S..147
FANPAR0371S..147
FANPAR0381S..147
FANPAR0390S..147
FANPAR0391S..147
FANPAR0392S..147
FANPAR0393S..148
FANPAR0394S..148
FANPAR0450S..148
FANPAR0451S..148
FANPAR0452S..148
FANPAR0460S..148
FANPAR0465W.. 148
FANPAR0466W.. 148
FANPAR0469S..148
FANPAR0470S..149
FANPAR0471S..149
FANPAR0472S..149
FANPAR0490S..149
FANPAR0550W.. 149
FANPAR0560S..149

viii

FANPAR0561S..149
FANPAR0562S..149
FANPAR0564S..149
FANPAR0565S..150
FANPAR0566S..150
FANPAR0567S..150
FANPAR0568S..150
FANPAR0569S..150
FANPAR0570S..150
FANPAR0580S..150
FANPAR0581S..151
FANPAR0582S..151
FANGAO0583S...151
FANPAR0584S..151
FANPAR0590S..151
FANPAR0591S..151
FANPAR0592S..151
FANPAR0593S..152
FANPAR0594S..152
FANPAR0595S..152
FANPAR0596S..152
FANPAR0597S..152
FANPAR0598S..152
FANPAR0599S..152
FANGAO0600W..152
FANPAR0601W.. 152
FANPAR0648S..153
FANPAR0650S..153
FANPAR0651S..153
FANPAR0652S..153
FANPAR0653S..153
FANPAR0654S..153
FANPAR0655S..153
FANPAR0656E..153
FANGAO0657S...154
FANGAO0658S...154
FANGAO0659S...154
FANPAR0660S..154
FANPAR0661S..154
FANPAR0662S..154
FANENV0663S... 154
FANENV0669T... 154
FANENV0670S... 155
FANENV0671T... 155
FANENV0672T... 155
FANENV0673S... 155
FANENV0674T... 155
FANENV0675T... 155
FANENV0676T... 155
FANENV0677S... 155
FANENV0678T... 155
FANENV0679T... 156
FANFMU0680T...156
FANFMU0681T...156
FANFMU0682T...156
FANFMU0683T...156
FANFMU0684T...156
FANFMU0685T...156

 ix

FANCON0686T...156
FANLIS0687T...156
FANLIS0688T...157
FANxxx0689T...157
FANENV0690T... 157
FANENV0691W.. 157
FANENV0692S... 157
FANENV0693T... 157
FANENV0694T... 157
FANENV0695T... 157
FANENV0696T... 158
FANENV0697T... 158
FANENV0698T... 158
FANENV0703S... 158
FANCON0704S...158
FANCOD0705S... 158
FANxxx0706S...158
FANENV0708T... 158
FANENV0709W.. 159
FANENV0710T... 159
FANENV0711T... 159
FANENV0712T... 159
FANxxx0713I..159
FANENV0718T... 159
FANENV0719T... 159
FANGAO0770S...160
FANENV0771S... 160
FANGAO0772W..160
FANGAO0773I..160
FANGAO0774I..160
FANENV0800E... 160
FANENV0801E... 160
FANENV0802E... 161
FANENV0803E... 161
FANPAR0849W.. 161
FANPAR0850W.. 161
FANPAR0851W.. 161
FANPAR0852W.. 161
FANPAR0854W.. 161
FANPAR0855W.. 161
FANPAR0856W.. 162
FANGAO0857W..162
FANGAO0858W..162
FANGAO0859S...162
FANGAO0860S...162
FANGAO0861S...162
FANGAO0862S...162
FANGAO0863S...163
FANGAO0864S...163
FANGAO0865S...163
FANGAO0866S...163
FANGAO0867W..163
FANGAO0868S...163
FANGAO0869S...163
FANFMU0870S...163
FANFMU0871T...164
FANGAO0872I..164
FANGAO0873I..164

x

FANGAO0874I..164
FANGAO0875I..164
FANGAO0878S...164
FANGAO0879S...164
FANGAO0880S...164
FANGAO0881S...164
FANGAO0882E...165
FANGAO0883S...165
FANGAO0884S...165
FANGAO0885S...165
FANGAO0886I..165
FANGAO0887I..165
FANGAO0888W..165
FANGAO0889I..166
FANENV0890T... 166
FANENV0891T... 166
FANENV0892T... 166
FANENV0893T... 166
FANCON0900T...166
FANxxx0901T...166
FANENV0902T... 167
FANENV0903T... 167
FANENV0904T... 167
FANFMU0906T...167
FANFMU0907T...167
FANFMU0908T...167
FANFMU0909T...168
FANFMU0910T...168
FANFMU0911T...168
FANCON0912T...168
FANLIS0913T...168
FANLIS0914T...168
FANLIS0915T...168
FANENV0916T... 168
FANENV0917T... 168
FANENV0918T... 169
FANENV0919T... 169
FANTOK0920T... 169
FANLIS0921T...169
FANLIS0922T...169
FANxxx0923T...170
FANENV0924T... 170
FANENV0925T... 170
FANCON0926T...170
FANENV0927S... 170
FANENV0928S... 171
FANENV0929S... 171
FANENV0930T... 171
FANENV0931T... 171
FANENV0932T... 171
FANENV0934E... 171
FANPAR0935E..172
FANPAR0936E..172
FANPAR0937E..172
FANxxx0938W..172
FANENV0939E... 172
FANENV0940E... 172
FANENV0941W.. 172

 xi

FANENV0942E... 172
FANENV0943I.. 172
FANENV0944S... 173
FANENV0945S... 173
FANENV0946S... 173
FANENV0947T... 173
FANxxx9999... 173
FANxxx9999... 173

Chapter 20. Runtime Messages.. 175
EAGREX0248E ...175
EAGREX0249E ...175
EAGREX0300E ...175
EAGREX0301I ... 175
EAGREX0302I ... 176
EAGREX0303I ... 176
EAGREX0304I ... 176
EAGREX0400E ...176
EAGREX0500E ...176
EAGREX0600E ...176
EAGREX0601I ... 176
EAGREX0602I ... 177
EAGREX0603I ... 177
EAGREX0700E ...177
EAGREX0800E ...177
EAGREX0801I ... 177
EAGREX0802I ... 177
EAGREX0900E ...177
EAGREX0901I ... 177
EAGREX0902I ... 177
EAGREX1000E ...178
EAGREX1100E ...178
EAGREX1101I ... 178
EAGREX1200E ...178
EAGREX1300E ...178
EAGREX1400E ...178
EAGREX1401I ... 178
EAGREX1402I ... 179
EAGREX1403I ... 179
EAGREX1404I ... 179
EAGREX1500E ...179
EAGREX1600E ...179
EAGREX1601I ... 179
EAGREX1700E ...179
EAGREX1800E ...179
EAGREX1900E ...179
EAGREX1901I ... 179
EAGREX1902I ... 180
EAGREX2000E ...180
EAGREX2001I ... 180
EAGREX2002I ... 180
EAGREX2003I ... 180
EAGREX2004I ... 180
EAGREX2100E ...180
EAGREX2200E ...180
EAGREX2300E ...180
EAGREX2400E ...181
EAGREX2500E ...181

xii

EAGREX2501I ... 181
EAGREX2502I ... 181
EAGREX2503I ... 181
EAGREX2504I ... 181
EAGREX2505I ... 181
EAGREX2506I ... 181
EAGREX2507I ... 182
EAGREX2508I ... 182
EAGREX2600E ...182
EAGREX2601I ... 182
EAGREX2602I ... 182
EAGREX2603I ... 182
EAGREX2604I ... 182
EAGREX2605I ... 182
EAGREX2606I ... 182
EAGREX2607I ... 183
EAGREX2608I ... 183
EAGREX2609I ... 183
EAGREX2700E ...183
EAGREX2701I ... 183
EAGREX2703I ... 183
EAGREX2706I ... 183
EAGREX2800E ...183
EAGREX2801I ... 183
EAGREX2802I ... 184
EAGREX2803I ... 184
EAGREX2804I ... 184
EAGREX2805I ... 184
EAGREX2806I ... 184
EAGREX2900E ...184
EAGREX3000E ...184
EAGREX3001I ... 184
EAGREX3002I ... 184
EAGREX3004I ... 185
EAGREX3005I ... 185
EAGREX3100E ...185
EAGREX3101I ... 185
EAGREX3102I ... 185
EAGREX3104I ... 185
EAGREX3200E ...185
EAGREX3300E ...185
EAGREX3301I ... 185
EAGREX3302I ... 185
EAGREX3304I ... 186
EAGREX3305I ... 186
EAGREX3306I ... 186
EAGREX3400E ...186
EAGREX3401I ... 186
EAGREX3402I ... 186
EAGREX3403I ... 186
EAGREX3404I ... 186
EAGREX3500E ...186
EAGREX3501I ... 186
EAGREX3502I ... 187
EAGREX3503I ... 187
EAGREX3504I ... 187
EAGREX3505I ... 187
EAGREX3506I ... 187

 xiii

EAGREX3507I ... 187
EAGREX3508I ... 187
EAGREX3600E ...187
EAGREX3700E ...187
EAGREX3800E ...187
EAGREX3801I ... 188
EAGREX3900E ...188
EAGREX4000E ...188
EAGREX4001I ... 188
EAGREX4002I ... 188
EAGREX4003I ... 188
EAGREX4004I ... 188
EAGREX4005I ... 188
EAGREX4006I ... 188
EAGREX4007I ... 189
EAGREX4008I ... 189
EAGREX4009I ... 189
EAGREX4010I ... 189
EAGREX4011I ... 189
EAGREX4012I ... 189
EAGREX4013I ... 189
EAGREX4014I ... 190
EAGREX4015I ... 190
EAGREX4017I ... 190
EAGREX4018I ... 190
EAGREX4019I ... 190
EAGREX4020I ... 190
EAGREX4021I ... 190
EAGREX4022I ... 190
EAGREX4023I ... 190
EAGREX4024I ... 191
EAGREX4025I ... 191
EAGREX4026I ... 191
EAGREX4027I ... 191
EAGREX4028I ... 191
EAGREX4029I ... 191
EAGREX4030I ... 191
EAGREX4031I ... 191
EAGREX4032I ... 191
EAGREX4033I ... 192
EAGREX4034I ... 192
EAGREX4035I ... 192
EAGREX4036I ... 192
EAGREX4037I ... 192
EAGREX4038I ... 192
EAGREX4039I ... 192
EAGREX4040I ... 192
EAGREX4041I ... 192
EAGREX4042I ... 193
EAGREX4043I ... 193
EAGREX4044I ... 193
EAGREX4045I ... 193
EAGREX4046I ... 193
EAGREX4047I ... 193
EAGREX4048I ... 193
EAGREX4100E ...193
EAGREX4101I ... 193
EAGREX4200E ...194

xiv

EAGREX4201I ... 194
EAGREX4202I ... 194
EAGREX4203I ... 194
EAGREX4204I ... 194
EAGREX4205I ... 194
EAGREX4206I ... 194
EAGREX4207I ... 194
EAGREX4208I ... 194
EAGREX4209I ... 194
EAGREX4210I ... 195
EAGREX4211I ... 195
EAGREX4300E ...195
EAGREX4400E ...195
EAGREX4500E ...195
EAGREX4600E ...195
EAGREX4700E ...195
EAGREX4800E ...195
EAGREX4801I ... 196
EAGREX4802I ... 196
EAGREX4803I ... 196
EAGREX4804I ... 196
EAGREX4805I ... 196
EAGREX4806I ... 196
EAGREX4900E ...196
EAGREX9999S ...196

Chapter 21. Stream I/O Messages.. 199
EAGSIO0001 ... 199
EAGSIO0002 ... 199
EAGSIO0003 ... 199
EAGSIO0004 ... 199
EAGSIO0005 ... 199
EAGSIO0007 ... 199
EAGSIO0008 ... 199
EAGSIO0009 ... 199
EAGSIO0010 ... 200
EAGSIO0011 ... 200
EAGSIO0012 ... 200
EAGSIO0013 ... 200
EAGSIO0014 ... 200
EAGSIO0015 ... 200
EAGSIO0016 ... 200
EAGSIO0017 ... 200
EAGSIO0018 ... 201
EAGSIO0019 ... 201
EAGSIO0020 ... 201
EAGSIO0021 ... 201
EAGSIO0022 ... 201
EAGSIO0023 ... 201
EAGSIO0024 ... 201
EAGSIO0025 ... 201
EAGSIO0026 ... 201
EAGSIO0027 ... 201
EAGSIO0028 ... 202
EAGSIO0029 ... 202
EAGSIO0030 ... 202
EAGSIO0031 ... 202
EAGSIO0032 ... 202

 xv

EAGSIO0033 ... 202
EAGSIO0034 ... 202
EAGSIO0035 ... 202
EAGSIO0036 ... 202
EAGSIO0037 ... 202
EAGSIO0038 ... 203
EAGSIO0039 ... 203
EAGSIO0040 ... 203
EAGSIO0041 ... 203
EAGSIO0042 ... 203
EAGSIO0043 ... 203
EAGSIO0044 ... 203
EAGSIO0045 ... 203
EAGSIO0046 ... 203
EAGSIO0047 ... 204
EAGSIO0048 ... 204
EAGSIO0049 ... 204
EAGSIO0050 ... 204
EAGSIO0051 ... 204
EAGSIO0052 ... 204
EAGSIO0053 ... 204
EAGSIO0054 ... 204
EAGSIO0055 ... 204
EAGSIO0056 ... 204
EAGSIO0057 ... 205
EAGSIO0058 ... 205
EAGSIO0059 ... 205
EAGSIO0060 ... 205
EAGSIO0061 ... 205
EAGSIO0062 ... 205
EAGSIO0063 ... 205
EAGSIO9999 ... 205

Appendix A. Interface for Object Modules (z/OS).. 207
ISPF Restrictions on Load Modules.. 207

Earlier Releases of ISPF...207
ISPF Version 4 Release 1...208
ISPF for z/OS Version 1 Release 5.5..208

Link-Editing of Object Modules... 208
DLINK Example.. 210

Stubs.. 212
Stub Names.. 212
Processing Sequence for Stubs... 213
Parameter Lists.. 215
Search Order.. 217
Testing Stubs..217

PARSE SOURCE..217

Appendix B. Interface for TEXT Files (z/VM)... 219
The Call from the Assembler Program.. 219

Call Type... 219
Registers...219
Extended PLISTs.. 220

What the REXX Program Gets... 220
Invocation with a Tokenized PLIST Only... 220
Invocation with an Extended PLIST or a 6-Word Extended PLIST... 220

Example of an Assembler Interface to a TEXT File.. 221

xvi

Appendix C. Interface for Object Modules (VSE/ESA).. 223
Stubs.. 223

Processing Sequence for Stubs... 223
Parameter Lists.. 225

PARSE SOURCE..226

Appendix D. The z/OS Cataloged Procedures Supplied by IBM............................ 229
REXXC (FANCMC)...229
REXXCG (FANCMCG)..230
REXXCL (FANCMCL)... 231
REXXCLG (FANCMCLG).. 232
REXXOEC (FANCMOEC)... 234
REXXL (EAGL)...235
MVS2OE (Only Hardcopy Sample).. 236

Appendix E. The VSE/ESA Cataloged Procedures Supplied by IBM...................... 239
REXXPLNK..239
REXXLINK.. 240
REXXL...241

Appendix F. Interlanguage Job Samples...245
Calling REXX from Assembler... 245

EAGGJASM for Calling IRXJCL...245
EAGGXASM for Calling IRXEXEC..247

Calling REXX from C...251
EAGGJC for Calling IRXJCL.. 251
EAGGXC for Calling IRXEXEC...252

Calling REXX from Cobol..257
EAGGJCOB for Calling IRXJCL... 257
EAGGXCOB for Calling IRXEXEC..259

Calling REXX from PL/I.. 262
EAGGJPLI for Calling IRXJCL...263
EAGGXPLI for Calling IRXEXEC..264

Appendix G. Notices.. 267
Programming Interface Information...268
Trademarks.. 268

Glossary of Terms and Abbreviations..271
Related Publications..277

IBM Compiler and Library for REXX on IBM Z Publications... 277
Other IBM Publications... 277

ISPF Publications... 277
Learning REXX.. 277
REXX Reference... 278
TSO/E and MVS/ESA Publications... 278
OpenEdition Publication.. 278
VM/SP Publications.. 278
VM/XA SP Publications.. 278
VM/ESA Publications..278
VSE/ESA Publication.. 279
C Publication.. 279
CMS Publications..279
z/VM Publications...279
z/OS Publications... 279
OS/390 Publications.. 279

 xvii

Index.. 281

xviii

About This Book

This book is intended to help you compile and run programs written in the Restructured EXtended
eXecutor (REXX) language. It describes how to use the:

• IBM® Compiler for REXX on IBM Z® (referred to as the Compiler)
• IBM Library for REXX on IBM Z (referred to as the Library)
• IBM Library for REXX in REXX/VSE (also referred to as the Library)

It also describes how the Alternate Library can be used by software developers and users of z/OS® or
z/VM® who do not have the IBM Library for REXX on IBM Z.

In addition to this, it describes the REXX Stream I/O function package and its usage for z/OS TSO/E.

It is assumed that you are familiar with the REXX language and with the operating system under which
you compile or run your programs:

• z/OS or OS/390® with Time Sharing Option Extensions (TSO/E)
• CMS on Virtual Machine/Extended Architecture (VM/XA), Virtual Machine/Enterprise System

Architecture (VM/ESA), or z/VM
• Virtual Storage Extended/Enterprise System Architecture (VSE/ESA) with REXX/VSE

Some of the information applies to all systems: z/OS, z/VM, and VSE/ESA. Information that applies to only
one system is indicated in the text.

How to Read the Syntax Notation
The notation used to define the command syntax in this book is as follows:

• A symbol (word) in boldface, such as CEXEC, denotes a keyword.
• Words in italics, such as options-list, denote variables or collections of variables.
• The brackets [and] delimit optional parts of the commands.
• The logical OR character | separates choices within brackets.

The notation of syntax diagrams is described in Chapter 14, “How to Read the Syntax Diagrams,” on page
115.

How This Book Is Organized
This book is organized as follows:

• Part 1, “Programming Reference Information,” on page 1 provides an overview and describes how to
invoke the Compiler. It also lists the compiler options and control directives, and explains the
differences between the language processed by the Compiler and the language processed by the
interpreters.

• Part 2, “Customizing the Compiler and Library,” on page 101 contains information for the system
programmer about customizing the Compiler and the Library.

• Part 3, “Stream I/O for TSO/E REXX,” on page 113 describes the REXX Stream I/O function package and
its usage for z/OS TSO/E.

• Part 4, “Messages,” on page 135 contains messages and their explanations.
• The appendixes contain reference information, such as cataloged procedures.

© Copyright IBM Corp. 1991, 2013 xix

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this book or any other REXX documentation:

• Visit our home page at: http://www.ibm.com/software/awdtools/rexx/ There you can access
the Internet Online Form where you can enter comments and send them.

• z/OS or z/VM customers can also use the IBM Service Center to raise a PMR against:

RETAIN queue: RASS,148

Specify the program ID of your IBM Compiler and Library for REXX on IBM Z installation:

569501303 (Compiler under z/OS)
569501403 (Library under z/OS)
569501304 (Compiler under z/VM)
569501404 (Library under z/VM)

xx IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

What's New in Release 4

Here you find an overview of the latest enhancements, changes, and highlights provided in Release 4.

Release 4 introduces new naming conventions:

• IBM Compiler and Library for SAA REXX/370 is now IBM Compiler and Library for REXX on IBM Z
• MVS™ and MVS/ESA are now z/OS
• VM is now z/VM

The IBM Compiler for REXX on IBM Z Release 4 and the IBM Library for REXX on IBM Z Release 4 are
enhanced to meet your continued requirement for REXX support on z/VM and z/OS. They:

• Include all service since Release 3
• Provide more efficient system management
• Support improved error checking
• Provide more information during debugging
• Improve error checking during compilation
• Allow increased flexibility

IBM Compiler for REXX on IBM Z
For z/VM and z/OS environments:

• Error checking of built-in functions is improved.
• The Compiler now issues messages even if there is no message repository installed under z/VM and

z/OS.
• A new date conversion function is provided that allows you to specify the input format, the input date,

and the output format.
• Debugging capabilities are improved by writing the source code file identifier into the compiled code.
• Host BIF plausibility checks are provided.
• Date conversion and separation characters are supported.
• The input file ID is written into the CEXEC.
• REXX utilities have been enhanced, such as REXXF for both products.
• New compiler directives provide improved systems management and debugging:

– %STUB to include a named stub already at compilation time into the object output file. It simplifies
link-editing of object modules for z/OS.

– %SYSTIME to retrieve the compilation time.
– %SYSDATE to retrieve the compilation date.
– %TESTHALT to place testhalt hooks at specific places.

• You can generate link-edited modules supporting nearly all of the previous stub conventions with only
one stub named MULTI.

• The following compiler options have been added or enhanced:

– SLINE(A) Automatic SLINE includes the source program depending on the compiler option TRACE
and ALTERNATE, and/or the SOURCELINE built-in function (BIF) that are used

– NO/OPTIMIZE bypasses the compiler optimization step
– FORMAT(C) formats the error messages and cross references with column numbers.
– LIBLEVEL(n) restricts the usage of REXX language constructs to a specific library level

© Copyright IBM Corp. 1991, 2013 xxi

– XREF has been enhanced to provide more details in the compiler listing, such as information about
exposed and dropped variables, variables without assignment, and optimization stoppers.

For z/VM environments only:

• Hardcoded messages are provided when the message repository is not available.
• The new compiler option OLDDATE(CIOP) sets the file date of the CEXEC, IEXEC, OBJECT, PRINT output
file to the file date of the source. It simplifies maintenance, because it allows you to set the date/time
stamp of various output files to the date/time stamp of the source file.

• Sequence numbers are supported.

For OS/390 and z/OS environments only:

• The new compiler option DDNAMES allows you to redefine the standard ddnames by reading a control
file.

• The interface to ISPF services is simplified.
• The portability with Stream I/O for TSO/E REXX function package is improved.

IBM Library for REXX on IBM Z
For OS/390 and z/OS environments only:

• Interfaces to operating system functions are simplified with a multi-purpose STUB.
• Sample code for interfacing with other programming languages such as C, Cobol, PL/I, or Assembler is

available.
• Stubs are enhanced to make the LANG (CREX) parameter obsolete.

xxii IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Part 1. Programming Reference Information

© Copyright IBM Corp. 1991, 2013 1

2 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 1. Overview

This chapter provides an overview of the features and functions of the:

• IBM Compiler for REXX on IBM Z
• IBM Library for REXX on IBM Z
• Alternate Library

The Compiler translates REXX source programs into compiled programs. The Library contains routines
that are called by compiled programs at runtime. The Alternate Library contains a language processor that
transforms the compiled programs and runs them with the interpreter. It can be used by z/OS and z/VM
users who do not have the IBM Library for REXX on IBM Z to run compiled programs.

The Compiler and Library run on z/OS systems with TSO/E, and under CMS on VM/XA, VM/ESA, and z/VM
systems. The IBM Library for REXX in REXX/VSE runs under VSE/ESA.

You may prefer to leave some programs uncompiled. This would be a good choice for simple programs
that are not used frequently. An example is a program that renames all the files in a library in accordance
with a new naming convention, and then never needs to be run again.

Background information about compilers
Instructions written in any high-level language, such as REXX, must be prepared for execution. The two
types of programs that can perform this task are:

• An interpreter, which parses and executes an instruction before it parses and executes the next
instruction.

• A compiler, which translates all the instructions of a program into a machine code program. It can keep
the machine code program for later execution. It does not execute the program.

The input to a compiler is the source program that you write.

The output from a compiler is the compiled program and the listing.

The process of translating a source program into a compiled program is known as compilation.

The Level of REXX Supported by the Compiler
The Compiler supports REXX language level 3.48 on z/OS in TSO/E Version 2 Release 4, CMS in VM/ESA
releases earlier than Release 2.1, and on VSE/ESA in REXX/VSE Version 1 Release 1. On CMS in VM/ESA
Release 2.1 and subsequent releases, the language level supported is 4.02.

Most of your existing REXX programs should compile without error and should give the same runtime
results without modification.

Most of the language features that are new in VM/ESA Release 2 and TSO/E Version 2 Release 4 are
available when running compiled programs, even when they are not accepted by the interpreters. See
Chapter 8, “Language Differences between the Compiler and the Interpreters,” on page 81 for details.

Using the Compiler in Program Development
One effective way of using the Compiler to develop REXX programs is the following:

1. Compile the program with the TRACE and NOTESTHALT compiler options and without the %TESTHALT
control directive. The SLINE or SLINE(AUTO) compiler option is required. This step performs
comprehensive error checking and produces an output that can be traced.

© Copyright IBM Corp. 1991, 2013 3

2. Debug the program using the output of the previous step.
3. Compile the program with the NOTRACE compiler option and, if required, the TESTHALT compiler

option and %TESTHALT control directive.

Background information about error checking
The compiler scans an entire program for such errors as incorrect instructions and variable names, even
in parts of a program that are not used when the program is run. By contrast, the interpreter stops as soon
as it detects an error. It does not detect syntax errors in parts of a program that are not used during a
particular invocation.

The compiler, however, cannot detect errors that arise at runtime. Consider this assignment:

averagescore = totalscore/numberofgames

This is valid during compilation, but could give an error at runtime. For example, if the variable
numberofgames is assigned the value zero, an arithmetic error occurs.

Forms and Uses of Output
The Compiler can produce output in the following forms:

• Compiled EXECs: These behave exactly like interpreted REXX programs. They are invoked the same
way by the system’s EXEC handler, and the search sequence is the same. The easiest way of replacing
interpreted programs with compiled programs is by producing compiled EXECs. Users need not know
whether the REXX programs they use are compiled EXECs or interpretable programs. Compiled EXECs
can be sent to VSE/ESA to be run there. In this book, compiled EXECs are often referred to as CEXEC
output.

• Object modules under z/OS or TEXT files under z/VM: These must be transformed into executable
form (load modules) before they can be used. Load modules and MODULE files are invoked the same
way as load modules derived from other compilers, and the same search sequence applies. However,
the search sequence is different from that of interpreted REXX programs and compiled EXECs. These
load modules can be used as commands and as parts of REXX function packages. Object modules or
MODULE files can be sent to VSE/ESA to build phases.

• IEXEC output: This output contains the expanded source of the REXX program being compiled.
Expanded means that the main program and all the parts included at compilation time by means of the
%INCLUDE directive are contained in the IEXEC output. Only the text within the specified margins is
contained in the IEXEC output. Note, however, that the default setting of MARGINS includes the entire
text in the input records.

You can produce all forms of output in one compilation. Compiled EXECs and object modules contain the
compiled code for the program:

• Generate load modules from object modules: Under z/OS, object modules can be used to generate
load modules. You need to link-edit the object modules with stubs before you can run them or before
you can link them with other programs. See “Object Modules (z/OS)” on page 65 and Appendix A,
“Interface for Object Modules (z/OS),” on page 207 for more information.

• Generate load modules from TEXT files: Under z/VM, a TEXT file can be processed into a MODULE file.
The MODULE file can be invoked like any other z/VM module. See “TEXT Files (z/VM)” on page 69 and
Appendix B, “Interface for TEXT Files (z/VM),” on page 219 for more information.

• Build phases from object modules: Under VSE/ESA, object modules can be used to build phases. You
need to combine the object modules with the appropriate stub, before you can use them. See “Object
Modules (VSE/ESA)” on page 70 and Appendix C, “Interface for Object Modules (VSE/ESA),” on page
223 for more information.

• Link TEXT files to Assembler programs: A TEXT file can be linked to an Assembler program. See “TEXT
Files (z/VM)” on page 69 for more information.

4 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Porting and Running Compiled REXX Programs
A REXX program compiled under z/OS can run under z/VM. Similarly, a REXX program compiled under
z/VM can run under z/OS. A REXX program compiled under z/OS or z/VM can run under VSE/ESA if
REXX/VSE is installed.

Note:

1. Machine mode 370 is no longer supported.
2. You must only recompile programs that were compiled with the z/VM REXX Compiler or with the IBM

Compiler for SAA REXX/370 Release 2 if they contain the CONDENSE compiler option. Otherwise you
need not recompile existing programs to run with the latest release level of REXX.

3. See also Chapter 7, “Converting CEXEC Output between Operating Systems,” on page 77 for more
information.

If you compiled your program under z/OS using:

• The CEXEC option, and want to run it under:

– z/OS, see “CEXEC” on page 20
– MVS OpenEdition, see “Converting from z/OS to MVS OpenEdition” on page 77
– z/VM , see “Converting from z/OS to z/VM” on page 77
– VSE/ESA, see “Converting from z/OS to VSE/ESA” on page 77

• The OBJECT option, and want to run it under:

– z/OS, see “OBJECT” on page 29
– z/VM, transfer the OBJECT output to z/VM and generate a module; see “TEXT Files (z/VM)” on page

69
– VSE/ESA, transfer the OBJECT output to VSE/ESA and generate a phase; see “Object Modules (VSE/

ESA)” on page 70

If you compiled your program under z/VM using:

• The CEXEC option, and want to run it under:

– z/OS, see “Converting from z/VM to z/OS” on page 78
– z/VM, see “CEXEC” on page 20
– VSE/ESA, see “Converting from z/VM to VSE/ESA” on page 78

• The OBJECT option, and want to run it under:

– z/OS, transfer the OBJECT output to z/OS and generate an object module; see “Object Modules (z/
OS)” on page 65

– z/VM, see “OBJECT” on page 29
– VSE/ESA, transfer the OBJECT output to VSE/ESA and generate a phase; see “Object Modules (VSE/

ESA)” on page 70

Calling and Linking REXX Programs
Compiled REXX programs can interface with other programs in the same ways as interpreted REXX
programs. For details, refer to TSO/E REXX/MVS: Reference, IBM VSE/ESA REXX/VSE: Reference, or to the
corresponding z/VM documentation.

Overview 5

Running above 16 Megabytes in Virtual Storage
Under z/OS systems and under z/VM systems running in XA mode, the Compiler, the Library, and the
compiled REXX programs can run above 16 megabytes in virtual storage. Under VSE/ESA, the compiled
REXX programs can run above 16 megabytes in virtual storage. This requires no user action. Data used
during a compilation or by a running program can reside above 16 megabytes in virtual storage.

SAA Compliance
The Systems Application Architecture® (SAA) definitions of software interfaces, conventions, and
protocols provide a framework for designing and developing applications that are consistent within and
across several operating systems.

The SAA REXX interface is supported by the interpreters under TSO/E, CMS, and VSE/ESA, and can be
used in any of these environments. Users whose programs run under TSO/E, CMS, or VSE/ESA can use the
language extensions provided by these interpreters. If you plan to run your programs in other
environments, however, some restrictions may apply. For details of the restrictions, consult the Systems
Application Architecture Common Programming Interface REXX Level 2 Reference.

To help you to write programs for use in all SAA environments, the Compiler can optionally check for SAA
compliance. With this option in effect, a warning message is issued for each non-SAA item found in a
program.

Choosing the National Language
The Compiler and Library provide optional support for languages other than American English. The
language you select is used for:

• Messages
• Some of the constant text in the compiler listing, such as the page headings
• Help panels
• Compiler invocation panels under z/OS

For information on selecting a national language:

• Under z/OS, see the descriptions of:

– The SETLANG function in the TSO/E REXX/MVS: Reference
– The PLANGUAGE and SLANGUAGE operands of the PROFILE command in the TSO/E Command

Reference
• Under z/VM, see the description of the SET LANGUAGE command in the command reference for your

system.
• Under VSE/ESA, only English is supported when running the IBM Library for REXX in REXX/VSE.

Alternate Library Overview
The Alternate Library enables users who do not have the Library installed to run compiled REXX programs.
It contains a language processor that transforms the compiled programs and runs them with the
interpreter, which is part of TSO/E and CMS.

Software developers can distribute the Alternate Library, free of charge, with their compiled REXX
programs. If their customer:

• Has the Library installed, the programs run as compiled REXX programs
• Installs the Alternate Library, the programs are interpreted

6 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Distributing the compiled REXX program, without the source, offers the following advantages:

• Maintenance of the program is simplified, because the code cannot be modified inadvertently.
• Compiled programs can be shipped in load module format and used to create function packages, even

for users who do not have the Library.

Note:

1. With the Alternate Library, the performance of compiled REXX programs is similar to that of
interpreted programs. The performance advantages of compiled REXX are available only when the
Library is installed.

2. To work with the Alternate Library, you must set the ALTERNATE and SLINE compiler options.

Stream I/O for TSO/E REXX Function Package
This function package is a collection of I/O functions that follow the stream I/O concept. It extends and
enhances the I/O capabilities of REXX for TSO/E, and shields the complexity of z/OS data set I/O to some
degree. Further, the use of stream I/O functions provides for easier coding syntax and leads to better
portability of REXX programs among different operating system platforms. The stream I/O concept is
introduced in Chapter 16, “Understanding the Stream I/O Concept,” on page 119.

This function package can be used with TSO/E REXX on z/OS, OS/390, and MVS systems that provide the
MVS Name/Token Services, which are required to hook the function package into an existing TSO/E REXX
installation. It is a loadable file that contains multiple object files bound together. Before its functions can
be accessed and executed, the function package must be properly integrated into TSO/E REXX. For more
information refer to Part 3, “Stream I/O for TSO/E REXX,” on page 113.

Note: It is assumed that you are familiar with the REXX language, the TSO/E environment, and the logical
organization of data sets in the z/OS environment.

Alias Definitions and Member Names under z/OS
The following table provides an overview of alias definitions and member names. It also identifies the
corresponding data sets.

Table 1: Alias and Member Names for Use with the Compiler

Alias Member Data Set

Procedures

REXXC FANCMC prefix.SFANPRC

REXXCG FANCMCG prefix.SFANPRC

REXXCL FANCMCL prefix.SFANPRC

REXXCLG FANCMCLG prefix.SFANPRC

REXXOEC FANCMOEC prefix.SFANPRC

Commands

REXXC FANC prefix.SFANCMD

REXXF FANCMF prefix.SFANCMD

REXXV FANV prefix.SFANCMD

Overview 7

Table 2: Alias and Member Names for Use with the Library

Alias Member Data Set

Procedure

REXXL EAGL prefix.SEAGPRC

Commands

REXXF EAGCMF prefix.SEAGCMD

REXXL EAGCML prefix.SEAGCMD

REXXQ EAGQRLIB prefix.SEAGCMD

REXXV EAGV prefix.SEAGCMD

8 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 2. Invoking the Compiler

This chapter describes in detail the various ways of invoking the IBM Compiler for REXX on IBM Z under
z/OS and under z/VM.

To use the Compiler, you supply:

• A source program.
• Compiler options. These control aspects of the Compiler’s processing.

Depending on the options used, the Compiler produces the following types of output:

• The compiled program, which can be a compiled EXEC, an object module for z/OS or VSE/ESA, or a
TEXT file for z/VM

• The compiler listing, which may include a source listing, messages, and a cross-reference listing
• Messages on the terminal
• IEXEC output, which can be interpreted

If you compile a program that was previously only interpreted, you may find that, at runtime, its behavior
is not identical. This is because there are some differences between the language that is processed by the
Compiler and by the interpreters. For more information refer to Chapter 8, “Language Differences
between the Compiler and the Interpreters,” on page 81.

Invoking the Compiler under z/OS
z/OS users can invoke the Compiler by using:

• REXXC—see “Invoking the Compiler with the REXXC (FANC) EXEC” on page 9
• ISPF compiler invocation panels—see “Invoking the Compiler with ISPF Panels” on page 11
• JCL statements—see “Invoking the Compiler with JCL Statements” on page 12
• Cataloged procedures—see “Invoking the Compiler with Cataloged Procedures” on page 13
• The 'REXXCOMP' command—see “Invoking the Compiler with the 'REXXCOMP' Command” on page 13

Invoking the Compiler with the REXXC (FANC) EXEC
You can invoke the Compiler in a TSO/E environment by using the compiler invocation EXEC: REXXC
(FANC). (See also “Alias Definitions and Member Names under z/OS” on page 7.) REXXC is supplied with
the Compiler to compile REXX source programs. It must run in a TSO/E address space.

To start the EXEC, enter the REXXC command in the following format:

REXXC source [options-list]

where:
source

Specifies the data set containing the REXX source program.

REXXC allocates the specified or default output data sets if they do not already exist. It uses defaults
for data set attributes and allocation values that are described in “Customizing the REXXC EXEC” on
page 103. For information about how the names of the default data sets are derived, see “Derived
Default Data Set Names” on page 10.

REXXC checks the data set organization for each output. It ends with an error rather than overwriting
a partitioned data set with a sequential data set of the same name, and vice versa.

© Copyright IBM Corp. 1991, 2013 9

options-list
Any of the compiler options that are described in “Compiler Options” on page 19. They can be
specified in any order.

You can use the following options to explicitly specify where the Compiler output is to be stored:

• “BASE” on page 19
• “CEXEC” on page 20
• “DUMP” on page 24
• “IEXEC” on page 26
• “OBJECT” on page 29
• “PRINT” on page 32

Derived Default Data Set Names

If you do not specify data set names, REXXC derives default names for output data sets. The following
tables show the default data set names that may be created by the REXXC command.

Table 3 on page 10 shows the defaults that are derived from the specified source (or the BASE option’s
value, if specified). The source program was either a member of a partitioned data set or a sequential data
set.

Table 3: Defaults that Are Derived from the Specified Source or the BASE option

Option Partitioned Data Set
pref.cccc.qual(member)

Sequential Data Set
pref.cccc.qual

CEXEC upref.cccc.CEXEC(member) upref.cccc.qual.CEXEC

IEXEC upref.cccc.IEXEC(member) upref.cccc.qual.IEXEC

OBJECT upref.cccc.OBJ(member) upref.cccc.qual.OBJ

PRINT upref.cccc.member.LIST upref.cccc.qual.LIST

DUMP upref.cccc.member.DUMP upref.cccc.qual.DUMP

The default name for the load-data-set-name parameter of the OBJECT option is derived from the name
of the data set that contains the output from the OBJECT option. This can be either a member of a
partitioned data set or a sequential data set:
Partitioned Data Set pref.cccc.qual(member)

upref.cccc.LOAD(csect)
Sequential Data Set pref.cccc.qual

upref.cccc.qual.LOAD(csect)

where:
pref

Represents the prefix.
cccc

Represents one or several data-set name qualifiers.
qual

Represents the last level qualifier.
csect

Represents the name the Compiler puts in the ESD from the OBJECT output. See Chapter 6, “Using
Object Modules and TEXT Files,” on page 65 for more information on csect.

10 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

upref
Represents the user’s default prefix (as set by the PROFILE PREFIX command). It is used for the
output data sets.

An Example

For example, you may have stored an interpretable REXX program named SAMPLE in the data set
pref.REXX.EXEC, which is allocated to the ddname SYSPROC.

You can generate a compiled REXX EXEC by allocating the data set pref.REXX.CEXEC to the ddname
SYSEXEC and entering the following command:

rexxc rexx.exec(sample) cexec(rexx.cexec(sample)) print(*)

In this command, print(*) is an option that writes the listing to ddname SYSTERM. Installation defaults
are used for options that you do not specify.

You can run a compiled program or an interpreted EXEC, by entering its name as a command. However,
your compiled program must be in the search sequence (see TSO/E REXX/MVS Reference for information
on search sequence). For example, by entering: sample

Invoking the Compiler with ISPF Panels
Under ISPF, you can invoke the Compiler from the Foreground REXX Compilation panel or the Batch REXX
Compilation panel. The panels, Figure 1 on page 11 and Figure 2 on page 12, are similar to those for
other high-level language compilers.

Because the ISPF panels use the REXXC EXEC to invoke the Compiler, you can specify the enhanced
options as well as all other Compiler options.

To use the Foreground REXX Compilation panel:

1. Select FOREGROUND on the ISPF/PDF Primary Option Menu.
2. Select REXX Compiler.
3. Enter the appropriate data set names with the extensions as described in the online help and the

compiler options listed in “Compiler Options” on page 19.

--------------------- FOREGROUND REXX COMPILATION ----------------------
 COMMAND ===>

 ISPF LIBRARY:
 PROJECT ===> TEST
 GROUP ===> LIB1 ===> LIB2 ===> LIB3 ===>
 TYPE ===> REXX
 MEMBER ===> (Blank or pattern for member selection list)

 OTHER PARTITIONED OR SEQUENTIAL DATA SET:
 DATA SET NAME ===>

 LIST ID ===>

 COMPILER OPTIONS:
 ===>
 ===>

 INCLUDE DATA SETS:
 ===>
 ===>
 ===>

Figure 1: Foreground REXX Compilation Panel (Panel ID: FANFP14)

Note: This panel may have been customized by your system administrator.

Invoking the Compiler 11

To use the Batch REXX Compilation panel:

1. Select BATCH on the ISPF/PDF Primary Option Menu.
2. Select REXX Compiler.
3. Enter the appropriate data set names with the extensions as described in the online help and the

compiler options listed in “Compiler Options” on page 19.

------------------------ BATCH REXX COMPILATION ------------------------
 COMMAND ===>

 ISPF LIBRARY:
 PROJECT ===> TEST
 GROUP ===> LIB1 ===> LIB2 ===> LIB3 ===>
 TYPE ===> REXX
 MEMBER ===> (Blank or pattern for member selection list)

 OTHER PARTITIONED OR SEQUENTIAL DATA SET:
 DATA SET NAME ===>

 LIST ID ===> (Blank for hardcopy listing)
 SYSOUT CLASS ===> * (If hardcopy requested)

 COMPILER OPTIONS:
 ===>
 ===>

 INCLUDE DATA SETS:
 ===>
 ===>
 ===>

Figure 2: Batch REXX Compilation Panel (Panel ID: FANJP14)

Note: This panel may have been customized by your system administrator.

The source program you specify must be stored in an ISPF library, a partitioned data set, or a sequential
data set. If you do not specify a member name of a library or partitioned data set, a list is displayed from
which you can select the member to be compiled.

The default output data set names are the same as those described for the REXXC EXEC (see “Derived
Default Data Set Names” on page 10) with the following additions:

• If the PRINT option is not specified, the compiler listing is named upref.mmm.LIST, where upref is the
user’s default data set prefix and mmm is the specified list identifier (LIST ID) or the member name of
the source program.

• The first group is used for the default output data set names if the source comes from an ISPF library
and more than one group is specified. Figure 1 on page 11 and Figure 2 on page 12 show examples of a
first group ISPF library name TEST.LIB1.REXX.

In contrast to the compilation panels for other languages, not only the compiler options but all REXXC
command options can be specified. For example, you can explicitly specify data set names for compiler
output, thus overriding the defaults.

Online help is available for the invocation panels.

Invoking the Compiler with JCL Statements
You can invoke the Compiler from a z/OS batch environment by writing and running your own JCL
statements or by running the supplied cataloged procedures as described in “Invoking the Compiler with
Cataloged Procedures” on page 13.

The JCL statements that you need are:

• A JOB statement that identifies the start of the job.

12 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

• An EXEC statement (PGM=REXXCOMP) that identifies the Compiler and the compiler options.
Additionally, a JOBLIB or STEPLIB data definition (DD) statement may be necessary, so that the system
can locate the REXXCOMP program.

• DD statements that identify both the input and the output data sets that the Compiler requires. These
are described in “Standard Data Sets Provided for the Compiler” on page 13.

• A delimiter statement that separates data in the input stream from the JCL statements that follow the
data.

• Job entry subsystem (JES) control statements that provide information to the JES.

Invoking the Compiler with Cataloged Procedures
You can compile a REXX program in a z/OS batch environment by using a cataloged procedure that is
invoked by an EXEC statement in your job. The main advantage of using cataloged procedures is that they
can include most of the JCL statements that you would otherwise have to write yourself. This is useful for
sets of JCL statements that you use regularly.

These cataloged procedures are listed in Appendix D, “The z/OS Cataloged Procedures Supplied by IBM,”
on page 229.

Note: Your system administrator may have customized the cataloged procedures on your system.

Invoking the Compiler with the 'REXXCOMP' Command
You can also invoke the Compiler in the foreground using ADDRESS LINKMVS 'REXXCOMP'. In this case,
ensure that an input data set is allocated under SYSIN. If there is no data set, TSO displays the prompt
mode. To exit the prompt mode, specify /*.

Standard Data Sets Provided for the Compiler
The Compiler requires some standard input and output data sets. The number of data sets depends on
the compiler options specified. You must define these data sets in DD statements with the ddnames
shown in Table 4 on page 13. The SYSIN DD statement is always required. DD statements corresponding
to %INCLUDE directives are also required. Their data control block (DCB) requirements correspond to
those of SYSIN in the following table.

Note:

1. Under SYSIN a data set name must be defined.
2. All data sets of the SYSIN concatenation are compiled in one step. These data sets can be sequential

(PS), a PDS with member specification, or both.
3. A PDS without member specification is not supported.
4. To perform the compile step with ddnames that are selected by the user instead of using the standard

names, the Compiler must read the renaming table from a data set defined by the standard name
FANDDN. For more information refer to “DDNAMES” on page 22.

Table 4: Data Sets Required by the Compiler (z/OS)

DDNAME

Record
Format
RECFM

Record Size
LRECL Contents

Required
for
Option

FANDDN F, FB ≤32 760 Input to the Compiler

V, VB ≤32 756

Invoking the Compiler 13

Table 4: Data Sets Required by the Compiler (z/OS) (continued)

DDNAME

Record
Format
RECFM

Record Size
LRECL Contents

Required
for
Option

SYSCEXEC F, FB ≤32 760 and ≥20 Compiled EXEC CEXEC

V, VB ≤32 756 and ≥24

SYSDUMP FA, FBA 121 Formatted dumps DUMP

VA, VBA 125

SYSIEXEC (refer to
“IEXEC” on page 26 for
more details.)

F, FB ≤32 760 Expanded source
program

IEXEC

V, VB ≤32 756

SYSIN F, FB ≤32 760 Input to the Compiler

V, VB ≤32 756

SYSPRINT FA, FBA 121 Listing, including
messages

PRINT

VA, VBA 125

SYSPUNCH F, FB 80 Object module OBJECT

SYSLIB F, FB ≤32 760 Input to the Compiler

V, VB ≤32 756

SYSTERM F, FB 80
(Recommended)

Errors, error messages,
message summary

TERMINAL or for
messages of
severity T

FA, FBA 81
(Recommended)

V, VB 84
(Recommended)

VA, VBA 85
(Recommended)

Invoking the Compiler under z/VM
z/VM users can invoke the Compiler by using:

• REXXD—see “Invoking the Compiler with REXXD” on page 14
• REXXC—see “Invoking the Compiler with the REXXC EXEC” on page 16
• “Batch Jobs” on page 17

Invoking the Compiler with REXXD
A sample compiler invocation dialog, REXXD, is supplied with the Compiler to compile REXX source
programs. From this panel, you can invoke the Compiler and perform associated tasks, such as inspecting
the listing and editing the source program. The main advantage of using an interactive dialog is that you
do not have to remember any commands or options: you are prompted for all the necessary information.

Note: The sample dialog may have been customized by your system administrator. Ask your system
administrator what command you should enter to start this dialog if you do not succeed in using REXXD.

14 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Start the dialog as follows:

REXXD [source-file-identifier]

where:
source-file-identifier

Is the file identifier of the source program. If you omit the file identifier, the program last processed
with REXXD is used again. You need not fully specify the source file identifier. If you specify only the
file name, all accessed disks are searched for a REXX program that has this file name and one of the
supported file types (listed in variable $.0ptypes in the file REXXDX XEDIT; see “Customizing the
Compiler Invocation Shells” on page 105). Alternatively, the file type could be prefixed according to
the rule specified in REXXDX in variable $.0ssft. The selected file identifier appears in the main panel
of the dialog. You can change it there if you wish.

An Example

Enter the following command, for example, to invoke the dialog:

rexxd test exec a1

The following panel appears:

 IBM Compiler for REXX on System z, Release 4
 Specify a program. Licensed Materials - Property of IBM
 Then select an action. 5695-013 (C) Copyright IBM Corp. 1989, 2003
 All rights reserved.
 Program TEST EXEC A1 Output disk: _

 Action _ Source active Compiled
 1 Compile TEST EXEC A1 into TEST CEXEC A1
 2 Switch (rename) source and compiled exec

 3 Run active (source) program with argument string
 4 Edit source program
 5 Inspect compiler listing
 6 Print source program
 7 Print compiler listing

 8 Specify compiler options

 Argument string: __

 Command ===> ___
 Enter F1=Help F2=Filelist F3=Exit
 F12=Cancel

Figure 3: Main Panel of the Sample Compiler Invocation Dialog

Use the various functions of the dialog as you need them:

• In the field Program, type or change the identifier of the program you want to work with.
• In the field Output disk, you can specify the disk on which the Compiler output is to be stored.
• To select an action, type its number in the selection field and press the Enter key.
• You can use the default compiler options to begin with.
• Whenever you need further guidance, press the Help key (F1) for online help.

When you start using the Compiler regularly, set up suitable values in the REXX Compiler Options
Specifications panel, shown in Figure 4 on page 16, and save them for future use. The compiler options
are explained in the online help and in “Compiler Options” on page 19.

Setting the Compiler Options

When you select the "Specify compiler options" action you get the following panels that prompt you for
the compiler options:

Invoking the Compiler 15

 REXX Compiler Options Specifications 1 of 2

 Specify which output files you want and their File-IDs More: +
 File identifiers
 Program name TEST EXEC A1
 Y Compiler listing (Y/N/P) = LISTING =
 Y Compiled EXEC (Y/N) = C* =
 N TEXT file (Y/N) = TEXT =
 N IEXEC file (Y/N) = I* =

 Specify compiler messages to be issued
 I FLAG Minimum severity of messages to be shown (I/W/E/S/T/N)
 N TERM Display messages at the terminal (Y/N)
 N SAA SAA-compliance checking (Y/N)
 * LL LIBLEVEL (*/2/3/4/5/6)

 Specify contents of compiler listing
 Y SOURCE Include source listing (Y/N)
 N XREF Include cross-reference listing (Y/S/N)
 N FORMAT Format with column numbers (Y/N)
 55 LC Number of lines per page (10-99 or, for no page headings, 0 or N)

 Command ===> ___
 Enter F1=Help F2=Filelist F3=Exit F4=Save F5=Refresh F6=Reset F8=Fwd
 F12=Cancel

Figure 4: Options Specification Panel (1 of 2)

 REXX Compiler Options Specifications 2 of 2

 Specify additional compiler options More: -

 Additional options
 N SL Support SOURCELINE built-in function (Y/A/N)
 N TH Support HI immediate command (Y/N)
 S NOC Error level to suppress compilation (*/W/E/S/T)
 N COND Condense compiled program (Y/N)
 N DL Include ESD and RLD in TEXT output (Y/N)
 N ALT Compiled program supports Alternate Library (Y/N)
 N TR Compiled program can be traced (Y/N)
 N OLDD Apply OLDDATE to Cexec/Print/Object/Iexec (Y/N/(C|P|O|I))
 1 * MARGINS Left and right source margins

 Special compiler diagnostics
 N DUMP Produce diagnostic output (0-2047, Y, or N)
 Y OPT Optimize compiled program (Y/N)

 Command ===> ___
 Enter F1=Help F2=Filelist F3=Exit F4=Save F5=Refresh F6=Reset F7=Bkwd
 F12=Cancel

Figure 5: Options Specification Panel (2 of 2)

The current default options are displayed. You can type and optionally save new values in any of the
fields. The compiler invocation dialog will use the saved options the next time it is invoked.

Invoking the Compiler with the REXXC EXEC
The compiler invocation EXEC, REXXC, operates in line mode; using it can be quicker than the dialog. For
any options that you do not specify, the EXEC uses defaults defined when the Compiler was installed. You
may prefer this method if you are an experienced z/VM user.

A sample compiler invocation EXEC, REXXC, is supplied with the Compiler to compile REXX source
programs.

Note: Ask your system administrator what command you should enter to start this EXEC if you do not
succeed in using the IBM-supplied EXEC.

16 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Enter the command to start the EXEC in the following format:

REXXC source-file-identifier [(options-list[)]]

where:
source-file-identifier

Is the file identifier of the source program. You need not fully specify the source file identifier. If the
file type is not specified, EXEC is used. If you do not specify the file mode, it defaults according to the
CMS search order.

options-list
Is a list of compiler options to be used, separated by blanks. For details of the options that can be
specified, see “Compiler Options” on page 19. The defined defaults are used for any options that you
do not specify. See “Setting Up Installation Defaults for the Compiler Options” on page 105 for details.

Batch Jobs
The Compiler can run in a batch machine with the z/VM Batch Facility or with the IBM licensed program
VM Batch Facility (Program Number 5664-364). To run the compiler invocation EXEC in batch, use your
standard procedure for submitting batch jobs.

Invoking the Compiler 17

18 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 3. Compiler Options and Control Directives

This chapter describes the compiler options, including the enhanced options for REXXC, and the control
directives that are available.

While the Compiler options are specified when the Compiler is invoked, the control directives are defined
within your program as part of the REXX code.

Compiler Options
This section describes the functions and syntax of the compiler options, along with their abbreviations
and defaults supplied by IBM.

Make sure you separate the options by blanks. The last specification of an option takes precedence.

The compiler options are described in alphabetical order.

ALTERNATE
The ALTERNATE option specifies that at runtime the Alternate Library may be used.
ALTERNATE

Creates a compiled program of CEXEC or OBJECT type that can run both with the Alternate Library
and the Library.

The SLINE compiler option must also be specified as described in “SLINE” on page 33.

If the DLINK option is specified, the program can take advantage of directly linked programs only
when running with the Library. For programs that run with the Alternate Library, DLINK has no effect;
the standard REXX search order is used. See “Creating REXX Programs for Use with the Alternate
Library (z/OS, z/VM)” on page 99 for more information.

NOALTERNATE
Creates a compiled program of CEXEC or OBJECT type that will run using the Library. The program
cannot run with the Alternate Library.

Abbreviations:
ALT, NOALT

IBM default:
NOALTERNATE

BASE
The BASE option can be used only when invoking the Compiler with the REXXC EXEC under z/OS (see
“Invoking the Compiler with the REXXC (FANC) EXEC” on page 9) or when invoking REXXC indirectly using
the ISPF panels (see “Invoking the Compiler with ISPF Panels” on page 11).

It can be used to specify the base for constructing the default output data set names for CEXEC, DUMP,
IEXEC, OBJECT, and PRINT output.
BASE(data-set-name[(member)])

The data set name and member name are used to construct the default data set names for compiler
output.

If the BASE option is not specified, the output data set names are created as explained in “Derived
Default Data Set Names” on page 10.

© Copyright IBM Corp. 1991, 2013 19

CEXEC
The CEXEC option specifies whether the Compiler is to produce a compiled EXEC. See also “OBJECT” on
page 29 for an alternative form of compiled output.
CEXEC

Under z/OS, this option produces a compiled EXEC in the data set allocated to the ddname SYSCEXEC.
CEXEC[(data-set-name)]

Can be used only when invoking the Compiler with the REXXC EXEC under z/OS (see “Invoking the
Compiler with the REXXC (FANC) EXEC” on page 9). Generates a compiled EXEC.

This option is extended so that you can specify the name of the data set in which the compiled EXEC is
to be stored. A default data set name is used if you do not specify data-set-name.

CEXEC[(file-identifier)]
Under z/VM, this option produces a compiled EXEC. You need not fully specify the file identifier. The
default file name is the name of the source file. The default file type is the letter C concatenated with
the source file type. The default file mode is the file mode of the source file, provided you currently
have read/write access to that minidisk; otherwise, file mode A1 is used.

NOCEXEC
Does not produce a compiled EXEC.

Abbreviations:
CE, NOCE

IBM default:
CEXEC

You can use compiled EXECs for:

• Programs to be used in command environments
• XEDIT macros
• PDF edit macros
• GDDM® macros
• Pipe filters
• Any other program that is not required to be in the form of a TEXT file or object module

Background information about compiled EXECs

You can replace your existing source EXECs with compiled EXECs. The search order for compiled and
interpretable EXECs is the same, and they can be invoked in the same way. This makes it possible to
ensure that there is no difference, from a user’s point of view, between invoking a compiled EXEC and
invoking the interpreter for the source program.

To achieve this aim:

• Under z/OS, using the explicit method of invoking EXECs, the TSO/E EXEC command specifies the
location of the REXX EXEC.

Using the implicit method of invoking EXECs, the interpretable EXEC is invoked as a command using the
member name of the interpretable EXEC. For the system to give control to the compiled EXEC, the EXEC
must have the same member name and must come earlier in the search order than the interpretable
EXEC. For more information, see “Organizing Compiled and Interpretable EXECs under z/OS” on page
43, TSO/E REXX/MVS Reference, and TSO/E Command Reference.

• Under z/VM, the compiled EXEC must be given the same file type, such as EXEC or XEDIT, that the
source program would have for interpretation. The source file must, therefore, be renamed, removed, or
moved further down the search order. The sample compiler-invocation dialog, REXXD, handles this
requirement. See “Invoking the Compiler with REXXD” on page 14 for a description of this dialog.

A compiled EXEC behaves the same as an interpretable EXEC, the:

– EXECLOAD command makes the EXEC resident

20 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

– DCSSGEN utility loads the EXEC in a discontiguous saved segment (DCSS)
– EXEC can be loaded and started through the CMS EXEC handler

Under VSE/ESA, the compiled EXEC must be stored in a sublibrary with member type PROC. To ensure
that the compiled REXX program is found before the interpretable one, use the LIBDEF statement as
described in “Organizing Compiled and Interpretable EXECs under VSE/ESA” on page 44. See
“Converting from z/OS to VSE/ESA” on page 77 or “Converting from z/VM to VSE/ESA” on page 78 for
details.

The compiler writes information about the source file and the compilation to the compiled EXEC. The
information includes the name of the source file (in z/OS, the data set name of the first data set in the
SYSIN concatenation; in z/VM, the file ID), and the date and time of the compilation. The first 160 bytes of
the compiled program are reserved for this information. You can use a text editor to browse or view the
information.

Note: If you open a REXX compiled output file in edit mode, you must not update or save it.

COMPILE
The COMPILE option specifies whether the Compiler is to produce compiled code after all error checking
has been performed. (The CEXEC and OBJECT options determine which files are created.)
COMPILE

Generates compiled code, unless:

• NOTRACE is in effect and a severe or terminating error is detected
• TRACE is in effect and a terminating error is detected

NOCOMPILE
Unconditionally suppresses the generation of compiled code after all error checking.

NOCOMPILE(W)
Suppresses the generation of compiled code if a warning, error, severe error, or terminating error is
detected.

NOCOMPILE(E)
Suppresses the generation of compiled code if an error, severe error, or terminating error is detected.

NOCOMPILE(S)
Suppresses the generation of compiled code if a severe error or terminating error is detected.

Abbreviations:
C, NOC

IBM default:
NOCOMPILE(S)

Note:

1. If you specify COMPILE with TRACE in effect, you receive output even if severe errors are diagnosed. If
you specify COMPILE with NOTRACE in effect, you receive the same output as with NOC(S).

2. You should only run a compiled REXX EXEC if it does not contain any errors. Otherwise unpredictable
results may occur.

CONDENSE
The CONDENSE option specifies whether the generated output is to be condensed to take up less space.
The saving in space can be up to 66%. The condensed program is uncondensed in storage prior to
execution.

Note: The DLINK option and the CONDENSE option are mutually exclusive.

CONDENSE
Condenses the output generated by the CEXEC or the OBJECT compiler option, or both.

Compiler Options and Control Directives 21

NOCONDENSE
Does not condense the output generated by the CEXEC or the OBJECT compiler option.

Abbreviations:
COND, NOCOND

IBM default:
NOCONDENSE

Background information about condensed programs

The size of a compiled REXX program often exceeds the size of the source program. You can use the
CONDENSE compiler option to significantly reduce the size of both CEXEC type output and OBJECT type
output. The time taken to load the condensed program is shorter. However, the execution time is longer
because the program must be uncondensed before it is run.

It is recommended that you:

• Use the CONDENSE compiler option for programs that are not started frequently, such as active
programs on a server or programs that are run only once a day and do not stop the execution.

• Do not use the CONDENSE compiler option for programs that are run frequently because of the time
required to unpack the program each time it is run.

This option reduces the amount of:

• Disk space required by compiled REXX programs
• Virtual storage required by preloaded compiled REXX programs
• I/O activity required to load compiled REXX programs

When a condensed compiled REXX program is invoked, the program is automatically uncondensed. A
condensed compiled REXX program requires more storage while it is running:

• During the uncondense operation, an additional 128KB (KB equals 1024 bytes) of storage are required.
• While a condensed compiled REXX program is running, both the condensed and the uncondensed copy

exist in storage.
• Additional CPU time is required to uncondense the compiled REXX program. Apart from that, the

performance characteristics of a condensed program equal the performance characteristics of an
uncondensed program.

Note: The CONDENSE option can also be used to make a program unreadable if the source lines were
included in the compiled program using the SLINE option.

DDNAMES
Under z/OS the DDNAMES option allows you to perform the compilation step with alternate DDNAMES
that are selected by the user instead of using the standard names (described in Table 4 on page 13). The
Compiler must read the renaming table from the data set defined by the standard name FANDDN.

If a DDNAME, such as SYSIN, is occupied by another program, you can use FANDDN to define an alternate
ddname to replace the standard Compiler DDNAME.

DDNAMES
The data set defined by FANDDN is read and the specified Compiler DDNAMES are replaced.

DDNAMES(ddname)
The data set defined by DDNAME (ddname) is read and the specified Compiler DDNAMES are
replaced.

NODDNAMES
The data set defined by FANDDN is not read, and the specified DDNAMES are not replaced. This is the
default option.

22 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Abbreviations:
DD, DD(ddname), NODD

IBM default:
NODDNAMES

The alternate DDNAMES data set may be PO or PS organized with:

RECFM = F | FB

and

LRECL ≥ 17

The records must conform to the following rules:

• Comment records start with an asterisk (*) in the leftmost column.
• Blank records are treated as comment records.
• Renaming records specify the standard DDNAME in column 1 to 8 and the user defined DDNAME in

column 10 to 17, both left justified.

If the LRECL is greater than 17, there must be a blank character in column 18, and the remaining
columns are ignored.

• Input is not case sensitive, DDNAMES are translated to uppercase.

Here is an example of alternate DDNAME definitions:

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
 *Alternate DDname definitions:

 SYSIN MYIN : input <- REXX source code
 SYSCEXEC MYCEXEC : output -> compiled EXEC (CEXEC format)
 SYSDUMP MYDUMP : output -> REXX compiler dump
 SYSPRINT MYPRINT : output -> REXX compiler listing
 SYSPUNCH MYPUNCH : output -> compiled EXEC (OBJECT format)
 SYSTERM MYTERM : output -> REXX compiler messages
 SYSIEXEC MYIEXEC : output -> expanded source
 SYSLIB MYLIB : input <- REXX INCLUDE members

Note:

1. The alternate DDNAME must not be the same as a standard compiler DDNAME. Otherwise you might
overwrite existing input data sets.

2. You cannot rename the standard DDNAME FANDDN, however, you can use the DDNAMES(ddname)
option instead.

3. The alternate ddname applies only to the compilation step where it is defined.

DLINK
The DLINK option specifies whether the OBJECT output is to contain references to external routines and
functions. External references are generated in the form of weak external references, requiring explicit
inclusion of referenced programs when linking or loading.

Note:

1. The name can have a maximum length of 8 characters.
2. The DLINK option and the CONDENSE option are mutually exclusive.
3. The DLINK option and the TRACE option are mutually exclusive.
4. The DLINK option has no effect for programs that run with the Alternate Library.

DLINK
Generates weak external references in the OBJECT output for:

• Subroutines preceded by a CALL statement.

Compiler Options and Control Directives 23

• External function calls.

If the name is defined within quotes, blanks are not allowed. The name should be written in
uppercase, because the underlying subsystem might not support mixed case.

NODLINK
Does not generate weak external references in the OBJECT output.

Abbreviations:
DL, NODL

IBM default:
NODLINK

Background information about directly linked external programs

When external functions and subroutines are linked directly to the REXX program, the REXX search order
is bypassed, and the linked program is invoked directly. The advantages are:

• Better performance, as no search for the program is needed
• No possibility of accidentally accessing a program with the same name located earlier in the search

order
• Improved packaging, because a program and its external subroutines can be linked into one load

module

External functions and subroutines linked directly to a REXX program can be:

• Compiled REXX programs of type OBJECT.

– In z/OS they must be linked with the EFPL or MULTI stub; see Appendix A, “Interface for Object
Modules (z/OS),” on page 207.

– In VSE/ESA they must be combined with the EFPL stub; see Appendix C, “Interface for Object
Modules (VSE/ESA),” on page 223.

• Programs that are written in any programming language that conforms to the following linkage
conventions:

– Under z/OS and VSE/ESA, a directly linked program is invoked with an EFPL. It must conform to the
linkage conventions for external functions and subroutines, as described in TSO/E REXX/MVS:
Reference and in IBM VSE/ESA REXX/VSE: Reference.

– Under z/VM, SVC linkage conventions are used, and register 13 must not be changed by the program.
When applicable, the directly linked program is invoked in AMODE 31, and arguments are not copied
below 16MB (MB equals 1 048 576 bytes) in virtual storage. The call type is X'05', a 6-word extended
PLIST is passed to the invoked program. See Appendix B, “Interface for TEXT Files (z/VM),” on page
219 for details.

DUMP
Note: The DUMP option is not designed for program debugging. Use this option only if you suspect an
error in the Compiler and if an IBM support representative asks for interphase dumps.

The DUMP option provides diagnostic information for use by IBM support personnel. If this option is
specified, formatted dumps of the Compiler’s control blocks and intermediate texts are taken after
selected phases. Under z/OS, the dump is written to the SYSDUMP data set. Under z/VM, the dump file is
sent to the virtual printer.
DUMP(n)

Produces the interphase dumps specified by the value of n, where n is a number in the range 0
through 2047. The meaning of this parameter is fully described in the IBM Compiler and Library for
REXX on IBM Z: Diagnosis Guide.

DUMP
Produces all interphase dumps.

24 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

DUMP[([data-set-name][,n])]
Can be used only when invoking the Compiler with the REXXC EXEC under z/OS (see “Invoking the
Compiler with the REXXC (FANC) EXEC” on page 9). Produces formatted dumps.

This option is extended so that you can specify the name of the data set in which the formatted dumps
are to be stored. A default data set name is used if you do not specify data-set-name. All possible
dumps are produced if you do not specify n.

NODUMP
Does not produce dumps.

Abbreviations:
DU, NODU

IBM default:
NODUMP

FLAG
The FLAG option specifies the minimum severity of errors for which messages are to be issued. (The
PRINT and TERMINAL options specify where the messages appear.)
FLAG

Is equivalent to FLAG(I).
FLAG(I)

Issues all messages, including informational messages.
FLAG(W)

Issues messages only for warnings, errors, severe errors, and terminating errors.
FLAG(E)

Issues messages only for errors, severe errors, and terminating errors.
FLAG(S)

Issues messages only for severe errors and terminating errors.
FLAG(T)

Issues messages only for terminating errors.
NOFLAG

Is equivalent to FLAG(T).
Abbreviations:

F, NOF
IBM default:

FLAG(I)

FORMAT
The FORMAT compiler option specifies that, in addition to the line numbers, the column numbers are to
be included in the list of error messages and the cross-reference listing.
FORMAT

Is equivalent to FORMAT(C).
FORMAT(C)

Formats the error messages and cross reference with column numbers.
NOFORMAT

Does not format the error messages and cross reference with column numbers.
Abbreviations:

FO, NOFO
IBM default:

NOFORMAT

Compiler Options and Control Directives 25

IEXEC
The IEXEC option generates an expanded output that contains the REXX source program and all members
included by means of the %INCLUDE control directive. The IEXEC output is an interpretable REXX
program.

The IEXEC output can contain fixed-length or variable-length records. Fixed-length records are written
only if:

• All input files (REXX source and included files) have fixed-length records of identical record length.
• All %INCLUDE directives are defined either on separate lines or at the very end of a line to avoid a split

of the line.
• Either all files contain sequence numbers or none of the files contains sequence numbers.
• Under z/OS, the output data set is explicitly defined with RECFM=F or FB.

In all other cases, variable-length records are written.

The Compiler does not write sequence numbers to the IEXEC output. This is because the sequence
numbers from any %INCLUDE file might not be compatible with the sequence numbers from the main
REXX source program and lead to error messages issued by many text editors. However, the LRECL values
provided by the Compiler as default values provide 8 bytes for any renumbering.

If variable-length records are written to the IEXEC output, the records that originated from fixed-record-
length files contain the trailing blanks they had in the originating file. This is necessary to ensure that the
SOURCELINE built-in function, if called, gives the same results when the compiled program is run and
when the IEXEC output is interpreted.

If you edit an IEXEC output of variable record length with a text editor like, for example, XEDIT under
CMS, you may inadvertently remove the trailing blanks.
IEXEC

Under z/OS, this option produces IEXEC output and stores it in the data set allocated to the ddname
SYSIEXEC.

IEXEC[(data-set-name)]
Can be used only when invoking the Compiler with the REXXC EXEC under z/OS (see “Invoking the
Compiler with the REXXC (FANC) EXEC” on page 9). Generates IEXEC output.

This option is extended so that you can specify the name of the data set in which the IEXEC output is
to be stored. A default data set name is used if you do not specify data-set-name.

IEXEC[(file-identifier)]
Under z/VM, this option produces IEXEC output. You need not fully specify the file identifier. The
default file name is the name of the source file. The default file type is the letter I concatenated with
the source file type. The default file mode is the file mode of the source file, provided you currently
have read/write access to that minidisk; otherwise, file mode A1 is used.

NOIEXEC
Does not produce IEXEC output.

Abbreviations:
I, NOI

IBM default:
NOIEXEC

Background information about calculating record lengths in z/OS

This box describes the record lengths supported by the Compiler. If you allocate a file for IEXEC output
and assign an LRECL value to it, the value must conform to the description given in this box. The default
values used by the Compiler are described at the end of the box.

For fixed-record lengths, LRECL must be set to one of the following:

26 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

• Without sequence numbers

right_margin - left_margin + 1

• With sequence numbers

right_margin - left_margin + 1 + 8

The MARGINS values apply to the records remaining after the Compiler has removed the sequence
numbers. If you have set MARGINS to the default value MARGINS(1 *), LRECL is equal to the record
length of the record length of the source files.

For variable-length records, LRECL must be greater than, or equal to, one of the following:

• If none of the files contain sequence numbers

right_margin - left_margin + 5

• If any of the files contain sequence numbers

right_margin - left_margin + 5 + 8

If you specified * for right_margin, the value of right_margin in the last two expressions must be set to the
length of the longest input record.

If no LRECL, RECFM, and BLKSIZE (z/OS) parameters have been assigned to the IEXEC output file, the
Compiler supplies the following default values:

RECFM = V (CMS file) or VB (z/OS)
LRECL = max. value of (right_margin - left_margin + 5 + x)
 where x=8 if the record contains sequence numbers or
 x=0 if the record does not contain sequence numbers
BLKSIZE = 10 * LRECL

If you compile fixed-length records and want to have a fixed-length IEXEC file, create a file that assigns
values to the RECFM, LRECL, and BLKSIZE parameters before calling the Compiler.

LIBLEVEL
The LIBLEVEL option specifies the version of the Library (minimum Library level) required to run the
compiled program.

LIBLEVEL(n)
The level of the Library required to run the compiled program, where n is the minimum Library level
number as shown in Table 5 on page 28. The Compiler checks that the language features used in the
program are compatible with the Library level specified. If a feature is found that requires a higher
Library level, this is flagged in the source listing.

LIBLEVEL(*)
Specifies that all levels of the Library are supported.

Abbreviations:
LL(n)

IBM default:
LL(*)

The following table shows the language features supported by the different Library levels.

Compiler Options and Control Directives 27

Table 5: Library levels

Library Level Library Name New or Changed Features

2 Runtime Library
Release 1 (TSO)

• CALL ON ERROR|FAILURE|HALT NAME built-in
function

• Addressing tails of compound variables with 1 or
2 components

• Assignments

3 Runtime Library Release
2

• Arithmetic operations, for example, addition,
multiplication

• Binary strings including B2X and X2B built-in
functions

• Variable reference list (variable name enclosed in
parentheses) in DROP and EXPOSE

• Alternate Library via PTF

4 Runtime Library
Release 3

• STREAM, LINES, LINEIN, LINEOUT, CHARS,
CHARIN, and CHAROUT built-in functions

• CALL|SIGNAL OFF NOTREADY
• CALL|SIGNAL ON NOTREADY
• TRACE statement and TRACE built-in function
• INTERPRET statement

5 Runtime Library
Release 3

• Date conversion

6 Runtime Library
Release 3 and Release 4

• Date separation character

Note:

1. LIBLEVEL 0 and 1 are no longer supported.
2. The library level has not been changed for Release 4.
3. For more information refer to “TRACE” on page 35.

LINECOUNT
The LINECOUNT option specifies the maximum number of lines to be included on each page of the
compiler listing. This number includes the header lines and any blank lines. You can specify that there are
to be no page breaks within the source and cross-reference listings; this is useful if you intend to display
the listing at a terminal, because there are no page headers to scroll through. However, if you print such a
listing, your output continues from one page to the next without a break.
LINECOUNT(n)

Puts n lines on each page of the compiler listing, where n is a number in the range 10 through 99.
LINECOUNT(0)

Creates continuous output in the compiler listing.
Abbreviation:

LC
IBM default:

LINECOUNT(55)

28 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

MARGINS
The MARGINS option specifies the left and right margins of the REXX program. Only the text contained
within the specified margins is compiled. The compiler listing, however, always contains the complete
input records.

If the SLINE option is specified, the OBJECT or CEXEC output contains only the text within the specified
margins. Similarly, if the IEXEC option is specified, the IEXEC output contains only the text within the
specified margins.

If the first record of the source file contains only decimal digits in the first 8 bytes (RECFM=V|VB) or in the
last 8 bytes (RECFM=F|FB), then the file is assumed to contain sequence numbers. In this case, the
sequence numbers are removed and the specified margin values are applied to the remaining part of the
record. Only the text contained within the specified margins is compiled.

Each file included by means of the %INCLUDE control directive is checked for sequence numbers.
Therefore, a REXX source file can include files with different record formats and files with or without
sequence numbers.

MARGINS(left [right])
left

Specifies the first column of the source file containing valid REXX code. Valid values for left are:

• Under z/OS: from 1 to 32 760
• Under z/VM: from 1 to 65 535

right
Specifies the last column of the source file containing valid REXX code. Valid values for right are:

• * (asterisk), the default, to indicate the last column of the input record
• Under z/OS: from left to 32 760
• Under z/VM: from left to 65 535

Abbreviation:
M

IBM default:
MARGINS(1 *)

OBJECT
Under z/OS, the OBJECT option specifies whether the Compiler is to produce an object module.

Under z/VM, the OBJECT option specifies whether the Compiler is to produce a TEXT file.
OBJECT

Under z/OS, this option produces an object module in the data set allocated to the ddname
SYSPUNCH.

OBJECT[(obj-data-set-name) |
([obj-data-set-name],stub[,load-data-set-name])]

Generates an object module and, optionally, a load module.

Note: OBJECT can only be used when invoking the Compiler with the REXXC EXEC under z/OS (see
“Invoking the Compiler with the REXXC (FANC) EXEC” on page 9).

obj-data-set-name
You can specify the name of the data set in which the object output is to be stored. A default data
set name is used if you do not specify obj-data-set-name.

stub
You can specify a stub, which can be a member name, the name of a partitioned data set including
a member name, or a predefined stub name. (Refer to “Stubs” on page 212 for a list of stubnames

Compiler Options and Control Directives 29

and member names.) If a stub is specified, a load module is created when the Compiler creates an
OBJECT output.

Note: As the stubs are part of the Library, this form of invocation is available only if the Library is
installed.

load-data-set-name
You can specify the name of the data set that is to contain the load module. If the member name
is omitted, a default member name is assumed. The default data set name is used if you do not
specify load-data-set-name.

OBJECT[(file-identifier)]
Under z/VM, this option produces a TEXT file that has the file identifier you specify. The file identifier
need not be fully specified. The default file name is the file name of the source file. The default file
type is TEXT. The default file mode is the file mode of the source file, provided you currently have
read/write access to that minidisk; otherwise, file mode A1 is used.

NOOBJECT
Does not produce an object module or a TEXT file.

Abbreviations:
OBJ, NOOBJ

IBM default:
NOOBJECT

Background information about using OBJECT output under z/OS

Under z/OS, object modules can be used to create load modules. The load modules can be used as
commands and parts of REXX function packages.

Load modules are invoked in the same way as output from other high-level language Compilers:

• From z/OS JCL statements
• From the TSO/E command line
• As a host command
• As part of a function package from within a REXX program

See Chapter 6, “Using Object Modules and TEXT Files,” on page 65 for information about function
packages, and Appendix A, “Interface for Object Modules (z/OS),” on page 207 for more information.

For ISPF restrictions, see ISPF/PDF Guide and Reference.

For more information see Chapter 6, “Using Object Modules and TEXT Files,” on page 65 and Appendix
C, “Interface for Object Modules (VSE/ESA),” on page 223.

Background information about using OBJECT output under z/VM

Under z/VM, the Compiler can produce a TEXT file. A TEXT file can be processed into a MODULE file,
which can then be started like a CMS command. A TEXT file can also be linked to an Assembler program.
A MODULE file can also be used to create a function package from a REXX program.

Note:

1. MODULE files come after EXEC files in the CMS search order.
2. Although these TEXT files can be linked with other compiled programs, they must receive standard

SVC PLISTs as input, unlike other high-level language programs. See Appendix B, “Interface for TEXT
Files (z/VM),” on page 219 for details.

3. If your program is in the form of a MODULE file and it calls another module, the called module may
overlay your program in storage. This occurs, for example, when both modules are loaded at the
default start address. You can avoid this by specifying a start address when loading TEXT files or by
using the NUCXLOAD command or the RLDSAVE option of the LOAD command.

4. For ISPF restrictions, see ISPF/PDF Guide for VM.

30 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

For more information on OBJECT output, see Chapter 6, “Using Object Modules and TEXT Files,” on page
65 and Appendix B, “Interface for TEXT Files (z/VM),” on page 219.

Background information about using OBJECT output under VSE/ESA

Under VSE/ESA, the output from the OBJECT option can be used to create a phase. The output must be
generated either on z/OS or on z/VM, then transferred to VSE/ESA. When it is on VSE/ESA, phases can be
built. The phases can be invoked as programs from JCL, or as parts of REXX function packages.

For more information see Chapter 6, “Using Object Modules and TEXT Files,” on page 65 and Appendix
C, “Interface for Object Modules (VSE/ESA),” on page 223.

OLDDATE
The OLDDATE option controls the creation date and time of the files that are generated by the Compiler
under z/VM. It can be set to the date and time, when the source file was last changed.
OLDDATE

Applies to all output files.
OLDDATE(nnnn)

Selects the types of output files: (nnnn) can contain a selection list of generated files. The following
rules apply for this selection list:

• Separator blanks are not allowed.
• The list may be empty or a concatenation of any of the following characters that select the

corresponding output file:
C

CEXEC (the compiled EXEC)
P

PRINT (the compiler LISTING)
I

IEXEC (the expanded EXEC)
O

OBJECT (the TEXT file)

Note:

1. You can specify the letters CPIO in any order.
2. If print output is sent to a virtual printer, the OLDDATE option has no effect.

Here are examples for the OLDDATE(nnnn) option:
OLDDATE(C)

OLDDATE option applies to CEXEC file only.
OLDDATE(IC)

OLDDATE option applies to CEXEC and IEXEC file only.
OLDDATE()

OLDDATE() option applies to all output files, this is identical to the option OLDDATE and to the
option OLDDATE(CPIO).

NOOLDDATE
Generates files with the current date and time. This option is used by default.

Abbreviations:
OLDD/NOOLDD

IBM default:
NOOLDDATE

Compiler Options and Control Directives 31

OPTIMIZE
The OPTIMIZE option specifies whether the object code is to be optimized to reduce the amount of CPU
time it requires at runtime.
OPTIMIZE

The compiled output is optimized.
NOOPTIMIZE

The compiled output is not optimized.
Abbreviations:

OPT/NOOPT
IBM default:

OPTIMIZE

Note:

1. This option can also be coded as OPTIMISE/NOOPTIMISE to support British spelling.
2. Use this option only to verify a defect encountered, then report the problem to your IBM

representative.

PRINT
The PRINT option specifies whether a compiler listing is to be created and, if so, where it is to be printed
or stored.

The listing shows the compiler options used and, depending on which other compiler options are in effect,
the source program, messages, and cross-reference listing. See also Chapter 5, “Understanding the
Compiler Listing,” on page 49.
PRINT

Under z/OS, this option creates a compiler listing in the data set allocated to the ddname SYSPRINT.

Under z/VM, this option creates a compiler listing and sends it to the virtual printer.

PRINT[(data-set-name|*|**)]
Can be used only when invoking the Compiler with the REXXC EXEC under z/OS (see “Invoking the
Compiler with the REXXC (FANC) EXEC” on page 9).

This option is extended so that you can specify the name of the data set where the compiler output
listing is to be stored. If you specify an asterisk, the listing is written to the terminal. A default data set
name is used if you do not specify data-set-name or * (asterisk). If you specify ** (two asterisks), any
preallocation for SYSPRINT is used.

PRINT([file-identifier])
Under z/VM, this option creates a compiler listing file that has the file identifier you specify, or a
default file identifier. You need not fully specify the file identifier. The default file name is the file name
of the source file. The default file type is LISTING. The default file mode is the file mode of the source
file, provided you currently have read/write access to that minidisk; otherwise, file mode A1 is used.

NOPRINT
Does not create a compiler listing.

Abbreviations:
PR, NOPR

IBM default:

• Under z/OS: PRINT
• Under z/VM: PRINT()

32 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

SAA
The SAA option specifies whether the Compiler is to check the source program for REXX language
elements that are not part of level 4.02 of the SAA REXX interface. When this option is in effect and the
FLAG option is set to I or W, a warning message is issued for each non-SAA item found.

Note: The Compiler does not detect the following:

• A non-SAA item if it is contained in an instruction that is not fully analyzed until runtime. For example,
DATE('C') is flagged as a non-SAA item. However, INTERPRET "SAY DATE('C')" is not flagged
because the contents of the character string after INTERPRET are evaluated at runtime.

• Wrong arguments in stream I/O built-in functions or a wrong number of arguments in stream I/O built-in
functions.

• DBCS symbols are not flagged if a program is compiled with Options 'ETMODE' in effect.

SAA
Checks for SAA compliance.

NOSAA
Does not check for SAA compliance.

Abbreviations:
None

IBM default:
NOSAA

SLINE
The SLINE option specifies whether the Compiler is to include the source program in the compiled output
and, consequently, support the SOURCELINE built-in function at runtime. If you require support for
Alternate Libraries or full tracing, you should also set this option. If the MARGINS option is specified, the
compiled output contains only the text between the specified margins.

This option also determines whether the source code appears in traceback messages, which are issued
for runtime errors. If you specify SLINE, users can see the source code. Also, the compiled program is
larger. See also “SOURCELINE Built-In Function” on page 84.
SLINE

Includes the source program in the compiled code.
SLINE(AUTO)

Includes the source program in the compiled code only if one or more of the following are met:

• The SOURCELINE built-in function is found in the program.
• The TRACE compiler option is set.
• The ALTERNATE compiler option is set.

NOSLINE
Does not include the source program in the compiled code.

Abbreviations:
SL, SL(A), NOSL

IBM default:
NOSLINE

SOURCE
The SOURCE option specifies whether the compiler listing is to include a source listing. If you specify
NOSOURCE, only erroneous source lines are included in the listing with the corresponding messages. See
also “Source Listing” on page 49.
SOURCE

Produces a source listing.

Compiler Options and Control Directives 33

NOSOURCE
Does not produce a source listing.

Abbreviations:
S, NOS

IBM default:
SOURCE

TERMINAL
The TERMINAL option specifies whether messages and the message summary are to be displayed at the
terminal (z/VM) or to be written to the data set allocated to the ddname SYSTERM (z/OS), in addition to
being included in the compiler listing. The messages depend on the setting of the FLAG option. Use the
TERMINAL option when you expect only a small number of errors.

Note:

1. Under z/OS, if SYSPRINT and SYSTERM are allocated to the same destination, messages that would
otherwise be issued to both SYSPRINT and SYSTERM are issued only once.

2. Terminating errors are always displayed.

TERMINAL
Displays messages at the terminal. A message displayed at the terminal is always preceded by the
source line that contains the error. If no messages are issued, the message summary is not displayed.

NOTERMINAL
Does not display messages at the terminal.

Abbreviations:
TERM, NOTERM

IBM default:
NOTERMINAL

TESTHALT
The TESTHALT compiler option specifies whether the compiled program is to contain code that supports
the halt condition. One way to set the halt condition is, for example, the HI (Halt Interpretation)
immediate command.

Specify the TESTHALT option to halt the program without consequently affecting the operation of any
other programs. This is especially useful when you want to halt an edit macro that is looping, without
terminating the whole editing session, as the HE command would do in z/OS, or as the HX command
would do in z/VM.

To specify TESTHALT hooks in the program independently of the TESTHALT compiler option, use the
%TESTHALT compiler directive:

• For further information, see “%TESTHALT” on page 40.
• For performance considerations, see “TESTHALT Option” on page 97.
• Also see “Halt Condition” on page 81.

TESTHALT
Generates code that supports the HI command.

NOTESTHALT
Does not generate code that supports the HI command.

Abbreviations:
TH, NOTH

IBM default:
NOTESTHALT

34 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

TRACE
The TRACE option specifies that the compiled program can be traced. The performance of a program
compiled with the TRACE option is not as good as that of the same program compiled with the NOTRACE
option. However, a program compiled with the TRACE option usually has a better performance than the
same program when it is interpreted.
TRACE

Creates a compiled program of CEXEC or OBJECT type that can be traced. The TRACE instruction and
the TRACE built-in function are supported, except for the trace setting SCAN. The initial trace setting
is NORMAL, as with the interpreter.

Note:

1. You must also specify the SLINE compiler option described in “SLINE” on page 33.
2. To ensure that all source statements can be run by the Library, the Compiler performs a pseudo

compile of the source to determine the required Library level and subsequently writes this value to
the compiler listing and object.

3. However, if you define language constructs in interactive TRACE mode or in the character strings in
INTERPRET clauses, which are not supported by the installed Library, these definitions are flagged
at runtime.

NOTRACE
Creates a compiled program of CEXEC or OBJECT type that cannot be traced. The compiled program
behaves the same as interpreted programs that run with TRACE set to OFF. At runtime, all valid
options in the TRACE instructions and TRACE built-in functions are set to OFF.

Note: If the program is compiled with the ALTERNATE option and run with the Alternate Library, it can
be traced like a normal interpreted program.

Abbreviations:
TR, NOTR

IBM default:
NOTRACE

XREF
The XREF option specifies whether the compiler listing is to include a cross-reference listing for all:

• Variables:

– Dropped (d) variables
– Exposed (e) variables
– Variables that are not initialized (SIMPV+++). These variables do not have an assignment.

• Labels
• Constants
• Built-in functions
• External routines
• Source lines that contain recognized commands and ADDRESS clauses
• Lines that contain erroneous clauses may or may not appear in the command list
• Optimizing stoppers from top to bottom. For more information refer to “Optimization Stoppers” on page

94. If you are using the TESTHALT compiler option or %TESTHALT compiler directive, refer to “Halt
Condition” on page 81.

Note: As this information increases the size of the compiler listing considerably, you can specify
XREF(SHORT) to suppress this information.

The cross-reference listing indicates the numbers of the lines on which the above items are referenced. It
is useful for debugging and program maintenance. See also “Cross-Reference Listing” on page 52.

Compiler Options and Control Directives 35

XREF
Produces a cross-reference listing.

XREF(SHORT)
Produces a cross-reference listing that does not contain the following:

• Constants
• Commands
• Optimizing stoppers

NOXREF
Does not produce a cross-reference listing.

Abbreviations:
X, X(S), NOX

IBM default:
NOXREF

Control Directives
This section describes the functions and syntax of the compiler control directives in alphabetic order.

A control directive always starts with /*% and ends with */.

%COPYRIGHT
The %COPYRIGHT control directive inserts a notice (for example a copyright notice) in the form of a
visible text string in the CEXEC, OBJECT output, and core image of the compiled program. The text string
starts after the header part.

The %COPYRIGHT control directive is contained in a comment; it is recognized as a control directive only
by the Compiler (it is treated as a normal comment by the interpreter):

/*%COPYRIGHT (c) copyright MY company 2003*/

The %COPYRIGHT control directive is recognized as such only if it immediately follows a /* comment
delimiter. The word %COPYRIGHT can be in mixed case.

The notice can be broken into several %COPYRIGHT control directives. The text following %COPYRIGHT,
starting with the first nonblank character and up to the end of the comment, is called a copyright part and
is used to build the copyright notice. The final copyright notice is the concatenation of all copyright parts
defined in the program.

This is an example of a REXX program that contains %COPYRIGHT control directives:

/*%COPYRIGHT This is an example of a copyright */
Say 'Hello'
/*%COPYRIGHT notice. */

The following string is taken as the copyright notice:

This is an example of a copyright notice.

Note: Blank characters immediately following %COPYRIGHT are ignored. Blank characters at the end of a
copyright part, preceding the */ delimiter, are taken as part of the copyright notice.

A copyright part can contain comments. The text in these comments is taken as such and used as part of
the copyright notice, even if the comment contained in a copyright part begins with a directive. For
example:

/*%COPYRIGHT Example of a copyright notice containing a /*%COPYRIGHT comment*/.*/

36 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

The resulting copyright notice is:

Example of a copyright notice containing a /*%COPYRIGHT comment*/

%INCLUDE
The %INCLUDE control directive inserts, at compilation time, REXX code contained in z/OS data sets or in
CMS files into the REXX source program.

The %INCLUDE control directive is contained in a comment; it is recognized as a control directive only by
the Compiler (it is treated as a normal comment by the interpreter):

/*%INCLUDE file1 */

For a %INCLUDE directive to be recognized as such, the following must be true:

• The directive immediately follows a /* comment delimiter.
• The directive is not part of another %INCLUDE directive or of a %COPYRIGHT directive.
• The name of the file to be included starts with the first nonblank character following /*%INCLUDE and

must not contain any blank characters.
• The z/OS data-set identifiers member and ddname and the CMS file identifiers filename and ddname

are restricted to 8 characters in length.

Note:

1. The word %INCLUDE can be in mixed case.
2. You can only specify nested comments following the file name.
3. Files that are included by means of %INCLUDE directives can contain %INCLUDE directives.

This is an example of how %INCLUDE directives can be specified:

/*%INCLUDE file1 */
Say 'Hello 1'
/*%INCLUDE file2 */ Say 'Hello 2'

The contents of file1 will be inserted before Say 'Hello 1'. The last line in the example is split into
two parts, forming two lines.

1. /*%INCLUDE file2 */
2. Say 'Hello 2'

The contents of file2 will be inserted between the first part and the second part, immediately following
the */ delimiter. In the compiler listing and IEXEC output, the first line is truncated. The second part of
the line is not reformatted. However, the space previously occupied by the %INCLUDE directive and any
statements preceding it, is replaced by blanks. If the IEXEC option has been specified, the IEXEC output
will have, in this case, variable length format (see “IEXEC” on page 26).

Note:

1. At the end of the first part of a split line, a line end is implied.
2. The built-in function SOURCELINE() returns the line number of the final line in the expanded program,

or 0 if the program was compiled with the NOSLINE option.

The naming convention for included files is as follows:

• Under z/OS:

– /*%INCLUDE member */

Search for member:

1. In the concatenation with ddname SYSLIB, if it is allocated
2. In the same partitioned data set as the source, if the source is in a partitioned data set

Compiler Options and Control Directives 37

– /*%INCLUDE ddname(member) */

Search for member in the concatenation with ddname.
• Under z/VM:

– /*%INCLUDE filename */

Search for a file with file name filename and file type COPY on all accessed disks. If it does not
exist, search for a file with file name filename and file type REXXINCL on all accessed disks. If it
also does not exist, search for a file with file name filename and file type EXEC on all accessed
disks.

If more than one file is found for a specific file type, the one on the minidisk which comes earlier in
the search order is included.

– /*%INCLUDE ddname(filename) */

1. FILEDEF ddname DISK fn ft [fm]

can be used to specify a collection of files.

Note: ft must be COPY, REXXINCL, or EXEC, otherwise the file will not be found.

Search for a file with file name fn and file type COPY within the specified collection. If it does not
exist, search for a file with file name fn and file type REXXINCL within the specified collection. If it
also does not exist, search for a file with file name fn and file type EXEC within the specified
collection.

If more than one file is found for a specific file type, the one on the minidisk which comes earlier in
the search order is included.

2. CREATE NAMEDEF fm ddname (FILEMODE

or

CREATE NAMEDEF dirid ddname

followed by:

ACCESS dirid fm

can be used to identify a specific minidisk. Search for a file with file name filename, file type
COPY, and file mode fm. If it does not exist, search for a file with file name filename, file type
REXXINCL, and file mode fm. If it also does not exist, search for a file with file name filename,
file type EXEC, and file mode fm.

If a file is found for a specific file type, it is included.
3. Members of MACLIBs can be included. If ddname is SYSLIB, all MACLIBs established with the

command GLOBAL MACLIB are searched until a member with name filename is found and
included.

If ddname is not SYSLIB, search within the MACLIB with name ddname for a member with name
filename and include it.

The names of the data sets or files that have been included are contained in the compiler listing.

%PAGE
The %PAGE listing control directive causes an unconditional skip to a new page in the source listing.

The %PAGE listing control directive is contained in a comment; it is recognized as a control directive only
by the Compiler (it is treated as a normal comment by the interpreter):

/*%PAGE */

38 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

The %PAGE listing control directive is recognized as such only if it immediately follows a /* comment
delimiter and these characters are the first nonblank characters on the line. The word %PAGE can be in
mixed case. The rest of the line can contain any other characters. It is good practice to close the comment
on the same line.

A line that contains the %PAGE listing control directive is printed as the last line on the current page of the
listing; the next line in the source program starts a new page. If the compiler option LINECOUNT(0) is
specified, however, %PAGE has no effect.

%STUB
The %STUB prelink control directive simplifies link-editing under z/OS. It generates object modules that
include preselected STUB code. The z/OS stub code is inserted into the object output.

To define the %STUB prelink control directive you must specify the stub name stubname in the source:

/*%STUB stubname*/

Refer to “Stubs” on page 212 for a list of stubnames that are supplied with the Library to provide
interfaces with the various types of parameter-passing conventions.

Note:

1. %STUB code can be compiled under z/OS and z/VM.
2. The OBJECT option must be in effect for the STUB code to be included.
3. CEXEC output is not affected.
4. An example is shown in “Improving Packaging and Performance” on page 66.
5. Object modules generated with STUB code terminate abnormally when they are run under z/VM.
6. Stubs are required when running REXX link-edited under z/OS.
7. See also “REXXL (z/OS)” on page 67.
8. See also “Stubs” on page 212.

%SYSDATE
The %SYSDATE control directive inserts, at compilation time, code to create the variable SYSDATE, which
contains the compilation date.

Because %SYSDATE is contained in a comment only the Compiler recognizes it as a control directive.
%SYSDATE must immediately follow a /* comment delimiter.

/*%SYSDATE */
/*%SYSDATE(option) */

The word %SYSDATE can also be in lowercase or mixed case.

The comment containing %SYSDATE must not be contained in a clause:

say /*%sysdate */ 'hello'

Instead, enclose the comment in semicolons (;) or put it on a new line:

say 'hello'
/*%sysdate */

The option for %SYSDATE is one of the formats of the REXX DATE built-in function, namely B, D, E, M, N, O,
S, U, or W. C and J are not supported.

The variable SYSDATE is not set if running with the alternate library or if compiled with option TRACE. In
the latter case, or if executing under the interpreter, the contents of the variable SYSDATE are set to the
character string "SYSDATE" if no SIGNAL ON NOVALUE has been executed. If a SIGNAL ON NOVALUE has

Compiler Options and Control Directives 39

been executed, the NOVALUE condition is raised during execution. The code generated by the Compiler
does not raise the NOVALUE condition if compiled with NOTRACE.

The following example raises a NOVALUE condition if interpreted or compiled with TRACE:

/*%sysdate */
say 'compilation date=' sysdate

To avoid a NOVALUE condition, change the previous example as follows:

sysdate = ''
/*%sysdate */
if (sysdate <> '') then say 'compilation date=' sysdate

%SYSTIME
The %SYSTIME control directive inserts, at compilation time, code to create the variable SYSTIME, which
contains the compilation time.

Because %SYSTIME is contained in a comment only the Compiler recognizes it as a control directive.
%SYSTIME must immediately follows a /* comment delimiter.

/*%SYSTIME */
/*%SYSTIME(option) */

The word %SYSTIME can also be in lowercase or mixed case.

The comment containing %SYSTIME must not be contained in a clause:

say /*%systime */ 'hello'

Instead, enclose the comment in semicolons (;) or put it on a new line:

say 'hello'
/*%systime */

The option for %SYSTIME is one of the formats of the REXX TIME built-in function, namely C, H, L, M, N, or
S. E and R are not supported.

The variable SYSTIME is not set if running with the alternate library or if compiled with option TRACE. In
the latter case, or if executing under the interpreter, the contents of the variable SYSTIME are set to the
character string "SYSTIME" if no SIGNAL ON NOVALUE has been executed. If a SIGNAL ON NOVALUE has
been executed, the NOVALUE condition is raised during execution. The code generated by the Compiler
does not raise the NOVALUE condition if compiled with NOTRACE.

The following example raises a NOVALUE condition if interpreted or compiled with TRACE:

/*%systime */
say 'compilation time=' systime

To avoid a NOVALUE condition, change the previous example as follows:

systime = ''
/*%systime */
if (systime <> '') then say 'compilation time=' systime

%TESTHALT
The %TESTHALT control directive inserts, at compilation time, code to support the HALT condition. It
enables you to halt a program at specific statements during program execution.

The %TESTHALT control directive is contained in a comment; it is recognized as a control directive only by
the Compiler (it is treated as a normal comment by the interpreter):

/*%TESTHALT */

40 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

The %TESTHALT control directive is recognized as such only if it immediately follows a /* comment
delimiter. The word %TESTHALT can be in mixed case.

The generated code for the TESTHALT hook is placed at the beginning of the clause containing the
%TESTHALT compiler directive. In the following example, the TESTHALT hook is generated before the SAY
keyword.

say 'hello' /*%testhalt */

If you want the TESTHALT hook to be generated after the SAY clause, use a semicolon (;) to end the
clause, or put the compiler directive on a new line:

say 'hello'; /*%testhalt */

say 'hello'
/*%testhalt */

The %TESTHALT control directive provides better control over the TESTHALT hooks than the TESTHALT
compiler option. It can be used either together with the TESTHALT compiler option to provide additional
hooks, or without. In the latter case, only the hooks specified by the control directive are generated. Using
the %TESTHALT control directive without the TESTHALT compiler option improves the runtime
performance of the REXX program. This is because each TESTHALT hook is an overhead in the compiled
program and the Compiler optimizes the program less if it contains TESTHALT hooks.

Compiler Options and Control Directives 41

42 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 4. Runtime Considerations

This chapter contains suggestions for organizing your libraries and other information for improving the
running of compiled programs. (Under z/VM, see the online help for information on how to run a program
from the REXXD compiler-invocation dialog.)

Note: To run compiled REXX programs, either the IBM Library for REXX on IBM Z or the Alternate Library
must be installed on z/VM or z/OS. REXX/VSE must be installed on VSE/ESA.

Organizing Compiled and Interpretable EXECs under z/OS
Because REXX programs can either be interpreted or run compiled, you might inadvertently run the
source program with the interpreter when you intend to run the compiled program.

You can avoid such situations by following the procedure described below. For the purposes of this
procedure, assume that your REXX source programs are stored in the production library pref.cccc.EXEC,
which is in your search order.

1. Compile the programs and store them in the data set pref.cccc.CEXEC. For example, to compile a REXX
program named ROULETTE you could enter the following REXXC command:

rexxc 'pref.cccc.exec(roulette)' cexec('pref.cccc.cexec(roulette)')
2. Save the source programs in the data set pref.cccc.SEXEC. In this example, the program ROULETTE is

saved in pref.cccc.SEXEC(roulette).
3. Copy the compiled EXECs by means of the REXXF command from the pref.cccc.CEXEC data set to the

pref.cccc.EXEC data set. (See “REXXF (FANCMF) under z/OS” on page 79.) You now run the compiled
EXECs that are in this data set, because it is in the search order. However, if you want to run an
interpretable REXX EXEC, copy it from the pref.cccc.SEXEC data set to the pref.cccc.EXEC data set.

The advantages of this organization include the following:

• Users can browse the source code of EXECs in the source library.
• Users can store copies of the source code of EXECs in their private EXEC libraries for tracing or

execution.
• Source EXECs can be maintained in the source library. When the modifications are completed and

tested, the EXECs can be compiled and stored in the production library.
• Because the data sets containing source programs and compiled EXECs have the same data set

attributes, users can easily move and replace source programs and compiled EXECs.

For other ways to switch between interpreted and compiled REXX programs, see “Background
information about compiled EXECs” on page 20.

Organizing Compiled and Interpretable EXECs under z/VM
Because REXX programs can either be interpreted or run compiled, you might inadvertently interpret the
source program when you intend to run the compiled program. The following examples show how this
could occur:

• You have a compiled EXEC called ROULETTE. It is stored on a library disk, which is accessed as your L-
disk. You enter roulette to invoke the compiled EXEC. But if the source program is on your A-disk and
also has a file type of EXEC, you invoke the interpreter instead.

• You have access to a compiled REXX program called ROULETTE MODULE. You enter roulette to invoke
the module. However, EXEC files precede MODULE files in the CMS search order. So if you still have
access to the source program and its file type is EXEC, you invoke the interpreter instead.

© Copyright IBM Corp. 1991, 2013 43

You can avoid such situations by changing the file type of the source file after compilation. The following
table shows a suggested naming convention.

Type of File Recommended File Type

Source file after compilation SEXEC, SXEDIT, and so on, as applicable

Compiled EXEC immediately after compilation,
when the source file type may be EXEC.

CEXEC

Compiled EXEC ready for execution EXEC or other required file type, such as XEDIT

Note: You can also make source files unavailable by removing them from any disks accessed by the
program’s users.

If you are using the compiler-invocation dialog, REXXD, use the Switch (rename) action to rename the
files appropriately. Otherwise, use the CMS RENAME command, as required.

Organizing Compiled and Interpretable EXECs under VSE/ESA
Because REXX programs can either be interpreted or run compiled, you might inadvertently run the
source program with the interpreter when you intend to run the compiled program.

You can avoid such situations by following the procedure described below.

• Keep the source for all REXX programs in a library called REXXLIB.EXEC. Each member has a member
type of PROC.

• Once an EXEC is ready to be compiled, send it to either z/VM or z/OS and compile it.
• After the compilation, send it back to VSE/ESA, and catalog the output in a library called

REXXLIB.CEXEC. The member name is the same as that of the original source, and the member type is
PROC. See “Converting from z/OS to VSE/ESA” on page 77 and “Converting from z/VM to VSE/ESA” on
page 78 for more information.

• Use the following LIBDEF statement when running REXX programs:

LIBDEF PROC,SEARCH=(REXXLIB.CEXEC,REXXLIB.EXEC)

This ensures that the compiled REXX program, if it exists, is found before the interpreted REXX program.
If there is no compiled REXX program, the interpreted program is found.

The advantages of this organization include the following:

• The source code of REXX EXECs is maintained in a central sublibrary, and can always be retrieved.
• If a member with the same name is deleted in the REXXLIB.CEXEC sublibrary, a subsequent invocation

will invoke the interpreted program.

Use of the Alternate Library (z/OS, z/VM)
The Alternate Library is necessary for:

• Customers who want to run compiled REXX programs, but do not have the Library installed
• Software developers who want to make their programs available to users who do not have the Library

installed

Users of the Library do not need the Alternate Library. The Library provides more functions and better
performance than the Alternate Library. Software developers must test their applications with the Library
and with the Alternate Library.

By enabling their programs to run with both the Library and the Alternate Library, software developers
give their customers the following possibilities:

44 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

• Use the Alternate Library provided with the application, if they have no library installed.
• Use the IBM Library for REXX on IBM Z, if it is installed.

Use the SLINE and ALT options to enable a compiled program to run also with the Alternate Library. Use
the CONDENSE option to hide the source lines.

Other Runtime Considerations
• Activation of the Alternate Library

– Under z/OS, the Alternate Library is activated in different ways depending on its intended use:

- Software developers use the Alternate Library from the ddname STEPLIB. This is because they
need to have both the Library and the Alternate Library installed. To lower storage consumption, the
Library must reside in the link pack area (LPA) instead of residing in every address space in the
system. To test their programs with the Alternate Library, software developers use the ddname
STEPLIB to override the Library.

- Customers use the Alternate Library from the LINKLIST. This is because the LINKLIST is searched
after the LPA. Customers should always use the Library, if it is available. By placing the Alternate
Library in the LINKLIST, they will never override the Library in the LPA.

Table 6 on page 45 summarizes the possible library locations.

Table 6: Library and Alternate Library Locations (z/OS)

Library name Library location:
SW developer

Library location:
Customer

IBM Library for REXX on IBM Z LPA LPA

Alternate Library STEPLIB LINKLIST

– Under z/VM, the Alternate Library must always be loaded from disk to avoid conflicts with the Library.

- Software developers activate the Alternate Library like this:

1. Copy EAGALPRC MODULE, the library loader of the Alternate Library, to a disk that is ahead of
the disk containing the library loader of the library (EAGRTPRC MODULE) in the system search
order. Name this copy EAGRTPRC MODULE.

2. Copy EAGALUME TXTAMENG, the message repository of the Alternate Library, to a disk that is
ahead of the disk containing the message repository of the library (EAGUME TXTAMENG) in the
system search order. Name this copy EAGUME TXTAMENG. If in your installation EAGUME
TXTAMENG has been renamed to EAGUME TEXT, then name your copy EAGUME TEXT, as well.

3. To ensure that the library loader from this disk is being used, you can either IPL your virtual
machine, or issue the command NUCXDROP EAGRTPRC.

- Customers who do not have the Library installed do not need to do anything to use the Alternate
Library. The Alternate Library is available after it has been installed.

• Batch mode: Unless your program issues host commands that must be executed in the foreground or is
designed to be run interactively, you can run it in batch mode. Use your standard procedure for
submitting batch jobs.

• Error handling: If an instruction has an error, the Library might not raise the same error that the
interpreter would raise.

If the length of a variable’s value is greater than 16MB, the results are unpredictable.
• Interfaces with interpreted programs: There are no restrictions on the mutual invocation of compiled

programs and interpreted programs: a compiled program can call an interpreted program, and an
interpreted program can call a compiled program. When a program is invoked, z/OS, z/VM, or VSE/ESA
starts the correct language processor—either the interpreter or the Library.

Runtime Considerations 45

• Loading the Library under z/VM: Depending on the system setup, the z/VM Library can be loaded in
two different ways:

1. The Library and the message repository are always available and do not need to be explicitly loaded,
if they are installed as logical segments. See “Defining the Library as a Logical Segment” on page
107 for more information.

2. The Library is loaded into virtual storage the first time a compiled REXX program is run and remains
loaded after the program ends. The Library is loaded in the following way:

a. The library loader (EAGRTPRC MODULE), which is itself loaded from disk, receives control and
runs in the transient program area.

b. The library loader loads the message repository.
c. The library loader loads the Library from a DCSS unless one of the following conditions applies:

– No DCSS exists.
– With Release 5 of CMS, the DCSS overlaps the storage of the virtual machine. With subsequent

releases, the storage where the segment resides is in use. Storage can be reserved with the
SEGMENT RESERVE command in CMS.

– The library loader has been customized so that it does not look for the Library in a DCSS.

If any of these conditions apply, the Library is loaded from disk.
d. The library loader makes the Library a nucleus extension and names it EAGRTPRC.

Note:

a. With systems before VM/ESA Release 1.1, the Library is made a nucleus extension of length 0.
This ensures that a NUCXDROP EAGRTPRC or NUCXDROP * command issued from a compiled
REXX program does not free the storage into which the Library is loaded. If a NUCXDROP
command is issued, a new copy of the Library is loaded the next time a compiled REXX program is
run; the storage occupied by the previous copy is not regained.

b. With VM/ESA Release 1.1 or a subsequent release, the Library is loaded by issuing a NUCXLOAD
command with the PERM option, so that a NUCXDROP * command will not release the Library.
Storage can be regained by issuing a NUCXDROP EAGRTPRC command. This command must not
be issued while a compiled REXX program is running, otherwise unpredictable results may occur.

c. A NUCXDROP EAGRTPRC command must be issued before purging the segment that contains
the Library, otherwise an ABEND will occur.

• Runtime messages: In certain cases, the Library gives more information about the error than is
provided by the interpreter’s error messages. In these cases, a secondary message then follows the
main message. For example, if your program BRCL EXEC calls, on line 115, the LASTPOS built-in
function with a negative value for the start argument, the following messages are displayed:

– EAGREX4000E Error 40 running compiled BRCL EXEC, line 115: Incorrect call
to routine

– EAGREX4003I Argument not positive

For explanations of the runtime messages, see Chapter 20, “Runtime Messages,” on page 175.

Note: Secondary messages are for your information only. They are not accessible through the
ERRORTEXT function and do not affect the setting of the special variable RC.

• SETVAR: Starting with Release 2 of the IBM Compiler and Library, the VALUE built-in function provides
the same support as RXSETVAR.

Note:

1. For compatibility with earlier releases, RXSETVAR and SETVAR are still supported by Release 4.
2. It is, however, recommended that you now use the VALUE built-in function, because it provides a

better performance.
• Some common errors: This section lists some common errors that can occur at runtime.

46 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Under z/OS:

– Library not found: If the Library is not in the LPA, in the LINKLIST concatenation, or defined in the
STEPLIB DD statement, the following failure occurs:

 CSV003I REQUESTED MODULE EAGRTPRC NOT FOUND
 CSV003I REQUESTED MODULE EAGRTXLD NOT FOUND
 CSV003I REQUESTED MODULE EAGRTXVH NOT FOUND
 +IRX0158E The runtime processor EAGRTPRC could not be found.

Note: Make sure that the data sets contained in the Library or Alternate Library have not been dropped
from the LPA or STEPLIB concatenation. This can occur when using APF authorized data sets.

Under z/VM:

– Module A Overlaid by Module B: If your program is in the form of a module, module A, and it calls
another module, module B, module B might overlay your program in storage. This occurs if, for
example, both modules are loaded at the default starting address. The failure occurs when module B
tries to return control to your program.

To determine whether an overlay caused the failure, recompile the program, creating a compiled
EXEC, and recreate the circumstances in which the failure occurred. If the problem disappears, the
failure was almost certainly caused by a module overlay. In this case, either continue to run the
program as a compiled EXEC or explicitly specify a different starting address when loading your
module. If the problem persists, the failure has a different cause, and you should contact your system
support personnel.

– Return Code -3: If you get a return code of -3 when you invoke your program, it usually means that
the program was not found. However, it can alternatively mean that the Library was not found. So, if
you get this return code when the program is available, make the Library available—either in a DCSS
or on disk.

– SVC depth: A maximum supervisor call (SVC) nesting depth of 200 is supported by CMS. The CMS
EXEC processor invokes the Library by means of an SVC. The invocation of a compiled REXX program
of CEXEC type requires one SVC more than the invocation of an interpreted REXX program. The
maximum SVC nesting depth is reached earlier, for example, in recursive programs.

• Testing the Halt Condition: Testing for the halt condition is supported only for programs that are
compiled with the TESTHALT Compiler option or use the %TESTHALT directive. See “Halt Condition” on
page 81 for details.

• Tracing compiled programs: Tracing of compiled programs is supported only for programs that are
compiled with the TRACE Compiler option. See “TRACE Instruction and TRACE Built-In Function” on
page 85 for details.

Runtime Considerations 47

48 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 5. Understanding the Compiler Listing

The Compiler produces a listing for each compilation unless the NOPRINT option was specified. You can
print the listing or store it in a z/OS data set or in a CMS file; see the description of the PRINT option at
“PRINT” on page 32 for details.

The compiler listing consists of the following items:

• The compilation summary
• The source listing, if the SOURCE option was specified
• Any messages that were produced and that were not suppressed by the FLAG option
• A cross-reference listing, if the XREF option was specified
• The compilation statistics

At the end of this chapter you find an example of a complete compiler listing.

Compilation Summary
The information at the beginning of a compiler listing shows the outcome of the compilation, and the
options in effect for the compilation.

The text Compiled with OPTIONS 'ETMODE' follows the last compiler option if the program was
compiled with ETMODE in effect.

An example of a compilation summary is shown here:

1===> Compilation Summary ROULETTE EXEC A1
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:14 Date: 2003-05-20 Page: 1

 Compilation successful

 Compiler Options

 NOALTERNATE
 CEXEC (ROULETTE CEXEC A1) RECFM=F,LRECL=1024
 NOCOMPILE (S)
 NOCONDENSE
 NODLINK
 NODUMP
 FLAG (I)
 FORMAT (C)
 NOIEXEC
 LIBLEVEL (*)
 LINECOUNT (55)
 MARGINS (1 *)
 OBJECT (ROULETTE TEXT A1) RECFM=F,LRECL=80
 NOOLDDATE
 OPTIMIZE
 PRINT (ROULETTE LISTING A1) RECFM=V,LRECL=121
 NOSAA
 SLINE (A)
 SOURCE
 SYSIN (ROULETTE EXEC A1) RECFM=V,LRECL=99
 NOTERMINAL
 NOTESTHALT
 NOTRACE
 XREF
 Minimum Library Level required: 3

 SLINE(AUTO) in effect, no source lines included

Figure 6: Extract of Compiler Listing Showing the Compilation Summary as Printed under z/VM

Source Listing
Figure 7 on page 51 shows an extract from a source listing. You can control the page breaks in this listing
by using the %PAGE listing control directive, as described at “Compiler Control Directives” on page 81.
Each line of the listing contains the following information:

© Copyright IBM Corp. 1991, 2013 49

If
The nesting level of IF instructions

Do
The nesting level of DO instructions

Sel
The nesting level of SELECT instructions

For example, a 2 in the If column indicates that the instruction on that line is part of an IF instruction that
is nested within another IF instruction.
Line

The line number in the expanded source program. Source lines that are longer than the space
available in a listing line are split and continued on subsequent lines of the listing. The space available
depends on whether sequence numbers, %INCLUDE files, or both, have been found.

C
Continuation (C) or splitting (S) of a line.
C

Continuation line indicator. Indicates that the source line is longer than the space available and
continues on this line.

S
Split line indicator. The source line has been split as a result of text following the closing */
characters terminating a %INCLUDE directive. The S is printed to the first split line that follows the
included records.

----+----1----+----2----+
Columns of the source ranging from 1 to the number of columns available. If margins are specified,
the characters > and < indicate which part of the source has been compiled. The character > is placed
one column to the left of the left margin, if this is >1 and fits on the line. The character < is placed one
column to the right of the right margin, if it fits on the line. For example, if you specified MARGINS (5
12), the margins indicator shows:

--->+----1--<-+----2----+-

Sequence
Contains the sequence numbers taken from the records from the main source file and any included
files. Sequence numbers are expected in the last eight character positions of the record for fixed-
length records and in the first eight character positions for variable-length records. If the source files
do not contain sequence numbers, there is no Sequence column, but the space is used by the REXX
source.

The following examples show the sequence number at the beginning (first example) and at the end
(second example) of a record:

1===> Source Listing VARTEST EXEC A1
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 14:07:17 Date: 2003-05-20 Page: 2
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9- Sequence

 1 /* REXX VARTEST */ 00000000
 2 Exit rc 00000002

1===> Source Listing FIXTEST EXEC A1
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 14:07:17 Date: 2003-05-20 Page: 2
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 Sequence Incl Recd

 1 /* REXX FIXTEST */ 00100000 1
 2 rc=4 00100100 2
 3 /*%Include include */ 00200000 3
 4 /* REXX INCLUDE COPY A - I am hopefully included */ 00000001 1 1
 5 00300000 4
 6 Exit rc

Incl
Identifies the file, main or included, from which the line was taken.

50 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

If the column contains a blank, the print line is taken from the main REXX source file whose file ID is
printed in the first header line of the listing.

A number in this column refers to a %INCLUDE file in the list of included files that is printed in the
compilation statistics sublisting. (See Figure 10 on page 55.) This number is a reference number,
which does not indicate nesting of included files. The nesting of included files can be derived from the
contents of the Recd column.

If the source files do not have any included files, there is no Incl column, but the space is used by
the REXX source.

Recd
Number of REXX lines within the main or the included file. The numbering begins with 1 for each file,
so that nested files can be recognized by a break in the line number sequence.

If the source files do not have any included files, there is no Recd column.

1===> Source Listing ROULETTE EXEC A1
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:14 Date: 2003-05-20 Page: 2
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+---- Incl Recd

 1 /* REXX ** 1
 2 * Roulette Implementation in REXX 2
 3 * This program can be used instead of the wheel usually employed in 3
 4 * casinos. 4
 5 * Press enter to proceed to the game's next step. 5
 6 * After the display of a number you can stop play by entering "end". 6
 7 * 7
 8 ***/ 8
 9 Call set_color /* initialize c.i with color of i */ 9
 10 rr.=0 /* initialize statistics */ 10
 11 Say '** Welcome to Roulette **' /* welcome the user */ 11
 12 Do Forever /* repeat till end requested */ 12
 1 13 Say /* an empty separator line */ 13
 1 14 Say 'Faites vos jeux' /* ask players to make their bets */ 14
 1 15 Call pause('W') /* wait for input to proceed */ 15
 1 16 Say 'Rien ne va plus' /* stop them */ 16
 1 17 Call pause('W') /* wait for input to proceed */ 17
 1 18 r=Random(0,36) /* get random number from 0 to 36 */ 18
 1 19 rr.r=rr.r+1; /* maintain statistics */ 19
 1 20 If r=0 Then /* zero */ 20
 1 1 21 Say ' 0 ZERO' /* good for the casino */ 21
 1 22 Else Do /* any other number (1 to 36) */ 22
 1 2 23 If r//2=0 Then /* even number */ 23
 2 2 24 pi='pair'; /* in French */ 24
 1 2 25 Else /* odd number */ 25
 2 2 26 pi='impair'; /* in French */ 26
 1 2 27 If r<=18 Then /* lower half */ 27
 2 2 28 mp='manque'; /* in French */ 28
 1 2 29 Else /* upper half */ 29
 2 2 30 mp='passe' /* in French */ 30
 1 2 31 Say Right(r,2) Left(pi,6) c.r mp /* show where the ball stopped and the number's att 31
 C ributes */
 1 1 32 End /* and the number's attributes */ 32
 1 33 If pause('E')='END' Then /* check if termination request */ 33
 1 1 34 Leave /* If so, end the loop */ 34
 35 End /* end of one game, ready for next*/ 35
 36 Say ' ** Merci et au revoir **' /* thanks and good bye */ 36
 37 Exit /* Exit the program */ 37
 38 38
 39 /*%Include setcolor*/ 39
 40 set_color: /* Set up c.i to contain the color of each number */ 1 1
 41 c.='noir ' /* set all of them to black */ 1 2
 42 rouge='1 3 5 7 9 12 14 16 18 19 21 23 25 27 30 32 34 36' 1 3
 43 Do While rouge¬='' /* process list of red numbers */ 1 4
 1 44 Parse Var rouge t rouge /* pick the first in the list */ 1 5
 1 45 c.t='rouge' /* set its color to red */ 1 6
 46 End 1 7
 47 Return

Figure 7: Extract of Source Listing as Printed under z/VM

Messages
Compiler messages are preceded by the erroneous source line. However, if the error does not occur in the
REXX program, for example if there is an incorrect option or an error opening the output file, the error
messages precede the first source line. If you request a source listing, the messages are interspersed in
the listing, as shown in Figure 8 on page 52. Otherwise, only the erroneous source lines and their
corresponding messages are included in the listing.

Notice that there is a vertical bar between the source line and the message line. This marker is placed at
or near the part of the instruction in the printed source line, continuation line, or split line that caused the
message. One error may cause more than one message.

Understanding the Compiler Listing 51

The result of an expression following an INTERPRET instruction is not analyzed by the Compiler. If it
contains errors, they are detected only when the INTERPRET instruction is executed.

1===> Source Listing SYS03140.T154049.RA000.RXTLISTS.SYSINPDS.H01(ROULETTE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:51 Date: 2003-05-20 Page: 2
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 Sequence Incl Recd

 1 /* REXX **00010000 1
 2 * Roulette Implementation in REXX 00020000 2
 3 * This program can be used instead of the wheel usually employed in 00030000 3
 4 * casinos. 00040000 4
 5 * Press enter to proceed to the game's next step. 00050000 5
 6 * After the display of a number you can stop play by entering "end". 00060000 6
 7 * 00070000 7
 8 ***/00080000 8
 9 Call set_color /* initialize c.i with color of i */00090000 9
 10 rr.=0 /* initialize statistics */00100000 10
 11 Say '** Welcome to Roulette **' /* welcome the user */00110000 11
 12 Do Forever /* repeat till end requested */00120000 12
 1 13 Say /* an empty separator line */00130000 13
 1 14 Say 'Faites vos jeux' /* ask players to make their bets */00140000 14
 1 15 Call pause('W') /* wait for input to proceed */00150000 15
 1 16 Say 'Rien ne va plus' /* stop them */00160000 16
 1 17 Call pause('W') /* wait for input to proceed */00170000 17
 1 18 r=Random(0,36) /* get random number from 0 to 36 */00180000 18
 1 19 rr,r=rr.r+1; /* maintain statistics */00190000 19
 |
 +++FANPAR0566S Unexpected "," in expression
 1 20 If r=0 Then /* zero */00200000 20
 1 1 21 Say ' 0 ZERO' /* good for the casino */00210000 21
 1 22 Else Do /* any other number (1 to 36) */00220000 22
 1 2 23 If r//2=0 Then /* even number */00230000 23
 2 2 24 pi='pair'; /* in French */00240000 24
 1 2 25 Else /* odd number */00250000 25
 2 2 26 pi='impair'; /* in French */00260000 26
 1 2 27 If r<=18 Then /* lower half */00270000 27
 2 2 28 mp='manque'; /* in French */00280000 28
 1 2 29 Else /* upper half */00290000 29
 2 2 30 mp='passe' /* in French */00300000 30
 1 2 31 Say Right(r,2) Left(pi,6) c.r mp /* show where the ball stopped */00310000 31
 1 1 32 End /* and the number's attributes */00320000 32
 1 33 If pause('E')= Then /* check if termination request */00330000 33
 |
 +++FANPAR0561S Right operand missing
 1 1 34 Leave /* If so, end the loop */00340000 34
 35 End /* end of one game, ready for next*/00350000 35
 36 Say ' ** Merci et au revoir **' /* thanks and good bye */00360000 36
 37 Exit /* Exit the program */00370000 37
 38 00380000 38
 39 set_color: 00390000 39
 40 /*%Include setcolor*/ 00400000 40
 41 set_color: /* Set up c.i to contain the color of each number */ 00010000 1 1
 |
 +++FANPAR0071W Duplicate label: Only first occurrence on line 39 used
 42 c.='noir ' /* set all of them to black */ 00020000 1 2
 43 rouge='1 3 5 7 9 12 14 16 18 19 21 23 25 27 30 32 34 36' 00030000 1 3
 44 Do While rouge¬='' /* process list of red numbers */ 00040000 1 4
 1 45 Parse Var rouge t rouge /* pick the first in the list */ 00050000 1 5
1===> Source Listing SYS03140.T154049.RA000.RXTLISTS.SYSINPDS.H01(ROULETTE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:51 Date: 2003-05-20 Page: 3
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--<-+----8 Sequence Incl Recd

 1 46 c.t='rouge' /* set its color to red */ 00060000 1 6
 47 End 00070000 1 7
 48 Return

Figure 8: Extract of Source Listing with Messages as Printed under z/OS

Cross-Reference Listing
For each item used in a program except for host commands, the cross-reference listing shows:

• The attribute of the item. Because REXX does not require you to declare the type of data to be stored in
a variable, the attributes do not indicate formal data types.

• The numbers of the lines on which it is referenced in the program.

Note: If you do not want to list constants, commands, and optimizing stoppers, specify the XREF(S)
compiler option as described in “XREF” on page 35.

Each entry in the cross-reference listing contains the following information:
Item

The text of the item. Symbols are shown in uppercase, except for DBCS characters. Literal strings are
shown enclosed in single quotes. If the text is longer than 30 characters, the rest of the text is
continued on subsequent lines of the listing.

Attribute
The attribute of the item, according to the classification of tokens defined in REXX. The meanings of
the values in this column are:
BIN STR

A binary string

52 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

BUILT-IN
A built-in function

COMP VAR
A compound variable

CONST SYM
A constant symbol

DBCS RTN
A function for manipulating DBCS strings

EXT BIF
A stream I/O built-in function

EXT RTN
An external routine

HEX STR
A hexadecimal string

LABEL
A label definition

LABEL +++
A multiple-label definition or a reference to an undefined label

LIT STR
A literal string

NUMBER
A number

SIMP VAR
A simple variable

SIMPV+++
A variable that is not initialized. It does not have an assignment.

STEM
A stem

SYSTM RTN
A function supplied by IBM that is specific to a system, such as DIAG under z/VM, SYSVAR under
z/OS, or ASSIGN under VSE.

Line Reference
The number of each line on which the item is referenced. The meanings of the characters provided in
parentheses in the listing are described in the following. You can review line references for:

• Labels:
(d)

Indicates a valid label definition
(u)

Indicates a reference to an undefined label
(m)

Indicates a duplicate label definition
(c)

The label is referred to in a CALL clause
(C)

The label is referred to in a CALL ON clause
(s)

The label is referred to in a SIGNAL clause
(S)

The label is referred to in a SIGNAL ON clause

Understanding the Compiler Listing 53

(f)
The label is referred to as a function call.

• Variables:
(s)

Sets the variable named in the ITEM column
(d)

Indicates that the variable was dropped
(e)

Indicates that the variable was exposed
(SIMPV+++)

Indicates that the variable is not initialized. It does not have an assignment.

Figure 9 on page 54 shows the cross-reference listing for the ROULETTE EXEC in Figure 8 on page 52.

1===> Cross Reference Listing ROULETTE EXEC A1
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:14 Date: 2003-05-20 Page: 3
 Item Attribute Line References

 ----- Labels, Built-in Functions, External Routines -----

 LEFT BUILT-IN 31:20(f)
 PAUSE EXT RTN 15:8(c) 17:8(c) 33:6(f)
 RANDOM BUILT-IN 18:5(f)
 RIGHT BUILT-IN 31:9(f)
 SET_COLOR LABEL 9:6(c) 40:1(d)

 ----- Constants -----

 '' LIT STR 43:19
 ' ** Merci et au revoir ** LIT STR 36:5
 '
 ' 0 ZERO' LIT STR 21:9
 '** Welcome to Roulette **' LIT STR 11:5
 'impair' LIT STR 26:10
 'manque' LIT STR 28:10
 'noir ' LIT STR 41:6
 'pair' LIT STR 24:10
 'passe' LIT STR 30:10
 'rouge' LIT STR 45:9
 'E' LIT STR 33:12
 'END' LIT STR 33:17
 'Faites vos jeux' LIT STR 14:7
 'Rien ne va plus' LIT STR 16:7
 'W' LIT STR 15:14 17:14
 0 NUMBER 10:5 18:12 20:8 23:13
 1 NUMBER 19:13
 '1 3 5 7 9 12 14 16 18 19 21 2 LIT STR 42:9
 3 25 27 30 32 34 36'
 18 NUMBER 27:11
 2 NUMBER 23:11 31:17
 36 NUMBER 18:14
 6 NUMBER 31:28

 ----- Simple Variables -----

 MP SIMP VAR 28:7(s) 30:7(s) 31:35
 PI SIMP VAR 24:7(s) 26:7(s) 31:25
 R SIMP VAR 18:3(s) 19:6 19:11 20:6 23:8 27:8 31:15 31:33
 ROUGE SIMP VAR 42:3(s) 43:12 44:15 44:23(s)
 T SIMP VAR 44:21(s) 45:7

 ----- Stems and Compound Variables -----

 C. STEM 41:3(s)
 C.R COMP VAR 31:31
 C.T COMP VAR 45:5(s)
 RR. STEM 10:1(s)
 RR.R COMP VAR 19:3(s) 19:8
1 ROULETTE EXEC A1
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:14 Date: 2003-05-20 Page: 4
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+---- Incl Recd

 ----- Optimizing Stoppers -----

 9 Call set_color /* initialize c.i with color of i */ 9
 |
 1 15 Call pause('W') /* wait for input to proceed */ 15
 |
 1 17 Call pause('W') /* wait for input to proceed */ 17
 |
 1 33 If pause('E')='END' Then /* check if termination request */ 33
 |
 40 set_color: /* Set up c.i to contain the color of each number */ 1 1
 |

Figure 9: Extract of Cross-Reference Listing as Printed under z/VM

Compilation Statistics
The compilation statistics at the end of the source listing provide the following information:

• Number of lines in the source program

54 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

• Size of the compiled program in bytes, if compiled code was generated
• Message statistics
• Flagged source lines, if any source lines were flagged
• List of included z/OS data set names or CMS file names, if any %INCLUDE directives are found

Note: The message statistics and the flagged source lines are produced regardless of the FLAG compiler-
option setting. For more information refer to “FLAG” on page 25.

An example of compilation statistics is shown in Figure 10 on page 55. The numbers indicate how many
messages were produced for each particular message severity.

1===> Compilation Statistics SYS03140.T154049.RA000.RXTLISTS.SYSINPDS.H01(ROULETTE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 15:40:51 Date: 2003-05-20 Page: 6

 REXX Lines 48

 Total messages Informational Warning Error Severe Terminating
 3 0 1 0 2 0

 The following lines have been flagged

 19:5 33:16 41:1

 Error No. Line:Col

 71 41:1

 561 33:16

 566 19:5

 Included files
 1 RXT.FB80.PEXEC(SETCOLOR) RECFM=FB,LRECL=80,BLKSIZE=6160

 Finishing time of compilation: 15:40:51

Figure 10: Extract of Compiler Listing Showing Compilation Statistics as Printed under z/OS

Examples with Column Numbers
The following examples show the Compiler listings where FORMAT(C) and option SAA are in effect. The
column numbers and the line numbers appear in the cross-reference listing of the variables and in the
statistics listing that contains the flagged lines. The line numbers precede, and the column numbers
follow, the colon (:) sign.

The program to be compiled also contains several host commands. They are printed in the cross-
reference listing in the same format and sequence as in the source listing. Appendix D, “The z/OS
Cataloged Procedures Supplied by IBM,” on page 229 contains another version of this program without
errors.

Understanding the Compiler Listing 55

Figure 11 on page 56 shows an extract of a source listing printed under z/VM.

1===> Source Listing SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 2
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

 1 /* ------------------------------ REXX ------------------------------ */
 2 /* MVS2OE */
 3 /* Copy an MVS data set to OpenEdition */
 4 /* */
 5 /* MVS2OE: This EXEC will copy a sequential data set or a member in */
 6 /* a library to OpenEdition. It will run in a TSO environment. */
 7 /* However this version is designed to illustrate how the REXX */
 8 /* Compiler lists the deliberate errors found herein. It is not */
 9 /* meant to run this example. */
 10 /**/
 11
 12 /* try to retrieve previous values */
 13 address ISPEXXXXXXXXXXXXEC "VGET (OEDSN,OEPATH,OEBIN)"
 |
 +++FANGAO0583S Environment name longer than 8 characters
 14 if (rc = 0) then do /* vget o.k., confirm values */
 1 1 15 say 'MVS data set name'; oedsn = check(oedsn)
 1 1 16 say 'OE path name'; oepath = check(oepath, 'lower')
 1 1 17 say 'Binary file (Y or N)'; oebin = check(oebin)
 1 18 end
 19 else do /* vget not o.k., read in values */
 1 1 20 say 'please key in the complete DSNAME with High Level Qualifier
 |
 +++FANPAR0855W SAA: Literal strings must be completely on one line
 1 1 21 '
 1 1 22 pull oedsn
 1 1 23 say 'please key in the OE path'
 1 1 24 parse pull oepath
 1 1 25 say 'is it an executable (binary) program (Y or N)?'
 1 1 26 pull oebin
 1 27 end
 28
 29 say 'Abort run? "Y" aborts, anything else performs copy'
 30 say 'from' oedsn 'to' oepath
 31 pull answer
 32 if (answer = 'Y') then exit
 33
 34 if (oebin = 'Y') then DO /* set up some of the file's OE attributes */
 1 1 35 mode == 'SIXUSR'
 |
 +++FANPAR0182S Assignment operator must not be followed by another "="
 1 1 36 bin == 'BINARY'
 |
 +++FANPAR0182S Assignment operator must not be followed by another "="
 1 37 end
 38 else do
 1 1 39 mode = ''
 1 1 40 bin = 'TEXT'
 1 41 end
 42
 43 msg_status = msg('OFF') /* suppress msgs from FREE etc. */
 |
 +++FANGAO0857W SAA: Built-in function not part of SAA Procedures Language
 44 "FREE DDNAME(OEIN)" /* make sure OEIN and OEOUT are free */
 45 "FREE DDNAME(OEOUT)"
 46 msg_status = msg(msg_status) /* restore to previous value */
 |

Figure 11: Extract of Source Listing as Printed under z/VM (Part 1 of 2)

 +++FANGAO0857W SAA: Built-in function not part of SAA Procedures Language
 47
 48 "ALLOC DDNAME(OEIN) DSN('"oedsn"') SHR"
 49 "ALLOC DDNAME(OEOUT) PATH('"oepath"') PATHDISP(KEEP KEEP)" ,
 50 "PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"
 51
 52 "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /* perform copy operation */
 53 if (rc <> 0) then say 'RC from OCOPY=' rc /* check return code */
 54 "FREE DDNAME(OEIN)"
 55 "FREE DDNAME(OEOUT)"
 56
 57 /* save values for next invocation */
 58 address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"
 59 exit 0 /* leave this exec */
 60
 61 /* subprogram to request user to confirm or overwrite a value */
 62 /* -- */
 63 check:
 64 say 'Use <ENTER> to use' arg(1) 'or key in new value'
1===> Source Listing SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 3
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

 65 if (arg(2) = 'lower') then do
 1 1 66 parse pull answer /* keep case as typed in */
 1 67 end
 68 else do
 1 1 69 parse upper pull answer /* uppercase input */
 1 70 end
 71 if (answer = '') then return arg(1); else return answer
 72 Say 'end of program'
 |
 +++FANGAO0773I Instruction might never be executed

Figure 12: Extract of Source Listing as Printed under z/VM (Part 2 of 2)

56 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Figure 13 on page 57 shows an extract of a cross-reference listing printed under z/OS.

1===> Cross Reference Listing SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 4
 Item Attribute Line References

 ----- Labels, Built-in Functions, External Routines -----

 ARG BUILT-IN 64:27(f) 65:6(f) 71:31(f)
 CHECK LABEL 15:40(f) 16:40(f) 17:40(f) 63:1(d)
 MSG SYSTM RTN 43:14(f) 46:14(f)

 ----- Constants -----

 '' LIT STR 39:10 71:15
 ')' LIT STR 50:67
 ''') PATHDISP(KEEP KEEP)' LIT STR 49:35
 ''') SHR' LIT STR 48:33
 'end of program' LIT STR 72:6
 'from' LIT STR 30:5
 'is it an executable (binary) LIT STR 25:7
 program (Y or N)?'
 'lower' LIT STR 16:54 65:15
 'or key in new value' LIT STR 64:34
 'please key in the complete DS LIT STR 20:7
 NAME with High Level Qualifier
 '
 'please key in the OE path' LIT STR 23:7
 'to' LIT STR 30:18
 'Abort run? "Y" aborts, anythi LIT STR 29:5
 ng else performs copy'
 'ALLOC DDNAME(OEIN) DSN(''' LIT STR 48:1
 'ALLOC DDNAME(OEOUT) PATH(''' LIT STR 49:1
 'Binary file (Y or N)' LIT STR 17:7
 'BINARY' LIT STR 36:10
 'FREE DDNAME(OEIN)' LIT STR 44:1 54:1
 'FREE DDNAME(OEOUT)' LIT STR 45:1 55:1
 ISPEXEC CONST SYM 58:9
 ISPEXXXXXXXXXXXXEC CONST SYM 13:9
 'MVS data set name' LIT STR 15:7
 'OCOPY INDD(OEIN) OUTDD(OEOUT) LIT STR 52:1
 '
 'OE path name' LIT STR 16:7
 'OFF' LIT STR 43:18
 'PATHOPTS(ORDWR OCREAT) PATHMO LIT STR 50:15
 DE(SIRUSR SIWUSR'
 'RC from OCOPY=' LIT STR 53:23
 'SIXUSR' LIT STR 35:11
 'TEXT' LIT STR 40:9
 'Use <ENTER> to use' LIT STR 64:6
 'VGET (OEDSN,OEPATH,OEBIN)' LIT STR 13:28
 'VPUT (OEDSN,OEPATH,OEBIN) PRO LIT STR 58:17
 FILE'
 'Y' LIT STR 32:14 34:13
 0 NUMBER 14:10 53:11 59:6
 1 NUMBER 64:31 71:35
 2 NUMBER 65:10

 ----- Simple Variables -----

 ANSWER SIMP VAR 31:6(s) 32:5 66:15(s) 69:21(s) 71:6 71:51
 BIN SIMP VAR 36:3(s) 40:3(s) 52:33
 MODE SIMP VAR 35:3(s) 39:3(s) 50:63
 MSG_STATUS SIMP VAR 43:1(s) 46:1(s) 46:18
 OEBIN SIMP VAR 17:31(s) 17:46 26:8(s) 34:5
 OEDSN SIMP VAR 15:31(s) 15:46 22:8(s) 30:12 48:28
 OEPATH SIMP VAR 16:31(s) 16:46 24:14(s) 30:23 49:29
 RC SIMP VAR 14:5 53:5 53:40

Figure 13: Extract of Cross-Reference Listing as Printed under z/OS (Part 1 of 2)

Understanding the Compiler Listing 57

 ----- Commands -----
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

 13 address ISPEXXXXXXXXXXXXEC "VGET (OEDSN,OEPATH,OEBIN)"
 44 "FREE DDNAME(OEIN)" /* make sure OEIN and OEOUT are free */
 45 "FREE DDNAME(OEOUT)"
 48 "ALLOC DDNAME(OEIN) DSN('"oedsn"') SHR"
 49 "ALLOC DDNAME(OEOUT) PATH('"oepath"') PATHDISP(KEEP KEEP)" ,
 50 "PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"
 52 "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /* perform copy operation */
 54 "FREE DDNAME(OEIN)"
 55 "FREE DDNAME(OEOUT)"
1 SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 5
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

 58 address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"

 ----- Optimizing Stoppers -----

 13 address ISPEXXXXXXXXXXXXEC "VGET (OEDSN,OEPATH,OEBIN)"
 |
 1 1 15 say 'MVS data set name'; oedsn = check(oedsn)
 |
 1 1 16 say 'OE path name'; oepath = check(oepath, 'lower')
 |
 1 1 17 say 'Binary file (Y or N)'; oebin = check(oebin)
 |
 43 msg_status = msg('OFF') /* suppress msgs from FREE etc. */
 |
 44 "FREE DDNAME(OEIN)" /* make sure OEIN and OEOUT are free */
 |
 45 "FREE DDNAME(OEOUT)"
 |
 46 msg_status = msg(msg_status) /* restore to previous value */
 |
 48 "ALLOC DDNAME(OEIN) DSN('"oedsn"') SHR"
 |
 49 "ALLOC DDNAME(OEOUT) PATH('"oepath"') PATHDISP(KEEP KEEP)" ,
 |
 52 "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /* perform copy operation */
 |
 54 "FREE DDNAME(OEIN)"
 |
 55 "FREE DDNAME(OEOUT)"
 |
 58 address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"
 |
 63 check:
 |

Figure 14: Extract of Cross-Reference Listing as Printed under z/OS (Part 2 of 2)

Figure 15 on page 58 shows an extract of a statistics listing that was created with the FORMAT compiler
option.

1===> Compilation Statistics SYS03140.T160625.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:06:28 Date: 2003-05-20 Page: 6

 REXX Lines 72

 Total messages Informational Warning Error Severe Terminating
 7 1 3 0 3 0

 The following lines have been flagged

 13:9 20:7 35:8 36:7 43:14 46:14 72:2

 Error No. Line:Col

 182 35:8 36:7

 583 13:9

 773 72:2

 855 20:7

 857 43:14 46:14

 Finishing time of compilation: 16:06:28

Figure 15: Extract of Statistics Listing as Printed under z/VM (using FORMAT)

58 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Figure 16 on page 59 shows an extract of a statistics listing that was created with the NOFORMAT
compiler option.

1===> Compilation Statistics SYS03140.T161009.RA000.RXTLISTS.SYSINPDS.H01(MVS2OE)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 16:10:13 Date: 2003-05-20 Page: 6

 REXX Lines 72

 Total messages Informational Warning Error Severe Terminating
 7 1 3 0 3 0

 The following lines have been flagged

 13 20 35 36 43 46 72

 Error No. Line

 182 35 36

 583 13

 773 72

 855 20

 857 43 46

 Finishing time of compilation: 16:10:13

Figure 16: Extract of Statistics Listing as Printed under z/VM (using NOFORMAT)

Example of a Complete Compiler Listing

1===> Compilation Summary SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 17:10:47 Date: 2003-06-24 Page: 1

 13 message(s) reported. Highest severity code was 12 - Severe

 Compiler Options

 NOALTERNATE
 CEXEC (SYS03175.T171043.RA000.RXTLISTS.SYSCEXEC.H01(CMPEXAMP))
 NOCOMPILE (S)
 NOCONDENSE
 NODDNAMES
 NODLINK
 NODUMP
 FLAG (I)
 NOFORMAT
 NOIEXEC
 LIBLEVEL (*)
 LINECOUNT (0)
 MARGINS (1 *)
 OBJECT (SYS03175.T171043.RA000.RXTLISTS.SYSPUNCH.H01(CMPEXAMP))
 OPTIMIZE
 PRINT () RECFM=VBA,LRECL=125,BLKSIZE=1250
 NOSAA
 SLINE (A)
 SOURCE
 SYSIN (SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)) RECFM=VB,LRECL=4092,BLKSIZE=4096
 NOTERMINAL
 NOTESTHALT
 NOTRACE
 XREF
 Minimum Library Level required: N/A

 SLINE(AUTO) in effect, no source lines included

Figure 17: A Complete Compiler Listing as Printed under z/OS (Part 1 of 6)

Understanding the Compiler Listing 59

1===> Source Listing SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 17:10:47 Date: 2003-06-24 Page: 2
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

 +++FANENV0673S LINECOUNT value not 0 or a whole number in the range 10-99: LC(100)

 1 /* REXX **
 2 * Name : CMPEXAMP EXEC
 3 * Purpose : Example for a Compilation Listing
 4 ***/
 5 Parse source . . exfn exft exfm synfn .;
 6 Parse version all_ver;
 7
 8 /* Call - Signal - Function or multiple */
 9 id=0001; Call L01;
 10 id=0002; x = L02(1);
 11 id=0003; Signal L03;
 12 L01:;
 13 say 'id0001' Call L01;
 14 Return;
 15 L02:;
 16 Arg num . ;
 17 Select;
 1 18 When num = 1 then y = 'Test1';
 1 19 When num = 2 then y = 'Test2';
 1 20 Otherwise y = 'no';
 21 End;
 22 say 'id0002 Function L02 returns' y;
 23 Return y;
 24 L03:; /* first occurrence of label */
 25 L03:; /* second occurrence of label */
 |
 +++FANPAR0071W Duplicate label: Only first occurrence on line 24 used
 26 say 'id0003' Signal L03;
 27
 28 /* compound variables ***/
 29 id=0010; stema.='';
 30 id=0011; stema.tail1 = L02(1);
 31 id=0012; stema.tail2 = L02(2);
 32 id=0013; stema.tail3 ,
 33 = L02(2);
 34 id=0014; stema.tail4.aaaaaaaa.bbbbbbbbbbbbbbbbbbbbbbbbbbb.5=0;
 35 /* CV > 250 */
 36 id=0015; stema.tail9.00000001.00000002.00000003.00000004.00000005.00000006.00000
 37 /* 240 < CV > 250 */
 38 id=0016; stema.taila.00000001.00000002.00000003.00000004.00000005.00000006.00000
 39 id=0017; stema.tAILb.GRkl = 'test';
 40 id=0018; stema.tailc = ,
 41 ;
 42 id=0019; Say stema.taild..00000002.;
 43 id=0020; stemb.tail1 = stema.tail1;
 44
 45 /* flagged lines (multiple) */
 46 id=0021; RANDOM(20,10,4,5) DATE('X');
 |
 +++FANGAO0770S Invalid number of arguments in built-in function
 |
 +++FANGAO0868S RANDOM() BIF: either min>max or (max-min)>100000
 |
 +++FANGAO0866S Invalid option in built-in function invocation
 47 id=0022; U = 'A' / 'B';
 |
 +++FANGAO0659S Nonnumeric term
 |
 +++FANGAO0659S Nonnumeric term
 48
 49 /* Created a long list of errors */
 50 id=0023;
 51 Say MIN(33,55,'l');
 |

Figure 18: A Complete Compiler Listing as Printed under z/OS (Part 2 of 6)

60 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 +++FANGAO0659S Nonnumeric term
 52
 53 /* Error in column 149 */
 54 id=0024;
 55
 56 /* drop */
 57 id=0025; vars = 'stema.tail1 stema.taila'; drop (vars); stema.tail1 = 1;
 58
 C Say MIN(33,55,'l');
 |
 +++FANGAO0659S Nonnumeric term
 59 /* Verify some DATE(5) */
 60 id=0026;
 61 Say DATE('N','1 Jan 1000','X');
 |
 +++FANGAO0866S Invalid option in built-in function invocation
 62 Say DATE('X','1 Jan 1000','N');
 |
 +++FANGAO0866S Invalid option in built-in function invocation
 63 Say DATE('N','1 Jan 1000','N','-','q');
 |
 +++FANGAO0866S Invalid option in built-in function invocation
 64 Say DATE('E','01/01/1000','U','-','//');
 |
 +++FANGAO0879S Separator arg (4 or 5) of DATE exceeds one character
1===> Cross Reference Listing SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 17:10:47 Date: 2003-06-24 Page: 3
 Item Attribute Line References

 ----- Labels, Built-in Functions, External Routines -----

 DATE BUILT-IN 46(f) 61(f) 62(f) 63(f) 64(f)
 L01 LABEL 9(c) 12(d)
 L02 LABEL 10(f) 15(d) 30(f) 31(f) 33(f)
 L03 LABEL+++ 11(s) 24(d) 25(m)
 MIN BUILT-IN 51(f) 58(f)
 RANDOM BUILT-IN 46(f)

Figure 19: A Complete Compiler Listing as Printed under z/OS (Part 3 of 6)

----- Constants -----

 '' LIT STR 29
 '-' LIT STR 63 64
 '//' LIT STR 64
 'id0001' LIT STR 13
 'id0002 Function L02 returns' LIT STR 22
 'id0003' LIT STR 26
 'l' LIT STR 51 58
 'no' LIT STR 20
 'q' LIT STR 63
 'stema.tail1 stema.taila' LIT STR 57
 'test' LIT STR 39
 'A' LIT STR 47
 'B' LIT STR 47
 'E' LIT STR 64
 'N' LIT STR 61 62 63 63
 'Test1' LIT STR 18
 'Test2' LIT STR 19
 'U' LIT STR 64
 'X' LIT STR 46 61 62
 0 NUMBER 34
 00000 NUMBER 36 38
 00000001 NUMBER 36 38
 00000002 NUMBER 36 38 42
 00000003 NUMBER 36 38
 00000004 NUMBER 36 38
 00000005 NUMBER 36 38
 00000006 NUMBER 36 38
 0001 NUMBER 9
 0002 NUMBER 10
 0003 NUMBER 11
 0010 NUMBER 29
 0011 NUMBER 30
 0012 NUMBER 31
 0013 NUMBER 32
 0014 NUMBER 34
 0015 NUMBER 36
 0016 NUMBER 38
 0017 NUMBER 39
 0018 NUMBER 40
 0019 NUMBER 42
 0020 NUMBER 43
 0021 NUMBER 46
 0022 NUMBER 47
 0023 NUMBER 50
 0024 NUMBER 54
 0025 NUMBER 57
 0026 NUMBER 60
 '01/01/1000' LIT STR 64
 1 NUMBER 10 18 30 57
 '1 Jan 1000' LIT STR 61 62 63
 10 NUMBER 46
 2 NUMBER 19 31 33
 20 NUMBER 46
 33 NUMBER 51 58
 4 NUMBER 46
 5 NUMBER 34 46
 55 NUMBER 51 58

Figure 20: A Complete Compiler Listing as Printed under z/OS (Part 4 of 6)

Understanding the Compiler Listing 61

 ----- Simple Variables -----

 AAAAAAAA SIMPV+++ 34
 ALL_VER SIMP VAR 6(s)
 BBBBBBBBBBBBBBBBBBBBBBBBBBB SIMPV+++ 34
 CALL SIMPV+++ 13
 EXFM SIMP VAR 5(s)
 EXFN SIMP VAR 5(s)
 EXFT SIMP VAR 5(s)
 GRKL SIMPV+++ 39
 ID SIMP VAR 9(s) 10(s) 11(s) 29(s) 30(s) 31(s) 32(s) 34(s) 36(s) 38(s) 39(s) 40(s) 42(s)
 43(s) 46(s) 47(s) 50(s) 54(s) 57(s) 60(s)
 L01 SIMPV+++ 13
 L03 SIMPV+++ 26
 NUM SIMP VAR 16(s) 18 19
 SIGNAL SIMPV+++ 26
 SYNFN SIMP VAR 5(s)
 TAILA SIMPV+++ 38
 TAILB SIMPV+++ 39
 TAILC SIMPV+++ 40
 TAILD SIMPV+++ 42
 TAIL1 SIMPV+++ 30 43 43 57
 TAIL2 SIMPV+++ 31
 TAIL3 SIMPV+++ 32
 TAIL4 SIMPV+++ 34
 TAIL9 SIMPV+++ 36
 U SIMP VAR 47(s)
 VARS SIMP VAR 57(s) 57
 X SIMP VAR 10(s)
 Y SIMP VAR 18(s) 19(s) 20(s) 22 23

 ----- Stems and Compound Variables -----

 STEMA. STEM 29(s)
 STEMA.TAILA.00000001.0000000 COMP VAR 38
 2.00000003.00000004.000000
 05.00000006.00000
 STEMA.TAILB.GRKL COMP VAR 39(s)
 STEMA.TAILC COMP VAR 40(s)
 STEMA.TAILD..00000002. COMP VAR 42
 STEMA.TAIL1 COMP VAR 30(s) 43 57(s)
 STEMA.TAIL2 COMP VAR 31(s)
 STEMA.TAIL3 COMP VAR 32(s)
 STEMA.TAIL4.AAAAAAAA.BBBBBBB COMP VAR 34(s)
 BBBBBBBBBBBBBBBBBBBB.5
 STEMA.TAIL9.00000001.0000000 COMP VAR 36
 2.00000003.00000004.000000
 05.00000006.00000
 STEMB. STEM
 STEMB.TAIL1 COMP VAR 43(s)

Figure 21: A Complete Compiler Listing as Printed under z/OS (Part 5 of 6)

62 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 ----- Commands -----
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0

 36 id=0015; stema.tail9.00000001.00000002.00000003.00000004.00000005.00000006.00000
 38 id=0016; stema.taila.00000001.00000002.00000003.00000004.00000005.00000006.00000
 46 id=0021; RANDOM(20,10,4,5) DATE('X');

 ----- Optimizing Stoppers -----

 9 id=0001; Call L01;
 |
 10 id=0002; x = L02(1);
 |
 12 L01:;
 |
 15 L02:;
 |
 24 L03:; /* first occurrence of label */
 |
 30 id=0011; stema.tail1 = L02(1);
 |
 31 id=0012; stema.tail2 = L02(2);
 |
 33 = L02(2);
 |
 36 id=0015; stema.tail9.00000001.00000002.00000003.00000004.00000005.00000006.00000
 |
 38 id=0016; stema.taila.00000001.00000002.00000003.00000004.00000005.00000006.00000
 |
 46 id=0021; RANDOM(20,10,4,5) DATE('X');
 |
 57 id=0025; vars = 'stema.tail1 stema.taila'; drop (vars); stema.tail1 = 1;
 |
1===> Compilation Statistics SYS03175.T171043.RA000.RXTLISTS.SYSINPDS.H01(CMPEXAMP)
 IBM Compiler for REXX on System z 4.0 LVL -NONE-- Time: 17:10:47 Date: 2003-06-24 Page: 4

 REXX Lines 64

 Total messages Informational Warning Error Severe Terminating
 13 0 1 0 12 0

 The following lines have been flagged

 25 46 47 51 58 61 62 63 64

 Error No. Line

 71 25

 659 47 51 58

 673 0

 770 46

 866 46 61 62 63

 868 46

 879 64

 Finishing time of compilation: 17:10:47

Figure 22: A Complete Compiler Listing as Printed under z/OS (Part 6 of 6)

Understanding the Compiler Listing 63

64 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 6. Using Object Modules and TEXT Files

This chapter describes circumstances in which you may want to use OBJECT output rather than CEXEC
output. It also describes how to generate executable modules from the compiler output generated when
you select the OBJECT compiler option.

Initial Considerations
Usually you choose the CEXEC option to compile REXX programs because compiled programs of this type
can replace interpreted REXX programs transparently and in all circumstances. However, you may want to
consider the OBJECT option for:

• Invoking a REXX program as a command or a program (z/OS)
• Improving the packaging and performance of your application
• Building function packages
• Writing parts of applications in REXX
• Placing programs in a discontiguous saved segment (DCSS) (z/VM)
• Invoking a REXX program from JCL (VSE/ESA)

If you decide to use object output, you may have to:

• Change the invocation of the compiled REXX program if it is invoked by other programs
• Change the processing of the information obtained with the PARSE SOURCE instruction
• Check for storage overlaps with other modules (z/VM)

Whether you run object output or CEXEC output for single programs, you can expect the same runtime
performance when the program starts running. The time required to locate and load the program,
however, may be different.

Object modules and TEXT files do not contain operating system dependencies, and can, therefore, be
moved between operating systems. The generated code and the REXX Library are reentrant and can,
therefore, be placed in read-only storage.

Object modules and TEXT files do not normally contain relocation information. If you want to have
relocation information, you must generate the object module or TEXT file with the DLINK compiler option.
This option enables you to link external functions and subroutines directly to an object module or to a
TEXT file. See the compiler option DLINK at “DLINK” on page 23 and “DLINK Example” on page 210.

The name of the TEXT file or the object module in the external symbol dictionary (ESD) record is derived
from the name of the input file or input data set when the REXX program is compiled. For z/VM, it is the
CMS file name of the input file. For z/OS, it is one of the following:

• The member name of the partitioned input data set
• The last qualifier of the name of the sequential input data set
• Or else, COMPREXX (for example, if the source file is part of the job stream)

To run either type of object code, the Library must be installed on z/VM or z/OS. REXX/VSE must be
installed on VSE/ESA. (See Chapter 4, “Runtime Considerations,” on page 43 for information on the use of
the Alternate Library.)

Object Modules (z/OS)
Generating load modules: Before you can use an object module, you must link it to the appropriate stub
(a stub transforms input parameters into a form understandable by the compiled REXX program). This can

© Copyright IBM Corp. 1991, 2013 65

be done with the REXXL cataloged procedure supplied by IBM, which is listed under “REXXL (EAGL)” on
page 235, with the REXXL EXEC explained in “REXXL (z/OS)” on page 67, or with the REXXC EXEC as
described in “Invoking the Compiler with the REXXC (FANC) EXEC” on page 9.

Stubs are provided for the parameter-passing conventions as described in “Stubs” on page 212.

After you have linked the modules to the appropriate stubs, you can use the modules in the same way you
use modules of other high-level language compilers.

Note:

1. By default, the link-edit step adds a dollar ($) sign to the beginning of the temporary name. If the name
consists of 8 characters, the last character is dropped. That is why you must not use 8-character
names that differ only in the eighth character, for load modules that are made up of multiple object
modules.

To avoid renaming it is recommended that you use a %STUB definition as described in “%STUB” on
page 39.

2. Compiled programs linked with RENT modules located in an APF library can cause a system abend in
the module IRXSTAMP. To avoid this problem, compile the program using the CONDENSE option. The
compiled program is uncondensed at runtime and the storage is getmained in the TSO subpool 78 for
execution of the program. For information on the CONDENSE compiler option, see “CONDENSE” on
page 21.

3. Object modules generated with STUB code terminate abnormally if they are run under z/VM.

Invoking a REXX Program as a Command or a Program
A program linked with the:

• CPPL stub can be invoked as a command under TSO/E. The command is usually found earlier in the
search order than the same command executed as either a compiled or interpreted REXX EXEC.

• MVS or the CALLCMD stub enables you to invoke a REXX program just as you would invoke a program
written in another high-level language.

• EFPL stub enables you to store an external function or subroutine in a load library, where it is usually
earlier in the search order than the same function or subroutine executed as a compiled or interpreted
REXX EXEC. It can also be in a function package that is loaded when the environment is initialized. The
EFPL stub can also be used with the DLINK option, see “DLINK” on page 23 and “DLINK Example” on
page 210 for more information.

• CPPLEFPL stub can be invoked both as a TSO/E command or as a REXX external routine. The CPPLEFPL
stub determines whether the REXX program has been invoked as TSO/E command or as a REXX
external routine, then gives control to the compiled REXX program with the appropriate parameters.

• MULTI stub enables you to link-edit and package compiled REXX applications under z/OS. It is
recommended that you use this stub, because it combines nearly all of the above stub conventions. For
more information refer to “Stubs” on page 212.

Programs and commands can be stored and cached wherever a load module can be stored and cached.

For an example, see “Link-Editing of Object Modules” on page 208.

Improving Packaging and Performance
You can improve packaging as follows:

• If your application includes many REXX programs, you can create one module that contains all the REXX
programs. You can package it more compactly, thereby reducing the system load, because the
application spends less time searching for and invoking external functions and subroutines. To generate
a single module:

1. Specify the DLINK compiler option when you compile programs that invoke external subroutines and
functions whose references are intended to be resolved.

2. Link-edit the main program with the appropriate stub for the intended invocation.

66 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

3. Link-edit each external subroutine and function with an EFPL stub.
4. Link-edit all the programs together into a single module.

For an example, see “DLINK Example” on page 210.
• You can use the %STUB prelink control directive to simplify packaging. The following example shows a

"Hello World" REXX application that can be started as a TSO/E command. It is assumed that:

– The REXX source is named 'HELLO' and resides in the partitioned data set 'upref.REXX'.
– The user has partitioned data sets for object and load modules called 'upref.OBJ' and 'upref.LOAD'.
– The REXX Compiler is included in the JOBLIB. If not, you must specify a STEPLIB statement with the

data set where the REXX Compiler is located.

In this example you must only insert a %STUB control directive into the REXX source code. For example,
to use the CPPL stub, you must define the following anywhere in the source code and use a simple link
step in the JCL:

/*%STUB CPPL*/

The compile step remains the same as before:

//*---
//COMPSTEP EXEC PGM=REXXCOMP,PARM='NOCEXEC OBJECT'
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=upref.REXX(HELLO),DISP=SHR
//SYSPUNCH DD DSN=upref.OBJ(HELLO),DISP=SHR
//*---
//LINKSTEP EXEC PGM=HEWL,PARM='LIST,AMODE=31,RMODE=ANY,RENT,MAP'
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=upref.LOAD,DISP=SHR
//SYSLIN DD DSN=upref.OBJ(HELLO),DISP=SHR

The object output of the compile step includes the stub code at the beginning and the names of stub
and program code adapted to proper values. Extra INCLUDE or CHANGE cards in the link step are not
required.

Note: You can still use the previous linkage method. The name of the new multi-purpose STUB load
module is 'EAGSTMP'.

Building Function Packages
The parts of a function package can be written in REXX, compiled, linked with the EFPL stub, and then
linked to function packages, in which they must be defined as external routines. See the TSO/E REXX/MVS:
Reference manual for details about function packages.

Writing Parts of Applications in REXX
You can link-edit load modules that are already link-edited with the appropriate stub with applications
written in another programming language. The language used must be able to provide the parameters in
one of the supported parameter-passing conventions. Otherwise, you can write your own stub to support
the parameter-passing convention of the language in question, modeled after one of the existing stubs.
See “Stubs” on page 212 for more information.

REXXL (z/OS)
There are two possible uses of the REXXL command:

• REXXL can be used in batch to create a load module. REXXL generates the control cards for the linkage
editor to link together a stub and a compiled REXX program of type OBJECT. The compiled REXX
program is read from the data set allocated to SYSIN. The control cards, including the compiled REXX
program, are written to a data set allocated to SYSOUT.

Using Object Modules and TEXT Files 67

• REXXL can be used interactively to create a load module. REXXL links together a stub and the compiled
REXX program of type OBJECT and builds a load module. The SYSPRINT output of the linkage editor is
stored in a sequential data set with a low-level qualifier of LINKLIST.

• REXXL supports both names, EAGSTMP and MULTI. The existing procedures to link-edit stubs can be
used in the same way for the MULTI stub.

See also “Link-Editing of Object Modules” on page 208 for more information.

Enter the REXXL command in the following format:

REXXL stub obj-data-set-name [load-data-set-name]

where:
stub

Is one of the following:

• A predefined stub name. Refer to “Stubs” on page 212 for a list of stub names.
• A member name. The member will be searched for in the default data set. Refer to “Stubs” on page

212 for a list of member names in the sample data set.
• The name of a partitioned data set including a member name.

obj-data-set-name
Is a partitioned or a sequential data set containing the compiled REXX program of type OBJECT. If it is
a partitioned data set, the member name has to be specified.

load-data-set-name
Is the partitioned data set in which the load module will be stored. If the member name is not
specified, it defaults to the csect name that the Compiler puts in the ESD from the OBJECT output. If
load-data-set-name is not specified, a default name is used.

Default names of the output data sets:

Partitioned Data Set
pref.cccc.qual(member)

Sequential Data Set
pref.cccc.qual

load data set name upref.cccc.LOAD(csect) upref.cccc.qual.LOAD(csect)

listing data set
name

upref.cccc.csect.LINKLIST upref.cccc.qual.LINKLIST

where:

pref and qual represent the prefix and the last level qualifier of obj-data-set-name. csect represents the
name that the compiler puts in the ESD from the OBJECT output.

Note:

1. The user's default prefix upref (as set by the PROFILE PREFIX command) is used for the output data
sets. If the prefix of obj-data-set-name is different, it is replaced.

2. If you include a stub at compilation time, you do not need the batch job step for REXXL to create the
object output for the final link. You must only run the final link step, which creates the executable load
module.

REXXL detects if a stub was included at compilation time. Due to this, you may keep and run your
existing procedures. The arguments for REXXL remain the same. You must still specify the stub name
as the first argument. REXXL compares the name specified by the argument with the stub name
included in the object. If they do not match, an error message is raised and the program terminates.

68 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

TEXT Files (z/VM)
The OBJECT output that the Compiler generates has the same properties as TEXT files that are generated
by other high-level language compilers, with the following exceptions:

• The compiled program cannot run in the transient program area (TPA).
• The compiled program cannot be invoked from a program that is running in the TPA.
• A module generated from a TEXT file expects SVC parameter-passing conventions. See Appendix B,

“Interface for TEXT Files (z/VM),” on page 219 for additional information. You can invoke such a module
as a command from the CMS command line or from a REXX program, but the parameter-passing
convention is different from that used by other high-level language compilers.

Generating modules: To generate a relocatable module from a TEXT file, use the LOAD command
followed by the GENMOD command. For example:

load progname (rldsave
genmod progname

Under CMS Release 5.5 or later, relocatable modules are loaded in free storage, thereby reducing the
probability that one module may overwrite part of another module that was invoked by a compiled REXX
program.

Improving performance: In the REXX search order for external functions and subroutines, the first step is
to search for a program whose name is prefixed with RX and truncated to 8 characters. If this program is
invoked many times, you can improve its performance if you:

1. Generate a module from the OBJECT output and name it RXmyprog.
2. Load the module as a nucleus extension. For example, enter the NUCXLOAD command in the following

way:

nucxload rxmyprog
3. Invoke the program without the prefix RX. For example:

call myprog
a=myprog()

The nucleus extension RXmyprog is searched for and found first.

Improving packaging: If your application contains a REXX program and several external subroutines, you
can create one module that includes all these programs. When you do so, your programs are more
compactly packaged, thereby reducing system load, because the application spends less time searching
for and invoking external functions and subroutines. You also eliminate the possibility of invoking REXX
programs that have the same name but are not part of the application. To generate a single module:

1. Specify the DLINK compiler option when you compile the programs that invoke external subroutines
and functions whose references are intended to be resolved.

2. Link together the TEXT files to create one relocatable module. For example:

load myprog mysub1 mysub2 mysub3 (rldsave
genmod myprog

3. Optionally, load the resulting module as a nucleus extension before it is invoked, to avoid storage
overlaps with other programs.

Building function packages: The VM/ESA REXX/VM: Reference manual includes a coding example of a
function package whose functions are included in the code. You can, however, build a function package in
which some or all of the functions are compiled REXX programs of OBJECT type. These functions must be
linked to the function package and their names declared as external. Additionally, to find out the size of
such a function package, you need to link a dummy external program to the end of the function package.

Writing parts of applications in REXX: You can link a compiled REXX program of OBJECT type to a
program written in another language. If the language enables you to invoke programs that require REXX

Using Object Modules and TEXT Files 69

parameter-passing conventions (see Appendix B, “Interface for TEXT Files (z/VM),” on page 219), you
can:

1. Declare the REXX program as an external program.
2. Link the REXX program to the application.
3. Invoke the REXX program from within the application.

Placing programs in a DCSS: You can load TEXT files into a DCSS located above 16 MB in virtual storage.
If you decide to do this, you first need to write additional code that attaches the DCSS and identifies the
REXX programs residing in the DCSS as nucleus extensions.

Object Modules (VSE/ESA)
Generating phases: Before you can use an object module, you must combine it with the appropriate stub
(a stub transforms input parameters into a form understandable by the compiled REXX program), then
you must link-edit it to generate a phase.

With the cataloged procedure REXXLINK supplied by IBM, you can create a phase consisting of a single
program in one step (see “REXXLINK Cataloged Procedure (VSE/ESA)” on page 71).

To create a phase consisting of multiple programs (if you have used the DLINK compiler option), you must
combine each object module with the appropriate stub by means of the cataloged procedure REXXPLNK
supplied by IBM (See “REXXPLNK Cataloged Procedure (VSE/ESA)” on page 71). You must then link-edit
the resulting object modules in an additional step to generate a phase.

Stubs are provided for the following parameter-passing conventions:

• VSE for invocation by means of VSE JCL.
• EFPL (external function parameter list) for invocation with the REXX CALL instruction or as a function.

This must be used when building a function package.

Note: Do not use 8-character names that differ only in the eighth character, for phases that are made of
multiple object modules. The eighth character of the program name is lost during the prelink step.

After you have combined the object modules with the appropriate stubs and linked them together, you
can use the resulting phases in the same way you use phases of high-level language compilers.

Invoking a REXX program as a phase: A program linked with the VSE stub enables you to invoke a REXX
program just as you would invoke a program written in another high-level language.

Improving packaging and performance: If your application includes many REXX programs, you can
create one phase that contains all the REXX programs. You can package it more compactly, thereby
reducing system load, because the application spends less time searching for and invoking external
functions and subroutines. To generate a single phase:

1. Specify the DLINK compiler option when you compile programs on z/OS or z/VM that invoke external
subroutines and functions whose references are intended to be resolved.

2. Generate the object module on z/VM or z/OS and send it to VSE/ESA.
3. Use the REXXPLNK cataloged procedure to combine the main program with the appropriate stub for

the intended invocation.
4. Use the REXXPLNK cataloged procedure to combine each external subroutine and function with an

EFPL stub.
5. Link-edit all the combined object modules together into a single phase.

Building function packages: The parts of a function package can be written in REXX, compiled, combined
with the EFPL stub using REXXPLNK, and then linked to the function packages, in which they are defined
as external routines. See the IBM VSE/ESA REXX/VSE Reference manual for details about function
packages.

Writing parts of applications in REXX: You can link-edit the object modules that are already combined
with the appropriate stub with other object modules written in another programming language. The

70 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

language used must be able to provide the parameters in one of the supported parameter-passing
conventions. Otherwise, you can write your own stub to support the parameter-passing convention of the
language in question, modeled after one of the existing stubs. See “Stubs” on page 223 for more
information.

Including a copyright notice in your program: You can provide stubs containing a copyright notice. The
stubs supplied by IBM contain comments that show where the copyright notice can be easily added. The
member names of the stubs are EAGSDVSE and EAGSDEFP.

REXXPLNK Cataloged Procedure (VSE/ESA)
The cataloged procedure REXXPLNK builds as output an object module that contains the stub combined
with the input object module. The resulting object module can be combined with other object modules to
create a phase.

Invoke REXXPLNK in the following format:

// EXEC PROC=REXXPLNK,[STUBLIB='lib.sublib',]
 STUBNAM=mn,
 INLIB='lib.sublib',
 INNAME=mn,
 OUTLIB='lib.sublib',
 OUTNAME=mn

where:
STUBLIB='lib.sublib'

Is the name of the sublibrary where the stub resides. If stublib is not specified, a default name is
assumed. (The default name is set in the cataloged procedure.)

STUBNAM=mn
Is the member name of the stub residing in stublib. Member type is always OBJ. You can also use one
of the predefined stub names:
VSE

The program is invoked by VSE JCL as a program.
EFPL

The program is invoked as a REXX external routine. This is the default stub name.
For more information refer to “Stubs” on page 223.

INLIB='lib.sublib'
Is the name of the sublibrary where the input object module resides.

INNAME=mn
Is the member name of the input object module residing in inlib. Member type is always OBJ.

OUTLIB='lib.sublib'
Is the name of the sublibrary where the output object module will be stored.

OUTNAME=mn
Is the member name of the output object module that will be stored in outlib. Member type is always
OBJ.

See also “REXXPLNK” on page 239.

REXXLINK Cataloged Procedure (VSE/ESA)
The cataloged procedure REXXLINK is used to create a phase. REXXLINK does the following:

1. Builds as output an object module that contains the stub combined with the input object module
2. Link-edits the resulting object module
3. Catalogs the phase in the sublibrary specified by a LIBDEF PHASE,CATALOG=lib.sublib statement

Using Object Modules and TEXT Files 71

Invoke REXXLINK in the following format:

// EXEC PROC=REXXLINK,[STUBLIB='lib.sublib',]
 STUBNAM=mn,
 INLIB='lib.sublib',
 INNAME=mn,
 OUTLIB='lib.sublib',
 OUTNAME=mn
 [,PHASNAM=mn]

where:
STUBLIB='lib.sublib'

Is the name of the sublibrary where the stub resides. If stublib is not specified, a default name is
assumed. (The default name is set in the cataloged procedure.)

STUBNAM=mn
Is the member name of the stub residing in stublib. Member type is always OBJ. You also can use one
of the predefined stubnames:
VSE

The program is invoked by VSE JCL as a program.
EFPL

The program is invoked as a REXX external routine. This is the default sub name.
For more information refer to “Stubs” on page 223.

INLIB='lib.sublib'
Is the name of the sublibrary where the input object module resides.

INNAME=mn
Is the member name of the input object module residing in inlib. Member type is always OBJ.

OUTLIB='lib.sublib'
Is the name of the sublibrary where the output object module will be stored.

OUTNAME=mn
Is the member name of the output object module that will be stored in outlib. Member type is always
OBJ.

PHASNAM=mn
Is the member name of the phase that will be cataloged in the sublibrary specified by a
LIBDEF PHASE,CATALOG=lib.sublib statement. The default member name is that specified in the
outname parameter. Member type is always PHASE.

See also “REXXLINK” on page 240.

REXXL Cataloged Procedure (VSE/ESA)
The REXXL EXEC builds as output an object module that contains the stub combined with the input object
module. The resulting object module can be link-edited with other object modules to create a phase.

Invoke REXXL in the following format:

// EXEC REXX=REXXL,PARM='stublib stubnam inlib inname outlib outname'

REXXL can also be called from a REXX program as a subroutine:

CALL REXXL 'stublib stubnam inlib inname outlib outname'

where:
stublib

Is the name of the sublibrary, in the form lib.sublib, where the stub resides.
stubnam

Is the member name, in the form mn, of the stub residing in stublib. Member type is always OBJ. You
also can use one of the predefined stub names:

72 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

VSE
The program is invoked by VSE JCL as a program.

EFPL
The program is invoked as a REXX external routine.

For more information refer to “Stubs” on page 223.
inlib

Is the name of the sublibrary, in the form lib.sublib, where the input object module resides.
inname

Is the member name, in the form mn, of the input object module residing in inlib. Member type is
always OBJ.

outlib
Is the name of the sublibrary, in the form lib.sublib, where the output object module will be stored.

outname
Is the member name of the output object module, in the form mn, that will be stored in outlib.
Member type is always OBJ.

See also “REXXL” on page 241.

Linking External Routines to a REXX Program
A REXX program can invoke external routines by means of either the REXX CALL instruction or a function
invocation if a routine of that name is neither an internal routine nor a built-in function. Note that the
DBCS routines behave identically to built-in functions in terms of the REXX search order. Whenever an
external routine is invoked, the standard REXX search for external routines is performed.

Using the standard REXX search may lead to two problems:

• Invoking external routines frequently may affect performance, because each invocation follows the
search order.

• Name conflicts may occur in applications that invoke external routines whose names are identical. The
external routine that is earlier in the search order is executed, which is not necessarily what you want to
occur.

The DLINK compiler option enables you to create self-contained modules and avoid these problems. You
can selectively link external routines to the main program. Alternatively, you can turn the main program
into a self-contained module by linking to it all externally referenced routines.

When the DLINK option is specified, the OBJECT output contains references to all external functions and
subroutines. These references are in the form of weak external references, which means that during the
link-edit or load steps the libraries are not automatically searched to resolve these references.

Under z/OS, the linkage editor resolves the addresses only if you link and load the referenced module with
the module containing the external reference.

Under z/VM, the loader resolves the addresses only if you load the referenced modules with the module
containing the external reference, or if you bring in the referenced module by means of an INCLUDE
command.

Under VSE/ESA, the linkage editor resolves the addresses only if you link and load the referenced object
module with the object module containing the external reference. If you do not link and load the
referenced object module, the linkage editor ends with return code 4, which indicates unresolved external
references.

Resolving External References—An Example
The following example illustrates how to resolve external references selectively. For the purposes of the
example, assume the following:

• Your main program is MYAPPL; that is:

Using Object Modules and TEXT Files 73

TEST.EXEC(MYAPPL) under z/OS
MYAPPL EXEC under z/VM

• Your main program contains a call to your external routine MYEXTR; that is:

TEST.EXEC(MYEXTR) under z/OS
MYEXTR EXEC under z/VM

It also contains a call to the external routine OTHRPROG contained in some function package.

Note: If you are working on VSE/ESA, MYAPPL and MYEXTR are REXX EXECs compiled on either z/OS
or z/VM.

• You want to link MYEXTR directly to MYAPPL, but you want the standard search order performed for
OTHRPROG.

To accomplish this:

1. Compile MYAPPL EXEC with the DLINK, NOCEXEC, and OBJECT compiler options to get:

TEST.OBJ(MYAPPL) under z/OS
MYAPPL TEXT under z/VM

2. Compile MYEXTR EXEC with the NOCEXEC and OBJECT compiler options to get:

TEST.OBJ(MYEXTR) under z/OS
MYEXTR TEXT under z/VM

3. Generate load modules as follows:

Under z/OS

1. Determine the appropriate parameter convention for MYAPPL. If, for example, MYAPPL is called either
from the TSO/E command line or from another EXEC as a host command with ADDRESS TSO, the
appropriate stub is CPPL.

2. Link the CPPL stub with TEST.OBJ(MYAPPL) and store the result in TEST.LOAD(MYAPPL). Use the
REXXL cataloged procedure or the REXXL command to perform this task.

3. Because MYEXTR is called as a subroutine, link the EFPL stub with TEST.OBJ(MYEXTR) and store the
result in TEST.LOAD(MYEXTR).

4. Link together the two linked modules from TEST.LOAD(MYAPPL) and TEST.LOAD(MYEXTR), and store
the result in TEST.LOAD(MYAPPL).

Assuming you have allocated the data set TEST.LOAD to ddname INFILE, the appropriate control
statements for the linkage editor are:

 INCLUDE INFILE(MYAPPL)
 INCLUDE INFILE(MYEXTR)
 ENTRY MYAPPL
 NAME MYAPPL(R)

Now you have an executable module that can be invoked from the TSO/E command line or with ADDRESS
TSO, where each invocation of MYEXTR from MYAPPL passes control to MYEXTR directly instead of using
the REXX search order. Recursive calls from MYEXTR to MYEXTR use the REXX search order, because
MYEXTR was not compiled with the DLINK option. Therefore, the OBJECT output for MYEXTR does not
contain external references. Calls from MYAPPL to OTHRPROG also use the REXX search order, because
OTHRPROG was not included explicitly during the link-edit step.

Under z/VM

Link MYAPPL with MYEXTR, without resolving the reference to OTHRPROG, and generate a module in
either of these ways:

 LOAD MYAPPL MYEXTR (RLDSAVE
 GENMOD MYAPPL

74 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

or:

 LOAD MYAPPL (RLDSAVE
 INCLUDE MYEXTR (SAME
 GENMOD MYAPPL

Now you have an executable module that can be invoked from the CMS command line as a host command
or from another EXEC as an external routine. It can be loaded as a nucleus extension (by using
NUCXLOAD) to avoid address conflicts when invoking another program that also runs in the CMS user
area. Each invocation of MYEXTR from MYAPPL passes control to MYEXTR directly instead of following
the REXX search order. Recursive calls from MYEXTR to MYEXTR use the REXX search order, because
MYEXTR was not compiled with the DLINK option. Therefore, the OBJECT output for MYEXTR does not
contain external references. Calls from MYAPPL to OTHRPROG also use the REXX search order, because
OTHRPROG was not included explicitly during the load step.

Under VSE/ESA

1. Send the object modules MYAPPL and MYEXTR from z/OS or z/VM to VSE/ESA, and store them in the
sublibrary REXXLIB.OBJECT under the names MYAPPL.OBJ and MYEXTR.OBJ

2. Determine the appropriate parameter convention for MYAPPL. If, for example, MYAPPL is invoked from
VSE JCL by means of an EXEC MYAPPL statement, the appropriate stub is VSE.

3. Combine the appropriate stub with REXXLIB.OBJECT.MYAPPL.OBJ and store the result in the
sublibrary REXXLIB.OBJECT under the name CMYAPPL.OBJ. Use the REXXPLNK cataloged procedure
to perform this task.

4. Because MYEXTR is called as a subroutine, combine the EFPL stub with
REXXLIB.OBJECT.MYEXTR.OBJ and store the result in the sublibrary REXXLIB.OBJECT under the
name CMYEXTR.OBJ. Use the REXXPLNK cataloged procedure to perform this task.

5. Link together the two object modules REXXLIB.OBJECT.CMYAPPL.OBJ and
REXXLIB.OBJECT.CMYEXTR.OBJ and store the result in the sublibrary REXXLIB.MODULE under the
name MYAPPL.PHASE.

Specify the sublibrary where the phase should reside with a LIBDEF PHASE,CATALOG=REXXLIB.MODULE
statement, and the sublibrary where the object modules reside with a
LIBDEF OBJ,SEARCH=REXXLIB.OBJECT statement. The appropriate control statements for the linkage
editor are:

 PHASE MYAPPL,*,SVA
 INCLUDE CMYAPPL
 INCLUDE CMYEXTR

Now you have an executable phase that can be invoked from VSE JCL, where each invocation of MYEXTR
from MYAPPL passes control to MYEXTR directly, instead of using the REXX search order. Recursive calls
from MYEXTR to MYEXTR use the REXX search order, because MYEXTR was not compiled with the DLINK
option. Therefore, the OBJECT output for MYEXTR does not contain external references. Calls from
MYAPPL to othrprog also use the REXX search order, because othrprog was not included explicitly during
the link-edit step.

Using Object Modules and TEXT Files 75

76 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 7. Converting CEXEC Output between
Operating Systems

This chapter describes what to do to run CEXEC output on the operating system other than the one on
which you generated the output. To do this, you may have to convert the record format and record length
of the compiled EXEC. Use the REXXF EXEC to perform the conversion on z/OS or z/VM. If you want to run
your compiled programs on VSE/ESA, you must prepare the CEXEC file for transmission from z/OS or z/VM
to VSE/ESA. Use the REXXV EXEC to perform this task.

This chapter also explains how to copy, under z/OS, CEXEC output from one data set to another. You must
use the REXXF EXEC to copy CEXEC output.

The EXECs are described in “REXXF (FANCMF) under z/OS” on page 79, “REXXF under z/VM” on page
79, “REXXV (FANV) under z/OS” on page 80, and “REXXV under z/VM” on page 80.

Compiling on One System and Running on Another System
You can compile a REXX program on one operating system, convert the CEXEC output by using either the
REXXF or the REXXV EXEC, as appropriate, and then run the converted EXEC under the other operating
system. You can do this because the generated code does not contain operating system dependencies.

Converting from z/OS to MVS OpenEdition
Compiled EXECs of type CEXEC can run under MVS OpenEdition. They behave the same as interpreted
REXX programs.

To transfer the CEXEC output to an OpenEdition file system, use the OCOPY command with the BINARY
parameter. See OpenEdition MVS Command Reference for a description of the OCOPY command, the
cataloged procedure REXXOEC, and the REXX procedure MVS2OE in Appendix D, “The z/OS Cataloged
Procedures Supplied by IBM,” on page 229, for an example.

Compiled EXECs in load module format cannot run under MVS OpenEdition.

Converting from z/OS to z/VM
The two methods for converting CEXEC output from z/OS to z/VM are:

• Method 1:

1. Transfer the CEXEC output to z/VM, maintaining the same record length and record format that the
CEXEC had on z/OS.

2. Use REXXF to convert the CEXEC output to record format F and record length 1024.
• Method 2:

1. Use REXXF to convert the CEXEC output to record format F or FB with a record length of 1024.
2. Transfer the CEXEC output to z/VM.

Converting from z/OS to VSE/ESA
1. Use REXXV on z/OS to prepare the CEXEC output for transmission to VSE/ESA. The resulting record

format must be F or FB, and the record length must be 80.
2. Create a job containing the following control statements and send it to VSE/ESA:

 // LIBDEF PROC,SEARCH=lib.sublib
 // EXEC REXX=REXXV,PARM='SYSIPT outlib outname [(option]'
 .
 . prepared CEXEC output from step 1

© Copyright IBM Corp. 1991, 2013 77

 .
 /*

where:
lib.sublib

Specifies the sublibrary where the EXEC REXXV resides.
outlib

Is the name of the sublibrary, in the form lib.sublib, where the output file will reside on VSE/ESA.
outname

Is the member name and member type of the output file that will reside in outlib, in the form
mn.mt. If the member type is not specified, it defaults to PROC.

option
Can be DATA or NODATA. Nested procedures must be cataloged all in the same way, either all with
DATA=YES, or all with DATA=NO. You cannot mix procedures cataloged with DATA=YES and
DATA=NO in one nesting.
DATA

Indicates that the member outname is cataloged with DATA=YES
NODATA

Indicates that the member outname is cataloged with DATA=NO
The default for a new member is NODATA. For an existing member that is cataloged with
DATA=YES, the default is DATA, if it is cataloged with DATA=NO, the default is NODATA.

DATA and NODATA are used as parameters by the EXECIO command in VSE/ESA. For further
information about the EXECIO command, refer to IBM VSE/ESA REXX/VSE Reference.

Converting from z/VM to z/OS
The two methods for converting CEXEC output from z/VM to z/OS are:

• Method 1:

1. Transfer the CEXEC output to z/OS. Receive the CEXEC output in a data set with a record format F or
FB and a record length of 1024.

2. Use REXXF to copy the CEXEC output to the target data set.
• Method 2:

1. Use REXXF to convert the CEXEC output to record format F or V: F if the receiving data set has record
format F or FB, and V if the receiving data set has record format V or VB.

– For record format F or FB, set the record length equal to the record length of the receiving data
set.

– For record format V or VB, set the record length equal to the record length of the receiving data set
minus 4.

2. Transfer the CEXEC output to z/OS.

Converting from z/VM to VSE/ESA
1. Use REXXV on z/VM to prepare the CEXEC output for transmission to VSE/ESA. The resulting record

format must be F or FB, and the record length must be 80.
2. Continue with step “2” on page 77 of “Converting from z/OS to VSE/ESA” on page 77.

Copying CEXEC Output
To avoid having characters inserted into CEXEC output when copying it from one data set to another, use
the REXXF EXEC. Use the REXXV EXEC to prepare compiled REXX programs (CEXEC type) for transmission
to VSE/ESA, and then to reformat them on VSE/ESA.

78 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

REXXF (FANCMF) under z/OS
The REXXF EXEC (FANCMF) converts a CEXEC output to a different record format or a different record
length, or both. This EXEC must run in a TSO/E address space. (See also “Alias Definitions and Member
Names under z/OS” on page 7.)

Enter the REXXF command in the following format:

REXXF input-data-set-name output-data-set-name [REPlace]

where:
input-data-set-name

Is the name of the input data set that contains the CEXEC output. If the data set has a partitioned
organization, a member name must be specified. The data set can have one of the following record
formats: F, FB, V, or VB with an arbitrary logical record length.

output-data-set-name
Is the name of the output data set that is to contain the converted CEXEC output. If the data set has a
partitioned organization, a member name must be specified. The data set can have one of the
following record formats: F, FB, V, or VB with an arbitrary logical record length equal to or greater than
20 and equal to or less than 32 767.

REPlace
Specifies that an existing output data set that is not empty is to be overwritten. The minimum
abbreviation is REP.

REXXF under z/VM
The REXXF EXEC converts a CEXEC output to a different record format or a different record length, or
both.

Enter the REXXF command in the following format:

REXXF input-file-identifier [output-file-identifier] [(options]

where:
input-file-identifier

Is the name of the input file. The file name must be specified. If the file type is not specified, it
defaults to CEXEC. If the file mode is not specified, it defaults to A. If you want to specify an output
file identifier, you must specify all parts of the input file identifier.

output-file-identifier
Is the name of the output file. If a part of the file name is not specified, it defaults to the
corresponding part of the input file identifier. Similarly, an = character used to specify a part of the
output file identifier is replaced by the corresponding part of the input file identifier. Note that the
output-file-identifier and the input-file-identifier can be the same, if the REPlace option is used.

options
Options can be specified in any order. Each option can be specified only once. The choices are:
F or V

Indicates the record format of the output file. The default record format is F.
n

Indicates the record length of the output file. The default record length is 1024. The minimum
record length is 20.

REPlace
Specifies that an existing output file is to be overwritten. The minimum abbreviation is REP.

Converting CEXEC Output between Operating Systems 79

REXXV (FANV) under z/OS
The REXXV EXEC (FANV) prepares a compiled REXX program (CEXEC type) for transmission to VSE/ESA. It
must run in a TSO/E address space. (See also “Alias Definitions and Member Names under z/OS” on page
7.)

Enter the REXXV command in the following format:

REXXV input-data-set-name output-data-set-name [REPlace]

where:
input-data-set-name

Is the name of the input data set that contains the CEXEC output. If the data set has a partitioned
organization, a member name must be specified. The data set can have one of the following formats:
F, FB, V, or VB with an arbitrary logical record length.

output-data-set-name
Is the name of the output data set that is to contain the resulting CEXEC output. If the data set has a
partitioned organization, a member name must be specified. The data set must have record format F
or FB and the record length must be 80. To protect the input data set, the output-data-set-name must
differ from the input-data-set-name.

REPlace
Specifies that an existing output data set that is not empty is to be overwritten. The minimum
abbreviation is the string REP.

REXXV under z/VM
The REXXV EXEC prepares a compiled REXX program (CEXEC type) for transmission to VSE/ESA.

Enter the REXXV command in the following format:

REXXV input-file-identifier [output-file-identifier][(REPlace]

where:
input-file-identifier

Is the name of the input file. The file name must be specified. If the file type is not specified, it
defaults to CEXEC. If the file mode is not specified, it defaults to A. If you want to specify an output
file identifier, you must specify all parts of the input file identifier.

output-file-identifier
Is the name of the output file. The file will have record format F and the record length will be 80. The
file identifier does not need to be fully specified. For every missing part, the corresponding part of the
input-file-identifier is used. An = character is replaced by the corresponding part of the input-file-
identifier. Note that the output-file-identifier and the input-file-identifier can be the same, if the
REPlace option is used.

REPlace
Specifies that an existing output file is to be overwritten. The minimum abbreviation is the string REP.

80 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 8. Language Differences between the
Compiler and the Interpreters

This chapter describes the differences between the language processed by the Compiler and by the
interpreters. Programs that run with the Alternate Library are interpreted, therefore they behave like
normal interpreted programs.

For a complete description of the language definition and the other programming interfaces provided by
each of these implementations, refer to TSO/E REXX/MVS: Reference, IBM VSE/ESA REXX/VSE: Reference,
or to the corresponding z/VM documentation. Under CMS, use the HELP REXXCOMP command to get
complete descriptions of the REXX language elements.

Differences from the Interpreters on VM/ESA Release 2.1, TSO/E Version 2
Release 4, and REXX/VSE

The language accepted by the Compiler and Library is:

• REXX language level 4.02 on CMS on VM/ESA Release 2.1 and subsequent releases
• REXX language level 3.48 everywhere else.

This section describes the items that the Compiler and Library handle differently from the Interpreter. In
programs that are affected by these differences, the effects can usually be eliminated by minimal program
changes. The support of some commands is also different.

Compiler Control Directives
Valid control directives are:

%COPYRIGHT
%INCLUDE
%PAGE
%STUB
%SYSDATE
%SYSTIME
%TESTHALT

The Compiler supports control directives, which are contained in comments. The interpreter treats them
as normal comments. See “Control Directives” on page 36 for an explanation of how to use the control
directives.

Halt Condition
The HI (Halt Interpretation) immediate command sets the halt condition. This may terminate all currently
running REXX programs without affecting the operation of any other programs (as would the HE command
under z/OS and the HX command under CMS).

The HI command and testing for the halt condition are supported only for programs that are compiled
with the TESTHALT option or %TESTHALT control directive. A program compiled with the NOTESTHALT
option and no %TESTHALT directive continues to run if the HI command is entered; the HALT condition is
not raised.

Note:

1. A REXX program compiled with the TESTHALT option tests for the HALT condition:

• At the beginning of a program

© Copyright IBM Corp. 1991, 2013 81

• After each host command
• At each label
• At the beginning of the body of a repetitive DO loop
• After the END of each iterative DO
• At the first instruction following a clause containing either the invocation of an external function or

the call (by means of a CALL instruction) to an external routine:

– If an IF expression contains an invocation of an external function:

- At the beginning of the THEN
- At the beginning of the ELSE or, if there is no ELSE, after the THEN

– If a WHEN expression contains an invocation of an external function:

- At the beginning of the THEN
- At the beginning of the following WHEN or, if there is no following WHEN, at the beginning of the

OTHERWISE or, if there is no OTHERWISE, before the code that raises the SYNTAX condition.

When you compile a program with the TESTHALT option, the compiled output may be slightly larger
and the runtime performance may be slightly degraded.

2. If a HALT condition is detected at a label, the compiled program stores the line number of the label in
the SIGL special variable, whereas the interpreter stores the line number of the instruction following
the label in the SIGL special variable.

To avoid this problem, put the label and the beginning of the following instruction on the same line.
3. When an EXEC runs under NetView®, NetView issues a Halt Immediate command. An interpreted EXEC

will stop the execution. For a compiled EXEC to show the same behavior, it must be compiled with the
TESTHALT compiler option or the %TESTHALT control directive. If compiled with the default
NOTESTHALT, the HALT condition is not raised and the program continues.

If the expression following a RETURN, EXIT, or SIGNAL VALUE instruction contains a reference to an
external function, the value stored in the special variable SIGL might be different, depending on whether
a program is run compiled or interpreted.
Hint:

Assign the expression to an intermediate variable and use this variable in the RETURN, EXIT, or
SIGNAL VALUE instruction. For example, instead of coding this:

Return ext_rtn()

code this:

a = ext_rtn()
Return a

NOVALUE Condition
If a program contains a SIGNAL ON NOVALUE instruction but no NOVALUE label, the interpreter issues the
Label not found message if the NOVALUE condition is raised. The message indicates the line number.

If a program contains a SIGNAL ON NOVALUE instruction but no NOVALUE label, the Compiler issues a
message and does not generate compiled code.

You can correct this error by adding to the program a routine that handles the NOVALUE condition. The
routine should indicate which line caused the NOVALUE condition and display the name of the
uninitialized variable. The following code shows an example of a NOVALUE routine:

…
Exit /* End of routine */

NOVALUE:
 Say 'NOVALUE raised at line' sigl

82 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 Say 'The referenced variable is' "CONDITION"('D')
Exit

The %SYSDATE and %SYSTIME control directives do not raise a NOVALUE condition.

The Compiler supports the %SYSDATE and %SYSTIME control directives, which generate the variables
SYSDATE and SYSTIME, which contain the compilation date and time. The generated code ensures that
the NOVALUE condition is not raised for these variables. If you did not explicitly assign a value to the
variables SYSDATE and SYSTIME the interpreter raises the NOVALUE condition. Therefore, always assign a
value to these variables:

sysdate = ''
/*%sysdate */
if (sysdate = '') then say 'interpreted'
 else say 'compiled on' sysdate

OPTIONS Instruction
The ETMODE option requests checking of any double-byte character set (DBCS) string, literal string, or
comment in the program for proper use of DBCS representation conventions, and enables the use of
DBCS characters in symbols.

The ETMODE option of the OPTIONS instruction is recognized only if:

• It is enclosed within quotes (single or double) by itself, that is, no other option is enclosed within the
quotes.

• Any other options in the same instruction are also enclosed within quotes by themselves.

If the OPTIONS instruction is not the first non-comment, non-label clause of the program, the Compiler
ignores the ETMODE option. In the same situation, the interpreter raises the SYNTAX condition.

Examples of valid OPTIONS instructions are:

Options "ETMODE"
Options 'ETMODE' 'EXMODE'

PARSE SOURCE Instruction
PARSE SOURCE returns information describing the source of the program being executed.

The PARSE instruction with the SOURCE option returns the same tokens as returned by the interpreter,
except in the following cases:

• Under z/OS, when an object module is linked with the EFPL stub, it always shows the string
'SUBROUTINE' as the second token, even when it is invoked as a function. See “PARSE SOURCE” on
page 217 for details.

• Under z/VM, when the compiled program is a TEXT file, the file type and file mode (the fourth and fifth
tokens) are * characters.

When a module is generated from a TEXT file and is invoked using a synonym, the file name (the third
token) is the synonym (which is also provided in the sixth token). See also “What the REXX Program
Gets” on page 220.

• Under VSE/ESA, when an object module is linked with the EFPL stub, it always has the string
'SUBROUTINE' as the second token, even if it is invoked as a function. See “PARSE SOURCE” on page
226 for more information.

• Under z/OS and VSE/ESA, link-edited modules with stubs insert a question mark (?) for the third, fourth,
fifth, and sixth tokens (see “PARSE SOURCE” on page 217 and “PARSE SOURCE” on page 226).

PARSE VERSION Instruction
PARSE VERSION returns information describing the language level and the date of the language
processor.

Language Differences between the Compiler and the Interpreters 83

The PARSE instruction with the VERSION option returns five tokens:

1. The string REXXC370 (interpreters produce REXX370).
2. The language level description. The language level depends on the Operating System:

• Under VM/ESA Release 2.1 and subsequent releases, the language level is 4.02. This language level
supports stream I/O. Programs containing stream I/O that have been compiled with an earlier
release of the Compiler need to be recompiled.

• Under z/OS, under z/VM (releases earlier than VM/ESA Release 2.1), and under VSE/ESA, the
language level is 3.48.

3. Three tokens describing the release date of the Compiler that was used to generate the code (for
example, 27 Oct 1994).

The general format of the PARSE VERSION information is the same as that provided by the interpreter,
although the values of the tokens differ.

RANDOM Built-In Function
The Compiler and the Interpreter might not produce the same sequence, if you use the RANDOM built-in
function with the third argument 'seed' to obtain a predictable sequence of quasi-random numbers, even
if you use identical values of 'seed'.

SOURCELINE Built-In Function
In the interpreter, the SOURCELINE built-in function works like this:

• SOURCELINE() returns the line number of the final line in the source program.
• SOURCELINE(n) returns the nth line of the source program.

The full functions of the SOURCELINE function are available only if the program is compiled with the
SLINE compiler option.

If you use the SLINE compiler option (described in “SLINE” on page 33), the source program is included in
the compiled program and SOURCELINE continues to work as just described.

Note:

1. Any implied or specified EXEC compression for the interpreter (specifying %NOCOMMENT) will not be
reflected by the Compiler.

2. The string returned by SOURCELINE(n) from a compiled program contains only the text within the
specified margins. The string returned from a program interpreted with the system product interpreter,
however, contains the complete line.

3. If source files are included using the %INCLUDE directive (see “%INCLUDE” on page 37),
SOURCELINE() from a compiled program returns the total number of source lines including those from
the included files.

If the NOSLINE compiler option is specified or defaulted to, however, SOURCELINE works like this:

• SOURCELINE() returns a value of 0.
• SOURCELINE(n) raises the SYNTAX condition at runtime.

To find out whether the SLINE or NOSLINE option is in effect, test whether SOURCELINE() is 0. The
following code shows an example of this test:

Signal On Error
'COPY' … /* This command may give a */
 /* nonzero return code */
…
Exit /* End of main program */
/*--*/
/* Error handler: common exit for command errors */
/*--*/
ERROR:
Say "Unexpected return code" rc "from command"
/* If the SL option was used, display the source line. */

84 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

If Sourceline() ¬= 0 Then
 Say " " Sourceline(sigl)
/* Display the line number as shown in the listing. */
Say "at line" sigl"."

Start of Clause
The interpreter considers the line that consists of only a continuation comma (and possibly comments) as
the start of a clause.

The Compiler considers the line where the actual instruction starts as the start of the clause.

This might lead to different output in the traceback (in case of an error) and in a different value of the
special variable SIGL.

Example:

, /* 16 interpreter sets SIGL here */
SIGNAL X /* 17 Compiler sets SIGL here */
 .
 .
 .
X: SAY SIGL /* interpreter says 16 */
 /* Compiler says 17 */

SYSVAR Function
If ISPF variables are accessed with REXX programs running under TSO, note the following: If SYSICMD is
retrieved using the SYSVAR function, link-edited REXX EXECs return a null string. For compiled EXECs that
are not link-edited and are therefore equal to interpreted REXX EXECs, SYSVAR('sysicmd') contains the
EXEC name. The name of the link-edited REXX EXEC can be retrieved using SYSVAR('syspcmd') provided
that it is obtained before any other subcommand is issued. In interpreted REXX EXECs and compiled
REXX EXECs that are not link-edited, the initial value in SYSVAR('syspcmd') is 'EXEC'.

TRACE Instruction and TRACE Built-In Function
The TRACE instruction and the TRACE built-in function are supported (except for trace setting SCAN) only
for programs compiled with the TRACE and SLINE options in effect.

Programs that have been compiled with the NOTRACE option behave the same as interpreted programs
that run with TRACE set to Off. All valid options in the TRACE instructions or built-in functions are
changed to OFF.

In a compiled program, interactive tracing starts immediately after the clause requesting it, provided that
the clause is eligible. In an interpreted program, the clause following the eligible clause is executed
before tracing is started. Trace ?R, for example, causes a first pause immediately after this trace
instruction (unless the program is in interactive debug already). Trace ?C causes pauses only after host
commands encountered after this instruction. Interactive debug is, however, entered immediately after a
host command that contains this reference to the TRACE built-in function: Trace('?C').

When tracing Intermediates (with TRACE setting I) of an expression that contains more than one adjacent
concatenation, all intermediate results of the operands are shown before the intermediate results of the
concatenations.

This example shows the difference between the output of the Compiler and that of the interpreter when
the following program is run:

/*REXX*/Trace I
Say 'Tracing' 'a' 'concatenation'

Interpreter output Compiler output

Language Differences between the Compiler and the Interpreters 85

 2 *-* Say 'Tracing' 'a' 'concatenation'
 >L> "Tracing"
 >L> "a"
 >O> "Tracing a"
 >L> "concatenation"
 >O> "Tracing a concatenation"
Tracing a concatenation

 2 *-* Say 'Tracing' 'a' 'concatenation'
 >L> "Tracing"
 >L> "a"
 >L> "concatenation"
 >O> "Tracing a"
 >O> "Tracing a concatenation"
Tracing a concatenation

The indentation of traced clauses reflects only function and subroutine invocations of internal routines
and INTERPRET instructions.

Note: Any implied or specified EXEC compression for the interpreter (specifying %NOCOMMENT) will not be
reflected by the Compiler.

TS (Trace Start) and TE (Trace End) Commands
The TS (Trace Start) and TE (Trace End) immediate commands are used to start and stop interactive
tracing. TS and TE are supported in programs that have been compiled with the TRACE option.

Note:

1. TS and TE are not supported on VSE/ESA with REXX/VSE Version 1 Release 1.
2. The TS and TE commands have no effect on programs that have been compiled with the NOTRACE

option.
3. Interactive tracing is started immediately after the TS command has been executed.
4. If interactive tracing is active and the TE command is executed, no interactive pause takes place after

TE.

Differences to Earlier Releases of the Interpreters
This section describes the differences between the language supported by the Compiler and by releases
of the interpreters earlier than those described in the preceding section.

SIGNAL Instruction
The SIGNAL instruction changes the flow of control. The VALUE option specifies an expression, and the
result of evaluating this expression determines the label to get control.

Note:

1. The label name specified on a SIGNAL VALUE instruction must be in uppercase, because all labels
defined in the program are translated to uppercase. The comparison is case-sensitive, and the result of
the expression is not translated to uppercase.

2. A literal string specified as a label name on a SIGNAL labelname instruction must also be in uppercase
for the same reason. For example:

SIGNAL 'LABEL1'

This restriction is for compatibility with the SAA REXX interface.

Integer Divide (%) and Remainder (//) Operations
The ratio of the operands in integer divide (%) and remainder (//) operations is checked.

The following condition must be true for integer divide and remainder operations:

first operand < second operand * (10**d)

where d is the current setting of NUMERIC DIGITS. The absolute values of the terms in the formula are
used.

86 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

This ensures that the quotient is a whole number within the current setting of NUMERIC DIGITS.
Therefore, the result of an integer division is never rounded.

Exponentiation (**) Operation
In exponentiation (**) operations, the NUMERIC DIGITS setting is increased by k + 1, where k is the
number of digits in the second operand. Then, the result is rounded to NUMERIC DIGITS, if necessary.

For example, in the operation a**500 with NUMERIC DIGITS 9, all intermediate results are rounded to 13
significant digits (9 + 3 + 1).

This restricts the possible error in the result to a maximum of 1 in the least significant position.

If the first operand cannot be expressed precisely within the current setting of NUMERIC DIGITS, it may
be rounded (as the result of a previous operation) or truncated (as input to the exponentiation). In such
cases, the precision of the first operand must be the precision of the result + k + 1, and the NUMERIC
DIGITS setting must be raised accordingly.

Location of PROCEDURE Instructions
The PROCEDURE instruction:

• Sets up a local environment for the variables in an internal subroutine.
• If used, it must be the first instruction executed after the CALL or function invocation—that is, it must be

the first instruction following the label.

Ensure that your programs contain no "deferred" PROCEDURE instructions when you compile them.

Binary Strings
Binary strings may not be supported by your Interpreter. A binary string is any sequence of zero or more
binary digits (0 or 1) grouped in fours. The first group may have fewer than four digits.

The groups of digits are optionally separated by one or more blanks, and the whole sequence is delimited
by single quotes or double quotes and immediately followed by the symbol b or B.

 Examples: '11110000'b "101 1101"B

Templates Used by PARSE, ARG, and PULL
The templates used by the PARSE, ARG, and PULL instructions may contain variable column numbers.

A variable within parentheses, where the open parenthesis is preceded by an equal, plus, or minus sign,
means that the value of the variable is used as absolute or relative positional pattern.

 Examples: =(v) +(v) -(v) =(v.1) +(v.1) -(v.1)

PROCEDURE EXPOSE and DROP
The PROCEDURE␠EXPOSE and DROP instructions are enhanced to support subsidiary lists.

 Examples: Procedure Expose (list)
 Drop (list)

DO LOOPs
If variables are named TO, BY, and FOR, they can be used within the expressions following WHILE and
UNTIL, and within the repetitor expression immediately following the DO.

DBCS Symbols
Symbols may contain DBCS characters, if OPTIONS 'ETMODE' is in effect.

Language Differences between the Compiler and the Interpreters 87

VALUE Built-In Function
The VALUE built-in function may have up to three arguments.

Three arguments for the VALUE built-in function are supported in compiled REXX only in CMS Release 6
and subsequent releases.

Argument Counting
Omitted trailing arguments are ignored. The number of arguments passed to a function or a subroutine is
the largest number for which the ARG built-in function ARG(n,'e') returns 1. Where:

• n is the position of the last argument string specified.
• 'e' is the existence test for the nth argument.

Options of Built-In Functions
The following options of built-in functions are supported by the Compiler, but may not be supported by
your Interpreter.

Function Option Definition and Example

DATATYPE Dbcs Returns 1 if the given string is a pure DBCS string enclosed
within a shift-out (SO) and shift-in (SI). For example:

DATATYPE('<AABB>','D') → 1
DATATYPE('a<AABB>b','D') → 0

DATATYPE C Returns 1 if the given string is a valid mixed DBCS string. For
example:

DATATYPE('<AABB>','C') → 1
DATATYPE('a<AABB>b','C') → 1
DATATYPE('abcde','C') → 0

DATE Normal Specifies the default date format, which returns the date in
the format dd mon yyyy. For example:

DATE('N') → '30 Jun 1991'

DATE 2nd to 5th The second to fifth arguments represent an input date that
can be converted to a specific output format. The fourth and
fifth arguments specify the separation characters of the
output and input strings, respectively. For example:

DATE('U','28 02 90','E','*',' ')
→ '02*28*90'

TIME Civil Returns the time in the format hh:mmxx, where the hours are
1 through 12, and the minutes are 00 through 59. The
minutes are immediately followed by the letters am or pm. For
example:

TIME('C') → '4:54pm'

TIME Normal Specifies the default time format, which returns the time in
the format hh:mm:ss. For example:

TIME('N') → '16:54:22'

88 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Function Option Definition and Example

VERIFY Nomatch Specifies the default option, which returns the position of the
first character in the given string that is not also in the given
reference. For example:

VERIFY('AB4T','1234567890','N') → 1

Note: < represents shift-out (SO), and > represents shift-in (SI).

Built-In Functions
The following built-in functions are supported by the Compiler, but may not be supported by your
Interpreter.

Function Definition and Example

B2X Converts a string of binary digits into an equivalent string of hexadecimal
characters.

CONDITION Returns condition information associated with the most recently trapped
condition. For example:

CONDITION('I') → 'SIGNAL'

DIGITS Returns the current setting of NUMERIC DIGITS. For example:

DIGITS() → 9

FORM Returns the current setting of NUMERIC FORM. For example:

FORM() → 'SCIENTIFIC'

FUZZ Returns the current setting of NUMERIC FUZZ. For example:

FUZZ() → 0

WORDPOS Returns the word number of the first word of a given phrase found in a given
string. Returns 0 if phrase is not found.

WORDPOS('is the','now is the time') → 2

X2B Converts a string of hexadecimal characters into an equivalent string of binary
digits.

Options of Instructions
The following options of instructions are supported by the Compiler, but may not be supported by your
Interpreter.

Instruction Options Definition

CALL ON/OFF Controls the trapping of certain conditions.

NUMERIC FORM VALUE Enables specification of the SCIENTIFIC or
ENGINEERING form as an expression.

OPTIONS 'EXMODE' 'NOEXMODE' Enables or disables DBCS data operations
capability1.

Language Differences between the Compiler and the Interpreters 89

Instruction Options Definition

SIGNAL ON FAILURE Traps negative return codes from host commands.
(These are trapped by SIGNAL ON ERROR if
trapping of the failure condition is not enabled.)

SIGNAL ON NAME Specifies the name of a label to get control if a
specified condition occurs.

Strict Comparison Operators
The strict comparison operators carry out a simple character-by-character comparison. Unlike the other
comparison operators, they never pad either of the strings being compared and never attempt to perform
a numeric comparison. The strict comparison operators that may not be supported by your Interpreter
are:
<<

Strictly less than
<<=

Strictly less than or equal to
¬<<

Strictly not less than
>>

Strictly greater than
>>=

Strictly greater than or equal to
¬>>

Strictly not greater than

The backslash (\) is synonymous with the logical NOT character (¬). The two characters may be used
interchangeably in operators.

LINESIZE Built-In Function in Full-Screen CMS
The LINESIZE built-in function returns the current line width of the terminal. In full-screen CMS, the
LINESIZE function invoked by a compiled REXX program always returns a value of 999999999.

Enhancement to the EXECCOMM Interface
The EXECCOMM interface enables called commands to access and manipulate the current generation of
REXX variables. The Fetch Private Information operation has been extended to return information for the
following requests:
PARM

Fetch the number of parameters (arguments) supplied to the program.
PARM.n

Fetch the nth parameter (argument string).

1 The support of DBCS data operations affects all functions that deal with delimiting words and determining
length. For example, the LENGTH function counts each double-byte character between SO and SI as 1
character.

90 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 9. Limits and Restrictions

This chapter provides information both on the maximum implementation limits and on technical
restrictions imposed by the Compiler and Library.

If a program runs with the Alternate Library, all the limits and restrictions of the appropriate interpreter
apply.

Implementation Limits
None of the following limits is lower than the corresponding interpreter limit:

Table 7: Compiler Implementation Limits

Item Limit

Literal strings 250 bytes

Symbol (variable name) length 250 bytes

Nesting control structures 999

Clause length Virtual storage

Variable value length 16 megabytes 2

Call arguments 16000

MIN and MAX function arguments 16000

Number of PARSE templates 16000

PROCEDURE EXPOSE items 16000

Queue entries Virtual storage

Queue entry length Same as interpreter

NUMERIC DIGITS value 999 999 999

Notational exponent value 999 999 999

Hexadecimal strings 250 bytes

Binary strings 250 bytes

C2D input string 250 bytes

D2C output string 250 bytes

X2D input string 500 bytes

D2X output string 500 bytes

active PROCEDURES 30000

2 If the length of a variable’s value exceeds 16 megabytes, the results are unpredictable.

© Copyright IBM Corp. 1991, 2013 91

Technical Restrictions
Restrictions common to all systems:

• The number of lines of the source program is restricted to 99 999. The logical record length of the
source program is restricted:

– Under z/VM, to 65 535
– Under z/OS, to 32 760 for fixed length data sets, and to 32 756 for variable length data sets

• The maximum number of external routines that can be referenced in a program when compiled with the
DLINK option is 65 534.

• The length of the value of variables is restricted to 16MB. If the length of a variable’s value exceeds
16MB, the results are unpredictable.

• Compiled EXECs or object programs are restricted to 16MB in size.
• Checking of pad characters: some built-in functions that perform string operations have an argument

that specifies a pad character. If a program contains an OPTIONS or an INTERPRET instruction, the pad
characters on built-in functions are not checked until runtime.

z/OS Restrictions
• You cannot invoke compiled REXX programs as authorized.
• The storage replaceable routine is not used by the Library.
• If the NOESTAE flag is set in the PARM BLOCK, no clean-up can be performed by the Library in case an

ABEND occurs.

z/VM restrictions
• You cannot run compiled programs in the transient program area (TPA). A program running in the TPA

cannot invoke a compiled REXX program.
• A NUCXDROP EAGRTPRC command must be issued before purging the segment that contains the

Library, otherwise an ABEND will occur.
• Under VM/ESA Release 1.1 and subsequent releases, if the command NUCXDROP EAGRTPRC is issued

while a compiled REXX program is running, unpredictable results may occur.

VSE/ESA restrictions
• The storage replaceable routine is not used by the Library.
• National Language Support: the messages are supported only in English.

C restriction
• The compilation of a program might be abended with the following messages:

DMSABE155T User abend 2100 called from 002BCEB0 reason code 00007203 CMS
DMSMOD109S Virtual storage capacity exceeded

Reason code 7203 states an error when extending the stack.

When such an error occurs, refer to the book IBM C/370 Programming Guide for information on how to
proceed.

92 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 10. Performance and Programming
Considerations

This chapter is intended to help you to improve the performance of your compiled programs. It also
explains how to find out whether the IBM Library for REXX on IBM Z is available on a system—an
important programming consideration.

Performance Considerations
The performance improvements that you can expect when you run compiled REXX programs depend on
the type of program. A program that performs large numbers of arithmetic operations of default precision
shows the greatest improvement. A program that mainly issues commands to the host shows limited
improvement, because REXX cannot decrease the time taken by the host to process the commands.

Compiled programs that include many … Run this much faster

Arithmetic operations
6 to 10 times

String and word processing operations

Constants and variables

4 to 6 timesReferences to procedures and built-in functions

Changes to values of variables

Assignments
2 to 4 times

Reused compound variables

Host commands Minimal improvement

Note: This is true only when:

• The IBM Library for REXX on IBM Z is used. With the Alternate Library, the performance of compiled
REXX programs is similar to that of interpreted programs.

• The program has been compiled with the NOTRACE option.

Optimization, Optimization Stoppers, and Error Checking
The compiler performs the optimization procedures on a REXX program to improve error checking at
compilation time and performance at runtime. Certain REXX constructs do not allow the compiler to
optimize. They are called optimization stoppers.

The optimization procedures and stoppers are described in the following sections.

Keeping Track of Variables

After a value is assigned to a variable or the variable is used in an assignment, such as a target in a PARSE
template, the variable is no longer in a dropped state. For example, in:

SIGNAL ON NOVALUE; X = Y; SAY X

the SAY instruction does not need to include code to test for, and raise, the NOVALUE condition although
such code is needed for the evaluation of the expression Y in the assignment.

© Copyright IBM Corp. 1991, 2013 93

After a constant is assigned to a simple variable, the compiler can use the constant instead of the variable.
This improves performance and enables the compiler to find more errors. For example, in:

I = 'A'; SAY SUBSTR(X, I)

the compiler can detect that the argument I for SUBSTR has a value that is not numeric and therefore not
valid.

Even if the compiler cannot predict the exact value of a variable, it can derive properties of the value from
the context in which the variable is used. For example, in:

X = Y + Z; SAY DATE(X) DATE(Y) DATE(Z)

the compiler can report that the arguments X, Y, and Z for the DATE function are not valid because they
must all be numeric if the assignment is successful.

Performing Operations at Compilation Time

In many cases, the compiler can replace an expression involving only constants with the result of the
expression. Together with keeping track of variables, this procedure can improve both the performance
and error checking.

Note, however, that in the expression X + 1 + 2, for example, the subexpression 1 + 2 cannot be
optimized. The reason for this is that, depending on the constants involved and the NUMERIC DIGITS
setting, the expressions X + (1 + 2) and (X + 1) + 2 can have different results.

Eliminating Several Evaluations

If an expression occurs more than once in a REXX program, it is not always necessary to evaluate the
expression more than once. For example, the compiler treats SAY X * Y + X * Y like T = X * Y;
SAY T + T where multiplication is performed only once at runtime.

This optimization procedure is even more effective if a compound variable is involved. For example, for
A.I = X; SAY A.I the compiler generates only once the code for searching the tree belonging to stem
A. and the variable belonging to tail I. In addition, the search is performed only once at runtime.

Improving Access to Compound Variables

In a loop where the tail of the compound variable is the control variable of the loop, such as:

DO I = 1 TO 1000
 SAY I A.I
END

all compound variables belonging to stem A. might be accessed sequentially. In this case, performing the
general tree search for stem A. each time would be inefficient. Therefore, the code generated for A.I
always first checks whether the next compound variable in stem A. is the one required. It then either uses
it or continues its search.

If the tail is the control variable of an outer loop instead of the immediately enclosing loop, the same
variable might be accessed repeatedly. In many such cases, the compiler can apply the usual optimization
for compound variables. If this is not possible, it generates code that checks whether the compound
variable used previously is the one required and only continues its search if not.

Note: This optimization procedure is not possible if a loop contains an optimization stopper.

Optimization Stoppers

An optimization stopper is a point in the REXX program where the compiler’s information about the state
of the variables or the expressions evaluated previously becomes unreliable.

Such optimization stoppers are:

94 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

• A point where the EXECCOMM interface can be invoked because any variable in the REXX program can
be changed by this interface. Examples are the start of the program, invocations of external procedures,
host commands, and TESTHALT hooks.

• Label definitions.
• INTERPRET instructions.
• Calls of the VALUE built-in function with a second argument.
• NUMERIC instructions. They cause information derived from, or about, arithmetic or comparison

expressions to become unreliable, but do not affect information about compound variables.

The removal or introduction of an optimization stopper can cause the compiler to issue more or fewer
warnings or error messages. In addition, the performance of the compiled program is affected if an
optimization stopper is introduced into an inner loop.

Because the TESTHALT compiler option introduces TESTHALT hooks, at least one in every loop, using this
option reduces the possibilities for optimization and error checking. It is, therefore, recommended that
you first compile without the TESTHALT option to improve error checking, and compile with the option
after you corrected the errors. Similarly, use the %TESTHALT directive after correcting the errors.

Optimization Limitations

The compiler’s optimization procedures are designed to be compatible with the interpreter. Therefore,
sometimes no optimization occurs where, at first glance, it seems possible. For example, in the following
instruction:

SAY A X Y; SAY B X Y

the generated code evaluates the concatenation X Y only once, whereas no optimization occurs in:

SAY A + X + Y; SAY B + X + Y

To understand this, add the parentheses implied by the REXX evaluation order. The expression A X Y is
equivalent to (A X) Y. The rules for REXX concatenation guarantee that the expressions (A X) Y and A
(X Y) always produce the same result. However, in the case of the addition, the expressions (A + X) +
Y and A + (X + Y) can produce different results because of the rounding rules required by NUMERIC
DIGITS. Therefore, there is no common subexpression X + Y in these two expressions, and the optimizer
cannot treat them alike. However, the compiler can optimize these expressions if they are rewritten as:

SAY X + Y + A ; SAY X + Y + B

Arithmetic
Compiled REXX programs normally use binary arithmetic for whole numbers. But for NUMERIC DIGITS
settings of less than 9, and for whole numbers in exponential notation, arithmetic operations are
performed using string arithmetic, which is slower. String arithmetic is also used for whole numbers
written with decimal points, such as '2.' and '3.0'.
Hints:

Do not set NUMERIC DIGITS to a value less than 9, unless necessary. Do not write whole numbers
with decimal points, unless necessary.

Literal Strings
A string in quotes is considered to be a literal constant; its contents are never modified. Other symbols
can also be used as constants: if no value has been assigned to a symbol, the defined value is the symbol
itself, translated to uppercase. If a value has been assigned to a symbol the line number in the Compiler’s
cross-reference listing (see page “Cross-Reference Listing” on page 52) is followed by the characters
'(s)'.

The Compiler does not know whether you intend to use a nonquoted symbol that could be a variable as a
constant, a variable, or both. Therefore, every nonquoted symbol that could be a variable is checked for a

Performance and Programming Considerations 95

value each time it is referenced. (No check can be made for value assignment during compilation,
because values can be assigned to variables through the variable pool interface at runtime.)
Hint:

Enclose all literal constants in quotes. For example, instead of coding this:

reportheader = customers /* No value assigned to */
 /* "customers" yet */

code this:

reportheader = "CUSTOMERS"

Variables
Simple variables and stems are addressed from a static symbol table created during compilation, whereas
compound variables are held in a binary tree created at runtime. This tree has to be searched to retrieve a
compound variable. Therefore, simple variables and stems are accessed faster than are compound
variables.
Hint:

Use compound variables only for structures, such as arrays and lists, for which they are appropriate.

Compound Variables
Compound variables that have three or fewer numeric tail parts can be accessed faster than compound
variables that have nonnumeric characters in their tail.
Hint:

If you need tails with nonnumeric and numeric tail parts, the first tail part should be nonnumeric.

For the best performance, use three or fewer numeric tail parts.

Labels within Loops
If there is a label between a DO and its corresponding END, the performance of the loop is adversely
affected; control may jump incorrectly into the body of the loop, thus requiring more runtime checking at
the end of each pass through the loop.
Hint:

Avoid putting labels within DO loops. Structure your code so that there is no need for such labels.

Procedures
The EXPOSE option of the PROCEDURE instruction is used to ensure that references to specified variables
within the internal routine refer to the variables environment owned by the caller.

If you expose a stem, the entire array of compound variables is available to the internal routine. This is
much more efficient than exposing individual compound variables of the same stem.
Hint:

If you expose a compound variable in an internal routine, expose the entire stem, if practical. For
example, instead of coding this:

Procedure Expose x.j

code this:

Procedure Expose x.

96 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

TESTHALT Option
When a program is compiled with the TESTHALT option, the Compiler generates code in several places in
the program to check for the HALT condition (see “Halt Condition” on page 81.) This extra code may
adversely affect the performance of the program.

Hints:

• Compile with the TESTHALT option only when it is necessary.
• Instead of the TESTHALT compiler option, use the %TESTHALT control directive to check for the HALT

condition only at points in the program that affect the performance less, for example not inside inner
loops.

Frequently Invoked External Routines
If your program frequently invokes external routines or functions, consider linking them to the program
that invokes them. This will improve performance by eliminating the search time. See the compiler option
DLINK at “DLINK” on page 23 in topic “DLINK” on page 23 and “DLINK Example” on page 210.

Programming Considerations
This section explains:

• How to find out whether the Library is available on your system
• The different ways in which the z/OS and the z/VM Compilers handle the VALUE built-in function
• The different ways in which different systems support stream I/O
• How to determine whether an EXEC is compiled or interpreted
• How to create programs that run with the Alternate Library
• The upper and lower limits on the absolute value of numbers

Verifying the Availability of the Library
To find out whether the Library is available on a system, use the following code sequence in an interpreted
program for the system you wish to query:

Under z/OS:

 Trace 'O' /* Suppress trace messages */
 Address Linkmvs 'EAGRTPRQ' /* Check for the Library */
 If rc¬=-3 Then /* -3 means the Library is not there */
 Say 'IBM Library for REXX on IBM Z available'

Under z/VM:

 Trace 'O' /* Suppress trace messages */
 Address Command 'EAGRTPRC' /* Check for the Library */
 If rc¬=-3 Then /* -3 means the Library is not there */
 Say 'IBM Library for REXX on IBM Z available'

Performance and Programming Considerations 97

Under z/OS, the EAGQRLIB EXEC (REXXQ) is located in the data set prefix.SEAGCMD. Under z/VM, you can
find the EAGQRLIB EXEC on the installation minidisk of the IBM Library for REXX on IBM Z. The source of
the EAGQRLIB EXEC contains the following definition:

/* REXX ---*/
/* Diagnose to query the REXX Runtime Library Symptom string. */
/* */
/* Licensed Materials - Property of IBM */
/* 5695-014 IBM REXX Library */
/* (C) Copyright IBM Corp. 1989, 2003 */
/* */
/* Change Activity: */
/* 03-05-28 Release 4.0 */
/* */
/*---*/

 Trace 'O';
 Parse source src;
 Say 'Query the REXX Runtime Library symptom string';
 Say 'Source:' src;
 If word(src,1)='CMS' then eagname='EAGRTPRC';
 Else eagname='EAGRTPRQ';
 Say ' Calling query entry' eagname;
 If word(src,1)='CMS' then do;
 'NUCXDROP' eagname;
 ADDRESS COMMAND eagname;
 End;
 Else ADDRESS LINKMVS eagname;
 If rc>0 then do;
 Say ' Address: ' right(d2x(rc),8,0);
 ids=c2d(storage(d2x(rc+16),4));
 lvl=storage(d2x(ids+2),c2d(storage(d2x(ids),2)));
 Say ' Symptom:' lvl;
 Say ' Descrpt: Name Rel APAR LibLevel';
 If word(lvl,1)='EAGRTALT' then,
 Say ' The REXX Alternate Library is in effect.';
 Else Say ' The REXX Runtime Library is in effect.';
 End;
 Else Do;
 Say ' 'eagname' returned RC='rc;
 Say ' A REXX Runtime System was not found.';
 End;
Exit;

Figure 23: Source of the EAGQRLIB EXEC

Note: Under VSE/ESA, no checking is necessary because the IBM Library for REXX in REXX/VSE, is always
available if REXX/VSE is installed.

VALUE Built-In Function
When cross-compiling, the z/OS and z/VM Compilers treat the VALUE built-in function as follows:

• The z/OS compiler issues message FANGAO0600W if the VALUE built-in function has been coded with
the selector argument. If you are compiling a REXX program with the z/OS compiler for execution under
z/VM, you should ignore this message.

• When compiling under z/VM for execution under z/OS or VSE/ESA, no message is issued if the selector
argument has been coded even though the z/OS or VSE/ESA runtime support for selector is not
available.

Stream I/O
When cross-compiling, you should bear in mind that stream I/O is supported for execution only under
VM/ESA Release 2.1 and subsequent releases.

Table 8 on page 99 illustrates how stream I/O is supported on the different systems.

98 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Table 8: Stream I/O Support

Function VM/ESA 2.1 Other systems

LINEIN LINEOUT LINES
CHARIN CHAROUT CHARS
STREAM

Built-in function External function

PARSE LINEIN
SIGNAL ON/OFF NOTREADY
CALL ON/OFF NOTREADY

Executed Raise SYNTAX condition
at runtime

The z/OS and z/VM Compilers act as follows:

• The z/OS compiler issues message FANPAR0465W for PARSE LINEIN and message FANPAR0466W for
SIGNAL ON/OFF NOTREADY, and CALL ON/OFF NOTREADY. If you are compiling a REXX program with
the z/OS compiler for execution under VM/ESA Release 2.1 and subsequent releases, you should ignore
this message.

• When compiling under z/VM for execution under z/OS or VSE/ESA, no message will be issued for PARSE
LINEIN, SIGNAL ON/OFF NOTREADY, and CALL ON/OFF NOTREADY even though no z/OS or VSE/ESA
runtime support for them is available.

The following Parse statement is flagged by the Compiler because TSO/E does not support the Stream I/O
(CMS supports the Stream I/O):

Parse LineIn x

If you have installed the Stream I/O function package for z/OS (described in Part 3, “Stream I/O for TSO/E
REXX,” on page 113), you can code the Parse statement as follows:

Parse value LineIn(data_set_name) with aline

The Stream I/O function package for z/OS is described in Part 3, “Stream I/O for TSO/E REXX,” on page
113.

Determining whether a Program is Interpreted or Compiled
Use the PARSE VERSION instruction to determine whether the EXEC is running compiled or interpreted.
This makes it possible to choose different logic paths depending on whether the EXEC is compiled or
interpreted.

Example:

 Parse Version v . /* Use Parse Version to see if compiled */
 If left(v,5)='REXXC' Then what='compiled'
 Else what='interpreted'
 Say what

Creating REXX Programs for Use with the Alternate Library (z/OS, z/VM)
Not all programs are good candidates to run with the Alternate Library. This is because programs that run
with the Alternate Library are in fact interpreted.

To create a REXX program that can run with both the Library and the Alternate Library, do the following:

• Compile the REXX program.

At compilation time, you must consider these options:
ALTERNATE

Is required. It enables the program to run with the Alternate Library. The program can also run with
the Library.

Performance and Programming Considerations 99

SLINE
Is required. It enables the creation of the control structures required by the interpreter.

CONDENSE
Is not required. However, because the SLINE option includes the program source in the compiled
program, CONDENSE can be used to create compacted output, which is unreadable when using
ISPF/PDF browse, view, and edit under z/OS, or browse and XEDIT in CMS.

DLINK
Requires special care. The DLINK option of a single module requires the Library. To run a program
that uses the DLINK option with the Alternate Library, you must supply the external functions and
subroutines that are in the single module as separate programs. In this way, the interpreter can
locate them and invoke them.

TESTHALT
When running with the Alternate Library the Halt condition is always tested for by the REXX
Interpreter, regardless of whether you specified TESTHALT, NOTESTHALT or neither as a compiler
option.

• Continue with the preparation of the compiled program as explained in Chapter 6, “Using Object
Modules and TEXT Files,” on page 65, if necessary.

• Document that the IBM Library for REXX on IBM Z is not a prerequisite, but if it is available, using it will
result in better runtime performance.

Limits on Numbers
There are upper and lower limits on the absolute values of numbers. These limits apply regardless of the
setting of NUMERIC DIGITS or NUMERIC FORM. If a string that represents a number exceeds one of the
limits, it is treated as non-numeric (data type CHAR):

• A number is within the upper limit if the following conditions are true:

– The exponential part does not exceed +999999999. Leading zeros in the exponent are ignored.
– The absolute value of the number does not exceed 9E+999999999.

Examples:

– 0.1E1000000000 is not numeric, because the exponent is too large.
– 9.1E+999999999 is not numeric, because the value is too large. If this number is the result of an

arithmetic operation, an OVERFLOW occurs and the SYNTAX condition is raised.
• A number exceeds the lower limit if the following is true for any operand or for the result:

exponent - number of fractional digits in the mantissa < -999999999

That is: the difference between the exponent and the number of fractional digits in the mantissa is less
than -999999999.

Note that trailing zeros in the fractional part of the mantissa are significant in REXX.

For example, 1.23E-999999998 causes an UNDERFLOW error and raises the SYNTAX condition
because -999999998 - 2 is less than -999999999. (The exponent relative to the trailing digit of the
mantissa would be -1000000000.)

100 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Part 2. Customizing the Compiler and Library

© Copyright IBM Corp. 1991, 2013 101

102 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 11. Customizing the IBM Compiler and
Library for REXX on z/OS

This chapter describes how to customize the IBM Compiler for REXX on z/OS and the IBM Library for
REXX on z/OS, when they are installed or later. For instructions on how to install either the Compiler or the
Library under z/OS refer to the corresponding program directories. For more information visit the home
page at: http://www.ibm.com/software/awdtools/rexx/

Modifying the Cataloged Procedures Supplied by IBM
Modify the data set names and parameters (shown in Appendix D, “The z/OS Cataloged Procedures
Supplied by IBM,” on page 229) as necessary for your system, and store your cataloged procedures in
SYS1.PROCLIB.

Customizing the REXXC EXEC
You can set up installation defaults for the compiler options by assigning the required options to the
variable instopts in the customizing section of the REXXC EXEC.

Other specifications that you can customize in this EXEC include:

• The UNIT specification and the size of data sets that are allocated by the REXXC EXEC, if they are
specified to receive output and do not already exist

• Data set attributes for these data sets (adhering to the limits shown in Table 4 on page 13)
• The default data set names used for compiler output (see the routine MKDSN in the REXXC EXEC)
• The text of messages issued by the EXEC

For more information refer to “Invoking the Compiler with the REXXC (FANC) EXEC” on page 9.

The defaults specified in the REXXC EXEC apply when users invoke the Compiler from both the command
line and from the foreground and background compilation panels. The defaults do not apply when users
use the cataloged procedures, or if they invoke the Compiler directly.

Customizing the REXXL EXEC
Assign the default name of the data set where stubs in load module form reside to variable g.0lib in the
customizing section of the REXXL EXEC. This is also the name of the data set where predefined stubs
reside. Refer to “Stubs” on page 212 for a list of stub names and member names in the sample data set
names.

Other specifications that you can customize in this EXEC include:

• The member names of the predefined stubs
• The names of the predefined stubs that can be used as parameters of REXXL
• The UNIT specification and the size of data sets that are allocated by the REXXL EXEC, if they are
specified to receive output and do not already exist

• The data set attributes for these data sets
• The linkage editor and the linkage editor options
• The text of messages issued by the EXEC

© Copyright IBM Corp. 1991, 2013 103

Message Repository
The Compiler, the Library, and the Alternate Library use the MVS message service (MMS). Installation
message files are provided for U.S. English (FANUMENU and EAGUMENU) and Japanese (FANUMJPN and
EAGUMJPN). For languages other than U.S. English, Japanese, and Upper Case English, you must supply
a version of the installation message file with the appropriate translated message skeletons. For
information on how to translate messages and on how to activate these translated messages, see the
corresponding z/OS documentation.

The Compiler and Library can run on MVS SP Version 3 systems that have TSO/E Version 2 Release 4
installed. The Compiler and the Library use MVS Message Services (MMS) to provide National Language
Support (NLS) on z/OS. These services are not available on a MVS SP Version 3 system, therefore only
English is supported when running the Compiler or the Library on a MVS SP Version 3 system.

Systems that use U.S. English or Upper Case English do not require the MMS. In these cases, the
installation message file for U.S. English is not used.

104 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 12. Customizing the IBM Compiler and
Library for REXX on z/VM

This chapter describes how to customize the IBM Compiler for REXX on z/VM and the IBM Library for
REXX on z/VM, either when they are installed or later. For instructions on how to install either the
Compiler or the Library under z/VM refer to the corresponding program directories. For more information
visit the home page at: http://www.ibm.com/software/awdtools/rexx/

Customizing the Compiler Invocation Shells
Users can invoke the Compiler from a Compiler invocation shell. Two sample Compiler invocation shells
are supplied with the Compiler: a full-screen interactive dialog, and an EXEC that operates in line mode.
Customization tasks, which are normally done immediately after installation but can also be done later,
are:

• Modify the function of the invocation shells to suit your system’s requirements.
• Set up the installation defaults for the Compiler options.

Modifying the Function of the Compiler Invocation Shells
You can use the sample Compiler invocation shells as supplied. If you want to customize them, modify the
following files:
Compiler invocation EXEC:

REXXC EXEC
Compiler invocation dialog:

REXXD EXEC

REXXDX XEDIT

The shells are written in REXX and can be compiled.

The REXXCOMP Command

Use the REXXCOMP command if you plan to write your own compiler invocation shell. The Compiler
invocation shells use this command to invoke the Compiler. The syntax of the REXXCOMP command is as
follows:

REXXCOMP source-file-identifier [(options-list[)]]

where:
source-file-identifier

Is the file identifier of the source program. The source file identifier need not be fully specified. If the
file type is not specified, EXEC is used. If the file mode is not specified, it defaults according to the
CMS search order. The REXXCOMP command does not translate the file identifier to uppercase.

options-list
Is a list of Compiler options to be used, separated by blanks. The Compiler invocation shell must
process any user-defined defaults and explicitly selected options and pass them to the REXXCOMP
command. The default values supplied by IBM are used for any options that are not specified. For
information on the syntax of the Compiler options, see “Compiler Options” on page 19.

Note: The enhanced form of the options must not be passed directly to the REXX compiler.

Setting Up Installation Defaults for the Compiler Options
The installation default values for the Compiler options are specified in the Compiler invocation EXEC.

© Copyright IBM Corp. 1991, 2013 105

To set up the installation default values:

1. Read the descriptions of the Compiler options in “Compiler Options” on page 19, and decide which
options you want.

2. Edit the Compiler invocation EXEC (REXXC EXEC).
3. Find the place near the beginning of the file where the variable for the Compiler options, InstOpts, is

initialized. A comment box after the variable assignment shows the default values supplied by IBM and
the valid values.

4. In the assignment with the target InstOpts, specify any default values that you want to change.

For the PRINT, CEXEC, OBJECT, and IEXEC options, you can use an equals (=) sign as the file name or
file mode; this specifies that the file name or file mode are to be the same as the corresponding part of
the source file identifier. You can also use an asterisk at the beginning or end of the file type; this
specifies that part of the file type is to be the same as the corresponding part of the source file type.

The following example shows a valid specification of installation defaults:

InstOpts='NOC(E) PRINT(= LIST =) TERM'

Note: This procedure does not change the defaults supplied by IBM in the REXXCOMP module.

Customizing the Compiler Invocation Dialog
Some customization of the compiler invocation dialog may be required. REXXDX XEDIT, the XEDIT macro
that controls the dialog, contains a section in which you can specify:

• The compilation command
• The GLOBALV group name for saving dialog information
• The commands for editing, printing, and invoking help
• The REXX file types that are acceptable
• The character set for file names and file types
• The naming convention for compiled and source EXECs

The installation defaults for compiler options are usually those that are specified in REXXC.

Customizing the Library
This section describes how to customize the Library. For detailed information refer to z/VM Saved
Segments Planning and Administration.

Defining the Library as a Physical Segment
The IBM Library for REXX on z/VM, which is required to run compiled REXX programs, can be run in a
DCSS. Here is an example of how to define the Library as a physical segment:

1. Define the segment by using the DEFSEG command. For example:

DEFSEG EAGRTSEG 900-94F SR

The segment can be above 16MB in virtual storage.
2. Ensure that the DCSS will not overlap any other DCSS or saved system.

Note: For detailed information refer to z/VM Saved Segments Planning and Administration.

Saving the Physical Segment
1. For an SP system, ensure that your virtual machine has class-E privilege and a virtual storage size at

least 0.5MB greater than the address of the end of the segment.

106 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

For an XA system, round up this value to the nearest megabyte boundary.
2. Invoke the EAGDCSS EXEC with the DCSS name as an argument. If you do not supply an argument,

EAGRTSEG is used. While the segment is being saved, the EAGRTPRC module is updated to contain
the name of the DCSS. Therefore, if the segment name you give it is different than the name contained
in the first EAGRTPRC module in the search order, this module must reside on a disk accessed in read/
write mode. For an explanation of how to load the Library, see “Other Runtime Considerations” on
page 45.

Defining the Library as a Logical Segment
With CMS Release 6 or a subsequent release, the Library can be contained in a logical segment.

Note: For more information refer to z/VM Saved Segments Planning and Administration.

Here is an example of how to define the Library:

1. Define the physical segment to CP.
2. In file eagrtseg PSEG, define the physical segment contents by means of the following record:

LSEGMENT NLSxxxxx LSEG

Note: Throughout this section, eagrtseg and xxxxx have the following meaning:
eagrtseg

Is the name of the segment
xxxxx

Is AMENG for American English, or KANJI for Kanji.
3. In file NLSxxxxx LSEG, define the logical saved segment contents by means of the following records:

MODULE EAGRTLIB (SYSTEM PERM NAME EAGRTPRC)
LANGUAGE EAG xxxxx

Note: The logical segment that contains a language information must be called NLSxxxxx LSEG
regardless of its contents.

4. Create a LANGMERG control file called EAGxxxxx LANGMCTL that contains the following records:

ETMODE OFF
MESSAGE EAGUME

5. Enter the LANGMERG command to build EAGNLS TXTxxxxx:

LANGMERG xxxxx EAG

6. Enter the SEGGEN command to save the segment:

SEGGEN eagrtseg PSEG (MAP GEN

7. Access your system disk in read/write mode and copy the updated system segment identification file
SYSTEM SEGID.

To make the logical segment and its contents available, put the following SEGMENT command into the
SYSPROF EXEC:

SEGMENT LOAD NLSxxxxx

Note: If your installation has another logical segment named NLSxxxxx LSEG, you should add the
SEGMENT ASSIGN command to this procedure to select the appropriate physical segment from which the
logical segment will be used:

SEGMENT ASSIGN NLSxxxxx eagrtseg

Customizing the IBM Compiler and Library for REXX on z/VM 107

Selecting the Version of the Library
You may want to have multiple versions of the Library on one z/VM system. For example, after applying a
program temporary fix (PTF), you may want to try the new version while all other users continue to use
the old version.

The product is shipped with a library loader (EAGRTPRC MODULE), which does not search for the Library
in a DCSS and which assumes that the name of the Library is EAGRTLIB MODULE.

You can customize the library loader to search for the Library in a named DCSS or to suppress any DCSS
search. You can also specify the name under which the Library is searched for on disk. See “Other
Runtime Considerations” on page 45 for a description of how the Library is loaded under CMS.

When the first compiled REXX program is run, the first library loader in the search order loads the Library.
If a new PTF is installed, you can:

1. Use the EAGCUST EXEC to generate a customized version of EAGRTPRC that searches for the
EAGRTNEW library and does not search the DCSS.

2. Copy the new EAGRTLIB MODULE to EAGRTNEW MODULE.
3. Place the customized version of EAGRTPRC ahead of the production version of EAGRTPRC in the

search order. Make sure that other users cannot access it.
4. IPL your CMS system.

Using the EAGCUST EXEC

With the EAGCUST EXEC you can:

• Query the current customization of EAGRTPRC.
• Specify a DCSS that is to be searched for the Library.
• Specify that the Library not be loaded from a DCSS.
• Specify the file name of the module that contains the Library.

These tasks are explained in the following paragraphs. The following definition applies to all the syntax
descriptions in those paragraphs:
file-identifier

Is the file identifier of the file. The file name defaults to EAGRTPRC; the file type defaults to MODULE;
the file mode defaults to that of the first file in the search order.

When you generate a customized version of EAGRTPRC, ensure that you have the EAGRTPRC MODULE on
a disk accessed in read/write mode.

To query the current customization of EAGRTPRC, enter:

EAGCUST [file-identifier]

To specify that the Library is to be searched for in a DCSS, enter:

EAGCUST [file-identifier] (S segname

where:
segname

Specifies the name of the DCSS that contains the Library to be used.

To specify that the Library is not to be loaded from a DCSS, enter:

EAGCUST [file-identifier] (NOS

To specify the file name of the module that contains the Library, enter:

EAGCUST [file-identifier] (L libname

where:

108 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

libname
Specifies the name of the module that contains the Library.

Customizing the Message Repository to Avoid a Read/Write A-Disk
The message repository is distributed as EAGUME TXTxxxxx, where xxxxx indicates the language; it is
AMENG (American English) in the base product. In this form, the SET LANGUAGE command (issued when
the Library is loaded) copies the message repository to your A-disk and loads it from there. Your A-disk
must be accessed in read/write mode.

To avoid the need for an A-disk accessed in read/write mode when a compiled REXX program is first
invoked, change the message repository file type to TEXT. See the description of the SET LANGUAGE
command in the VM/SP CMS: Command Reference manual for further explanation.

You can load the message repository into a DCSS that contains system-provided language files, because
the repository is loaded with the ALL option of the SET LANGUAGE command when the Library is loaded.
In this case, the message repository need not be accessible on disk.

Files Needed to Run Compiled REXX Programs
If neither the Library nor the message repository is in a DCSS, you need the following files to run compiled
REXX Programs:

EAGUME TXTAMENG Message repository

EAGRTPRC MODULE Library loader

EAGRTLIB MODULE Library

If you need to work with compiled REXX CEXECS (not object files) in z/OS background mode, you need the
following files:

EAGRTPRC Runtime library

EAGUME English language messages

EAGUME2 Kanji message repository

If you need to work with compiled REXX EXECS under TSO/E, you must also have the following file:

IRXCMPTM Compiler programming table

Customizing the IBM Compiler and Library for REXX on z/VM 109

110 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 13. Customizing the Library under VSE/ESA

This chapter describes how to customize the IBM Library for REXX in REXX/VSE:

• Modify the data set names and parameters (shown in Appendix E, “The VSE/ESA Cataloged Procedures
Supplied by IBM,” on page 239) as necessary for your system, and store your cataloged procedures in
REXXLIB.PROCLIB.

• The specifications that you can customize in this REXXL EXEC include:

– The member names of the predefined stubs
– The names of the predefined stubs that can be used as parameters of REXXL
– The text of messages issued by the EXEC

For more information about REXXL refer to “REXXL Cataloged Procedure (VSE/ESA)” on page 72 and
“REXXL” on page 241.

© Copyright IBM Corp. 1991, 2013 111

112 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Part 3. Stream I/O for TSO/E REXX

© Copyright IBM Corp. 1991, 2013 113

114 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 14. How to Read the Syntax Diagrams

The structure of the syntax diagrams shown in Part 3, “Stream I/O for TSO/E REXX,” on page 113 is
described below:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ───► symbol indicates that the statement syntax is continued on the next line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the ►─── symbol and end with
the ───► symbol.

• Required items appear on the horizontal line (the main path).
STATEMENT required_item

• Optional items appear below the main path.
STATEMENT

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

STATEMENT required_choice1

required_choice2

• If choosing one of the items is optional, the entire stack appears below the main path.
STATEMENT

optional_choice1

optional_choice2

• If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

STATEMENT

default_choice

optional_choice

optional_choice

• An arrow returning to the left above the main line indicates an item that can be repeated.

STATEMENT repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax diagram

that appears in greater detail below the main diagram.
STATEMENT fragment

© Copyright IBM Corp. 1991, 2013 115

fragment
expansion_provides_greater_detail

• Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown, but you
can type them in uppercase, lowercase, or mixed case. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described.

MAX (

,

number)

116 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 15. Installing the Function Package

This function package is a collection of I/O functions that follow the stream I/O concept. It extends and
enhances the I/O capabilities of REXX for TSO/E, and shields the complexity of z/OS data set I/O to some
degree. Further, the use of stream I/O functions provides for easier coding syntax and leads to better
portability of REXX programs among different operating system platforms. The stream I/O concept is
introduced in Chapter 16, “Understanding the Stream I/O Concept,” on page 119.

This function package can be used with TSO/E REXX on z/OS, OS/390, and MVS systems that provide the
MVS Name/Token Services, which are required to hook the function package into an existing TSO/E REXX
installation. It is a loadable file that contains multiple object files bound together. Before its functions can
be accessed and executed, the function package must be properly integrated into TSO/E REXX. Perform
the following steps to install the package.

Note: It is assumed that you are familiar with the REXX language, the TSO/E environment, and the logical
organization of data sets in the z/OS environment.

Preparation
1. The z/OS TSO/E REXX Stream I/O function package is shipped together with the IBM Library for REXX

on IBM Z and installed with SMP/E. The executable load libraries are in the data set
prefix.SEAGFUP.

2. To activate the function package it is necessary to assemble and link-edit the TSO/E parameter
modules IRXPARMS and IRXTSPRM.

Customize the JCL job EAGSIOAS, which is in data set prefix.SEAGJENU. It contains predefined
steps to automate the assembly of the TSO/E parameter modules. You must customize the PROC
section as follows:

• Specify the load library data set that has already been allocated. Replace the uid.REXX with the
appropriate naming.

• Ensure that SYS1.MACLIB and SYS1.CSSLIB are referenced in your SYSLIB concatenation.
SYS1.CSSLIB must contain the modules IEANTRT, IEANTCR, and IEANTDL.

SYS1.CSSLIB contains the stubs for z/OS Name/Token Services that the stream I/O functions
require to share data with TSO/E REXX.

3. The parameter modules IRXPARMS and IRXTSPRM provided with this function package are modified
exclusively for the needs of the REXX Stream I/O function package. Do not modify them. They are used
by the EAGSIOAS job.

Assembly, Link-Edit, and Verification
1. Submit the EAGSIOAS job to assemble and link-edit the modules, and place the load module into a

load library that is accessible by your system.

Upon completion the load library .SEAGFUP should contain these load modules:

EAGEFSIO EAGIOHKP IRXPARMS IRXTSPRM

2. For the functional verification of the z/OS TSO/E REXX Stream I/O function package customize job
RZSIOVER:

• Specify the load library as for EAGSIOAS.

© Copyright IBM Corp. 1991, 2013 117

• A small EXEC is run that issues several REXX Stream I/O function calls. For more information refer to
the corresponding output in the job output.

Note: The load modules IRXPARMS and IRXTSPRM provided with this function package can only be used
if the REXX Stream I/O function package is the only function package to be used on your system.

Installations with Multiple Function Packages
Your installation might already use other function packages. These are defined in the parameter modules
IRXPARMS and IRXTSPRM installed on your system. You need to add the definitions for the REXX Stream
I/O function package to these modules to make all function packages work.

1. Inspect the parameter modules IRXPARMS and IRXTSPRM provided with this function package. They
contain the TSO/E default definitions and the definitions for the REXX Stream I/O function package.

2. Incorporate the modifications for the REXX Stream I/O function package into the modules IRXPARMS
and IRXTSPRM that are installed on your system.

3. Assemble and link-edit the updated parameter modules IRXPARMS and IRXTSPRM.
4. Copy the IRXPARMS, IRXTSPRM, EAGEFSIO, and EAGIOHKP modules to an LPA library. It is

recommended that you copy these modules to a user LPA library instead of the SYS1.LPALIB.
5. Make sure that the user LPA library is the first in the LPALSTxx parmlib member and that a SYSLIB
LPALIB (userlib.lpalib) is in the PROGxx parmlib member.

More detailed information about function packages is described in z/OS TSO/E REXX Reference.

Usage Considerations
Your TSO/E REXX installation might use the EXECTERM exec termination exit to customize the processing
after REXX execs complete their processing. This customized processing can include closing of data sets,
and freeing of resources that were allocated during the exec initialization step. If exec termination is used,
a REXX exec does not necessarily need to close data sets it has opened.

On the other hand, the stream I/O function package provides the STREAM function, which can issue a
CLOSE ALL stream command. If CLOSE ALL is used in a REXX exec, it also closes the data sets and frees
the resources that were allocated with the first use of stream functions.

If you prefer relying on exec termination functionality (without using CLOSE ALL in your REXX exec),
ensure that exec termination is active and APF-authorized, otherwise you might receive abend 066D.

To avoid these dependencies, use CLOSE ALL in your REXX execs regardless of the use of exec
termination.

118 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 16. Understanding the Stream I/O Concept

This chapter introduces the stream I/O concept and the implementation for TSO/E REXX. The
terminology, the functions, and the common elements are described. Further, attention is given to the
aspects of TSO/E and z/OS data set handling from the view of the stream I/O functions.

This knowledge lets you effectively use the information in Chapter 17, “Stream I/O Functions,” on page
127.

The Basic Elements of Stream I/O
A stream is a popular concept for how to perform input/output to and from a program. Basically, a stream
is a sequence of characters with functions to take characters out of one end, and put characters into the
other end. In the case of input/output streams, one end of the stream is connected to a physical or logical
I/O device, such as a keyboard, display, file, or queue. If it is an output stream, your program puts
characters into one end of the stream, and an output device takes characters out of the other end. If it is
an input stream, an input device puts characters into one end of the stream, and your program takes
characters out of the other end.

The purpose of stream I/O is to simplify a programmer's view of input and output devices. The physical
characteristics of I/O devices and the organization of data remain hidden. The data organization of devices
is reduced to two simple forms:

• A sequence of characters that can be read or written character by character
• A sequence of lines that can be read or written line by line. A line in this context is defined as a

sequence of characters that are terminated by means of any special character, or by means of the
organizational form of the storage media.

A simple set of functions performs stream I/O operations from within a program.

• Housekeeping functions declare streams as input or output streams, open and close streams before and
after using them, and allow to query their existence and characteristics.

• Character input and character output functions let the program read and write data character by
character from input streams or to output streams.

• Line input and line output functions let the program read and write data line by line from input streams
or to output streams.

• Further functions let the program check for the availability of input data from input streams.

During stream I/O operations a pointer is maintained for each stream. The pointer references the current
position in a stream where a read operation or a write operation takes place. The position in a stream is
relative to its beginning, counted as number of characters. Position 1 is always the first character. Pointers
increase automatically during read operations and write operations. This eases the sequential reading
from or writing to streams. The stream I/O functions can modify the position pointers by specifying
explicit character or line positions to be read or written.

When streams are declared, they are given names. The input and output functions refer to these names to
distinguish among multiple streams in a REXX program.

Generally, a stream can be any source or destination of external data that a program uses. Typical streams
are files and data sets, and consoles for interactive input and output. The stream I/O concept also allows
to view other sources and destinations as streams, for example, a reader, puncher, printer, program stack,
queue, or a communication path. Programming environments that support stream I/O usually provide a
default input stream, which is often the terminal input buffer, and a default output stream, often the
display.

Data streams have two distinctive traits; they are either finite or conceptually unbound. An input stream
from a file is finite because of the known quantity of characters; an input stream from a keyboard or

© Copyright IBM Corp. 1991, 2013 119

communication path is unbound because of the unknown quantity. Stream I/O functions generally provide
a mechanism of determining that an input stream is exhausted – that all data was read, and no more data
is available. For finite streams they can detect the end of a file, for example. For unbound streams they
might interpret special characters of the stream as delimiters.

The TSO/E REXX Stream I/O Implementation
Stream I/O is a concept already implemented in REXX for various operating system platforms. However,
on z/OS and its predecessors, programmers needed to use the EXECIO command to access z/OS data
sets. EXECIO requires programmers to consider many parameters, and to care about the allocation and
deallocation of data sets. The TSO/E REXX Stream I/O functions hide this complexity. Programmers can
use these easy-to-use functions to access z/OS data. Further, the use of stream I/O functions makes
REXX programs more portable among platforms that support stream I/O.

The following sections describe the implementation of stream I/O for TSO/E REXX. A good understanding
of this information is necessary to effectively use the individual functions described in Chapter 17,
“Stream I/O Functions,” on page 127.

The Stream I/O Functions
The function package provides the following functions:

• The STREAM function controls streams and their status. It opens and closes streams, declares the type
of operation (either read or write), and queries the existence and details of streams.

• The CHARIN and LINEIN functions are the stream input functions. They perform character input or line
input.

• The CHAROUT and LINEOUT functions are the stream output functions. They perform character output
and line output.

• The CHARS and LINES functions determine whether data exists in input streams for further read
operations.

In this context, the following terms require definitions:

• The term "character" is any single byte in the range of X'00'…X'FF', respectively 0…255. So, a "character
stream" is synonymous with a "binary stream" or a "byte stream".

• The term "line" is defined as a sequence of characters that makes up the smallest unit that can be
processed by the LINEIN and LINEOUT functions. A line read by LINEIN or written by LINEOUT does not
process any additional line-terminating characters (such as new-line character or carriage return
character) if they are not part of the string to be read or written. You might think of a line as a record of a
z/OS data set.

The function calling mechanism for the stream I/O functions is identical to the REXX built-in functions.
Thus, they are called in REXX programs as functions, with the result being assigned to a variable, like in
rexx_variable = CHARS().

Naming Streams
TSO/E REXX provides a default input stream and a default output stream, which are used implicitly
whenever a stream I/O function does not name a stream. In z/OS these default streams are associated
with the console:

• For TSO/E background and z/OS:

– ddname SYSTSIN represents the default input stream.
– ddname SYSTSPRT represents the default output stream.

• For TSO/E foreground:

– ddname SYSIN represents the default input stream.

120 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

– ddname SYSOUT represents the default output stream.

If functions are to be performed on other streams, the streams must be named explicitly. The naming
follows the rules and conventions for z/OS data sets as follows:

• A stream name can be the name of a data set, or the name of a data set member, for example:

– A fully qualified data set name, for example bill.january.data.
– A partially qualified data set name, for example january.data, where TSO/E adds a system-defined

prefix to the data set name, as in <user_id>.january.data.
– A fully qualified or partially qualified name of a data set member, for example
bill.year2001.data(january).

Data set names should be enclosed in single quotation marks to avoid a modification by TSO/E, such as
'year2001.data(january)'.

• A stream name can also be a ddname that is known to TSO/E and has the required data sets or
resources allocated to it, for example, SYSPRINT or SYSOUT.

• A stream name can be a ddname that is generated from a data set name through the STREAM function.
Each time the STREAM function opens a stream that is specified as a data set name, it automatically
generates enumerated ddnames of the form &SYSxxxxx. The leading ampersand distinguishes them
from data set names, and xxxxx is an enumeration. These unique ddnames can be used in a REXX
program to explicitly name a stream with the stream I/O functions.

The following example shows how the STREAM function opens the data set member
SYS1.MACLIB(PARM), generates a ddname, assigns this ddname to the variable infile, and uses this
variable in the following CHARIN function call to name the stream. To recognize the generated ddname
you could add SAY infile, which displays something similar to &SYS00004.

/* Open the file. */
infile = STREAM("'SYS1.MACLIB(PARM)'",'C','OPEN')
if infile ¬= "-ERROR" then
 parm = CHARIN(infile,,20)

As an alternative to this example you can also define the following routine:

 .
 .
if left(infile,1)="&" then
 parm = CHARIN(infile,,20)

Note the specification of the data set member name; the inner single quotation marks avoid a
modification by TSO/E, the outer double quotation marks are the REXX convention for literal strings that
include single quotation marks.

A second use of this side effect is more sophisticated. You can open the same data set multiple times
with this method, and the STREAM function will provide a respective number of unique ddnames. Using
these ddnames with the stream I/O functions lets you maintain multiple position pointers in the same
data set. See “Multiple Read Operations” on page 125 for a detailed description.

After streams are given names, the stream I/O functions use these names to specify on which stream an
operation is to be performed.

Transient and Persistent Streams
Streams might have a variety of sources and destinations, but they are either transient or persistent. Both
types have certain characteristics that should be known when using the stream I/O functions.

• Transient streams usually communicate with the human user. The default input stream and the default
output stream, if they represent the keyboard and the display, are typical examples. A communication
path in a network is another example of a transient stream because of its similar behavior.

The distinctive feature of a transient stream is that after a specific character or line was read from or
written to a stream this process cannot be repeated. For example, if your REXX program reads user

Understanding the Stream I/O Concept 121

input from the default input stream, the characters are read as they are typed. You cannot change the
position in a stream and read again the same character or line without the character being typed again.

• Persistent streams are usually files or data sets or equivalent media.

The distinctive feature of a persistent stream is that you can repeatedly change the position in a
persistent stream and read or write from and to different positions, within the boundaries of the stream.

When you use the stream I/O functions you will find that several parameters, such as the start position for
the CHARIN function, are applicable only for persistent streams. In transient streams, read positions and
write positions always default to the next character or line in a stream. In persistent streams, read
positions and write positions can generally be changed within the boundaries of a stream.

Note: The current implementation of the TSO/E REXX stream I/O functions is limited with respect to
randomly changing the positions in persistent streams. See the description of the individual functions for
these capabilities. The LINEIN function might provide the most flexibility.

Opening and Closing Streams
A stream needs to be opened before it can be used, as a means to make the stream known to a REXX
program, and to gain access to this stream for read and write operations.

The default input stream and the default output stream are opened when TSO/E REXX is started. Any
stream I/O function that does not specify a stream by name performs its read operation or write operation
on a default stream.

Implicit versus Explicit Opening of Streams

Streams are opened either implicitly or explicitly. All stream I/O functions open a named stream implicitly
upon their first use within a REXX program. The named stream remains open for further function calls.

Streams can also be opened explicitly with the STREAM function. Explicit opening (as well as closing) of
streams has some advantages. For the sake of a few lines, your program is more understandable, and you
can easily recognize the type of operation (read or write) allowed on a stream.

You must explicitly open a stream to perform multiple read operations on the same data set. See also
“Naming Streams” on page 120 and “Multiple Read Operations” on page 125.

Opening Streams for Read or Write Operations

A stream is opened for either read operations or write operations. It is not recommended to have a stream
concurrently open for both types of operations.

If a stream is opened implicitly, the stream I/O function that is used at first decides the type of operation.
A CHARIN, CHARS, LINEIN, or LINES function call opens a stream for read operations. A CHAROUT or
LINEOUT function call opens a stream for write operations.

If a stream is opened explicitly through the STREAM function, the type of operation is specified as a
parameter of the STREAM function.

After the type of operation is determined for a specific stream, you can use only the corresponding stream
I/O functions, otherwise an error occurs.

To change the type of operation allowed for a stream, you first need to close the stream, then open it
again for a different type of operation.

Note that opening a stream with the stream I/O functions in a TSO/E REXX program implies an allocation
of the corresponding resource. You do not need to allocate a resource with the TSO/E ALLOCATE
command, or by any other means.

Opening Nonexistent Streams

Persistent streams like data sets or files might not exist at the time they are opened. An attempt to open
such a stream for read operations, either implicitly or explicitly, will fail. An attempt to open such a stream
for write operations, either implicitly or explicitly, allocates an empty data set with VB 255, or whatever

122 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

the operating system has defined as default. If you require a different record format, allocate the data set
through the TSO/E ALLOCATE command, ISPF option 3.2, or a DD statement in batch.

If you name a nonexisting member (directly as data set member, or indirectly through a ddname) with a
stream output function, the member is created and receives all subsequent output data.

You can use the STREAM function to query the existence of a stream before it is opened for read
operations or write operations.

Closing Streams

All opened streams are closed implicitly when the REXX program ends. You can also use the STREAM
function to explicitly close all or specific streams. You might want to do so for clarity, to free dynamically
allocated working storage, or to change the type of operations on a stream (from read to write, or vice
versa).

Closing a stream causes all pending write operations on this stream to be executed first. Pending write
operations can be, for example, partially written lines on fixed block data sets.

Stream Formats
The z/OS TSO/E REXX stream I/O functions can work with the following files and data sets:

• QSAM (queued sequential access method) files
• z/OS sequential data sets and single members of partitioned data sets with the following record

formats:

– Fixed block formats (FB), and fixed length with ASA control characters (FBA)
– Variable length (VB), and variable length with ASA control characters (VBA)

As a rule, the stream I/O functions do not write any additional formatting or control characters (other than
what is specified as string with the stream I/O function) to a data set. Vice versa, the stream I/O functions
read whatever is considered data from a data set. The read functions do not hide or remove anything.

Note that the record formats of data sets influence how the output stream functions succeed:

• The LINEOUT function attempts to write a specified string to a data set as a single line.

If the length of the string fits in to the LRECL of the data set, the line is written. For data sets with a fixed
record length the line is padded with blanks up to the logical record length.

If the length of the string exceeds the LRECL of the data set, the line is truncated. The function returns a
1 as an indication that data remains to be written to the stream.

Note that, if the LINEOUT function writes a null string, the stream is closed. Nothing is written to a data
set.

• The CHAROUT function attempts to write a specified string to a data set character by character.

No truncation takes place. Subsequent strings of characters are concatenated to previously written
strings. If a fixed or maximum LRECL is exceeded, the characters wrap around to the next record. Thus,
a large string can cause several records to be written. A partially filled record is retained internally until
it is filled by subsequent CHAROUT (or LINEOUT) function calls, or until the output stream is closed. For
data sets with fixed record length a partial record is padded with blanks.

The LINEIN function and the CHARIN function attempt to read a line or a number of characters from a
persistent stream. For data sets with a fixed record length the string returned includes the padded blanks.

You can combine the use of the CHARIN and LINEIN functions for whatever purpose. This also applies to
the CHAROUT and LINEOUT functions. For example, you can write a few characters with CHAROUT,
followed by a line written with LINEOUT. The basic rule is that the line starts at the position where the

Understanding the Stream I/O Concept 123

character string ended. To use these combinations, understand how the position pointers in stream work,
as described in “Position Pointer Details” on page 124.

Position Pointer Details
Each persistent stream maintains a position pointer to mark the position where a read operation or write
operation takes place. By definition, position 1 marks the first character in a stream, and the positions are
counted in number of characters relative to the beginning of a stream. When a stream is opened, the
position pointer is set to position 1 of the stream.

The general use of position pointers is to ease the sequential reading and writing of streams. By default
the first read operation starts at position 1, reads a number of characters or a line, and automatically
increments the read position to the next unread character or line. A subsequent read operation starts at
the incremented read position (the current read position). Similarly, a first write operation starts at
position 1, writes a number of characters or a line, and automatically increments the write position behind
the last character written. A subsequent write operation starts at the incremented write position (the
current write position). The current position is maintained automatically. Thus, for sequential processing
of a persistent stream, the stream I/O functions do not require the specification of a stream position.

The position pointer in a persistent stream can be manipulated to a certain degree to set it to a specific
position where the next read operation or write operation should take place.

• A CHARIN or CHAROUT start value of 1 sets the current position to the beginning of a stream.
• A LINEIN line value can be set to any line number within a stream, which sets the current position to the

beginning of this line.
• A LINEOUT line value of 1 sets the current position to the beginning of the stream (the beginning of the
first line).

Note that the line parameter specifies a line, not the position of a character. Lines are counted from 1 to n,
where line 1 is the first line in a stream.

Each open stream has its own position pointer. If a stream is opened for read operations, the pointer is
either automatically set by any sequence of CHARIN and LINEIN function calls, or it is explicitly
manipulated as described. Likewise, if a stream is opened for write operations, the pointer is either
automatically set by any sequence of CHAROUT and LINEOUT function calls, or it is explicitly manipulated
as described.

The CHARIN and LINEIN functions manipulate the same read position in a stream; while the CHAROUT
and LINEOUT functions manipulate the same write position in a stream. For example, if two lines of 80
characters each were written to a fixed length data set by LINEOUT, followed by a CHAROUT of five
characters, the current write position is 166 (the position where the next write operation would start). A
subsequent LINEOUT with 80 characters would not succeed because only 75 characters would fit in the
record. The line would be truncated. Conversely, if a line of 50 characters was written by LINEOUT to a
fixed length (80) data set, the line is padded with blanks, and the current write position is 81 (the position
where the next write operation would start). A subsequent CHAROUT or LINEOUT function starts at
position 81.

End-of-Stream Treatment
For transient and persistent input streams use the CHARS function or the LINES function to detect the
end of an input stream. These functions return 0 if no more characters or lines are available for reading, or
they return 1 if at least one character or line is available for reading.

For transient streams, 0 means that the user has terminated the input to the stream by means of the two-
character sequence /*, followed by the Enter key.

For persistent streams, 0 means that the input stream is either empty, or a previous read operation has
already read the last character or line, or repeated read operations have triggered an end-of-file
condition.

124 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

An attempt to read beyond the end of a stream returns a null string and triggers an error message. If this
happens, the stream should be closed and reopened. Do not try to manipulate the position pointer after
the end-of-file condition was triggered.

Error Treatments

Stream I/O Processing Errors

The current implementation of the z/OS TSO/E REXX Stream I/O function package supports only the
SIGNAL ON SYNTAX condition trap. This means that a SYNTAX condition is raised if a language
processing error, a syntax error, or a runtime error occurs during the execution of a stream I/O function
call.

Note that it is not possible to trap NOTREADY conditions. Therefore, before using a stream, query its
existence with the STREAM … QUERY EXISTS function call.

If a syntax condition is raised because of a stream I/O function call, it is recommended to exit the REXX
program. The recovering from such a syntax condition might cause unpredictable results.

Messages

The z/OS TSO/E REXX Stream I/O function package adds its own set of messages to TSO/E REXX. Similar
to TSO/E REXX messages, each message consists of a message identifier and a message text. The
message identifier is EAGSIO.

See Chapter 21, “Stream I/O Messages,” on page 199, if required.

Multiple Read Operations
As already described, each open stream maintains its own position pointer. This is sufficient for most
sequential operations on a persistent stream. However, if you work with a sequential data set and you
must perform multiple read operations on the same stream, you can use the following method. (Multiple
write operations as well as concurrent read and write operations on the same stream are not supported.)

Use the STREAM function to open a stream explicitly for read operations. Name the data set to work with
by its fully qualified or partially qualified data set name. The STREAM function returns a ddname, for
example &SYS00001. You have now a stream open with its own position pointer.

Repeat this step with the same data set name. The next ddname might be &SYS00002. You have now a
second stream open with its own position pointer.

Both streams represent the same data set. Both streams have their position pointers, each set to position
1 at the beginning.

You can now perform various CHARIN and LINEIN function calls on the streams &SYS00001 and
&SYS00002 in any combination, and each stream pointer is maintained independently.

Note: STREAM OPEN returns either a valid ddname preceded by an ampersand (&), or in case of an open
error the string -ERROR. The error string ERROR was prefixed with a minus sign (-) to avoid further
processing if the STREAM return value is not verified for correctness. If the string -ERROR is used together
with CHARIN, CHAROUT, LINEIN, LINEOUT, the data set allocation fails. If you define ERROR, the results
may be unpredictable depending on the system installation.

Understanding the Stream I/O Concept 125

126 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 17. Stream I/O Functions

This chapter lists the stream I/O functions and shows their syntax elements. For each function, the basic
function, the boundary conditions, the parameters, and the results are described. Examples show
possible uses and return values.

CHARIN (Character Input)

Format
CHARIN (

name ,

start , length

)

Purpose

Returns a string of up to length characters read from the character input stream name.

For persistent streams, a read position is maintained for each stream. Any read operation from the stream
will by default start at the current read position. When the read operation is completed, the read position
is increased by the number of characters read.

A start value of 1 can be given, together with a length of 0, to refer to the first character in a persistent
stream. The read position is set to the beginning of the stream, no characters are read, and the null string
is returned.

For transient streams (SYSIN in TSO/E foreground) only: If there are fewer than length characters
available, then the execution of the program will normally stop until sufficient characters become
available.

Parameters
name

Specifies the name of the character input stream. If it is not specified, the default input stream is
assumed.

start
For a persistent stream, specify a value of 1 (and a length of 0) to set the read position to the first
character in the stream. No other value is supported.

For a transient stream do not specify a read position.

length
Specifies the number of characters to be returned. The default is 1.

If length is 0, no characters are read, a null string is returned, and the read position is set to the value
specified by start.

Comments

If a length of 0 is given (to specify an explicit read position, without reading from the stream) you must
also specify start or let start default to 1 (the first character in a stream). This combination is only
applicable to persistent streams, because for transient streams you cannot specify an explicit read
position.

© Copyright IBM Corp. 1991, 2013 127

Results

A string of characters, or a null string.

Examples

CHARIN(myfile,1,3) -> 'MFC' /* First 3 characters are read. */

CHARIN(myfile,1,0) -> '' /* Read position set to start position. */
CHARIN(myfile) -> 'M' /* 1 character read from start position. */
CHARIN(myfile,,2) -> 'FC' /* Next 2 characters read. */

/* Reading from default input stream (here, the keyboard). */
/* The user types 'abcd efg'. */
CHARIN() -> 'a' /* Default is one character. */
CHARIN(,,5) -> 'bcd e' /* Next 5 characters. */

CHAROUT (Character Output)

Format
CHAROUT (

name ,

string , start

)

Purpose

Returns the result (0 or 1) of the write operation after attempting to write string to the character output
stream name. string can be the null string, then no characters are written to the stream and 0 is returned.

For persistent streams, a write position is maintained for each stream. Any write operation to the stream
will by default start at the current write position. When the write operation is completed, the write
position is increased by the number of characters that are written. The initial write position is the
beginning of the stream, so that calls to CHAROUT will append characters to the beginning of the stream.

A start value of 1 can be given, together with string being omitted (or specified as a null string), to refer to
the first character in a persistent stream. The write position is set to the beginning of the stream, no
characters are written to the stream, and 0 is returned.

If neither start nor string is given, the output stream is closed, and 0 is returned.

The execution of the CHAROUT function will normally stop until the output operation is effectively
complete. If it is impossible for a character to be written, CHAROUT returns with a result of 1, and a
corresponding error message is shown.

Parameters
name

Specifies the name of the output stream. If it is not specified, the default output stream is assumed.
string

specifies the string to write.

For transient streams, the length of the string is limited by the capabilities of your input device, usually
80 characters.

For persistent strings, the length is limited to a maximum of 32760 characters.

start
For a persistent stream, specify a value of 1 and omit string to set the write position to the first
character in the stream. No other value is supported.

128 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

For a transient stream do not specify a write position. (If a value is specified, it is ignored.)

Results

Returns 0 after the specified characters are successfully written, or 1 if the specified characters could not
be written.

Examples

CHAROUT(myfile,'Hi') -> 0 /* */
CHAROUT(myfile) -> 0
CHAROUT(,'Hi') -> 0
CHAROUT(V90,'29 BYTES FOR a V90 FILE LRECL') -> 0 /* Variable format */
CHAROUT(V20,'29 BYTES FOR a V20 FILE LRECL') -> 9 /* Variable format */

If a string of 29 characters is written to a data set with RECFM=F and LRECL=20, 20 bytes are written to
record n, and nine bytes are written to record n+1.

If a string of 29 characters is written to a data set with RECFM=V or VB and LRECL=20, four bytes are
reserved for the RDW, 16 bytes are written to record n, and 13 bytes are written to record n+1.

In both cases CHAROUT returns 0, as no truncation takes place.

CHARS (Characters Remaining)

Format
CHARS (

name

)

Purpose

Returns 0, or 1 if characters are remaining in the character input stream name.

name
Specifies the name of the input stream. If it is not specified, the default input stream is assumed.

Results

Returns 1, if one or more characters are available.

Returns 0, if no character is available. The data set or data set member is empty, or a previous read
operation has already read the last character, or a previous read operation has triggered an EOF condition.

Examples

CHARS(myfile) -> 1 /* EOF not reached. */
CHARS(empty) -> 0 /* Empty data set. */
CHARS() -> 1 /* TSO/E console. */

LINEIN (Line Input)

Format
LINEIN (

name ,

line , count

)

Stream I/O Functions 129

Purpose

Returns count (0 or 1) lines read from the character input stream name.

For persistent streams, a read position is maintained for each stream. Any read operation from the stream
will by default start at the current read position.3 When the read operation is completed, the read position
is increased by the number of characters read.

A line number can be given to set the read position to the start of a specified line. This line number must
be positive and within the boundaries of the stream, and it must not be specified for a transient stream. A
value of 1 for line refers to the first line in the stream.

If a count of 0 is given, then the read position is set to the start of the specified line, but no characters are
read, and the null string is returned.

For transient streams (SYSIN in TSO/E foreground) only: If a complete line is not available in the stream,
then the execution of the program will normally stop until the line becomes available.

Parameters
name

Specifies the name of the input stream. If it is not specified, the default input stream is assumed.
line

For a persistent stream, it specifies an explicit read position. The default is 1, or the position set by a
previous read operation.

For a transient stream do not specify a read position.

count
Specifies the number of lines to be returned. Only 0 or 1 is allowed. The default is 1.

If count is 0, no lines are read, a null string is returned, and the read position is set to the value
specified by line.

Comments

If a count of 0 is given (to specify an explicit read position, without reading from the stream), you must
also specify line. This combination is only applicable to persistent streams, because for transient streams
you cannot specify an explicit read position.

Results

A line or a null string.

LINEOUT (Line Output)

Format
LINEOUT (

name ,

string , line

)

3 Under certain circumstances, therefore, a call to LINEIN will return a partial line if the stream has already
been read with the CHARIN function, and part but not all of the line has been read.

130 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Purpose

Returns the result (0 or 1) of the write operation after attempting to write string as a line to the character
output stream name. The result is either 0 (the line was successfully written) or 1 (an error occurred while
writing the line). string can be the null string, then no characters are written to the stream and 0 is
returned.

For persistent streams, a write position is maintained for each stream. Any write operation will by default
start at the current write position.4 When the write operation is completed, the write position is increased
by the length of the line written. The initial write position is the beginning of the stream, so that calls to
LINEOUT will append lines to the beginning of the stream.

Note: The line parameter is provided for compatibility reasons, but does not allow to set the write position
in this implementation.

If neither line nor string is given, the output stream is closed, and 0 is returned.

The execution of the LINEOUT function will normally stop until the output operation is effectively
complete. If it is impossible for a line to be written, LINEOUT returns with a result of 1, and a
corresponding error message is shown.

Parameters
name

Specifies the name of the output stream. If it is not specified, the default output stream is assumed.
string

Specifies the string to write as a line.
line

Specify value of 1, or specify no value. See the previous note.

Results

Returns 0 after the specified line is successfully written, or 1 if the line could not be written or is only
partially written.

Examples

LINEOUT(myfile,'Hi') -> 0 /* Writes the string. */
LINEOUT(myfile,, -> 0 /* No action. */
LINEOUT(myfile) -> 0 /* Output stream is closed. */
LINEOUT(myfile,'String longer than lrecl') -> 1 /* Truncated. */

LINES (Lines Remaining)

Format
LINES (

name

)

Purpose

Returns 0, or 1 if lines are remaining in the character input stream name. If the stream has already been
read with the CHARIN function, this might include an initial partial line.

4 Under certain circumstances, therefore, the characters written by a call to LINEOUT might be added to a
partial line previously written to the stream with the CHAROUT routine. LINEOUT conceptually terminates a
line at the end of each call.

Stream I/O Functions 131

Parameters
name

Specifies the name of the input stream. If it is not specified, the default input stream is assumed.

Results

Returns 1, if one or more lines are available.

Returns 0, if no line is available. The data set or data set member is empty, or a previous read operation
has already read the last line, or a previous read operation has triggered an EOF condition.

Examples

LINES(myfile) -> 0 /* EOF encountered. */
LINES(empty) -> 0 /* Empty data set. */
LINES() -> 1 /* TSO/E console. */

STREAM (Operations)

Format
STREAM (name , operation , stream_command)

Purpose

Returns a string describing the state of the character stream name, or the result of an operation upon the
character stream name.

This function is used to request information on the state of an input or output stream, or to carry out some
particular operation on the stream.

Parameters
name

Specifies the name of the stream. Use a fully or partially qualified data set name (with or without a
member specification), or a ddname known to TSO/E.

Note that the STREAM function returns enumerated ddnames of type &SYSxxxxx when it performs an
OPEN, OPEN READ, or OPEN WRITE command. You can use these ddnames to name a stream in the
stream I/O function calls. For more information see “Naming Streams” on page 120.

operation
Specifies the type of operation. This parameter must be the string Command, or its leading character
C. The first character must be uppercase, and subsequent characters are ignored.

stream_command
Specifies one of the following commands (in capital letters) to be performed on the named stream:
CLOSE

Closes the named stream.
CLOSE ALL

Closes all streams that have been opened so far in this REXX exec, and frees resources that are
bound to opened streams. For this stream command the first parameter name is ignored and can
be omitted, such as in STREAM(,'Command','CLOSE ALL').

It is recommended that you use this stream command in your REXX execs, regardless of external
exec termination exits providing similar functions. See “Usage Considerations” on page 118 for a
detailed description.

132 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

OPEN
Is identical with OPEN READ.

OPEN READ
Opens the named stream for input and read operations. The input stream must already exist.

Note that input functions (CHARIN, CHARS, LINEIN, LINES) implicitly open streams for input at
their first usage. You can explicitly open a stream for clarity reasons. You need to explicitly open a
stream if you want to maintain multiple position pointers. See “Multiple Read Operations” on page
125, if required.

OPEN WRITE
Opens a named stream for output and write operations. If the output stream does not exist, a data
set is allocated with the system defaults. See “Opening Nonexistent Streams ” on page 122, if
required.

Note that output functions (CHAROUT, LINEOUT) implicitly open streams for output at their first
usage. You can explicitly open a stream for clarity reasons.

When the output stream is opened, the position pointer is initially set to position 1. Thus, the
contents are overwritten. See “Position Pointer Details” on page 124, if required).

QUERY EXISTS
Queries the existence of a named stream and returns the fully qualified data set name that is
allocated to this stream.

QUERY REFDATE
Queries the date when the named stream was last referenced. The date is returned in Julian form.

Note: You can also use the STREAM function to query the level of the installed function package. This
might be required if you need to report problems. If required, type
STREAM(,'COMMAND','QUERY SERVICELEVEL'). The function returns the service level of the
installed function package in the form REXXSIO <v><r><m> FIX<nnnn> <yyyy><mm><dd>, for
example REXXSIO 140 FIX0000 20030801.

Results

• CLOSE returns 0. If unsuccessful, RC = 4 is returned, and a message is issued. The named stream might
not exist, or it has already been closed.

• OPEN returns a ddname as a string &SYSxxxxx, with xxxxx being an enumeration. If unsuccessful, the
string ERROR is returned.

• QUERY REFDATE returns the date in Julian form (like 2003/360), or a null string if the stream does not
exist or the date cannot be determined.

Examples

STREAM('MYDATA FILE','C','CLOSE') /* Closes the named data set. */

STREAM(strinp,'C','OPEN') /* Opens an input stream. */

STREAM(strout,'C','OPEN WRITE') /* Opens an output stream. */

STREAM('YOURDATA.FILE','C','QUERY EXISTS')
 /* Request the fully qualified */
 /* data set name. */

STREAM('MY.DATA.FILE','C','QUERY REFDATE')
 /* Requests the date when last */
 /* referenced. */

Stream I/O Functions 133

134 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Part 4. Messages

© Copyright IBM Corp. 1991, 2013 135

136 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 18. Message Format and Return Codes

This chapter introduces you to the message format and lists the return codes displayed in messages.

Message Format
Compilation messages are prefixed by the message identifier. Under z/OS, runtime messages include the
identifier only if the TSO/E command PROFILE MSGID ON has been issued. Under z/VM, runtime
messages include the identifier only if the CP command SET EMSG ON has been issued. The format of the
message identifier is as follows:
ppp

Compiler (FAN) or Library (EAG) product prefix
xxx

REX (runtime), ALT (Alternate Library, refer to the message with the REX identifier), SIO (REXX Stream
I/O), or the Compiler phase identifier. The following list shows the identifiers of the Compiler phases:
COD

Coder
CON

Controller
ENV

Environment interface
FLA

Flattener
FMU

Final make-up
GAO

Global analyzer and optimizer
LIS

Lister
PAR

Parser
POP

Post-optimizer
TOK

Tokenizer
nnnn

Message number

For example, EAGREX3300E is the main message for an error 33. EAGREX3301I is a secondary
message providing more information about error 33.

s
Severity code, it can be:
I

Informational
W

Warning
E

Error

© Copyright IBM Corp. 1991, 2013 137

S
Severe error

T
Terminating error

In runtime messages, the first two digits of the message number are the REXX error number, and the last
two digits are the subcode. The subcode is used in secondary messages to identify the error more
specifically.

Return Codes
The return code indicates the maximum severity of any messages issued, as follows:

Return Code Meaning

0 No messages or only informational messages

4 Warning

8 Error

12 Severe error

16 Terminating error

>16 Indicates that the Compiler has terminated abnormally and that it receives an
internal error denoted by a reason code. Contact your IBM representative.

Note:

1. No compiled code is generated if one of the following occurs:

• NOTRACE is in effect and a severe or terminating error is detected
• TRACE is in effect and a terminating error is detected
• NOCOMPILE is in effect
• Warnings or errors have been issued and the appropriate options, such as NOCOMPILE(W) or

NOCOMPILE(E), apply.
2. You can get unpredictable results if one of the following occurs:

• NOTRACE is in effect and an error is detected
• TRACE is in effect and an error or severe error is detected.

3. If the Compiler issues warning or informational messages, the program might still run correctly.
However, you should examine the source code to assess the likely effects. For example, if the Compiler
detects more than one definition of the same label, check whether some occurrences are misspellings.

4. It is good programming practice to correct all compilation errors.
5. A program that can be interpreted successfully may give compilation errors. There could be errors in

parts of the program that are rarely, or never, executed. Also, the program may contain language
elements that are either not supported by the Compiler or that must be coded differently. Refer to
Chapter 8, “Language Differences between the Compiler and the Interpreters,” on page 81 for details.

138 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 19. Compilation Messages

FANCON0050T Source file cannot be opened

Explanation

The source file could not be opened. You might have
mistyped the file name, file type, or file mode. This
problem can also occur when you are attempting to
compile a program from a minidisk for which you have
read-only access, while someone with read/write
access to that minidisk has altered the program so that
it no longer exists in the same place on the minidisk.
Another possibility is that a lowercase file identifier
has been passed to the REXXCOMP command.

User response

Ensure that you specify the source file correctly. If
necessary, reaccess the minidisk on which the
program resides.

FANFMU0051T Source file cannot be read

Explanation

The source file could not be read from the minidisk.
This problem can occur when you are compiling a
program from a minidisk for which you have read-only
access, while someone with read/write access to that
minidisk has altered the program so that it no longer
exists in the same place on the minidisk.

User response

Reaccess the minidisk on which the program resides.

FANCON0052T Compiler listing cannot be printed

Explanation

An error occurred when creating the compiler listing.
The most likely cause is insufficient virtual storage.

User response

Obtain more free storage by releasing a minidisk or
SFS directory (to recover the space used for the file
directory) or by deleting a nucleus extension.
Alternatively, define a larger virtual storage size for the
virtual machine and re-IPL CMS.

FANTOK0053T Required comment not found in
line 1

Explanation

The first line of the program does not begin with a
comment (delimited by /* and */) within the specified
margins setting.

User response

Start the program with a comment.

FANxxx0054T Virtual storage exhausted

Explanation

The Compiler was unable to get the space needed for
its work areas.

User response

Under z/OS, increase your region size.

Under z/VM, obtain more free storage by releasing a
minidisk or SFS directory (to recover the space used
for the file directory) or by deleting a nucleus
extension. Alternatively, define a larger virtual storage
size for the virtual machine and re-IPL CMS.

FANxxx0055T Compiler error: Reason code nnn

Explanation

An internal verification check in the Compiler failed.

User response

Report any occurrence of this message to your IBM
representative. See the IBM Compiler and Library for
REXX on IBM Z: Diagnosis Guide for more information.

FANPAR0056I No comment found at start of
program

Explanation

The first line of the program does not begin with a
comment within the margins setting.

User response

Start the program with a comment.

FANCON0060T Limit of 99999 source lines
exceeded

Explanation

Your program contains more source lines than the limit
of 99999. The limit includes the lines in the source

© Copyright IBM Corp. 1991, 2013 139

files, the lines in the included files, and the lines
resulting from the splitting of source lines that contain
%INCLUDE statements.

User response

Reduce the size of the program or split it into several
smaller programs.

FANPAR0071W Duplicate label: Only first
occurrence on line nn used

Explanation

The Compiler found more than one occurrence of the
same label. After a CALL or SIGNAL instruction with
this label as a target, control is always passed to the
first occurrence of the label - namely that whose line
number is shown in the message.

User response

Check whether one of the occurrences of the label is a
misspelling.

FANGAO0072S Label not found

Explanation

The Compiler could not find the label specified by a
SIGNAL instruction or the label matching an enabled
condition.

User response

Check if the label is spelled correctly, or if you forgot to
include it.

FANPAR0073S PROCEDURE not preceded by label

Explanation

The Compiler found a PROCEDURE instruction that is
not immediately preceded by a label. The PROCEDURE
instruction, if used, must be the first instruction within
a routine.

User response

Move the PROCEDURE instruction to the beginning of
the routine.

FANPAR0074W Label precedes THEN

Explanation

The Compiler found one or more labels before a THEN
clause. This causes a runtime error if you use the label
to transfer control to the THEN clause.

User response

If the label is for tracing, continue as planned.
Otherwise, remove the label.

FANPAR0075W Label precedes ELSE

Explanation

The Compiler found one or more labels before an ELSE
clause. This causes a runtime error if you use the label
to transfer control to the ELSE clause.

User response

If the label is for tracing, continue as planned.
Otherwise, remove the label.

FANPAR0076W Label precedes WHEN

Explanation

The Compiler found one or more labels before a WHEN
clause. This causes a runtime error if you use the label
to transfer control to the WHEN clause.

User response

If the label is for tracing, continue as planned.
Otherwise, remove the label.

FANPAR0077W Label precedes OTHERWISE

Explanation

The Compiler found one or more labels before an
OTHERWISE clause. This causes a runtime error if you
use the label to transfer control to the OTHERWISE
clause.

User response

If the label is for tracing, continue as planned.
Otherwise, remove the label.

FANPAR0078W Label precedes END

Explanation

The Compiler found one or more labels before an END
clause. This causes a runtime error if you use the label
to transfer control.

User response

If the label is for tracing, continue as planned.
Otherwise, remove the label. If you used a label
because you wanted to stop the current iteration of a
DO loop, use the ITERATE instruction instead.

FANPAR0079S ":" not preceded by label name

140 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

The Compiler found a colon that is not used as a label
terminator where it expects the beginning of a clause.
You might have used a colon in a literal string without
enclosing the string in quotes.

User response

Check your code and correct it.

FANPAR0080S More than 16000 arguments/
operands/templates

Explanation

A function invocation or a CALL has more than 16000
arguments, or an EXPOSE has more than 16000
operands, or a PARSE has more than 16000
templates.

User response

Reduce the number of arguments/operands/
templates.

FANPAR0081W Label before ITERATE

Explanation

The Compiler found one or more labels before an
ITERATE instruction. This causes a runtime error if you
use the label to transfer control to the ITERATE
instruction.

User response

If the label is for tracing, continue as planned.
Otherwise, remove the label.

FANPAR0082W Label before LEAVE

Explanation

The Compiler found one or more labels before a LEAVE
instruction. This causes a runtime error if you use the
label to transfer control to the LEAVE instruction.

User response

If the label is for tracing, continue as planned.
Otherwise, remove the label.

FANGAO0083S Label would match (line nn) if
uppercased

Explanation

The label referred to in a SIGNAL, SIGNAL VALUE, or
SIGNAL ON clause is not defined. The label contains
lowercase characters and would match the label

defined in the indicated line if it were changed to
uppercase.

User response

Change the program such that the label reference is in
uppercase.

FANGAO0084W Label corresponds to a BIF name

Explanation

The label is equal to the name of a built-in function.

User response

No response is required. However, always put a
function name in quotes if it refers to a built-in
function and specify it without quotes if it refers to an
internal label.

FANPAR0090S Maximum nesting level of 999
exceeded

Explanation

You have exceeded the limit of 999 levels of nesting of
control structures such as DO-END and IF-THEN-ELSE
and their components such as IF clauses and ELSE
clauses.

User response

Check your code and correct it.

FANPAR0150S Mismatched DO control variable

Explanation

The variable specified on the END clause does not
match the control variable of the related DO clause.
The most common cause of this message is incorrect
nesting of loops.

User response

See the Do column of the source listing, which shows
the nesting level of each instruction, to find the
incorrectly matched DO instruction.

FANPAR0151S Incomplete DO instruction: END
not found

Explanation

The Compiler has reached the end of the source file
without finding a matching END for an earlier DO.

Compilation Messages 141

User response

See the Do column of the source listing, which shows
the nesting level of each instruction, to find the
incorrectly matched DO instruction.

FANPAR0152S FOREVER not followed by WHILE/
UNTIL/";"

Explanation

The Compiler found incorrect data after DO FOREVER.
The only valid subkeywords after DO FOREVER are
WHILE and UNTIL.

User response

Check your code and correct it.

FANPAR0153S TO/BY/FOR found in a DO after DO
FOREVER

Explanation

A BY, TO, or FOR subkeyword has been found after
FOREVER. The only valid subkeywords after DO
FOREVER are WHILE and UNTIL.

User response

Check your code and correct it.

FANPAR0154S TO occurs more than once in a DO

Explanation

A DO clause contains more than one TO phrase.

User response

Check your code and correct it.

FANPAR0155S BY occurs more than once in a DO

Explanation

A DO clause contains more than one BY phrase.

User response

Check your code and correct it.

FANPAR0156S FOR occurs more than once in a DO

Explanation

A DO clause contains more than one FOR phrase.

User response

Check your code and correct it.

FANPAR0157S TO not followed by expression

Explanation

The Compiler expects an expression after the TO
subkeyword in a DO clause.

User response

Check your code and correct it.

FANPAR0158S BY not followed by expression

Explanation

The Compiler expects an expression after the BY
subkeyword in a DO clause.

User response

Check your code and correct it.

FANPAR0159S FOR not followed by expression

Explanation

The Compiler expects an expression after the FOR
subkeyword in a DO clause.

User response

Check your code and correct it.

FANPAR0160S WHILE not followed by expression

Explanation

The Compiler expects an expression after the WHILE
subkeyword in a DO clause.

User response

Check your code and correct it.

FANPAR0161S UNTIL not followed by expression

Explanation

The Compiler expects an expression after the UNTIL
subkeyword in a DO clause.

User response

Check your code and correct it.

FANPAR0162S WHILE or UNTIL not allowed after
WHILE phrase

Explanation

The compiler found the subkeyword WHILE or UNTIL
in the WHILE phrase of a DO clause.

142 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

If WHILE or UNTIL is the name of a variable, change
the name or use the VALUE built-in function (for
example, write VALUE('WHILE') instead of WHILE). If it
is meant as a constant string, enclose it in quotes. If
you intended to use both an UNTIL phrase and a
WHILE phrase, you must modify the program logic to
eliminate one of the phrases.

FANPAR0163S WHILE or UNTIL not allowed after
UNTIL phrase

Explanation

The Compiler found the subkeyword WHILE or UNTIL
in the UNTIL phrase of a DO clause.

User response

If WHILE or UNTIL is the name of a variable, change
the name or use the VALUE built-in function (for
example, write VALUE('WHILE') instead of WHILE). If it
is meant as a constant string, enclose it in quotes. If
you intended to use both an UNTIL phrase and a
WHILE phrase, you must modify the program logic to
eliminate one of the phrases.

FANPAR0164S Unexpected END

Explanation

The Compiler has found more END clauses in your
program than DOs or SELECTs, or the ENDs were
placed so that they did not match the DOs or SELECTs.

User response

Use the Do and Sel columns of the source listing,
which show the nesting level of each instruction, to
check the program’s structure.

FANPAR0180S Initial expression missing in
controlled DO loop

Explanation

The Compiler expects an expression to be assigned to
the control variable after the assignment operator (=)
in a DO.

User response

Check your code and correct it.

FANPAR0181S Variable required to the left of "="

Explanation

The symbol to the left of the "=" in an assignment
begins with a period or digit, hence does not represent
a variable.

User response

If the clause was intended as a command, enclose the
expression in parentheses.

FANPAR0182S Assignment operator must not be
followed by another "="

Explanation

The Compiler found a second "=" immediately after
the first one of an assignment.

User response

Delete one "=" to form a correct assignment, or, if the
clause was intended as a command, enclose the
expression in parentheses.

FANPAR0190S THEN expected

Explanation

The Compiler expects a THEN clause after an IF or
WHEN clause.

User response

Insert a THEN clause between the IF or WHEN clause
and the following clause.

FANPAR0191S IF not followed by expression

Explanation

The Compiler expects an expression in an IF clause.

User response

Check your code and correct it.

FANPAR0192S Unexpected THEN

Explanation

The Compiler has found a THEN that does not match
an IF clause or the WHEN clause of a SELECT
instruction.

User response

Check your code and correct it.

FANPAR0193S Unexpected ELSE

Compilation Messages 143

Explanation

The Compiler has found an ELSE that does not match a
corresponding IF clause. This situation can be caused
by a DO-END in the THEN part of a complex IF-THEN-
END construct. For example:

WRONG RIGHT

If a=b Then Do
 Say 'EQUALS'
 Exit
Else
 Say 'NOT EQUALS'

If a=b Then Do
 Say 'EQUALS'
 Exit
 End
Else
 Say 'NOT EQUALS'

User response

Check your code and correct it.

FANPAR0194S Instruction expected after ELSE

Explanation

The next clause after ELSE (not counting label clauses)
must be an instruction or the start of an instruction.
The Compiler found instead a non-instruction clause
(such as END) or the end of the source program.

User response

Remove the ELSE or insert an instruction. As an
explicit indication that no action is needed in the ELSE
case, you can use a NOP instruction.

FANPAR0250I No OTHERWISE found in SELECT
instruction ending in line nn

Explanation

The Compiler found a SELECT instruction that does not
contain an OTHERWISE phrase. This causes a runtime
error if all WHEN expressions are found to be false.

User response

If it is possible that none of the WHEN expressions will
be true, insert an OTHERWISE that handles this
condition.

FANPAR0253S SELECT not followed by ";" (WHEN
follows instead)

Explanation

The Compiler expects a semicolon or implied
semicolon between a SELECT and the first WHEN.

User response

Insert a semicolon or begin a new line between the
SELECT and WHEN.

FANPAR0254S Incomplete SELECT instruction:
END not found

Explanation

The Compiler has reached the end of the source file
and has found a SELECT without a matching END.

User response

See the Sel column of the source listing, which shows
the nesting level of each instruction.

FANPAR0255S WHEN expected

Explanation

The Compiler expects a WHEN after a SELECT.

User response

Insert one or more WHEN clauses after the SELECT.

FANPAR0256S WHEN/OTHERWISE/END
expected

Explanation

The Compiler expects a series of WHENs, an
OTHERWISE, and a terminating END within a SELECT
instruction. This message is issued when any other
instruction is found. The error can be caused by
forgetting to enclose the list of instructions following a
THEN within a DO and END. For example:

WRONG RIGHT

Select
When a=b Then
Say 'A equals B'
Exit
Otherwise Nop
End

Select
When a=b Then Do
Say 'A equals B'
Exit
End
Otherwise Nop
End

User response

Check your code and correct it.

FANPAR0257S WHEN not followed by expression

Explanation

The Compiler expects an expression after the WHEN in
a SELECT instruction.

User response

Check your code and correct it.

FANPAR0258S Unexpected WHEN

144 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

The Compiler has found a WHEN clause that does not
match a SELECT clause. You might have accidentally
enclosed the WHEN in a DO-END construct by
forgetting the matching END.

User response

Check whether the END is missing.

FANPAR0259S Unexpected OTHERWISE

Explanation

The Compiler has found an OTHERWISE clause that
does not match a SELECT clause. You might have
accidentally enclosed the OTHERWISE in a DO-END
construct by forgetting the matching END.

User response

Check whether the END is missing.

FANPAR0260S Instruction expected after THEN

Explanation

The next clause after THEN (not counting label
clauses) must be an instruction or the start of an
instruction. The Compiler found instead a non-
instruction clause (such as END) or the end of the
source program.

User response

Remove the THEN or insert an instruction. As an
explicit indication that no action is needed in the THEN
case, you can use a NOP instruction.

FANPAR0270S Unexpected data in template

Explanation

The Compiler found unexpected data, for example, a
symbol that is neither a number nor a variable, within a
parsing template.

User response

Check your code and correct it.

FANPAR0271S "+" not followed by a whole
number or "("

Explanation

The Compiler found an incorrect positional pattern in a
parsing template: a plus sign must be followed by a
whole number or by the name of a variable in
parentheses.

User response

Check your code and correct it.

FANPAR0272S "-" not followed by a whole
number or "("

Explanation

The Compiler found an incorrect positional pattern in a
parsing template: a minus sign must be followed by a
whole number or by the name of a variable in
parentheses.

User response

Check your code and correct it.

FANPAR0273S "(" not followed by a variable

Explanation

The Compiler found an incomplete pattern in a parsing
template: an open parenthesis must be followed by
the name of a variable and a close parenthesis.

User response

Check your code and correct it.

FANPAR0274S PARSE not followed by a valid
subkeyword

Explanation

The Compiler found a PARSE keyword that is not
followed by the UPPER subkeyword or by one of the
subkeywords ARG, EXTERNAL, LINEIN, NUMERIC,
PULL, SOURCE, VALUE, VAR, or VERSION.

User response

Check your code and correct it.

FANPAR0275S PARSE UPPER not followed by a
valid subkeyword

Explanation

The Compiler found a PARSE UPPER that is not
followed by one of the subkeywords ARG, EXTERNAL,
LINEIN, NUMERIC, PULL, SOURCE, VALUE, VAR, or
VERSION.

User response

Check your code and correct it.

FANPAR0276S PARSE VAR not followed by a
variable

Compilation Messages 145

Explanation

The Compiler expects the name of a variable at this
position in a PARSE VAR instruction.

User response

Check your code and correct it.

FANPAR0277S Incomplete PARSE VALUE: WITH
not found

Explanation

The Compiler found a PARSE VALUE instruction that
does not contain a WITH subkeyword.

User response

Check your code and correct it.

FANPAR0278S Variable expected

Explanation

The Compiler found something other than the name of
a variable in the operand list of an UPPER instruction.
The variables can be simple or compound, but not
stems.

User response

Check your code and correct it.

FANPAR0279S Variable pattern not terminated by
")"

Explanation

The Compiler found an open parenthesis in a parsing
template but no corresponding close parenthesis.
Each open parenthesis must be followed by the name
of a variable and a close parenthesis.

User response

Ensure that you close all parentheses.

FANPAR0280S Unexpected ")" in template

Explanation

In a parsing template, the Compiler found a close
parenthesis which does not match an open
parenthesis.

User response

Check your code and correct it.

FANPAR0281S Unexpected ":" in template

Explanation

In a parsing template, a colon was found. Only variable
names, patterns, and periods are accepted.

User response

Check your code and correct it.

FANPAR0282S Unexpected operator in template

Explanation

An operator, such as ¬ or ││ was found. Only variable
names, patterns, and periods are accepted.

User response

Check your code and correct it.

FANPAR0283S DROP list must not be empty

Explanation

DROP must be followed by at least one variable name
or at least one variable name in parentheses.

User response

Check your code and correct it.

FANPAR0284S UPPER list must not be empty

Explanation

The UPPER instruction needs at least one variable as
an operand. The variable must be simple or
compound. No stem variables are accepted.

User response

Check your code and correct it.

FANPAR0285W Variable name WITH found on
PARSE VAR

Explanation

A WITH was found after the variable operand of a
PARSE VAR. The WITH is assumed to be a variable.

User response

None if you intended WITH to be a variable. Otherwise,
remove it.

FANPAR0290S Expression expected after
OPTIONS

Explanation

The keyword OPTIONS must be followed by an
expression.

146 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

If you want to write an OPTIONS instruction, you must
add an expression. If you want to use OPTIONS as a
command, do one of the following:

• Enclose OPTIONS in parentheses or quotes.
• Prefix OPTIONS with a null string.
• Choose another name.

FANPAR0350S CALL not followed by routine
name/ON/OFF

Explanation

The Compiler expects the name of a routine, or ON
with a condition name, or OFF with a condition name
at this position in a CALL instruction.

User response

Check your code and correct it.

FANPAR0352S CALL ON/OFF not followed by
ERROR/FAILURE/HALT/NOTREADY

Explanation

The Compiler expects one of the conditions ERROR,
FAILURE, HALT, or NOTREADY at this position in a
CALL ON or CALL OFF instruction.

User response

Check your code and correct it.

FANPAR0353S NAME not followed by routine
name

Explanation

The Compiler expects the name of a routine at this
position in a CALL ON instruction. This error can occur
if the routine name is in quotes.

User response

Check your code and correct it.

FANPAR0354S ";" or subkeyword NAME expected

Explanation

The Compiler found incorrect data at the end of a CALL
ON instruction. The only subkeyword accepted after
the condition name is NAME.

User response

Check your code and correct it.

FANPAR0371S No stem permitted in UPPER
instruction

Explanation

The Compiler found a stem in an UPPER instruction. A
stem cannot be converted to uppercase.

User response

Issue an UPPER instruction for each variable referred
to by the stem.

FANPAR0381S INTERPRET not followed by
expression

Explanation

The Compiler found an INTERPRET instruction that
does not contain an expression to be interpreted.

User response

Check your code and correct it.

FANPAR0390S LEAVE not valid outside repetitive
DO loop

Explanation

The Compiler found a LEAVE instruction outside a
repetitive DO loop.

User response

Check your code and correct it.

FANPAR0391S ITERATE not valid outside
repetitive DO loop

Explanation

The Compiler found an ITERATE instruction outside a
repetitive DO loop.

User response

Check your code and correct it.

FANPAR0392S Variable does not match control
variable of an active DO loop

Explanation

The symbol specified on a LEAVE or ITERATE
instruction does not match the control variable of a
currently active DO loop. You might have mistyped the
name.

User response

Check your code and correct it.

Compilation Messages 147

FANPAR0393S Name of DO control variable
expected

Explanation

The Compiler expects the name of the control variable
of a currently active DO loop after a LEAVE or ITERATE
instruction. Some other characters were found.

User response

Check your code and correct it.

FANPAR0394S ";" expected: corresponding DO
not controlled by a variable

Explanation

An END clause specifies a symbol, but the related DO
instruction does not have a control variable. The most
common cause of this message is incorrect nesting of
DO groups.

User response

Check your code and correct it.

FANPAR0450S NUMERIC not followed by DIGITS/
FORM/FUZZ

Explanation

The Compiler expects one of the subkeywords DIGITS,
FORM, or FUZZ after the keyword NUMERIC.

User response

Check your code and correct it.

FANPAR0451S NUMERIC FORM not followed by
expression/valid subkeyword/";"

Explanation

The Compiler found incorrect data at the end of a
NUMERIC FORM. The only data recognized after FORM
is an expression or one of the subkeywords VALUE,
SCIENTIFIC, or ENGINEERING.

User response

Check your code and correct it.

FANPAR0452S NUMERIC FORM VALUE not
followed by expression

Explanation

The Compiler expects an expression after the
subkeyword VALUE.

User response

Supply the missing expression or, if you are using
VALUE as the name of a variable, enclose it in
parentheses or write VALUE VALUE.

FANPAR0460S PROCEDURE not followed by
EXPOSE or ";"

Explanation

The Compiler found incorrect data in a PROCEDURE
instruction. The only subkeyword recognized on a
PROCEDURE instruction is EXPOSE.

User response

Check your code and correct it.

FANPAR0465W PARSE LINEIN not supported
under z/OS

Explanation

PARSE LINEIN is supported only under VM/ESA
Release 2.1 and subsequent releases. The SYNTAX
condition is raised if the program runs under systems
other than VM/ESA Release 2.1 or subsequent
releases.

User response

Check your code and correct it.

Note: If you are compiling a REXX program with the
z/OS compiler for execution under VM/ESA Release
2.1 and subsequent releases, you should ignore this
message.

FANPAR0466W NOTREADY condition not
supported under z/OS

Explanation

The NOTREADY condition is supported only under
VM/ESA Release 2.1 and subsequent releases. The
SYNTAX condition is raised if the program runs under
systems other than VM/ESA Release 2.1 or
subsequent releases.

User response

Check your code and correct it.

Note: If you are compiling a REXX program with the
z/OS compiler for execution under VM/ESA Release
2.1 and subsequent releases, you should ignore this
message.

FANPAR0469S SIGNAL VALUE not followed by
expression

148 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

The Compiler expects an expression after the
subkeyword VALUE.

User response

Supply the missing expression or, if you are using
VALUE as the name of a variable, enclose it in
parentheses or write VALUE VALUE.

FANPAR0470S SIGNAL not followed by label
name or VALUE/ON/OFF

Explanation

After the keyword SIGNAL the compiler expects one of
the subkeywords ON, OFF or VALUE, or a symbol,
literal string or expression for a label. The end of the
clause (or source program) was found instead.

User response

If you intended to use SIGNAL as a command, enclose
it in quotes or parentheses. Otherwise complete the
instruction or delete the clause.

FANPAR0471S SIGNAL ON/OFF not followed by
condition name

Explanation

The Compiler expects the name of a condition (ERROR,
FAILURE, HALT, NOTREADY, NOVALUE, or SYNTAX)
after the subkeyword ON or OFF.

User response

Supply the missing condition or, if you are using ON or
OFF as a label, write it in uppercase and enclose it in
quotes.

FANPAR0472S NAME not followed by label name

Explanation

The subkeyword NAME in a SIGNAL ON instruction
must be followed by a symbol. It is not permitted at
this point to enclose the label name in quotes or to
obtain it by evaluating an expression.

User response

Check your code and correct it.

FANPAR0490S ADDRESS VALUE not followed by
expression

Explanation

The Compiler expects an expression after the
subkeyword VALUE.

User response

Check your code and correct it.

FANPAR0550W Unsupported TRACE options will
default to OFF

Explanation

REXX programs that have been compiled with
Compiler option NOTRACE support no TRACE options
other than OFF. The Compiler has found a TRACE
instruction or a use of the TRACE built-in function
which might require a different option.

User response

Compile your program with Compiler option TRACE or
use an interpreter if you wish to trace.

FANPAR0560S Left operand missing

Explanation

The Compiler found an expression that does not have a
term before the operator. Only the following can be
used as prefix operators:

+ - ¬ \

User response

Check your code and correct it.

FANPAR0561S Right operand missing

Explanation

The Compiler found an expression that does not have a
term after the operator.

User response

Check your code and correct it.

FANPAR0562S Prefix operator not followed by
operand

Explanation

The Compiler found an expression that does not have a
term after a prefix operator.

User response

Check your code and correct it.

FANPAR0564S "(" not followed by an expression
or subexpression

Compilation Messages 149

Explanation

The Compiler expects an expression or subexpression
after an open parenthesis, unless it is the open
parenthesis of a function invocation.

User response

Check your code and correct it.

FANPAR0565S Unmatched "(" in expression

Explanation

The Compiler found an unmatched open parenthesis in
an expression. This message is also displayed if a
single parenthesis is included in a command without
being enclosed in quotes. For example, the instruction:

COPY A B C A B D (REP

should be written as:

COPY A B C A B D '('REP

User response

Check your code and correct it.

FANPAR0566S Unexpected "," in expression

Explanation

The Compiler found a comma outside a routine
invocation. This message is also displayed if a comma
is included in a character expression without being
enclosed in quotes. For example, the instruction:

Say Enter A, B, or C

should be written as:

Say 'Enter A, B, or C'

User response

Check your code and correct it.

FANPAR0567S Unexpected ")" in expression

Explanation

The Compiler found too many close parentheses in an
expression.

User response

Check your code and correct it.

FANPAR0568S Unexpected ":" in expression

Explanation

The Compiler found a colon in an expression. This
message is also displayed if a colon is included in a
character expression without being enclosed in
quotes. For example, the instruction:

Say Enter address: city and state

should be written as:

Say 'Enter address: city and state'

User response

Check your code and correct it.

FANPAR0569S Invalid operator

Explanation

The Compiler found an incorrect sequence of operator
tokens in an expression. There might be two adjacent
operators with no data in-between, or the characters
might be in the wrong order, or special characters
might be included in a character expression without
being enclosed in quotes. For example, the instruction:

LISTFILE * * *

should be written as:

'LISTFILE * * *'

or, if LISTFILE is a variable, as:

LISTFILE '* * *'

User response

Check your code and correct it.

FANPAR0570S Invalid use of NOT operator

Explanation

The Compiler found a logical NOT operator (¬ or \),
which is not part of a longer (comparison) operator,
after a term in an expression. You might have meant to
write a comparison operator but omitted the =, < or >
characters.

User response

If you intend to concatenate the result of a NOT
operation to the result of the preceding term, write an
explicit concatenation operator (||) before the NOT
operator. If you intend a comparison, append one or
two =, < or > characters to the NOT operator.

FANPAR0580S Variable name longer than 250
characters

150 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

A symbol used as a variable name is longer than the
limit of 250 characters.

User response

Reduce the length of the variable name.

FANPAR0581S Invalid hexadecimal constant

Explanation

Hexadecimal constants cannot have leading or trailing
blanks and can have embedded blanks only at byte
boundaries.

The following are all valid hexadecimal constants:

'13'x
'A3C2 1c34'x
'1de8'x

User response

If you want to have a literal (quoted) string followed by
the symbol X, but you do not want it to be interpreted
as a hexadecimal constant, you must insert a
concatenation operator (||) between the string and the
symbol X. Otherwise, ensure that no digits are
mistyped and remove any blanks that do not
correspond to byte boundaries.

FANPAR0582S Resulting string longer than 250
characters

Explanation

The Compiler tried to convert a binary string, a
hexadecimal string, or a literal string into internal
format. The length of the resulting string exceeds the
limit of 250 characters. Binary strings are limited to
2000 binary digits, hexadecimal strings are limited to
500 hexadecimal digits, and literal strings are limited
to 250 characters.

This error can be caused by a missing ending quote or
by a single quote in a string. For example, the string
'don't' must be written as 'don''t' or "don't".

User response

To specify a string longer than 250 characters,
concatenate two or more smaller strings, each with
fewer than 250 characters.

FANGAO0583S Environment name longer than 8
characters

Explanation

The Compiler found an environment name longer than
the limit of 8 characters specified on an ADDRESS
instruction.

User response

Correct the environment name.

FANPAR0584S Name longer than 250 characters

Explanation

A symbol used as a label is longer than the limit of 250
characters.

User response

Reduce the length of the label.

FANPAR0590S Invalid binary constant

Explanation

The Compiler has found a literal string that is
immediately followed by a symbol consisting only of
the letter B, and tries to interpret it as a binary
constant. No leading or trailing blanks are allowed in
the string. Blanks can occur only at four-digit
boundaries.

User response

If you want to have a literal (quoted) string followed by
the symbol B, but you do not want it to be interpreted
as a binary constant, you must insert a concatenation
operator (||) between the string and the symbol B.
Otherwise, ensure that no digits are mistyped and
remove any blanks that do not correspond to four-digit
boundaries.

FANPAR0591S EXPOSE list must not be empty

Explanation

A PROCEDURE instruction contains the subkeyword
EXPOSE but no further data. EXPOSE must be followed
by at least one variable name or one variable name in
parentheses.

User response

If you wish to expose no variables, omit the
subkeyword EXPOSE.

FANPAR0592S "=" not followed by a whole
number or "("

Compilation Messages 151

Explanation

The Compiler found an incorrect positional pattern in a
parsing template: an equal sign must be followed by a
whole number or by the name of a variable in
parentheses.

User response

Check your code and correct it.

FANPAR0593S Unmatched "(" in DROP list

Explanation

After each open parenthesis in a DROP instruction
there must be the name of a variable and a close
parenthesis.

User response

Check your code and correct it.

FANPAR0594S Unmatched "(" in EXPOSE list

Explanation

After each open parenthesis in the EXPOSE list of a
PROCEDURE instruction there must be the name of a
variable and a close parenthesis.

User response

Check your code and correct it.

FANPAR0595S Variable expected after "(" in
DROP list

Explanation

After each open parenthesis in a DROP instruction
there must be the name of a variable and a close
parenthesis.

User response

Check your code and correct it.

FANPAR0596S Variable expected after "(" in
EXPOSE list

Explanation

After each open parenthesis in the EXPOSE list of a
PROCEDURE instruction there must be the name of a
variable and a close parenthesis.

User response

Check your code and correct it.

FANPAR0597S Variable or "(" expected in DROP
list

Explanation

Each entry in the list following DROP must be the
name of a variable optionally enclosed in parentheses.
The Compiler has found some other token, such as a
symbol that does not begin with a letter.

User response

Check your code and correct it.

FANPAR0598S Variable or "(" expected in
EXPOSE list

Explanation

Each entry in the EXPOSE list of a PROCEDURE
instruction must be the name of a variable optionally
enclosed in parentheses. The Compiler has found
some other token, such as a symbol that does not
begin with a letter.

User response

Check your code and correct it.

FANPAR0599S TRACE VALUE not followed by
expression

Explanation

The Compiler expects an expression after the
subkeyword VALUE.

User response

Supply the missing expression or, if you are using
VALUE as the name of a variable, enclose it in
parentheses or write VALUE VALUE.

FANGAO0600W Third argument of VALUE built-in
function not supported

Explanation

VALUE built-in functions with three parameters are
only supported under z/VM. This message is displayed,
for example, if you have coded the VALUE built-in
function with the selector argument.

User response

Check your code and correct it.

Note: If you are compiling a REXX program with the
z/OS Compiler for execution under z/VM, you should
ignore this message.

FANPAR0601W Invalid DBCS data in comment

152 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

The first instruction of the program is OPTIONS
'ETMODE', and the Compiler has detected an invalid
DBCS string in a comment. The number of bytes
between shift-out and shift-in is odd.

User response

Correct the comment.

FANPAR0648S Invalid data after SELECT

Explanation

The Compiler expects a semicolon or implied
semicolon after a SELECT.

User response

Remove the incorrect data after the SELECT, and insert
a semicolon or begin a new line when appropriate.

FANPAR0650S Invalid data at end of clause

Explanation

The Compiler has found extra tokens after those
allowed in the clause. You might have omitted a
semicolon or not have started a new line after the
offending clause.

User response

Insert a semicolon if necessary, or put the next clause
into a new line.

FANPAR0651S Clause not completed before end
of program

Explanation

The Compiler reached the end of the source program
without finding the end of the last clause. This often
occurs because of some other error, such as an
unmatched start of comment or an invalid DBCS string.

User response

Terminate all quoted strings, comments and DBCS
strings correctly. Do not use a continuation comma on
the last line of the program.

FANPAR0652S Unmatched quote

Explanation

The Compiler reached the end of the source program
without finding the close quote for a literal string.

User response

Add the close quote.

FANPAR0653S Unmatched shift-out character

Explanation

The Compiler found a character string or a comment
that has unmatched shift-out/shift-in pairs (that is, a
shift-out character without a shift-in character) with
OPTIONS 'ETMODE' in effect.

User response

Supply the appropriate shift-in character.

FANPAR0654S Unmatched "/*"

Explanation

The Compiler reached the end of the source program
without finding the ending */ for a comment.

User response

Add the missing */ characters.

FANPAR0655S Invalid character in program

Explanation

The Compiler found an unexpected character outside a
literal (quoted) string or comment that is not a blank or
one of the following:

• A-Z a-z 0-9 (Alphanumerics)
• @ # $ ¢ . ? ! _ (Name Characters)
• & * () - + = \ ¬ ' " ; : < , > / | %
(Special Characters)

• Any DBCS character when OPTIONS
'ETMODE' is in effect

In case the program was imported from another
system: Verify that the translation of the characters
was correct.

User response

Check your code and correct it.

FANPAR0656E Invalid DBCS data in string

Explanation

A character string that has an odd number of bytes
between the shift-out/shift-in characters was
encountered with OPTIONS 'ETMODE' in effect.

User response

Correct the character string.

Compilation Messages 153

FANGAO0657S Invalid whole number

Explanation

The Compiler found a parsing positional pattern or the
right-hand term of the exponentiation (**) operator that
did not evaluate to a whole number within the current
setting of NUMERIC DIGITS, or that was greater than
the limit, for these uses, of 999 999 999.

User response

Check your code and correct it.

FANGAO0658S Logical value not 0 or 1

Explanation

The Compiler found a logical expression that does not
result in a 0 or 1. Any term operated on by a logical
operator (¬, \, |, &, or &&) must result in a 0 or 1. The
expression in an IF clause, in a WHEN clause, or in a
WHILE or UNTIL phrase must result in a 0 or 1.

User response

Check your code and correct it.

FANGAO0659S Nonnumeric term

Explanation

The Compiler found a nonnumeric term in an
arithmetic expression or as an argument of a built-in
function, or in a DO clause.

User response

Check your code and correct it.

FANPAR0660S Program ends with ","

Explanation

The last line of the source file ends with the line
continuation character (a comma).

User response

Check your code and correct it.

FANPAR0661S Invalid DBCS data in symbol

Explanation

With OPTIONS 'ETMODE' in effect invalid DBCS data in
a symbol was detected. DBCS data in a symbol is
considered invalid if:

• A shift-in character immediately follows a shift-out
character

• A shift-out character immediately follows a shift-in
character

• The number of bytes between any shift-out
character and shift-in character is odd

• Any byte between shift-out character and shift-in
character has a value outside the range '41'X
through 'FE'X.

User response

Correct the symbol.

FANPAR0662S Unmatched shift-out character in
symbol

Explanation

With OPTIONS 'ETMODE' in effect, a symbol that has
shift-out and possibly shift-in characters was
detected. The shift-in character for symbols must be
defined on the same line as the symbol.

User response

Correct the symbol.

FANENV0663S Recursive %INCLUDE directives
not allowed

Explanation

A sequence of %INCLUDE directives was detected that
lead to an already included file. This would cause an
endless include activity. For example, an included file
contains a %INCLUDE directive specifying itself; or, file
A includes file B which in turn includes file A. The
Compiler breaks the recursion and does not execute
any more %INCLUDEs within that recursion.

User response

Correct the erroneous %INCLUDE directives.

FANENV0669T fileID output file ID must not be
identical with %INCLUDE file ID

Explanation

The file name, file type, and file mode of one of the
%INCLUDE files is equal to the file name, file type, and
file mode of one of the output files. The value of fileID
shows which output file ID is wrong:
CEXEC

refers to the compiled EXEC.
IEXEC

refers to the expanded IEXEC output.
OBJECT

refers to the TEXT file.

154 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

PRINT
refers to the compiler listing.

User response

Specify a different file ID for the output file.

FANENV0670S Compiler option not recognized:
option

Explanation

The command used to invoke the Compiler contains
incorrect data in the options string. The name of an
option might be mistyped.

User response

Invoke the Compiler again with a valid options list.

FANENV0671T No "(" found to mark start of
compiler options

Explanation

The command used to invoke the Compiler did not
contain an open parenthesis to mark the start of the
options list.

User response

Reissue the command with an open parenthesis
between the source file identifier and the options list.

FANENV0672T File name, file type, or file mode
too long: fileID-part

Explanation

The identifier you specified for the source file or for
one of the output files is incorrect. Either the file name
or the file type is longer than 8 characters or the file
mode is longer than 2 characters.

User response

Invoke the Compiler again with a valid file identifier.

FANENV0673S LINECOUNT value not 0 or a whole
number in the range 10-99: value

Explanation

The value of the LINECOUNT (LC) compiler option is
not 0 or a whole number in the range 10 through 99.

User response

Invoke the Compiler again with a valid value for the
LINECOUNT option.

FANENV0674T option: no ")" found after
parameter

Explanation

A keyword parameter in a compiler option does not
contain a close parenthesis.

User response

Add the missing close parenthesis.

FANENV0675T No file ID for REXX source found

Explanation

The command used to invoke the Compiler did not
specify a source file.

User response

Invoke the Compiler again with a source file identifier.

FANENV0676T option output file ID must not be
identical with source file ID

Explanation

The file name, file type, and file mode of one of the
output files is the same as the file name, file type, and
file mode specified for the source file. The value of
option indicates which output file identifier is in error:
CEXEC refers to the compiled EXEC, IEXEC refers to
the expanded (IEXEC) output, OBJECT refers to the
TEXT file, and PRINT refers to the compiler listing.

User response

Specify a different file identifier for the output file.

FANENV0677S Option option ignored because of
missing ")"

Explanation

A compiler option is ignored because a previous
keyword parameter in a compiler option does not
contain a close parenthesis.

User response

Add the missing close parenthesis.

FANENV0678T option1/option2 output file IDs
must not be identical

Explanation

The same file name, file type, and file mode has been
specified for more than one of the output files. The
values of option1 and option2 indicate which output

Compilation Messages 155

file identifiers are identical: CEXEC refers to the
compiled EXEC, IEXEC refers to the expanded (IEXEC)
output, OBJECT refers to the TEXT file, and PRINT
refers to the compiler listing.

User response

Specify a unique file identifier for each output file.

FANENV0679T Invalid file ID: fileID

Explanation

The fileID specified for the source file or one of the
output files is not a valid CMS file name. The fileID
contains one or more asterisks or the file mode is not
in the range A0 to Z6 or A to Z.

User response

Invoke the compiler again with a valid CMS fileID.

FANFMU0680T Error opening CEXEC file

Explanation

The Compiler could not open the compiled EXEC file
specified in the CEXEC compiler option. This problem
can occur if your virtual machine does not have read/
write access to the minidisk.

User response

Use a minidisk to which your virtual machine has read/
write access.

FANFMU0681T Error opening OBJECT file

Explanation

The Compiler could not open the TEXT file specified in
the OBJECT compiler option. This problem can occur if
your virtual machine does not have read/write access
to the minidisk.

User response

Use a minidisk to which your virtual machine has read/
write access.

FANFMU0682T Error writing to CEXEC file

Explanation

An error occurred when writing to the compiled EXEC
file specified in the CEXEC compiler option. The most
likely cause of this message is a full disk.

User response

Obtain more free disk space.

FANFMU0683T Error closing CEXEC file

Explanation

The Compiler could not close the compiled EXEC file
specified in the CEXEC compiler option.

User response

If the problem persists, notify your system support
personnel.

FANFMU0684T Error writing to OBJECT file

Explanation

An error occurred when writing to the object file
specified in the OBJECT compiler option. The most
likely cause of this message is a full disk.

User response

Obtain more free disk space.

FANFMU0685T Error closing OBJECT file

Explanation

The Compiler could not close the TEXT file specified in
the OBJECT compiler option.

User response

If the problem persists, notify your system support
personnel.

FANCON0686T Error closing source file

Explanation

The Compiler could not close the source file.

User response

If the problem persists, notify your system support
personnel.

FANLIS0687T Error opening file or virtual printer
for PRINT output

Explanation

The Compiler could not open the compiler listing
specified in the PRINT compiler option. This problem
can occur if your virtual machine does not have read/
write access to the minidisk, if the virtual printer is not
operational, or if the Compiler was unable to get the
space needed for the work areas.

156 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

Use a minidisk to which your virtual machine has read/
write access, direct the print output to the virtual
printer, make the virtual printer operational, or obtain
more storage by releasing a minidisk or SFS directory,
or by deleting a nucleus extension. Alternatively,
define a larger virtual storage size for the virtual
machine and re-IPL CMS.

FANLIS0688T Error writing to file or virtual
printer for PRINT output

Explanation

An error occurred when writing to the compiler listing
file specified in the PRINT compiler option. The most
likely causes of this error are a full disk, or a non-
operational virtual printer.

User response

Obtain more free disk space, or use the PRINT
compiler option to send the file to another disk or to
the virtual printer, or make the virtual printer
operational.

FANxxx0689T Error closing file or virtual printer
for PRINT output

Explanation

The Compiler listing specified in the PRINT compiler
option could not be closed. The most likely cause of
this message is that a release-storage request has
failed.

User response

If the problem persists, notify your system support
personnel.

FANENV0690T Source file cannot be opened:
record length greater than number
number

Explanation

The source file could not be opened, because the
record length is greater than the specified number of
bytes:
For z/OS:

32 760 bytes
For z/VM:

65 535 bytes

User response

Reduce the record length of the source file.

FANENV0691W CEXEC file type truncated: source
file type has 8 characters

Explanation

The file type of the compiled EXEC, which is C
concatenated with the source file type, was truncated
because it was longer than 8 characters.

User response

Either specify a valid file type for the compiled EXEC
on the CEXEC option or change the file type of the
source file.

FANENV0692S No blank between ")" and next
option; next option ignored

Explanation

There is no blank between the close parenthesis of a
keyword parameter in a compiler option and the next
compiler option. The next compiler option is ignored.

User response

Insert a blank between the compiler options.

FANENV0693T DUMP value not a whole number in
the range 0-2047: value

Explanation

The value of the DUMP (DU) compiler option is not a
whole number in the range 0 through 2047.

User response

Invoke the Compiler again with a valid value for DUMP.

FANENV0694T Incorrect RECFM value for ddname

Explanation

See “Standard Data Sets Provided for the Compiler” on
page 13 for a list of the valid RECFM values.

User response

Specify an appropriate output data set.

FANENV0695T Incorrect BLKSIZE value for
ddname

Explanation

See “Standard Data Sets Provided for the Compiler” on
page 13 for a list of the valid BLKSIZE values.

User response

Specify an appropriate output data set.

Compilation Messages 157

FANENV0696T Incorrect LRECL value for ddname

Explanation

See “Standard Data Sets Provided for the Compiler” on
page 13 for a list of the valid LRECL values.

User response

Specify an appropriate output data set.

FANENV0697T DSORG=PO but no member name
given: ddname

Explanation

The data set name associated with the ddname
corresponds to a partitioned data set, but no member
name has been given.

User response

Either specify a member name or correct the data set
name to correspond to a sequential data set.

FANENV0698T DSORG=PS but member name
given: ddname

Explanation

The data set name associated with the ddname
corresponds to a sequential data set, but a member
name has been given.

User response

Either omit the member name or correct the data set
name to correspond to a partitioned data set.

FANENV0703S LIBLEVEL not a whole number in
range 2-6, or "*": value

Explanation

The value of the LIBLEVEL (LL) compiler option is
neither a whole number in the range 2 through 6 nor
"*".

User response

Invoke the compiler again with a valid LIBLEVEL
option.

FANCON0704S Full TRACE support requires
runtime level value

Explanation

You have requested full TRACE support for your
compiled program (TRACE and SLINE compiler

options) but the Library level specified in the LIBLEVEL
option is too low.

User response

Do one of the following:

• Invoke the compiler again using a higher value for
the LIBLEVEL option. The "value" value in the
message indicates the minimum Library level
required for full TRACE support. For more
information refer to “LIBLEVEL” on page 27.

• Compile the program without the TRACE and SLINE
options.

FANCOD0705S CONDENSE requires runtime level
value

Explanation

You have requested that your compiled program be
condensed (CONDENSE compiler options) but the
Library level specified in the LIBLEVEL option is too
low.

User response

Do one of the following:

• Invoke the compiler again using a higher value for
the LIBLEVEL option. The "value" value in the
message indicates the minimum Library level
required for full CONDENSE support. For more
information refer to “LIBLEVEL” on page 27.

• Compile the program without the CONDENSE option.

FANxxx0706S Runtime level value needed

Explanation

You specified the LIBLEVEL(x) compiler options and
the compiler has detected a language feature that
requires a higher level of the Library. The error marker
symbol usually points to the start of the clause
containing the language feature.

User response

Do one of the following:

• Invoke the compiler again using a higher value for
the LIBLEVEL option. The "value" value in the
message indicates the minimum Library level
required for the language feature. For more
information refer to “LIBLEVEL” on page 27.

• Rewrite the clause indicated by the error message.

FANENV0708T The ALTERNATE option requires
the SLINE option

158 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

When specifying the ALTERNATE Compiler option, the
SLINE option is required. The Alternate Library cannot
prepare the control blocks needed by the interpreter if
the source of the REXX program is not included at
compilation time using the SLINE option.

User response

Compile the REXX program again, specifying both the
ALTERNATE and SLINE Compiler options.

FANENV0709W DLINK has no effect when running
with the Alternate Library

Explanation

The DLINK option supports a direct link of an external
subroutine or function when a module is generated
from OBJECT output. This option is supported by the
Library, but not by the Alternate Library. The Alternate
Library runs the compiled REXX program by invoking
the interpreter; the standard system search order is
used.

User response

When distributing the compiled REXX programs,
include the external subroutines and functions that are
directly linked for the Library as separate modules for
the Alternate Library.

FANENV0710T The TRACE option requires the
SLINE option

Explanation

When specifying the TRACE option, the SLINE (or
SLINE(AUTO)) option is required.

User response

Recompile the program specifying both the TRACE and
SLINE options.

FANENV0711T DLINK and TRACE must not be
specified together

Explanation

These options are mutually exclusive.

User response

Omit one of the two options.

FANENV0712T DLINK and CONDENSE must not
be specified together

Explanation

These options are mutually exclusive. A condensed
program cannot be used with DLINK.

User response

Omit one of the two options.

FANxxx0713I Message repository not found.
Hardcoded messages used.

Explanation

The Compiler could not load the message repository.
This means that it could not locate the file containing
the error and informational messages and make it
available to the compiler run.

Note:

1. Subsequent messages are issued exactly as if the
user had installed the delivered FANUME
REPAMENG repository.

2. If the repository cannot find the message number,
no error indication occurs. Instead the same
message is issued as if the FANUME REPAMENG
repository has been installed.

User response

Ask your administrator for help.

FANENV0718T Left MARGINS value not a whole
number in the range range:
margins

Explanation

The left margin specified by the MARGINS compiler
option must be a whole number. For more information
refer to “MARGINS” on page 29.

User response

Invoke the compiler again with a valid MARGINS
option.

FANENV0719T Right MARGINS value not a whole
number in the range left margin
margin or "*": margins

Explanation

The right margin specified by the MARGINS compiler
option is neither '*' nor a whole number in the range
left margin. For more information refer to “MARGINS”
on page 29.

Compilation Messages 159

User response

Invoke the compiler again with valid values for the
MARGINS option.

FANGAO0770S Invalid number of arguments in
built-in function

Explanation

The number of arguments you passed to a built-in
function is either of the following:

• Less than the number of required arguments for the
function

• Greater than the number of arguments defined for
the function.

User response

Check your code and correct it.

FANENV0771S option ignored because of missing
"("

Explanation

The option is ignored because the command used to
invoke the Compiler did not contain an open
parenthesis to mark the start of the options list.

User response

Reissue the command after typing an open
parenthesis between the source-file identifier and the
options list.

FANGAO0772W SOURCELINE built-in function
used and SL option not specified

Explanation

The Compiler found a reference to the SOURCELINE
built-in function and the SLINE compiler option
(abbreviation: SL) was not specified. The full functions
of the SOURCELINE function are available only if the
program is compiled with the SLINE or SLINE(AUTO)
compiler option. For more information on using the
SOURCELINE function with the Compiler, see
“SOURCELINE Built-In Function” on page 84.

User response

To use the full functions of the SOURCELINE function,
recompile the program with the SLINE option.

FANGAO0773I Instruction might never be
executed

Explanation

The compiler has found that a section of code starting
at the marked point cannot be reached during
execution of the program. Such cases occur when the
code is not labelled or the label is not valid or is
defined several times, and the preceding instruction
transfers control to another part of the program.
Instructions that transfer control are EXIT, ITERATE,
LEAVE, RETURN, and SIGNAL (without ON or OFF), as
well as IF and SELECT instructions that contain such
instructions after every THEN and ELSE/OTHERWISE.

User response

If the code is unreachable because you have forgotten
a label, misspelled it, or defined it several times, or
because of mismatched DO/END clauses, correct the
error. If you do not want the code to be executed, but
do not wish to remove it completely, it is more efficient
to enclose it in a comment. Code that is not normally
executable can still be executed using the
SOURCELINE built-in function in connection with
INTERPRET, for example.

FANGAO0774I Number of arguments in standard
function not valid

Explanation

A function of an IBM supplied standard function
package is used with the wrong number of arguments.

User response

Correct the number of arguments.

FANENV0800E Invalid suboption in OLDDATE
option is not C, P, I or O

Explanation

Only the C, P, I, and O are valid for the OLDDATE
option.

User response

Specify the correct letters C, P, I, or O as described in
“OLDDATE” on page 31.

FANENV0801E OLDDATE option not supported if
system is not Y2K ready

Explanation

You have specified the OLDDATE option, but your
system is not yet enabled for the year 2000.

160 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

You can only use the OLDDATE option, if your system
has been enabled for the year 2000.

FANENV0802E OLDDATE option not supported,
missing DMSPLU service

Explanation

The OLDDATE option is only supported, if the DMSPLU
service is provided by your z/VM installation.

User response

You must not use the OLDDATE option. Ask your
system administrator for help.

FANENV0803E Error processing OLDDATE for file

Explanation

An error occurred when processing the OLDDATE
option for the specified file.

User response

Check your code and correct the error. For more
information refer to “OLDDATE” on page 31.

FANPAR0849W SAA: Source expression in
assignment is missing

Explanation

This message warns of noncompliance with SAA
guidelines. The Compiler did not find an expression
after the assignment operator (=).

User response

To assign a null string ('') to the variable, code it after
the =.

FANPAR0850W SAA: UPPER instruction not part of
SAA Procedures Language

Explanation

This message warns of noncompliance with SAA
guidelines. The Compiler found an UPPER instruction
in the program. The UPPER instruction is supported by
the Compiler, but is not part of the SAA REXX interface.

User response

Use the TRANSLATE built-in function instead.

FANPAR0851W SAA: PARSE EXTERNAL not part of
SAA Procedures Language

Explanation

This message warns of noncompliance with SAA
guidelines. The Compiler found a PARSE EXTERNAL
instruction in the program. PARSE EXTERNAL is
supported by the Compiler, but is not supported by the
SAA REXX interface.

User response

Use PARSE PULL instead.

FANPAR0852W SAA: PARSE NUMERIC not part of
SAA Procedures Language

Explanation

This message warns of noncompliance with SAA
guidelines. The Compiler found a PARSE NUMERIC
instruction in the program. PARSE NUMERIC is
supported by the Compiler, but is not supported by the
SAA REXX interface.

User response

Use the DIGITS, FORM, or FUZZ built-in functions
instead.

FANPAR0854W SAA: "@", "#", "$", "¢" might not
be used in symbols

Explanation

This message warns of noncompliance with SAA
guidelines. The Compiler found one of the following
characters in a symbol:

@ # $ ¢

The use of these characters in symbols is supported by
the Compiler, but is not supported by the SAA REXX
interface. This message is not issued when compiling
with the SAA compiler option while OPTIONS
'ETMODE' is in effect.

User response

Change the symbol.

FANPAR0855W SAA: Literal strings must be
completely on one line

Explanation

This message warns of noncompliance with SAA
guidelines. The Compiler found a literal string that
crosses a line boundary. Such strings are supported by
the Compiler, but are not supported by the SAA REXX
interface.

Compilation Messages 161

User response

Either put the entire string on one line of the source
file, or divide the string into smaller strings and
concatenate those strings. For example, the
assignment:

title = 'Director of European Sales and
Marketing'

could be written as:

title = 'Director of '||,
 'European Sales and Marketing'

FANPAR0856W SAA: "/" must not be used in a
comparison operator

Explanation

This message warns of noncompliance with SAA
guidelines. The Compiler found a / character being
used as part of a comparison operator. This use of the /
character is supported by the Compiler, but is not
supported by the SAA REXX interface.

User response

Use ¬ or \ instead.

FANGAO0857W SAA: Built-in function not part of
SAA Procedures Language

Explanation

This message warns of noncompliance with SAA
guidelines. The Compiler found a built-in function that
is supported by the Compiler, but is not supported by
the SAA REXX interface.

User response

For FIND, use WORDPOS instead. For INDEX, use POS
instead. For any other function, change the program to
avoid using the function.

FANGAO0858W SAA: Trace prefix ! not part of SAA
Procedures Language

Explanation

The message warns of noncompliance with SAA
guidelines. The Compiler found a ! character being
used as trace prefix. This use of the ! trace prefix is
supported by the Compiler, but is not supported by the
SAA REXX interface.

User response

Correct the trace prefix.

FANGAO0859S Division by zero

Explanation

The Compiler detected an attempt to divide by zero (/,
%, //), which is not valid. The zero divisor can be a
constant, a variable, or an expression, which the
Compiler recognizes to have a value of zero.

User response

Correct the expression.

FANGAO0860S Not a positive whole number

Explanation

The Compiler expects a number greater than zero in
the indicated position. The number can be the operand
of a NUMERIC DIGITS instruction or an argument of a
built-in function. This operand or argument can be a
constant or a variable which the Compiler recognizes
to have a value equal to or less than zero; or, it is no
number at all.

User response

Correct the operand or argument.

FANGAO0861S Positive whole number or zero
required

Explanation

REXX requires a nonnegative numeric value at the
indicated position, which can be the operand of a DO,
DO FOR, or NUMERIC FUZZ instruction or an argument
of a built-in function. This operand or argument can be
a constant, variable, or expression. The Compiler
recognizes that its value cannot be numeric or, if
numeric, cannot be a whole number or be positive or
zero.

User response

Correct the operand or argument.

FANGAO0862S Not a whole number in the range
0-99

Explanation

The Compiler expects a number from 0 through 99 as
the argument of the ERRORTEXT built-in function. This
argument can be a constant or a variable from which
the Compiler recognizes that it has a value outside this
range.

User response

Correct the argument.

162 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

FANGAO0863S Required argument in built-in
function missing

Explanation

A required argument of a built-in function has not been
specified.

User response

Supply the argument.

FANGAO0864S Argument of built-in function is
not a single character

Explanation

A built-in function requires an argument that must be a
single character. An argument of another length has
been specified.

Note: If the program contains an OPTIONS instruction,
the Compiler checks only whether this argument has a
length greater than zero.

User response

Supply an argument of 1 character.

FANGAO0865S Argument of built-in function is
not a hexadecimal string

Explanation

An X2C or X2D built-in function requiring a
hexadecimal first argument has been supplied with a
wrong argument. This argument is a constant, a
variable, or an expression which the Compiler
recognizes to have an invalid value.

User response

Supply a hexadecimal argument.

FANGAO0866S Invalid option in built-in function
invocation

Explanation

An option of a built-in function has an incorrect value,
for example:

TIME('G'),TIME('GMT')

User response

Supply a correct option.

FANGAO0867W SAA: Option in built-in function
invocation invalid under SAA

Explanation

This message warns of noncompliance with SAA
guidelines. An option of a built-in function has a value
that is supported by the Compiler, but not by the SAA
REXX interface. For example:

DATE('C'),DATE('Century')

User response

Supply a correct option.

FANGAO0868S RANDOM() BIF: either min>max or
(max-min)>100000

Explanation

The values found for the max argument, the min
argument, or both in an invocation of a RANDOM built-
in function are not valid for one of the following
reasons:

• The min argument is greater than the max argument.
• The difference max-min is greater than 100000.

Either one or both of the arguments might have
resulted because of defaulting. For example,
RANDOM(2000,) is not a valid min argument because
the max argument defaults to 999.

User response

Specify values for the arguments or allow them to
default so as to comply with the rules specified above.

FANGAO0869S Expression must evaluate to
SCIENTIFIC or ENGINEERING

Explanation

The expression following NUMERIC FORM must
evaluate to SCIENTIFIC or ENGINEERING.

User response

Correct the expression.

FANFMU0870S More than 65534 external routine
invocations

Explanation

When the DLINK option is specified, the Compiler
cannot process a program containing invocations of
more than 65 534 external procedures or functions.

User response

Reduce the number of external routines or specify the
NODLINK option.

Compilation Messages 163

FANFMU0871T Size of object module exceeds
16MB

Explanation

The size of an object module (that is, core image)
created by the REXX compiler is limited to 16MB. This
restriction applies to both CEXEC and OBJECT output.

User response

If you have not used the SOURCELINE built-in function
in your program, you should compile with NOSLINE to
avoid incorporating the source statements into your
object module.

Try to reduce the size of the REXX source program by
dividing it into several sources that can be compiled
individually. Obvious candidates for forming new
sources are any PROCEDURE subprograms without
EXPOSE.

FANGAO0872I Positive whole number or zero
expected

Explanation

This argument of the function GETMSG must be a
positive number or zero.

User response

Correct the argument.

FANGAO0873I Asterisk, blank, or nonnegative
number expected

Explanation

This argument of the function OUTTRAP must be a
positive number or zero, or a string consisting of one
asterisk.

User response

Correct the argument.

FANGAO0874I Argument should have 8
hexadecimal digits

Explanation

This argument of the function STORAGE must be a
string in the range of 1 to 8 hexadecimal digits.

User response

Correct the argument.

FANGAO0875I Argument should be a nonnegative
whole number

Explanation

This argument of the function STORAGE must be a
positive whole number or zero.

User response

Correct the argument.

FANGAO0878S Separator arg of DATE
incompatible with argument
argument

Explanation

You specified a separator for the output or input date,
although the corresponding date format does not allow
for a separator. The formats permitting no separator
are B, C, D, J, M and W. A zero-length string, too, is a
separator and therefore not permitted.

User response

Remove the separator argument. For example,
DATE("C", X, Y, "", Z) is wrong, but
DATE("C", X, Y, , Z) is correct.

FANGAO0879S Separator arg (4 or 5) of DATE
exceeds one character

Explanation

The separator for a date format must not be longer
than one character.

User response

Replace the invalid argument with a string that
contains no or a single character.

FANGAO0880S Argument of built-in function is
not a binary string

Explanation

A B2X built-in function requiring a binary first
argument has been supplied with a wrong argument.
This argument is a constant, a variable, or an
expression, which the Compiler recognizes to have an
invalid value.

User response

Supply a binary argument.

FANGAO0881S TRACE option is not valid

Explanation

The option in a TRACE instruction or a use of the
TRACE built-in function is not valid. One of the

164 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

following options contain a value that is not valid: a
constant, a variable, or an expression.

User response

Check your code and correct it.

FANGAO0882E Derived variable name longer than
250 characters

Explanation

The Compiler predicts that at runtime after
substitution of values of variables into a compound
symbol, the length of the resulting name will be
greater than the limit of 250 characters.

User response

Check your code and correct it.

FANGAO0883S Argument is not an unbracketed
DBCS string

Explanation

The DBCS processing function DBBRACKET requires
an argument that consists of at least one pair of bytes,
each pair being a valid EBCDIC DBCS character. The
SO and SI characters must not be present. Valid pairs
are:

• Two EBCDIC blanks
• Two characters with hexadecimal values in the range

of '41'X to, and including, 'FE'X

User response

Correct the argument value.

FANGAO0884S Argument is not a valid DBCS
string

Explanation

This argument to a DBCS processing function must be
a valid DBCS string or mixed string. The argument can
contain SBCS parts, in which any character other than
SO and SI is permitted, and DBCS parts. A DBCS part
starts with SO and ends with SI. Between SO and SI
there must be pairs of bytes, each pair being a valid
EBCDIC DBCS character. Valid pairs are:

• Two EBCDIC blanks
• Two characters with hexadecimal values in the range

of '41'X to, and including, 'FE'X

User response

Correct the argument value.

FANGAO0885S Argument is not a single bracketed
DBCS string

Explanation

The DBCS processing function DBUNBRACKET
requires an argument consisting of a single pure DBCS
string. A valid argument value starts with SO and ends
with SI. Between SO and SI there must be pairs of
bytes, each pair being a valid EBCDIC DBCS character.
Valid pairs are:

• Two EBCDIC blanks
• Two characters with hexadecimal values in the range

of '41'X to, and including, 'FE'X

User response

Correct the argument value.

FANGAO0886I Argument is not one of the
permitted values

Explanation

The value defined for the first argument of a system
function is not allowed. For example, the value of the
first argument of the ASSGN built-in function (BIF)
must be "STDIN" or "STDOUT". The following system
BIFs are verified:
z/VM specific functions:

APILOAD, CMSFLAG, CSL, DIAG, DIAGRC, SOCKET,
STORAGE

z/OS specific functions:
STORAGE, GETMSG, LISTDSI, MSG, MVSVAR,
OUTTRAP, PROMPT, SETLANG, SYSCPUS, SYSDSN,
SYSVAR

VSE specific functions:
STORAGE, OUTTRAP, ASSGN

User response

Correct the argument.

FANGAO0887I Incompatible arguments to ASSGN

Explanation

The first argument to the function ASSGN is
"STDIN"and the second is "SYSLST", or the first is
"STDOUT" and the second is "SYSIPT".

User response

Change one of the arguments.

FANGAO0888W Argument must be a single SBCS
or DBCS character

Compilation Messages 165

Explanation

This argument to a DBCS processing function must
consist of a single SBCS or DBCS character. It must be
a single character other than SO and SI, or four bytes
consisting of SO, a pair of bytes representing a valid
DBCS character, and SI. Valid pairs are:

• Two EBCDIC blanks
• Two characters with hexadecimal values in the range

of '41'X to, and including, 'FE'X

User response

Correct the argument.

FANGAO0889I Argument should be name of a
simple variable or stem

Explanation

This argument to the function GETMSG or OUTTRAP
must be a string containing a valid name for a simple
variable or stem. A valid string can contain
alphanumeric characters, exclamation marks (!),
question mark (?), and underscores (_). It must start
with an alphabetic character and can end with a
period.

User response

Correct the argument.

FANENV0890T Incorrect LRECL value for
SYSIEXEC, expected/found:
option1/option2

Explanation

The LRECL value found for the SYSIEXEC output
(option2) is incorrect. The compiler expected option1.
Refer to “IEXEC” on page 26 for information on how to
calculate the record length.

User response

Specify an output data set with the correct LRECL.

FANENV0891T Incorrect RECFM value (F|FB) for
SYSIEXEC, input records vary in
length

Explanation

The data set specified for the SYSIEXEC output has
fixed-length records but the input contains records of
different length. Input means, in z/OS, all data sets in
the SYSIN concatenation and, in z/OS and z/VM, files
inserted into the compilation using %INCLUDE
directives. Records of different length are the result of

a split of the source lines if the source text is found on
the same line as the %INCLUDE directive.

User response

Specify a data set for SYSIEXEC with variable-length
records.

FANENV0892T Incorrect RECFM value (F|FB) for
SYSIEXEC, input with RECFM=V|
VB

Explanation

The data set specified for the SYSIEXEC output has
fixed-length records but one or more of the input data
sets has a record format of V or VB (variable length).

User response

Specify a data set for SYSIEXEC with variable-length
records or change the input data sets such that they all
have a record format of F or FB and the record lengths
(LRECL) are identical.

FANENV0893T Incorrect RECFM value (F|FB) for
SYSIEXEC, input with/without seq
no

Explanation

The data set specified for the SYSIEXEC output has
fixed-length records, but some of the input data sets
contain sequence numbers and some do not.

User response

Either specify an output data set with variable-length
records or change the input data sets such that either
all or none of them have sequence numbers.

FANCON0900T Source data set cannot be opened

Explanation

The Compiler was unable to open the SYSIN data set.

User response

Check that:

• If the Compiler was invoked from a batch job, a DD
statement with DD name SYSIN was provided in the
job step in which the Compiler was invoked.

• If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSIN is in effect
when the compiler is invoked.

• The data set is accessible when the Compiler is
invoked.

FANxxx0901T Source data set cannot be read

166 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

The Compiler was unable to read the SYSIN data set
containing the REXX source program to be compiled.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANENV0902T dataset-name output data set
must not be identical with
%INCLUDE data set

Explanation

The data set name of one of the %INCLUDE data sets
is equal to the data set name of one of the output data
sets. The value of dataset-name shows which output
data set name is wrong:
CEXEC

refers to the compiled EXEC.
IEXEC

refers to the expanded IEXEC output.
OBJECT

refers to the object data set.
PRINT

refers to the compiler listing.
TERM

refers to the terminal output.
DUMP

refers to the DUMP output.

User response

Specify a different name for the output data set.

FANENV0903T option output data set name must
not be identical with source data
set name

Explanation

One of the output data sets and the source data set
have the same data set name. The value of option
indicates which output data set name is in error.
CEXEC refers to the compiled EXEC, IEXEC refers to
the expanded (IEXEC) output, OBJECT refers to the
OBJECT data set, PRINT refers to the compiler listing,
TERM refers to the terminal output, and DUMP refers
to the DUMP output.

User response

Specify a different name for the output data set.

FANENV0904T option1/option2 output data set
names must not be identical

Explanation

You have specified the same name for more than one
of the output data sets. The message indicates which
data set names are identical. CEXEC refers to the
compiled EXEC, IEXEC refers to the expanded (IEXEC)
output, OBJECT refers to the OBJECT data set, PRINT
refers to the compiler listing, TERM refers to the
terminal output, and DUMP refers to the DUMP output.

User response

Specify a unique name for each output data set.

FANFMU0906T Error opening CEXEC data set

Explanation

The Compiler was unable to open the SYSCEXEC data
set.

User response

Check that:

• If the Compiler was invoked from a batch job, a DD
statement with DD name SYSCEXEC was provided in
the job step in which the Compiler was invoked.

• If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSCEXEC is in effect
when the compiler is invoked.

• The data set is accessible when the Compiler is
invoked.

FANFMU0907T Error opening OBJECT data set

Explanation

The Compiler was unable to open the SYSPUNCH data
set.

User response

Check that:

• If the Compiler was invoked from a batch job, a DD
statement with DD name SYSPUNCH was provided in
the job step in which the Compiler was invoked.

• If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSPUNCH is in effect
when the compiler is invoked.

• The data set is accessible when the Compiler is
invoked.

FANFMU0908T Error writing to CEXEC data set

Explanation

The Compiler was unable to write to the SYSCEXEC
data set.

Compilation Messages 167

User response

Check that the data set is accessible when the
Compiler is invoked.

FANFMU0909T Error closing CEXEC data set

Explanation

The Compiler was unable to close the SYSCEXEC data
set.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANFMU0910T Error writing to OBJECT data set

Explanation

The Compiler was unable to write to the SYSPUNCH
data set.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANFMU0911T Error closing OBJECT data set

Explanation

The Compiler was unable to close the SYSPUNCH data
set.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANCON0912T Error closing source data set

Explanation

The Compiler was unable to close the SYSIN data set
containing the REXX source program to be compiled.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANLIS0913T Error opening PRINT data set

Explanation

The Compiler was unable to open the SYSPRINT data
set.

User response

Check that:

• If the Compiler was invoked from a batch job, a DD
statement with DD name SYSPRINT was provided in
the job step in which the Compiler was invoked.

• If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSPRINT is in effect
when the compiler is invoked.

• The data set is accessible when the Compiler is
invoked.

FANLIS0914T Error writing to PRINT data set

Explanation

The Compiler was unable to write to the SYSPRINT
data set.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANLIS0915T Error closing PRINT data set

Explanation

The Compiler was unable to close the SYSPRINT data
set.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANENV0916T Source data set cannot be opened:
record length greater than 32760

Explanation

The Compiler was unable to open the source file,
because it contains records longer than 32 760
characters (bytes).

User response

Reorganize the source file so that the value of the
LRECL parameter of the DCB statement is less than or
equal to 32 760. See “Standard Data Sets Provided for
the Compiler” on page 13.

FANENV0917T Error opening DUMP data set

Explanation

The Compiler was unable to open the SYSDUMP data
set.

User response

Check that:

168 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

• If the Compiler was invoked from a batch job, a DD
statement with DD name SYSDUMP was provided in
the job step in which the Compiler was invoked.

• If the Compiler was invoked in a TSO session, a TSO
ALLOC command for DD name SYSDUMP is in effect
when the compiler is invoked.

• The data set is accessible when the Compiler is
invoked.

FANENV0918T Error writing to DUMP data set

Explanation

The Compiler was unable to write to the SYSDUMP
data set.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANENV0919T Error closing DUMP data set

Explanation

The Compiler was unable to close the SYSDUMP data
set.

User response

Check that the data set is accessible when the
Compiler is invoked.

FANTOK0920T Source data set is empty

Explanation

The SYSIN data set contains no records at all.

User response

Makes sure that the SYSIN data set contains the
source program you want to compile.

FANLIS0921T Error opening TERM output

Explanation

The Compiler could not open the target destination for
terminal output.

Under z/OS, the output is directed to the destination
specified in the SYSTERM DD statement (or TSO ALLOC
command).

Under z/VM, the output is directed to the user's
terminal unless the Compiler is running in a batch
machine, in which case output is directed to the
Console Log. The error can occur if the Compiler was
unable to get the space needed for work areas.

Note: You will only see this message in the printed
output. However, even if there is no printed output, for
example if NOPRINT is in effect, the return code
passed from the Compiler to the system, at the end of
the Compiler run, will correspond to the severity of this
message.

User response

• Under z/OS, check that:

– If the compiler was invoked in a batch job, a DD
statement with DD name SYSTERM was provided
in the job step in which the compiler is invoked.

– If the Compiler was invoked in a TSO session, a
TSO ALLOC command for DD name SYSTERM is in
effect when the Compiler is invoked.

– The data set is accessible when the Compiler is
invoked.

• Under z/VM, compile without the TERM compiler
option, obtain more storage by releasing a minidisk
or SFS directory, or by deleting a nucleus extension.
Alternatively, define a larger virtual storage size for
the virtual machine and re-IPL CMS.

FANLIS0922T Error writing to TERM

Explanation

The Compiler was unable to write to the target
destination for terminal output.

Under z/OS, the output is directed to the destination
specified in the SYSTERM DD statement (or TSO ALLOC
command).

Under z/VM, the output is directed to the user's
terminal. The most likely cause of the error is that the
virtual screen is not defined or insufficient storage was
available to execute the request.

Note: It is very unlikely that you will ever see this
message. The Compiler first writes the PRINT output,
then closes it. Only after the PRINT output has been
closed, the Compiler writes the TERM output. If an
error occurs while writing the TERM output, there is
nowhere to write this error message. However, the
return code that the Compiler passes back to the
system at the end of the Compiler run corresponds to
the severity of this message.

User response

• Under z/OS, check that the data set is accessible
when the Compiler is invoked.

• Under z/VM, compile without the TERM compiler
option, define the virtual screen, or obtain more
storage by releasing a minidisk or SFS directory, or
by deleting a nucleus extension. Alternatively, define

Compilation Messages 169

a larger virtual storage size for the virtual machine
and re-IPL CMS.

FANxxx0923T Error closing TERM output

Explanation

The Compiler was unable to close the target
destination for terminal output.

Under z/OS, the output is directed to the destination
specified in the SYSTERM DD statement (or TSO ALLOC
command).

Under z/VM, the output is directed to the user's
terminal unless the Compiler is running in a batch
machine in which case the output is directed to the
Console Log. The most likely cause of the error is that
a release storage request has failed.

User response

• Under z/OS, check that the data set is accessible
when the Compiler is invoked.

• Under z/VM, compile without the TERM compiler
option or notify your system support personnel if the
problem persists.

Note: It is very unlikely that you will ever see this
message. The Compiler first writes the PRINT output,
then closes it. Only after the PRINT output has been
closed, the Compiler writes the TERM output. If an
error occurs while closing the TERM output, there is
nowhere to write this error message. However, the
return code that the Compiler passes back to the
system at the end of the Compiler run corresponds to
the severity of this message.

FANENV0924T Error opening virtual printer for
DUMP

Explanation

The Compiler could not open the virtual printer for
DUMP output. This problem can occur if the virtual
printer is not operational or if the Compiler was unable
to get the space needed for work areas.

User response

Compile with the NODUMP compiler option, make the
virtual printer operational, or obtain more storage by
releasing a minidisk or SFS directory, or by deleting a
nucleus extension. Alternatively, define a larger virtual
storage size for the virtual machine and re-IPL CMS.

FANENV0925T Error writing to virtual printer for
DUMP

Explanation

An error occurred when writing to the virtual printer.
The most likely cause of this message is a full disk or a
non operational virtual printer.

User response

Compile with the NODUMP compiler option or make
the virtual printer operational.

FANCON0926T Error closing virtual printer for
DUMP

Explanation

The virtual printer could not be closed. The most likely
cause of this is that a release storage request has
failed.

User response

Compile with the NODUMP compiler option or notify
your system support personnel if the problem persists.

FANENV0927S Error opening %INCLUDE input

Explanation

The Compiler was unable to open a file specified in a
%INCLUDE directive. Either the file specified does not
exist or the file specification contains characters that
are invalid in your Operating System.

Under z/VM, the problem can occur if:

• The file you are including does not exist with file type
COPY, REXXINCL, or EXEC on:

– The accessed disks, for /*%INCLUDE fn*/
directives

– The specified collection, for /*%INCLUDE
ddname(filename) /* with FILEDEF ddname
DISK fn ft [fm]*/ directives

• The file you are including does not exist on:

– The specified MACLIB, for /*%INCLUDE
maclib(fn)*/ directives

– The MACLIBs established with the GLOBAL
MACLIB command, for /*%INCLUDE
SYSLIB(fn)*/ directives.

• The specification of the file to be included contains
invalid characters

• You are including a file from a minidisk for which you
have read-only access, while someone with read/
write access to that minidisk has altered the file so
that it no longer exists in the same place on the
minidisk.

170 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

• Under z/OS, check that:

– If the Compiler was invoked in a batch job, a DD
statement with a DD name identical with the DD
name given or defaulted in the %INCLUDE
directive is present.

– If the Compiler was invoked in a TSO session, a
TSO ALLOC command for a DD name identical with
the DD name given or defaulted in the %INCLUDE
directive is in effect when the Compiler is invoked.

– The data set is accessible when the Compiler is
invoked.

– Check that a member with the specified name is
present in one of the libraries concatenated under
the DD name specified or defaulted in the
%INCLUDE directive at the time the Compiler is
invoked.

• Under z/VM, make sure that the file exists, the file
specification contains valid characters, or reaccess
the minidisk on which the file to be included resides.

FANENV0928S Error reading %INCLUDE input

Explanation

The Compiler was unable to read from a file specified
in a %INCLUDE directive.

Under CMS, the problem can occur when you are
including a file from a minidisk to which you have read-
only access, while someone with read/write access to
that minidisk has altered the file so that it no longer
exists in the same place on the minidisk.

User response

• Under z/OS, check that the specified member is
accessible when the Compiler is invoked.

• Under z/VM, reaccess the minidisk that contains the
file to be included.

FANENV0929S Error closing %INCLUDE input

Explanation

The Compiler was unable to close a file specified in a
%INCLUDE directive.

User response

• Under z/OS, check that the data set is accessible
when the Compiler is invoked.

• Under z/VM, reaccess the minidisk that contains the
file to be included.

FANENV0930T Error opening IEXEC output

Explanation

The compiler was unable to open the target
destination for IEXEC output.

Under z/OS, the output is directed to the destination
specified in the SYSIEXEC DD statement (or TSO
ALLOC command).

Under z/VM, this problem can occur if your virtual
machine does not have read/write access to the
specified minidisk.

User response

• Under z/OS, check that the data set is accessible
when the Compiler is invoked.

• Under z/VM, use a minidisk to which your virtual
machine has read/write access.

FANENV0931T Error writing to IEXEC output

Explanation

The compiler was unable to write to the target
destination for IEXEC output.

Under z/OS, the output is directed to the destination
specified in the SYSIEXEC DD statement (or TSO
ALLOC command).

Under z/VM, this problem can occur if your virtual
machine does not have read/write access to the
specified minidisk.

User response

• Under z/OS, check that the data set is accessible
when the Compiler is invoked.

• Under z/VM, use a minidisk to which your virtual
machine has read/write access.

FANENV0932T Error closing IEXEC output

Explanation

The compiler was unable to close the target
destination for IEXEC output.

User response

• Under z/OS, check that the data set is accessible
when the Compiler is invoked.

• Under z/VM, compile with the NOIEXEC compiler
option or notify your system support personnel if the
problem persists.

FANENV0934E Invalid %INCLUDE directive

Compilation Messages 171

Explanation

The file specification in the %INCLUDE directive
contains embedded blanks, or the length of the name
specified for member, ddname, or filename exceeds
8 characters.

User response

Correct the %INCLUDE directive.

FANPAR0935E Option for %SYSDATE or
%SYSTIME not valid

Explanation

The option specified for %SYSDATE or %SYSTIME is
too complex for the compiler. The option must be a
single symbol or quoted string and must only contain
alphanumeric characters of which only the first
character is significant.

User response

Simplify or correct the option.

FANPAR0936E Options R and E not valid for
%SYSTIME

Explanation

The elapsed-time options R and E cannot be used for
the compilation time.

User response

Specify a different option.

FANPAR0937E %SYSDATE/%SYSTIME is not
allowed within a clause

Explanation

A %SYSDATE or %SYSTIME control directive can only
be used where a REXX statement is allowed.

User response

Insert a semicolon in front of the control directive or
write the control directive on a separate line.

FANxxx0938W IEXEC file type truncated: source
file type has 8 characters

Explanation

The default file type is the letter I concatenated with
the source file type. In this case, the resulting file type
exceeds 8 characters in length, that is why it is
truncated.

User response

Specify a correct file type. For more information refer
to “LIBLEVEL” on page 27.

FANENV0939E Stub name too long

Explanation

The stub name is too long. It can consist of up to 8
characters.

User response

Enter a correct stub name. For more information refer
to “Stubs” on page 212.

FANENV0940E Stub name missing

Explanation

The stub name could not be found.

User response

Enter a correct stub name. For more information refer
to “Stubs” on page 212.

FANENV0941W Duplicate %STUB directive: Only
first occurrence on line number
used

Explanation

A duplicate %STUB directive was found. Only the first
occurrence on the specified line is used.

User response

Check and correct your source code.

FANENV0942E Stub name not one of the allowed
values

Explanation

The name of the stub is not allowed.

User response

Enter a correct stub name. For more information refer
to “Stubs” on page 212.

FANENV0943I Stub name included

Explanation

The stub name is included.

User response

None.

172 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

FANENV0944S Error opening DDNAMES input

Explanation

An error occurred when the ddnames input was
opened. The data set specified after the ddname is not
correct.

User response

Check the input and specify a correct DDNAMES
definition. Check if the ddname specified in the
DDNAMES definition points to a valid data set that
contains the alternate DDNAMES.

FANENV0945S Error reading DDNAMES input

Explanation

An error occurred when the DDNAMES input was read.
The data set specified after the DDNAME is not
correct.

User response

Check the input and specify a correct DDNAMES
definition. Check if the DD name specified in the
DDNAMES definition points to a valid data set that
contains the alternate DDNAMES.

FANENV0946S Error closing DDNAMES input

Explanation

An error occurred when the DDNAMES input was
closed. The data set specified after the DDNAME is not
correct.

User response

Check the input and specify a correct DDNAMES
definition. Check if the DD name specified in the
DDNAMES definition points to a valid data set that
contains the alternate DDNAMES.

FANENV0947T Error in alternate DDNAMES file:
line line number

Explanation

An error occurred in the alternate DDNAMES file that
you have created. The line number where the error
was found is displayed.

User response

Check the displayed line of the alternate DDNAMES file
and correct the error.

FANxxx9999 FAN repository not found, message
nnn cannot be retrieved

Explanation

An internal error in the Compiler occurred. Message
number nnn was not issued, because the message is
not defined in the internal Compiler message table and
an external message repository is not available.

User response

Contact your system administrator.

FANxxx9999 Message number nnn, format 1,
line 1, was not found; it was called
from REXX in application FAN

Explanation

An internal error in the Compiler occurred. Message
number nnn was not issued, because the message is
neither defined in the external message repository, nor
in the internal Compiler message table.

User response

Contact your system administrator.

Compilation Messages 173

174 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 20. Runtime Messages

The Library and the Alternate Library have the same error messages. If you have both libraries installed,
do one of the following:

• Change the message prefix for the Alternate Library from EAGREX to EAGALT. If you are using the z/OS
Message Repository, you must recompile the messages.

Note: Some of the messages coming from the Alternate Library start with EAGALT instead of EAGREX.
However, they are equal to the EAGREX messages. For example, if you get message EAGALT0248E, you
will find the explanation for this message under EAGREX0248E in this book.

• Move the member EAGKMENU into a save data set, and run MMS without the member EAGKMENU.

EAGREX0248E Unable to load IBM REXX Library

Explanation

The program cannot be executed, because the Library
could not be loaded as a nucleus extension, by means
of the NUCXLOAD command. This error occurs if your
virtual machine does not have access to the Library or
does not have sufficient storage. You cannot run any
compiled REXX programs until this problem is
corrected.

User response

Ensure that you have access to the disk that contains
the Library (EAGRTLIB MODULE). If you already have
access, obtain more storage by releasing a minidisk or
SFS directory, or by deleting a nucleus extension.
Alternatively, define a larger virtual storage size for the
virtual machine and re-IPL CMS.

EAGREX0249E Unable to load EAG Message
Repository

Explanation

The program cannot be executed for one of the
following reasons. In the following text, * is the
language identifier.

• The message repository is not installed in the
language DCSS, and neither EAGUME TXT* nor
EAGUME TEXT was found on an accessed disk.

• You do not have a read/write A-disk, and the
message repository has the file type TXT*.

• You do not have enough space on your read/write A-
disk, and the message repository has the file type
TXT*.

User response

Check that the message repository is available either
in the language DCSS or on disk. If it is not available in
the language DCSS and its file type is TXT*, check that

your read/write A-disk is large enough to store the
message repository. If the problem remains
unresolved, report it to your IBM representative. See
the IBM Compiler and Library for REXX on IBM Z:
Diagnosis Guide for more information. The values for
the language identifier (*) can be found in the
corresponding z/VM documentation.

EAGREX0300E Error 3 running compiled program,
line nn: Program is unreadable

Explanation

Refer to the secondary message if one is displayed.
Under z/VM, the REXX program could not be read from
the minidisk. This problem can occur if you attempt to
run a program from a minidisk for which you have
read-only access, while someone with read/write
access to that minidisk has altered the program so that
it no longer exists in the same place on the minidisk.

Under z/OS and VSE/ESA, this message is always
followed by a secondary message.

User response

Under z/VM, reaccess the minidisk on which the
program resides.

Note: If the length in the REXX LPA library and the
length of what was loaded did not match, check if
there are old LPA modules in one of your existing
libraries. Remove the old library to fix the problem.

EAGREX0301I Compiled EXEC does not have
fixed length records

Explanation

The compiled EXEC does not have fixed-length
records. The Compiler always uses the fixed-length
record format for compiled EXEC files in z/VM, but the
record format might have been changed later.

© Copyright IBM Corp. 1991, 2013 175

User response

Recompile the program or format it for z/VM by using
the REXXF EXEC if the program was imported from
z/OS.

EAGREX0302I Program is not a valid compiled
EXEC

Explanation

The compiled code in the program file is not in the
format that the Compiler generates.

User response

Recompile the program.

EAGREX0303I Level of IBM REXX Library too low

Explanation

The program cannot be run, because it was compiled
for a more recent version of the Library than the one
installed on your system, or it contains language
features that are not supported by the specified level
of the Library.

User response

Do one of the following:

• Run the program on a system with a version of the
Library that corresponds to the version of the
Compiler used to compile the program.

• If you have access to the source file, recompile the
program on the system on which you want to run it.

• Recompile the program with the recommended
minimum library level (LIBLEVEL compiler option).
For more information refer to “LIBLEVEL” on page
27.

If the error persists after recompilation, notify your
system support personnel.

Note: If the length in the REXX LPA library and the
length of what was loaded did not match, check if
there are old LPA modules in one of your existing
libraries. Remove the old library to fix the problem.

EAGREX0304I The program cannot run with the
Alternate Library

Explanation

The program has been compiled with the
NOALTERNATE compiler option.

User response

Do one of the following:

• Compile the program with the ALTERNATE compiler
option.

• Check your installation to make sure that you use the
Library.

EAGREX0400E Error 4 running compiled program,
line nn: Program interrupted

Explanation

The system interrupted execution of the REXX
program. This is usually caused by your issuing the HI
(Halt Interpretation) immediate command under z/OS
or z/VM, or the EXECUTIL HI command under z/OS.

User response

Check your code and correct it.

EAGREX0500E Error 5 running compiled program,
line nn: Machine storage
exhausted or request exceeds
limit

Explanation

The Library was unable to get the storage needed for
its work areas and variables. This might have occurred
because the program that invoked the compiled
program has already used up most of the available
storage.

User response

Under z/OS, use a larger region size.

Under z/VM, you can obtain more free storage by
releasing a minidisk or SFS directory (to recover the
space used for the file directory) or by deleting a
nucleus extension. Alternatively, define a larger virtual
storage size for the virtual machine and re-IPL CMS.

Under VSE, use a larger partition size.

EAGREX0600E Error 6 running compiled program,
line nn: Unmatched "/*" or quote

Explanation

A comment or literal string was started but never
finished.

User response

See the secondary message for more specific
information. Correct the literal string or comment.

EAGREX0601I Unmatched quote

Explanation

A literal string was started but never finished.

176 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

Check your code and correct it.

EAGREX0602I Unmatched "/*"

Explanation

A comment was started but never finished.

User response

Check your code and correct it.

EAGREX0603I Unmatched shift-out character in
DBCS string

Explanation

A literal string or a comment that has unmatched shift-
out/shift-in pairs (that is, a shift-out character without
a shift-in character or an odd number of bytes
between the shift-out and shift-in characters) was
processed with OPTIONS 'ETMODE' in effect.

User response

Check your code and correct it.

EAGREX0700E Error 7 running compiled program,
line nn: WHEN or OTHERWISE
expected

Explanation

Within a SELECT instruction, at least one WHEN clause
(and possibly an OTHERWISE clause) is expected. If
any other instruction is found (or no WHEN clause is
found before the OTHERWISE) then this message is
issued.

User response

Insert one or more WHEN clauses after the SELECT.

EAGREX0800E Error 8 running compiled program,
line nn: Unexpected THEN or ELSE

Explanation

The program tried to execute a THEN or ELSE clause
without first executing the corresponding IF or WHEN
clause. This error occurs when control is transferred
within or into an IF or WHEN construct, or if a THEN or
an ELSE is outside the context of an IF or WHEN
construct.

User response

See the secondary message for more specific
information.

EAGREX0801I Unexpected THEN

Explanation

The program tried to execute a THEN clause without
first executing the corresponding IF or WHEN clause.
This error occurs when control is transferred to the
THEN clause.

User response

Check your code and correct it.

EAGREX0802I Unexpected ELSE

Explanation

The program tried to execute an ELSE clause without
first executing the corresponding IF clause. This error
occurs when control is transferred to the ELSE clause.

User response

Check your code and correct it.

EAGREX0900E Error 9 running compiled program,
line nn: Unexpected WHEN or
OTHERWISE

Explanation

The program tried to execute a WHEN or OTHERWISE
clause without first executing the corresponding
SELECT instruction. This error occurs when control is
transferred to a WHEN or OTHERWISE clause, or if a
WHEN or an OTHERWISE appears outside of the
context of a SELECT instruction.

User response

See the secondary message for more specific
information.

EAGREX0901I Unexpected WHEN

Explanation

The program tried to execute a WHEN clause without
first executing the corresponding SELECT instruction.
This error occurs when control is transferred to a
WHEN clause.

User response

Check your code and correct it.

EAGREX0902I Unexpected OTHERWISE

Runtime Messages 177

Explanation

The program tried to execute an OTHERWISE clause
without first executing the corresponding SELECT
instruction. This error occurs when control is
transferred to an OTHERWISE clause.

User response

Check your code and correct it.

EAGREX1000E Error 10 running compiled
program, line nn: Unexpected or
unmatched END

Explanation

The program reached an END clause when the
corresponding DO loop or SELECT clause was not
active. This error can occur if you transfer control into
a loop, or if there are too many ENDs in the program.
Note that the SIGNAL instruction terminates any
current loops, so it cannot be used to transfer control
from one place inside a loop to another. Another cause
for this message is placing an END immediately after a
THEN or ELSE subkeyword or specifying a name on the
END keyword that does not match the name of the
control variable in a DO clause.

User response

Check your code and correct it.

EAGREX1100E Error 11 running compiled
program, line nn: Control stack full

Explanation

This message is issued if the program exceeds a
Library runtime limit.

User response

Check your code and correct it.

EAGREX1101I PROCEDURE nesting exceeds
30000

Explanation

This message is issued if you exceed the limit of
30 000 active procedures. A recursive subroutine that
does not terminate correctly could loop until it causes
this message to be issued.

User response

Check your code and correct it.

EAGREX1200E Error 12 running compiled
program, line nn: Clause too long

Explanation

The Compiler encountered a clause that exceeds the
allowed limit.

User response

Rewrite the clause.

EAGREX1300E Error 13 running compiled
program, line nn: Invalid character
in program

Explanation

The string to be interpreted includes an unexpected
character outside a literal (quoted) string or comment
that is not a blank or one of the following:

• A-Z a-z 0-9 (Alphanumerics)
• @ # $ ¢ . ? ! _ (Name Characters)
• & * () - + = \ ¬ ' " ; : < , > / | %
(Special Characters)

• Any DBCS character when OPTIONS
'ETMODE' is in effect

User response

Check your code and correct it. In case the program
was imported from another system: Verify that the
translation of the characters was correct.

EAGREX1400E Error 14 running compiled
program, line nn: Incomplete DO/
SELECT/IF

Explanation

On reaching the end of the program (or end of the
string in an INTERPRET instruction), it has been
detected that there is a DO or SELECT without a
matching END, or that a THEN clause or an ELSE
clause is not followed by an instruction.

User response

See the secondary message for more specific
information.

EAGREX1401I Incomplete DO instruction: END
not found

Explanation

No matching END for an earlier DO was found.

User response

Check your code and correct it.

178 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

EAGREX1402I Incomplete SELECT instruction:
END not found

Explanation

No matching END for an earlier SELECT was found.

User response

Check your code and correct it.

EAGREX1403I Instruction expected after THEN

Explanation

A THEN clause is not followed by an instruction.

User response

Check your code and correct it.

EAGREX1404I Instruction expected after ELSE

Explanation

An ELSE clause is not followed by an instruction.

User response

Check your code and correct it.

EAGREX1500E Error 15 running compiled
program, line nn: Invalid
hexadecimal or binary string

Explanation

Hexadecimal strings might not have leading or trailing
blanks, and might only have embedded blanks at byte
boundaries. Only the digits 0-9 and the letters a-f and
A-F are allowed. Similarly, binary strings might only
have blanks added at the boundaries of groups of four
binary digits, and only the digits 0 and 1 are allowed.

User response

Check your code and correct it.

EAGREX1600E Error 16 running compiled
program, line nn: Label not found

Explanation

The label specified in a SIGNAL instruction, or
specified by the result of the expression on a SIGNAL
VALUE instruction, could not be found. There might be
an error in the expression or the label might not have
been defined.

User response

Check your code and correct it.

EAGREX1601I Label reference in SIGNAL is
mixed case, but label is uppercase

Explanation

The label specified in a SIGNAL instruction, or by the
result of the expression on a SIGNAL VALUE
instruction is a mixed-case string, but the name of the
label that probably is intended to be referenced is
defined in uppercase.

User response

Change the expression so that it results in an
uppercase string.

EAGREX1700E Error 17 running compiled
program, line nn: Unexpected
PROCEDURE

Explanation

A PROCEDURE instruction was encountered in an
incorrect position. This error is caused by "dropping
through" into a PROCEDURE instruction, rather than
invoking it properly by a CALL instruction or a function
reference.

User response

Check your code and correct it.

EAGREX1800E Error 18 running compiled
program, line nn: THEN expected

Explanation

All IF clauses and WHEN clauses in REXX must be
followed by a THEN clause. Some other clause was
found when a THEN clause was expected.

User response

Check your code and correct it.

EAGREX1900E Error 19 running compiled
program, line nn: String or symbol
expected

Explanation

On a SIGNAL or CALL instruction a literal string or a
symbol was expected but neither was found.

User response

See the secondary message for more specific
information.

EAGREX1901I CALL not followed by routine
name/ON/OFF

Runtime Messages 179

Explanation

The name of a routine, or ON with a condition name, or
OFF with a condition name is expected in a CALL
instruction.

User response

Check your code and correct it.

EAGREX1902I SIGNAL not followed by label
name or VALUE/ON/OFF or
expression

Explanation

SIGNAL is not followed by a label name, or by ON, or
OFF, or VALUE, or an expression.

User response

Check your code and correct it.

EAGREX2000E Error 20 running compiled
program, line nn: Symbol expected

Explanation

In the clauses CALL ON, END, ITERATE, LEAVE, and
SIGNAL ON, a single symbol is expected. Either it was
not present when required, or some other token was
found, or a symbol followed by some other token was
found.

Alternatively, the DROP, UPPER, and PROCEDURE
EXPOSE instructions expect a list of symbols or
variable references. Some other token was found.

User response

See the secondary message for more specific
information.

EAGREX2001I Variable expected

Explanation

Some other token was found where a variable was
expected.

User response

Check your code and correct it.

EAGREX2002I UPPER list can contain only simple
or compound variables

Explanation

The list of variables for the UPPER instruction contains
items other than the permitted ones.

User response

Check your code and correct it.

EAGREX2003I NAME not followed by routine
name

Explanation

In a CALL ON clause the subkeyword NAME must be
followed by the name of a routine.

User response

Check your code and correct it.

EAGREX2004I NAME not followed by label name

Explanation

In a SIGNAL ON clause the subkeyword NAME must be
followed by a label name.

User response

Check your code and correct it.

EAGREX2100E Error 21 running compiled
program, line nn: Invalid data at
end of clause

Explanation

A clause is followed by some token other than a
comment, where no other token was expected.

User response

Check your code and correct it.

EAGREX2200E Error 22 running compiled
program, line nn: Invalid character
string

Explanation

Under OPTIONS 'ETMODE' a symbol was detected
which contains characters or character combinations
not allowed for symbols containing DBCS characters.

User response

Check your code and correct it.

EAGREX2300E Error 23 running compiled
program, line nn: Invalid SBCS/
DBCS mixed string

Explanation

A character string that has unmatched shift-out—shift-
in pairs (that is, a shift-out character without a shift-in

180 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

character) or an odd number of bytes between the
shift-out—shift-in characters was processed with
OPTIONS 'EXMODE' in effect or was passed to a DBCS
function.

User response

Correct the character string.

EAGREX2400E Error 24 running compiled
program, line nn: Invalid TRACE
request

Explanation

The setting specified on a TRACE instruction starts
with a character that does not match one of the valid
TRACE settings.

User response

Check your code and correct it.

EAGREX2500E Error 25 running compiled
program, line nn: Invalid
subkeyword found

Explanation

The language processor expected a particular
subkeyword in an instruction but found something
else. For example, in the NUMERIC instruction the
second token must be the subkeyword DIGITS, FORM,
or FUZZ. If NUMERIC is followed by anything else, this
message is issued.

User response

Check your code and correct it.

EAGREX2501I PARSE not followed by a valid
subkeyword

Explanation

A PARSE keyword was found that is not followed by
the UPPER subkeyword, or by one of the subkeywords
ARG, EXTERNAL, LINEIN, NUMERIC, PULL, SOURCE,
VALUE, VAR, or VERSION.

Note: LINEIN is a valid subkeyword only on VM/ESA
Release 2.1 or subsequent releases.

User response

Check your code and correct it.

EAGREX2502I PARSE UPPER not followed by a
valid subkeyword

Explanation

A PARSE UPPER was found that is not followed by one
of the subkeywords ARG, EXTERNAL, LINEIN,
NUMERIC, PULL, SOURCE, VALUE, VAR, or VERSION.

User response

Check your code and correct it.

EAGREX2503I CALL ON/OFF not followed by
supported condition name

Explanation

One of the conditions: ERROR, FAILURE, HALT or, on
VM/ESA Release 2.1 or subsequent releases,
NOTREADY is expected in a CALL ON or CALL OFF
instruction.

User response

Check your code and correct it.

EAGREX2504I ";" or subkeyword NAME expected

Explanation

Incorrect data was found at the end of a CALL ON
instruction. The only subkeyword accepted after the
condition name is NAME.

User response

Check your code and correct it.

EAGREX2505I NUMERIC not followed by DIGITS/
FORM/FUZZ

Explanation

One of the subkeywords DIGITS, FORM, or FUZZ is
expected in a NUMERIC instruction.

User response

Check your code and correct it.

EAGREX2506I NUMERIC FORM not followed by
expression/valid subkeyword/";"

Explanation

Incorrect data was found at the end of a NUMERIC
FORM. The only data recognized after FORM is an
expression or one of the subkeywords VALUE,
SCIENTIFIC, or ENGINEERING.

User response

Check your code and correct it.

Runtime Messages 181

EAGREX2507I PROCEDURE not followed by
EXPOSE or ";"

Explanation

Incorrect data were found in a PROCEDURE
instruction. The only subkeyword recognized on a
PROCEDURE instruction is EXPOSE.

User response

Check your code and correct it.

EAGREX2508I SIGNAL ON/OFF not followed by
supported condition name

Explanation

One of the conditions: ERROR, FAILURE, HALT,
NOVALUE, SYNTAX or, on VM/ESA Release 2.1 or
subsequent releases, NOTREADY is expected in a
SIGNAL ON or SIGNAL OFF instruction.

User response

Check your code and correct it.

EAGREX2600E Error 26 running compiled
program, line nn: Invalid whole
number

Explanation

An expression that was expected to evaluate to a
whole number either did not evaluate to a whole
number within the current setting of NUMERIC DIGITS
or was greater than the limit, for the intended use, of
999 999 999.

User response

Check your code and correct it.

EAGREX2601I Exponent not a whole number

Explanation

The right-hand term of the exponentiation (**) operator
did not evaluate to a whole number within the current
setting of NUMERIC DIGITS or was greater than the
limit, for the intended use, of 999 999 999.

User response

Check your code and correct it.

EAGREX2602I Returned value not a whole
number

Explanation

The return code passed back from an EXIT or RETURN
instruction (when a REXX program is invoked as a
command) is not a whole number in the range from
-2147483648 through 2147483647.

User response

Check your code and correct it.

EAGREX2603I NUMERIC setting not a whole
number

Explanation

An expression in the NUMERIC instruction did not
evaluate to a whole number within the current setting
of NUMERIC DIGITS or was greater than the limit, for
the intended use, of 999 999 999.

User response

Check your code and correct it.

EAGREX2604I Quotient from integer division not
a whole number

Explanation

The result of an integer division (%) is not a whole
number within the current setting of NUMERIC
DIGITS.

User response

Check your code and correct it.

EAGREX2605I Quotient from remainder operation
not a whole number

Explanation

The result of the integer division performed to obtain
the remainder (//) is not a whole number within the
current setting of NUMERIC DIGITS.

User response

Check your code and correct it.

EAGREX2606I Repetition value in DO not a whole
number

Explanation

The repetition value in a DO clause did not evaluate to
a whole number within the current setting of NUMERIC
DIGITS or was greater than the limit, for the intended
use, of 999 999 999.

182 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

Check your code and correct it.

EAGREX2607I Column number in PARSE not a
whole number

Explanation

A column number in an absolute positional pattern or
the value of a variable specified in a variable pattern
used as absolute positional pattern on a PARSE
instruction is either not a whole number within the
current setting of NUMERIC DIGITS, or is greater than
the limit, for the intended use, of 999 999 999.

User response

Check your code and correct it.

EAGREX2608I Relative position in PARSE not a
whole number

Explanation

A number specified as a relative positional pattern or
the value of a variable specified in a variable pattern
used as relative positional pattern on a PARSE
instruction is either not a whole number within the
current setting of NUMERIC DIGITS, or is greater than
the limit, for the intended use, of 999 999 999.

User response

Check your code and correct it.

EAGREX2609I Input to stream I/O function not a
whole number

Explanation

A number specified as input to a stream I/O function is
not a whole number.

User response

Check your code and correct it.

EAGREX2700E Error 27 running compiled
program, line nn: Invalid DO
syntax

Explanation

Some syntax error was found in the DO clause.

User response

See the secondary message for more specific
information.

EAGREX2701I FOREVER not followed by WHILE/
UNTIL/";"

Explanation

Incorrect data were found after DO FOREVER. The only
valid subkeywords after DO FOREVER are WHILE and
UNTIL.

User response

Check your code and correct it.

EAGREX2703I TO/BY/FOR phrase occurs more
than once in a DO

Explanation

A DO clause contains more than one TO, BY, or FOR-
phrase.

User response

Check your code and correct it.

EAGREX2706I TO/BY/FOR not followed by
expression

Explanation

An expression is expected after a TO, BY, or FOR
subkeyword in a DO clause.

User response

Check your code and correct it.

EAGREX2800E Error 28 running compiled
program, line nn: Invalid LEAVE or
ITERATE

Explanation

The program tried to execute a LEAVE or ITERATE
instruction when no loop was active. This error occurs
when control transfers within or into a loop, or if the
LEAVE or ITERATE was encountered outside a
repetitive DO loop. A SIGNAL instruction terminates all
active loops; any ITERATE or LEAVE instruction issued
then causes this message to be issued.

User response

See the secondary message for more specific
information.

EAGREX2801I Invalid LEAVE

Runtime Messages 183

Explanation

The program tried to execute a LEAVE instruction
when no loop was active.

User response

Check your code and correct it.

EAGREX2802I Invalid ITERATE

Explanation

The program tried to execute an ITERATE instruction
when no loop was active.

User response

Check your code and correct it.

EAGREX2803I LEAVE not valid outside repetitive
DO loop

Explanation

A LEAVE instruction was found outside a repetitive DO
loop.

User response

Check your code and correct it.

EAGREX2804I ITERATE not valid outside
repetitive DO loop

Explanation

An ITERATE instruction was found outside a repetitive
DO loop.

User response

Check your code and correct it.

EAGREX2805I Variable does not match control
variable of an active DO loop

Explanation

The symbol specified on a LEAVE or ITERATE
instruction does not match the control variable of a
currently active DO loop.

User response

Check your code and correct it.

EAGREX2806I Name of DO control variable
expected

Explanation

The name of the control variable of a currently active
DO loop is expected after a LEAVE or ITERATE
instruction. Some other token was found.

User response

Check your code and correct it.

EAGREX2900E Error 29 running compiled
program, line nn: Environment
name too long

Explanation

The environment name on an ADDRESS instruction
was specified as the value of an expression, and the
result of evaluating the expression is longer than the
limit of 8 characters.

User response

Check your code and correct it.

EAGREX3000E Error 30 running compiled
program, line nn: Name or string >
250 characters

Explanation

A name or string that is longer than the limit of 250
characters was found.

User response

See the secondary message for more specific
information.

EAGREX3001I Name of compound variable > 250
characters

Explanation

The name of a compound variable, after substitution,
is longer than the limit of 250 characters.

User response

Check your code and correct it.

EAGREX3002I Label name > 250 characters

Explanation

The name of a label specified as an expression on a
SIGNAL VALUE instruction is longer than the limit of
250 characters.

User response

Check your code and correct it.

184 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

EAGREX3004I String > 250 characters

Explanation

A quoted string, after substitution of hexadecimal or
binary strings, exceeds the limit of 250 characters.

User response

Check your code and correct it.

EAGREX3005I Name > 250 characters

Explanation

The name of a symbol exceeds the limit of 250
characters.

User response

Check your code and correct it.

EAGREX3100E Error 31 running compiled
program, line nn: Name starts with
number or "."

Explanation

A value must not be assigned to a variable whose
name starts with a digit or a period. Similarly, a symbol
whose name starts with a digit or a period can not be
contained in the list of variables of a DROP, EXPOSE, or
UPPER instruction, and cannot follow the VAR
subkeyword of the PARSE instruction.

User response

See the secondary message for more specific
information.

EAGREX3101I "(" not followed by a variable
name

Explanation

A variable name denoting a subsidiary list was
expected in a DROP instruction or after the
subkeyword EXPOSE of a PROCEDURE instruction.

User response

Check your code and correct it.

EAGREX3102I Variable name expected

Explanation

A name starting with a digit or a period was found in
the list of a DROP instruction or after the subkeyword
EXPOSE of a PROCEDURE instruction.

User response

Check your code and correct it.

EAGREX3104I Variable required to the left of "="

Explanation

The target of an assignment was found to be a symbol
starting with a digit or a period.

User response

Check your code and correct it.

EAGREX3200E Error 32 running compiled
program, line nn: Invalid use of
stem

Explanation

The name of a stem has been found in the list of an
UPPER instruction.

User response

Check your code and correct it.

EAGREX3300E Error 33 running compiled
program, line nn: Invalid
expression result

Explanation

An expression result was encountered that is incorrect
in its particular context.

User response

Check your code and correct it.

EAGREX3301I Invalid NUMERIC expression
result

Explanation

The result of an expression on the NUMERIC
instruction is incorrect. The most common cause of
this error is a DIGITS or FUZZ value that is not a whole
number.

User response

Check your code and correct it.

EAGREX3302I NUMERIC DIGITS not greater than
NUMERIC FUZZ

Explanation

The program issued a NUMERIC instruction that would
make the current NUMERIC DIGITS value less than or

Runtime Messages 185

equal to the current NUMERIC FUZZ value. The DIGITS
value must be greater than the FUZZ value.

User response

Check your code and correct it.

EAGREX3304I SIGNAL VALUE not followed by
expression

Explanation

In a SIGNAL VALUE instruction the required expression
is missing.

User response

Check your code and correct it.

EAGREX3305I ADDRESS VALUE not followed by
expression

Explanation

In the ADDRESS VALUE instruction the required
expression is missing.

User response

Check your code and correct it.

EAGREX3306I NUMERIC FORM VALUE not
followed by expression

Explanation

In the NUMERIC FORM VALUE instruction the required
expression is missing.

User response

Check your code and correct it.

EAGREX3400E Error 34 running compiled
program, line nn: Logical value not
0 or 1

Explanation

The expression in an IF-, WHEN-, DO WHILE-, or DO
UNTIL-phrase must result in a 0 or 1, as must any term
operated on by a logical operator (that is, ¬, \, |, &, or
&&). For example, the phrase:

If result Then Exit rc

fails if result has a value other than 0 or 1. Thus, the
phrase might be better written as:

If result¬=0 Then Exit rc

User response

Check your code and correct it.

EAGREX3401I WHILE not followed by expression

Explanation

The subkeyword WHILE must be followed by an
expression.

User response

Check your code and correct it.

EAGREX3402I UNTIL not followed by expression

Explanation

The subkeyword UNTIL must be followed by an
expression.

User response

Check your code and correct it.

EAGREX3403I IF not followed by expression

Explanation

The keyword IF must be followed by an expression.

User response

Check your code and correct it.

EAGREX3404I WHEN not followed by expression

Explanation

The keyword WHEN must be followed by an
expression.

User response

Check your code and correct it.

EAGREX3500E Error 35 running compiled
program, line nn: Invalid
expression

Explanation

An expression contains a grammatical error.

User response

See the secondary message for more specific
information.

EAGREX3501I Assignment operator must not be
followed by another "="

186 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

A second "=" was found immediately after the first one
of an assignment.

User response

Delete one "=" to form a correct assignment, or, if the
clause was intended as a command, enclose the
expression in parentheses.

EAGREX3502I Left operand missing

Explanation

An operator was found that is not a prefix operator,
and whose left operand is missing.

User response

Check your code and correct it.

EAGREX3503I Right operand missing

Explanation

An operator is not followed by an operand.

User response

Check your code and correct it.

EAGREX3504I Prefix operator not followed by
operand

Explanation

A prefix operator was found that is not followed by a
symbol or by a literal string or by an open parenthesis.

User response

Check your code and correct it.

EAGREX3505I "(" not followed by an expression
or subexpression

Explanation

An open parenthesis was found that is not followed by
a valid expression or subexpression.

User response

Check your code and correct it.

EAGREX3506I Invalid operator

Explanation

An expression contains an invalid sequence of
operator characters.

User response

Check your code and correct it.

EAGREX3507I Invalid use of NOT operator

Explanation

An expression or subexpression of the form a¬b or
(a)¬b was found.

User response

If you want to concatenate a negated term:

• To some other operand, enclose it into parentheses,
for example: left(a,3)(¬b).

• To a symbol or a literal string, use the concatenation
operator, for example: a||(¬b).

EAGREX3508I Missing expression

Explanation

An expression is missing where one is expected.
Example: INTERPRET;

User response

Check your code and correct it.

EAGREX3600E Error 36 running compiled
program, line nn: Unmatched "(" in
expression

Explanation

The parentheses in an expression are not paired
correctly. There are more open parentheses than close
parentheses.

User response

Check your code and correct it.

EAGREX3700E Error 37 running compiled
program, line nn: Unexpected "," or
")"

Explanation

In an expression, either a comma was found outside a
function invocation, or there are too many close
parentheses.

User response

Check your code and correct it.

EAGREX3800E Error 38 running compiled
program, line nn: Invalid template
or pattern

Runtime Messages 187

Explanation

Within a parsing template, a special character that is
not allowed was found, or the syntax of a variable
pattern is incorrect. This message is also issued if the
WITH subkeyword is omitted in a PARSE VALUE
instruction.

User response

Check your code and correct it.

EAGREX3801I Incomplete PARSE VALUE: WITH
not found

Explanation

The WITH subkeyword is omitted in a PARSE VALUE
instruction.

User response

Check your code and correct it.

EAGREX3900E Error 39 running compiled
program, line nn: Evaluation stack
overflow

Explanation

INTERPRET or TRACE caused a stack overflow. You
exceeded the maximum number of nesting levels.

User response

Check your code and correct it.

EAGREX4000E Error 40 running compiled
program, line nn: Incorrect call to
routine

Explanation

The program invoked a built-in function with incorrect
parameters, or invoked an external routine, which
ended with a SYNTAX condition that was not trapped.

If you were not trying to invoke a routine, you might
have a symbol or a string adjacent to a left parenthesis
when you meant it to be separated by a space or an
operator. A symbol or a string in this position causes
the phrase to be read as a function call. For example,
TIME(4+5) should be written as TIME*(4+5) if a
multiplication was intended.

User response

Check your code and correct it.

EAGREX4001I Null string specified as option

Explanation

The program invoked a built-in function that has an
option argument, and passed a null string as the
option.

User response

Specify a valid value for the option.

EAGREX4002I Invalid option

Explanation

The program invoked a built-in function that has an
option argument, and passed an incorrect value for the
option.

User response

Specify a valid value for the option.

EAGREX4003I Argument not positive

Explanation

The program invoked a built-in function with an
argument whose value is less than or equal to zero.

User response

Check your code and correct it.

EAGREX4004I Argument not a single character

Explanation

A built-in function expected an argument of length 1;
one of a different length was supplied.

User response

Check your code and correct it.

EAGREX4005I Argument not a whole number

Explanation

The value of an argument on the invoked built-in
function must be a whole number, but the program
supplied something else. For example, a length
argument is expected to be a whole number.

User response

Check your code and correct it.

EAGREX4006I First argument negative and
second argument not supplied

188 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

The program did not supply the second argument of
the D2C or D2X function, but this argument is required
when the first argument is a negative number.

User response

Check your code and correct it.

EAGREX4007I String longer than 250 characters
(500 hexadecimal digits)

Explanation

The program invoked the C2D or X2D function with an
input string that exceeds one of the following limits:

• The input string for the C2D function must not have
more than 250 characters that are significant in
forming the result of the function.

• The input string for the X2D function must not have
more than 500 hexadecimal digits that are
significant in forming the final result.

User response

Check your code and correct it.

EAGREX4008I Argument not a valid hexadecimal
string

Explanation

The value of an argument on the invoked built-in
function must be a hexadecimal string, but the
program supplied something else. A hexadecimal
string can contain only the characters 0-9, a-f, and A-F.
Blanks may only occur only at byte boundaries and are
not allowed at the beginning or the end of the string.

User response

Check your code and correct it.

EAGREX4009I Output string longer than 250
characters (500 hexadecimal
digits)

Explanation

The output string on an invocation of the D2C or D2X
function would exceed one of the following limits:

• The output string of the D2C function must not have
more than 250 significant characters.

• The output string of the D2X function must not have
more than 500 significant hexadecimal characters.

User response

Check your code and correct it.

EAGREX4010I Result not a whole number

Explanation

The data returned by the invoked built-in function is
not a whole number and cannot be formatted without
an exponent. This can occur if the NUMERIC DIGITS
value is not large enough. For example, this error
occurs if you set NUMERIC DIGITS to 2 and then
invoke the C2D function with C2D(1); the result is
241, which needs three digits, but only two digits are
allowed for.

User response

Check your code and correct it.

EAGREX4011I Result too long

Explanation

The data returned by the invoked built-in function is
too large for the available memory. This error can
occur if you use, for example, the COPIES, INSERT,
OVERLAY, or SPACE built-in functions.

User response

Specify smaller string or count arguments, or obtain
more storage.

EAGREX4012I Failure in system service, no clock
available

Explanation

The invoked built-in function was unable to obtain the
system time, due to a failure in a system service.

User response

If the problem persists, notify your system support
personnel.

EAGREX4013I "min" > "max" on RANDOM
function

Explanation

The program invoked the RANDOM built-in function
with a value for the min argument greater than the
value for the max argument. The min argument must
be less than or equal to the max argument.

User response

Check your code and correct it.

Runtime Messages 189

EAGREX4014I "max" - "min" exceeds 100000 in
RANDOM function

Explanation

The range between the min and max arguments in an
invocation of the RANDOM built-in function is greater
than the limit of 100 000.

User response

Check your code and correct it.

EAGREX4015I Error number out of range in
ERRORTEXT function

Explanation

The program invoked the ERRORTEXT built-in function
with an incorrect value for the error number argument.
The error number must be in the range of 0 through
99.

User response

Check your code and correct it.

EAGREX4017I Argument not positive or zero

Explanation

The program invoked a built-in function with a value
less than zero for an argument that must be greater
than or equal to zero.

User response

Check your code and correct it.

EAGREX4018I Invalid pad character

Explanation

The value of the pad argument on the invoked built-in
function must be a single character, but the program
supplied something else.

User response

Check your code and correct it.

EAGREX4019I Elapsed-time clock out of range in
TIME function invocation

Explanation

The elapsed-time clock was out of range in an
invocation of the TIME built-in function. This error
occurs if the number of seconds in the elapsed-time
clock exceeds nine digits.

User response

This error might be caused by a system problem; notify
your system support personnel.

EAGREX4020I Line number out of range in
SOURCELINE function

Explanation

An invocation of the SOURCELINE built-in function was
incorrect for one of these reasons:

• The program passed an incorrect line number to the
function.

• The program was compiled with the NOSLINE
(NOSL) option.

User response

If the program was compiled with the SLINE option,
ensure that the line number does not exceed the
number of the final line in the source file. If the
program was compiled with the NOSLINE option,
either change the program or recompile with the
SLINE option.

EAGREX4021I Invalid symbol in name argument
of VALUE function

Explanation

The value of the name argument in the VALUE built-in
function must be a valid REXX symbol, but the
program supplied something else. The most common
cause of this message is the use of special characters
that are not valid within symbols.

User response

Check your code and correct it.

EAGREX4022I Incorrect call to built-in function
or DBCS function package

Explanation

An error occurred when a function was invoked with
OPTIONS 'EXMODE' in effect. This error can occur for
functions in the DBCS function package and for built-in
functions that perform string operations.

User response

If the cause of the problem is not obvious, debug the
program using the interpreter.

EAGREX4023I Argument not a number

190 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Explanation

The value of an argument on the invoked built-in
function must be a number, but the program supplied
something else.

User response

Check your code and correct it.

EAGREX4024I Exponent exceeds specified digits
in FORMAT function

Explanation

The value supplied for the exponent argument of the
FORMAT built-in function is out of range for the result.
This error occurs if the FORMAT built-in function is
invoked with an exponent size too small for the
number to be formatted.

User response

Check your code and correct it.

EAGREX4025I Integer part exceeds specified
digits in FORMAT function

Explanation

The program invoked the FORMAT built-in function
with a value for the before argument that is not large
enough to contain the integer part of the number to be
formatted. For example, this error occurs if the
function is invoked with FORMAT(225.1,2); there are
three integer digits in the number, but space has been
specified for only two digits.

User response

Check your code and correct it.

EAGREX4026I External routine returned with
non-zero return code

Explanation

An external routine returned with a nonzero return
code.

User response

Correct the external routine.

EAGREX4027I External routine could not obtain
an EVALBLOCK

Explanation

An external routine could not obtain an EVALBLOCK
control block, because there was not enough storage.

User response

Use a larger region size.

EAGREX4028I External routine could not locate
language processor environment

Explanation

An external routine could not locate a language
processor environment.

User response

Notify your system support personnel.

EAGREX4029I External routine encountered an
ABEND

Explanation

An external routine abnormally ended.

User response

Correct the external routine.

EAGREX4030I Invalid number of arguments on
built-in function invocation

Explanation

A built-in function was invoked, but the number of
arguments passed is not in the range of arguments
expected by the function.

User response

Check your code and correct it.

EAGREX4031I Required argument missing in
built-in function invocation

Explanation

A built-in function was invoked, but an argument
required by this function was not provided.

User response

Check your code and correct it.

EAGREX4032I Argument not a valid binary string

Explanation

The value of an argument on the invoked built-in
function must be a binary string, but the program
supplied something else. A binary string can contain
only the digits 0 and 1. Blanks may only occur at the
boundaries of groups of four binary digits and are not
allowed at the beginning or the end of the string.

Runtime Messages 191

User response

Check your code and correct it.

EAGREX4033I Selector not supported for VALUE
function

Explanation

A selector for the VALUE built-in function is only
supported on CMS Release 6 or subsequent releases.

User response

Check your code and correct it.

EAGREX4034I Global variable name longer than
255 characters

Explanation

The VALUE built-in function was invoked with a
selector on CMS Release 6 or subsequent releases, but
the length of the name of the variable exceeds the
allowed maximum of 255 characters.

User response

Check your code and correct it.

EAGREX4035I New global variable value longer
than 255 characters

Explanation

The VALUE built-in function was invoked with a
selector on CMS Release 6 or subsequent releases, but
the length of the value exceeds the allowed maximum
of 255 characters.

User response

Check your code and correct it.

EAGREX4036I Invalid selector

Explanation

The VALUE built-in function was invoked with a
selector on CMS Release 6 or a subsequent release,
but the first token in the selector is not valid. Valid
tokens are GLOBAL, SESSION, and LASTING.

User response

Check your code and correct it.

EAGREX4037I Error upon invocation of system
service in VALUE function

Explanation

The VALUE built-in function was invoked with a
selector on CMS Release 6 or subsequent releases, but
the attempt to perform the desired action was
unsuccessful. This might be caused by a full A-disk, or
by an A-disk not accessed in read/write mode, or by
not having accessed an A-disk.

User response

Check your code and correct it.

EAGREX4038I Variable expected

Explanation

The first argument on an invocation of the VALUE built-
in function was a symbol starting with a numeric digit
or a period, and a selector is not supplied.

User response

Check your code and correct it.

EAGREX4039I Start value of CHARIN or
CHAROUT function must be 1

Explanation

A value other than 1 was specified as start value of the
CHARIN or CHAROUT function.

User response

Check your code and correct it.

EAGREX4040I Count value of the LINEIN function
must be 0 or 1

Explanation

A value other than 0 or 1 was specified as count value
of the LINEIN function.

User response

Check your code and correct it.

EAGREX4041I Command required for operation
'C'

Explanation

Invocation of the STREAM function with operation 'C'
requires a command as third parameter.

User response

Check your code and correct it.

192 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

EAGREX4042I Command not allowed with
operation other than 'C'

Explanation

A command can be specified only if the STREAM
function is invoked with operation 'C'.

User response

Check your code and correct it.

EAGREX4043I Operation value of STREAM
function must be 'C', 'D', or 'S'

Explanation

The only valid STREAM function operations are:

• 'C' (command)
• 'D' (description)
• 'S' (state)

User response

Check your code and correct it.

EAGREX4044I Invalid argument value in stream
I/O function

Explanation

A stream I/O function (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, or STREAM) returned an
error.

User response

Check your code and correct it.

EAGREX4045I Argument 2 is not in the format
described by argument 3

Explanation

The second argument specified is not in the format
described by the third argument.

User response

Check the format definitions of the built-in function for
which the error is reported. Either correct the value of
the second argument or change the format specified in
the third argument.

EAGREX4046I BIF argument 4/5 must be a single
non-alphanumeric character or the
null string

Explanation

You specified a wrong date separation character.

User response

Check your code and correct it.

EAGREX4047I BIF argument 1/3 is in a format
incompatible with separator in
argument 4/5

Explanation

You specified a separator character for a date type that
does not allow for separators.

User response

Check your code and correct it.

EAGREX4048I Argument 2 is not in the format
described by argument 5

Explanation

The separator character in the input date in argument
2 does not correspond to the date separator character
specified in argument 5.

User response

Check your code and correct it.

EAGREX4100E Error 41 running compiled
program, line nn: Bad arithmetic
conversion

Explanation

In an arithmetic expression, a term was found that was
not a valid number or that had an exponent outside the
range of -999 999 999 through +999 999 999.

A variable might have been incorrectly used or an
arithmetic operator might have been included in a
character expression without being put in quotes. For
example, the command MSG * Hi! should be written
as 'MSG * Hi!', otherwise the program will try to
multiply MSG by Hi!.

User response

Check your code and correct it.

EAGREX4101I Initial expression missing in
controlled DO loop

Explanation

No initial expression was found in a controlled DO loop
where one was expected.

Runtime Messages 193

User response

Check your code and correct it.

EAGREX4200E Error 42 running compiled
program, line nn: Arithmetic
overflow/underflow

Explanation

A result of an arithmetic operation was encountered
that required an exponent greater than the limit of nine
digits (more than +999 999 999 or less than
-999 999 999). This error can occur during evaluation
of an expression or during the stepping of a DO loop
control variable.

User response

Check your code and correct it.

EAGREX4201I Overflow occurred during addition
or subtraction

Explanation

The result of an addition or subtraction required an
exponent greater than 999 999 999.

User response

Check your code and correct it.

EAGREX4202I Overflow occurred during
multiplication

Explanation

The result of a multiplication required an exponent
greater than 999 999 999.

User response

Check your code and correct it.

EAGREX4203I Underflow occurred during
multiplication

Explanation

The result of a multiplication required an exponent
less than -999 999 999.

User response

Check your code and correct it.

EAGREX4204I Overflow occurred during division

Explanation

The result of a division required an exponent greater
than 999 999 999.

User response

Check your code and correct it.

EAGREX4205I Underflow occurred during
division

Explanation

The result of a division required an exponent less than
-999 999 999.

User response

Check your code and correct it.

EAGREX4206I Division by zero

Explanation

The program tried to divide a number by zero.

User response

Check your code and correct it.

EAGREX4207I Integer division by zero

Explanation

The program tried to divide a number by zero with the
% (integer division) operator.

User response

Check your code and correct it.

EAGREX4208I Remainder of division by zero

Explanation

The program tried to divide a number by zero with
the // (remainder) operator.

User response

Check your code and correct it.

EAGREX4209I Overflow occurred during
exponentiation

Explanation

The result of an exponentiation operation required an
exponent greater than 999 999 999.

194 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

Check your code and correct it.

EAGREX4210I Underflow occurred during
exponentiation

Explanation

The result of an exponentiation operation required an
exponent less than -999 999 999.

User response

Check your code and correct it.

EAGREX4211I Value zero to a negative power

Explanation

The program tried to raise zero to a negative power in
an exponentiation operation.

User response

Check your code and correct it.

EAGREX4300E Error 43 running compiled
program, line nn: Routine not
found

Explanation

An external routine called in your program could not
be found. The simplest, and probably most common,
cause of this error is a mistyped name. Another
possibility is that one of the standard function
packages is not available.

If you were not trying to invoke a routine, you might
have put a symbol or string adjacent to a left
parenthesis when you meant it to be separated by a
space or operator. The Compiler would see that as a
function invocation. A symbol or a string in this
position causes the phrase to be read as a function
call. For example, the string 3(4+5) should be written
as 3*(4+5) if a multiplication was intended.

User response

Check your code and correct it.

EAGREX4400E Error 44 running compiled
program, line nn: Function did not
return data

Explanation

The program invoked an external routine as a function
within an expression. The routine seemed to end
without error, but it did not return data for use within
the expression.

User response

Check your code and correct it.

EAGREX4500E Error 45 running compiled
program, line nn: No data specified
on function RETURN

Explanation

A REXX program or internal routine has been called as
a function, but an attempt is being made to return (by
a RETURN instruction) without passing back any data.

User response

Check your code and correct it.

EAGREX4600E Error 46 running compiled
program, line nn: Invalid variable
reference

Explanation

Within a DROP or PROCEDURE instruction, the syntax
of a variable reference (a variable whose value is to be
used, indicated by its name being enclosed in
parentheses) is incorrect. The close parenthesis that
should immediately follow the variable name is
missing.

User response

Check your code and correct it.

EAGREX4700E Error 47 running compiled
program, line nn: Unexpected label

Explanation

A label was found in the string of an INTERPRET
instruction.

User response

Check your code and correct it.

EAGREX4800E Error 48 running compiled
program, line nn: Failure in system
service

Explanation

Either a system service, such as user input, output, or
manipulation of the console stack, has failed to work
correctly, or a system exit detected such an error in a
system service.

Runtime Messages 195

User response

Ensure that your input is correct and that your program
is working correctly. If the problem persists, notify
your system support personnel.

EAGREX4801I Error in EXECINIT invocation

Explanation

The EXECINIT routine specified in the module name
table either could not be invoked, or returned a
nonzero return code.

User response

Notify your system support personnel.

EAGREX4802I Error in EXECTERM invocation

Explanation

The EXECTERM routine specified in the module name
table either could not be invoked, or returned a
nonzero return code.

User response

Notify your system support personnel.

EAGREX4803I EVALBLOCK cannot be obtained

Explanation

The Library attempted to obtain an EVALBLOCK control
block by calling the IRXRLT system routine with the
GETEVAL function, but did not succeed.

User response

Notify your system support personnel.

EAGREX4804I Error in invocation of global exit
for REXX programs

Explanation

A global exit for REXX programs on z/VM was
specified, but cannot be invoked due to missing
system interfaces. You might be missing a prerequisite
z/VM PTF.

User response

Notify your system support personnel.

EAGREX4805I System interfaces for invocation of
stream I/O function not available

Explanation

Stream I/O on VM/ESA Release 2.1 and VM/ESA
Release 2.2 was specified, but cannot be invoked due
to missing system interfaces. You might be missing a
prerequisite z/VM PTF.

User response

Notify your system support personnel.

EAGREX4806I Error in stream I/O function

Explanation

A stream I/O function (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, or STREAM) returned an
error.

User response

Check your code and correct it.

EAGREX4900E Error 49 running compiled
program, line nn: Language
processor failure

Explanation

An internal self-consistency check of the INTERPRET
processor indicated an error.

User response

Report any occurrence of this message to your IBM
representative.

EAGREX9999S Message number nnn

Explanation

The Library was about to issue a message but the
message could not be found in the message repository
currently allocated. This can occur when you have
different product releases or PTF levels installed.

User response

• Under z/VM

If this message has been issued only a few times,
you are probably using a back-level version of the
message repository and the Compiler cannot find the
newer messages. Upgrade your repository.

If this message has been issued several times and
the Compiler’s listing does not contain correct
headers and text, the Compiler cannot find the
repository. If you did not customize the repository,
see “Customizing the Message Repository to Avoid a
Read/Write A-Disk” on page 109 for the correct
names supplied by IBM. Issue a FILELIST command

196 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

to see if one of these repositories is in your current
search order. If you wish to customize the repository,
make sure you issued the GENMSG and SET LANG
commands with the correct parameters and file IDs.

• Under z/OS

If this message has been issued only a few times,
you are probably using a back-level version of the
message repository and the Compiler cannot find the
newer messages. Check with your Systems
Programming staff.

If this message has been issued several times and
the Compiler’s listing is mainly in English although
you have been trying to use another language, the
Compiler cannot find the text in the message
repository and has switched to hard-coded English
text. Check with your Systems Programming staff
and see “Message Repository” on page 104 for more
details.

Runtime Messages 197

198 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Chapter 21. Stream I/O Messages

One or more of the following messages might occur in response to a problem during a stream I/O function
call. If the problem cause is likely to be with your REXX program, detailed information is given with each
message. If the problem cause is outside your REXX program, you need to see the appropriate TSO/E or
z/OS documentation or to contact the system administrator for further help.

Note: The abbreviation REXXIO refers to the REXX Stream I/O function package.

EAGSIO0001 Invalid numeric parameter for
REXXIO.

Explanation

A function call contains a numeric parameter that is
not allowed. A line, count, or start parameter value
might be negative or outside the boundaries of a
stream.

User response

Check your code and correct the value.

EAGSIO0002 Invalid ''count'' value for LINEIN.

Explanation

The count parameter contains a value other than 0 or
1.

User response

Check your code and correct the value. You can only
define a value of 0 or 1.

EAGSIO0003 Invalid number of parameters for
LINEIN.

Explanation

There might be a syntax problem with the LINEIN
function call or more than three parameter values have
been specified. Check the use of commas in the
function call.

User response

Check your code and correct it. For more information
refer to “LINEIN (Line Input)” on page 129.

EAGSIO0004 Invalid file specification for
REXXIO.

Explanation

A stream name is not properly specified. The name
might contain invalid characters, or a qualifier might be
more than eight characters long.

User response

Check your code and correct it. For more information
refer to “Naming Streams” on page 120.

EAGSIO0005 Invalid number of parameters for
LINES.

Explanation

There might be a syntax problem with the LINES
function call or more than one parameter value has
been specified (no commas in the function call).

User response

Check your code and correct it. For more information
refer to “LINES (Lines Remaining)” on page 131.

EAGSIO0007 Invalid number of parameters for
LINEOUT.

Explanation

There might be a syntax problem with the LINEOUT
function call or more than three parameter values have
been specified. Check the use of commas in the
function call.

User response

Check your code and correct it. For more information
refer to “LINEOUT (Line Output)” on page 130.

EAGSIO0008 Invalid line number for LINEOUT.

Explanation

The line parameter contains a value for a transient
stream, or a value other than 1 for a persistent stream.

User response

Check your code and correct it. For more information
refer to “LINES (Lines Remaining)” on page 131.

EAGSIO0009 The file failed to open for REXXIO.

© Copyright IBM Corp. 1991, 2013 199

Explanation

The specified stream failed to open. The ddname
might not be allocated or it might be misspelled.

User response

Check if the ddname is allocated in foreground or
background. Then check your code and correct it.

EAGSIO0010 The file is a partitioned data set,
but no member name was
specified.

Explanation

You must specify the stream name with an explicit
member name because the data set is partitioned.

User response

Check your code and specify the stream name with an
explicit member name because the data set is
partitioned. For more information refer to “Naming
Streams” on page 120.

EAGSIO0011 The file is a sequential data set,
but a member name was specified.

Explanation

The data set is not partitioned, that is why you must
not specify the stream name with an explicit member
name.

User response

Check your code and make sure that you do not
specify the stream name with an explicit member
name, because the data set is not partitioned. For
more information refer to “Naming Streams” on page
120.

EAGSIO0012 Record format of file is not
supported.

Explanation

You have tried to open a persistent stream with a
record format that is not supported.

User response

Check your code and correct it. For more information
refer to “Stream Formats” on page 123.

EAGSIO0013 Data set organization of file is not
supported.

Explanation

You have tried to open a persistent stream with a data
set organization that is not supported.

User response

Check your code and correct it. For more information
refer to “Stream Formats” on page 123.

EAGSIO0014 Warning: Output record truncated.

Explanation

A LINEOUT function call attempted to write a string
that exceeds the LRECL of the data set. A preceding
CHAROUT function call might have already written
several characters, or the string length exceeds the
LRECL of the data set.

User response

Check your code and correct it. For more information
refer to “Stream Formats” on page 123.

EAGSIO0015 Cannot allocate data set.
Insufficient storage.

Explanation

The Region size is too small.

User response

Increase the Region size or contact your administrator.

EAGSIO0016 Cannot allocate data set. Data set
cannot be accessed exclusively.

Explanation

Opening a stream for write operations requires
exclusive allocation. Someone else has already
allocated the data set.

User response

Contact your administrator to check who has allocated
the data set.

EAGSIO0017 Cannot allocate data set. Data set
in use by another user or job.

Explanation

Someone else has already allocated the data set
exclusively. You cannot open the stream for read
operations or write operations yet.

200 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

Contact your administrator to check who has allocated
the data set.

EAGSIO0018 Cannot allocate data set. No unit
available.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0019 Cannot allocate data set. Volume
cannot be mounted.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0020 Cannot allocate data set. Volume
allocated to another user or job.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Contact your administrator to check who has allocated
the data set.

EAGSIO0021 Cannot allocate data set. Number
of required devices unavailable.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0022 Cannot allocate data set. Volume
or unit in use by system.

Explanation

You specified a stream name as a data set that cannot
be allocated (exclusively used by someone else).

User response

Ask the system administrator for help.

EAGSIO0023 Cannot allocate data set. Volume
mounted on an ineligible device.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0024 Cannot allocate data set. Specified
device in use.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0025 Cannot allocate data set. Specified
volume is on another device.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0026 Cannot allocate data set. Limit of
data sets allocated is exceeded.

Explanation

You have already allocated too many data sets. The
maximum number of allocations is specified in TSO/E
and z/OS.

User response

Either try to free some other allocations, or ask the
system administrator for help.

EAGSIO0027 Cannot allocate data set.
Maximum number of allocations
exceeded.

Explanation

The maximum number of concurrent allocations is
reached.

Stream I/O Messages 201

User response

Either try to free some ddnames, or ask the system
administrator for help.

EAGSIO0028 Cannot allocate data set. Job
Entry Subsystem unavailable.

Explanation

The JES is not available to verify an allocation request.
Ask the system administrator for help.

User response

Ask the system administrator for help.

EAGSIO0029 Cannot allocate data set. Number
of volumes exceeds limit.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0030 Cannot allocate data set. Request
cancelled by the operator.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0031 Cannot allocate data set. MSS
volume not accessible from unit.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0032 Cannot allocate data set. MSS
volume does not exist.

Explanation

You specified a stream name as a data set that cannot
be allocated.

User response

Ask the system administrator for help.

EAGSIO0033 Cannot allocate data set. Data set
name not found.

Explanation

You specified a stream name as a data set that cannot
be allocated (the data set name is not cataloged).

User response

Ask the system administrator for help.

EAGSIO0034 Cannot allocate data set. Locate
I/O error.

Explanation

You specified a stream name as a data set that cannot
be allocated (probably a system problem).

User response

Ask the system administrator for help.

EAGSIO0035 Cannot allocate data set. DADSM
I/O error.

Explanation

You specified a stream name as a data set that cannot
be allocated (probably a system problem).

User response

Ask the system administrator for help.

EAGSIO0036 Cannot allocate data set. Data set
not on volume as denoted by
catalog.

Explanation

You specified a stream name as a data set that cannot
be allocated (probably a system problem).

User response

Ask the system administrator for help.

EAGSIO0037 Cannot allocate data set. OBTAIN
I/O error.

Explanation

You specified a stream name as a data set that cannot
be allocated (probably a system problem).

202 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

Ask the system administrator for help.

EAGSIO0038 Cannot allocate data set. Required
catalog not mounted.

Explanation

You specified a stream name as a data set that cannot
be allocated (probably a system problem).

User response

Ask the system administrator for help.

EAGSIO0039 The requested member is not in
the specified data set.

Explanation

An attempt was made to open a partitioned data set
for a read operation, but the data set member does not
exist.

User response

Check your code and specify or create the data set
member again.

EAGSIO0040 The STOW failed during the close
of a data set.

Explanation

Probably a system problem.

User response

Ask the system administrator for help.

EAGSIO0041 Invalid number of parameters for
CHARIN.

Explanation

There might be a syntax problem with the CHARIN
function call or more than three parameter values have
been specified. Check the use of commas in the
function call.

User response

Check your code and correct it. For more information
refer to “LINEIN (Line Input)” on page 129.

EAGSIO0042 Invalid number of parameters for
CHAROUT.

Explanation

There might be a syntax problem with the CHAROUT
function call, or more than three parameter values
have been specified. Check the use of commas in the
function call.

User response

Check your code and correct it. For more information
refer to “LINEIN (Line Input)” on page 129.

EAGSIO0043 Invalid number of parameters for
CHARS.

Explanation

There might be a syntax problem with the CHARS
function call, or more than one parameter value has
been specified (no commas in the function call).

User response

Check your code and correct it.

EAGSIO0044 Invalid ''start'' value for
CHAROUT.

Explanation

The start parameter contains a value other than 1.

User response

Check your code and correct it. The parameter value
must be 1.

EAGSIO0045 Invalid ''start'' value for CHARIN.

Explanation

The start parameter contains a value other than 1.

User response

Check your code and correct it. The parameter value
must be 1.

EAGSIO0046 Invalid ''line'' value for LINEIN.

Explanation

The line parameter contains a value that is negative or
not within the boundaries of the stream (the specified
line might not exist).

User response

Check your code and correct it. The parameter value
must be positive and within the boundaries of the
stream.

Stream I/O Messages 203

EAGSIO0047 Read error in REXXIO.

Explanation

TSO/E returned with a Read error. See the subsequent
messages for further information.

User response

If required, ask the TSO/E support for help.

EAGSIO0048 CLOSE ignored. File already
closed, or not found.

Explanation

The stream was already closed by a preceding
STREAM CLOSE command or by an implicit close, or
the named stream does not exist.

User response

None.

EAGSIO0049 Logic error IEANTRT token
retrieval.

Explanation

A severe error occurred.

User response

Contact your IBM representative.

EAGSIO0050 Invalid command for STREAM
specified.

Explanation

The stream_command parameter of the STREAM
function call contains an invalid value.

User response

Check your code and correct it. For more information
refer to “STREAM (Operations)” on page 132.

EAGSIO0051 Invalid parameter for STREAM
QUERY specified.

Explanation

The stream_command parameter of the STREAM
function call contains an invalid value.

User response

Check your code and correct it. Only QUERY EXISTS,
QUERY REFDATE, and QUERY SERVICELEVEL are
supported. For more information refer to “STREAM
(Operations)” on page 132.

EAGSIO0052 I/O RC=12, DCB already opened
for a different type of I/O
operation.

Explanation

Error returned by TSO/E. A data set operation was
tried in a mode different from the initial mode.

User response

Check your code, correct it, and rerun it.

EAGSIO0053 I/O RC=16, Output data was
truncated for WRITE option.

Explanation

A LINEOUT function call failed to write a string. The
LRECL value of the data set in question might be too
small.

User response

Check if the LRECL value of the data set is too small or
adjust the stream length to the existing LRECL.

EAGSIO0054 I/O RC=20, unsuccessful
processing, function not
performed.

Explanation

Error returned by TSO/E. Subsequent messages might
provide further information.

User response

If required, ask the TSO/E support for help.

EAGSIO0055 I/O RC=24, unsuccessful
processing, file cannot be opened.

Explanation

Error returned by TSO/E. Subsequent messages might
provide further information.

User response

If required, ask the TSO/E support for help.

EAGSIO0056 I/O RC=28, unsuccessful
processing. Language processor
cannot be located.

Explanation

Error returned by TSO/E. Subsequent messages might
provide further information.

204 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

User response

If required, ask the TSO/E support for help.

EAGSIO0057 I/O RC=32, unsuccessful
processing. Internal error in
REXXIO.

Explanation

Error returned by TSO/E. Subsequent messages might
provide further information.

User response

If required, ask the TSO/E support for help.

EAGSIO0058 Record for console must be Fixed
80.

Explanation

An attempt to read from SYSTSIN with IRXJCL failed.
The DSN must be F 80.

User response

Verify the data set allocation for record format and
LRECL.

EAGSIO0059 SVC99 allocation error in
EAGIODYN, see error code below:

Explanation

Check the SVC99 error code listed in the subsequent
message.

User response

Contact your system administrator or your IBM
representative.

EAGSIO0060 Allocation failed. Too many
attempts.

Explanation

Too many unsuccessful allocation attempts from
within the REXX program have used up the available
storage.

User response

Check your code and correct it.

EAGSIO0061 Allocation failed. Invalid data set
name, SVC99 error code 9700.

Explanation

The allocation failed because the data set name is not
valid.

User response

Verify in your code whether you used a ddname
instead of a data set name. If you used the stream
function, you should also check if the return code is
zero. Otherwise, contact your system administrator or
your IBM representative.

EAGSIO0062 Allocation failed. SMS error, see
SVC99 error code below:

Explanation

Check the SVC99 error code listed in the subsequent
message.

User response

Contact your system administrator or your IBM
representative.

EAGSIO0063 Allocation failed. SMS VTOC error,
see SVC99 error code below:

Explanation

Check the SVC99 error code listed in the subsequent
message.

User response

Contact your system administrator or your IBM
representative.

EAGSIO9999 <-Logic error, this MSG ID is not
defined. Call ''IBM'' service center.

Explanation

A severe error occurred.

User response

Contact your IBM representative.

Stream I/O Messages 205

206 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Appendix A. Interface for Object Modules (z/OS)

This appendix explains in detail the preparatory steps for generating a load module from a REXX program
that has been compiled to an object module under z/OS, and the ISPF restrictions on load modules. It
also describes the parameter-passing conventions for the different stubs and how the stubs invoke the
EXEC handler, IRXEXEC. This appendix also describes the PARSE SOURCE information, as it appears in
the REXX program.

ISPF Restrictions on Load Modules
To run compiled REXX load modules for ISPF you must consider the installed ISPF Version.

The use of a REXX load module as an external routine is supported. This program is created using the
EFPL stub. If an application is to be completely packaged, it can use an interpreted REXX program in a
SELECT CMD statement, and this interpreted REXX program can invoke the packaged external routine
with the REXX CALL instruction.

As an example, assume that you have an interpreted REXX program, called MYISPFRX, that has many
external routines, all written in REXX. Your program can be invoked as follows:

SELECT CMD(MYISPFRX)

One way of improving the performance is to create a load module containing the MYISPFRX program and
all its external routines. To do this, use the DLINK option (see “Object Modules (z/OS)” on page 65).

If ISPF variables are accessed with REXX programs running under TSO:

• If SYSICMD is retrieved using the SYSVAR function, link-edited REXX EXECs return a null string.
• For compiled EXECs that are not link-edited and are therefore equal to interpreted REXX EXECs,

SYSVAR('sysicmd') contains the EXEC name. The name of the link-edited REXX EXEC can be retrieved
using SYSVAR('syspcmd') provided that it is obtained before any other subcommand is issued.

• In interpreted REXX EXECs and compiled REXX EXECs that are not link-edited, the initial value in
SYSVAR('syspcmd') is 'EXEC'.

Earlier Releases of ISPF
For earlier releases of ISPF you must use the VDEFINE service to define all variables that will be
manipulated by ISPF services, such as VGET. The VDEFINE service cannot be invoked from a REXX
program, therefore the creation of a load module from a REXX program is not supported, if the load
module is to run directly from the SELECT service.

To run the load module, the MYISPFRX program must be linked with either the EFPL or the CPPLEFPL
stub. You must write another REXX program that can be either interpreted or of CEXEC type. The source of
your new program called, for example, MYISPFST EXEC is:

/* REXX * MYISPFST ***
* This EXEC calls MYISPFRX
***/
 CALL MYISPFRX

Figure 24: MYISPFST Sample Program

Invoke this program as follows:

SELECT CMD(MYISPFST)

The load module consisting of REXX programs will now run successfully.

© Copyright IBM Corp. 1991, 2013 207

ISPF Version 4 Release 1
Starting with ISPF Version 4.1, compiled REXX load modules are supported through the ISPSTART
command and the SELECT service by a new value, CREX, for the LANG parameter of the CMD keyword.

To run the load module, the MYISPFRX program must be linked with either the CPPL or the CPPLEFPL
stub. Invoke the program as follows:

SELECT CMD(MYISPFRX) LANG(CREX)

ISPF uses the correct function pool for the variables. For example:

• To copy a variable to the ISPF pool:

/* Copy variable to variable to ISPF pool */
 myvar='-TESTING VPUT-';
 ADDRESS ISPEXEC "VPUT MYVAR PROFILE";
 Exit;

• To get a variable from the ISPF pool:

/* Get a variable from the ISPF pool */
 ADDRESS ISPEXEC 'VGET MYVAR PROFILE';
 SAY 'Variable myvar holds:' myvar;
 Exit;

• To call a load module:

/* Call a load module */
 "SELECT CMD(MYVPUT) LANG(CREX)";
 SAY 'VPUT RC='rc;
 "SELECT CMD(MYVGET) LANG(CREX)";
 SAY 'VGET RC='rc;

The load module consisting of REXX programs will now run successfully.

ISPF for z/OS Version 1 Release 5.5
REXX stubs are required to build a link-edited module from the object output of the REXX Compiler. If
ISPF services are used by the module, the invocation parameter LANG(CREX) must be specified. With
ISPF for z/OS Version 1 Release 5.5 the value CREX for the LANG parameter is obsolete.

The following items are prepared for this change:

1. The REXX stubs EAGSTCE, EAGSTCPP, and EAGSTMP are updated to denote ISPF that a REXX module
is invoked.

2. ISPF will be updated with Release 5.5 to recognize the information of the stub to provide the full
service as if it were invoked with parameter LANG(CREX).

Note:

1. To use the update of the stubs, you must rebuild all REXX modules using ISPF with REXXC or REXXL. If
they are not rebuilt, the modified stubs are not incorporated.

2. For more information about stubs refer to “%STUB” on page 39.
3. See also “REXXL (z/OS)” on page 67.
4. See also “Stubs” on page 212.

Link-Editing of Object Modules
There are various parameter-passing conventions. Stubs are used to:

• Transform the input parameters into a form understandable by the compiled REXX program
• Invoke the compiled REXX program
• Transform the returned result into a form understandable by the caller

208 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

You must link-edit the OBJECT output of the Compiler with a stub.

To compile a program and link-edit the resulting OBJECT output with a stub, use the REXXC EXEC with
the enhanced OBJECT option (see “Compiler Options” on page 19), or the REXXCL cataloged procedure
which is supplied with the Compiler. Note that these require that the Library is also installed on your
system.

To link-edit a stub and a compiled REXX program, use the REXXL cataloged procedure, which is supplied
with the Library, or the REXXL EXEC to link-edit a stub and a compiled REXX program.

When used in a batch job, REXXL EXEC generates the control statements for the linkage editor to link-edit
a stub and a compiled REXX program of type OBJECT. The compiled REXX program is read from the data
set allocated to SYSIN. The control statements, including the compiled REXX program, are written to a
data set allocated to SYSOUT.

When used interactively, REXXL EXEC link-edits a stub and the compiled REXX program of type OBJECT
and builds a load module. The SYSPRINT output of the linkage editor is stored in a sequential data set,
where the last identifier is LINKLIST.

Note: For object modules, do not use 8-character names that differ only in the eighth character, because
the eighth character of the program name is lost during the link-edit step.

The original name of each stub is EAGSTUB. Each stub contains an external reference to the compiled
REXX program named EAGOBJ.

The name of the OBJECT module in the external symbol dictionary (ESD) record is derived from the name
of the input data set when the REXX program is compiled. It is one of the following:

• The member name of the partitioned input data set
• The last qualifier of the name of the sequential input data set
• Or else, COMPREXX (for example, if the source file is part of the job stream)

To link a stub with a program, REXXL generates the following linkage editor input:

 CHANGE EAGSTUB(csect),EAGOBJ(temp_name)
 INCLUDE SYSLIB(stub_name)
 CHANGE csect(temp_name)
compiled REXX program is included here
 ENTRY csect

An example of this code is provided in “REXXL (EAGL)” on page 235.

For example, if the REXX program AGOODPGM is to be link-edited with the EFPL stub, the control
statements are as follows:

 CHANGE EAGSTUB(AGOODPGM),EAGOBJ($AGOODPG)
 INCLUDE SYSLIB(EAGSTEFP)
 CHANGE AGOODPGM($AGOODPG)
 compiled REXX program AGOODPGM is included here
 ENTRY AGOODPGM

With this input, the linkage editor performs the following:

• Changes the external name of the stub to the original name of the compiled REXX program. The name of
the compiled REXX program becomes a temporary name, which is the original name contained in the
ESD record, prefixed with a $ character, and truncated to eight characters.

• Includes the stub
• Changes the external name of the REXX program to the temporary name
• Includes the compiled REXX program

The csect name, which is now the external name of the stub, is the recognized entry point.

Instead of invoking the Compiler and the linkage editor separately, you can create a load module with a
single invocation of the REXXC command. Assuming that the source for AGOODPGM is located in the

Interface for Object Modules (z/OS) 209

partitioned data set upref.REXX.EXEC, the following statement generates a load module with name
AGOODPGM, with an EFPL stub in the partitioned data set upref.REXX.LOAD:

REXXC REXX.EXEC(AGOODPGM) OBJECT(,EFPL)

Note:

1. You can link different stubs to a compiled REXX program to make a program known under different
names for invocation with different parameter-passing conventions. Or you can use your own renaming
scheme by preparing the necessary linkage editor control statements yourself.

2. For more information refer to “Compiler Options” on page 19.
3. See also “REXXL (z/OS)” on page 67.

DLINK Example
The use of the DLINK option is discussed in “DLINK” on page 23. The following is a step-by-step example
of an application that is packaged using the DLINK and OBJECT options of the Compiler.

This particular application is simply a performance test for the DLINK option. It is made up of the
following REXX programs:
DLT:

Is the main program. The source code is shown in Figure 25 on page 210.
CPUTIME:

Returns the CPU time that has been used. The source code is shown in Figure 26 on page 211.
ECHO:

Is a simple EXEC that returns the argument that was passed to it. The source code is shown in Figure
27 on page 211.

Note: The names are unique in the first seven characters, to prevent a naming conflict when the stubs are
added.

The DLT EXEC was originally stored in a partitioned data set allocated to the ddname SYSPROC. It was
invoked using a command equal to its name, DLT. The other two EXECs were included in the same
partitioned data set, and were found as external routines only after all function packages and all the
appropriate load libraries had been searched.

/* REXX * DLT **
* Performance Test for DLINK option:
* Invoke external routine ECHO 50 times and tell how long it took
***/
 n='DLT'
 Parse Version v . /* Use Parse Version to see if compiled */
 If left(v,5)='REXXC' Then what=n 'compiled'
 Else what=n 'interpreted'
 Say what
 num=50

 t0=cputime()
 Call time 'r'
 Say num 'invocations of ECHO will be measured'
 Do i=1 To num
 Call echo i
 End
 Say 'This took me' (cputime()-t0) 'CPU-seconds.'
 Say '(elapsed:' time('E')')'

Figure 25: DLT Sample Program

210 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

The CPUTIME program can be used on several operating systems. The CPU time is calculated using an
operating-system-dependent facility. Logic is also included to return the output when the program is
invoked as an external routine.

/* REXX * CPUTIME **
* Return the cpu-time used up so far
***/
 Parse Version v
 Parse Source s

 Parse Var s sys .

 Select /* Figure out which system we are on */
 When sys='CMS' Then Do
 qt="DIAG"(8,'Q TIME')
 Parse Var qt . 'VIRTCPU=' mm . ':' +1 ss +6
 cpu=mm*60+ss
 End
 When sys='TSO' Then Do
 cpu=sysvar('SYSCPU')
 End
 When wordpos(sys,'PCDOS OS/2')>0 Then Do
 t=Time()
 Parse Var t hh ':' mm ':' ss
 cpu=(hh*60+mm)*60+ss
 End
 Otherwise Do
 Say 'System' sys 'is unknown to CPUTIME'
 cpu=0
 End
 End
 If word(s,2)='COMMAND' Then
 Say 'CPU time used so far:' cpu
 Else /* When an external routine */
 Return cpu /* Return the CPU time */

Figure 26: CPUTIME Sample Program

ECHO is a simple EXEC that returns its first argument.

/* REXX * ECHO ***
* Performance Test for DLINK option:
* Return the argument
***/
 Return arg(1)

Figure 27: ECHO Sample Program

To package this application, the following steps are required:

1. Compile all the routines that will be included in the application with both the OBJECT and DLINK
options. In our example, DLT, CPUTIME, and ECHO are the appropriate routines.

2. Create a load module with the OBJECT code for the main routine and the appropriate stub, using either
the REXXL cataloged procedure, or the REXXL command provided with the Library. In our example, we
create a load module with DLT and the CPPL stub.

3. Once again, using the REXXL cataloged procedure, or the REXXL command provided with the Library,
create a load module with the OBJECT code for each of the external routines and the EFPL stub. In our
example, we combine both the CPUTIME and the ECHO routine with an EFPL stub. This creates two
separate load modules both having their own EFPL stub.

4. Combine all these load modules into a single load module using the linkage editor. The entry point for
this load module is DLT. In our example, BJVLIB is the ddname of the load library containing the
programs. The control statements for the linkage editor are:

 INCLUDE BJVLIB(DLT)
 INCLUDE BJVLIB(ECHO)
 INCLUDE BJVLIB(CPUTIME)

Interface for Object Modules (z/OS) 211

 ENTRY DLT
 NAME DLT(R)

Place the load module in the appropriate load library so that it will get control before the REXX EXEC.
The application is packaged and ready to run.

Notes® on recursive routines that are compiled with the DLINK option:

• Routines that are called from other external routines recursively must be linked to the appropriate EFPL
or CPPLEFPL stub.

• Routines that call themselves recursively must be renamed to a temporary name before compilation,
otherwise the internal recursive call resolves to the beginning of the OBJECT module instead of the
beginning of the stub.

If, for example, DLT contained a Call DLT instruction, the following actions would be required:

1. Rename DLT to a temporary name, for example: DLT1
2. Compile DLT1 with compiler options DLINK, NOCE, and OBJ
3. Link DLT1 to the CPPLEFPL stub:

CHANGE EAGSTUB(DLT),EAGOBJ(DLT1)
INCLUDE SYSLIB(EAGSTCE)
INCLUDE OBJECTS(DLT1)
ENTRY DLT
NAME DLT(R)

Stubs
A stub is code that:

• Provides an interface between a certain parameter-passing convention and the parameter-passing
convention defined for REXX programs

• Invokes the compiled REXX program using IRXEXEC
• Transforms the result of the compiled REXX program into a form understandable by the caller
• Is selected using a %STUB control directive in the source as described in “%STUB” on page 39.

Stub Names
The following stub names are supplied with the Library to provide interfaces with the following types of
parameter-passing conventions (see also “Object Modules (z/OS)” on page 65):
CPPL (command processor parameter list)

For running REXX applications from the TSO/E command line as a TSO command processor or if the
program was invoked from an EXEC that contained ADDRESS TSO. See also “CPPL Parameter List” on
page 215.

EFPL (external function parameter list)
For REXX applications that are invoked by a REXX CALL statement or as function program_name().
EFPL must be used when building a function package. See also “EFPL Parameter List” on page 216.

CPPLEFPL
This is a combination of the CPPL and EFPL stubs. It determines if the program is invoked as a TSO/E
command or as a REXX external routine. It is recommended for most compiled REXX applications
running under TSO/ISPF. See also “CPPLEFPL” on page 216.

MVS
For invoking the link-edited REXX load module from z/OS JCL using EXEC PGM=program_name, or as
a host command from an EXEC with ADDRESS LINKMVS or ADDRESS ATTCHMVS. See also “MVS
Parameter List” on page 216.

212 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

CALLCMD
For calling the program from the TSO/E command line using the TSO/E CALL command, or from
another REXX EXEC using ADDRESS TSO for invoking the TSO/E CALL command. See also “CALLCMD
Parameter List” on page 217.

MULTI (multi-purpose stub)
Simplifies link-edit and packaging (linking together into one load module) of compiled REXX
applications under z/OS. It combines:

• EFPL
• CPPLEFPL
• CALLCMD
• Part of the MVS functionality ('EXEC PGM=name')
• ADDRESS LINK
• ADDRESS ATTACH

Note:

1. For ADDRESS LINKMVS and ADDRESS ATTCHMVS the existing MVS stub must be selected.
2. The multi-purpose stub load module member is located as 'EAGSTMP' in the existing SEAGLMD

library.

Note: Object modules generated with STUB code terminate abnormally if they are run under z/VM.

If you want to create additional stubs, you can use the stubs shipped in the sample data set as models.

Stub name Member name in the SEAGLMD data set

CPPL EAGSTCPP

EFPL EAGSTEFP

CPPLEFPL EAGSTCE

MVS EAGSTMVS

CALLCMD EAGSTCAL

MULTI EAGSTMP

Processing Sequence for Stubs
For each stub, the general processing sequence is as follows:

1. Save the registers.
2. Obtain storage required to execute the stub. For an EFPL parameter list, storage is requested from the

same subpool as REXX. For CPPL and CALLCMD parameter lists, storage is requested from subpool 78.
For MVS parameter lists, no subpool parameter is supplied for obtaining the required storage.

3. Build a parameter list to invoke IRXEXEC. How the input parameter list maps into the parameter list for
the invocation of IRXEXEC is shown separately for each type of parameter list.

4. Invoke IRXEXEC.
5. Convert the result supplied by IRXEXEC to the form needed for a specific type of invocation (described

separately for each type of invocation).
6. Free the storage obtained in Step “2” on page 213.
7. Restore the registers and return to the caller.

Parameter List for Invoking IRXEXEC

The parameter list for invoking IRXEXEC is as follows:

Interface for Object Modules (z/OS) 213

Parameter 1
The address of an EXECBLK. An EXECBLK address is never supplied; therefore the value of the
parameter is 0.

Parameter 2
The address of the argument list.

Parameter 3
Specify the type of invocation (COMMAND, SUBROUTINE, or FUNCTION) and whether extended return
codes are requested.

The COMMAND invocation is specified except for EFPL parameter lists where the SUBROUTINE
invocation is specified. Extended return codes are always requested.

Parameter 4
The address of the in-storage control block describing the compiled program. An in-storage control
block is always supplied.

Parameter 5
The address of the CPPL. The value of the parameter is 0 if no CPPL is supplied.

Parameter 6
The address of the EVALBLOCK control block that is to contain the result.

For EFPL parameter lists, the passed EVALBLOCK control block is used. In all other cases, an
EVALBLOCK control block with a data length of 16 bytes is used. This is large enough to hold any
expected result. It holds the result of a COMMAND invocation, which must be numeric and must fit
into a fullword.

Parameter 7
A work area vector address is never supplied; therefore the value of the parameter is 0.

Parameter 8
The address of a user field or 0. A user field address is never supplied; therefore the value of the
parameter is 0.

Parameter 9
The address of the environment block.

For EFPL parameter lists, the address of the environment block as passed in register 0 is supplied.
Otherwise, no parameter is supplied.

For a complete description of the parameters, refer to the TSO/E REXX/MVS: Reference.

In-Storage Control Block

The in-storage control block supplied when IRXEXEC is invoked is as follows (the default values are
indicated in parentheses):
ACRONYM

String 'IRXINSTB'.
HDRLEN

Length of the in-storage control block.
ADDRESS

Address of the vector of entries. A vector of records containing one address and length pair is
supplied. The address points to the setup code, and the length is 20; this is the length needed for
IRXEXEC to identify the header.

USEDLEN
Length of the vector of records (8).

MEMBER
Name of the EXEC ('? ').

DDNAME
Name of the DD from which the program was loaded (' ').

214 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

SUBCOM
Name of the initial host command environment (' ').

DSNLEN
Length of the data set name (0).

DSNAME
Name of the data set (X'00').

If the environment is known (because a program is linked to the EFPL stub), the environment is passed to
IRXEXEC when IRXEXEC is called. Otherwise, a value of 0 is passed to register 0. IRXEXEC locates the last
non-reentrant environment and uses it when it executes your program.

Parameter Lists
Each of the following sections contains a figure showing, in the upper part, the parameter list that is
passed to the stub when the stub is invoked. Register 1 points to this parameter list. The upper part of the
figure also shows the relevant surrounding structures. The lower part of the figure shows the parameter
list that is passed to IRXEXEC when IRXEXEC is invoked. Register 1 points to this parameter list. The
lower part of the figure also shows the surrounding structures built by the stub for the invocation of
IRXEXEC.

The following sections also describe, for each type of parameter list, how to obtain the return code (to be
passed back in register 15) and, for EFPL, the necessary EVALBLOCK control block processing. For more
information about registers refer to “Registers for Stubs” on page 215.

Note: The MULTI stub combines the parameter lists of the stubs that are shown in this section.

Registers for Stubs

On entry to each stub, registers are set as follows:
Register 0

Address of the environment block (EFPL stub only)
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

On exit of each stub, registers are set as follows:
Registers 0-14

Same as on entry
Register 15

Return code

CPPL Parameter List

A CPPL parameter list is supplied if, on the TSO/E command line, the user issued the command
program_name, or if the program was invoked from an EXEC that used ADDRESS TSO.

Storage is obtained from subpool 78.

Figure 28: CPPL Parameter List Mapping

Interface for Object Modules (z/OS) 215

If the return code from IRXEXEC is not 0, the return code is passed back in register 15. Otherwise, the
value contained in the EVALBLOCK control block is converted to a fullword and passed back in register 15.

EFPL Parameter List

An EFPL parameter list is supplied if, from within an EXEC, either the instruction CALL program_name is
issued or a program is invoked through the function invocation program_name(). The compiled REXX
program is always invoked as a subroutine, because the information specifying whether the program is to
be invoked as a subroutine or as a command is not accessible.

Storage is obtained from the same subpool as REXX. The subpool number is contained in the parameter
block, which is addressed through the environment block. The address of the environment block is passed
in register 0 when the stub is entered.

Note: Most NetView applications require the EFPL stub.

Figure 29: EFPL Parameter List Mapping

The required, final EVALBLOCK control block handling (and the determination of the return code to pass
back in register 15) is:

 rc_to_pass_back = 0
 If rc_from_irxexec ¬=0 Then
 rc_to_pass_back=rc_from_irxexec
 Else Do
 If evalblock shows truncated result Then Do
 invoke irxrlt 'GETBLOCK'
 If rc ¬= 0 Then
 rc_to_pass_back=rc
 Else Do
 put new evalblock Address INTO parameter list
 invoke irxrlt 'GETRLTE' With new evalblock
 If rc ¬= 0 Then
 rc_to_pass_back=rc
 End
 End
 End

If the return code passed back from IRXEXEC is 100 or 104 (which indicates an abend), register 0
contains the value passed back by IRXEXEC (abend code and reason code).

CPPLEFPL

This stub is a combination of the CPPL and EFPL stubs. It contains the logic to determine if the REXX
program is being invoked as a TSO/E command or as a REXX external routine. Once this has been
determined, the compiled REXX program is given control with the appropriate parameters.

CPPLEFPL is recommended for most compiled REXX programs running under TSO/ISPF.

MVS Parameter List

An MVS parameter list is supplied when a program is invoked from z/OS JCL by means of EXEC
PGM=program_name, or as a host command from an EXEC with ADDRESS LINKMVS or ADDRESS
ATTCHMVS.

The end of the parameter list is indicated by the high-order bit of the last element of the address list being
set to 1.

When obtaining storage, no subpool parameter is supplied.

Figure 30: z/OS Parameter List Mapping

If the return code from IRXEXEC is not 0, the return code is passed back in register 15. Otherwise, the
value contained in the EVALBLOCK control block is converted to a fullword and passed back in register 15.

216 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

CALLCMD Parameter List

A CALLCMD parameter list is supplied when the CALL␠program_name command is issued from the TSO/E
command line, or when the CALL␠program_name host command is issued from within an EXEC executing
under TSO/E.

The address pointed to by register 1 on entry is an AMODE 24 address (the first byte must be ignored).

Storage is obtained from subpool 78.

Figure 31: CALLCMD Parameter List Mapping

If the return code from IRXEXEC is not 0, it is passed back in register 15. Otherwise, the value contained
in the EVALBLOCK control block is converted to a fullword and passed back in register 15.

Search Order
When an external function or subroutine is invoked from a compiled REXX program of OBJECT type, the
standard REXX search order applies. The in-storage control block that is set up in the stubs indicates that
the compiled REXX program has been loaded from the default system file in which you can store REXX
EXECs.

Testing Stubs
You can use the following program to test that a stub is invoked and the parameter list is passed correctly.

/* Tell me who I am */
 Parse source allsrc;
 Arg allp;
 Say 'Source;' allsrc;
 Say 'says hello world...';
 If allp /='' then Say 'Parmlist:' allp;
 Else Say 'No parmlist received...';
 Exit;

If you are using the wrong stub, one of the following might happen:

• 0C4 Abend in the stub before calling the compiled program.
• The parameters are not all passed to the compiled program.

In either case, use a different stub. For example, if you used CALLCMD stub, use MVS stub instead.

PARSE SOURCE
For a REXX program compiled into an object module, the source string that can be obtained by means of
the PARSE SOURCE instruction contains the following tokens:

• The characters TSO
• If the program is linked with the EFPL stub, the string SUBROUTINE; otherwise, the string COMMAND
• A question mark (?) to indicate that the name of the EXEC is not known
• A question mark (?) to indicate that the name of the DD statement from which the EXEC was loaded is

not known
• A question mark (?) to indicate that the name of the data set from which the EXEC was loaded is not

known
• A question mark (?) to indicate that the name of the EXEC as it was invoked is not known
• The initial host command environment in uppercase
• The name of the address space in uppercase
• An 8-character user token

Interface for Object Modules (z/OS) 217

218 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Appendix B. Interface for TEXT Files (z/VM)

This appendix explains how an Assembler program can invoke a REXX program that has been compiled
into a TEXT file under z/VM. It also describes the parameters and the PARSE SOURCE information
received by the REXX program.

The Call from the Assembler Program
A TEXT file can be linked to an Assembler program and may be called by using any of the standard forms
of PLIST.

Call Type
Under z/VM the call type is specified in the byte that follows the 24-word save area.

Registers
On entry to the called program, the following registers are defined:
R0

For call type X'05', the address of a 6-word extended PLIST (see “Extended PLISTs” on page 220)
and, in the high-order bit, an indication of the invocation type.

For call types X'01', X'0B', X'02', and X'06', the address of an extended PLIST (see “Extended PLISTs”
on page 220).

R1
The address of a tokenized PLIST.

R2
User word (meaningful only for non-SVC invocation).

R13
The address of a 24-word save area.

The byte that follows the save area specifies the call type.

For SVC invocations, the SVC handler provides the save area and sets register 13.

R14
The return address.

For SVC invocations, the SVC handler sets this register.

R15
The entry point address.

For SVC invocations, the SVC handler sets this register.

On return to the Assembler program, the following register is defined:
R15

The return code.

For call type X'05', this is the return code produced by the last operation that set the return code
during execution of the REXX program. The value specified in the RETURN or EXIT instruction is
passed back by means of the 6-word extended PLIST.

For all other call types, this is the return code specified on the RETURN or EXIT instruction.

© Copyright IBM Corp. 1991, 2013 219

Extended PLISTs
The extended PLIST has the form:

EPLIST DS 0F PLIST with pointers:
 DC A(COMVERB) → C'synonym' CL1' '
* (Note that this area must precede
* the area containing the Argstring.)
 DC A(BEGARGS) → start of Argstring
 DC A(ENDARGS) → character after end of the Argstring
 DC A(FBLOK) → file block
* (If there is no file block,
* this pointer must be 0.
* The high-order byte is ignored.)

The 6-word extended PLIST has the same four pointers followed by:

 DC AL4(ARGLIST) → Argument list.
* If there is no argument list,
* this pointer is 0, and BEGARGS/ENDARGS
* are used for the ARG string.
 DC A(SYSFUNRT) → SYSFUNRT location, which:
* - contains a 0 on entry
* - will be unchanged if no result is
* returned
* - will contain the address of an
* EVALBLOK if a result is returned

What the REXX Program Gets
The arguments accessible through the PARSE ARG instruction and the ARG built-in function, and the
information returned by the PARSE SOURCE instruction, depend on the type of PLIST used.

Invocation with a Tokenized PLIST Only
If the program is invoked with only a tokenized PLIST, the argument string is available to the program as a
single argument. This is taken from the second token of the parameter list, which is delimited by
X'FFFFFFFF'. There is one blank between each token of the argument.

The information returned by PARSE SOURCE is as follows:

Description of Token Value

— CMS

Invocation type COMMAND

File name The first token of the PLIST or *

File type *

File mode *

Synonym The first token of the PLIST or ?

Initial (default) address for
commands

CMS

Invocation with an Extended PLIST or a 6-Word Extended PLIST
If the program is invoked with an extended PLIST, the argument string (as defined by BEGARGS and
ENDARGS) is available to the program as a single argument.

If the program is invoked with a 6-word extended PLIST and an argument list is supplied, the arguments
are taken from the argument list. If the address of the argument list is 0, the argument string (as defined
by BEGARGS and ENDARGS) is available to the program as a single argument.

The information returned by PARSE SOURCE is as follows:

220 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Description of
Token Value

— CMS

Invocation type For call type X'05', when high-order bit of R0=1: FUNCTION
For call type X'05', when high-order bit of R0=0: SUBROUTINE
For all other call types: COMMAND

File name The file name in the file block or, if there is no file block, the first token of the
tokenized PLIST.

File type The file type in the file block.

If the file type in the file block is blank: EXEC.
If there is no file block: *

File mode The file mode in the file block. If there is no file block: *

Synonym For files of type CEXEC: a question mark or the first token (delimited by an
open parenthesis, close parenthesis, or blank) from the area identified by
BEGARGS and ENDARGS.

For files of type OBJ: the synonym from the extended PLIST.

Initial (default) address
for commands

If a named PSW is specified in the file block, that name is used. If an
unnamed PSW is specified in the file block, ? is used. If the file type is EXEC or
blank, or if there is no file block, CMS is used. Otherwise, the file type is used.

Example of an Assembler Interface to a TEXT File
The following code shows an example of how an Assembler program can invoke a TEXT file that has been
linked to it. Note that the setting of the high-order bit of register 1 depends on the CMS release. The code
in the example works correctly on all the releases of CMS supported by the Compiler and the Library. On
XA systems, the example works with both 24-bit and 31-bit addressing.

 .
 . set up R0 if necessary
 LA 13,SAVE address save area
 IC 15,TYPE get call type
 SLL 15,24 to HOB, fill rest with 0s
 LA 1,0(,15) 0 for non-XA or type '00'x or '80'x
 LTR 1,1 is it 0 ?
 LA 1,TOKPL address tokenized PLIST
 BNZ $1 skip for A and not '00'x or '80'x
 OR 1,15 insert HOB of R1 for non-XA machine
 or when type is '00'x or '80'x
$1 L 15,PROG entry point
 BALR 14,15 invoke REXX program
 . REXX program will return here
 .
PROG DC V(REXXPRG) entry of compiled program, name of
 the source file goes here
TOKPL DC CL8'REXXPRG' tokenized PLIST
 DC CL8'token 1' parameter starts here (if passed by means of
 DC CL8'token 2' tokenized PLIST)
 .
 .
 DC 8X'FF' tokenized PLIST ended by fence
SAVE DS 24F save area
TYPE DC X'00' call type follows save area, enter
 required call type here

Note: In this case, HOB stands for high order byte.

Interface for TEXT Files (z/VM) 221

222 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Appendix C. Interface for Object Modules (VSE/ESA)

This appendix describes the parameter passing conventions for the different stubs and how the stubs
invoke the EXEC handler, ARXEXEC. This appendix also describes the PARSE SOURCE information, as it
appears in the REXX program.

Stubs
A stub is code that:

• Provides an interface between a certain parameter-passing convention and the parameter-passing
convention defined for REXX programs

• Invokes the compiled REXX program
• Transforms the result of the compiled REXX program into a form understandable by the caller

Two stubs are supplied with the Library to provide interfaces with the following types of parameter-
passing conventions:

• VSE (refer to “VSE Parameter List” on page 226)
• EFPL (refer to “EFPL Parameter List” on page 226)

If you want to create additional stubs, you can use the supplied stubs as models.

Processing Sequence for Stubs
For each stub, the general processing sequence is as follows:

1. Save the registers.
2. Obtain storage required to execute the stub.
3. Build a parameter list to invoke ARXEXEC. How the input parameter list maps into the parameter list

for the invocation of ARXEXEC is shown separately for each type of parameter list.
4. Invoke ARXEXEC.
5. Convert the result supplied by ARXEXEC to the form needed for a specific type of invocation (described

separately for each type of invocation).
6. Free the storage obtained in Step “2” on page 223.
7. Restore the registers and return to the caller.

Parameter List for Invoking ARXEXEC

The parameter list for invoking ARXEXEC is as follows:
Parameter 1

The address of an EXECBLK. An EXECBLK address is never supplied; therefore the value of the
parameter is 0.

Parameter 2
The address of the argument list.

Parameter 3
Specify the type of invocation (COMMAND, SUBROUTINE, or FUNCTION) and whether extended return
codes are requested.

The COMMAND invocation is specified except for EFPL parameter lists where the SUBROUTINE
invocation is specified. Extended return codes are always requested.

© Copyright IBM Corp. 1991, 2013 223

Parameter 4
The address of the in-storage control block describing the compiled program. An in-storage control
block is always supplied.

Parameter 5
Reserved, must be 0.

Parameter 6
The address of the EVALBLOCK control block that is to contain the result.

For EFPL parameter lists, the passed EVALBLOCK control block is used. For VSE parameter lists, an
EVALBLOCK control block with a data length of 16 bytes is used. This is large enough to hold any
expected result. It holds the result of a COMMAND invocation, which must be numeric and must fit
into a fullword.

Parameter 7
The address of a work area vector or 0. A work area vector address is never supplied; therefore the
value of the parameter is 0.

Parameter 8
The address of a user field or 0. A user field address is never supplied; therefore the value of the
parameter is 0.

Parameter 9
The address of the environment block.

For EFPL parameter lists, the address of the environment block as passed in register 0 is supplied.
Otherwise, no parameter is supplied.

For a complete description of the parameters, refer to IBM VSE/ESA REXX/VSE Reference.

In-Storage Control Block

The in-storage control block supplied when ARXEXEC is invoked is as follows (the default values are
indicated in parentheses):
ACRONYM

String 'ARXINSTB'.
HDRLEN

Length of the in-storage control block.
ADDRESS

Address of the vector of records. A vector of records containing one address and length pair is
supplied. The address points to the setup code, and the length is 20; this is the length needed for
ARXEXEC to identify the header.

USEDLEN
Length of the vector of records (8).

MEMBER
Name of the EXEC ('? ').

DDNAME
Name of the member that represents the load data set (' ').

SUBCOM
Name of the initial host command environment (' ').

DSNLEN
Length of the data set name (0).

DSNAME
Name of the data set (X'00').

If the environment is known (because a program is linked to the EFPL stub), the environment is passed to
ARXEXEC when ARXEXEC is called. Otherwise, a value of 0 is passed to register 0. ARXEXEC locates the
last non-reentrant environment and uses it when it` executes your program.

224 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Parameter Lists
Each of the following sections contains a figure showing in the upper part the parameter list that is passed
to the stub when the stub is invoked. Register 1 points to this parameter list. The upper part of the figure
also shows the relevant surrounding structures. The lower part of the figure shows the parameter list that
is passed to ARXEXEC when ARXEXEC is invoked.

The following sections also describe, for each type of parameter list, how to obtain the return code (to be
passed back to register 15) and, for EFPL, the necessary EVALBLOCK control block processing.

Registers for VSE/ESA Stubs

On entry to the VSE stub, registers are set as follows:
Register 0

Unpredictable
Register 1

Address of the parameter list if the contents of Register 1 and Register 15 are different.
Registers 2-12

Unpredictable
Registers 13

Address of a register save area
Register 14

Return address
Register 15

Unpredictable

On exit from the VSE stub, registers are set as follows:
Registers 0-14

Same as on entry
Register 15

Return code

On entry to the EFPL stub, registers are set as follows:
Register 0

Address of the environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

On exit from the EFPL stub, registers are set as follows:
Registers 0-14

Same as on entry
Register 15

Return code

Interface for Object Modules (VSE/ESA) 225

VSE Parameter List

A VSE parameter list is supplied when a program is invoked from VSE JCL by means of EXEC
program_name.

No parameter list is provided if on entry to the stub register 1 and register 15 are set to the same value.

The high-order bit of the fullword addressed by register 1 on entry to the stub is set to 1 if the parameter
length is greater than 0, otherwise it is set to 0. The address pointed to by Register␠1 on entry is an
AMODE␠24 address (the first byte must be ignored).

Figure 32: VSE Parameter List Mapping

A return code of 4095 is passed back in register 15 if either storage could not be obtained, or ARXEXEC
could not be loaded, or ARXEXEC issued a return code different from 0 (indicating that the program did
not complete successfully). If the return code from ARXEXEC is 0, the value contained in the EVALBLOCK
control block is divided by 4096, and the remainder is passed back in register 15.

EFPL Parameter List

An EFPL parameter list is supplied if, from within an EXEC, either the instruction CALL program_name is
issued or a program is invoked through the function invocation program_name(). The compiled REXX
program is always invoked as a subroutine, because the information specifying whether the program is to
be invoked as a subroutine or as a command is not accessible.

The address of the environment block is passed in register 0 when the stub is entered.

Figure 33: EFPL Parameter List Mapping

The required, final EVALBLOCK control-block handling (and the determination of the return code to pass
back in register 15) is:

 rc_to_pass_back = 0
 If rc_from_arxexec ¬=0 Then
 rc_to_pass_back=rc_from_arxexec
 Else Do
 If evalblock shows truncated result Then Do
 invoke arxrlt 'GETBLOCK'
 If rc ¬= 0 Then
 rc_to_pass_back=rc
 Else Do
 put new evalblock Address INTO parameter list
 invoke arxrlt 'GETRLTE' With new evalblock
 If rc ¬= 0 Then
 rc_to_pass_back=rc
 End
 End
 End

If storage could not be obtained, a return code of 100 is passed back in register 15. In this case, register 0
contains a cancel code of 0. If the return code passed back from ARXEXEC is either 100 or 104 (which
indicates an abend), register 0 contains the value passed back by ARXEXEC (cancel code).

PARSE SOURCE
For a REXX program compiled into an object module, the source string that can be obtained by means of
the PARSE SOURCE instruction contains the following tokens:

• The characters VSE
• If the program is linked with the EFPL stub, the string SUBROUTINE; otherwise, the string COMMAND
• A question mark (?) to indicate that the name of the EXEC is not known

226 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

• A question mark (?) to indicate that the name of the DD statement from which the EXEC was loaded is
not known

• A question mark (?) to indicate that the name of the file from which the EXEC was loaded is not known
• A question mark (?) to indicate that the name of the file as it was passed to the language processor (that

is, the name is not translated to uppercase) is not known
• The initial host command environment in uppercase
• The name of the address space in uppercase
• An 8-character user token

Interface for Object Modules (VSE/ESA) 227

228 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Appendix D. The z/OS Cataloged Procedures
Supplied by IBM

You can compile a REXX program in a z/OS batch environment by using a cataloged procedure that is
invoked by an EXEC statement in your job.

Note: Your system administrator may have customized the cataloged procedures on your system.

The following cataloged procedures are supplied by IBM:

• “REXXC (FANCMC)” on page 229—supplied with the Compiler
• “REXXCG (FANCMCG)” on page 230—supplied with the Compiler
• “REXXCL (FANCMCL)” on page 231—supplied with the Compiler
• “REXXCLG (FANCMCLG)” on page 232—supplied with the Compiler
• “REXXOEC (FANCMOEC)” on page 234—supplied with the Compiler
• “REXXL (EAGL)” on page 235—supplied with the Library
• “MVS2OE (Only Hardcopy Sample)” on page 236

REXXC (FANCMC)
REXXC compiles a REXX program. FANCMC is located in the data set prefix.SFANPRC.

//**
//*
//* REXXC Compile a REXX program.
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* OPTIONS Compilation options.
//* Default: XREF OBJECT
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG) and to keep the resulting
//* CEXEC output and OBJECT output in MYREXX.CEXEC(MYPROG) and
//* MYREXX.OBJ(MYPROG), respectively, use the following
//* invocation:
//*
//* //S1 EXEC REXXC
//* //REXX.SYSCEXEC DD DSN=MYREXX.CEXEC(MYPROG),DISP=SHR
//* //REXX.SYSPUNCH DD DSN=MYREXX.OBJ(MYPROG),DISP=SHR
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXC PROC OPTIONS='XREF OBJECT', REXX Compiler options

© Copyright IBM Corp. 1991, 2013 229

// COMPDSN='#HLQREXX.SFANLMD' REXX Compiler load lib
//*
//*---
//* Compile REXX program.
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100,1))
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100))

REXXCG (FANCMCG)
REXXCG compiles and runs a REXX program of type CEXEC. FANCMCG is located in the data set
prefix.SFANPRC.

//**
//*
//* REXXCG Compile and run a REXX program of CEXEC type.
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* OPTIONS Compilation options.
//* Default: XREF
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* LIBLPA DSN of IBM REXX Library LPA library.
//* If &LIBLPA is in the search order, you may deactivate
//* the GO.STEPLIB and the PROC LIBLPA definition.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled and run.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG), to keep the resulting CEXEC
//* output in MYREXX.CEXEC(MYPROG), and to run this compiled
//* program, passing the string MYPARM as parameter for this run,
//* use the following invocation (note that the first token in the
//* PARM of the GO step specifies the name of the program):
//*
//* //S1 EXEC REXXCG,PARM.GO='MYPROG MYPARM'
//* //REXX.SYSCEXEC DD DSN=MYREXX.CEXEC(MYPROG),DISP=SHR
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//* //GO.SYSEXEC DD DSN=MYREXX.CEXEC,DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXCG PROC OPTIONS='XREF', REXX Compiler options
// COMPDSN='#HLQREXX.SFANLMD', REXX Compiler load lib
// LIBLPA='#HLQREXX.SEAGLPA' REXX Library LPA lib
//*
//*---
//* Compile REXX program.
//*---
//*

230 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100,1))
//SYSPUNCH DD DUMMY
//*
//*---
//* Run the compiled REXX program.
//*---
//GO EXEC PGM=IRXJCL,PARM='GO',
// COND=(9,LT,REXX)
//*
//STEPLIB DD DSN=&LIBLPA,DISP=SHR
//SYSEXEC DD DSN=&&CEXEC,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=*

REXXCL (FANCMCL)
REXXCL compiles and link-edits a REXX program of type OBJECT. FANCMCL is located in the data set
prefix.SFANPRC.

//**
//*
//* REXXCL Compile and link edit a REXX program of OBJ type.
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* STUB Stub type: MVS, CPPL, CALLCMD, EFPL, CPPLEFPL,
//* MULTI
//* Default: EFPL.
//*
//* OPTIONS Compilation options.
//* Default: XREF OBJECT NOCEXEC
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* LIBDSN DSN of IBM REXX Library load library for Stubs.
//*
//* LIBXDSN DSN of IBM REXX Library exec library.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled and link
//* edited.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG) and to link edit the resulting
//* OBJECT output together with a stub suitable for invocation
//* of the program from a REXX EXEC with the CALL instruction or
//* via function invocation, and to keep the resulting load module
//* in MYREXX.LOAD(MYPROG), use the following invocation:
//*
//* //S1 EXEC REXXCL
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//* //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXCL PROC STUB=EFPL, Type of stub

The z/OS Cataloged Procedures Supplied by IBM 231

// OPTIONS='XREF OBJECT NOCEXEC', REXX Compiler options
// COMPDSN='#HLQREXX.SFANLMD', REXX Compiler load lib
// LIBDSN='#HLQREXX.SEAGLMD', REXX Library stub load
// LIBXDSN='#HLQREXX.SEAGCMD' REXX Library exec lib
//*
//*---
//* Compile REXX program.
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//*SYSCEXEC DD DUMMY
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100))
//*
//*---
//* Prepare SYSLIN data set for subsequent link step.
//*---
//*
//PLKED EXEC PGM=IRXJCL,PARM='REXXL &STUB',
// COND=(9,LT,REXX)
//*
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=*
//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// SPACE=(800,(800,100))
//*
//*---
//* Link together stub and program.
//*---
//*
//LKED EXEC PGM=HEWL,PARM='LIST,AMODE=31,RMODE=ANY,RENT,MAP',
// COND=((9,LT,REXX),(0,NE,PLKED))
//*
//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))

REXXCLG (FANCMCLG)
REXXCLG compiles, link-edits, and runs a REXX program of type OBJECT. FANCMCLG is located in the data
set prefix.SFANPRC.

//**
//*
//* REXXCLG Compile, link edit, and run a REXX program of OBJ type.
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* OPTIONS Compilation options.
//* Default: XREF OBJECT NOCEXEC
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* LIBDSN DSN of IBM REXX Library load library for Stubs.
//*
//* LIBLPA DSN of IBM REXX Library LPA library.
//* If &LIBLPA is in the search order, you may deactivate
//* the GO.STEPLIB and the PROC LIBLPA definition.

232 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

//*
//* LIBXDSN DSN of IBM REXX Library exec library.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled, link edited,
//* and run.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG), to link edit the resulting
//* OBJECT output together with a stub suitable for invocation
//* in MVS batch, to keep the resulting load module in
//* MYREXX.LOAD(MYPROG), and to run this load module, use the
//* following invocation:
//*
//* //S1 EXEC REXXCLG
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//* //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXCLG PROC STUB=MVS, Type of stub
// OPTIONS='XREF OBJECT NOCEXEC', REXX Compiler options
// COMPDSN='#HLQREXX.SFANLMD', REXX Compiler load lib
// LIBDSN='#HLQREXX.SEAGLMD', REXX Library stub load
// LIBLPA='#HLQREXX.SEAGLPA', REXX Library LPA lib
// LIBXDSN='#HLQREXX.SEAGCMD' REXX Library exec lib
//*
//*---
//* Compile REXX program.
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//*SYSCEXEC DD DUMMY
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100))
//*
//*---
//* Prepare SYSLIN data set for subsequent link step.
//*---
//*
//PLKED EXEC PGM=IRXJCL,PARM='REXXL &STUB',
// COND=(9,LT,REXX)
//*
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=*
//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// SPACE=(800,(800,100))
//*
//*---
//* Link together stub and program.
//*---
//*
//LKED EXEC PGM=HEWL,PARM='LIST,AMODE=31,RMODE=ANY,RENT,MAP',
// COND=((9,LT,REXX),(0,NE,PLKED))
//*
//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))
//*
//*---
//* Run the compiled REXX program.
//*---
//*
//GO EXEC PGM=*.LKED.SYSLMOD,
// COND=((9,LT,REXX),(0,NE,PLKED),(0,NE,LKED))
//*

The z/OS Cataloged Procedures Supplied by IBM 233

//STEPLIB DD DSN=&LIBLPA,DISP=SHR
//SYSTSPRT DD SYSOUT=*

REXXOEC (FANCMOEC)
REXXOEC compiles source programs into CEXECs to run under MVS OpenEdition. FANCMOEC is located in
the data set prefix.SFANPRC.

//**
//*
//* REXXOEC Compile a REXX program for OpenEdition MVS
//*
//* Licensed Materials - Property of IBM
//* 5695-013 IBM REXX Compiler
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* OPTIONS Compilation options.
//* Default: XREF
//*
//* COMPDSN DSN of IBM REXX Compiler load library.
//*
//* Required:
//*
//* REXX.SYSIN DDNAME, REXX program to be compiled.
//*
//* Example:
//*
//* To compile MYREXX.EXEC(MYPROG) and to keep the resulting
//* CEXEC output in '/vienna/myprog' and the listing in
//* '/vienna/myprogl' use the following invocation:
//*
//* //STEP1 EXEC REXXOEC
//* //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//* //REXX.SYSPRINT DD DSN=&&LIST,DISP=(NEW,PASS),UNIT=SYSDA
//* //OCOPY.OUT DD PATH='/vienna/myprog',PATHDISP=(KEEP,DELETE),
//* // PATHOPTS=(ORDWR,OCREAT),PATHMODE=(SIRUSR,SIWUSR)
//* //OCOPY.IN2 DD DSN=&&LIST,DISP=(OLD,DELETE)
//* //OCOPY.OUT2 DD PATH='/vienna/myprogl',PATHDISP=(KEEP,DELETE),
//* // PATHOPTS=(ORDWR,OCREAT),PATHMODE=(SIRUSR,SIWUSR)
//* //OCOPY.SYSTSIN DD *
//* OCOPY INDD(IN) OUTDD(OUT) BINARY
//* OCOPY INDD(IN2) OUTDD(OUT2)
//* /*
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXOEC PROC OPTIONS='XREF', REXX Compiler options
// COMPDSN='#HLQREXX.SFANLMD' REXX Compiler load lib
//*
//*---
//* Compile REXX program
//*---
//*
//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//*SYSIEXEC DD DUMMY
//*SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(800,100))
//OCOPY EXEC PGM=IKJEFT01,
// COND=(9,LT,REXX)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY

234 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

//IN DD DSN=&&CEXEC,DISP=(OLD,DELETE)
//OUT DD DUMMY

REXXL (EAGL)
REXXL link-edits a REXX program of type OBJECT. EAGL is located in the data set prefix.SEAGPRC. “Link-
Editing of Object Modules” on page 208 describes the following code.

//**
//*
//* REXXL Link edit a REXX program of OBJ type.
//*
//* Licensed Materials - Property of IBM
//* 5695-014 IBM REXX Library
//* (C) Copyright IBM Corp. 1989, 2003
//*
//* Change Activity:
//* 03-05-28 Release 4.0
//*
//**
//*
//* Parameters:
//*
//* STUB Stub type: MVS, CPPL, CALLCMD, EFPL, CPPLEFPL.
//* Default: EFPL.
//*
//* LIBDSN DSN of IBM REXX Library load library for Stubs.
//*
//* LIBXDSN DSN of IBM REXX Library exec library.
//*
//* Required:
//*
//* PLKED.SYSIN DDNAME, REXX program of OBJ type to be link
//* edited.
//*
//* Example:
//*
//* To link MYREXX.OBJ(MYPROG), a compiled REXX program of OBJECT
//* type, together with a stub suitable for invocation in MVS
//* batch, and to place the resulting load module in
//* MYREXX.LOAD(MYPROG), use the following invocation:
//*
//* //S1 EXEC REXXL,STUB=MVS
//* //PLKED.SYSIN DD DSN=MYREXX.OBJ(MYPROG),DISP=SHR
//* //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//*
//* Modifications:
//* Change #HLQREXX to the appropriate high-level qualifier of
//* your installation.
//*
//**
//*
//REXXL PROC STUB=EFPL, Type of stub
// LIBDSN='#HLQREXX.SEAGLMD', REXX Library stub load
// LIBXDSN='#HLQREXX.SEAGCMD' REXX Library exec lib
//*
//*---
//* Prepare SYSLIN data set for subsequent link step.
//*---
//*
//PLKED EXEC PGM=IRXJCL,PARM='REXXL &STUB'
//*
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// SPACE=(800,(800,100))
//*
//*---
//* Link together stub and program.
//*---
//*
//LKED EXEC PGM=HEWL,PARM='LIST,AMODE=31,RMODE=ANY,RENT,MAP',
// COND=(0,NE,PLKED)
//*
//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR

The z/OS Cataloged Procedures Supplied by IBM 235

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))

MVS2OE (Only Hardcopy Sample)
The following REXX program is a simple example of an interactive procedure for copying a sequential data
set, such as a CEXEC (compiled EXEC) to OpenEdition. This example is provided in hardcopy only.

/* ------------------------------ REXX ------------------------------ */
/* MVS2OE */
/* Copy a z/OS data set to OpenEdition */
/* */
/* MVS2OE: This EXEC will copy a sequential data set or a member in */
/* a library to OpenEdition (OE). It will run in a TSO environment. */
/* You may find it helpful when you copy a compiled REXX program */
/* to OE for execution there. However, it has intentionally been */
/* kept simple but you can adapt it to your own purposes. You can */
/* improve plausibility checking, for example by using the sysdsn() */
/* function to see if the data set to be copied exists and is */
/* available. You can read in the DSNAME from the invocation line */
/* (with ARG or PARSE ARG) and only prompt the user if no arguments */
/* have been given. For your convenience, debugging routines for */
/* NOVALUE and SYNTAX have been included in case you do want to
/* modify this program. */
/* */
/* This exec uses 3 values: 1) the DSNAME of the sequential data set */
/* to be written, 2) the path name under OE to be written to, 3) an */
/* indication if the data set is binary (for example, a load module */
/* or compiled exec, a CEXEC). These values are saved at the end of */
/* this exec, the saved values are retrieved at the start of this */
/* exec. */
/* */
/* This exec is invoked by: */
/* EXEC lib(MVS2OE) */
/* from the TSO prompt, usually selection 6 from the ISPF primary */
/* option menu, where 'lib' is the name of the library containing */
/* this exec. If the name of the library does not start with the */
/* prefix specified in your profile, you must enclose lib(MVS2OE) */
/* within single quotes. This exec does not expect any arguments */
/* from the invocation line. */
/**/

signal on novalue; signal on syntax

/* try to retrieve previous values */
address ISPEXEC "VGET (OEDSN,OEPATH,OEBIN)"
if (rc = 0) then do /* vget o.k., confirm values */
 say 'MVS data set name'; oedsn = check(oedsn)
 say 'OE path name'; oepath = check(oepath, 'lower')
 say 'Binary file (Y or N)'; oebin = check(oebin)
end
else do /* vget not o.k., read in values */
 say 'please key in the complete DSNAME with High Level Qualifier'
 pull oedsn
 say 'please key in the OE path'
 parse pull oepath
 say 'is it an executable (binary) program (Y or N)?'
 pull oebin
end

say 'Abort run? "Y" aborts, anything else performs copy'
say 'from' oedsn 'to' oepath
pull answer
if (answer = 'Y') then exit

if (oebin = 'Y') then DO /* set up some of the file's OE attributes */
 mode = 'SIXUSR'
 bin = 'BINARY'
end
else do
 mode = ''
 bin = 'TEXT'
end

msg_status = msg('OFF') /* suppress msgs from FREE etc. */

236 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

"FREE DDNAME(OEIN)" /* make sure OEIN and OEOUT are free */
"FREE DDNAME(OEOUT)"
msg_status = msg(msg_status) /* restore to previous value */

"ALLOC DDNAME(OEIN) DSN('"oedsn"') SHR"
"ALLOC DDNAME(OEOUT) PATH('"oepath"') PATHDISP(KEEP KEEP)" ,
 "PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"

"OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /* perform copy operation */
if (rc <> 0) then say 'RC from OCOPY=' rc /* check return code */
"FREE DDNAME(OEIN)"
"FREE DDNAME(OEOUT)"

/* save values for next invocation */
address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"
exit 0 /* leave this exec */

/* subprogram to request user to confirm or overwrite a value */
/* -- */
check:
 say 'Use <ENTER> to use' arg(1) 'or key in new value'
 if (arg(2) = 'lower') then do
 parse pull answer /* keep case as typed in */
 end
 else do
 parse upper pull answer /* uppercase input */
 end
 if (answer = '') then return arg(1); else return answer

/* Debugging routines for NOVALUE and SYNTAX */
/* --- */
novalue: say ' '
say ' Novalue condition from line' sigl
say sourceline(sigl)
say ' variable:' condition('D'); trace ?r; nop; exit

syntax: say ' '
say ' Syntax error no.' rc 'from line' sigl
say ' 'errortext(rc)
say sourceline(sigl)
say ' description:'condition('D'); trace ?r ; nop

The z/OS Cataloged Procedures Supplied by IBM 237

238 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Appendix E. The VSE/ESA Cataloged Procedures
Supplied by IBM

This appendix contains the following cataloged procedures supplied by IBM:

• “REXXPLNK” on page 239
• “REXXLINK” on page 240
• “REXXL” on page 241

REXXPLNK
For more information about the REXXPLNK format refer to “REXXPLNK Cataloged Procedure (VSE/ESA)”
on page 71.

// PROC STUBLIB='PRD1.BASE',STUBNAM='EFPL'
 GOTO SKIPCOM
 * **
 *
 * REXXPLNK Combine a program of OBJ type with the appropriate stub.
 *
 * Licensed Materials - Property of IBM
 * 5695-014 IBM REXX Library
 * (C) Copyright IBM Corp. 1989, 2003
 *
 * Change Activity:
 * 03-05-28 Release 4.0
 *
 * **
 *
 * Parameters:
 *
 * STUBLIB is the name of the sublibrary where the stub resides.
 * Default: PRD1.BASE
 *
 * STUBNAM is the member name of the stub residing in STUBLIB
 * or one of the predefined stub names: VSE, EFPL.
 * Default: EFPL
 *
 * INLIB is the name of the sublibrary where the input object
 * module resides.
 *
 * INNAME is the member name of the input object module
 * residing in INLIB.
 *
 * OUTLIB is the name of the sublibrary where the output object
 * module will be stored.
 *
 * OUTNAME is the member name of the output object module that
 * will be stored in OUTLIB.
 *
 *
 * Example:
 *
 * To combine the program MYAPPL.OBJ residing in the sublibrary
 * MYLIB.TEST with the EFPL stub, which is appropriate if the
 * program will be invoked as a REXX external routine, and to
 * store the resulting object module under the name CMYAPPL.OBJ
 * residing in the sublibrary MYLIB.TEST, use the following
 * invocation:
 *
 * // EXEC PROC=REXXPLNK,INLIB='MYLIB.TEST',INNAME=MYAPPL,
 * OUTLIB='MYLIB.TEST',OUTNAME=CMYAPPL
 *
 * **
 *
 /. SKIPCOM
 // EXEC REXX=REXXL,PARM='&STUBLIB &STUBNAM &INLIB &INNAME &OUTLIB &OUTNC

© Copyright IBM Corp. 1991, 2013 239

 AME'
 /+

REXXLINK
For more information about the REXXLINK format refer to “REXXLINK Cataloged Procedure (VSE/ESA)”
on page 71.

// PROC STUBLIB='PRD1.BASE',STUBNAM='EFPL',PHASNAM=''
 GOTO SKIPCOM
 * **
 *
 * REXXLINK Link-edit a program of OBJ type and catalog the resulting
 * phase in a VSE/ESA library.
 *
 * Licensed Materials - Property of IBM
 * 5695-014 IBM REXX Library
 * (C) Copyright IBM Corp. 1989, 2003
 *
 * Change Activity:
 * 03-05-28 Release 4.0
 *
 * **
 *
 * Parameters:
 *
 * STUBLIB is the name of the sublibrary where the stub resides.
 * Default: PRD1.BASE
 *
 * STUBNAM is the member name of the stub residing in STUBLIB
 * or one of the predefined stub names: VSE, EFPL.
 * Default: EFPL
 *
 * INLIB is the name of the sublibrary where the input object
 * module resides.
 *
 * INNAME is the member name of the input object module
 * residing in INLIB.
 *
 * OUTLIB is the name of the sublibrary where the output object
 * module will be stored.
 *
 * OUTNAME is the member name of the output object module that
 * will be stored in OUTLIB.
 *
 * PHASNAM is the member name of the phase that will be
 * cataloged in the sublibrary specified by a
 * LIBDEF PHASE,CATALOG=lib.sublib statement.
 * Default: OUTNAME
 *
 *
 * Example:
 *
 * To link-edit the program MYAPPL.OBJ residing in the sublibrary
 * MYLIB.TEST with the VSE stub, which is appropriate if the program
 * will be invoked as a VSE program, and to catalog the resulting
 * phase under the name MYAPPL.PHASE in the sublibrary MYLIB.TEST,
 * you have to specify as well the name of the resulting object
 * module serving as input for the linkage editor: for example
 * CMYAPPL.OBJ in the sublibrary MYLIB.TEST.
 * To perform this task use the following invocation:
 *
 * // LIBDEF PHASE,CATALOG=MYLIB.TEST
 * // EXEC PROC=REXXLINK,STUBNAM=VSE,INLIB='MYLIB.TEST',INNAME=MYAPPL,
 * OUTLIB='MYLIB.TEST',OUTNAME=CMYAPPL,PHASNAM=MYAPPL
 *
 * **
 *
 /. SKIPCOM
 IF PHASNAM='' THEN
 // SETPARM PHASNAM=&OUTNAME
 // EXEC REXX=REXXL,PARM='&STUBLIB &STUBNAM &INLIB &INNAME &OUTLIB &OUTNC
 AME'
 IF $RC NE 0 THEN
 GOTO $EOJ
 // LIBDEF OBJ,SEARCH=&OUTLIB
 // OPTION CATAL

240 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 PHASE &PHASNAM,*,SVA
 INCLUDE &OUTNAME
 // EXEC LNKEDT
 /+

REXXL
For more information about the REXXL format refer to “REXXL Cataloged Procedure (VSE/ESA)” on page
72.

/*REXX **
*
* REXXL - Combine a stub with the input object module and build an
* object module which serves as input for the linkage editor.
*
* Licensed Materials - Property of IBM
* 5695-014 IBM REXX Library
* (C) Copyright IBM Corp. 1989, 2003
*
* Change Activity:
* 03-05-28 Release 4.0
*
**/
/**
* Syntax:
*
* // EXEC REXX=REXXL,PARM='stublib stubnam inlib inname outlib outname'
* or
* Call rexxl 'stublib stubnam inlib inname outlib outname'
*
* where:
* stublib Is the name of the sublibrary where the stub resides in the
* form lib.sublib.
*
* stubnam Is the member name of the stub residing in stublib in the
* form mn. Member type is always OBJ. You can also use one of
* the predefined stub names:
* VSE The program will be invoked by VSE JCL as a program.
* EFPL The program will be invoked as a REXX external
* routine.
*
* inlib Is the name of the sublibrary where the input object module
* resides in the form lib.sublib.
*
* inname Is the member name of the input object module residing in
* inlib in the form mn. Member type is always OBJ.
*
* outlib Is the name of the sublibrary where the output object
* module will be stored in the form lib.sublib.
*
* outname Is the member name of the output object module that will be
* stored in outlib in the form mn. Member type is always OBJ.
*
* Semant:
*
* The REXXL EXEC builds as output an object module that contains the
* stub combined with the input object module. The resulting object
* module can be link-edited with other object modules to create a
* phase.
*
**/

/*
** Initialize all global variables, catch variables used before set,
** catch syntax errors and handle Attention / HI
*/

Signal On Novalue
Signal On Syntax
Signal On Halt
g. = ''

/*
** Customization Section:
**
** stubmembs Member names of predefined stubs.
** stubnames Name under which the stub is known to REXXL,

The VSE/ESA Cataloged Procedures Supplied by IBM 241

** i.e. the stub name passed as argument to REXXL.
*/

stubmembs='EAGSDVSE EAGSDEFP'
stubnames='VSE EFPL'

/*
** Messages issued by this procedure
*/

g.0m.1 = 'Unexpected rc=&1 from "&2"'
g.0m.3 = 'One or more parameters missing'
g.0m.4 = 'Extraneous parameters "&1"'
g.0m.7 = 'The &1 "&2" specified for parameter &3 is longer than'!!,
' 8 characters'
g.0m.8 = 'No sublibrary specified for parameter &1: "&2"'
g.0m.9 = 'The &1 "&2" specified for parameter &3 is longer than 7'!!,
' characters'
g.0m.11 = 'The &1 "&2" specified for parameter &3 consists of'!!,
' non-alphanumeric characters'
g.0m.12 = 'The first character of the library name "&1" specified'!!,
' for parameter &2 is not alphabetic'
g.0m.13 = 'Invoke REXXL in the following format:'
g.0m.14 = "// EXEC REXX=REXXL,PARM='stublib stubnam inlib inname"!!,
" outlib outname' or"
g.0m.15 = "CALL REXXL 'stublib stubnam inlib inname outlib outname'"

/*
** Get the arguments and give help if necessary.
** If a predefined stubname is used, assign the appropriate member name
** to the variable stubnam.
*/

Parse Upper Arg stublib stubnam inlib inname outlib outname rest
If (stublib = '') ! (outname = '') Then Do
 Call msg 3
 Call msg 13
 Call msg 14
 Call msg 15
 Exit 20
 End
ind = Wordpos(stubnam,stubnames)
If ind > 0 Then
 stubnam = Word(stubmembs,ind)

/*
** Check the arguments.
** If errors occurred, issue a message and exit with rc=20.
*/

message_written = 'no'
If rest <> '' Then
 Call msg 4,rest
Call testsyn 'STUB',stublib,stubnam
Call testsyn 'IN',inlib,inname
Call testsyn 'OUT',outlib,outname
If message_written = 'yes' Then
 Exit 20

/*
** Set the full names for the members stubnam, inname and outname
** in the variables stub, input and output.
*/

stub = stublib'.'stubnam'.OBJ'
input = inlib'.'inname'.OBJ'
output = outlib'.'outname'.OBJ'

/*
** Read from stub and input.
** Some variables are set:
** inline1 will contain the contents of the stub in object module form
** inline2 will contain the contents of the input object module
*/

cmd = 'EXECIO * DISKR' stub '(STEM INLINE1. FINIS'
Call excmd cmd
cmd = 'EXECIO * DISKR' input '(STEM INLINE2. FINIS'
Call excmd cmd

/*
** Prepare the input for the linkage editor in the variable inline1:

242 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

** Get the csect name, that is the name of the object module in the ESD
** record. For the stub and the input object module make the following
** changes: Change the external name of the stub to the csect name, and
** the name of the compiled REXX program to a temporary name, which is
** the csect name, prefixed with a '$' sign, and turncated to eight
** characters. Append the contents of the input object module to the
** variable inline1.
** Finally the variable inline1 contains the stub combined with the
** compiled REXX program, ready to be link-edited.
*/

csect = Substr(inline2.1,17,8)
unin='$'Left(csect,7)
inline1.1 = Left(inline1.1,16)!!csect!!Substr(inline1.1,25,8)!!,
 unin!!Right(inline1.1,40)
index = inline1.0 + 1
inline1.index = Left(inline2.1,16)!!unin!!Substr(inline2.1,25)
Do i = 2 To inline2.0
 index = index + 1
 inline1.index = inline2.i
 End

/*
** Write the input for the linkage editor to the member outname
** and exit with rc=0, if no errors occurred.
*/

cmd = 'EXECIO' index 'DISKW' output '(STEM INLINE1. FINIS'
Call excmd cmd
Exit 0

excmd:Procedure Expose g. inline1. inline2.
/*
** Execute an EXECIO command
** and exit with rc=12, if an error occurred.
** arg: the EXECIO command
** set: message_written to 'yes', if an error occurred
** ref: inline1 contains data that are read or are written
** inline2 contains data that are read
** out: result of the executed command
*/

Arg cmd
cmd
cmdrc = rc
If cmdrc <> 0 Then Do
 Call msg 1,cmdrc,cmd
 Exit 12
 End
Return

testsyn:Procedure Expose g. message_written
/*
** Test the syntax of the arguments.
** arg: the type of the argument; it can be STUB, IN or OUT
** the library name in the form lib.sublib
** the member name
** set: message_written to 'yes', if an error occurred
*/

Arg type,lib,mn
Parse Var lib lib '.' sublib

/*
** Test the library name: 1-7 characters, alphanumeric, the first
** character has to be alphabetic.
*/

If Length(lib) > 7 Then
 Call msg 9,'library name',lib,type'LIB'
If Datatype(lib,'A') <> 1 Then
 Call msg 11,'library name',lib,type'LIB'
If Datatype(Left(lib,1),'U') <> 1 Then
 Call msg 12,lib,type'LIB'

/*
** Test the sublibrary name: 1-8 characters, alphanumeric.
** Test it only if lib is specified.
*/

If sublib = '' Then
 Call msg 8,type'LIB',lib

The VSE/ESA Cataloged Procedures Supplied by IBM 243

Else Do
 If Length(sublib) > 8 Then
 Call msg 7,'sublibrary name',sublib,type'LIB'
 If Datatype(sublib,'A') <> 1 Then
 Call msg 11,'sublibrary name',sublib,type'LIB'
 End

/*
** Test the member name: 1-8, alphanumeric.
*/

If Length(mn) > 8 Then
 Call msg 7,'member name',mn,Left(type'NAME',7)
If Datatype(mn,'A') <> 1 Then
 Call msg 11,'member name',mn,Left(type'NAME',7)

Return

msg:Procedure Expose g. message_written
/*
** Issue a message (after substituting the inserts).
** arg: the message number
** the message inserts
** set: message_written is set to 'yes'
** out: display the message with inserts on the terminal
*/

Parse Arg msgnum,i1,i2,i3
msgtxt = g.0m.msgnum
Do ii = 1 To 3
 mi = '&'ii
 If Pos(mi,msgtxt) > 0 Then Do
 Parse Var msgtxt ma (mi) mb
 msgtxt = ma!!Value('I'ii)!!mb
 End
 End
Say msgtxt
message_written = 'yes'
Return

halt:
/*
** HALT condition was raised.
** arg: none
** out: display message
*/

Say 'REXXL has been halted'
Exit 20

syntax:
/*
** SYNTAX condition was raised.
** arg: none
** out: display invalid line
*/

zsigl = sigl
Say 'Syntax error' rc 'at line' zsigl':' Errortext(rc)
If Sourceline() <> 0 Then
 Say 'Line' zsigl':' Sourceline(zsigl)
Exit 20

novalue:
/*
** NOVALUE condition was raised, undefined variable referenced.
** arg: none
** out: display invalid line
*/

zsigl = sigl
Say 'Undefined variable referenced:' Condition('D')
If Sourceline() <> 0 Then
 Say 'Line' zsigl':' Sourceline(zsigl)
Exit 20

244 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Appendix F. Interlanguage Job Samples

This appendix contains interlanguage job samples that show how to call a REXX exec from within another
program written in a different programming language, such as Assembler, C, Cobol, or PL/I under z/OS. It
provides sample jobs that show how to pass parameters back and forth between REXX programs and an
Assembler, C, Cobol, or PL/I program.

You must use the IRXJCL and IRXEXEC interfaces to call the REXX program from an Assembler, C, Cobol,
or PL/I program. These interfaces are available in any address space and are applicable to interpreted and
compiled REXX execs.

Note: Under z/OS these samples are located in the data set prefix.SEAGSAM.

The following jobs show the use of interpreted programs. Each job consists of:

• A step which copies the REXX exec as a member into a temporary partitioned data set.
• An invocation of a cataloged procedure to compile, link, and execute the Assembler, C, Cobol, or PL/I

program for calling the REXX exec. The execute step is assigned additional DD statements that are
required by the REXX exec.

The IRXJCL interface is easier to use, but it is not as flexible as the IRXEXEC interface. If you use the
IRXJCL:

• You can only set the parameters to call IRXJCL.
• You can only pass one argument string to the REXX program, however, this string can contain any

number of tokens or words.
• The REXX exec can only return a numeric return code, limited to a maximum number of 4095 (decimal).

If you use the IRXEXEC interface:

• You must set up the EXEC block. the evaluation block, and the arguments to IRXEXEC. The EXEC block
is a control block that describes the REXX exec to be loaded.

• You can use multiple argument strings. Each argument string can consist of multiple tokens or words.
• The REXX exec can return to its caller, by using the RETURN or EXIT clause, which is a variable length

character string that consists of any number of tokens or words. This character string and its length is
returned in a control block called the evaluation block.

Note: In the following example the character string is restricted to a maximum length of 256 bytes.

For more information on IRXJCL and IRXEXEC routines, and the control blocks used in the examples, refer
to z/OS TSO/E REXX Reference.

Calling REXX from Assembler
The following samples show how to call a REXX exec from an Assembler program under z/OS.

EAGGJASM for Calling IRXJCL
This is the EAGGJASM sample for calling IRXJCL from an Assembler program:

//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from ASSEMBLER
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003

© Copyright IBM Corp. 1991, 2013 245

//*
//*---*
//* Sample JCL for calling IRXJCL from an Assembler program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The ARGUMENT for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - This simple REXX EXEC is called by an Assembler */
Parse source src
Arg n
 Say 'I am' src
 Say 'Received parm:' n
 If n='' Then n=1
 Do i=1 TO n
 Say 'Hello World the' i'. time ...'
 End
Return n /* Set Return Code to n */
$$
//*---*
//*
//* Compile, link and execute an Assembler program.
//* The cataloged procedure below is for HLASM.
//*
//*---*
//ASMACLG EXEC ASMACLG
//C.SYSIN DD *

* Invoke REXX procedure HELLO with TSO IRXJCL
* HELLO is to be called with number 3 as a parameter

ASMPROG CSECT
* RMODE 24 is because the DCB must be below 16M
ASMPROG RMODE 24
ASMPROG AMODE 31
 SPACE 1

* Standard starting (housholding) sequence

 SAVE (14,12)
 BASR 11,0 establish ...
 USING *,11 ...addressability
 ST 13,SA+4 chain...
 LR 12,13 ...the...
 LA 13,SA ...save...
 ST 13,8(12) ...areas
 SPACE 1

* Put out starting message

 OPEN (ASMOUT,(OUTPUT))
 PUT ASMOUT,MESSAGE1
 SPACE 1

* Set up input parameters, in our case: HELLO 3

 LA 3,L'ARGUMENT get length of argument...
 STH 3,ARGLEN ...bring to halfword
 SPACE 1

* Invoke IRXJCL

 LINK EP=IRXJCL,PARAM=ARGLEN
 LR 5,15 save return code for later
 SPACE 1

246 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

* Print out the returncode

 CVD 5,DWORD start editing return code
 ED DIGITS,DWORD+4 last 7 digits from return code
 PUT ASMOUT,MESSAGE2
 CLOSE (ASMOUT)
 SPACE 1

* Standard exiting sequence

 L 13,SA+4
 LR 15,5 return code to reg 15 again
 RETURN (14,12),RC=(15)
 SPACE 1

* Definiton area.

 DS 0F align on fullword
ARGLEN DC H'0' length of exec name+argument...

* You may try different arguments for REXX -------------------*

ARGUMENT DC C'HELLO 3' ... string for REXX
 SPACE 1
DWORD DC D'0' doubleword scratch area
 SPACE 1
MESSAGE1 DC CL40'Starting Assembler prog'
 SPACE 1
MESSAGE2 DC CL40' '
 ORG MESSAGE2 redefine the message SPACE 1
 DC C'Return code from REXX ='
* stencil for ED instruction to print out a numeric value
DIGITS DC X'4020202020202120'
 DC C' (dec.)'
 ORG , return to high water (address) mark
 SPACE 1
SA DC 18F'0' save area
 SPACE 1
ASMOUT DCB DDNAME=ASMOUT,RECFM=FB,LRECL=40,MACRF=PM,DSORG=PS
 END
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//G.SYSEXEC DD DISP=(SHR,PASS),DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//G.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//G.SYSTSPRT DD SYSOUT=*
//*---*
//* Next DD is for the Assembler program's output
//*---*
//G.ASMOUT DD SYSOUT=*
//*---*
//

EAGGXASM for Calling IRXEXEC
This is the EAGGXASM sample for calling IRXEXEC from an Assembler program:

//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from ASSEMBLER
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXEXEC from an Assembler program.

Interlanguage Job Samples 247

//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The ARGUMENT for the REXX procedure
//* may be taylored for your needs.
//* The use of IRXEXEC is more complex than the use of IRXJCL.
//* Refer to the TSO guide SC28-1883 for using these services.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - This simple REXX EXEC is called by an Assembler */
Parse source src
Arg n
 Say 'I am' src
 Say 'Received parm:' n
 If n='' Then n=1
 Do i=1 TO n
 Say 'Hello World the' i'. time ...'
 End
Return n /* Set Return Code to n */
$$
//*---*
//*
//* Compile, link and execute an Assembler program.
//* The cataloged procedure below is for HLASM.
//*
//*---*
//ASMACLG EXEC ASMACLG
//C.SYSIN DD *
 SPACE 1

* Invoke REXX procedure HELLO with parameter 3 using IRXEXEC.
* Note that use is made of two mapping macros, so not all the
* symbolic addresses used here are defined in this source. You
* should assemble this program for clarity.
* Procedure HELLO is to be called with number 3 as a parameter

ASMPROG CSECT
* RMODE 24 is because the DCB must be below 16M
ASMPROG RMODE 24
ASMPROG AMODE 31
 SPACE 1

* Standard starting (housholding) sequence

 SAVE (14,12)
 BASR 11,0 establish ...
 USING *,11 ...addressability
 ST 13,SA+4 chain...
 LR 12,13 ...the...
 LA 13,SA ...save...
 ST 13,8(12) ...areas
 SPACE 1

* Put out starting message

 OPEN (ASMOUT,(OUTPUT))
 PUT ASMOUT,MESSAGE1
 SPACE 1

* Mainline section
* Set up input parameters and call IRXEXEC,
* Print out the return code from REXX exec

* Make EXECBLOCK addressable, fill in fields
* The setup here is for calling member HELLO.
* You may use either a member name or a DD name
* Be careful when modifying EXECBLOCK

248 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 LA 4,EXECBLK# point to storage
 USING EXECBLK,4
 MVC EXEC_BLK_ACRYN,EXECB_ID move acronym (identifier)
 LA 5,EXECBLEN length of block in bytes...
 ST 5,EXEC_BLK_LENGTH ...to length field
 MVC EXEC_MEMBER,=CL8'HELLO' exec (member) name
 MVC EXEC_DDNAME,=CL8' ' blank out ddname
 MVC EXEC_SUBCOM,=CL8' ' blank out subcom field
 SR 5,5 clear to zeroes, bring to...
 ST 5,EXEC_BLK_LENGTH+4 ...reserved field
 ST 5,EXEC_DSNPTR ...pointer to DSN
 ST 5,EXEC_DSNLEN ...length of DSN field
 DROP 4 do not need base reg any more
 SPACE 1

* EVALBLOCK already addressable, fill in fields

 ST 5,EVALBLOCK_EVPAD1 reg5 is still zero, bring...
 ST 5,EVALBLOCK_EVPAD2 ...zeros to padding fields
 LA 5,EVALBLEN length of block in bytes...
 SRA 5,3 ...now in double words
 ST 5,EVALBLOCK_EVSIZE size in double words to evalblock
 SPACE 1

* Invoke the IRXEXEC service routine
* This setup is fairly basic, you probably do not need
* to change it

 LINK EP=IRXEXEC, *
 VL=1, variable length switch *
 PARAM=(EXECBLK_PTR, *
 ARGTABLE_PTR, *
 FLAGS, *
 INSTBLK_PTR, *
 RES_PARM5, *
 EVALBLK_PTR, *
 RESERVED_WORKAREA_PTR, *
 RESERVED_USERFIELD_PTR, *
 RESERVED_ENVBLOCK_PTR, *
 REXX_RETURN_CODE_PTR)
 SPACE 1

* Put out the results, i.e. return code and REXX string
* in reserved REXX variable result
* (contents of REXX_RETURN_CODE are the same as in reg 15)

 CVD 15,DWORD start editing return code
 ED DIGITS,DWORD+4 last 7 digits from return code
 PUT ASMOUT,MESSAGE2 put out message
 PUT ASMOUT,MESSAGE3 put out another message
 L 15,EVALBLOCK_EVLEN get length of string from REXX
 LTR 15,15 check if length is 0
 BZ NORESULT nothing returned from REXX
 LA 6,L'MESSAGE4 check length of message area...
 CR 15,6 ...against length of REXX result
 BNH LENOK branch if result fits in area
 LR 15,6 result too long, truncate
LENOK EQU * when here, string fits in area
 BCTR 15,0 reduce length by one for MVC
 EX 15,MOVEIT move result to message area
 PUT ASMOUT,MESSAGE4 put out string returned by REXX
NORESULT EQU *
 PUT ASMOUT,MESSAGE5 put out closing message

 CLOSE (ASMOUT)
 SPACE 1

* Standard exiting sequence, pass on REXX retcode

 L 13,SA+4
 L 15,REXX_RETURN_CODE REXX return code to reg 15
 RETURN (14,12),RC=(15)
 SPACE 1

* Data areas

DWORD DC D'0' doubleword scratch area
 SPACE 1
MESSAGE1 DC CL40'Starting Assembler prog'
 SPACE 1
MESSAGE2 DC CL40' ' space for next message

Interlanguage Job Samples 249

 ORG MESSAGE2 redefine the message
 DC C'Ret code from IRXEXEC ='
* Stencil for ED instruction to print out a numeric value
DIGITS DC X'4020202020202120'
 DC C' (dec.)'
 ORG , return to high water (address) mark
 SPACE 1
MESSAGE3 DC CL40'Result from REXX exec in next line:'
MESSAGE4 DC CL40' ' work area for REXX output string
MESSAGE5 DC CL40'End of Assembler prog'
 SPACE 1
SA DC 18F'0' save area
 SPACE 1

* Map the EXEC block, define storage for it, init to blanks
* Note that the IRXECEXB macro contains a DSECT.

 IRXEXECB
* revert to CSECT as IRXEXECB contains a DSECT
ASMPROG CSECT
EXECBLK# DC CL(EXECBLEN)' '
 SPACE 1

* Define storage for the EVAL block, map it. Note that
* this invocation of IRXEVALB does not contain a DSECT
* because of DECLARE=YES.

EVALBLK# DC 5F'0'
 DC CL256' ' for result from REXX exec
EVALBLEN EQU *-EVALBLK# length of block
 ORG EVALBLK# go back to map it
 IRXEVALB DECLARE=YES map the EVAL block
 ORG , back to high water mark
 SPACE 1

* The parameters to be passed to IRXEXEC

EXECBLK_PTR DC A(EXECBLK#) pointer to EXECBLOCK
ARGTABLE_PTR DC A(ARGTABLE) pointer to table of arguments
FLAGS DC X'40000000'
INSTBLK_PTR DC A(0)
RES_PARM5 DC A(0)
EVALBLK_PTR DC A(EVALBLK#)
RESERVED_WORKAREA_PTR DC A(0)
RESERVED_USERFIELD_PTR DC A(0)
RESERVED_ENVBLOCK_PTR DC A(0)
REXX_RETURN_CODE_PTR DC A(REXX_RETURN_CODE)
 SPACE 1
REXX_RETURN_CODE DC A(0)
 SPACE 1

* The REXX argument string

ARG1 DC C'3' argument for REXX exec
 SPACE 1

ARGTABLE DS 0F align
ARGSTRING_PTR DC A(ARG1) pointer to first argument
ARGSTRING_LENGTH DC A(L'ARG1) length of first argument
ARGTABLE_LAST DC XL8'FFFFFFFFFFFFFFFF' end of argument fence
 SPACE 1
MOVEIT MVC MESSAGE4,EVALBLOCK_EVDATA
 SPACE 1
ASMOUT DCB DDNAME=ASMOUT,RECFM=FB,LRECL=40,MACRF=PM,DSORG=PS
 END
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//G.SYSEXEC DD DISP=(SHR,PASS),DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//G.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//G.SYSTSPRT DD SYSOUT=*
//*---*
//* Next DD is for the Assembler program's output
//*---*
//G.ASMOUT DD SYSOUT=*

250 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

//*---*
//

Calling REXX from C
The following samples show how to call a REXX exec from a C program under z/OS.

EAGGJC for Calling IRXJCL
This is the EAGGJC sample for calling IRXJCL from a C program:

//* -->uidIEC JOB - Specify your Job card here
//*---*
//* *
//* Interlanguage Communication in z/OS *
//* Calling REXX from C *
//* *
//*---*
//* *
//* Licensed Materials - Property of IBM *
//* 5695-013 *
//* (C) Copyright IBM Corp. 1989, 2003 *
//* *
//*---*
//* Sample JCL for calling IRXJCL from a C program. *
//* For a description also refer to the REXX Compiler guide *
//* SH19-8160. *
//* You may modify this sample for your needs by including *
//* a REXX of your own. The ARGUMENT for the REXX procedure *
//* may be taylored for your needs. *
//* *
//* Change Activity: 030708 - new for Release 4 *
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs *
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX *
//* SYSUT1 is setup for card input, modify to a DSN if desired *
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX ** START sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */
 Say 'I am' src /* sample exec */
 Say 'Received parm:' n /* sample exec */
 If n='' Then n=1 /* sample exec */
 Do i=1 TO n /* sample exec */
 Say 'Hello World the' i'. time ...' /* sample exec */
 End /* sample exec */
Return n /* Set Return Code to n */ /* sample exec */
/*** END sample exec */
$$
//*---*
//* *
//* Compile, link and execute a 'C' program *
//* *
//*---*
//* invocate cataloged procedure EDCCLG to compile, link and *
//* execute the below listed C Program. *
//* the C program calls the above listed REXX sample exec stored *
//* in a temporary dataset using TSO service IRXEXEC. *
//*---*
//EDCC EXEC EDCCLG,CPARM='XREF,SOURCE'
//COMPILE.SYSIN DD *,DLM=$$
/** START C-program */

/* invoke REXX procedure HELLO with parameter 3 using IRXJCL */

#include <stdlib.h> /* for fetch() prototype */

Interlanguage Job Samples 251

typedef int (*funcPtr) (); /* pointer to a function returning an int */
funcPtr fetched;

/***/
/* define IRXJCL parameter block */
/***/
typedef struct IRXJCL_type
 {
 short int arg_length;
 char argument[9];
 } IRXJCL_type;

/***/
/* define local variables */
/***/
IRXJCL_type this_param;
IRXJCL_type* param_ptr;
int return_code;

main()
{
 printf("Start of C program\n");

 fetched = (funcPtr) fetch("IRXJCL");
 if (fetched == 0)
 {
 printf("ERROR: fetch() failed\n");
 }
 else
 {
 printf("now execute fetched module\n");
 /***/
 /* generate IRXJCL parameter block */
 /***/
 this_param.arg_length = 8; /* <============= */
 strcpy(this_param.argument,"HELLO 3"); /* <============= */
 param_ptr = &this_param;
 /***/
 /* call the REXX Exec */
 /***/
 return_code = (*fetched)(param_ptr);
 printf("REXX return code= %d\n", return_code);
 }

 printf("End of C program\n");
}
/** END C-program */
$$
//*---*
//* Define the library containing the REXX exec *
//*---*
//GO.SYSEXEC DD DISP=SHR,DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input *
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output *
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//*---*
//

EAGGXC for Calling IRXEXEC
This is the EAGGXC sample for calling IRXEXEC from a C program:

//* -->uidIEC JOB - Specify your Job card here
//*---*
//* *
//* Interlanguage Communication in z/OS *
//* Calling REXX from C *
//* *
//*---*
//* *
//* Licensed Materials - Property of IBM *
//* 5695-013 *
//* (C) Copyright IBM Corp. 1989, 2003 *

252 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

//* *
//*---*
//* Sample JCL for calling IRXEXEC from a C program. *
//* For a description also refer to the REXX Compiler guide *
//* SH19-8160. *
//* You may modify this sample for your needs by including *
//* a REXX of your own. The ARGUMENT for the REXX procedure *
//* may be taylored for your needs. *
//* The use of IRXEXEC is more complex than the use of IRXJCL. *
//* Refer to the TSO guide SC28-1883 for using these services. *
//* *
//* Change Activity: 030708 - new for Release 4 *
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs *
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX *
//* SYSUT1 is setup for card input, modify to a DSN if desired *
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX ** START sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */
 Say 'I am' src /* sample exec */
 Say 'Received parm:' n /* sample exec */
 If n='' Then n=1 /* sample exec */
 Do i=1 TO n /* sample exec */
 Say 'Hello World the' i'. time ...' /* sample exec */
 End /* sample exec */
Return n /* Set Return Code to n */ /* sample exec */
/*** END sample exec */
$$
//*---*
//* *
//* Compile, link and execute a 'C' program *
//* *
//*---*
//* invocate cataloged procedure EDCCLG to compile, link and *
//* execute the below listed C Program. *
//* the C program calls the above listed REXX sample exec stored *
//* in a temporary dataset using TSO service IRXEXEC. *
//*---*
//EDCC EXEC EDCCLG,CPARM='XREF,SOURCE'
//COMPILE.SYSIN DD *,DLM=$$
/** START C-program */

/* invoke REXX procedure HELLO with parameter 3 using IRXEXEC */

#include <stdlib.h> /* for fetch() prototype */

typedef int (*funcPtr) (); /* pointer to a function returning an int */
funcPtr fetched;

/***/
/* define EXECBLOCK control block */
/***/
typedef struct EXECBLK_type
 {
 char EXECBLK_ACRYN[8];
 /* The description of each bit is as follows: */
 /* An eight-character field that */
 /* identifies the exec block. It */
 /* must contain the character */
 /* string 'IRXEXECB'. */
 int EXECBLK_LENGTH;
 /* Specifies the length of the */
 /* exec block in bytes. */
 int EXECBLK_reserved;
 char EXECBLK_MEMBER[8];
 /* Specifies the member name of */
 /* the exec if the exec is in a */
 /* partitioned data set. If the */
 /* exec is in a sequential data */
 /* set, this field must be blank. */
 char EXECBLK_DDNAME[8];

Interlanguage Job Samples 253

 /* Specifies the name of the DD */
 /* from which the exec is loaded. */
 /* An exec cannot be loaded from */
 /* a DD that has not been */
 /* allocated. The ddname you */
 /* specify must be allocated to a */
 /* data set containing REXX execs */
 /* or to a sequential data set */
 /* that contains an exec. */
 /* */
 /* If this field is blank, the */
 /* exec is loaded from the DD */
 /* specified in the LOADDD field */
 /* of the module name table (see */
 /* topic 14.8). The default is */
 /* SYSEXEC. */
 char EXECBLK_SUBCOM[8];
 /* Specifies the name of the */
 /* initial host command */
 /* environment when the exec */
 /* starts running. */
 /* */
 /* If this field is blank, the */
 /* environment specified in the */
 /* INITIAL field of the host */
 /* command environment table is */
 /* used. For TSO/E and ISPF, the */
 /* default is TSO. For a */
 /* non-TSO/E address space, the */
 /* default is MVS. The table is */
 /* described in "Host Command */
 /* Environment Table" in */
 /* topic 14.9. */
 void * EXECBLK_DSNPTR;
 /* Specifies the address of a */
 /* data set name that the PARSE */
 /* SOURCE instruction returns. */
 /* The name usually represents */
 /* the name of the exec load data */
 /* set. The name can be up to 54 */
 /* characters long (44 characters */
 /* for the fully qualified data */
 /* set name, 8 characters for the */
 /* member name, and 2 characters */
 /* for the left and right */
 /* parentheses). */
 /* */
 /* If you do not want to specify */
 /* a data set name, specify an */
 /* address of 0. */
 int EXECBLK_DSNLEN;
 /* Specifies the length of the */
 /* data set name that is pointed */
 /* to by the address at offset */
 /* +40. The length can be 0-54. */
 /* If no data set name is */
 /* specified, the length is 0. */
 } EXECBLK_type;

/***/
/* define ARGUMENT block */
/***/
typedef struct one_parameter_type
 {
 void * ARGSTRING_PTR;
 int ARGSTRING_LENGTH;
 } one_parameter_type;

/***/
/* define EVALBLOCK control block */
/***/
typedef struct EVALBLK_type
 {
 int EVALBLK_EVPAD1;
 int EVALBLK_EVSIZE;
 /* Specifies the total size of the */
 /* evaluation block in doublewords. */
 int EVALBLK_EVLEN;
 int EVALBLK_EVPAD2;
 char EVALBLK_EVDATA[256];
 } EVALBLK_type;
 /*

254 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

/***/
/* define IRXEXEC argument block */
/***/
typedef struct IRXEXEC_type
 {
 EXECBLK_type ** execblk_ptr;
 /* Specifies the address of the exec block */
 /* (EXECBLK). The exec block is a control */
 /* block that describes the exec to be */
 /* loaded. It contains information needed */
 /* to process the exec, such as the DD */
 /* from which the exec is to be loaded and */
 /* the name of the initial host command */
 /* environment when the exec starts running. */

 one_parameter_type ** argtable_ptr;
 /* Specifies the address of the arguments */
 /* for the exec. The arguments are */
 /* arranged as a vector of address/length */
 /* pairs followed by a fence */

 int * flags_ptr; /***/
 /* The description of each bit is as follows: */
 /* */
 /* Bit 0 - This bit must be set on if the exec is*/
 /* being invoked as a "command"; that is, the */
 /* exec is not being invoked from another exec as*/
 /* an external function or subroutine. If you */
 /* pass more than one argument to the exec, do */
 /* not set bit 0 on. */
 /* */
 /* Bit 1 - This bit must be set on if the exec is*/
 /* being invoked as an external function */
 /* (a function call). */
 /* */
 /* Bit 2 - This bit must be set on if the exec is*/
 /* being invoked as a subroutine for example, */
 /* when the CALL keyword instruction is used. */
 /***/
 int * instblk_ptr;
 /* Specifies the address of the in-storage */
 /* control block (INSTBLK), which defines */
 /* the structure of a preloaded exec in storage. */
 /* This parameter is required if the */
 /* caller of IRXEXEC has preloaded the */
 /* exec. Otherwise, this parameter must be 0. */
 int * reserved_parm5;
 /* Specifies the address of the command */
 /* processor parameter list (CPPL) if you */
 /* call IRXEXEC from the TSO/E address */
 /* space. If you do not pass the address */
 /* of the CPPL (you specify an address of */
 /* 0), TSO/E builds the CPPL without a */
 /* command buffer. */
 /* If you call IRXEXEC from a non-TSO/E */
 /* address space, specify an address of 0. */
 EVALBLK_type ** evalblk_ptr;
 /* Specifies the address of an evaluation */
 /* block (EVALBLOCK). IRXEXEC uses the */
 /* evaluation block to return the result */
 /* from the exec that was specified on */
 /* either the RETURN or EXIT instruction. */
 int * reserved_workarea_ptr;
 /* Specifies the address of an 8-byte */
 /* field that defines a work area for the */
 /* IRXEXEC routine. In the 8-byte field, the: */
 /* First four bytes contain the */
 /* address of the work area */
 /* Second four bytes contain the */
 /* length of the work area. */
 /* If you do not want to pass a work area, */
 /* specify an address of 0. */
 int * reserved_userfield_ptr;
 /* Specifies the address of a user field. */
 /* If you do not want to use a user field, */
 /* specify an address of 0. */
 int * reserved_envblock_ptr;
 /* The address of the environment block */
 /* that represents the environment in */
 /* which you want IRXEXEC to run. */
 int * REXX_return_code_ptr;

Interlanguage Job Samples 255

 /* A 4-byte field that IRXEXEC uses to */
 /* return the return code. */

 } IRXEXEC_type;

/***/
/* define local variables */
/***/
IRXEXEC_type this_param;
EXECBLK_type this_EXECBLK;
EXECBLK_type * an_EXECBLK_ptr;
EVALBLK_type this_EVALBLK;
EVALBLK_type * an_EVALBLK_ptr;
one_parameter_type this_argument[2];
one_parameter_type * an_argtable_ptr;
char arg1;
int flags;
int REXX_return_code;
int dummy_zero;

main()
{
 printf("Start of CPROG\n");

 fetched = (funcPtr) fetch("IRXEXEC");
 if (fetched == 0)
 {
 printf("ERROR: fetch() failed\n");
 }
 else
 {
 /***/
 /* generate REXX Exec parameter block, finished with fence */
 /***/
 arg1 = '3';
 this_argument[0].ARGSTRING_PTR = &arg1;
 this_argument[0].ARGSTRING_LENGTH = 1;
 this_argument[1].ARGSTRING_PTR = (void *)0xFFFFFFFF;
 this_argument[1].ARGSTRING_LENGTH = 0xFFFFFFFF;
 an_argtable_ptr = &this_argument[0];
 /***/
 /* generate EXECBLOCK */
 /***/
 an_EXECBLK_ptr = &this_EXECBLK;
 strcpy(this_EXECBLK.EXECBLK_ACRYN,"IRXEXECB");
 this_EXECBLK.EXECBLK_LENGTH = 48;
 this_EXECBLK.EXECBLK_reserved = 0;
 strcpy(this_EXECBLK.EXECBLK_MEMBER,"HELLO"); /* <================*/
 strcpy(this_EXECBLK.EXECBLK_SUBCOM," ");
 this_EXECBLK.EXECBLK_DSNPTR = 0;
 this_EXECBLK.EXECBLK_DSNLEN = 0;
 /***/
 /* generate EVALBLOCK */
 /***/
 an_EVALBLK_ptr = &this_EVALBLK;
 this_EVALBLK.EVALBLK_EVPAD1 = 0;
 this_EVALBLK.EVALBLK_EVSIZE = 34;
 this_EVALBLK.EVALBLK_EVLEN = 0;
 this_EVALBLK.EVALBLK_EVPAD2 = 0;
 /***/
 /* generate IRXEXEC parameter block */
 /***/
 this_param.execblk_ptr = &an_EXECBLK_ptr;
 this_param.argtable_ptr = &an_argtable_ptr;
 this_param.flags_ptr = &flags;
 this_param.instblk_ptr = &dummy_zero;
 this_param.reserved_parm5 = &dummy_zero;
 this_param.evalblk_ptr = &an_EVALBLK_ptr;
 this_param.reserved_workarea_ptr = &dummy_zero;
 this_param.reserved_userfield_ptr = &dummy_zero;
 this_param.reserved_envblock_ptr = &dummy_zero;
 this_param.REXX_return_code_ptr = &REXX_return_code;
 this_param.REXX_return_code_ptr =
 (int *)((int)this_param.REXX_return_code_ptr | 0x80000000);
 dummy_zero = 0;
 flags = 0x20000000; /* exec invoked as subroutine */
 REXX_return_code = 0;
 /***/
 /* call the REXX Exec */
 /***/
 REXX_return_code = (*fetched)(this_param);
 /***/

256 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 /* handle return code and result */
 /***/
 printf("REXX return code is: %d\n", REXX_return_code);
 printf("REXX result is: %-*.*s\n",
 this_EVALBLK.EVALBLK_EVLEN,
 this_EVALBLK.EVALBLK_EVLEN,
 this_EVALBLK.EVALBLK_EVDATA);
 }

 printf("End of CPROG\n");
}
/** END C-program */
$$
//*---*
//* Define the library containing the REXX exec *
//*---*
//GO.SYSEXEC DD DISP=SHR,DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input *
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output *
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//*---*
//

Calling REXX from Cobol
The following samples show how to call a REXX exec from a Cobol program under z/OS.

EAGGJCOB for Calling IRXJCL
This is the EAGGJCOB sample for calling IRXJCL from a Cobol program:

//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from COBOL
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXJCL from COBOL program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The argument for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired.
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - A simple exec ****************** Start sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */
 Say 'I am' src /* sample exec */

Interlanguage Job Samples 257

 Say 'Received parm:' n /* sample exec */
 If n='' Then n=1 /* sample exec */
 Do i=1 TO n /* sample exec */
 Say 'Hello World the' i'. time ...' /* sample exec */
 End /* sample exec */
Return n /* Set Return Code to n */ /* sample exec */
/*** End sample exec */
$$
//*---*
//* Compile, link and execute a COBOL program
//*---*
//* Invoke the cataloged procedure IGYWCLG to compile, link and
//* execute the below listed Cobol program.
//* The Cobol program below calls the above listed REXX sample
//* exec as stored in the temporary dataset using the
//* TSO service IRXJCL.
//*---*
//IGYWCLG EXEC IGYWCLG
//COBOL.SYSIN DD *
CBL NOADV,NODYN,NONAME,NONUMBER,QUOTE,SEQ,XREF,VBREF,DUMP,LIST
 TITLE "COBOL TEST PROGRAM ".
 Identification Division.

 Program-id. COBPRG.
IA0040 Author. ...
 *** **
 *** Invoke REXX procedure HELLO with parameter 3 using IRXJCL **
 *** **
 *** Expected display messages: **
 *** "PROGRAM CONPRG - BEGINNING" **
 *** "PROGRAM COBPRG - NORMAL END" **
 *** **

 Environment division.
IA0970 Configuration section.
 Special-names.
 Input-output section.
 File-control.
 Select PRINT-FILE
 assign to SYS014-S-UPDPRNT
 file status is UPDPRINT-FILE-STATUS.
 Data division.
 File section.
IA1570 FD PRINT-FILE
 recording mode F
 block 0 records
 record 121 characters
 label record standard.
IA1620 01 print-record pic x(121).
 Working-storage section.
 01 Working-storage-for-COBPRG pic x.

 01 ARGUMENT.
 03 ARG-SIZE pic 9(2) comp.
 03 ARG-CHAR pic x(8).

 77 UPDPRINT-file-status pic xx.

 77 PGM-NAME pic x(8).

 /**
 *** D O M A I N L O G I C **

 procedure division.
 000-do-main-logic.
 display "PROGRAM COBPRG - Beginning".
 display "Return code before call is " RETURN-CODE.
 *
 * Pass the procedure pame HELLO to IRXJCL.
 * Pass 3 to REXX procedure 'HELLO'.
 * Set the size of the argument.
 *
 move "HELLO 3" to ARG-CHAR.
 move 8 to arg-size.

 * Call "IRXJCL" in order to execute the REXX procedure
 move "IRXJCL" to PGM-NAME.
 CALL PGM-NAME USING ARGUMENT.

 * Display the return code.
 display "Return code after call is " RETURN-CODE.

258 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 display "PROGRAM COBPRG - Normal end".
 stop run.

IA9990 end program COBPRG.
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//GO.SYSEXEC DD DISP=(SHR,PASS),DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//GO.SYSOUT DD SYSOUT=*
//*---*
//

EAGGXCOB for Calling IRXEXEC
This is the EAGGXCOB sample for calling IRXEXEC from a Cobol program:

//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from COBOL
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXEXEC from COBOL program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The argument for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired.
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - A simple exec ****************** Start sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */
 Say 'I am' src /* sample exec */
 Say 'Received parm:' n /* sample exec */
 If n='' Then n=1 /* sample exec */
 Do i=1 TO n /* sample exec */
 Say 'Hello World the' i'. time ...' /* sample exec */
 End /* sample exec */
Return n /* Set Return Code to n */ /* sample exec */
/*** End sample exec */
$$
//*---*
//* Compile, link and execute a COBOL program
//*---*
//* Invoke the cataloged procedure IGYWCLG to compile, link and
//* execute the below listed Cobol program.
//* The Cobol program below calls the above listed REXX sample

Interlanguage Job Samples 259

//* exec as stored in the temporary dataset using the
//* TSO service IRXEXEC.
//*---*
//IGYWCLG EXEC IGYWCLG
//COBOL.SYSIN DD *
CBL NOADV,NODYN,NONAME,NONUMBER,QUOTE,SEQ,XREF,VBREF,DUMP,LIST
CBL TRUNC(OPT)
 TITLE "COBOL TEST PROGRAM ".
 Identification Division.

 Program-id. COBPRG.
IA0040 Author. ...
 *** **
 *** Invoke REXX procedure HELLO with parm 3 using IRXEXEC **
 *** **
 *** Expected display messages: **
 *** "PROGRAM COBPRG - BEGINNING" **
 *** "PROGRAM COBPRG - NORMAL END" **
 *** **

 Environment division.
IA0970 Configuration section.
 Special-names.
 Input-output section.
 File-control.
 Select PRINT-FILE
 assign to SYS014-S-UPDPRNT
 file status is UPDPRINT-FILE-STATUS.
 Data division.
 File section.
IA1570 FD PRINT-FILE
 recording mode F
 block 0 records
 record 121 characters
 label record standard.
IA1620 01 print-record pic x(121).
 Working-storage section.
 01 Working-storage-for-COBPRG pic x.

 77 PGM-NAME pic X(8).

 *
 * Define the IRXEXEC argument blocks
 *
 01 EXECBLK.
 03 EXECBLK-ACRYN pic X(8).
 03 EXECBLK-LENGTH pic S9(8) binary.
 03 EXECBLK-reserved pic S9(8) binary.
 03 EXECBLK-MEMBER pic X(8).
 03 EXECBLK-DDNAME pic X(8).
 03 EXECBLK-SUBCOM pic X(8).
 03 EXECBLK-DSNPTR POINTER.
 03 EXECBLK-DSNLEN pic 9(4) comp.

 01 EVALBLK.
 03 EVALBLK-EVPAD1 pic S9(8) binary.
 03 EVALBLK-EVSIZE pic S9(8) binary.
 03 EVALBLK-EVLEN pic S9(8) binary.
 03 EVALBLK-EVPAD2 pic S9(8) binary.
 03 EVALBLK-EVDATA pic x(256).

 77 flags pic S9(8) binary.
 77 REXX-return-code pic S9(8) binary.
 77 dummy-zero pic S9(8) binary.
 01 ARGUMENT.
 02 ARGUMENT-1 OCCURS 1 TIMES.
 05 ARGSTRING-PTR POINTER.
 05 ARGSTRING-LENGTH pic S9(8) binary.
 02 ARGSTRING-LAST1 pic S9(8) binary.
 02 ARGSTRING-LAST2 pic S9(8) binary.
 77 arg1 pic x(1).
 77 execblk-ptr POINTER.
 77 argtable-ptr POINTER.
 77 evalblk-ptr POINTER.

 77 UPDPRINT-file-status pic xx.

 /**
 *** D O M A I N L O G I C **

 procedure division.

260 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 000-do-main-logic.
 display "PROGRAM COBPRG - Beginning".

 *--- Pass 3 as argument to the REXX procedure 'HELLO'.
 move "3" to arg1.

 call "GET-ARG1-PTR" using arg1 ARGSTRING-PTR(1).
 move 1 to ARGSTRING-LENGTH(1).
 move -1 to ARGSTRING-LAST1.
 move -1 to ARGSTRING-LAST2.
 call "GET-ARGUMENT-PTR" using argument argtable-ptr.

 move "IRXEXECB" to EXECBLK-ACRYN.
 move 48 to EXECBLK-LENGTH.
 move 0 to EXECBLK-reserved.

 *--- Pass the procedure name HELLO to IRXEXEC.
 move "HELLO" to EXECBLK-MEMBER.
 move " " to EXECBLK-SUBCOM.
 move " " to EXECBLK-DDNAME.
 set EXECBLK-DSNPTR to NULL.
 move 0 to EXECBLK-DSNLEN.
 call "GET-EXECBLK-PTR" using EXECBLK execblk-ptr.
 move 0 to EVALBLK-EVPAD1.
 move 34 to EVALBLK-EVSIZE.
 move 0 to EVALBLK-EVLEN.
 move 0 to EVALBLK-EVPAD2.
 call "GET-EVALBLK-PTR" using EVALBLK evalblk-ptr.
 move 0 to dummy-zero.

 *--- Set flags to HEX 20000000
 * i.e. exec invoked as subroutine
 move 536870912 to flags.
 move 0 to REXX-return-code.

 *--- Call the REXX exec ---
 move "IRXEXEC " to PGM-NAME.
 CALL PGM-NAME USING execblk-ptr
 argtable-ptr
 flags
 dummy-zero
 dummy-zero
 evalblk-ptr
 dummy-zero
 dummy-zero
 dummy-zero
 REXX-return-code.
 CANCEL PGM-NAME.

 *--- Display the return code.
 display "REXX return code is: " REXX-return-code.
 display "REXX result is: " EVALBLK-EVDATA.
 display "PROGRAM COBPRG - Normal end".
 stop run.

 *--- Addressing helper
 Identification Division.
 Program-id. GET-ARG1-PTR.
 Environment division.
 Data division.
 Working-storage section.
 Linkage section.
 77 arg1 pic x(1).
 77 arg-ptr POINTER.

 procedure division using arg1 arg-ptr.
 set arg-ptr to address of arg1.
 goback.
 end program GET-ARG1-PTR.

 *--- Addressing helper
 Identification Division.
 Program-id. GET-ARGUMENT-PTR.
 Environment division.
 Data division.
 Working-storage section.
 Linkage section.
 01 ARGUMENT.
 02 ARGUMENT-1 OCCURS 1 TIMES.
 05 ARGSTRING-PTR POINTER.

Interlanguage Job Samples 261

 05 ARGSTRING-LENGTH pic S9(8) binary.
 02 ARGSTRING-LAST1 pic S9(8) binary.
 02 ARGSTRING-LAST2 pic S9(8) binary.
 77 argtable-ptr POINTER.

 procedure division using ARGUMENT argtable-ptr.
 set argtable-ptr to address of ARGUMENT.
 goback.
 end program GET-ARGUMENT-PTR.

 *--- Addressing helper
 Identification Division.
 Program-id. GET-EXECBLK-PTR.
 Environment division.
 Data division.
 Working-storage section.
 Linkage section.
 01 EXECBLK.
 03 EXECBLK-ACRYN pic X(8).
 03 EXECBLK-LENGTH pic 9(4) comp.
 03 EXECBLK-reserved pic 9(4) comp.
 03 EXECBLK-MEMBER pic X(8).
 03 EXECBLK-DDNAME pic X(8).
 03 EXECBLK-SUBCOM pic X(8).
 03 EXECBLK-DSNPTR POINTER.
 03 EXECBLK-DSNLEN pic 9(4) comp.
 77 execblk-ptr POINTER.

 procedure division using EXECBLK execblk-ptr.
 set execblk-ptr to address of EXECBLK.
 goback.
 end program GET-EXECBLK-PTR.

 *--- Addressing helper
 Identification Division.
 Program-id. GET-EVALBLK-PTR.
 Environment division.
 Data division.
 Working-storage section.
 Linkage section.
 01 EVALBLK.
 03 EVALBLK-EVPAD1 pic 9(4) comp.
 03 EVALBLK-EVSIZE pic 9(4) comp.
 03 EVALBLK-EVLEN pic 9(4) comp.
 03 EVALBLK-EVPAD2 pic 9(4) comp.
 03 EVALBLK-EVDATA pic x(256).
 77 evalblk-ptr POINTER.

 procedure division using EVALBLK evalblk-ptr.
 set evalblk-ptr to address of EVALBLK.
 goback.
 end program GET-EVALBLK-PTR.

IA9990 end program COBPRG.
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//GO.SYSEXEC DD DISP=SHR,DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//GO.SYSOUT DD SYSOUT=*
//*---*
//

Calling REXX from PL/I
The following samples show how to call a REXX exec from a PL/I program under z/OS.

262 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

EAGGJPLI for Calling IRXJCL
This is the EAGGJPLI sample for calling IRXJCL from a PL/I program:

//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from PLI
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXJCL from PL/I program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The argument for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired.
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - A simple exec ****************** Start sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */
 Say 'I am' src /* sample exec */
 Say 'Received parm:' n /* sample exec */
 If n='' Then n=1 /* sample exec */
 Do i=1 TO n /* sample exec */
 Say 'Hello World the' i'. time ...' /* sample exec */
 End /* sample exec */
Return n /* Set Return Code to n */ /* sample exec */
/*** End sample exec */
$$
//*---*
//* Compile, link and execute a PL/1 program
//*
//* an alternative catlogued procedure is
//* IBMZCBG for z/OS Enterprise PL/1
//*---*
//* Invoke the cataloged procedure to compile, link and
//* execute the below listed PL/1 program.
//* The PL/1 program below calls the above listed REXX sample
//* exec as stored in the temporary dataset using the
//* TSO service IRXJCL.
//*---*
//IEL1CLG EXEC IEL1CLG
//PLI.SYSIN DD *
*PROCESS INCLUDE,SYSTEM(MVS),FLAG(I),XREF(SHORT),MAP,LIST;
*PROCESS LINECOUNT(100);

 PLIPROG: PROC OPTIONS(MAIN);

 /* invoke REXX procedure HELLO with parameter 3 using IRXJCL */

 DCL IRXJCL ENTRY EXTERNAL OPTIONS(ASSEMBLER RETCODE);
 DCL 1 IRXJCL_PARM,
 3 ARG_LENGTH FIXED BINARY(15),
 3 ARGUMENT CHAR(9);
 DCL PLIRETV BUILTIN;
 DCL RETURN_CODE FIXED BINARY(31);

Interlanguage Job Samples 263

 PUT SKIP EDIT ('Start of PLIPROG') (A);
 ARG_LENGTH = 8;

 /* Pass the procedure name HELLO to IRXJCL. */
 /* Pass 3 as argument to the REXX procedure 'HELLO'. */
 ARGUMENT = 'HELLO 3';

 /* Call the REXX exec */
 FETCH IRXJCL;
 CALL IRXJCL(IRXJCL_PARM);

 /* Handle the return code. */
 RETURN_CODE = PLIRETV;
 PUT SKIP EDIT ('REXX RETURN CODE: ' , RETURN_CODE) (A, F(4));
 PUT SKIP EDIT ('End of PLIPROG') (A);
 RETURN;

 END PLIPROG;
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//GO.SYSEXEC DD DISP=(SHR,PASS),DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//*---*
//

EAGGXPLI for Calling IRXEXEC
This is the EAGGXPLI sample for calling IRXEXEC from a PL/I program:

//* -->uidIEC JOB - Specify your Job card here
//*---*
//*
//* Interlanguage Communication in z/OS
//* Calling REXX from PLI
//*
//*---*
//*
//* Licensed Materials - Property of IBM
//* 5695-013
//* (C) Copyright IBM Corp. 1989, 2003
//*
//*---*
//* Sample JCL for calling IRXEXEC from PL/I program.
//* For a description also refer to the REXX Compiler guide
//* SH19-8160.
//* You may modify this sample for your needs by including
//* a REXX of your own. The argument for the REXX procedure
//* may be taylored for your needs.
//*
//* Change Activity: 030708 - new for Release 4
//*---*
//* JCLLIB accesses the CLG procs, modify to your needs
//*---*
//*MYLIB JCLLIB ORDER=RXT.INTLANG.CNTL
//*---*
//* Create REXX procedure HELLO into a temporary Library &&REXX
//* SYSUT1 is setup for card input, modify to a DSN if desired.
//*---*
//CREATE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&REXX(HELLO),DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)
//SYSUT1 DD *,DLM=$$
/* REXX - A simple exec ****************** Start sample exec */
Parse source src /* sample exec */
Arg n /* sample exec */
 Say 'I am' src /* sample exec */

264 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

 Say 'Received parm:' n /* sample exec */
 If n='' Then n=1 /* sample exec */
 Do i=1 TO n /* sample exec */
 Say 'Hello World the' i'. time ...' /* sample exec */
 End /* sample exec */
Return n /* Set Return Code to n */ /* sample exec */
/*** End sample exec */
$$
//*---*
//* Compile, link and execute a PL/1 program
//*
//* an alternative catlogued procedure is
//* IBMZCBG for z/OS Enterprise PL/1
//*---*
//* Invoke the cataloged procedure to compile, link and
//* execute the below listed PL/1 program.
//* The PL/1 program below calls the above listed REXX sample
//* exec as stored in the temporary dataset using the
//* TSO service IRXEXEC.
//*---*
//IEL1CLG EXEC IEL1CLG
//PLI.SYSIN DD *
*PROCESS INCLUDE,SYSTEM(MVS),FLAG(I),XREF(SHORT),MAP,LIST;
*PROCESS LINECOUNT(100);

 PLIPROG: PROCEDURE OPTIONS(MAIN);

 /* invoke REXX procedure HELLO with parameter 3 using IRXEXEC */
 DCL IRXEXEC ENTRY EXTERNAL OPTIONS(ASSEMBLER RETCODE);

 /* Declare the IRXEXEC argument blocks */
 DCL 1 EXECBLK,
 3 EXECBLK_ACRYN CHAR(8),
 3 EXECBLK_LENGTH FIXED BINARY(31),
 3 EXECBLK_reserved FIXED BINARY(31),
 3 EXECBLK_MEMBER CHAR(8),
 3 EXECBLK_DDNAME CHAR(8),
 3 EXECBLK_SUBCOM CHAR(8),
 3 EXECBLK_DSNPTR PTR,
 3 EXECBLK_DSNLEN FIXED BINARY(31);

 DCL 1 EVALBLK,
 3 EVALBLK_EVPAD1 FIXED BINARY(31),
 3 EVALBLK_EVSIZE FIXED BINARY(31),
 3 EVALBLK_EVLEN FIXED BINARY(31),
 3 EVALBLK_EVPAD2 FIXED BINARY(31),
 3 EVALBLK_EVDATA CHAR(256);

 DCL 1 ARGTABLE,
 3 ARGUMENTS(1),
 5 ARGSTRING_PTR PTR,
 5 ARGSTRING_LENGTH FIXED BINARY(31),
 3 ARGTABLE_LAST CHAR(8);

 DCL EXECBLK_PTR PTR;
 DCL ARGTABLE_PTR PTR;
 DCL INSTBLK_PTR PTR;
 DCL reserved_parm5 PTR;
 DCL EVALBLK_PTR PTR;
 DCL reserved_workarea_ptr PTR;
 DCL reserved_userfield_ptr PTR;
 DCL reserved_envblock_ptr PTR;
 DCL REXX_return_code_ptr PTR;
 DCL ARG1 CHAR;
 DCL flags CHAR(4);
 DCL REXX_return_code FIXED BINARY(31);
 DCL PLIRETV BUILTIN;
 DCL SYSNULL BUILTIN;
 DCL ADDR BUILTIN;
 DCL SUBSTR BUILTIN;
 DCL RETURN_CODE FIXED BINARY(31);

 PUT SKIP EDIT ('Start of PLIPROG') (A);

 /* Pass 3 as argument to the REXX procedure 'HELLO'. */
 ARG1 = '3';
 ARGSTRING_PTR(1) = ADDR(ARG1);
 ARGSTRING_LENGTH(1) = 1;
 ARGTABLE_LAST = 'FFFFFFFFFFFFFFFF'X;
 ARGTABLE_PTR = ADDR(ARGSTRING_PTR(1));
 EXECBLK_PTR = ADDR(EXECBLK);
 EXECBLK_ACRYN = 'IRXEXECB';

Interlanguage Job Samples 265

 EXECBLK_LENGTH = 48;
 EXECBLK_reserved = 0;

 /* Pass the procedure name HELLO to IRXEXEC. */
 EXECBLK_MEMBER = 'HELLO';
 EXECBLK_SUBCOM = ' ';
 EXECBLK_DSNPTR = SYSNULL;
 EXECBLK_DSNLEN = 0;
 EXECBLK_DDNAME = ' ';
 EVALBLK_PTR = ADDR(EVALBLK);
 EVALBLK_EVPAD1 = 0;
 EVALBLK_EVSIZE = 34;
 EVALBLK_EVLEN = 0;
 EVALBLK_EVPAD2 = 0;

 /* Set flags for exec invokation */
 flags = '40000000'x;
 REXX_return_code_ptr = ADDR(REXX_return_code);
 REXX_return_code = 0;
 INSTBLK_PTR = SYSNULL;
 reserved_parm5 = SYSNULL;
 reserved_workarea_ptr = SYSNULL;
 reserved_userfield_ptr = SYSNULL;
 reserved_envblock_ptr = SYSNULL;

 /* Call the REXX exec */
 FETCH IRXEXEC;
 CALL IRXEXEC(EXECBLK_PTR,
 ARGTABLE_PTR,
 flags,
 INSTBLK_PTR,
 reserved_parm5,
 EVALBLK_PTR,
 reserved_workarea_ptr,
 reserved_userfield_ptr,
 reserved_envblock_ptr,
 REXX_return_code_ptr);

 /* Handle the return code. */
 RETURN_CODE = PLIRETV;
 PUT SKIP EDIT (' RETURN CODE: ' , RETURN_CODE) (A, F(4));
 PUT SKIP EDIT ('REXX RETURN CODE: ' , REXX_RETURN_CODE) (A, F(4));
 PUT SKIP EDIT ('REXX RESULT IS: ' ||
 SUBSTR(EVALBLK_EVDATA,1,EVALBLK_EVLEN)) (A);
 PUT SKIP EDIT ('End of PLIPROG') (A);
 RETURN;
 END PLIPROG;
/*
//*---*
//* Define the library containing the REXX exec
//*---*
//GO.SYSEXEC DD DISP=SHR,DSN=&&REXX
//*---*
//* Next DD is the data set equivalent to terminal input
//*---*
//GO.SYSTSIN DD DUMMY
//*---*
//* Next DD is the data set equivalent to terminal output
//*---*
//GO.SYSTSPRT DD SYSOUT=*
//*---*
//

266 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Appendix G. Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the

© Copyright IBM Corp. 1991, 2013 267

same on generally available systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information
This User’s Guide and Reference documents intended Programming Interfaces that allow the customer to
write programs to obtain services of the IBM Compiler and Library for REXX on IBM Z.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States, other countries, or both:

C/370™

GDDM
IBM
MVS
MVS/ESA
NetView
OpenEdition
OS/390
SAA

268 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Systems Application Architecture
SP
VM/ESA
VSE/ESA
z/Architecture®

z/OS
z/VM

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Notices 269

270 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in this book. If you cannot find the term you are looking for,
refer to the Dictionary of Computing New York: McGraw-Hill, 1994.

 A
allocate

To assign a resource, such as a disk file, to a specific task. Contrast with deallocate.
authorized program facility (APF)

Allows to identify system programs and user programs that can use sensitive system functions, and
restricts the use of such functions to APF-authorized programs.

 B
BIF

Built-in function.
 C
CEXEC output

Output produced by the IBM Compiler for REXX on IBM Z licensed program when the CEXEC option is
specified.

clause
According to SAA Common Programming Interface REXX Level 2 Reference, a REXX program is built
from a series of clauses that are composed of:

• Zero or more blanks (which are ignored)
• A sequence of tokens
• Zero or more blanks (again, ignored)
• A semicolon (;) delimiter that may be implied by line-end, certain keywords, or the colon (:)

CMS
Conversational Monitor System.

compiled EXEC
A compiled REXX program file that has the same file type that the corresponding source file would
have for interpretation.

Conversational Monitor System (CMS
A virtual machine operating system that provides general interactive time sharing, problem solving,
and program development capabilities, and operates only under control of the z/VM control program.

CPPL
TSO/E command processor parameter list.

CPPLEFPL
A stub that is a combination of the CPPL and EFPL stubs. It contains the logic to determine if the REXX
program is being invoked as a TSO/E command or as a REXX external routine. Once this has been
determined, the compiled REXX program is given control with the appropriate parameters.

cross-reference listing
The portion of the compiler listing that contains information on where symbols are referenced in a
program.

 D
data set

The major unit of data storage and retrieval, consisting of a collection of data in one of several
prescribed arrangements and described by control information to which the system has access.

DBCS
Double-byte character set.

© Copyright IBM Corp. 1991, 2013 271

DCSS
Discontiguous saved segment. Also known as discontiguous shared segment.

ddname
Data definition name.

DD statement
Data definition statement.

discontiguous saved segment (DCSS)
An area of storage beyond the address of your virtual machine address space (not contiguous with
your virtual storage) where segments are loaded as needed.

double-byte character set (DBCS)
A character set, such as Kanji, for languages that require 2 bytes to uniquely define each character.

 E
EFPL

External function parameter list.
ESD

External symbol dictionary.
external symbol dictionary (ESD)

Control information associated with an object or load module that identifies the external symbols in
the module.

 F
FMID

Function modification identifier.
 H
HFS data set

A hierarchical file system data set, which is used to store, and is essentially identified with, a file
system.

 I
IEXEC output

Output produced by the IBM Compiler for IBM Compiler for REXX on IBM Z licensed program when
the IEXEC option is specified.

Interactive System Productivity Facility (ISPF)
An IBM-licensed program that provides a common dialog management facility across operating
system environments.

interpreter
A program that translates and executes each instruction of a high-level programming language before
it translates and executes the next instruction.

ISPF
Interactive System Productivity Facility.

 K
KB

Kilobyte; 1024 bytes.
keyword

A language-defined word which identifies a clause. Examples of keywords are: IF, THEN, SAY.
 L
LPA

Link pack area.
 M
MB

Megabyte; 1 048 576 bytes.

272 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

MMS
MVS message service.

module
An object code file whose external references have been resolved.

MVS
Multiple Virtual Storage.

MVS/ESA
Multiple Virtual Storage/Enterprise System Architecture.

 N
NLS

National Language Support.
 O
OBJECT output

Output produced by the IBM Compiler for REXX on IBM Z licensed program when the OBJECT option
is specified.

object program
A target program suitable for execution. An object program may or may not require linking. Contrast
with source program. Object program is used on only.

OpenEdition
Pertaining to the elements of OS/390 that incorporate the UNIX interfaces standardized in POSIX.

OS/390 Operating System
The IBM licensed program OS/390 includes and integrates functions previously provided by many
IBM software products. OS/390 is made up of elements and features. The elements deliver essential
operating system functions. When you order OS/390, you receive all of the elements. The features are
orderable with OS/390 and provide additional operating system functions.

 P
partitioned data set (PDS)

A data set in direct access storage that is divided into partitions, called members, each of which can
contain a program, part of a program, or data. A partitioned data set has a directory that contains
information about each member. Each member can be accessed individually by its unique 1- to 8-
character name.

partitioned data set extended (PDSE)
A partitioned data set managed by the Storage Management Subsystem (SMS). Similar to PDS, but
with a number of enhancements.

PDF
Program Development Facility.

phase
In VSE, the smallest complete unit of executable code that can be loaded into virtual storage. It is the
output of the linkage editor.

phrase
A language construct associated with a sub-keyword. Examples of phrases are: TO-phrase, WHILE-
phrase.

 S
SBCS

Single-byte character set.
sequential data set

A data set in which the contents are arranged in successive physical order and are stored as an entity.
The data set can contain data, text, a program, or part of a program. Contrast with partitioned data set
(PDS).

SFS
Shared file system.

Glossary of Terms and Abbreviations 273

SI
The shift-in character (X'0F') indicating the end of a double-byte character string.

SO
The shift-out character (X'0E') indicating the start of a double-byte character string.

SPI
System Product Interpreter.

stub
A code segment that transforms parameter lists from one format into another.

sub-keyword
A language-defined word occurring in (but not identifying) a clause. Examples of sub-keywords are:
TO, BY, FOR, VALUE.

supervisor call (SVC)
A request that serves as the interface into operating system functions, such as allocating storage. The
SVC protects the operating system from inappropriate user entry. All operating system requests must
be handled by SVCs.

supervisor call instruction
An instruction that interrupts a program being executed and passes control to the supervisor so that it
can perform a specific service indicated by the instruction.

SVC
Supervisor call.

System Product Interpreter (SPI)
The component of the VM/XA SP operating system that processes procedures, XEDIT macros, and
programs written in the Restructured Extended Executor (REXX) language.

 T
TEXT file

An object-code file whose external references have not been resolved. This term is used on z/VM only.
token

According to SAA Common Programming Interface REXX Level 2: Reference, a token is the unit of low-
level syntax from which clauses are built.

TPA
Transient program area.

transient program area (TPA)
In CMS, the virtual storage area occupying locations X'E000' to X'10000'. Some CMS commands and
user programs can be executed in this area of CMS storage.

TSO/E
Time Sharing Option Extensions.

 V
Virtual Machine/Enterprise Systems Architecture (VM/ESA)

An IBM licensed program that manages the resources of a single computer so that multiple computing
systems appear to exist. Each virtual machine is the functional equivalent of a real machine.

Virtual Machine/Extended Architecture System Product (VM/XA SP)
An IBM-licensed program with extended architecture support that manages the resources of a single
computing system so that multiple computing systems (virtual machines) appear to exist.

VM/ESA
Virtual Machine/Enterprise Systems Architecture.

VM/XA SP
Virtual Machine/Extended Architecture System Product.

VSE/ESA
Virtual Storage Extended/Enterprise Systems Architecture.

 X

274 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

XA
Extended architecture.

 Z
z/OS

The IBM-licensed program z/OS is a highly secure, scalable, high-performance enterprise operating
system on which to build and deploy Internet and Java-enabled applications, providing a
comprehensive and diverse application execution environment.

z/VM
The IBM-licensed program z/VM is the newest VM operating system and is based on the new 64-bit z/
Architecture. It provides a highly flexible test and production environment for enterprises deploying
the latest e-business solutions. Built upon the solid VM/ESA base, z/VM exploits the z/Architecture
and helps enterprises meet their growing demands for multi-user server solutions with a broad range
of support for operating system environments such as z/OS, OS/390, TPF, VSE/ESA, CMS, or Linux on
z Systems.

Glossary of Terms and Abbreviations 275

276 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Related Publications

This section lists each book in the REXX library. There is also a list of publications for other IBM products
that you might use with REXX.

IBM Compiler and Library for REXX on IBM Z Publications
The following books are part of the IBM Compiler and Library for REXX on IBM Z publications:

IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference, SH19-8160, describes how to
compile and run programs written in the REXX language.

IBM Compiler and Library for REXX on IBM Z: Diagnosis Guide, SH19-8179, provides information for
system programmers and other data processing professionals responsible for maintaining the IBM
Compiler and Library for REXX on IBM Z. It explains how to diagnose suspected errors in the product and
how to report them to the appropriate IBM personnel.

IBM Compiler and Library for REXX on IBM Z: Licensed Program Specifications, GH19-8161, describes the
software and hardware requirements of IBM Compiler and Library for REXX on IBM Z.

IBM Compiler for REXX on z/OS: Program Directory, GI10-8170 describes the requirements and
installation of IBM Compiler for REXX on z/OS.

IBM Library for REXX on z/OS: Program Directory, GI10-9910 describes the requirements and installation
of IBM Library for REXX on z/OS.

IBM Alternate Library for REXX on z/OS: Program Directory, GI10-3243 describes the requirements and
installation of the IBM Alternate Library for REXX on z/OS.

You can also find the library of the IBM Compiler and Library for REXX on IBM Z on the home page at:
http://www.ibm.com/software/awdtools/rexx/

The unlicensed REXX books with prefix SH are also available on the following collection kits:

• IBM eServer™ System z® Online Library VM Collection CD-ROM, SK2T-2067
• IBM eServer System z Online Library VSE Collection CD-ROM, SK2T-0060
• IBM eServer System z Online Library z/OS Software Products Collection CD-ROM, SK3T-4270

Other IBM Publications
These books contain information related to REXX or its related products.

ISPF Publications
ISPF V4 R2.0 Dialog Developer's Guide and Reference, SC34-4486

ISPF V4 R2.0 Services Guide, SC34-4485

ISPF V4 R2.0 User's Guide, SC34-4484

ISPF/PDF Guide (ISPF 3.2 & ISPF/PDF 3.1) for VM, SC34-4299

ISPF/PDF Guide and Reference V3.4 for MVS, SC34-4258

ISPF/PDF Guide Version 3, Release 2 for VM, SC34-4306

Learning REXX
• TSO/E Version 2 REXX/MVS: User’s Guide, SC28-1882
• VM/SP System Product Interpreter: User’s Guide, SC24-5238

© Copyright IBM Corp. 1991, 2013 277

• VM/XA SP Interpreter: User’s Guide, SC23-0375
• VM/ESA REXX/VM: User’s Guide, SC24-5465

REXX Reference
• TSO/E Version 2 Procedures Language MVS/REXX, SC28-1883
• VM/XA SP Interpreter: Reference, SC23-0374
• VM/ESA Release 2 REXX/VM: Reference, SC24-5466
• IBM VSE/ESA REXX/VSE Reference, SC33-6529, is interesting for experienced programmers, particularly

those who have used a structured high-level language. They list the REXX messages and describes
instructions, functions, debugging aids, and parsing.

• Systems Application Architecture Common Programming Interface: REXX Level 2 Reference, SC24-5549,
describes the SAA REXX interface.

TSO/E and MVS/ESA Publications
• TSO/E Version 2: Primer, GC28-1879
• TSO/E Version 2: Customization, SC28-1872
• TSO/E Version 2 REXX/MVS: User’s Guide, SC28-1882
• TSO/E Version 2 REXX/MVS: Reference, SC28-1883
• TSO/E Version 2: Command Reference, SC28-1881
• MVS/DFP 3.3: Linkage Editor and Loader, SC26-4564
• MVS/ESA SP V4 Planning: Operations, GC28-1625
• MVS/ESA SP V4 Assembler Programming Guide, GC28-1644

OpenEdition Publication
• OpenEdition MVS Command Reference, SC23-3014

VM/SP Publications
• VM/SP CMS: Primer, SC24-5236
• VM/SP CMS: Primer for Line-Oriented Terminals, SC24-5242
• VM/SP CMS: User’s Guide, SC19-6210
• VM/SP CMS: Command Reference, SC19-6209
• VM/SP System Product Editor: User’s Guide, SC24-5220
• VM/SP: Administration, SC24-5285
• VM/SP System Messages and Codes, SC19-6204

VM/XA SP Publications
VM/XA SP CMS: Primer, SC23-0368
VM/XA SP CMS: User’s Guide, SC23-0356
VM/XA SP CMS: Command Reference, SC23-0354
VM/XA SP System Product Editor: User’s Guide, SC23-0373
VM/XA SP: Administration, SC23-0353
VM/XA SP Interpreter Reference, SC23-0374
VM/XA SP CP Command Reference, SC23-0358

VM/ESA Publications
• VM/ESA R2.2 REXX/VM User's Guide, SC24-5465

278 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

• VM/ESA V2R3.0 Diagnosis Guide, GC24-5854
• VM/ESA V2R4.0 REXX/VM Reference, SC24-5770
• VM/ESA V2R4.0 CP Command and Utility Reference, SC24-5773

VSE/ESA Publication
• VSE/ESA V2R1.0 System Control Statements, SC33-6613
• VSE/ESA V2R1.0 System Utilities, SC33-6617
• VSE/ESA V2R4.0 Guide for Solving Problems, SC33-6710

C Publication
• IBM C/370 Programming Guide Version 2 Release 1, SC09-1384

CMS Publications
• VM/ESA CMS: Primer, SC24-5458
• VM/ESA CMS: User’s Guide, SC24-5775
• VM/ESA CMS: Command Reference, SC24-5776
• VM/ESA XEDIT: User’s Guide, SC24-5779
• z/VM V4R1.0 CMS User's Guide, SC24-6009
• z/VM V4R3.0 CMS Command and Utility Reference, SC24-6010
• z/VM V4R3.0 CMS Planning and Administration, SC24-6042

z/VM Publications
• z/VM V3R1.0 CP Command and Utility Reference, SC24-5967
• z/VM V4R3.0 CP Command and Utility Reference, SC24-6008
• z/VM V4R3.0 Saved Segments Planning and Administration, SC24-6056

z/OS Publications
• z/OS V1R2.0 TSO/E REXX User's Guide, SA22-7791
• z/OS V1R4.0 TSO/E REXX Reference, SA22-7790
• z/OS V1R4.0 TSO/E Command Reference, SA22-7782
• z/OS V1R3.0 MVS Planning: Operations, SA22-7601

OS/390 Publications
• OS/390 V2R9.0 TSO/E REXX User's Guide, SC28-1974
• OS/390 V2R10.0 TSO/E REXX Reference, SC28-1975
• OS/390 V2R9.0 TSO/E System Programming Command Reference, SC28-1972
• OS/390 V2R10.0 MVS Planning: Operations, GC28-1760

Related Publications 279

280 IBM Compiler and Library for REXX on IBM Z: User’s Guide and Reference

Index

Special Characters
** (exponentiation operator) 87
// (remainder operator) 86
\ (NOT operator) 90
\<< (strictly not less than operator) 90
\>> (strictly not greater than operator) 90
% (integer divide operator) 86
%COPYRIGHT control directive 36, 81
%INCLUDE control directive 37, 81
%PAGE control directive 38, 49, 81
%STUB control directive 39
%SYSDATE control directive 39, 81
%SYSTIME control directive 40, 81
%TESTHALT control directive

optimization stopper 95
<< (strictly less than operator) 90
<<= (strictly less than or equal operator) 90
>> (strictly greater than operator) 90
>>= (strictly greater than or equal operator) 90
¬ (NOT operator) 90
¬<< (strictly not less than operator) 90
¬>> (strictly not greater than operator) 90

Numerics
6-word extended parameter list, invocation with 220

A
abend 066D 118
active PROCEDURES 91
Alias 7
ALLOCATE

TSO/E command 122
ALT, NOALT compiler option 19
ALTERNATE (ALT) compiler option 19
Alternate Library

activation 45
creating REXX programs for use with 99
overview 6, 12
types of 13
use of 44

APF-authorization 118
application

writing part in REXX (z/OS) 67
writing part in REXX (z/VM) 69

argument string, tokenized parameter list 220
arithmetic

integer divide and remainder operations 86
limits on numbers 100
performance 95

ARXEXEC EXEC handler
in-storage control block 224
parameters 223

Assembler
call REXX 245

Assembler (continued)
interface to TEXT file, example 221
program call for TEXT file 219

B
B2X built-in function 89
backslash, use of 90
BASE compiler option 19
Batch REXX Compilation panel (z/OS) 12
batch, running jobs in 17, 45
binary

see definition, character 120
stream definition 120
string, maximum length 91

BLKSIZE 14
built-in function

differences between compiler and interpreter 89
LINESIZE (CMS) 90
options of 88
SOURCELINE 84
TRACE 85
VALUE 88, 95, 98

byte
see definition, character 120
stream definition 120

C
C compiler option 21
C, call REXX 251
C2D input string, maximum length 91
CALL

instruction 89
call arguments, implementation limit 91
CALL ON condition 125
CALLCMD

parameter list 217
stub 213

CALLCMD stub 66
calling and linking REXX programs 5
cataloged procedure

customizing 103
EAGL 235
FANCMC 229
FANCMCG 230
FANCMCL 231
FANCMCLG 232
FANCMOEC 234
modifying 111
MVS2OE 236
REXXC 229
REXXCG 230
REXXCL 231
REXXCLG 232
REXXL 235, 241
REXXL - linking stub and compiled REXX program 209

 281

cataloged procedure (continued)
REXXLINK 240
REXXOEC 234
REXXPLNK 239

CE, NOCE compiler option 20
CEXEC

(CE) compiler option 20
converting output 77, 79
copying output (z/OS) 78
file type 44

character
definition 120
input definition 119
stream definition 120

CHARIN
with LINEIN 124

CHAROUT
partial record 123
with LINEOUT 124

CHARS
end-of-stream detection 124

clause, maximum length 91
closing stream

purpose 123
CMS Batch Facility 45
Cobol, call REXX 257
code, compiled

generating 21, 138
in condensed form 21
optional code 33, 34

coexistence with the interpreter 43
command

Halt Interpretation (HI) 81
NUCXDROP 46
REXXC (z/OS) 9, 11
REXXC (z/VM) 16
REXXCOMP 105
REXXD (z/VM) 15
REXXF 79
Trace End (TE) 86
Trace Start (TS) 86

comments, reserved wording 36, 38
comparison operators 90
compatibility, cross-system 77
compilation

errors, summary 51
messages 139
messages shown in compiler listing 51
messages summary 52
statistics 54

COMPILE (C) compiler option 21
compiled EXEC

converting from z/OS to MVS OpenEdition 77
converting from z/OS to z/VM 77
converting from z/VM to z/OS 78
cross-system compatibility 77
file identifier 20
files needed to run (z/VM) 109
general description 4
organizing with interpretable EXEC (VSE/ESA) 44
organizing with interpretable EXEC (z/OS) 43
organizing with interpretable EXEC (z/VM) 43
producing 20
when to use 20

compiled REXX program
formats 4
general description 3
portability 5
reducing size of 20

compiler and interpreter language differences 81
compiler invocation

from cataloged procedures 13
in batch (z/VM) 14
overview 9
overview (z/VM) 14
with ISPF panels (z/OS) 11, 12
with the REXXC EXEC (z/OS) 9
with the REXXC EXEC (z/VM) 16
with the REXXD EXEC (z/VM) 15

compiler invocation dialog (REXXD) for z/VM
customizing 106
using 15

compiler invocation EXEC
customizing 105
introduction (z/OS) 9
introduction (z/VM) 14
using under z/OS 9
using under z/VM 16

compiler invocation shells, customizing 105
compiler listing

attribute 52
continuing on next line 50
controlling lines per page 28, 39
cross-reference 35, 52
description 49, 55
example 51, 52, 59
included files 50
item 52
line numbers 51
line reference 53
margins indicator 50
message summary 52
name (z/OS) 12
nesting of included files 51
options summary 49
producing 32
sequence numbers 50
source 33, 49
split lines 50
statistics 54
suppressing 32

compiler options
ALT, NOALT 19
ALTERNATE (ALT) 19
BASE 19
C 21
CE, NOCE 20
CEXEC (CE) 20
COMPILE (C) 21
COND, NOCOND 22
CONDENSE (COND) 21
customizing installation defaults (VSE/ESA) 111
customizing installation defaults (z/OS) 103
customizing installation defaults (z/VM) 105
customizing with REXXCOMP command 105
DD, DD(ddname), NODD 23
DDNAMES (DD) 22
DDNAMES (ddname) 22

282

compiler options (continued)
defaults supplied by IBM 19
DL, NODL 24
DLINK (DL) 23
DU, NODU 25
DUMP (DU) 24
F, NOF 25
FLAG (F) 25
FO, NOFO 25
FORMAT 25
I, NOI 26
IEXEC (I) 26
LC 28
LIBLEVEL 27
LINECOUNT (LC) 28
LL(n) 27
M 29
MARGINS (M) 29
NOALTERNATE (NOALT) 19
NOC 21
NOCEXEC (NOCE) 20
NOCOMPILE (NOC) 21
NOCONDENSE (NOCOND) 22
NODDNAMES (NODD) 22
NODLINK (NODL) 24
NODUMP (NODU) 24
NOFLAG (NOF) 25
NOFORMAT 25
NOIEXEC (NOI) 26
NOOBJECT (NOOBJ) 29
NOOLDDATE (OPT) 31
NOOPTIMIZE (NOOPT) 32
NOPRINT (NOPR) 32
NOSAA 33
NOSLINE (NOSL) 33
NOSOURCE (NOS) 34
NOTERMINAL (NOTERM) 34
NOTESTHALT (NOTH) 34, 81, 82
NOTRACE (NOTR) 35
NOXREF (NOX) 36
OBJ, NOOBJ 30
OBJECT (OBJ) 29
OLDD/NOOLDD 31
OLDDATE (OPT) 31
OPT/NOOPT 32
OPTIMIZE (OPT) 32
PR, NOPR 32
PRINT (PR) 32
S, NOS 34
SAA 33
shown in compiler listing 49
SL, SL(A), NOSL 33
SLINE (SL) 33
SOURCE (S) 33
TERM, NOTERM 34
TERMINAL (TERM) 34
TESTHALT (TH) 34, 81, 82
TH, NOTH 34
TR, NOTR 35
TRACE (TR) 35
X, X(S), NOX 36
XREF (SHORT) 36
XREF (X) 35, 36

compiler output, types of 9

compiling
a program 138
performing operations during 94
summary of errors 51

compliance checking, SAA 33
compound variables

improving access to 94
performance 96

COND, NOCOND compiler option 22
CONDENSE (COND) compiler option 21
condense operation 22
condition

NOVALUE 82
SYNTAX 84, 100

CONDITION built-in function 89
condition trap

NOTREADY 125
SYNTAX 125

constants 95
continuation lines in source listing 50
control directive

%COPYRIGHT 36
%INCLUDE 37
%PAGE 38, 49
%STUB 39
%SYSDATE 39
%SYSTIME 40
%TESTHALT 40, 82

convention
use of single quotation mark 121

converting CEXEC output
from z/OS to MVS OpenEdition 77
from z/OS to VSE/ESA 77
from z/OS to z/VM 77
from z/VM to VSE/ESA 78
from z/VM to z/OS 78

copying CEXEC output (z/OS) 78
copyright 36
count

parameter of LINEIN 130
CPPL parameter list 215
CPPL stub 66, 212
CPPLEFPL stub 66, 212
cross-reference listing

description 52
example 54, 57
producing 35

cross-system compatibility 77
current read position

see position pointer 124
current write position

see position pointer 124
customizing

cataloged procedures 103, 111
compiler invocation dialog (z/VM) 106
compiler invocation shells (z/VM) 105
compiler options 105
EAGCUST EXEC 108
installation defaults for compiler options (VSE/ESA) 111
installation defaults for compiler options (z/OS) 103
installation defaults for compiler options (z/VM) 105
Library (z/VM) 106
message repository (z/OS) 104
message repository (z/VM) 109

 283

customizing (continued)
the Compiler and Library

under z/OS 103
under z/VM 105

the Library 111

D
D2C output string, maximum length 91
D2X output string, maximum length 91
data set name

as stream name 121
derived defaults 10

data sets required by the compiler (z/OS) 13
DATATYPE function 100
DBCS (double-byte character set) 83
DCB 14
DCSS (discontiguous saved segment)

defining
for VM/XA and for VM/ESA with ESA feature 106

placing programs in (z/VM) 70
saving 106

DCSSGEN utility 20
DD (DDNAMES) compiler option 22
DD, DD(ddname), NODD compiler option 23
ddname

as stream name 121
enumerated 121
generated by STREAM function 121

DDNAME 13, 14
DDNAMES (DD) compiler option 22
DDNAMES (ddname) compiler option 22
debugging 85
default data set names 10
default input stream

ddname 120
default output stream

ddname 120
default stream

opening 122
definition

character 120
line 120

derived data set names 10
derived default data set names 10
development cycle 3
DIGITS built-in function 89
DIGITS value of NUMERIC instruction 91, 95
directly linked external programs 24
DL, NODL compiler option 24
DLINK (DL) compiler option 23
DO loops

labels within 96
nesting level 50

double-byte character set (DBCS) 83
DSNAME 10, 13
DU, NODU compiler option 25
dump

compiler diagnostics 24
interphase 24

DUMP (DU) compiler option 24
duplicate labels 53

E
EAGALT 137
EAGALT (message identifier) 137, 175
EAGCMF

REXXF EXEC 8
EAGCML

REXXL EXEC 8
EAGCUST EXEC

querying the current customization of EAGRTPRC 108
specifying that the Library is searched for in DCSS 108
specifying that the Library not be loaded from a DCSS
108
specifying the name of the module containing the
Library 108

EAGDCSS EXEC 107
EAGGJASM 245
EAGGJC 251
EAGGJCOB 257
EAGGJPLI 263
EAGGXASM 247
EAGGXC 252
EAGGXCOB 259
EAGGXPLI 264
EAGL

REXXL cataloged procedure 8
EAGL cataloged procedure 235
EAGQRLIB

REXXQ EXEC 8
EAGQRLIB EXEC 98
EAGREX 137
EAGREX (message identifier) 137
EAGREX0248E xii, 175
EAGREX0249E xii, 175
EAGREX0300E xii, 175
EAGREX0301I xii, 175
EAGREX0302I xii, 176
EAGREX0303I xii, 176
EAGREX0304I xii, 176
EAGREX0400E xii, 176
EAGREX0500E xii, 176
EAGREX0600E xii, 176
EAGREX0601I xii, 176
EAGREX0602I xii, 177
EAGREX0603I xii, 177
EAGREX0700E xii, 177
EAGREX0800E xii, 177
EAGREX0801I xii, 177
EAGREX0802I xii, 177
EAGREX0900E xii, 177
EAGREX0901I xii, 177
EAGREX0902I xii, 177
EAGREX1000E xii, 178
EAGREX1100E xii, 178
EAGREX1101I xii, 178
EAGREX1200E xii, 178
EAGREX1300E xii, 178
EAGREX1400E xii, 178
EAGREX1401I xii, 178
EAGREX1402I xii, 179
EAGREX1403I xii, 179
EAGREX1404I xii, 179
EAGREX1500E xii, 179
EAGREX1600E xii, 179

284

EAGREX1601I xii, 179
EAGREX1700E xii, 179
EAGREX1800E xii, 179
EAGREX1900E xii, 179
EAGREX1901I xii, 179
EAGREX1902I xii, 180
EAGREX2000E xii, 180
EAGREX2001I xii, 180
EAGREX2002I xii, 180
EAGREX2003I xii, 180
EAGREX2004I xii, 180
EAGREX2100E xii, 180
EAGREX2200E xii, 180
EAGREX2300E xii, 180
EAGREX2400E xii, 181
EAGREX2500E xii, 181
EAGREX2501I xiii, 181
EAGREX2502I xiii, 181
EAGREX2503I xiii, 181
EAGREX2504I xiii, 181
EAGREX2505I xiii, 181
EAGREX2506I xiii, 181
EAGREX2507I xiii, 182
EAGREX2508I xiii, 182
EAGREX2600E xiii, 182
EAGREX2601I xiii, 182
EAGREX2602I xiii, 182
EAGREX2603I xiii, 182
EAGREX2604I xiii, 182
EAGREX2605I xiii, 182
EAGREX2606I xiii, 182
EAGREX2607I xiii, 183
EAGREX2608I xiii, 183
EAGREX2609I xiii, 183
EAGREX2700E xiii, 183
EAGREX2701I xiii, 183
EAGREX2703I xiii, 183
EAGREX2706I xiii, 183
EAGREX2800E xiii, 183
EAGREX2801I xiii, 183
EAGREX2802I xiii, 184
EAGREX2803I xiii, 184
EAGREX2804I xiii, 184
EAGREX2805I xiii, 184
EAGREX2806I xiii, 184
EAGREX2900E xiii, 184
EAGREX3000E xiii, 184
EAGREX3001I xiii, 184
EAGREX3002I xiii, 184
EAGREX3004I xiii, 185
EAGREX3005I xiii, 185
EAGREX3100E xiii, 185
EAGREX3101I xiii, 185
EAGREX3102I xiii, 185
EAGREX3104I xiii, 185
EAGREX3200E xiii, 185
EAGREX3300E xiii, 185
EAGREX3301I xiii, 185
EAGREX3302I xiii, 185
EAGREX3304I xiii, 186
EAGREX3305I xiii, 186
EAGREX3306I xiii, 186
EAGREX3400E xiii, 186
EAGREX3401I xiii, 186

EAGREX3402I xiii, 186
EAGREX3403I xiii, 186
EAGREX3404I xiii, 186
EAGREX3500E xiii, 186
EAGREX3501I xiii, 186
EAGREX3502I xiii, 187
EAGREX3503I xiii, 187
EAGREX3504I xiii, 187
EAGREX3505I xiii, 187
EAGREX3506I xiii, 187
EAGREX3507I xiv, 187
EAGREX3508I xiv, 187
EAGREX3600E xiv, 187
EAGREX3700E xiv, 187
EAGREX3800E xiv, 187
EAGREX3801I xiv, 188
EAGREX3900E xiv, 188
EAGREX4000E xiv, 188
EAGREX4001I xiv, 188
EAGREX4002I xiv, 188
EAGREX4003I xiv, 188
EAGREX4004I xiv, 188
EAGREX4005I xiv, 188
EAGREX4006I xiv, 188
EAGREX4007I xiv, 189
EAGREX4008I xiv, 189
EAGREX4009I xiv, 189
EAGREX4010I xiv, 189
EAGREX4011I xiv, 189
EAGREX4012I xiv, 189
EAGREX4013I xiv, 189
EAGREX4014I xiv, 190
EAGREX4015I xiv, 190
EAGREX4017I xiv, 190
EAGREX4018I xiv, 190
EAGREX4019I xiv, 190
EAGREX4020I xiv, 190
EAGREX4021I xiv, 190
EAGREX4022I xiv, 190
EAGREX4023I xiv, 190
EAGREX4024I xiv, 191
EAGREX4025I xiv, 191
EAGREX4026I xiv, 191
EAGREX4027I xiv, 191
EAGREX4028I xiv, 191
EAGREX4029I xiv, 191
EAGREX4030I xiv, 191
EAGREX4031I xiv, 191
EAGREX4032I xiv, 191
EAGREX4033I xiv, 192
EAGREX4034I xiv, 192
EAGREX4035I xiv, 192
EAGREX4036I xiv, 192
EAGREX4037I xiv, 192
EAGREX4038I xiv, 192
EAGREX4039I xiv, 192
EAGREX4040I xiv, 192
EAGREX4041I xiv, 192
EAGREX4042I xiv, 193
EAGREX4043I xiv, 193
EAGREX4044I xiv, 193
EAGREX4045I xiv, 193
EAGREX4046I xiv, 193
EAGREX4047I xiv, 193

 285

EAGREX4048I xiv, 193
EAGREX4100E xiv, 193
EAGREX4101I xiv, 193
EAGREX4200E xiv, 194
EAGREX4201I xv, 194
EAGREX4202I xv, 194
EAGREX4203I xv, 194
EAGREX4204I xv, 194
EAGREX4205I xv, 194
EAGREX4206I xv, 194
EAGREX4207I xv, 194
EAGREX4208I xv, 194
EAGREX4209I xv, 194
EAGREX4210I xv, 195
EAGREX4211I xv, 195
EAGREX4300E xv, 195
EAGREX4400E xv, 195
EAGREX4500E xv, 195
EAGREX4600E xv, 195
EAGREX4700E xv, 195
EAGREX4800E xv, 195
EAGREX4801I xv, 196
EAGREX4802I xv, 196
EAGREX4803I xv, 196
EAGREX4804I xv, 196
EAGREX4805I xv, 196
EAGREX4806I xv, 196
EAGREX4900E xv, 196
EAGREX9999S xv, 196
EAGRTPRC library loader 46, 108
EAGSIO

message ID 125
EAGSIO0001 xv, 199
EAGSIO0002 xv, 199
EAGSIO0003 xv, 199
EAGSIO0004 xv, 199
EAGSIO0005 xv, 199
EAGSIO0007 xv, 199
EAGSIO0008 xv, 199
EAGSIO0009 xv, 199
EAGSIO0010 xv, 200
EAGSIO0011 xv, 200
EAGSIO0012 xv, 200
EAGSIO0013 xv, 200
EAGSIO0014 xv, 200
EAGSIO0015 xv, 200
EAGSIO0016 xv, 200
EAGSIO0017 xv, 200
EAGSIO0018 xv, 201
EAGSIO0019 xv, 201
EAGSIO0020 xv, 201
EAGSIO0021 xv, 201
EAGSIO0022 xv, 201
EAGSIO0023 xv, 201
EAGSIO0024 xv, 201
EAGSIO0025 xv, 201
EAGSIO0026 xv, 201
EAGSIO0027 xv, 201
EAGSIO0028 xv, 202
EAGSIO0029 xv, 202
EAGSIO0030 xv, 202
EAGSIO0031 xv, 202
EAGSIO0032 xv, 202
EAGSIO0033 xvi, 202

EAGSIO0034 xvi, 202
EAGSIO0035 xvi, 202
EAGSIO0036 xvi, 202
EAGSIO0037 xvi, 202
EAGSIO0038 xvi, 203
EAGSIO0039 xvi, 203
EAGSIO0040 xvi, 203
EAGSIO0041 xvi, 203
EAGSIO0042 xvi, 203
EAGSIO0043 xvi, 203
EAGSIO0044 xvi, 203
EAGSIO0045 xvi, 203
EAGSIO0046 xvi, 203
EAGSIO0047 xvi, 204
EAGSIO0048 xvi, 204
EAGSIO0049 xvi, 204
EAGSIO0050 xvi, 204
EAGSIO0051 xvi, 204
EAGSIO0052 xvi, 204
EAGSIO0053 xvi, 204
EAGSIO0054 xvi, 204
EAGSIO0055 xvi, 204
EAGSIO0056 xvi, 204
EAGSIO0057 xvi, 205
EAGSIO0058 xvi, 205
EAGSIO0059 xvi, 205
EAGSIO0060 xvi, 205
EAGSIO0061 xvi, 205
EAGSIO0062 xvi, 205
EAGSIO0063 xvi, 205
EAGSIO9999 xvi, 205
EAGV

REXXV EXEC 8
EFPL parameter list 216, 226
EFPL stub 66, 212, 223
end-of-stream

detection 124
enhanced options 10
error

checking 4, 93
list of messages 199
OVERFLOW 100
statistics 52
UNDERFLOW 100

errors
runtime 45

ESD (external symbol dictionary) record 65, 209
ETMODE option of OPTIONS instruction 83
EVALBLOCK control block handling, example 216, 226
EXEC file type 44
EXEC handler 4, 20
EXEC, EAGQRLIB 98
EXECCOMM interface

enhancements 90
optimization stoppers 95

EXECIO
purpose 120

EXECLOAD command 20
executing compiled programs 4
exponent, maximum value 91
exponentiation (**) operator 87
EXPOSE option of PROCEDURE instruction 96
extended architecture (XA) mode 6
extended parameter list 220

286

external function, frequently invoked 97
external programs, directly linked 24
external references, example of resolving 73
external routine

frequently invoked 97
linking to a REXX program 73

external symbol dictionary (ESD) record 65, 209

F
F, NOF compiler option 25
FANC

REXXC EXEC 7
under z/OS 9

FANCMC
REXXC cataloged procedure 7

FANCMC cataloged procedure 229
FANCMCG

REXXCG cataloged procedure 7
FANCMCG cataloged procedure 230
FANCMCL

REXXCL cataloged procedure 7
FANCMCL cataloged procedure 231
FANCMCLG

REXXCLG cataloged procedure 7
FANCMCLG cataloged procedure 232
FANCMF

REXXF EXEC 7
under z/OS 79

FANCMOEC
REXXOEC cataloged procedure 7

FANCMOEC cataloged procedure 234
FANDDN 13, 23
FANV

REXXV EXEC 7
under z/OS 80

FANxxx 137
FANxxx (message identifier) 137
file identifiers

compiled EXEC 20
requirements for file type 20, 44
source program 17, 105
TEXT file (z/VM) 30

file naming convention (z/VM) 44
FLAG (F) compiler option 25
FO, NOFO compiler option 25
Foreground REXX Compilation panel (z/OS) 11
FORM built-in function 89
FORMAT compiler option 25
function

calling mechanism 120
function package

building (z/OS) 67
building (z/VM) 69
installation 7, 117

FUZZ built-in function 89

G
generated ddname

usage 121, 125
generating a load module 65, 74
generating compiled code

generating compiled code (continued)
in condensed form 21

H
Halt condition 34, 82, 97
Halt Condition 81
Halt Interpretation (HI) immediate command 34, 81
help

for compiler invocation dialog 15
for REXX language elements 81

hexadecimal string, maximum length 91
HI (Halt Interpretation) immediate command 34, 81
hiding source code 33, 44
host commands 95

I
I, NOI compiler option 26
identifier

of messages 125
IEXEC (I) compiler option 26
IEXEC output 4
IF nesting level 50
implementation limits 91
in-storage control block 214, 224
include data sets 11
informational messages 138
installation 7, 117
instructions

CALL 89
NUMERIC FORM 89
OPTIONS 83, 89
options of 89
PARSE SOURCE 83, 217, 226
PARSE VERSION 83
PROCEDURE 96
SIGNAL 83
SIGNAL ON 89
TRACE 85

integer divide (%) operator 86
interface

between compiled programs and interpreted programs
45
between REXX programs and other programs 5
for object modules (VSE/ESA) 223
for object modules (z/OS) 207
for TEXT files 219

interlanguage job samples 245
interphase dump 24
INTERPRET 95
interpretable EXEC

organizing with compiled EXEC (VSE/ESA) 44
organizing with compiled EXEC (z/OS) 43
organizing with compiled EXEC (z/VM) 43

interpretable program
invoking from a compiled program 45
invoking unintentionally 43, 44

interpreter, language differences 81
interrupting program execution 81
invoking the compiler

from cataloged procedures 13
overview (z/OS) 9

 287

invoking the compiler (continued)
overview (z/VM) 14
using JCL statements 12
with ISPF panels (z/OS) 11, 12
with REXXCOMP 13
with the REXXC EXEC (z/OS) 9
with the REXXC EXEC (z/VM) 16
with the REXXD EXEC (z/VM) 15

IRXEXEC
EXEC handler

in-storage control block 214
parameters 213

from Assembler 247
from C 252
from Cobol 259
from PL/I 264

IRXJCL
from Assembler 245
from C 251
from Cobol 257
from PL/I 263

IRXPARMS 117
IRXTSPRM 117

J
job control language 12
job samples, interlanguage 245

L
labels

optimization stopper 95
referenced with SIGNAL 86
shown in cross-reference listing 53
within loops, performance 96

language differences
from the interpreter 81
to the interpreter 86

language level of Compiler 3, 81, 86
language processing 3
language, national 6
LC compiler option 28
length

parameter of CHARIN 127
LIBLEVEL compiler option 27
Library

customizing (z/VM) 106
not found 47
selecting version of (z/VM) 108
verifying availability of 97

library loader EAGRTPRC 46, 108
limitation

CALL ON 125
SIGNAL ON 125

limits and restrictions
implementation limits 91
technical restrictions 92

line
definition 120
input definition 119
numbers 50, 52
parameter of LINEIN 130

line (continued)
parameter of LINEOUT 130
width of terminal 90

LINECOUNT (LC) compiler option 28, 39
LINEIN

with CHARIN 124
LINEOUT

padding 123
truncation condition 123
with CHAROUT 124

LINES
end-of-stream detection 124

lines per page, compiler listing 28, 39
LINESIZE built-in function 90
link-editing object modules

description 208
external references 73

linking
object modules to external routines 65
REXX programs to external routines 73
TEXT files to external routines 69

listing control directive (%PAGE) 38, 49
literal strings

maximum length 91
performance 95

LL(n) compiler option 27
load module

generating 65, 74
generating from object modules 4
load library 117

location of PROCEDURE instruction (z/VM) 87
logical segment 107
loops

labels within 96
LRECL 13, 14

M
M compiler option 29
macros 20
MARGINS (M) compiler option 29
MAX function arguments 91
maximum implementation limits 91, 92
member list under z/OS 7
member name in the sample data set 213
message identifier 137
message repository

customizing (z/OS) 104
customizing (z/VM) 109

message summary in compiler listing 52
messages

compilation
displaying at terminal 34
explanations 139
suppressing 25

data sets required by the compiler (z/OS) 13
description 51
identifier 125
list of 199
runtime

explanations 175
general description 46

summary 52
traceback 33

288

MIN function arguments 91
modification level 133
module file

generate from TEXT files (z/VM) 4
MULTI

parameter lists 215
MULTI stub 66, 213
multiple labels 53
multiple read

on same stream 125
MVS parameter list 216
MVS stub 66, 212
MVS2OE

example 236

N
name

parameter of CHARIN 127
parameter of CHAROUT 128
parameter of CHARS 129
parameter of LINEIN 130
parameter of LINEOUT 130
parameter of LINES 131
parameter of STREAM 132

naming convention (z/VM) 44
national language selection 6
nesting of control structures

maximum 91
shown in cross-reference listing 50

NetView 82
NOALTERNATE (NOALT) compiler option 19
NOC compiler option 21
NOCEXEC (NOCE) compiler option 20
NOCOMPILE (NOC) compiler option 21
NOCONDENSE (NOCOND) compiler option 22
NODD (NODDNAMES) compiler option 22
NODDNAMES (NODD) compiler option 22
NODLINK (NODL) compiler option 24
NODUMP (NODU) compiler option 24, 25
NOFLAG (NOF) compiler option 25
NOFORMAT compiler option 25
NOIEXEC (NOI) compiler option 26
NOOBJECT (NOOBJ) compiler option 29, 30
NOOLDDATE compiler option 31
NOOPTIMISE 32
NOOPTIMIZE (NOOPT) compiler option 32
NOPRINT (NOPR) compiler option 32
NOSAA compiler option 33
NOSLINE (NOSL) compiler option 33, 84
NOSOURCE (NOS) compiler options 34
NOTERMINAL (NOTERM) compiler option 34
NOTESTHALT (NOTH) compiler option 34, 81, 82
Notices 267
NOTRACE (NOTR) compiler option 35
NOTREADY

condition trap 125
NOVALUE condition 82
NOXREF (NOX) compiler option 36
nucleus extension 70
NUCXDROP command 46
NUCXLOAD command 30
number of PARSE templates 91
numbers 95, 100

NUMERIC DIGITS
performance 95
value 91, 94

NUMERIC FORM instruction 89
NUMERIC instruction 95

O
OBJ, NOOBJ compiler option 30
OBJECT (OBJ) compiler option 29
object module

cataloged procedures, link-editing 209
data set name 29
deriving name of 65, 209
external routines, linking 65
general description 4
interface (VSE/ESA) 223
interface (z/OS) 207
link-editing 208
linking external routines 65
naming restriction 66, 209
PARSE SOURCE 217, 226
producing 30
search order 217, 226
when to use 30

OBJECT output
background information 30
deriving name of 65
MODULE file (z/OS) 29
object module (z/OS) 65
TEXT file (z/VM) 69
when to use 65

OLDD/NOOLDD compiler option 31
OLDDATE compiler option 31
online help

for compiler invocation dialog 15
for REXX language elements 81

opening data set member
nonexistent 122

opening default stream 122
opening stream

explicitly 122
for read 122
for write 122
implicitly 122
nonexistent 122
purpose 122

operating systems 81
operation

parameter of STREAM 132
operators

\<< (strictly not less than) 90
\>> (strictly not greater than) 90
<< (strictly less than) 90
<<= (strictly less than or equal) 90
>> (strictly greater than) 90
>>= (strictly greater than or equal) 90
¬<< (strictly not less than) 90
¬>> (strictly not greater than) 90
exponentiation (**) operator 87
integer divide (%) 86
remainder (//) 86
strictly greater than (>>) 90
strictly greater than or equal (>>=) 90

 289

operators (continued)
strictly less than (<<) 90
strictly less than or equal (<<=) 90
strictly not greater than (\>>) 90
strictly not greater than (¬>>) 90
strictly not less than (\<<) 90
strictly not less than (¬<<) 90

OPT/NOOPT compiler option 32
OPTIMISE 32
optimization

description 93
limitations 95
stoppers 94

OPTIMIZE (OPT) compiler option 32
options

enhanced 10
on built-in functions (z/VM) 88
on instructions (z/VM) 89

OPTIONS instruction
effect on checking of pad characters 92
ETMODE option 83

output, forms of 4
OVERFLOW error 100

P
packaging

improving (z/OS) 66
improving (z/VM) 69

pad characters 92
padding

record 123
page break, in source listing 38
PAGE listing control directive 38
panel

Batch REXX Compile (z/OS) 12
compiler invocation dialog (z/VM) 15
Foreground REXX Compile (z/OS) 11
REXX Compiler Options Specifications (z/VM) 16

parameter list
6-word extended, invocation with 220
CALLCMD 217
CPPL 215
CPPLEFPL 216
EFPL 216, 226
extended 220
invocation with 220
MVS 216
tokenized 220
VSE stub 226

parameter-passing convention
CALLCMD 213
CPPL 212
CPPLEFPL 212
EFPL 212
MULTI 213
MVS 212
VSE 223

PARSE SOURCE instruction 83, 217, 226
PARSE VERSION instruction 83
performance and programming considerations

%TESTHALT control directive 95
arithmetic 95
compound variables 94, 96

performance and programming considerations (continued)
error checking 93
EXECCOMM interface 95
frequently invoked external routines and functions 97
host commands 95
improving performance (z/OS) 66
improving performance (z/VM) 69
INTERPRET instruction 95
labels 95
labels within loops 96
literal strings 95
loops 94
NUMERIC DIGITS 94
NUMERIC instruction 95
optimization stoppers 94
PROCEDURE instruction 96
TESTHALT (TH) compiler option 95, 97
VALUE function 95
variables 96
verifying Library availability 97

persistent stream
definition 121
end-of-stream detection 124

phase, naming restriction 70
physical segment

defining
for VM/XA and for VM/ESA with ESA feature 106

saving 106
PL/I, call REXX 263
PLIST 30
portability of compiled REXX programs 5
position pointer

changing 124
general purpose 124
initial setting 124
limitation 122
purpose of 119
truncated record 124

PR, NOPR compiler option 32
prelink control directive (%STUB) 39
prelink, compilation under z/OS 39
PRINT (PR) compiler option 32
problems

query service level 133
PROCEDURE EXPOSE items 91
PROCEDURE instruction

location of (z/VM) 87
performance 96

program
development cycle 3

purpose
of stream I/O 117

Q
QUERY EXISTS

usage 125
queue entries, length 91
queue entries, maximum number 91
quotes

use with ETMODE option 83
use with literal strings 95

290

R
read operation

multiple 125
read position

see position pointer 124
RECFM 13, 14
record format

CHAROUT 123
LINEOUT truncation 123
padding 123

record length, maximum value for source files 92
reentrant modules 65
release level 133
remainder (//) operator 86
renaming program files 20, 44
resolving external references 73
resource authorization 118
restrictions, technical 92
return codes 138
REXX

control directives 81
from Assembler 245
from C 251
from Cobol 257
from PL/I 263
implementation 3, 81
language differences

argument counting instruction (z/VM) 88
built-in functions (z/VM) 89
copyright control directive 36
EXECCOMM interface (z/VM) 90
exponentiation (**) operator 87
Halt Interpretation (HI) immediate command 81
include control directive 37
integer divide (%) operator 86
introduction 81
limits on numbers 100
LINESIZE built-in function in full-screen CMS 90
listing control directive 38
location of PROCEDURE instruction (z/VM) 87
NOVALUE condition 82
operators 90
OPTIONS instruction 83
options of built-in functions (z/VM) 88
options of instructions (z/VM) 89
PARSE SOURCE instruction 83
PARSE VERSION instruction 83
prelink directive 39
remainder (//) operator 86
SIGNAL instruction 83
SOURCELINE built-in function 84, 85
TE (Trace End) command 86
TS (Trace Start) command 86

language level of Compiler 3
writing applications in (z/OS) 67
writing applications in (z/VM) 69

REXX program
calling and linking 5
invoked as command or program (z/OS) 66
linking an external routine 73
portability of 5

REXXC cataloged procedure
FANCMC 7

REXXC EXEC
CEXEC option (z/OS) 20
customizing 103
default data set names 10
DUMP option (z/OS) 19, 25
enhanced options (z/OS) 10
FANC 7
invoking the compiler (z/OS) 9
OBJECT option (z/OS) 29
PRINT option (z/OS) 32

REXXCG cataloged procedure
FANCMCG 7

REXXCL cataloged procedure
FANCMCL 7

REXXCLG cataloged procedure
FANCMCLG 7

REXXCOMP 13
REXXCOMP command 105
REXXD command 15
REXXD XEDIT 15
REXXDX XEDIT 105
REXXF EXEC

converting CEXEC output 77, 79
copying CEXEC output 78
EAGCMF 8
FANCMF 7

REXXL cataloged procedure
EAGL 8

REXXL EXEC
customizing 103, 111
default data set names 68
EAGCML 8

REXXLINK cataloged procedure 71, 240
REXXOEC cataloged procedure

FANCMOEC 7
REXXPLNK cataloged procedure 71, 239
REXXQ EXEC

EAGQRLIB 8
REXXV EXEC

converting CEXEC output 77, 78
copying CEXEC output 80
EAGV 8
FANV 7

running
above 16MB in virtual storage 6
compiled programs 4, 47

runtime
batch mode 45
considerations 43
errors 47
including support for HI command 47
interfaces with interpreted programs 45
loading the Library (z/VM) 45
messages 46, 175
organizing compiled and interpretable EXECs (VSE/ESA)
44
organizing compiled and interpretable EXECs (z/OS) 43
organizing compiled and interpretable EXECs (z/VM) 43
performance 93
tracing compiled programs 47

S
S, NOS compiler option 34

 291

SAA (Systems Application Architecture)
compliance checking 33
general description 6

SAA compiler option 33
SAA REXX interface 6, 33
sample (MVS2OE) 236
samples, interlanguage job 245
search order

compiled and interpretable EXECs 20, 43
object modules 217

secondary messages 46
SELECT nesting level 50
service level

of function package 133
SETVAR 46
severe errors 138
SEXEC file type 44
SIGNAL instruction 83
SIGNAL ON condition 125
SIGNAL ON instruction 89
single quotation mark

use with data set name 121
SL, SL(A), NOSL compiler option 33
SLINE (SL) compiler option 33, 84
SOURCE (S) compiler option 33
source code

displayed at terminal 34
hiding 33, 44
included in compiled program 33
referencing at runtime 84

source listing
%PAGE control directive 49
controlling page breaks 38
description 49
example 51, 52, 56
producing 33
with messages 51

SOURCE option of PARSE instruction 83
source program

file identifier
for REXXC EXEC 17
for REXXCOMP command 105
for REXXD EXEC 15

general description 3
maximum number of lines 92
maximum record length 92

SOURCELINE built-in function 33, 84
split lines in source listing 50
start

parameter of CHARIN 127
parameter of CHAROUT 128

statistics listing, example 58, 59
stem of a variable 96
stream

characteristics 120
default 119
multiple ddnames 125
multiple open 125
name 119
opening explicitly 122
opening for read 122
opening for write 122
opening implicitly 122
opening nonexistent 122

stream (continued)
position pointer 119
purpose of closing 123

STREAM function
generating ddname 121, 125

stream I/O
definition 119
error detection 125
functions, overview 120
minimum TSO/E REXX level 117
purpose 117, 119

stream_command
parameter of STREAM 132

strict comparison operators 90
string

parameter of CHAROUT 128
parameter of LINEOUT 130

stub
names 213

stub (VSE/ESA)
definition 223
EFPL 223
parameter lists 223
processing sequence

ARXEXEC parameter 223
in-storage control block 224

processing sequence (VSE/ESA) 223
registers set (VSE/ESA) 225
VSE 223
VSE types of stubs 223

stub (z/OS)
CALLCMD 213
CPPL 212
CPPLEFPL 212
definition 212
EFPL 212
linkage editor input 209
MULTI 213
MVS 212
parameter lists 213
parameter-passing conventions 66
processing sequence

in-storage control block 214
IRXEXEC parameter 213

processing sequence (z/OS) 213
registers set (z/OS) 215
types of 212
using REXXL to link program 209

STUB prelink control directive 39
supported data set 123
suppressing

code generation 21
compilation messages 25

symbols, maximum length 91
synonyms for module files 83
SYNTAX

condition 84
condition trap 125

syntax checking 21
syntax notation xix, 115
SYS1.CSSLIB 117
SYS1.MACLIB 117
SYSCEXEC 14
SYSDUMP 14

292

SYSIEXEC 14
SYSIN 14
SYSLIB 14
SYSPRINT 14
SYSPUNCH 14
System Product Interpreter 81
SYSTERM 14

T
TE (Trace End) command 86
technical restrictions 92
TERM, NOTERM compiler option 34
TERMINAL (TERM) compiler option 34
terminal, finding line width 90
terminating errors 34, 138
TESTHALT (TH) compiler option

optimization stopper 95
performance 97

TEXT file (z/VM)
Assembler interface to, example 221
call from Assembler program

call type 219
extended parameter list 220
registers 219

deriving name of 65
file identifier 30
general description 4, 30
generating module files from 4
interface 219
linking to Assembler programs 69
PARSE SOURCE information for 83
producing 30
when to use 30

TH, NOTH compiler option 34
Token Service, z/OS 117
tokenized parameter list, argument string 220
TPA (transient program area) 69, 92
TR, NOTR compiler option 35
TRACE (TR) compiler option 35
TRACE built-in function 85
Trace End (TE) command 86
Trace Start (TS) command 86
traceback messages 33
tracing 85
trademarks 268
transient program area (TPA) 69, 92
transient stream

definition 121
end-of-stream detection 124

truncation
LINEOUT 123
position pointer 124

TS (Trace Start) command 86
TSO/E command

ALLOCATE 122

U
UNDERFLOW error 100

V
VALUE function 88, 95, 98
VALUE option of SIGNAL instruction 86
variables

keeping track of 93
performance and programming considerations of 96
setting, shown in cross-reference listing 54
value, maximum length 91

version level 133
VERSION option of PARSE instruction 83
virtual storage, running above 16MB 6
VSE parameter list 226
VSE stub 223

W
warning messages 138
WORDPOS built-in function 89
write position

see position pointer 124

X
X, X(S), NOX compiler option 36
X2B built-in function 89
X2D input string, maximum length 91
XA (extended architecture) mode 6
XREF (X) compiler option 35, 36
XREF(SHORT) compiler option 36

Z
z/OS Batch Facility 45
z/VM Batch Facility 17, 45

 293

294

IBM®

SH19-8160-06

	Contents
	About This Book
	How to Read the Syntax Notation
	How This Book Is Organized
	How to Send Your Comments

	What's New in Release 4
	IBM Compiler for REXX on IBM Z
	IBM Library for REXX on IBM Z

	Part 1. Programming Reference Information
	Chapter 1. Overview
	Background information about compilers
	The Level of REXX Supported by the Compiler
	Using the Compiler in Program Development
	Background information about error checking

	Forms and Uses of Output
	Porting and Running Compiled REXX Programs
	Calling and Linking REXX Programs
	Running above 16 Megabytes in Virtual Storage
	SAA Compliance
	Choosing the National Language
	Alternate Library Overview
	Stream I/O for TSO/E REXX Function Package
	Alias Definitions and Member Names under z/OS

	Chapter 2. Invoking the Compiler
	Invoking the Compiler under z/OS
	Invoking the Compiler with the REXXC (FANC) EXEC
	Derived Default Data Set Names
	An Example

	Invoking the Compiler with ISPF Panels
	Invoking the Compiler with JCL Statements
	Invoking the Compiler with Cataloged Procedures
	Invoking the Compiler with the 'REXXCOMP' Command
	Standard Data Sets Provided for the Compiler

	Invoking the Compiler under z/VM
	Invoking the Compiler with REXXD
	An Example
	Setting the Compiler Options

	Invoking the Compiler with the REXXC EXEC
	Batch Jobs

	Chapter 3. Compiler Options and Control Directives
	Compiler Options
	ALTERNATE
	BASE
	CEXEC
	Background information about compiled EXECs

	COMPILE
	CONDENSE
	Background information about condensed programs

	DDNAMES
	DLINK
	Background information about directly linked external programs

	DUMP
	FLAG
	FORMAT
	IEXEC
	Background information about calculating record lengths in z/OS

	LIBLEVEL
	LINECOUNT
	MARGINS
	OBJECT
	Background information about using OBJECT output under z/OS
	Background information about using OBJECT output under z/VM
	Background information about using OBJECT output under VSE/ESA

	OLDDATE
	OPTIMIZE
	PRINT
	SAA
	SLINE
	SOURCE
	TERMINAL
	TESTHALT
	TRACE
	XREF

	Control Directives
	%COPYRIGHT
	%INCLUDE
	%PAGE
	%STUB
	%SYSDATE
	%SYSTIME
	%TESTHALT

	Chapter 4. Runtime Considerations
	Organizing Compiled and Interpretable EXECs under z/OS
	Organizing Compiled and Interpretable EXECs under z/VM
	Organizing Compiled and Interpretable EXECs under VSE/ESA
	Use of the Alternate Library (z/OS, z/VM)
	Other Runtime Considerations

	Chapter 5. Understanding the Compiler Listing
	Compilation Summary
	Source Listing
	Messages
	Cross-Reference Listing
	Compilation Statistics
	Examples with Column Numbers
	Example of a Complete Compiler Listing

	Chapter 6. Using Object Modules and TEXT Files
	Initial Considerations
	Object Modules (z/OS)
	Invoking a REXX Program as a Command or a Program
	Improving Packaging and Performance
	Building Function Packages
	Writing Parts of Applications in REXX
	REXXL (z/OS)

	TEXT Files (z/VM)
	Object Modules (VSE/ESA)
	REXXPLNK Cataloged Procedure (VSE/ESA)
	REXXLINK Cataloged Procedure (VSE/ESA)
	REXXL Cataloged Procedure (VSE/ESA)

	Linking External Routines to a REXX Program
	Resolving External References—An Example
	Under z/OS
	Under z/VM
	Under VSE/ESA

	Chapter 7. Converting CEXEC Output between Operating Systems
	Compiling on One System and Running on Another System
	Converting from z/OS to MVS OpenEdition
	Converting from z/OS to z/VM
	Converting from z/OS to VSE/ESA
	Converting from z/VM to z/OS
	Converting from z/VM to VSE/ESA

	Copying CEXEC Output
	REXXF (FANCMF) under z/OS
	REXXF under z/VM
	REXXV (FANV) under z/OS
	REXXV under z/VM

	Chapter 8. Language Differences between the Compiler and the Interpreters
	Differences from the Interpreters on VM/ESA Release 2.1, TSO/E Version 2 Release 4, and REXX/VSE
	Compiler Control Directives
	Halt Condition
	NOVALUE Condition
	OPTIONS Instruction
	PARSE SOURCE Instruction
	PARSE VERSION Instruction
	RANDOM Built-In Function
	SOURCELINE Built-In Function
	Start of Clause
	SYSVAR Function
	TRACE Instruction and TRACE Built-In Function
	TS (Trace Start) and TE (Trace End) Commands

	Differences to Earlier Releases of the Interpreters
	SIGNAL Instruction
	Integer Divide (%) and Remainder (//) Operations
	Exponentiation (**) Operation
	Location of PROCEDURE Instructions
	Binary Strings
	Templates Used by PARSE, ARG, and PULL
	PROCEDURE EXPOSE and DROP
	DO LOOPs
	DBCS Symbols
	VALUE Built-In Function
	Argument Counting
	Options of Built-In Functions
	Built-In Functions
	Options of Instructions
	Strict Comparison Operators
	LINESIZE Built-In Function in Full-Screen CMS
	Enhancement to the EXECCOMM Interface

	Chapter 9. Limits and Restrictions
	Implementation Limits
	Technical Restrictions
	z/OS Restrictions
	z/VM restrictions
	VSE/ESA restrictions
	C restriction

	Chapter 10. Performance and Programming Considerations
	Performance Considerations
	Optimization, Optimization Stoppers, and Error Checking
	Keeping Track of Variables
	Performing Operations at Compilation Time
	Eliminating Several Evaluations
	Improving Access to Compound Variables
	Optimization Stoppers
	Optimization Limitations

	Arithmetic
	Literal Strings
	Variables
	Compound Variables
	Labels within Loops
	Procedures
	TESTHALT Option
	Frequently Invoked External Routines

	Programming Considerations
	Verifying the Availability of the Library
	VALUE Built-In Function
	Stream I/O
	Determining whether a Program is Interpreted or Compiled
	Creating REXX Programs for Use with the Alternate Library (z/OS, z/VM)
	Limits on Numbers

	Part 2. Customizing the Compiler and Library
	Chapter 11. Customizing the IBM Compiler and Library for REXX on z/OS
	Modifying the Cataloged Procedures Supplied by IBM
	Customizing the REXXC EXEC
	Customizing the REXXL EXEC
	Message Repository

	Chapter 12. Customizing the IBM Compiler and Library for REXX on z/VM
	Customizing the Compiler Invocation Shells
	Modifying the Function of the Compiler Invocation Shells
	The REXXCOMP Command

	Setting Up Installation Defaults for the Compiler Options

	Customizing the Compiler Invocation Dialog
	Customizing the Library
	Defining the Library as a Physical Segment
	Saving the Physical Segment
	Defining the Library as a Logical Segment
	Selecting the Version of the Library
	Using the EAGCUST EXEC

	Customizing the Message Repository to Avoid a Read/Write A-Disk
	Files Needed to Run Compiled REXX Programs

	Chapter 13. Customizing the Library under VSE/ESA

	Part 3. Stream I/O for TSO/E REXX
	Chapter 14. How to Read the Syntax Diagrams
	Chapter 15. Installing the Function Package
	Preparation
	Assembly, Link-Edit, and Verification
	Installations with Multiple Function Packages
	Usage Considerations

	Chapter 16. Understanding the Stream I/O Concept
	The Basic Elements of Stream I/O
	The TSO/E REXX Stream I/O Implementation
	The Stream I/O Functions
	Naming Streams
	Transient and Persistent Streams
	Opening and Closing Streams
	Implicit versus Explicit Opening of Streams
	Opening Streams for Read or Write Operations
	Opening Nonexistent Streams
	Closing Streams

	Stream Formats
	Position Pointer Details
	End-of-Stream Treatment
	Error Treatments
	Stream I/O Processing Errors
	Messages

	Multiple Read Operations

	Chapter 17. Stream I/O Functions
	CHARIN (Character Input)
	CHAROUT (Character Output)
	CHARS (Characters Remaining)
	LINEIN (Line Input)
	LINEOUT (Line Output)
	LINES (Lines Remaining)
	STREAM (Operations)

	Part 4. Messages
	Chapter 18. Message Format and Return Codes
	Message Format
	Return Codes

	Chapter 19. Compilation Messages
	FANCON0050T
	FANFMU0051T
	FANCON0052T
	FANTOK0053T
	FANxxx0054T
	FANxxx0055T
	FANPAR0056I
	FANCON0060T
	FANPAR0071W
	FANGAO0072S
	FANPAR0073S
	FANPAR0074W
	FANPAR0075W
	FANPAR0076W
	FANPAR0077W
	FANPAR0078W
	FANPAR0079S
	FANPAR0080S
	FANPAR0081W
	FANPAR0082W
	FANGAO0083S
	FANGAO0084W
	FANPAR0090S
	FANPAR0150S
	FANPAR0151S
	FANPAR0152S
	FANPAR0153S
	FANPAR0154S
	FANPAR0155S
	FANPAR0156S
	FANPAR0157S
	FANPAR0158S
	FANPAR0159S
	FANPAR0160S
	FANPAR0161S
	FANPAR0162S
	FANPAR0163S
	FANPAR0164S
	FANPAR0180S
	FANPAR0181S
	FANPAR0182S
	FANPAR0190S
	FANPAR0191S
	FANPAR0192S
	FANPAR0193S
	FANPAR0194S
	FANPAR0250I
	FANPAR0253S
	FANPAR0254S
	FANPAR0255S
	FANPAR0256S
	FANPAR0257S
	FANPAR0258S
	FANPAR0259S
	FANPAR0260S
	FANPAR0270S
	FANPAR0271S
	FANPAR0272S
	FANPAR0273S
	FANPAR0274S
	FANPAR0275S
	FANPAR0276S
	FANPAR0277S
	FANPAR0278S
	FANPAR0279S
	FANPAR0280S
	FANPAR0281S
	FANPAR0282S
	FANPAR0283S
	FANPAR0284S
	FANPAR0285W
	FANPAR0290S
	FANPAR0350S
	FANPAR0352S
	FANPAR0353S
	FANPAR0354S
	FANPAR0371S
	FANPAR0381S
	FANPAR0390S
	FANPAR0391S
	FANPAR0392S
	FANPAR0393S
	FANPAR0394S
	FANPAR0450S
	FANPAR0451S
	FANPAR0452S
	FANPAR0460S
	FANPAR0465W
	FANPAR0466W
	FANPAR0469S
	FANPAR0470S
	FANPAR0471S
	FANPAR0472S
	FANPAR0490S
	FANPAR0550W
	FANPAR0560S
	FANPAR0561S
	FANPAR0562S
	FANPAR0564S
	FANPAR0565S
	FANPAR0566S
	FANPAR0567S
	FANPAR0568S
	FANPAR0569S
	FANPAR0570S
	FANPAR0580S
	FANPAR0581S
	FANPAR0582S
	FANGAO0583S
	FANPAR0584S
	FANPAR0590S
	FANPAR0591S
	FANPAR0592S
	FANPAR0593S
	FANPAR0594S
	FANPAR0595S
	FANPAR0596S
	FANPAR0597S
	FANPAR0598S
	FANPAR0599S
	FANGAO0600W
	FANPAR0601W
	FANPAR0648S
	FANPAR0650S
	FANPAR0651S
	FANPAR0652S
	FANPAR0653S
	FANPAR0654S
	FANPAR0655S
	FANPAR0656E
	FANGAO0657S
	FANGAO0658S
	FANGAO0659S
	FANPAR0660S
	FANPAR0661S
	FANPAR0662S
	FANENV0663S
	FANENV0669T
	FANENV0670S
	FANENV0671T
	FANENV0672T
	FANENV0673S
	FANENV0674T
	FANENV0675T
	FANENV0676T
	FANENV0677S
	FANENV0678T
	FANENV0679T
	FANFMU0680T
	FANFMU0681T
	FANFMU0682T
	FANFMU0683T
	FANFMU0684T
	FANFMU0685T
	FANCON0686T
	FANLIS0687T
	FANLIS0688T
	FANxxx0689T
	FANENV0690T
	FANENV0691W
	FANENV0692S
	FANENV0693T
	FANENV0694T
	FANENV0695T
	FANENV0696T
	FANENV0697T
	FANENV0698T
	FANENV0703S
	FANCON0704S
	FANCOD0705S
	FANxxx0706S
	FANENV0708T
	FANENV0709W
	FANENV0710T
	FANENV0711T
	FANENV0712T
	FANxxx0713I
	FANENV0718T
	FANENV0719T
	FANGAO0770S
	FANENV0771S
	FANGAO0772W
	FANGAO0773I
	FANGAO0774I
	FANENV0800E
	FANENV0801E
	FANENV0802E
	FANENV0803E
	FANPAR0849W
	FANPAR0850W
	FANPAR0851W
	FANPAR0852W
	FANPAR0854W
	FANPAR0855W
	FANPAR0856W
	FANGAO0857W
	FANGAO0858W
	FANGAO0859S
	FANGAO0860S
	FANGAO0861S
	FANGAO0862S
	FANGAO0863S
	FANGAO0864S
	FANGAO0865S
	FANGAO0866S
	FANGAO0867W
	FANGAO0868S
	FANGAO0869S
	FANFMU0870S
	FANFMU0871T
	FANGAO0872I
	FANGAO0873I
	FANGAO0874I
	FANGAO0875I
	FANGAO0878S
	FANGAO0879S
	FANGAO0880S
	FANGAO0881S
	FANGAO0882E
	FANGAO0883S
	FANGAO0884S
	FANGAO0885S
	FANGAO0886I
	FANGAO0887I
	FANGAO0888W
	FANGAO0889I
	FANENV0890T
	FANENV0891T
	FANENV0892T
	FANENV0893T
	FANCON0900T
	FANxxx0901T
	FANENV0902T
	FANENV0903T
	FANENV0904T
	FANFMU0906T
	FANFMU0907T
	FANFMU0908T
	FANFMU0909T
	FANFMU0910T
	FANFMU0911T
	FANCON0912T
	FANLIS0913T
	FANLIS0914T
	FANLIS0915T
	FANENV0916T
	FANENV0917T
	FANENV0918T
	FANENV0919T
	FANTOK0920T
	FANLIS0921T
	FANLIS0922T
	FANxxx0923T
	FANENV0924T
	FANENV0925T
	FANCON0926T
	FANENV0927S
	FANENV0928S
	FANENV0929S
	FANENV0930T
	FANENV0931T
	FANENV0932T
	FANENV0934E
	FANPAR0935E
	FANPAR0936E
	FANPAR0937E
	FANxxx0938W
	FANENV0939E
	FANENV0940E
	FANENV0941W
	FANENV0942E
	FANENV0943I
	FANENV0944S
	FANENV0945S
	FANENV0946S
	FANENV0947T
	FANxxx9999
	FANxxx9999

	Chapter 20. Runtime Messages
	EAGREX0248E
	EAGREX0249E
	EAGREX0300E
	EAGREX0301I
	EAGREX0302I
	EAGREX0303I
	EAGREX0304I
	EAGREX0400E
	EAGREX0500E
	EAGREX0600E
	EAGREX0601I
	EAGREX0602I
	EAGREX0603I
	EAGREX0700E
	EAGREX0800E
	EAGREX0801I
	EAGREX0802I
	EAGREX0900E
	EAGREX0901I
	EAGREX0902I
	EAGREX1000E
	EAGREX1100E
	EAGREX1101I
	EAGREX1200E
	EAGREX1300E
	EAGREX1400E
	EAGREX1401I
	EAGREX1402I
	EAGREX1403I
	EAGREX1404I
	EAGREX1500E
	EAGREX1600E
	EAGREX1601I
	EAGREX1700E
	EAGREX1800E
	EAGREX1900E
	EAGREX1901I
	EAGREX1902I
	EAGREX2000E
	EAGREX2001I
	EAGREX2002I
	EAGREX2003I
	EAGREX2004I
	EAGREX2100E
	EAGREX2200E
	EAGREX2300E
	EAGREX2400E
	EAGREX2500E
	EAGREX2501I
	EAGREX2502I
	EAGREX2503I
	EAGREX2504I
	EAGREX2505I
	EAGREX2506I
	EAGREX2507I
	EAGREX2508I
	EAGREX2600E
	EAGREX2601I
	EAGREX2602I
	EAGREX2603I
	EAGREX2604I
	EAGREX2605I
	EAGREX2606I
	EAGREX2607I
	EAGREX2608I
	EAGREX2609I
	EAGREX2700E
	EAGREX2701I
	EAGREX2703I
	EAGREX2706I
	EAGREX2800E
	EAGREX2801I
	EAGREX2802I
	EAGREX2803I
	EAGREX2804I
	EAGREX2805I
	EAGREX2806I
	EAGREX2900E
	EAGREX3000E
	EAGREX3001I
	EAGREX3002I
	EAGREX3004I
	EAGREX3005I
	EAGREX3100E
	EAGREX3101I
	EAGREX3102I
	EAGREX3104I
	EAGREX3200E
	EAGREX3300E
	EAGREX3301I
	EAGREX3302I
	EAGREX3304I
	EAGREX3305I
	EAGREX3306I
	EAGREX3400E
	EAGREX3401I
	EAGREX3402I
	EAGREX3403I
	EAGREX3404I
	EAGREX3500E
	EAGREX3501I
	EAGREX3502I
	EAGREX3503I
	EAGREX3504I
	EAGREX3505I
	EAGREX3506I
	EAGREX3507I
	EAGREX3508I
	EAGREX3600E
	EAGREX3700E
	EAGREX3800E
	EAGREX3801I
	EAGREX3900E
	EAGREX4000E
	EAGREX4001I
	EAGREX4002I
	EAGREX4003I
	EAGREX4004I
	EAGREX4005I
	EAGREX4006I
	EAGREX4007I
	EAGREX4008I
	EAGREX4009I
	EAGREX4010I
	EAGREX4011I
	EAGREX4012I
	EAGREX4013I
	EAGREX4014I
	EAGREX4015I
	EAGREX4017I
	EAGREX4018I
	EAGREX4019I
	EAGREX4020I
	EAGREX4021I
	EAGREX4022I
	EAGREX4023I
	EAGREX4024I
	EAGREX4025I
	EAGREX4026I
	EAGREX4027I
	EAGREX4028I
	EAGREX4029I
	EAGREX4030I
	EAGREX4031I
	EAGREX4032I
	EAGREX4033I
	EAGREX4034I
	EAGREX4035I
	EAGREX4036I
	EAGREX4037I
	EAGREX4038I
	EAGREX4039I
	EAGREX4040I
	EAGREX4041I
	EAGREX4042I
	EAGREX4043I
	EAGREX4044I
	EAGREX4045I
	EAGREX4046I
	EAGREX4047I
	EAGREX4048I
	EAGREX4100E
	EAGREX4101I
	EAGREX4200E
	EAGREX4201I
	EAGREX4202I
	EAGREX4203I
	EAGREX4204I
	EAGREX4205I
	EAGREX4206I
	EAGREX4207I
	EAGREX4208I
	EAGREX4209I
	EAGREX4210I
	EAGREX4211I
	EAGREX4300E
	EAGREX4400E
	EAGREX4500E
	EAGREX4600E
	EAGREX4700E
	EAGREX4800E
	EAGREX4801I
	EAGREX4802I
	EAGREX4803I
	EAGREX4804I
	EAGREX4805I
	EAGREX4806I
	EAGREX4900E
	EAGREX9999S

	Chapter 21. Stream I/O Messages
	EAGSIO0001
	EAGSIO0002
	EAGSIO0003
	EAGSIO0004
	EAGSIO0005
	EAGSIO0007
	EAGSIO0008
	EAGSIO0009
	EAGSIO0010
	EAGSIO0011
	EAGSIO0012
	EAGSIO0013
	EAGSIO0014
	EAGSIO0015
	EAGSIO0016
	EAGSIO0017
	EAGSIO0018
	EAGSIO0019
	EAGSIO0020
	EAGSIO0021
	EAGSIO0022
	EAGSIO0023
	EAGSIO0024
	EAGSIO0025
	EAGSIO0026
	EAGSIO0027
	EAGSIO0028
	EAGSIO0029
	EAGSIO0030
	EAGSIO0031
	EAGSIO0032
	EAGSIO0033
	EAGSIO0034
	EAGSIO0035
	EAGSIO0036
	EAGSIO0037
	EAGSIO0038
	EAGSIO0039
	EAGSIO0040
	EAGSIO0041
	EAGSIO0042
	EAGSIO0043
	EAGSIO0044
	EAGSIO0045
	EAGSIO0046
	EAGSIO0047
	EAGSIO0048
	EAGSIO0049
	EAGSIO0050
	EAGSIO0051
	EAGSIO0052
	EAGSIO0053
	EAGSIO0054
	EAGSIO0055
	EAGSIO0056
	EAGSIO0057
	EAGSIO0058
	EAGSIO0059
	EAGSIO0060
	EAGSIO0061
	EAGSIO0062
	EAGSIO0063
	EAGSIO9999

	Appendix A. Interface for Object Modules (z/OS)
	ISPF Restrictions on Load Modules
	Earlier Releases of ISPF
	ISPF Version 4 Release 1
	ISPF for z/OS Version 1 Release 5.5

	Link-Editing of Object Modules
	DLINK Example

	Stubs
	Stub Names
	Processing Sequence for Stubs
	Parameter List for Invoking IRXEXEC
	In-Storage Control Block

	Parameter Lists
	Registers for Stubs
	CPPL Parameter List
	EFPL Parameter List
	CPPLEFPL
	MVS Parameter List
	CALLCMD Parameter List

	Search Order
	Testing Stubs

	PARSE SOURCE

	Appendix B. Interface for TEXT Files (z/VM)
	The Call from the Assembler Program
	Call Type
	Registers
	Extended PLISTs

	What the REXX Program Gets
	Invocation with a Tokenized PLIST Only
	Invocation with an Extended PLIST or a 6-Word Extended PLIST

	Example of an Assembler Interface to a TEXT File

	Appendix C. Interface for Object Modules (VSE/ESA)
	Stubs
	Processing Sequence for Stubs
	Parameter List for Invoking ARXEXEC
	In-Storage Control Block

	Parameter Lists
	Registers for VSE/ESA Stubs
	VSE Parameter List
	EFPL Parameter List

	PARSE SOURCE

	Appendix D. The z/OS Cataloged Procedures Supplied by IBM
	REXXC (FANCMC)
	REXXCG (FANCMCG)
	REXXCL (FANCMCL)
	REXXCLG (FANCMCLG)
	REXXOEC (FANCMOEC)
	REXXL (EAGL)
	MVS2OE (Only Hardcopy Sample)

	Appendix E. The VSE/ESA Cataloged Procedures Supplied by IBM
	REXXPLNK
	REXXLINK
	REXXL

	Appendix F. Interlanguage Job Samples
	Calling REXX from Assembler
	EAGGJASM for Calling IRXJCL
	EAGGXASM for Calling IRXEXEC

	Calling REXX from C
	EAGGJC for Calling IRXJCL
	EAGGXC for Calling IRXEXEC

	Calling REXX from Cobol
	EAGGJCOB for Calling IRXJCL
	EAGGXCOB for Calling IRXEXEC

	Calling REXX from PL/I
	EAGGJPLI for Calling IRXJCL
	EAGGXPLI for Calling IRXEXEC

	Appendix G. Notices
	Programming Interface Information
	Trademarks

	Glossary of Terms and Abbreviations
	Related Publications
	IBM Compiler and Library for REXX on IBM Z Publications
	Other IBM Publications
	ISPF Publications
	Learning REXX
	REXX Reference
	TSO/E and MVS/ESA Publications
	OpenEdition Publication
	VM/SP Publications
	VM/XA SP Publications
	VM/ESA Publications
	VSE/ESA Publication
	C Publication
	CMS Publications
	z/VM Publications
	z/OS Publications
	OS/390 Publications

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

