
AS/400 Advanced Series IBM

REXX/400 Reference
Version 4

 SC41-5729-00

AS/400 Advanced Series IBM

REXX/400 Reference
Version 4

 SC41-5729-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

First Edition (August 1997)

This edition applies to the licensed program Operating System/400 (Program 5769-SS1), Version 4 Release 1 Modification 0, and to
all subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto
Rico, or Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not
stocked at the address given below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication. You can also mail
your comments to the following address:

IBM Corporation
Attention Department 542
IDCLERK
3605 Highway 52 N
Rochester, MN 55901-7829 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Programming Interface Information . x
Trademarks . x

About REXX/400 Reference . xi
Who Should Read This Book . xi
What You Should Know before Reading This Book xi
What This Book Contains . xi
Where to Find More Information . xi
Prerequisite and Related Information . xi
Information Available on the World Wide Web xii

Chapter 1. Introduction . 1
Who Should Read This Book . 1
What the SAA Solution Is . 1

Supported Environments . 2
Common Programming Interface . 2

How to Use This Book . 2
How to Read the Syntax Diagrams . 3
For Further REXX Information . 4
For Further AS/400 System Information . 5

Chapter 2. REXX General Concepts . 7
Structure and General Syntax . 8

Characters . 8
Comments . 8
Tokens . 9
Implied Semicolons . 14
Continuations . 14

Expressions and Operators . 14
Expressions . 15
Operators . 15
Parentheses and Operator Precedence . 18

Clauses and Instructions . 20
Null Clauses . 20
Labels . 20
Instructions . 20
Assignments . 20
Keyword Instructions . 20
Commands . 21

Assignments and Symbols . 21
Constant Symbols . 22
Simple Symbols . 22
Compound Symbols . 22
Stems . 24

Commands to External Environments . 25
Environment . 25
Commands . 26

REXX and the AS/400 System . 26

 Copyright IBM Corp. 1997 iii

Chapter 3. Keyword Instructions . 29
ADDRESS . 30
ARG . 33
CALL . 35
DO . 39

Simple DO Group . 39
Repetitive DO Loops . 40
Conditional Phrases (WHILE and UNTIL) . 42

DROP . 44
EXIT . 45
IF . 46
INTERPRET . 47
ITERATE . 49
LEAVE . 50
NOP . 51
NUMERIC . 52
OPTIONS . 54
PARSE . 56
PROCEDURE . 59
PULL . 62
PUSH . 63
QUEUE . 64
RETURN . 65
SAY . 66
SELECT . 67
SIGNAL . 68
TRACE . 70

Alphabetic Character (Word) Options . 71
Numeric Options . 72
A Typical Example . 72
Format of TRACE Output . 73

Chapter 4. Functions . 75
Syntax . 75
Functions and Subroutines . 76

Search Order . 77
Errors During Execution . 77

Built-in Functions . 78
ABBREV (Abbreviation) . 79
ABS (Absolute Value) . 79
ADDRESS . 79
ARG (Argument) . 80
BITAND (Bit by Bit AND) . 81
BITOR (Bit by Bit OR) . 81
BITXOR (Bit by Bit Exclusive OR) . 82
B2X (Binary to Hexadecimal) . 82
CENTER/CENTRE . 83
COMPARE . 83
CONDITION . 84
COPIES . 85
C2D (Character to Decimal) . 85
C2X (Character to Hexadecimal) . 86
DATATYPE . 86
DATE . 87

iv AS/400 REXX/400 Reference V4R1

DBCS (Double-Byte Character Set Functions) 88
DELSTR (Delete String) . 88
DELWORD (Delete Word) . 89
DIGITS . 89
D2C (Decimal to Character) . 89
D2X (Decimal to Hexadecimal) . 90
ERRORTEXT . 91
FORM . 91
FORMAT . 91
FUZZ . 92
INSERT . 92
LASTPOS (Last Position) . 93
LEFT . 93
LENGTH . 94
MAX (Maximum) . 94
MIN (Minimum) . 94
OVERLAY . 95
POS (Position) . 95
QUEUED . 95
RANDOM . 96
REVERSE . 96
RIGHT . 97
SIGN . 97
SOURCELINE . 97
SPACE . 98
STRIP . 98
SUBSTR (Substring) . 98
SUBWORD . 99
SYMBOL . 99
TIME . 100
TRACE . 101
TRANSLATE . 102
TRUNC (Truncate) . 102
VALUE . 103
VERIFY . 104
WORD . 104
WORDINDEX . 105
WORDLENGTH . 105
WORDPOS (Word Position) . 105
WORDS . 106
XRANGE (Hexadecimal Range) . 106
X2B (Hexadecimal to Binary) . 106
X2C (Hexadecimal to Character) . 107
X2D (Hexadecimal to Decimal) . 107

AS/400 System-Specific Function . 108
SETMSGRC . 108

Chapter 5. Parsing . 111
Simple Templates for Parsing into Words 111
Templates Containing String Patterns . 113
Templates Containing Positional (Numeric) Patterns 114
Parsing with Variable Patterns . 118
Using UPPER . 118
Parsing Instructions Summary . 119

 Contents v

Parsing Instructions Examples . 119
Advanced Topics in Parsing . 121

Parsing Multiple Strings . 121
Combining String and Positional Patterns: A Special Case 121
Parsing with DBCS Characters . 122
Details of Steps in Parsing . 122

Chapter 6. Numbers and Arithmetic . 127
Introduction . 127
Definition . 128

Numbers . 128
Precision . 128
Arithmetic Operators . 129
Arithmetic Operation Rules—Basic Operators 129
Arithmetic Operation Rules—Additional Operators 131
Numeric Comparisons . 133
Exponential Notation . 133
Whole Numbers . 135
Numbers Used Directly by REXX . 135
Errors . 136

Chapter 7. Conditions and Condition Traps 137
Action Taken When a Condition Is Not Trapped 138
Action Taken When a Condition Is Trapped 138
Condition Information . 140

Descriptive Strings . 141
Special Variables . 141

The Special Variable RC . 141
The Special Variable SIGL . 141

Chapter 8. Input and Output Streams . 143
The External Data Queue . 144
Size Limits . 144
Damage Handling . 145
CL Queue Commands . 145

Chapter 9. AS/400 System Interfaces . 147
REXX on the AS/400 System . 147

Entering REXX Source Code . 147
Starting the REXX Language Processor . 148
Terminal Input and Output . 149
Pseudo-CL Variables in REXX programs 149
Security . 150

Application Interfaces . 151
Return Codes and Values . 151
Starting the Language Processor from an Application 151
Command Interface . 153
Data Types and Structures . 155
External Functions and Subroutines . 156

System Exit Interfaces . 157
System Exits and the Variable Pool . 158
System Exit Functions and Subfunctions 158
Entry Conditions . 159
Exit Conditions . 160

vi AS/400 REXX/400 Reference V4R1

Exit Definitions . 160
The QREXVAR Interface . 166

Shared-Variable Request Block . 167
Queuing Interfaces . 170

Queue Application Programming Interface 170

Chapter 10. Debug Aids . 173
Interactive Debugging of Programs . 173

Chapter 11. Reserved Keywords and Special Variables 175
Reserved Keywords . 175
Special Variables . 176

Appendix A. Double-Byte Character Set (DBCS) Support 177
General Description . 177

Enabling DBCS Data Operations . 178
Symbols and Strings . 178
Validation . 179
Instruction Examples . 180

DBCS Function Handling . 181
Built-in Function Examples . 183

DBCS Processing Functions . 186
Counting Option . 186

Function Descriptions . 187
DBADJUST . 187
DBBRACKET . 187
DBCENTER . 187
DBLEFT . 188
DBRIGHT . 188
DBRLEFT . 189
DBRRIGHT . 189
DBTODBCS . 190
DBTOSBCS . 190
DBUNBRACKET . 190
DBVALIDATE . 190
DBWIDTH . 191

Appendix B. REXX/400 Implementation Limits 193

Index . 195

 Contents vii

viii AS/400 REXX/400 Reference V4R1

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used.
Subject to IBM's valid intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact the software
interoperability coordinator. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

Address your questions to:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This
publication may also refer to products that have not been announced in your country. IBM makes no
commitment to make available any unannounced products referred to herein. The final decision to
announce any product is based on IBM's business and technical judgment.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an
illustration. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. All programs contained herein
are provided to you "AS IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

 Copyright IBM Corp. 1997 ix

Programming Interface Information

This REXX/400 Reference is intended to help you write programs using the AS/400 REXX interpreter.
This book documents General-Use Programming Interface and Associated Guidance Information provided
by AS/400.

General-Use programming interfaces allow you to write programs that obtain the services of AS/400.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft
Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be
trademarks or service marks of others.

Application System/400 Operating System/2

AS/400 Operating System/400

BookManager OS/2

CICS OS/400

Common User Access PrintManager

DB2/400 SAA

IBMLink SQL/400

IMS System/36

Integrated Language Environment System/38

Library Reader Systems Application Architecture

x AS/400 REXX/400 Reference V4R1

About REXX/400 Reference

This is a reference book containing all of the IBM REXX for AS/400 (also known as
REXX/400) instructions and functions. They are listed alphabetically in their own
sections. Also included are details about general concepts you need to know in
order to program in REXX. You will need a terminal with access to AS/400 and
you should be reasonably familiar with AS/400, but you need not have had any
previous programming experience.

The programming language described by this book is called the REstructured
eXtended eXecutor language (abbreviated REXX.) The book also describes how
the AS/400 REXX/400 language processor (shortened, hereafter, to the language
processor) processes or interprets the REstructured eXtended eXecutor language.

Who Should Read This Book
This book is for users who need to refer to REXX/400 instructions and functions,
and for those who need to learn more details about items such as parsing.

What You Should Know before Reading This Book
You should have read the REXX/400 Programmer’s Guide, SC41-5728, to learn
how to program in REXX.

What This Book Contains
This book contains details about all of the REXX/400 instructions and functions, as
well as information about general concepts, parsing, math functions, condition
trapping, system interfaces, and debug aids.

Where to Find More Information
You can find more information about AS/400 and REXX in the publications listed in
“For Further REXX Information” on page 4.

Prerequisite and Related Information
For information about other AS/400 publications (except Advanced 36), see either
of the following:

� The Publications Reference book, SC41-5003, in the AS/400 Softcopy Library.
� The AS/400 Information Directory, a unique, multimedia interface to a

searchable database that contains descriptions of titles available from IBM or
from selected other publishers. The AS/400 Information Directory is shipped
with the OS/400 operating system at no charge.

 Copyright IBM Corp. 1997 xi

Information Available on the World Wide Web
More AS/400 information is available on the World Wide Web. You can access this
information from the AS/400 home page, which is at the following uniform resource
locator (URL) address:

http://www.as4��.ibm.com

Select the Information Desk, and you will be able to access a variety of AS/400
information topics from that page.

xii AS/400 REXX/400 Reference V4R1

 Introduction

 Chapter 1. Introduction

This introductory section:

� Identifies the book's purpose and audience
� Gives a brief overview of the Systems Application Architecture (SAA) solution
� Explains how to use the book.

Who Should Read This Book
This book describes the IBM REXX for AS/400 Interpreter (hereafter referred to as
the interpreter or language processor) and the REstructured eXtended eXecutor
(called REXX) language. This book is intended for experienced programmers,
particularly those who have used a block-structured, high-level language (for
example, PL/I, Algol, C, or Pascal).

The REXX/400 language processor is an interpreter, that is, a set of programs
which read REXX program source, interpret it, and take the necessary action.
Descriptions include the use and syntax of the language and explain how the
language processor “interprets” the language as a program is running.

The REXX language is specifically designed to manipulate character strings. It is
most often used to build command strings and pass them to the current command
environment. On the AS/400 system this enables both users and programs to
expand the uses of the AS/400 system's control language (CL) by adding such
structured programming language capabilities as loops, branches, subroutine and
function calls, and condition trapping. In effect, a REXX program acts as a
surrogate for the user of the command line interface, supplying commands and
responding to the resulting output.

What the SAA Solution Is
The SAA solution is based on a set of software interfaces, conventions, and
protocols that provide a framework for designing and developing applications.

If you are using REXX only on an AS/400 system, this has no effect on your
programs. If you plan to run your programs in other computing environments,
however, some restrictions may apply. We suggest that you consult the SAA
Common Programming Interface REXX Level 2 Reference, SC24-5549.

The SAA solution:

� Defines a Common Programming Interface that you can use to develop
consistent, integrated enterprise software

� Defines Common Communications Support that you can use to connect
applications, systems, networks, and devices

� Defines a Common User Access architecture that you can use to achieve
consistency in screen layout and user interaction techniques

� Offers some applications and application development tools written by IBM.

 Copyright IBM Corp. 1997 1

 Introduction

 Supported Environments
Several combinations of IBM hardware and software have been selected as SAA
environments. These are environments in which IBM manages the availability of
support for applicable SAA elements, and the conformance of those elements to
SAA specifications. The SAA environments are the following:

 � MVS

– Base system (TSO/E, APPC/MVS, batch)
 – CICS
 – IMS

 � VM CMS

� Operating System/400 (OS/400)

� Operating System/2 (OS/2).

Common Programming Interface
The Common Programming Interface (CPI) provides languages and services that
programmers can use to develop applications that take advantage of SAA
consistency.

The components of the interface currently fall into two general categories:

 � Languages

 Application Generator
 C
 COBOL
 FORTRAN
 PL/I

REXX (formerly called Procedures Language)
 RPG

 � Services

 Communications
 Database
 Dialog
 Language Environment
 Presentation
 PrintManager
 Query
 Repository
 Resource Recovery.

The CPI is not in itself a product or a piece of code. But—as a definition—it does
establish and control how IBM products are being implemented, and it establishes a
common base across the applicable SAA environments.

How to Use This Book
This book is a reference rather than a tutorial. It assumes you are already familiar
with REXX programming concepts. The material in this book is arranged in
chapters:

 1. Chapter 1, “Introduction”

2 AS/400 REXX/400 Reference V4R1

 Introduction

2. Chapter 2, “REXX General Concepts”
3. Chapter 3, “Keyword Instructions” (in alphabetic order)
4. Chapter 4, “Functions” (in alphabetic order)
5. Chapter 5, “Parsing” (a method of dividing character strings, such as

commands)
6. Chapter 6, “Numbers and Arithmetic”
7. Chapter 7, “Conditions and Condition Traps”
8. Chapter 8, “Input and Output Streams”
9. Chapter 9, “AS/400 System Interfaces”

10. Chapter 10, “Debug Aids”
11. Chapter 11, “Reserved Keywords and Special Variables.”

There are also appendixes covering:

� Appendix A, “Double-Byte Character Set (DBCS) Support”
� Appendix B, “REXX/400 Implementation Limits.”

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Required items appear on the horizontal line (the main path).

��──STATEMENT──required_item───��

� Optional items appear below the main path.

��──STATEMENT─ ──┬ ┬─────────────── ────────────────────────────────────��
 └ ┘─optional_item─

� If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

��──STATEMENT─ ──┬ ┬─required_choice1─ ─────────────────────────────────��
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path.

��──STATEMENT─ ──┬ ┬────────────────── ─────────────────────────────────��
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

� If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

 Chapter 1. Introduction 3

 Introduction

 ┌ ┐─default_choice──
��──STATEMENT─ ──┼ ┼───────────────── ──────────────────────────────────��
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

� An arrow returning to the left above the main line indicates an item that can be
repeated.

 ┌ ┐───────────────────
��──STATEMENT─ ───$ ┴─repeatable_item─ ──────────────────────────────────��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

� A set of vertical bars around an item indicates that the item is a fragment, a
part of the syntax diagram that appears in greater detail below the main
diagram.

��──STATEMENT──┤ fragment ├──��

fragment:
├──expansion_provides_greater_detail──────────────────────────────────┤

� Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown but can be specified in any case. Variables appear in all
lowercase letters (for example, parmx). They represent user-supplied names or
values.

� If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, you must enter them as part of the syntax.

The following example shows how the syntax is described:

 ┌ ┐─,──────
��─ ──MAX(───$ ┴─number─ ─)──��

For Further REXX Information
Here is a list of books that you may wish to include in your REXX library:

� The Programming: REXX/400 Programmer’s Guide, SC24-5553, provides both
a general introduction to REXX programming and a source of applications
examples for experienced programmers.

� The SAA Common Programming Interface REXX Level 2 Reference,
SC24-5549, may be useful to more experienced REXX users who may wish to
code portable programs. This book defines SAA REXX. Descriptions include
the use and syntax of the language as well as explanations on how the
language processor interprets the language as a program is running.

4 AS/400 REXX/400 Reference V4R1

 Introduction

For Further AS/400 System Information
Here is a list of books that you may wish to include in your AS/400 system library:

� Publications Reference, SC41-5003, provides information on all manuals in the
AS/400 Softcopy library.

� AS/400 Information Directory, provides a unique, multimedia interface to a
searchable database containing descriptions of titles available from IBM or from
selected other publishers. This is shipped with your system at no charge.

� ADTS/400: Source Entry Utility, SC09-1774, provides information about using
the Application Development Tools source entry utility (SEU) to create and edit
source members. The manual explains how to start and end an SEU session
and how to use the many features of this full-screen text editor. The manual
contains examples to help both new and experienced users accomplish various
editing tasks, from the simplest line commands to using pre-defined prompts for
high-level languages and data formats.

� ILE Application Development Example, SC41-5602, provides the information
needed to understand the relationships of some of the various programming
tools and utilities on the AS/400 system that can be used to produce an
application. It presents a hypothetical mailing list application that illustrates
how the user can design and run applications on the AS/400 system.

� Backup and Recovery, SC41-5304, provides information about the different
media available to save and protect system data, as well as a description of
how to record changes made to database files and how that information can be
used for system recovery and activity report information. It also provides
information about how to install the system.

� CL Programming, SC41-5721, provides a wide-ranging discussion of AS/400
programming topics, including the following:

– A general discussion of objects and libraries

– Control language (CL) programming, controlling flow and communicating
between programs, working with objects in CL programs, and creating CL
programs

– Predefined and impromptu messages and message handling

– How to define and create user-defined commands and menus

– Application testing, including debug mode, breakpoints, traces, and display
functions.

� CL Reference, SC41-5722, provides a reference for using CL commands to
request functions of the operating system (OS/400) and functions provided by
the various languages and utilities. Also included is information for creating
new CL commands or for changing (or renaming) existing CL commands.

� Data Management, SC41-5710, provides information about using files in
applications programs. A file is the OS/400 object type that provides storage of
and access to data in the database, or devices such as display stations and
printers, or on another system. This manual includes information on the
following topics:

– Fundamental structure and concepts of data management support on the
system

 Chapter 1. Introduction 5

 Introduction

– Data management support for display stations, printers, tapes, and
diskettes, as well as spooling support

– Overrides and file redirection (temporarily making changes to files when an
application program is run)

– Copying files by using system commands to copy data from one place to
another

– Tailoring a system using double-byte data.

� DB2 for AS/400 Database Programming, SC41-5701, provides a detailed
discussion of the AS/400 database organization, including information on how
to create, describe, and manipulate database files on the system.

� Security – Reference, SC41-5302, provides information about system security
concepts, planning for security, and setting up security on the system.

� Work Management, SC41-5306, provides information about how to create a
work management environment and how to change it.

� AS/400 Advanced Series Handbook, GA19-5486, acquaints the user with the
features and capabilities of the AS/400 system. It familiarizes the user with
characteristics of the system and the various licensed programs used on it.

� System Operation, SC41-4203, provides information about how to use the
system unit operator display, send and receive messages, respond to error
messages, start and stop the system, use control devices, work with program
temporary fixes (PTF) and process and manage jobs on the system.

� SAA Common Programming Interface Communications Reference, SC26-4399,
assists you in programming with the CPI-Communications interface. It contains
general-use programming interfaces which let you write programs that use the
services of CPI-Communications.

� National Language Support, SC41-5101, assists you in evaluating, planning,
and using the AS/400 National Language Support (NLS) and multilingual
capabilities.

� DB2 for AS/400 SQL Programming, SC41-5611, provides information about the
EXECSQL environment, including how to pass data with REXX variables, and
how to create a REXX program that will execute without the DB2/400 Query
Management and SQL Development Kit Version 3 LPP, 5763-ST1, installed.

� DB2 for AS/400 SQL Reference, SC41-5612, provides information about
SQL/400 statements and their parameters. It also includes an appendix
describing the SQL communications area (SQLCA) and SQL description area
(SQLDA).

6 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

Chapter 2. REXX General Concepts

The REstructured eXtended eXecutor (REXX) language is particularly suitable for:

 � Command procedures
 � Application programs
 � Prototyping
 � Personal computing.

REXX is a general purpose programming language like PL/I. REXX has the usual
structured-programming instructions—IF, SELECT, DO WHILE, LEAVE, and so
on—and a number of useful built-in functions.

REXX is specifically designed for the manipulation of character strings. It is most
often used to build command strings and pass them to the current command
environment, which on the AS/400 system defaults to the OS/400 control language
(CL). For more information, see the CL Reference. This enables both users and
programs to expand CL by using structured programming features such as loops,
branches, subroutine and function calls, and condition trapping.

The language imposes no restrictions on program format. There can be more than
one clause on a line, or a single clause can occupy more than one line.
Indentation is allowed. You can, therefore, code programs in a format that
emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, as long as all variables fit
into the storage available.

Implementation maximum: No single request for storage can exceed the fixed
limit of 16MB. This limit applies to the size of a variable plus any control
information. It also applies to buffers obtained to hold numeric results.

The limit on the length of symbols (variable names) is 250 characters. You can
use characters from a national language character set. See National Language
Support for more information.

You can use compound symbols, such as

NAME.Y.Z

(where Y and Z can be the names of variables or can be constant symbols), for
constructing arrays and for other purposes.

REXX programs are processed by a built-in language processor. The source code
of a REXX program is processed directly, rather than being first compiled into a
separate program. Because of this, you do not have to wait for the program to
compile and if the program fails because of a syntax error, the point of error is
clearly indicated. Usually, it will not take long to understand the difficulty and make
a correction.

 Copyright IBM Corp. 1997 7

 REXX General Concepts

Structure and General Syntax
A REXX program is built from a series of clauses that are composed of:

� Zero or more blanks (which are ignored)
� A sequence of tokens (see “Tokens” on page 9)
� Zero or more blanks (again ignored)
� A semicolon (;) delimiter that may be implied by line-end, certain keywords, or

the colon (:).

Conceptually, each clause is scanned from left to right before processing, and the
tokens composing it are identified. Instruction keywords are recognized at this
stage, comments are removed, and multiple blanks (except within literal strings) are
converted to single blanks. Blanks adjacent to operator characters and special
characters (see page 13) are also removed.

 Characters
A character is a member of a defined set of elements that is used for the control or
representation of data. You can usually enter a character with a single keystroke.
The coded representation of a character is its representation in digital form. A
character, the letter A, for example, differs from its coded representation or
encoding. Various coded character sets (such as ASCII and EBCDIC) use different
encodings for the letter A (decimal values 65 and 193, respectively). This book
uses characters to convey meanings and not to imply a specific character code,
except where otherwise stated. The exceptions are certain built-in functions that
convert between characters and their representations. The functions C2D, C2X,
D2C, X2C, and XRANGE have a dependence on the character set in use.

A code page specifies the encodings for each character in a set. You should be
aware that:

� Some code pages do not contain all characters that REXX defines as valid (for
example, ¬, the logical NOT character).

� Some characters that REXX defines as valid have different encodings in
different code pages (for example, !, the exclamation point).

For information about Double-Byte Character Set characters, see Appendix A,
“Double-Byte Character Set (DBCS) Support” on page 177.

 Comments
A comment is a sequence of characters (on one or more lines) delimited by /* and
*/. Within these delimiters any characters are allowed. Comments can contain
other comments, as long as each begins and ends with the necessary delimiters.
They are called nested comments. Comments can be anywhere and can be of
any length. They have no effect on the program, but they do act as separators.
(Two tokens with only a comment in between are not treated as a single token.)

/: This is an example of a valid REXX comment :/

Take special care when commenting out lines of code containing /: or :/ as part of
a literal string. Consider the following program segment:

8 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

�1 parse pull input
�2 if substr(input,1,5) = '/:123'
�3 then call process
�4 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

�1 parse pull input
�2 /: if substr(input,1,5) = '/:123'
�3 then call process
�4 :/ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /: that is part
of the literal string /:123 as the start of a nested comment. It would not process
the rest of the program because it would be looking for a matching comment end
(:/).

You can avoid this type of problem by using concatenation for literal strings
containing /: or :/; line 2 would be:

if substr(input,1,5) = '/' || ':123'

You could comment out lines 2 and 3 correctly as follows:

�1 parse pull input
�2 /: if substr(input,1,5) = '/' || ':123'
�3 then call process
�4 :/ dept = substr(input,32,5)

For information about Double-Byte Character Set characters, see Appendix A,
“Double-Byte Character Set (DBCS) Support” on page 177 and the OPTIONS
instruction on page 54.

 Tokens
A token is the unit of low-level syntax from which clauses are built. Programs
written in REXX are composed of tokens. Tokens are character strings of any
length, up to a maximum according to individual class. They are separated by
blanks or comments or by the nature of the tokens themselves. The classes of
tokens are:

Literal Strings:
A literal string is a sequence including any characters and delimited by
the single quotation mark (') or the double quotation mark ("). Use two
consecutive double quotation marks ("") to represent a " character
within a string delimited by double quotation marks. Similarly, use two
consecutive single quotation marks ('') to represent a ' character within
a string delimited by single quotation marks. A literal string is a constant
and its contents are never modified when it is processed. Literal strings
must be complete on a single line (this means that unmatched quotation
marks may be detected on the line where they occur).

A literal string with no characters (that is, a string of length �) is called a
null string.

 Chapter 2. REXX General Concepts 9

 REXX General Concepts

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn''t' /: Same as "You shouldn't" :/
'' /: The null string :/

Implementation maximum: A literal string can contain up to 250
characters.

Note that a string followed immediately by a (is considered to be the
name of a function. If followed immediately by the symbol X or x, it is
considered to be a hexadecimal string. If followed immediately by the
symbol B or b, it is considered to be a binary string. Descriptions of
these forms follow.

Hexadecimal Strings:
A hexadecimal string is a literal string, expressed using a hexadecimal
notation of its encoding. It is any sequence of zero or more
hexadecimal digits (�–9, a–f, A–F), grouped in pairs. A single leading 0
is assumed, if necessary, at the front of the string to make an even
number of hexadecimal digits. The groups of digits are optionally
separated by one or more blanks, and the whole sequence is delimited
by single or double quotation marks, and immediately followed by the
symbol X or x. (Neither x nor X can be part of a longer symbol.) The
blanks, which may be present only at byte boundaries (and not at the
beginning or end of the string), are to aid readability. The language
processor ignores them. A hexadecimal string is a literal string formed
by packing the hexadecimal digits given. Packing the hexadecimal
digits removes blanks and converts each pair of hexadecimal digits into
its equivalent character, for example: 'C1'X to A.

Hexadecimal strings let you include characters in a program even if you
cannot directly enter the characters themselves. These are valid
hexadecimal strings:

'ABCD'x
"1d ec f8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number.
Rather, it is an escape mechanism that lets a user describe a character
in terms of its encoding (and, therefore, is machine-dependent). In
EBCDIC, '40'X is the encoding for a blank. In every case, a string of
the form '.....'x is simply an alternative to a straightforward string. In
EBCDIC 'C1'x and 'A' are identical, as are '40'x and a blank, and
must be treated identically.

Implementation maximum: The packed length of a hexadecimal string
may not exceed 250 bytes, or 500 hexadecimal digits.

Binary Strings:
A binary string is a literal string, expressed using a binary representation
of its encoding. It is any sequence of zero or more binary digits (� or 1)
in groups of 8 (bytes) or 4 (nibbles). The first group may have fewer
than four digits; in this case, up to three 0 digits are assumed to the left
of the first digit, making a total of four digits. The groups of digits are
optionally separated by one or more blanks, and the whole sequence is
delimited by matching single or double quotation marks and immediately

10 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

followed by the symbol b or B. (Neither b nor B can be part of a longer
symbol.) The blanks, which may be present only at byte or nibble
boundaries (and not at the beginning or end of the string), are to aid
readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits
given. If the number of binary digits is not a multiple of eight, leading
zeros are added on the left to make a multiple of eight before packing.
Binary strings allow you to specify characters explicitly, bit by bit.

These are valid binary strings:

'1111����'b /: == 'f�'x :/
"1�1 11�1"b /: == '5d'x :/
'1'b /: == '�������1'b and '�1'x :/
'1���� 1�1�1�1�'b /: == '���1 ���� 1�1� 1�1�'b :/
''b /: == '' :/

Implementation maximum: The packed length of a binary-literal string
may not exceed 100 bytes.

Symbols:
Symbols are groups of characters, selected from the:

� English alphabetic characters (A–Z and a–z1)
� Numeric characters (�–9)
� Characters . !2 ? and underscore (_)
� National Language Character Set (NLCS) characters
� Double-Byte Character Set (DBCS) characters, where each DBCS

character consists of 2 bytes. All double-byte characters
represented by codes within the following ranges are considered to
be DBCS characters:

Any lowercase alphabetic character in a symbol is translated to
uppercase (that is, lowercase a–z to uppercase A–Z) before use.

Table 1. DBCS Ranges

Byte EBCDIC

1st X'41' to X'FE'

2nd X'41' to X'FE'

DBCS blank X'4040'

1 Note that some code pages do not include lowercase English characters a–z.

2 The encoding of the exclamation point character depends on the code page in use.

 Chapter 2. REXX General Concepts 11

 REXX General Concepts

These are valid symbols:

Fred
Albert.Hall
WHERE?
PIÑA
<.H.E.L.L.O> /: This is DBCS :/

For information about National Language Character Set (NLCS)
characters, see National Language Support.

If a symbol does not begin with a digit or a period, you can use it as a
variable and can assign it a value. If you have not assigned it a value,
its value is the characters of the symbol itself, translated to uppercase
(that is, lowercase a–z to uppercase A–Z). Symbols that begin with a
number or a period are constant symbols and cannot be assigned a
value.

One other form of symbol is allowed to support the representation of
numbers in exponential format. The symbol starts with a digit (�–9) or a
period, and it may end with the sequence E or e, followed immediately
by an optional sign (- or +), followed immediately by one or more digits
(which cannot be followed by any other symbol characters). The sign in
this context is part of the symbol and is not an operator.

These are valid numbers in exponential notation:

17.3E-12
.�3e+9

Implementation maximum: A symbol can consist of up to 250
characters. (But note that its value, if it is a variable, is limited only by
the amount of storage available.)

Numbers:
These are character strings consisting of one or more decimal digits,
with an optional prefix of a plus or minus sign, and optionally including a
single period (.) that represents a decimal point. A number can also
have a power of 10 suffixed in conventional exponential notation: an E
(uppercase or lowercase), followed optionally by a plus or minus sign,
then followed by one or more decimal digits defining the power of 10.
Whenever a character string is used as a number, rounding may occur
to a precision specified by the NUMERIC DIGITS instruction (default
nine digits). See pages 127-136 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign, if any) and
can have trailing blanks. Blanks may not be embedded among the
digits of a number or in the exponential part. Note that a symbol (see
preceding) or a literal string may be a number. A number cannot be the
name of a variable.

These are valid numbers:

12
'-17.9'
127.�65�
73e+128
' + 7.9E5 '
'�E���'

12 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

You can specify numbers with or without quotation marks around them.
Note that the sequence −17.9 (without quotation marks) in an
expression is not simply a number. It is a minus operator (which may
be prefix minus if no term is to the left of it) followed by a positive
number. The result of the operation is a number.

A whole number is a number that has a zero (or no) decimal part and
that the language processor would not usually express in exponential
notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation can have up to nine digits.

Operator Characters:
The characters: + - \ / % : | & = ¬ > < and the
sequences >= <= \> \< \= >< <> == \== // && || :: ¬>
¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<= indicate
operations (see page 15). A few of these are also used in parsing
templates, and the equal sign is also used to indicate assignment.
Blanks adjacent to operator characters are removed. Therefore, the
following are identical in meaning:

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters may not be available in all character sets,
and, if this is the case, appropriate translations may be used. In
particular, the vertical bar (|) or character is often shown as a split
vertical bar (¦).

Throughout the language, the not character, ¬, is synonymous with the
backslash (\). You can use the two characters interchangeably
according to availability and personal preference.

Special Characters:
The following characters, together with the individual characters from the
operators, have special significance when found outside of literal strings:

, ; :) (

These characters constitute the set of special characters. They all act
as token delimiters, and blanks adjacent to any of these are removed.
There is an exception: a blank adjacent to the outside of a parenthesis
is deleted only if it is also adjacent to another special character (unless
the character is a parenthesis and the blank is outside it, too). For
example, the language processor does not remove the blank in A (Z).
This is a concatenation that is not equivalent to A(Z), a function call.
The language processor does remove the blanks in (A) + (Z) because
this is equivalent to (A)+(Z).

The following example shows how a clause is composed of tokens.

'REPEAT' A + 3;

This is composed of six tokens—a literal string ('REPEAT'), a blank operator, a
symbol (A, which may have a value), an operator (+), a second symbol (3, which is
a number and a symbol), and the clause delimiter (;). The blanks between the A
and the + and between the + and the 3 are removed. However, one of the blanks

 Chapter 2. REXX General Concepts 13

 REXX General Concepts

between the 'REPEAT' and the A remains as an operator. Thus, this clause is
treated as though written:

'REPEAT' A+3;

 Implied Semicolons
The last element in a clause is the semicolon delimiter. The language processor
implies the semicolon: at a line-end, after certain keywords, and after a colon if it
follows a single symbol. This means that you need to include semicolons only
when there is more than one clause on a line or to end an instruction whose last
character is a comma.

A line-end usually marks the end of a clause and, thus, REXX implies a semicolon
at most end of lines. However, there are the following exceptions:

� The line ends in the middle of a comment. The clause continues on to the next
line.

� The last token was the continuation character (a comma) and the line does not
end in the middle of a comment. (Note that a comment is not a token.)

REXX automatically implies semicolons after colons (when following a single
symbol, a label) and after certain keywords when they are in the correct context.
The keywords that have this effect are: ELSE, OTHERWISE, and THEN. These
special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /: and :/, must not be
split by a line-end (that is, / and : should not appear on different lines) because
they could not then be recognized correctly; an implied semicolon would be added.
The two consecutive characters forming a literal quotation mark within a string are
also subject to this line-end ruling.

 Continuations
One way to continue a clause onto the next line is to use the comma, which is
referred to as the continuation character. The comma is functionally replaced by
a blank, and, thus, no semicolon is implied. One or more comments can follow the
continuation character before the end of the line.

The following example shows how to use the continuation character to continue a
clause.

say 'You can use a comma',
'to continue this clause.'

This displays:

You can use a comma to continue this clause.

Expressions and Operators
Expressions in REXX are a general mechanism for combining one or more pieces
of data in various ways to produce a result, usually different from the original data.

14 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

 Expressions
Expressions consist of one or more terms (literal strings, symbols, function calls, or
subexpressions) interspersed with zero or more operators that denote operations to
be carried out on terms. A subexpression is a term in an expression bracketed
within a left and a right parenthesis.

Terms include:

� Literal Strings (delimited by quotation marks), which are constants

� Symbols (no quotation marks), which are translated to uppercase. A symbol
that does not begin with a digit or a period may be the name of a variable; in
this case the value of that variable is used. Otherwise a symbol is treated as a
constant string. A symbol can also be compound.

� Function calls (see page 75), which are of the form:

 ┌ ┐─,──────────────
��─ ──┬ ┬──symbol(──────── ───$ ┴──┬ ┬──────────── ─)──��

└ ┘──literal_string(└ ┘─expression─

Evaluation of an expression is left to right, modified by parentheses and by operator
precedence in the usual algebraic manner (see “Parentheses and Operator
Precedence” on page 18). Expressions are wholly evaluated, unless an error
occurs during evaluation.

All data is in the form of “typeless” character strings (typeless because it is not—as
in some other languages—of a particular declared type, such as Binary,
Hexadecimal, Array, and so forth, or of a declared length). Consequently, the
result of evaluating any expression is itself a character string. Terms and results
(except arithmetic and logical expressions) may be the null string (a string of
length �). Note that REXX imposes no restriction on the maximum length of
results. However, there is usually some practical limitation dependent upon the
amount of storage available to the language processor.

Implementation maximum: The length of the evaluated result of an expression is
limited by the available storage.

 Operators
An operator is a representation of an operation, such as addition, to be carried out
on one or two terms. The following pages describe how each operator (except for
the prefix operators) acts on two terms, which may be symbols, strings, function
calls, intermediate results, or subexpressions. Each prefix operator acts on the
term or subexpression that follows it. Blanks (and comments) adjacent to operator
characters have no effect on the operator; thus, operators constructed from more
than one character can have embedded blanks and comments. In addition, one or
more blanks, where they occur in expressions but are not adjacent to another
operator, also act as an operator. There are four types of operators:

 � Concatenation
 � Arithmetic
 � Comparison
 � Logical.

 Chapter 2. REXX General Concepts 15

 REXX General Concepts

 String Concatenation
The concatenation operators combine two strings to form one string by appending
the second string to the right-hand end of the first string. The concatenation may
occur with or without an intervening blank. The concatenation operators are:

(blank) Concatenate terms with one blank in between

|| Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by
another operator. This can occur when two terms are syntactically distinct, such as
a literal string and a symbol, or when they are separated only by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then
Fred'%' evaluates to 37.4%.

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37.41.

In EBCDIC, the two adjoining strings, one hexadecimal and one literal,

'c1 c2'x'CDE'

evaluate to ABCDE.

In the case of:

Fred/: The NOT operator precedes Peter. :/¬Peter

there is no abuttal operator implied, and the expression is not valid. However,

(Fred)/: The NOT operator precedes Peter. :/(¬Peter)

results in an abuttal, and evaluates to 37.4�.

 Arithmetic
You can combine character strings that are valid numbers (see page 12) using the
arithmetic operators:

+ Add

− Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo,
because the result may be negative)

** Power (raise a number to a whole-number power)

Prefix − Same as the subtraction: � - number

Prefix + Same as the addition: � + number.

See Chapter 6, “Numbers and Arithmetic” on page 127 for details about precision,
the format of valid numbers, and the operation rules for arithmetic. Note that if an

16 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

arithmetic result is shown in exponential notation, it is likely that rounding has
occurred.

 Comparison
The comparison operators compare two terms and return the value 1 if the result of
the comparison is true, or � otherwise.

The strict comparison operators all have one of the characters defining the operator
doubled. The ==, \==, and ¬== operators test for an exact match between two
strings. The two strings must be identical (character by character) and of the same
length to be considered strictly equal. Similarly, the strict comparison operators
such as >> or << carry out a simple character-by-character comparison, with no
padding of either of the strings being compared. The comparison of the two strings
is from left to right. If one string is shorter than and is a leading substring of
another, then it is smaller than (less than) the other. The strict comparison
operators also do not attempt to perform a numeric comparison on the two
operands.

For all the other comparison operators, if both terms involved are numeric, a
numeric comparison (in which leading zeros are ignored, and so forth—see
“Numeric Comparisons” on page 133) is effected. Otherwise, both terms are
treated as character strings (leading and trailing blanks are ignored, and then the
shorter string is padded with blanks on the right).

Character comparison and strict comparison operations are both case-sensitive,
and for both the exact collating order may depend on the character set used for the
implementation. For example, in an EBCDIC environment, which the AS/400
system is, lowercase alphabetics precede uppercase, and the digits �–9 are higher
than all alphabetics.

The comparison operators and operations are:

= True if the terms are equal (numerically or when padded,
and so forth)

\=, ¬= True if the terms are not equal (inverse of =)

> Greater than

< Less than

>< Greater than or less than (same as not equal)

<> Greater than or less than (same as not equal)

>= Greater than or equal to

\<, ¬< Not less than

<= Less than or equal to

\>, ¬> Not greater than

== True if terms are strictly equal (identical)

\==, ¬== True if the terms are NOT strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

 Chapter 2. REXX General Concepts 17

 REXX General Concepts

\<<, ¬<< Strictly NOT less than

<<= Strictly less than or equal to

\>>, ¬>> Strictly NOT greater than

Note: Throughout the language, the not character, ¬, is synonymous with the
backslash (\). You can use the two characters interchangeably, according to
availability and personal preference. The backslash can appear in the following
operators: \ (prefix not), \=, \==, \<, \>, \<<, and \>>.

 Logical (Boolean)
A character string is taken to have the value false if it is �, and true if it is 1. The
logical operators take one or two such values (values other than � or 1 are not
allowed) and return � or 1 as appropriate:

& AND
Returns 1 if both terms are true.

| Inclusive OR
Returns 1 if either term is true.

&& Exclusive OR
Returns 1 if either (but not both) is true.

Prefix \,¬ Logical NOT
Negates; 1 becomes �, and � becomes 1.

Parentheses and Operator Precedence
Expression evaluation is from left to right; parentheses and operator precedence
modify this:

� When parentheses are encountered (other than those that identify function
calls) the entire subexpression between the parentheses is evaluated
immediately when the term is required.

� When the sequence:

term1 operator1 term2 operator2 term3

is encountered, and operator2 has a higher precedence than operator1, the
subexpression (term2 operator2 term3) is evaluated first. The same rule is
applied repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). The precedence rules
affect only the order of operations.

For example, : (multiply) has a higher priority than + (add), so 3+2:5 evaluates to
13 (rather than the 25 that would result if strict left to right evaluation occurred). To
force the addition to occur before the multiplication, you could rewrite the
expression as (3+2):5. Adding the parentheses makes the first three tokens a
subexpression. Similarly, the expression -3::2 evaluates to 9 (instead of -9)
because the prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

+ - ¬ \ (prefix operators)

** (power)

* / % // (multiply and divide)

18 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

+ - (add and subtract)

(blank) || (abuttal) (concatenation with or without blank)

= > < (comparison operators)
== >> <<
\= ¬=
>< <>
\> ¬>
\< ¬<
\== ¬==
\>> ¬>>
\<< ¬<<
>= >>=
<= <<=

& (and)

| && (or, exclusive or)

Examples:

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value
is Monday, and other variables are uninitialized. Then:

A+5 -> '8'
A-4:2 -> '-5'
A/2 -> '1.5'
�.5::2 -> '�.25'
(A+1)>7 -> '�' /: that is, False :/
' '='' -> '1' /: that is, True :/
' '=='' -> '�' /: that is, False :/
' '¬=='' -> '1' /: that is, True :/
(A+1):3=12 -> '1' /: that is, True :/
'�77'>'11' -> '1' /: that is, True :/
'�77' >> '11' -> '�' /: that is, False :/
'abc' >> 'ab' -> '1' /: that is, True :/
'abc' << 'abd' -> '1' /: that is, True :/
'ab ' << 'abd' -> '1' /: that is, True :/
Today is Day -> 'TODAY IS Monday'
'If it is' day -> 'If it is Monday'
Substr(Day,2,3) -> 'ond' /: Substr is a function :/
'!'xxx'!' -> '!XXX!'

Note: The REXX order of precedence usually causes no difficulty because it is the
same as in conventional algebra and other computer languages. There are two
differences from common notations:

� The prefix minus operator always has a higher priority than the power operator.

� Power operators (like other operators) are evaluated left-to-right.

For example:

-3::2 == 9 /: not -9 :/
-(2+1)::2 == 9 /: not -9 :/
2::2::3 == 64 /: not 256 :/

 Chapter 2. REXX General Concepts 19

 REXX General Concepts

Clauses and Instructions
Clauses can be subdivided into the following types:

 Null Clauses
A clause consisting only of blanks or comments or both is a null clause. It is
completely ignored.

Note: A null clause is not an instruction; for example, putting an extra semicolon
after the THEN or ELSE in an IF instruction is not equivalent to using a dummy
instruction (as it would be in PL/I). The NOP instruction is provided for this
purpose.

 Labels
A clause that consists of a single symbol followed by a colon is a label. The colon
in this context implies a semicolon (clause separator), so no semicolon is required.
Labels identify the targets of CALL instructions, SIGNAL instructions, and internal
function calls. More than one label may precede any instruction. Labels are
treated as null clauses and can be traced selectively to aid debugging.

Any number of successive clauses may be labels. This permits multiple labels
before other clauses. Duplicate labels are permitted, but control passes only to the
first of any duplicates in a program. The duplicate labels occurring later can be
traced but cannot be used as a target of a CALL, SIGNAL, or function invocation.

You can use characters from a national language character set. See National
Language Support, SC41-5101, for more information.

 Instructions
An instruction consists of one or more clauses describing some course of action
for the language processor to take. Instructions can be: assignments, keyword
instructions, or commands.

 Assignments
A single clause of the form symbol=expression is an instruction known as an
assignment. An assignment gives a variable a (new) value. See “Assignments
and Symbols” on page 21.

 Keyword Instructions
A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Keyword instructions control the external
interfaces, the flow of control, and so forth. Some keyword instructions can include
nested instructions. In the following example, the DO construct (DO, the group of
instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
 instruction
 instruction
 instruction
END

20 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

A subkeyword is a keyword that is reserved within the context of some particular
instruction, for example, the symbols TO and WHILE in the DO instruction.

 Commands
A command is a clause consisting of only an expression. The expression is
evaluated and the result is passed as a command string to some external
environment.

Assignments and Symbols
A variable is an object whose value can change during the running of a REXX
program. The process of changing the value of a variable is called assigning a
new value to it. The value of a variable is a single character string, of any length,
that may contain any characters.

You can assign a new value to a variable with the ARG, PARSE, or PULL
instructions, the VALUE built-in function, or the variable pool interface, but the most
common way of changing the value of a variable is the assignment instruction itself.
Any clause of the form:

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value of
the variable named by the symbol to the left of the equal sign.

Example:

/: Next line gives FRED the value "Frederic" :/
Fred='Frederic'

The symbol naming the variable cannot begin with a digit (�–9) or a period.
(Without this restriction on the first character of a variable name, you could redefine
a number; for example 3=4; would give a variable called 3 the value 4.)

You can use a symbol in an expression even if you have not assigned it a value,
because a symbol has a defined value at all times. A variable you have not
assigned a value is uninitialized. Its value is the characters of the symbol itself,
translated to uppercase (that is, lowercase a–z to uppercase A–Z). However, if it is
a compound symbol (described under “Compound Symbols” on page 22), its value
is the derived name of the symbol.

Example:

/: If Freda has not yet been assigned a value, :/
/: then next line gives FRED the value "FREDA" :/
Fred=Freda

The meaning of a symbol in REXX varies according to its context. As a term in an
expression (rather than a keyword of some kind, for example), a symbol belongs to
one of four groups: constant symbols, simple symbols, compound symbols, and
stems. Constant symbols cannot be assigned new values. You can use simple
symbols for variables where the name corresponds to a single value. You can use
compound symbols and stems for more complex collections of variables, such as
arrays and lists.

 Chapter 2. REXX General Concepts 21

 REXX General Concepts

 Constant Symbols
A constant symbol starts with a digit (�–9) or a period.

You cannot change the value of a constant symbol. It is simply the string
consisting of the characters of the symbol (that is, with any lowercase alphabetic
characters translated to uppercase).

These are constant symbols:

77
827.53
.12345
12e5 /: Same as 12E5 :/
3D
17E-3

 Simple Symbols
A simple symbol does not contain any periods and does not start with a digit
(�–9).

By default, its value is the characters of the symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its
value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /: Same as WHATAGOODIDEA? :/
?12
<.D.A.T.E>

 Compound Symbols
A compound symbol permits the substitution of variables within its name when
you refer to it. A compound symbol contains at least one period and at least two
other characters. It cannot start with a digit or a period, and if there is only one
period in the compound symbol, it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first
period). This is followed by a tail, parts of the name (delimited by periods) that are
constant symbols, simple symbols, or null. The derived name of a compound
symbol is the stem of the symbol, in uppercase, followed by the tail, in which all
simple symbols have been replaced with their values. A tail itself can be comprised
of the characters A–Z, a–z, �–9, and . ! ? and underscore. The value of a tail can
be any character string, including the null string and strings containing blanks. For
example:

taila=': ('
tailb=''
stem.taila=99
stem.tailb=stem.taila
say stem.tailb /: Displays: 99 :/
/: But the following instruction would cause an error :/
/: say stem.: (:/

You cannot use constant symbols with embedded signs (for example, 12.3E+5)
after a stem; in this case, the whole symbol would not be a valid symbol.

22 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

These are compound symbols:

FRED.3
Array.I.J
AMESSY..One.2.
JÄGER.EINS
<.F.R.E.D>.<.A.B>

Before the symbol is used (that is, at the time of reference), the language
processor substitutes the values of any simple symbols in the tail (I, J, and One in
the examples), thus generating a new, derived name. This derived name is then
used just like a simple symbol. That is, its value is by default the derived name, or
(if it has been used as the target of an assignment) its value is the value of the
variable named by the derived name.

The substitution into the symbol that takes place permits arbitrary indexing
(subscripting) of collections of variables that have a common stem. Note that the
values substituted can contain any characters (including periods and blanks).
Substitution is done only one time.

To summarize: the derived name of a compound variable that is referred to by the
symbol

s�.s1.s2. --- .sn

is given by

d�.v1.v2. --- .vn

where d� is the uppercase form of the symbol s�, and v1 to vn are the values of the
constant or simple symbols s1 through sn. Any of the symbols s1-sn can be null.
The values v1-vn can also be null and can contain any characters (in particular,
lowercase characters are not translated to uppercase, blanks are not removed, and
periods have no special significance).

Some examples follow in the form of a small extract from a REXX program:

a=3 /: assigns '3' to the variable A :/
z=4 /: '4' to Z :/
c='Fred' /: 'Fred' to C :/
a.z='Fred' /: 'Fred' to A.4 :/
a.fred=5 /: '5' to A.FRED :/
a.c='Bill' /: 'Bill' to A.Fred :/
c.c=a.fred /: '5' to C.Fred :/
y.a.z='Annie' /: 'Annie' to Y.3.4 :/

say a z c a.a a.z a.c c.a a.fred y.a.4
/: displays the string: :/
/: "3 4 Fred A.3 Fred Bill C.3 5 Annie" :/

You can use compound symbols to set up arrays and lists of variables in which the
subscript is not necessarily numeric, thus offering great scope for the creative
programmer. A useful application is to set up an array in which the subscripts are
taken from the value of one or more variables, effecting a form of associative
memory (content addressable).

Implementation maximum: The length of a variable name, before and after
substitution, cannot exceed 250 characters.

 Chapter 2. REXX General Concepts 23

 REXX General Concepts

 Stems
A stem is a symbol that contains just one period, which is the last character. It
cannot start with a digit or a period.

These are stems:

FRED.
A.
Ö.
<.A.B>.

By default, the value of a stem is the string consisting of the characters of its
symbol (that is, translated to uppercase). If the symbol has been assigned a value,
it names a variable and its value is the value of that variable.

Further, when a stem is used as the target of an assignment, all possible
compound variables whose names begin with that stem receive the new value,
whether they previously had a value or not. Following the assignment, a reference
to any compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable.

For example:

hole. = "empty"
hole.9 = "full"

say hole.1 hole.mouse hole.9

/: says "empty empty full" :/

Thus, you can give a whole collection of variables the same value. For example:

total. = �
do forever

say "Enter an amount and a name:"
pull amount name
if datatype(amount)='CHAR' then leave
total.name = total.name + amount

 end

Note: You can always obtain the value that has been assigned to the whole
collection of variables by using the stem. However, this is not the same as using a
compound variable whose derived name is the same as the stem. For example:

total. = �
null = ""
total.null = total.null + 5
say total. total.null /: says "� 5" :/

You can manipulate collections of variables, referred to by their stem, with the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that
stem (see page 44), and PROCEDURE EXPOSE FRED. exposes all possible variables
with that stem (see page 59).

24 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

Notes:

1. When the ARG, PARSE, or PULL instruction or the VALUE built-in function or
the variable pool interface changes a variable, the effect is identical with an
assignment. Anywhere a value can be assigned, using a stem sets an entire
collection of variables.

2. Because an expression can include the operator =, and an instruction may
consist purely of an expression (see “Commands to External Environments” on
page 25), a possible ambiguity is resolved by the following rule: any clause
that starts with a symbol and whose second token is (or starts with) an equal
sign (=) is an assignment, rather than an expression (or a keyword instruction).
This is not a restriction, because you can ensure the clause is processed as a
command in several ways, such as by putting a null string before the first
name, or by enclosing the first part of the expression in parentheses.

Similarly, if you unintentionally use a REXX keyword as the variable name in an
assignment, this should not cause confusion. For example, the clause:

Address='1� Downing Street';

is an assignment, not an ADDRESS instruction.

3. You can use the SYMBOL function (see page 99) to test whether a symbol has
been assigned a value. In addition, you can set SIGNAL ON NOVALUE to trap
the use of any uninitialized variables (except when they are tails in compound
variables—see page 138).

Commands to External Environments
Issuing commands to the surrounding environment is an integral part of REXX.

 Environment
The SAA environments listed on page 2 are programming environments. Three
operating environments exist on the AS/400 system:

 � System/36 environment
 � System/38 environment
� Non-System/36 or System/38 environment.

REXX interacts with command environments available in the operating
environment. The command environment can be system-defined or user-defined.

The command environment is another language, such as CL, to which REXX
passes what it interprets as a command and from which REXX waits for a response
to that command. The environment is selected when REXX is run. See “Starting
the REXX Language Processor” on page 148. You can change the environment
by using the ADDRESS instruction. You can find out the name of the current
environment by using the ADDRESS built-in function. The underlying operating
system defines environments external to the REXX program.

 Chapter 2. REXX General Concepts 25

 REXX General Concepts

 Commands
To send a command to the currently addressed environment, use a clause of the
form:

expression;

The expression is evaluated, resulting in a character string (which may be the null
string), which is then prepared as appropriate and submitted to the underlying
system. Any part of the expression not to be evaluated should be enclosed in
quotation marks.

The environment then processes the command, which may have side-effects. It
eventually returns control to the language processor, after setting a return code. A
return code is a string, typically a number, that returns some information about the
command that has been processed. A return code usually indicates if a command
was successful or not but can also represent other information. The language
processor places this return code in the REXX special variable RC. See “Special
Variables” on page 141.

In addition to setting a return code, the underlying system may also indicate to the
language processor if an error or failure occurred. An error is a condition raised by
a command for which a program that uses that command would usually be
expected to be prepared. (For example, a Delete Program (DLTPGM) command to
the operating system might report Object PGM in MYLIB type :PGM not found. as
an error.) A failure is a condition raised by a command for which a program that
uses that command would not usually be expected to recover (for example, a
command that is not executable or cannot be found).

Errors and failures in commands can affect REXX processing if a condition trap for
ERROR or FAILURE is ON (see Chapter 7, “Conditions and Condition Traps” on
page 137). They may also cause the command to be traced if TRACE E or TRACE F
is set. TRACE Normal is the same as TRACE F and is the default—see page 70.

Here is an example of submitting a command. The default command environment
is being changed to a new environment.

SAY ADDRESS /: Shows the default command environment "COMMAND" :/
ADDRESS 'MYLIB/APP1'
SAY ADDRESS() /: Shows the new environment "MYLIB/APP1" :/

Note: Remember that the expression is evaluated before it is passed to the
environment. Enclose in quotation marks any part of the expression that is not to
be evaluated.

REXX and the AS/400 System
REXX/400, REXX on the AS/400 system, is part of Operating System/400
(OS/400). In most cases, you can run a REXX/400 program from any place you
can enter a CL command.

A REXX/400 program can be run by using:

� The Start REXX Procedure (STRREXPRC) command

� A user-defined command with a REXX command processing program.

26 AS/400 REXX/400 Reference V4R1

 REXX General Concepts

A REXX/400 program itself can contain CL commands as well as REXX
instructions. See the CL Reference, SC41-5722, and “Starting the REXX Language
Processor” on page 148 for more information.

REXX/400 conforms to the security characteristics of the AS/400 system. In
general, this means that REXX/400 uses the security of the AS/400 system and
does not add any of its own. See “Security” on page 150 for more information.

Experienced AS/400 system programmers will notice some of the ways REXX/400
differs from other programming languages on the AS/400 system. For example:

� REXX/400 programs are source members. REXX/400 programs are not
compiled, but interpreted from the source.

� Variables are not declared in a REXX/400 program. Rather, they are assigned
as needed. See “Assignments” on page 20.

� REXX/400 automatically monitors exception messages from commands and
indicates their occurrence to the REXX program through the special variable
RC or by trapping ERROR and FAILURE conditions. See “Special Variables”
on page 176 and Chapter 7, “Conditions and Condition Traps” on page 137
for further information.

 Chapter 2. REXX General Concepts 27

 REXX General Concepts

28 AS/400 REXX/400 Reference V4R1

 Keyword Instructions

 Chapter 3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Some keyword instructions affect the flow of
control, while others provide services to the programmer. Some keyword
instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote
keywords or subkeywords; other words (such as expression) denote a collection of
tokens as defined previously. Note, however, that the keywords and subkeywords
are not case dependent; the symbols if, If, and iF all have the same effect. Note
also that you can usually omit most of the clause delimiters (;) shown because they
are implied by the end of a line.

As explained in “Keyword Instructions” on page 20, a keyword instruction is
recognized only if its keyword is the first token in a clause, and if the second token
does not start with an = character (implying an assignment) or a colon (implying a
label). The keywords ELSE, END, OTHERWISE, THEN, and WHEN are
recognized in the same situation. Note that any clause that starts with a keyword
defined by REXX cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG
built-in function. A syntax error results if the keywords are not in their correct
positions in a DO, IF, or SELECT instruction. (The keyword THEN is also
recognized in the body of an IF or WHEN clause.) In other contexts, keywords are
not reserved and can be used as labels or as the names of variables (though this is
generally not recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of
individual instructions. For example, the symbols VALUE and WITH are
subkeywords in the ADDRESS and PARSE instructions, respectively. For details,
see the description of each instruction.

Blanks adjacent to keywords have no effect other than to separate the keyword
from the subsequent token. One or more blanks following VALUE are required to
separate the expression from the subkeyword in the example following:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following
example, although it would add to the readability:

ADDRESS VALUE'ENVIR'||number

 Copyright IBM Corp. 1997 29

 ADDRESS

 ADDRESS

��──ADDRESS─ ──┬ ┬─── ─;────��
 ├ ┤ ──┬ ┬─COMMAND───────────────── ──┬ ┬────────────
 │ │├ ┤─':COMMAND'────────────── └ ┘─expression─
 │ │├ ┤─CPICOMM─────────────────
 │ │├ ┤─':CPICOMM'──────────────
 │ │├ ┤─EXECSQL─────────────────
 │ │├ ┤─':EXECSQL'──────────────
 │ │├ ┤─environment─────────────
 │ │└ ┘ ──┬ ┬─':LIBL/─── ─program'─
 │ │├ ┤─':CURLIB/─
 │ │└ ┘─'library/─
 └ ┘ ──┬ ┬─────── ─expression1──────────────────────
 └ ┘─VALUE─

ADDRESS temporarily or permanently changes the destination of commands.
Commands are strings sent to an external environment. You can send commands
by specifying clauses consisting of only an expression or by using the ADDRESS
instruction.

Working with command environments is described on page 153.

To send a single command to a specified environment, code an environment, a
literal string or a single symbol, which is taken to be a constant, followed by an
expression. (The environment name is the name of a program object, for example
*LIBL/MYPROG, that can process commands.) The expression is evaluated, and
the resulting string is routed to the environment to be processed as a command.
(Enclose in quotation marks any part of the expression you do not want to be
evaluated.) After execution of the command, environment is set back to whatever it
was before, thus temporarily changing the destination for a single command. The
special variable RC is set, just as it would be for other commands. (See page 26.)
Errors and failures in commands processed in this way are trapped or traced as
usual.

Examples:

ADDRESS COMMAND DSPCURLIB
ADDRESS CPICOMM 'CMINIT parm� parm1 parm2 ... parmN'
ADDRESS EXECSQL 'INSERT INTO DB/TABLE1 VALUES(789)'
ADDRESS ':CURLIB/MYPROG' COMMAND_EXPRESSION
ADDRESS "MYLIB/MYNEWPROG" COMMAND_EXPRESSION

In the second example, this command is routed back to the CPICOMM
environment, which is the common programming interface communications
environment, the communications element of the SAA Common Programming
Interface. For more information on CPICOMM, see the SAA Common
Programming Interface Communications Reference.

In the third example, this command is routed back to the EXECSQL environment,
which is the Structured Query Language (SQL) environment, the standard database
interface language used by DB2/400. For more information on SQL statements,
see the DB2 for AS/400 SQL Reference. or for more information on the EXECSQL
environment, see the see the DB2 for AS/400 SQL Programming.

30 AS/400 REXX/400 Reference V4R1

 ADDRESS

Note: To use the EXECSQL environment on a system that does not have the
DB2/400 Query Management and SQL Development Kit Version 2 LPP, 5763-ST1,
installed, see the DB2 for AS/400 SQL Programming for special instructions for
handling the REXX program.

If you specify only environment, a lasting change of destination occurs: all
commands that follow are routed to the specified command environment, until the
next ADDRESS instruction is processed. The previously selected environment is
saved.

Examples:

ADDRESS COMMAND
ADDRESS FRED
ADDRESS ':CURLIB/ETHEL'

Similarly, you can use the VALUE form to make a lasting change to the
environment. Here expression1 (which may be simply a variable name) is
evaluated, and the result forms the name of the environment. You can omit the
subkeyword VALUE if expression1 does not begin with a literal string or symbol
(that is, if it starts with a special character, such as an operator character or
parenthesis).

Example:

ADDRESS ('ENVIR'||number) /: Same as ADDRESS VALUE 'ENVIR'||number :/

With no arguments, commands are routed back to the environment that was
selected before the previous lasting change of environment was made, and the
current environment name is saved. After changing the environment, repeated
execution of ADDRESS alone, therefore, switches the command destination
between two environments alternately. A null string for the environment name
("") is the same as the default environment COMMAND.

The two environment names are automatically saved across internal and external
subroutine and function calls. See the CALL instruction (page 35) for more details.

The address setting is the currently selected environment name. You can retrieve
the current address setting by using the ADDRESS built-in function (see page 79).

Notes:

1. *LIBL is the current library list for your job.

2. *CURLIB is the current library for your job.

3. The ADDRESS instruction can be used with either system-defined or
user-defined environments. The default system environment is COMMAND,
the CL command environment. A user environment is identified by the name
of the program that is to be called. A program name, qualified or unqualified,
can be specified. If an unqualified name is specified, the library list (*LIBL) will
be searched to resolve to the program.

4. Whenever you specify a library, you must use the slash (/) separator between
the library name and the environment name. Whenever you use the slash, you
must enclose the full environment name in quotation marks.

5. Executing ADDRESS ‘:LIBL/MYPROG’ will locate and hold the information
associated with that specific library and program. The command environment

 Chapter 3. Keyword Instructions 31

 ADDRESS

will not change if you subsequently change the library list. If you wish to have
MYPROG found with the new library list, you must enter ADDRESS
‘:LIBL/MYPROG’ again.

32 AS/400 REXX/400 Reference V4R1

 ARG

 ARG

��──ARG─ ──┬ ┬─────────────── ─;──────────────────────────────────────��
 └ ┘─template_list─

ARG retrieves the argument strings provided to a program or internal routine and
assigns them to variables. It is a short form of the instruction:

��──PARSE UPPER ARG─ ──┬ ┬─────────────── ─;──��
 └ ┘─template_list─

The template_list is often a single template but can be several templates separated
by commas. If specified, each template is a list of symbols separated by blanks or
patterns or both.

Unless a subroutine or internal function is being processed, the strings passed as
parameters to the program are parsed into variables according to the rules
described in the section on parsing (page 111).

If a subroutine or internal function is being processed, the data used will be the
argument strings that the caller passes to the routine.

In either case, the language processor translates the passed strings to uppercase
(that is, lowercase a–z to uppercase A–Z) before processing them. Use the PARSE
ARG instruction if you do not want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same
source string or strings (typically with different templates). The source string does
not change. The only restrictions on the length or content of the data parsed are
those the caller imposes.

Example:

/: String passed is "Easy Rider" :/

Arg adjective noun .

/: Now: ADJECTIVE contains 'EASY' :/
/: NOUN contains 'RIDER' :/

If you expect more than one string to be available to the program or routine, you
can use a comma in the parsing template_list so each template is selected in turn.

Example:

/: Function is called by FRED('data X',1,5) :/

Fred: Arg string, num1, num2

/: Now: STRING contains 'DATA X' :/
/: NUM1 contains '1' :/
/: NUM2 contains '5' :/

 Chapter 3. Keyword Instructions 33

 ARG

Notes:

1. The ARG built-in function can also retrieve or check the argument strings to a
REXX program or internal routine. See page 80.

2. The source of the data being processed is also made available on entry to the
program. See the PARSE instruction (SOURCE option) on page 57 for details.

34 AS/400 REXX/400 Reference V4R1

 CALL

 CALL

 ┌ ┐─,──────────────
��──CALL─ ──┬ ┬─name─ ───$ ┴──┬ ┬──────────── ─────────── ─;───────────────��
 │ │└ ┘─expression─
 ├ ┤ ─OFF─ ──┬ ┬─ERROR─── ───────────────────
 │ │├ ┤─FAILURE─
 │ │└ ┘─HALT────
 └ ┘ ─ON─ ──┬ ┬─ERROR─── ──┬ ┬────────────────
 ├ ┤─FAILURE─ └ ┘ ─NAME──trapname─
 └ ┘─HALT────

CALL calls a routine (if you specify name) or controls the trapping of certain
conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap.
OFF turns off the specified condition trap. ON turns on the specified condition trap.
All information on condition traps is contained in Chapter 7, “Conditions and
Condition Traps” on page 137.

Note: The following discussion of the CALL instruction provides information on the
CALL routine form of the CALL instruction.

To call a routine, specify name, a literal string or symbol that is taken as a
constant. The name must be a symbol, which is treated literally, or a literal string.
The routine called can be:

An internal routine A function or subroutine that is in the same program as the
CALL instruction or function call that calls it.

A built-in routine A function (which may be called as a subroutine) that is
defined as part of the REXX language.

An external routine A function or subroutine that is neither built-in nor in the
same program as the CALL instruction or function call that
calls it.

If name is a string (that is, you specify name in quotation marks), the search for
internal routines is bypassed, and only a built-in function or an external routine is
called. Note that the names of built-in functions (and generally the names of
external routines, too) are in uppercase; therefore, you should uppercase the name
in the literal string.

The called routine can optionally return a result, and when it does, the CALL
instruction is functionally identical with the clause:

 ┌ ┐─,──────────────
��─ ──result=name(───$ ┴──┬ ┬──────────── ─)──;──��
 └ ┘─expression─

If the called routine does not return a result, then you will get an error if you call it
as a function (as previously shown).

REXX/400 supports specifying up to 20 expressions, separated by commas. The
expressions are evaluated in order from left to right and form the argument strings
during execution of the routine. Any ARG or PARSE ARG instruction or ARG
built-in function in the called routine accesses these strings rather than any

 Chapter 3. Keyword Instructions 35

 CALL

previously active in the calling program, until control returns to the CALL instruction.
You can omit expressions, if appropriate, by including extra commas.

The CALL then causes a branch to the routine called name, using exactly the same
mechanism as function calls. (See Chapter 4, “Functions” on page 75.) The
search order is in the section on functions (see “Search Order” on page 77) but
briefly is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting
at the label that matches name in the CALL instruction. If you specify
the routine name in quotation marks, then an internal routine is not
considered for that search order. You can use SIGNAL and CALL
together to call an internal routine whose name is determined at the time
of execution; this is known as a multi-way call (see page 69). The
RETURN instruction completes the execution of an internal routine.

Built-in routines:
These are routines built into the language processor for providing
various functions. They always return a string that is the result of the
routine. (See page 78.)

External routines:
Users can write or use routines that are external to the language
processor and the calling program. You can code an external routine in
REXX or in any language that supports the system-dependent
interfaces. For more information on these interfaces, see “Application
Interfaces” on page 151. If the CALL instruction calls an external
routine written in REXX as a subroutine, you can retrieve any argument
strings with the ARG or PARSE ARG instructions or the ARG built-in
function.

During execution of an internal routine, all variables previously known are generally
accessible. However, the PROCEDURE instruction can set up a local variables
environment to protect the subroutine and caller from each other. The EXPOSE
option on the PROCEDURE instruction can expose selected variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine.
The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden. The status of internal values (NUMERIC settings, and
so forth) start with their defaults (rather than inheriting those of the caller). In
addition, you can use EXIT to return from the routine.

When control reaches an internal routine the line number of the CALL instruction is
available in the variable SIGL (in the caller's variable environment). This may be
used as a debug aid, as it is, therefore, possible to find out how control reached a
routine. Note that if the internal routine uses the PROCEDURE instruction, then it
needs to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should process a RETURN instruction, and at that point
control returns to the clause following the original CALL. If the RETURN instruction
specified an expression, the variable RESULT is set to the value of that expression.
Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive
calls to itself.

36 AS/400 REXX/400 Reference V4R1

 CALL

Example:

/: Recursive subroutine execution... :/
arg z
call factorial z
say z'! =' result
exit

factorial: procedure /: Calculate factorial by :/
 arg n /: recursive invocation. :/
if n=� then return 1
call factorial n-1

 return result : n

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return from the
routine. These are:

� The status of DO loops and other structures: Executing a SIGNAL while
within a subroutine is safe because DO loops, and so forth, that were active
when the subroutine was called are not ended. (But those currently active
within the subroutine are ended.)

� Trace action: After a subroutine is debugged, you can insert a TRACE Off at
the beginning of it, and this does not affect the tracing of the caller.
Conversely, if you simply wish to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at
entry (for example, Off) upon return. Similarly, ? (interactive debug) is saved
across routines.

� NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations
(in “NUMERIC” on page 52) are saved and are then restored on return. A
subroutine can, therefore, set the precision, and so forth, that it needs to use
without affecting the caller.

� ADDRESS settings: The current and previous destinations for commands
(see “ADDRESS” on page 30) are saved and are then restored on return.

� Condition traps: (CALL ON and SIGNAL ON) are saved and then restored on
return. This means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF
can be used in a subroutine without affecting the conditions the caller set up.

� Condition information: This information describes the state and origin of the
current trapped condition. The CONDITION built-in function returns this
information. See “CONDITION” on page 84.

� Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its
caller (see “TIME” on page 100), but because the time clock is saved across
routine calls, a subroutine or internal function can independently restart and use
the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

� OPTIONS settings: ETMODE and EXMODE are saved and are then restored
on return. For more information, see “OPTIONS” on page 54.

Note: When name is an external REXX program, the called program will run under
the same language processor invocation as the calling program. This may affect
the action of invocation-sensitive CL commands, such as Send Program Message
(SNDPGMMSG), that may be issued from within the called program.

 Chapter 3. Keyword Instructions 37

 CALL

Where a new invocation of the REXX language processor is needed, use the Start
REXX Procedure (STRREXPRC) command instead of the CALL instruction to run
the program. For further information on invocation concerns, see the REXX/400
Programmer’s Guide, SC41-5728.

Implementation maximum: The total nesting of control structures, such as DO
END instructions, subroutines, and internal routines, may not exceed 100.

38 AS/400 REXX/400 Reference V4R1

 DO

 DO

��──DO─ ──┬ ┬─────────────── ──┬ ┬───────────────── ─;──────────────────────�
└ ┘─┤ repetitor ├─ └ ┘─┤ conditional ├─

�─ ──┬ ┬───────────────── ─END─ ──┬ ┬────── ─;──────────────────────────────��
 │ │┌ ┐─────────────── └ ┘─name─
 └ ┘ ───$ ┴─instruction─

repetitor:
├─ ──┬ ┬ ─name=expri─ ──┬ ┬─────────── ──┬ ┬─────────── ──┬ ┬──────────── ───────┤
 │ │└ ┘ ─TO──exprt─ └ ┘ ─BY──exprb─ └ ┘ ─FOR──exprf─
 ├ ┤ ─FOREVER──
 └ ┘ ─exprr──

conditional:
├─ ──┬ ┬ ─WHILE──exprw─ ───┤
 └ ┘ ─UNTIL──expru─

DO groups instructions together and optionally processes them repetitively. During
repetitive execution, a control variable (name) can be stepped through some range
of values.

Syntax Notes:

� The exprr, expri, exprb, exprt, and exprf options (if present) are any
expressions that evaluate to a number. The exprr and exprf options are further
restricted to result in a positive whole number or zero. If necessary, the
numbers are rounded according to the setting of NUMERIC DIGITS.

� The exprw or expru options (if present) can be any expression that evaluates to
1 or �.

� The TO, BY, and FOR phrases can be in any order, if used, and are evaluated
in the order in which they are written.

� The instruction can be any instruction, including assignments, commands, and
keyword instructions (including any of the more complex constructs such as IF,
SELECT, and the DO instruction itself).

� The subkeywords WHILE and UNTIL are reserved within a DO instruction, in
that they cannot be used as symbols in any of the expressions. Similarly, TO,
BY, and FOR cannot be used in expri, exprt, exprb, or exprf. FOREVER is
also reserved, but only if it immediately follows the keyword DO and an equal
sign does not follow it.

� The exprb option defaults to 1, if relevant.

Simple DO Group
If you specify neither repetitor nor conditional, the construct merely groups a
number of instructions together. These are processed one time.

In the following example, the instructions are processed one time.

 Chapter 3. Keyword Instructions 39

 DO

Example:

/: The two instructions between DO and END are both :/
/: processed if A has the value "3". :/
If a=3 then Do
 a=a+2
 Say 'Smile!'
 End

Repetitive DO Loops
If a DO instruction has a repetitor phrase or a conditional phrase or both, the group
of instructions forms a repetitive DO loop. The instructions are processed
according to the repetitor phrase, optionally modified by the conditional phrase.
(See “Conditional Phrases (WHILE and UNTIL)” on page 42).

Simple Repetitive Loops
A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an
expression that evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the
group of instructions is nominally processed “forever,” that is, until the condition is
satisfied or a REXX instruction is processed that ends the loop (for example,
LEAVE).

Note: For a discussion on conditional phrases, see “Conditional Phrases (WHILE
and UNTIL)” on page 42.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must
result in a positive whole number or zero), and the loop is then processed that
many times.

Example:

/: This displays "Hello" five times :/
Do 5
 say 'Hello'
 end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is (or starts with) =, the
controlled form of repetitor is expected.

Controlled Repetitive Loops
The controlled form specifies name, a control variable that is assigned an initial
value (the result of expri, formatted as though � had been added) before the first
execution of the instruction list. The variable is then stepped (by adding the result
of exprb) before the second and subsequent times that the instruction list is
processed.

The instruction list is processed repeatedly while the end condition (determined by
the result of exprt) is not met. If exprb is positive or �, the loop is ended when
name is greater than exprt. If negative, the loop is ended when name is less than
exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated
only one time, before the loop begins and before the control variable is set to its

40 AS/400 REXX/400 Reference V4R1

 DO

initial value. The default value for exprb is 1. If exprt is omitted, the loop runs
indefinitely unless some other condition stops it.

Example:

Do I=3 to -2 by -1 /: Displays: :/
say i /: 3 :/
end /: 2 :/

/: 1 :/
/: � :/

 /: -1 :/
 /: -2 :/

The numbers do not have to be whole numbers:

Example:

I=�.3 /: Displays: :/
Do Y=I to I+4 by �.7 /: �.3 :/
say Y /: 1.� :/
end /: 1.7 :/

/: 2.4 :/
/: 3.1 :/
/: 3.8 :/

The control variable can be altered within the loop, and this may affect the iteration
of the loop. Altering the value of the control variable is not usually considered good
programming practice, though it may be appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the
control variable is stepped, on the second and subsequent iterations). Therefore, if
the end condition is met immediately, the group of instructions can be skipped
entirely. Note also that the control variable is referred to by name. If (for example)
the compound name A.I is used for the control variable, altering I within the loop
causes a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In
this case, you must specify exprf, and it must evaluate to a positive whole number
or zero. This acts just like the repetition count in a simple repetitive loop, and sets
a limit to the number of iterations around the loop if no other condition stops it.
Like the TO and BY expressions, it is evaluated only one time—when the DO
instruction is first processed and before the control variable receives its initial value.
Like the TO condition, the FOR condition is checked at the start of each iteration.

Example:

Do Y=�.3 to 4.3 by �.7 for 3 /: Displays: :/
 say Y /: �.3 :/
 end /: 1.� :/
 /: 1.7 :/

In a controlled loop, the name describing the control variable can be specified on
the END clause. This name must match name in the DO clause in all respects
except case (note that no substitution for compound variables is carried out); a
syntax error results if it does not. This enables the nesting of loops to be checked
automatically, with minimal overhead.

 Chapter 3. Keyword Instructions 41

 DO

Example:

Do K=1 to 1�
 ...
 ...
End k /: Checks that this is the END for K loop :/

Note: The NUMERIC settings may affect the successive values of the control
variable, because REXX arithmetic rules apply to the computation of stepping the
control variable.

Conditional Phrases (WHILE and UNTIL)
A conditional phrase can modify the iteration of a repetitive DO loop. It may cause
the termination of a loop. It can follow any of the forms of repetitor (none,
FOREVER, simple, or controlled). If you specify WHILE or UNTIL, exprw or expru,
respectively, is evaluated each time around the loop using the latest values of all
variables (and must evaluate to either � or 1), and the loop is ended if exprw
evaluates to � or expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions.
For an UNTIL loop, the condition is evaluated at the bottom—before the control
variable has been stepped.

Example:

Do I=1 to 1� by 2 until i>6
 say i
 end
/: Displays: "1" "3" "5" "7" :/

Note: Using the LEAVE or ITERATE instructions can also modify the execution of
repetitive loops.

42 AS/400 REXX/400 Reference V4R1

 DO

D i s c o n t i n u e e x e c u t i o n o f D O

g r o u p i f T O v a l u e i s e x c e e d e d .

D i s c o n t i n u e e x e c u t i o n o f D O

g ro u p i f F O R v a lu e (n u m b e r o f

i t e ra t i o n s th ro u g h th e lo o p) i s

e x c e e d e d .

D i s c o n t i n u e e x e c u t i o n o f D O

gro up i f W H IL E c o nd i t io n is

n o t m e t .

D i s c o n t i n u e e x e c u t i o n o f D O

g ro u p i f U N T IL c o n d i t i o n i s

m et .

D i s c o n t i n u e e x e c u t i o n o f D O

g r o u p i f n u m b e r o f i t e r a t i o n s

i s e x c e e d e d .

+ 0

+ 0

+ 0

+ 0

+ 0

A s s i g n s t a r t v a l u e t o c o n t r o l

va r ia b le .

E x e c u te i n s t r u c t i o n (s) i n t h e

D O g ro u p .

E v a l u a t e o r

e v a l u a t e a n d t h e n

, a n d

i n o r d e r w r i t t e n .

,

U s e F O R v a l u e () t o t e s t

fo r te rm in a t io n .

U s e W H I L E e x p r e s s i o n ()

t o te s t f o r t e r m in a t i o n .

U s e U N T I L e x p r e s s i o n ()

t o te s t f o r t e r m in a t i o n .

U s e B Y v a l u e () t o

u p d a t e c o n t r o l v a r i a b l e .

U s e T O v a l u e () t o t e s t

c o n t r o l v a r i a b l e fo r t e r m in a t i o n .

U s e c o u n t o f i t e r a t i o n s ()

t o te s t f o r t e r m in a t i o n .

exprb

exprt

exprt exprb

exprf

exprr

exprf

exprr

expri

exprw

expru

Figure 1. Concept of a DO Loop

 Chapter 3. Keyword Instructions 43

 DROP

 DROP

 ┌ ┐────────────
��──DROP─ ───$ ┴┬ ┬──name ── ─;──��

└ ┘──(name)

DROP “unassigns” variables, that is, restores them to their original uninitialized
state. If name is not enclosed in parentheses, it identifies a variable you want to
drop and must be a symbol that is a valid variable name, separated from any other
name by one or more blanks or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of
variables to drop. (Blanks are not necessary either inside or outside the
parentheses, but you can add them if desired.) This subsidiary list must follow the
same rules as the original list (that is, be valid variable names, separated by
blanks) except that no parentheses are allowed.

Variables are dropped in sequence from left to right. It is not an error to specify a
name more than one time or to DROP a variable that is not known. If an exposed
variable is named

(see (see “PROCEDURE” on page 59), the variable in the older generation is
dropped.

Example:

j=4
Drop a z.3 z.j
/: Drops the variables: A, Z.3, and Z.4 :/
/: so that reference to them returns their names. :/

Here, a variable name in parentheses is used as a subsidiary list.

Example:

mylist='c d e'
drop (mylist) f
/: Drops the variables C, D, E, and F :/
/: Does not drop MYLIST :/

Specifying a stem (that is, a symbol that contains only one period, as the last
character), drops all variables starting with that stem.

Example:

Drop z.
/: Drops all variables with names starting with Z. :/

44 AS/400 REXX/400 Reference V4R1

 EXIT

 EXIT

��──EXIT─ ──┬ ┬──────────── ─;──��
 └ ┘─expression─

EXIT leaves a program unconditionally. Optionally EXIT returns a character string
to the caller. The program is stopped immediately, even if an internal routine is
currently being run. If no internal routine is active, RETURN (see page 65) and
EXIT are identical in their effect on the program that is being run.

If you specify expression, it is evaluated and the string resulting from the evaluation
is passed back to the caller when the program stops.

Example:

j=3
Exit j:4
/: Would exit with the string '12' :/

If you do not specify expression, no data is passed back to the caller. If the
program was called as an external function, this is detected as an error—either
immediately (if RETURN was used), or on return to the caller (if EXIT was used).

“Running off the end” of the program is always equivalent to the instruction EXIT, in
that it stops the whole program and returns no result string.

Notes:

1. The language processor distinguishes between invocation as a command and
invocation as a subroutine or function only in that, if it was called through a
command interface, an attempt is made to convert the returned value to a
return code acceptable by the underlying operating system. The underlying
operating system is the current command environment. If the conversion fails,
it is deemed to be unsuccessful due to the underlying operating system and
thus is not subject to trapping with SIGNAL ON SYNTAX.

2. If the caller is another REXX program that used the CALL instruction, the value
is returned to the special variable RESULT.

3. If the caller is another REXX program that used a function invocation, the value
replaces the function invocation in the calling program.

4. If REXX is called using the Start REXX Procedure (STRREXPRC) command or
a user-defined command and the value of the expression is not 0, then the
returned string will be incorporated into the escape message CPF7CFF. The
invoking program can then receive the message to obtain the returned value.
In this case the return code must be a whole number within the range -2**15 to
2**15-1. If it is not, instead of escape message CPF7CFF, the REXX program
will stop with REXX Error 26, “Invalid whole number”. Diagnostic message
CPD7C9A is issued followed by escape message CPF7CFD.

5. REXX programs that call other REXX programs using the STRREXPRC
command will have to obtain nonzero return values by receiving the escape
message and parsing the message data. The special variable RC will contain
the escape message CPF7CFF.

6. See Chapter 9, “AS/400 System Interfaces” on page 147 for more information.

 Chapter 3. Keyword Instructions 45

 IF

 IF

��──IF──expression─ ──┬ ┬─── ─THEN─ ──┬ ┬─── ─instruction─────────────────�
 └ ┘─;─ └ ┘─;─

�─ ──┬ ┬────────────────────────── ───────────────────────────────────��
 └ ┘ ─ELSE─ ──┬ ┬─── ─instruction─

 └ ┘─;─

IF conditionally processes an instruction or group of instructions depending on the
evaluation of the expression. The expression is evaluated and must result in � or
1.

The instruction after the THEN is processed only if the result is 1 (true). If you
specify an ELSE, the instruction after the ELSE is processed only if the result of the
evaluation is � (false).

Example:

if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon before the ELSE.

Example:

if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. You can use the NOP
instruction to eliminate errors and possible confusion when IF constructs are
nested, as in the following example.

Example:

If answer = 'YES' Then
If name = 'FRED' Then

say 'OK, Fred.'
 Else
 nop
Else

say 'Why not?'

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, SELECT, or the IF
instruction itself. A null clause is not an instruction, so putting an extra
semicolon (or label) after the THEN or ELSE is not equivalent to putting a
dummy instruction (as it would be in PL/I). The NOP instruction is provided for
this purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the IF clause to be ended by the THEN, without a ; being
required. If this were not so, people who are accustomed to other computer
languages would experience considerable difficulties.

46 AS/400 REXX/400 Reference V4R1

 INTERPRET

 INTERPRET

��──INTERPRET──expression──;───────────────────────────────────────��

INTERPRET processes instructions that have been built dynamically by evaluating
expression.

The expression is evaluated and is then processed (interpreted) just as though the
resulting string were a line inserted into the program (and bracketed by a DO; and
an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that
constructions such as DO...END and SELECT...END must be complete. For
example, a string of instructions being interpreted cannot contain a LEAVE or
ITERATE instruction (valid only within a repetitive DO loop) unless it also contains
the whole repetitive DO...END construct.

A semicolon is implied at the end of the expression during execution, if one was not
supplied.

Example:

data='FRED'
interpret data '= 4'
/: Builds the string "FRED = 4" and :/
/: Processes: FRED = 4; :/
/: Thus the variable FRED is set to "4" :/

Example:

data='do 3; say "Hello there!"; end'
interpret data /: Displays: :/
 /: Hello there! :/
 /: Hello there! :/
 /: Hello there! :/

Notes:

1. Label clauses are not permitted in an interpreted character string. If a SIGNAL
or CALL instruction is issued or a trapped event occurs as a result of an
INTERPRET instruction, this causes an immediate exit from the interpreted
instruction or expression before the label search begins.

2. If you are new to the concept of the INTERPRET instruction and are getting
results that you do not understand, you may find that executing it with TRACE R
or TRACE I in effect is helpful.

 Chapter 3. Keyword Instructions 47

 INTERPRET

Example:

/: Here is a small REXX program. :/
Trace Int
name='Kitty'
indirect='name'
interpret 'say "Hello"' indirect'"!"'

When this is run, it gives the trace:

kitty
3 :-: name='Kitty'

 >L> "Kitty"
4 :-: indirect='name'

 >L> "name"
5 :-: interpret 'say "Hello"' indirect'"!"'

 >L> "say "Hello""
 >V> "name"

>O> "say "Hello" name"
 >L> ""!""

>O> "say "Hello" name"!""
:-: say "Hello" name"!"

 >L> "Hello"
 >V> "Kitty"
 >O> "Hello Kitty"
 >L> "!"
 >O> "Hello Kitty!"
Hello Kitty!

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using a
literal string, a variable (INDIRECT), and another literal string. The resulting pure
character string is then interpreted, just as though it were actually part of the
original program. Because it is a new clause, it is traced as such (the second
:-: trace flag under line 5) and is then processed. Again a literal string is
concatenated to the value of a variable (NAME) and another literal, and the final
result (Hello Kitty!) is then displayed.

3. For many purposes, you can use the VALUE function (see page 103) instead
of the INTERPRET instruction. The following line could, therefore, have
replaced line 5 in the last example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or
more statements are to be interpreted together, or when an expression is to be
evaluated dynamically.

48 AS/400 REXX/400 Reference V4R1

 ITERATE

 ITERATE

��──ITERATE─ ──┬ ┬────── ─;───��
 └ ┘─name─

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other
than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction just as though the END clause had been encountered. The control
variable (if any) is incremented and tested, as usual, and the group of instructions
is processed again, unless the DO instruction ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE
steps the innermost active repetitive loop. If name is specified, it must be the name
of the control variable of a currently active loop (which may be the innermost), and
this is the loop that is stepped. Any active loops inside the one selected for
iteration are ended (as though by a LEAVE instruction).

Example:

do i=1 to 4
if i=2 then iterate

 say i
 end
/: Displays the numbers: "1" "3" "4" :/

Notes:

1. If specified, name must match the symbol naming the control variable in the DO
clause in all respects except case. No substitution for compound variables is
carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an
INTERPRET instruction is processed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects
the innermost loop.

 Chapter 3. Keyword Instructions 49

 LEAVE

 LEAVE

��──LEAVE─ ──┬ ┬────── ─;───��
 └ ┘─name─

LEAVE causes an immediate exit from one or more repetitive DO loops (that is,
any DO construct other than a simple DO).

Processing of the group of instructions is ended, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been met. However, on exit, the
control variable (if any) will contain the value it had when the LEAVE instruction
was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends
the innermost active repetitive loop. If name is specified, it must be the name of
the control variable of a currently active loop (which may be the innermost), and
that loop (and any active loops inside it) is then ended. Control then passes to the
clause following the END that matches the DO clause of the selected loop.

Example:

do i=1 to 5
 say i
if i=3 then leave

 end
/: Displays the numbers: "1" "2" "3" :/

Notes:

1. If specified, name must match the symbol naming the control variable in the DO
clause in all respects except case. No substitution for compound variables is
carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an
INTERPRET instruction is processed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. LEAVE cannot be used to end an inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects the
innermost loop.

50 AS/400 REXX/400 Reference V4R1

 NOP

 NOP

��──NOP──;───��

NOP is a dummy instruction that has no effect. It can be useful as the target of a
THEN or ELSE clause:

Example:

Select
when a=c then nop /: Do nothing :/
when a>c then say 'A > C'
otherwise say 'A < C'

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null
clause, which would be ignored. The second WHEN clause would be seen as the
first instruction expected after the THEN, and would, therefore, be treated as a
syntax error. NOP is a true instruction, however, and is, therefore, a valid target for
the THEN clause.

 Chapter 3. Keyword Instructions 51

 NUMERIC

 NUMERIC

��──NUMERIC─ ──┬ ┬─DIGITS─ ──┬ ┬───────────── ───────── ─;───────────────��
 │ │└ ┘─expression1─
 │ │┌ ┐─SCIENTIFIC─────────────
 ├ ┤ ─FORM─ ──┼ ┼────────────────────────
 │ │├ ┤─ENGINEERING────────────
 │ │└ ┘ ──┬ ┬─────── ─expression2─
 │ │└ ┘─VALUE─
 └ ┘ ─FUZZ─ ──┬ ┬───────────── ───────────
 └ ┘─expression3─

NUMERIC changes the way in which a program carries out arithmetic operations.
The options of this instruction are described in detail on pages 127-136, but in
summary:

NUMERIC DIGITS
controls the precision to which arithmetic operations and arithmetic built-in
functions are evaluated. If you omit expression1, the precision defaults to 9
digits. Otherwise, expression1 must evaluate to a positive whole number and
must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the 16 megabyte limit on the
total storage used for all REXX variables) but note that high precisions are
likely to require a good deal of processing time. It is recommended that you
use the default value wherever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in
function. See “DIGITS” on page 89.

NUMERIC FORM
controls which form of exponential notation REXX uses for the result of
arithmetic operations and arithmetic built-in functions. This may be either
SCIENTIFIC (in which case only one, nonzero digit appears before the decimal
point) or ENGINEERING (in which case the power of 10 is always a multiple of
3). The default is SCIENTIFIC. The subkeywords SCIENTIFIC or
ENGINEERING set the FORM directly, or it is taken from the result of
evaluating the expression (expression2) that follows VALUE. The result in this
case must be either SCIENTIFIC or ENGINEERING. You can omit the subkeyword
VALUE if expression2 does not begin with a symbol or a literal string (that is, if
it starts with a special character, such as an operator character or parenthesis).

You can retrieve the current NUMERIC FORM setting with the FORM built-in
function. See “FORM” on page 91.

NUMERIC FUZZ
controls how many digits, at full precision, are ignored during a numeric
comparison operation. (See page 133.) If you omit expression3, the default is
� digits. Otherwise, expression3 must evaluate to � or a positive whole
number, rounded if necessary according to the current NUMERIC DIGITS
setting, and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the
NUMERIC FUZZ value during every numeric comparison. The numbers are
subtracted under a precision of DIGITS minus FUZZ digits during the
comparison and are then compared with 0.

52 AS/400 REXX/400 Reference V4R1

 NUMERIC

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in
function. See “FUZZ” on page 92.

Note: The three numeric settings are automatically saved across internal and
external subroutine and function calls. See the CALL instruction (page 35) for more
details.

 Chapter 3. Keyword Instructions 53

 OPTIONS

 OPTIONS

��──OPTIONS──expression──;───��

OPTIONS passes special requests or parameters to the language processor. For
example, these may be language processor options or perhaps define a special
character set.

The expression is evaluated, and the result is examined one word at a time. The
language processor converts the words to uppercase. If the language processor
recognizes the words, then they are obeyed. Words that are not recognized are
ignored and assumed to be instructions to a different processor.

The language processor recognizes the following words:

EXMODE specifies that instructions, operators, and functions handle DBCS
data in mixed strings on a logical character basis. DBCS data
integrity is maintained.

NOEXMODE specifies that any data in strings is handled on a byte basis. The
integrity of DBCS characters, if any, may be lost. NOEXMODE is
the default.

The language processor recognizes the following words when they are the only
word in expression and are specified as literal strings:

'ETMODE' specifies that literal strings and comments containing DBCS
characters are checked for being valid DBCS strings. ETMODE is
the default when the REXX source file is tagged with a mixed
Coded Character Set ID (CCSID).

'NOETMODE' specifies that literal strings and comments containing DBCS
characters are not checked for being valid DBCS strings.
NOETMODE is the default. NOETMODE is also the default when
the REXX source file is not tagged with a mixed CCSID.

Notes:

1. Because of the language processor's scanning procedures, you are advised to
place an OPTIONS 'ETMODE' instruction as the first instruction in a program
containing DBCS characters in literal strings and DBCS comments. Otherwise,
errors may occur in processing the DBCS literal strings and DBCS comments
that follow.

2. All REXX/400 source files tagged with a mixed CCSID (CCSID with a
double-byte character set component) are treated as if OPTIONS 'ETMODE' was
coded in the REXX source file. All other REXX source files are treated as if
OPTIONS 'NOETMODE' was coded. The source file's IGCDATA attribute is
ignored.

A REXX source file written in CCSID 65535 (*HEX) must use OPTIONS
'ETMODE' when literal strings and comments containing DBCS characters are to
be checked for being valid DBCS strings. Only one OPTIONS 'ETMODE' or
OPTIONS 'NOETMODE' may be specified per REXX source file and they are
ignored in source files not written in CCSID 65535. OPTIONS 'NOETMODE'

54 AS/400 REXX/400 Reference V4R1

 OPTIONS

cannot be used to override either the implicit or the explicit occurrence of
OPTIONS 'ETMODE'.

3. The EXMODE setting is saved and restored across subroutine and function
calls.

4. The words EXMODE and NOEXMODE can appear several times within the
result. The one that takes effect is determined by the last valid one specified.

5. See Appendix A, “Double-Byte Character Set (DBCS) Support” on page 177
for more information on DBCS, SBCS, and associated functions.

 Chapter 3. Keyword Instructions 55

 PARSE

 PARSE

��──PARSE─ ──┬ ┬─────── ──┬ ┬─ARG───────────────────────── ──┬ ┬─────────────── ─;─────────��
 └ ┘─UPPER─ ├ ┤─LINEIN────────────────────── └ ┘─template_list─
 ├ ┤─PULL────────────────────────
 ├ ┤─SOURCE──────────────────────
 ├ ┤ ─VALUE─ ──┬ ┬──────────── ─WITH─
 │ │└ ┘─expression─
 ├ ┤─VAR──name───────────────────
 └ ┘─VERSION─────────────────────

PARSE assigns data (from various sources) to one or more variables according to
the rules of parsing. (See Chapter 5, “Parsing” on page 111.)

The template_list is often a single template but may be several templates separated
by commas. If specified, each template is a list of symbols separated by blanks or
patterns or both.

Each template is applied to a single source string. Specifying multiple templates is
never a syntax error, but only the PARSE ARG variant can supply more than one
non-null source string. See page 121 for information on parsing multiple source
strings.

If you do not specify a template, no variables are set but action is taken to prepare
the data for parsing, if necessary. Thus for PARSE PULL, a data string is removed
from the queue, for PARSE LINEIN (and PARSE PULL if the queue is empty), a
line is taken from the default input stream, and for PARSE VALUE, expression is
evaluated. For PARSE VAR, the specified variable is accessed. If it does not have
a value, the NOVALUE condition is raised, if it is enabled.

If you specify the UPPER option, the data to be parsed is first translated to
uppercase (that is, lowercase a–z to uppercase A–Z). Otherwise, no uppercase
translation takes place during the parsing.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the string or strings passed to a program or internal routine as input
arguments. (See the ARG instruction on page 33 for details and examples.)

Note: You can also retrieve or check the argument strings to a REXX program
or internal routine with the ARG built-in function (page 80).

PARSE LINEIN
parses the next line from the default input stream. (See Chapter 8, “Input and
Output Streams” on page 143 for a discussion of REXX input and output.) If
no line is available, program execution will usually pause until a line is
complete. Note that PARSE LINEIN should be used only when direct access
to the character input stream is necessary. Usual line-by-line dialogue with the
user should be carried out with the PULL or PARSE PULL instructions, to
maintain generality.

PARSE LINEIN reads a line from STDIN, by default the Integrated Language
Environment (ILE) Session Manager. In doing so, it works like a pause, by
forcing you to press ENTER to continue. For more information on the ILE
Session Manager, see “Terminal Input and Output” on page 149.

56 AS/400 REXX/400 Reference V4R1

 PARSE

PARSE PULL
parses the next string from the external data queue. If the external data queue
is empty, PARSE PULL reads a line from the default input stream (the user's
terminal), and the program pauses, if necessary, until a line is complete. You
can add data to the head or tail of the queue by using the PUSH and QUEUE
instructions, respectively. You can find the number of lines currently in the
queue with the QUEUED built-in function. (See page 95.) The queue remains
active for the life of the job. Other programs which run in the job can alter the
queue and use it as a means of communication with programs written in REXX.
See also the PULL instruction on page 62.

Note: PULL and PARSE PULL read first from the external data queue. If the
external data queue is empty, they read from STDIN. STDIN defaults to the
ILE Session Manager display. (See the PULL instruction, on page 62, for
further details.)

PARSE SOURCE
parses data describing the source of the program running. The language
processor returns a string that is fixed (does not change) while the program is
running.

The source string contains the characters OS/400, followed by either
COMMAND, FUNCTION, or SUBROUTINE, depending on whether the program
was run using a command, such as Start REXX Procedure (STRREXPRC), a
function call in an expression, or the CALL instruction. These two tokens are
followed by the member, file and library name of the source member.

For example, if the REXTRY procedure stored in the QREXSRC source file in
library USER1 were to enter the PARSE SOURCE instruction, the string parsed
would look like this:

OS/4�� COMMAND REXTRY QREXSRC USER1

PARSE VALUE
parses the data that is the result of evaluating expression. If you specify no
expression, then the null string is used. Note that WITH is a subkeyword in this
context and cannot be used as a symbol within expression.

Thus, for example:

PARSE VALUE time() WITH hours ':' mins ':' secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the value of the variable name. The name must be a symbol that is
valid as a variable name (that is, it cannot start with a period or a digit). Note
that the variable name is not changed unless it appears in the template, so that
for example:

PARSE VAR string word1 string

removes the first word from string, puts it in the variable word1, and assigns the
remainder back to string. Similarly

PARSE UPPER VAR string word1 string

in addition translates the data from string to uppercase before it is parsed.

PARSE VERSION
parses information describing the language level and the date of the language
processor. This information consists of five blank-delimited words:

 Chapter 3. Keyword Instructions 57

 PARSE

1. A word describing the language. The first four letters are the characters
REXX, and the remainder may be used to identify a particular
implementation or language processor. REXX/400 returns REXXSAA for
this word.

2. The language level description, for example, 3.48. Numbers smaller than
this may be assumed to indicate a subset of the language defined here.

3. Three tokens describing the language processor release date in the same
format as the default for the DATE function (see “DATE” on page 87), for
example 13 June 1989.

The returned string would look like the following:

REXXSAA 3.48 13 June 1989

Notes:

1. Input retrieved by PARSE PULL or PULL is obtained from STDIN, which
defaults to the ILE Session Manager display (if the external data queue is
empty). Lines pulled from STDIN will be echoed to the job log, as a command
(CMD) message, if REXX tracing is active.

2. In batch mode, STDIN, by default, is directed to the file QINLINE. If there is no
data to read, the result of the PULL instruction is a null string. Lines read by
these instructions are echoed to the job log, as a command (CMD) message.

58 AS/400 REXX/400 Reference V4R1

 PROCEDURE

 PROCEDURE

��──PROCEDURE─ ──┬ ┬────────────────────── ─;─────────────────────────��
 │ │┌ ┐────────────
 └ ┘ ─EXPOSE─ ───$ ┴┬ ┬──name ──

└ ┘──(name)

PROCEDURE, within an internal routine (subroutine or function), protects variables
by making them unknown to the instructions that follow it. After a RETURN
instruction is processed, the original variables environment is restored and any
variables used in the routine (that were not exposed) are dropped. (An exposed
variable is one belonging to a caller of a routine that the PROCEDURE instruction
has exposed. When the routine refers to or alters the variable, the original
(caller's) copy of the variable is used.) An internal routine need not include a
PROCEDURE instruction; in this case the variables it is manipulating are those the
caller “owns.” If used, the PROCEDURE instruction must be the first instruction
processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified by name is exposed. Any
reference to it (including setting and dropping) refers to the variables environment
the caller owns. Hence, the values of existing variables are accessible, and any
changes are persistent even on RETURN from the routine. If name is not enclosed
in parentheses, it identifies a variable you want to expose and must be a symbol
that is a valid variable name, separated from any other name with one or more
blanks.

If parentheses enclose a single name, then, after the variable name is exposed, the
value of name is immediately used as a subsidiary list of variables. (Blanks are not
necessary either inside or outside the parentheses, but you can add them if
desired.) This subsidiary list must follow the same rules as the original list (that is,
valid variable names, separated by blanks) except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a
name more than one time, or to specify a name that the caller has not used as a
variable.

Any variables in the main program that are not exposed are still protected.
Therefore, some limited set of the caller's variables can be made accessible, and
these variables can be changed (or new variables in this set can be created). All
these changes are visible to the caller upon RETURN from the routine.

 Chapter 3. Keyword Instructions 59

 PROCEDURE

Example:

/: This is the main REXX program :/
j=1; z.1='a'
call toft
say j k m /: Displays "1 7 M" :/
exit

/: This is a subroutine :/
toft: procedure expose j k z.j

say j k z.j /: Displays "1 K a" :/
k=7; m=3 /: Note: M is not exposed :/

 return

Note that if Z.J in the EXPOSE list had been placed before J, the caller's value of J
would not have been visible at that time, so Z.1 would not have been exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:

/: This is the main REXX program :/
j=1;k=6;m=9
a ='j k m'
call test
exit

/: This is a subroutine :/
test: procedure expose (a) /: Exposes A, J, K, and M :/
say a j k m /: Displays "j k m 1 6 9" :/

 return

You can use subsidiary lists to more easily expose a number of variables at one
time or, with the VALUE built-in function, to manipulate dynamically named
variables.

Example:

/: This is the main REXX program :/
c=11; d=12; e=13
Showlist='c d' /: but not E :/
call Playvars
say c d e f /: Displays "11 New 13 9" :/
exit

/: This is a subroutine :/
Playvars: procedure expose (showlist) f
 say word(showlist,2) /: Displays "d" :/
 say value(word(showlist,2),'New') /: Displays "12" and sets new value :/
 say value(word(showlist,2)) /: Displays "New" :/
 e=8 /: E is not exposed :/
 f=9 /: F was explicitly exposed :/
 return

Specifying a stem as name exposes this stem and all possible compound variables
whose names begin with that stem. (See page 24 for information about stems.)

60 AS/400 REXX/400 Reference V4R1

 PROCEDURE

Example:

/: This is the main REXX program :/
a.=11; i=13; j=15
i = i + 1
C.5 = 'FRED'
call lucky7
say a. a.1 i j c. c.5
say 'You should see 11 7 14 15 C. FRED'
exit
lucky7:Procedure Expose i j a. c.
/: This exposes I, J, and all variables whose :/
/: names start with A. or C. :/
A.1='7' /: This sets A.1 in the caller's :/

/: environment, even if it did not :/
/: previously exist. :/

return

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

See the CALL instruction and function descriptions on pages 35 and 75 for details
and examples of how routines are called.

 Chapter 3. Keyword Instructions 61

 PULL

 PULL

��──PULL─ ──┬ ┬─────────────── ─;─────────────────────────────────────��
 └ ┘─template_list─

PULL reads a string from the head of the external data queue. (See Chapter 8,
“Input and Output Streams” on page 143 for a discussion of REXX input and
output.) It is just a short form of the instruction:

��─ ──PARSE UPPER PULL ──┬ ┬─────────────── ─;──��
 └ ┘─template_list─

The current head-of-queue is read as one string. Without a template_list specified,
no further action is taken (and the string is thus effectively discarded). If specified,
a template_list is usually a single template, which is a list of symbols separated by
blanks or patterns or both. (The template_list can be several templates separated
by commas, but PULL parses only one source string; if you specify several
comma-separated templates, variables in templates other than the first one are
assigned the null string.) The string is translated to uppercase (that is, lowercase
a–z to uppercase A–Z) and then parsed into variables according to the rules
described in the section on parsing (page 111). Use the PARSE PULL instruction if
you do not desire uppercase translation.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (.), is used on the template to isolate the
first word the user enters.

If the external data queue is empty, a line is read from the default input stream and
the program pauses, if necessary, until a line is complete. (This is as though
PARSE UPPER LINEIN had been processed. See page 56.)

The QUEUED built-in function (see page 95) returns the number of lines currently
in the external data queue.

Notes:

1. PULL and PARSE PULL read first from the external data queue. If the queue
is empty, they read from STDIN, by default the ILE Session Manager display.

2. See Chapter 8, “Input and Output Streams” on page 143 for more information
on STDIN.

62 AS/400 REXX/400 Reference V4R1

 PUSH

 PUSH

��──PUSH─ ──┬ ┬──────────── ─;──��
 └ ┘─expression─

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In,
First Out) onto the external data queue. (See Chapter 8, “Input and Output
Streams” on page 143 for a discussion of REXX input and output.)

If you do not specify expression, a null string is stacked.

Example:

a='Fred'
push /: Puts a null line onto the queue :/
push a 2 /: Puts "Fred 2" onto the queue :/

The QUEUED built-in function (described on page 95) returns the number of lines
currently in the external data queue.

Implementation maximum: The length of a single string on the external data
queue is limited to 32,767. The string will be truncated at this point, with no error
indication.

 Chapter 3. Keyword Instructions 63

 QUEUE

 QUEUE

��──QUEUE─ ──┬ ┬──────────── ─;───────────────────────────────────────��
 └ ┘─expression─

QUEUE appends the string resulting from expression to the tail of the external data
queue. That is, it is added FIFO (First In, First Out). (See Chapter 8, “Input and
Output Streams” on page 143 for a discussion of REXX input and output.)

If you do not specify expression, a null string is queued.

Example:

a='Toft'
queue a 2 /: Enqueues "Toft 2" :/
queue /: Enqueues a null line behind the last :/

The QUEUED built-in function (described on page 95) returns the number of lines
currently in the external data queue.

Implementation maximum: The length of a single string on the external data
queue is limited to 32,767 bytes. The string will be truncated at this point, with no
error indication.

64 AS/400 REXX/400 Reference V4R1

 RETURN

 RETURN

��──RETURN─ ──┬ ┬──────────── ─;──────────────────────────────────────��
 └ ┘─expression─

RETURN returns control (and possibly a result) from a REXX program or internal
routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are
identical in their effect on the program that is being run. (See page 45.)

If a subroutine is being run (see the CALL instruction), expression (if any) is
evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of expression. If expression is omitted, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at
the time of the CALL (tracing, addresses, and so forth) are also restored. (See
page 35.)

If a function is being processed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then
used in the original expression at the point where the function was called. See the
description of functions on page 75 for more details.

If a PROCEDURE instruction was processed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and those of
the previous generation are exposed) after expression is evaluated and before the
result is used or assigned to RESULT.

Notes:

1. If the procedure is called using the REXX CALL instruction, the value is
returned to the special variable RESULT.

2. If the procedure is called using a REXX function invocation, the value replaces
the function invocation in the calling program.

3. If neither Note 1 nor Note 2 apply and the value of the expression is not 0, the
returned string will be incorporated into the escape message CPF7CFF. The
invoking program can then receive the message to obtain the returned value.
In this case the return code must be a whole number within the range -2**15 to
2**15-1. If it is not, instead of escape message CPF7CFF, the REXX program
will stop with REXX Error 26 “Invalid whole number”. Diagnostic message
CPD7C9A is issued followed by escape message CPF7CFD. REXX programs
that call other REXX programs using the Start REXX Procedure (STRREXPRC)
command will have to obtain nonzero return values by receiving the escape
message. The special variable RC will contain the escape message number
CPF7CFF.

 Chapter 3. Keyword Instructions 65

 SAY

 SAY

��──SAY─ ──┬ ┬──────────── ─;───��
 └ ┘─expression─

SAY writes a line to the default output stream. The result of expression may be of
any length. If you omit expression, the null string is written. Data output by the
SAY instruction is written to the file STDOUT, which defaults to the Integrated
Language Environment (ILE) Session Manager display. (See Chapter 8, “Input and
Output Streams” on page 143 for a discussion of REXX input and output.)

Example:

data=1��
Say data 'divided by 4 =>' data/4
/: Displays: "1�� divided by 4 => 25" :/

Notes:

1. Output from SAY is directed to STDOUT, which, in interactive mode, defaults to
the ILE session manager. In batch mode, STDOUT defaults to the file
QPRINT.

2. If REXX tracing is in effect, output is placed in the job log as a command
(CMD) message.

3. In batch mode, all output from SAY instructions is logged to the job log,
regardless of the current REXX trace setting.

66 AS/400 REXX/400 Reference V4R1

 SELECT

 SELECT

��─ ──SELECT; ──�

 ┌ ┐───
�─ ───$ ┴─WHEN──expression─ ──┬ ┬─── ─THEN─ ──┬ ┬─── ─instruction─ ───────────�
 └ ┘─;─ └ ┘─;─

�─ ──┬ ┬─────────────────────────────────────── ─END──;───────────────��
 └ ┘ ─OTHERWISE─ ──┬ ┬─── ──┬ ┬─────────────────

 └ ┘─;─ │ │┌ ┐───────────────
 └ ┘ ───$ ┴─instruction─

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in � or 1. If the
result is 1, the instruction following the associated THEN (which may be a complex
instruction such as IF, DO, or SELECT) is processed and control then passes to
the END. If the result is �, control passes to the next WHEN clause.

If none of the WHEN expressions evaluates to 1, control passes to the instructions,
if any, after OTHERWISE. In this situation, the absence of an OTHERWISE
causes an error (but note that you can omit the instruction list that follows
OTHERWISE).

Example:

 balance=1��
 check=5�
balance = balance - check

 Select
when balance > � then

say 'Congratulations! You still have' balance 'dollars left.'
when balance = � then do

say 'Warning, Balance is now zero! STOP all spending.'
say "You cut it close this month! Hope you do not have any"
say "checks left outstanding."

 end
 Otherwise

say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."

 end /: Select :/

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, IF, or the SELECT
instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after
a THEN clause is not equivalent to putting a dummy instruction. The NOP
instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the WHEN clause to be ended by the THEN without a ;
(delimiter) being required.

 Chapter 3. Keyword Instructions 67

 SIGNAL

 SIGNAL

��──SIGNAL─ ──┬ ┬─labelname─────────────────────────── ─;─────────────��
 ├ ┤ ──┬ ┬─────── ─expression───────────────
 │ │└ ┘─VALUE─
 ├ ┤ ─OFF─ ──┬ ┬─ERROR─── ───────────────────
 │ │├ ┤─FAILURE─
 │ │├ ┤─HALT────
 │ │├ ┤─NOVALUE─
 │ │└ ┘─SYNTAX──
 └ ┘ ─ON─ ──┬ ┬─ERROR─── ──┬ ┬────────────────
 ├ ┤─FAILURE─ └ ┘ ─NAME──trapname─
 ├ ┤─HALT────
 ├ ┤─NOVALUE─
 └ ┘─SYNTAX──

SIGNAL causes an unusual change in the flow of control (if you specify labelname
or VALUE expression), or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap.
OFF turns off the specified condition trap. ON turns on the specified condition trap.
All information on condition traps is contained in Chapter 7, “Conditions and
Condition Traps” on page 137.

To change the flow of control, a label name is derived from labelname or taken
from the result of evaluating the expression after VALUE. The labelname you
specify must be a literal string or symbol that is taken as a constant. If you use a
symbol for labelname, the search is independent of alphabetic case. If you use a
literal string, the characters should be in uppercase. This is because the language
processor translates all labels to uppercase, regardless of how you enter them in
the program. Similarly, for SIGNAL VALUE, the expression must evaluate to a
string in uppercase or the language processor does not find the label. You can
omit the subkeyword VALUE if expression does not begin with a symbol or literal
string (that is, if it starts with a special character, such as an operator character or
parenthesis). All active pending DO, IF, SELECT, and INTERPRET instructions in
the current routine are then ended (that is, they cannot be resumed). Control then
passes to the first label in the program that matches the given name, as though the
search had started from the top of the program.

Example:

Signal fred; /: Transfer control to label FRED below :/

Fred: say 'Hi!'

Because the search effectively starts at the top of the program, if duplicates are
present, control always passes to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction
is assigned to the special variable SIGL. This can aid debugging because you can
use SIGL to determine the source of a transfer of control to a label.

68 AS/400 REXX/400 Reference V4R1

 SIGNAL

Using SIGNAL VALUE

The VALUE form of the SIGNAL instruction allows a branch to a label whose name
is determined at the time of execution. This can safely effect a multi-way CALL (or
function call) to internal routines because any DO loops, and so forth, in the calling
routine are protected against termination by the call mechanism.

Example:

fred='PETE'
call multiway fred, 7

exit
Multiway: procedure

arg label . /: One word, uppercase :/
/: Can add checks for valid labels here :/

signal value label /: Transfer control to wherever :/

Pete: say arg(1) '!' arg(2) /: Displays: "PETE ! 7" :/
 return

 Chapter 3. Keyword Instructions 69

 TRACE

 TRACE

��──TRACE─ ──┬ ┬──┬ ┬──────── ──────────────────── ─;──────────────────────��
 │ │└ ┘─number─
 │ │┌ ┐─Normal────────
 └ ┘ ──┬ ┬───────── ──┼ ┼───────────────
 │ │┌ ┐─────── ├ ┤─All───────────
 └ ┘───$ ┴─ ──?─ ├ ┤─Commands──────
 ├ ┤─Error─────────
 ├ ┤─Failure───────
 ├ ┤─Intermediates─
 ├ ┤─Labels────────
 ├ ┤─Off───────────
 └ ┘─Results───────

Or, alternatively:

��──TRACE─ ──┬ ┬─────────────────────── ─;───────────────────────────────��
 ├ ┤─string────────────────
 ├ ┤─symbol────────────────
 └ ┘ ──┬ ┬─────── ─expression─
 └ ┘─VALUE─

TRACE controls the tracing action (that is, how much is displayed to the user)
during processing of a REXX program. (Tracing describes some or all of the
clauses in a program, producing descriptions of clauses as they are processed.)
TRACE is mainly used for debugging. Its syntax is more concise than that of other
REXX instructions because TRACE is usually entered manually during interactive
debugging. (This is a form of tracing in which the user can interact with the
language processor while the program is running.) For this use, economy of key
strokes is especially convenient.

If specified, the number must be a whole number.

The string or expression evaluates to:

� A numeric option
� One of the valid prefix or alphabetic character (word) options described later

 � Null.

The symbol is taken as a constant, and is, therefore:

� A numeric option
� One of the valid prefix or alphabetic character (word) options described later.

The option that follows TRACE or the result of evaluating expression determines
the tracing action. You can omit the subkeyword VALUE if expression does not
begin with a symbol or a literal string (that is, if it starts with a special character,
such as an operator or parenthesis).

70 AS/400 REXX/400 Reference V4R1

 TRACE

Alphabetic Character (Word) Options
Although you can enter the word in full, only the capitalized and highlighted letter is
needed; all characters following it are ignored. That is why these are referred to as
alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All Traces (that is, displays) all clauses before execution.

Commands Traces all commands before execution. If the command results
in an error or failure,3 then tracing also displays the return code
from the command.

Error Traces any command resulting in an error or failure3 after
execution, together with the return code from the command. On
the AS/400 system, this means that any command invocation
that causes an escape message to be issued will be indicated
as an ERROR condition (but see Failure and Normal, below).

Failure Traces any command resulting in a failure3 after execution,
together with the return code from the command. This is the
same as the Normal option.

Intermediates Traces all clauses before execution. Also traces intermediate
results during evaluation of expressions and substituted names.

Labels Traces only labels passed during execution. This is especially
useful with debug mode, when the language processor pauses
after each label. It also helps the user to note all internal
subroutine calls and transfers of control because of the SIGNAL
instruction.

Normal Traces any failing command after execution, together with the
return code from the command. This is the default setting.

Any attempt to enter an unknown command will raise a
FAILURE condition. An attempt to enter a command to an
unknown command environment will also raise a FAILURE
condition; in such a case, the variable RC will contain the
escape message data for “object not found.”

Off Traces nothing and resets the special prefix option (described
later) to OFF.

Results Traces all clauses before execution. Displays final results
(contrast with Intermediates, preceding) of evaluating an
expression. Also displays values assigned during PULL, ARG,
and PARSE instructions. This setting is recommended for
general debugging.

? Controls interactive debug. During usual execution, a TRACE option with a
prefix of ? causes interactive debug to be switched on. While interactive debug
is on, interpretation pauses after most clauses that are traced. For example, the
instruction TRACE ?E makes the language processor pause for input after
executing any command that returns an error (that is, a nonzero return code).

3 See page 26 for definitions of error and failure.

 Chapter 3. Keyword Instructions 71

 TRACE

Any TRACE instructions in the program being traced are ignored. (This is so
that you are not taken out of interactive debug unexpectedly.)

You can switch off interactive debug in several ways:

� Entering TRACE O turns off all tracing.
� Entering TRACE with no options restores the defaults—it turns off interactive

debug but continues tracing with TRACE Normal (which traces any failing
command after execution) in effect.

� Entering TRACE ? turns off interactive debug and continues tracing with the
current option.

� Entering a TRACE instruction with a ? prefix before the option turns off
interactive debug and continues tracing with the new option.

Using the ? prefix, therefore, switches you alternately in or out of interactive
debug. (Because the language processor ignores any further TRACE
statements in your program after you are in interactive debug, use CALL TRACE
'?' to turn off interactive debug.)

 Numeric Options
If interactive debug is active and if the option specified is a positive whole number
(or an expression that evaluates to a positive whole number), that number indicates
the number of debug pauses to be skipped over. (See separate section in
Chapter 10, “Debug Aids” on page 173, for further information.) However, if the
option is a negative whole number (or an expression that evaluates to a negative
whole number), all tracing, including debug pauses, is temporarily inhibited for the
specified number of clauses. For example, TRACE -1�� means that the next 100
clauses that would usually be traced are not, in fact, displayed. After that, tracing
resumes as before.

 Tracing Tips
1. When a loop is being traced, the DO clause itself is traced on every iteration of

the loop.

2. You can retrieve the trace actions currently in effect by using the TRACE
built-in function (see “TRACE” on page 101).

3. Comments in the source REXX program are not included in the trace output.

4. Commands traced before execution always have the final value of the
command (that is, the string passed to the environment), and the clause
generating it produced in the traced output.

5. Trace actions are automatically saved across subroutine and function calls.
See the CALL instruction (page 35) for more details.

A Typical Example
One of the most common traces you will use is:

TRACE ?R
/: Interactive debug is switched on if it was off, :/
/: and tracing Results of expressions begins. :/

72 AS/400 REXX/400 Reference V4R1

 TRACE

Format of TRACE Output
Every clause traced appears with automatic formatting (indentation) according to its
logical depth of nesting and so forth. Results (if requested) are indented an extra
two spaces and are enclosed in double quotation marks so that leading and trailing
blanks are apparent. The language processor may replace terminal control codes,
such as EBCDIC values less than '40'X or the value 'FF'X, with a question mark
to avoid terminal interference.

A line number precedes the first clause traced on any line. If the line number is
greater than 99999, the language processor truncates it on the left, and the ? prefix
indicates the truncation. For example, the line number 100354 appears as ?��354.
All lines displayed during tracing have a three-character prefix to identify the type of
data being traced. These can be:

:-: Identifies the source of a single clause, that is, the data actually in the
program.

+++ Identifies a trace message. This may be the nonzero return code from a
command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program (see below).

>>> Identifies the result of an expression (for TRACE R) or the value assigned to
a variable during parsing, or the value returned from a subroutine call.

>.> Identifies the value “assigned” to a placeholder during parsing (see page
113).

The following prefixes are used only if TRACE Intermediates is in effect:

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>O> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating the
expression is null, the default tracing actions are restored. The defaults are
TRACE N and interactive debug (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in
error is always traced. If an attempt to transfer control to a label that could not be
found caused the error, that label is also traced. The special trace prefix +++
identifies these traceback lines.

 Chapter 3. Keyword Instructions 73

 TRACE

Notes:

1. TRACE output is sent to the job log as command (CMD) messages. These
may be distinguished from other messages by the three character prefix.

2. In interactive mode, TRACE input and output is sent to the job log.

3. In batch mode, TRACE output is sent to the job log. All interactive trace
reading is ignored. For example, if a REXX program issues the instruction
TRACE ?A while in batch mode, it is treated as if the instruction was TRACE A.

4. The Trace REXX (TRCREX) command can be used to modify REXX's trace
behavior without using the TRACE instruction or modifying the REXX program.
See the CL Reference for more information.

5. See Chapter 10, “Debug Aids” on page 173 for some additional debugging
tools.

74 AS/400 REXX/400 Reference V4R1

 Functions

 Chapter 4. Functions

A function is an internal, built-in, or external routine that returns a single result
string. (A subroutine is a function that is an internal, built-in, or external routine
that may or may not return a result and that is called with the CALL instruction.)

 Syntax
A function call is a term in an expression that calls a routine that carries out some
procedures and returns a string. This string replaces the function call in the
continuing evaluation of the expression. You can include function calls to internal
and external routines in an expression anywhere that a data term (such as a string)
would be valid, using the notation:

 ┌ ┐─,──────────────
��─ ──function_name(───$ ┴──┬ ┬──────────── ─)──��
 └ ┘─expression─

The function_name is a literal string or a single symbol, which is taken to be a
constant.

There can be up to an implementation-defined maximum number of expressions,
separated by commas, between the parentheses. On the AS/400 system, this
implementation maximum is 20 expressions.

These expressions are called the arguments to the function. Each argument
expression may include further function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no
blank in between, or the construct is not recognized as a function call. (A blank
operator would be assumed at this point instead.) Only a comment (which has no
effect) can appear between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting strings are
all then passed to the function. This then runs some operation (usually dependent
on the argument strings passed, though arguments are not mandatory) and
eventually returns a single character string. This string is then included in the
original expression just as though the entire function reference had been replaced
by the name of a variable whose value is that returned data.

For example, the function SUBSTR is built-in to the language processor (see page
99) and could be used as:

N1='abcdefghijk'
Z1='Part of N1 is: 'substr(N1,2,7)
/: Sets Z1 to 'Part of N1 is: bcdefgh' :/

A function may have a variable number of arguments. You need to specify only
those that are required. For example, SUBSTR('ABCDEF',4) would return DEF.

 Copyright IBM Corp. 1997 75

 Functions

Functions and Subroutines
The function calling mechanism is identical with that for subroutines. The only
difference between functions and subroutines is that functions must return data,
whereas subroutines need not.

The following types of routines can be called as functions:

Internal If the routine name exists as a label in the program, the current
processing status is saved, so that it is later possible to return to the
point of invocation to resume execution. Control is then passed to the
first label in the program that matches the name. As with a routine
called by the CALL instruction, various other status information (TRACE
and NUMERIC settings and so forth) is saved too. See the CALL
instruction (page 35) for details about this. You can use SIGNAL and
CALL together to call an internal routine whose name is determined at
the time of execution; this is known as a multi-way call (see page 69).

If you are calling an internal routine as a function, you must specify an
expression in any RETURN instruction to return from it. This is not
necessary if it is called as a subroutine.

Example:

/: Recursive internal function execution... :/
arg x
say x'! =' factorial(x)
exit

factorial: procedure /: Calculate factorial by :/
 arg n /: recursive invocation. :/
if n=� then return 1

 return factorial(n-1) : n

FACTORIAL is unusual in that it calls itself (this is recursive invocation).
The PROCEDURE instruction ensures that a new variable n is created
for each invocation.

Built-in These functions are always available and are defined in the next section
of this manual. (See pages 78—108.)

External You can write or use functions that are external to your program and to
the language processor. An external routine can be written in any
language (including REXX) that supports the system-dependent
interfaces the language processor uses to call it. You can call a REXX
program as a function and, in this case, pass more than one argument
string. The ARG or PARSE ARG instructions or the ARG built-in
function can retrieve these argument strings. For more information on
external functions and subroutines, see “External Functions and
Subroutines” on page 156. When called as a function, a program must
return data to the caller.

Notes:

1. Calling an external REXX program as a function is similar to calling
an internal routine. The external routine is, however, an implicit
PROCEDURE in that all the caller's variables are always hidden and
the status of internal values (NUMERIC settings and so forth) start
with their defaults (rather than inheriting those of the caller).

76 AS/400 REXX/400 Reference V4R1

 Functions

2. Other REXX programs can be called as functions. You can use
either EXIT or RETURN to leave the called REXX program, and in
either case you must specify an expression.

3. With care, you can use the INTERPRET instruction to process a
function with a variable function name. However, you should avoid
this if possible because it reduces the clarity of the program.

 Search Order
The search order for functions is: internal routines take precedence, then built-in
functions, and finally external functions.

Internal routines are not used if the function name is given as a literal string (that
is, specified in quotation marks); in this case the function must be built-in or
external. This lets you usurp the name of, say, a built-in function to extend its
capabilities, yet still be able to call the built-in function when needed.

Note: The words STREAM, LINES, LINEIN, LINEOUT, CHARS, CHARIN, and
CHAROUT are reserved. You can use them as the name of an internal routine, but
you should not use them as the name of an external routine.

Example:

/: This internal DATE function modifies the :/
/: default for the DATE function to standard date. :/
date: procedure
 arg in

if in='' then in='Standard'
 return 'DATE'(in)

Built-in functions have uppercase names, and so the name in the literal string
must be in uppercase for the search to succeed, as in the example. The same is
usually true of external functions.

External functions and subroutines have a specific search order. If a function is
not found in the search for internal routines and built-in functions, then REXX will
search for it as follows:

1. A member in the same source file that the call was made from.

2. Next, the library list is searched for the first occurence of a file named
QREXSRC. If found, QREXSRC is searched for a member with the desired
name.

3. Finally, the library list is searched (from the top) for a program object with the
desired name.

Errors During Execution
If an external or built-in function detects an error of any kind, the language
processor is informed, and a syntax error results. Execution of the clause that
included the function call is, therefore, ended. Similarly, if an external function fails
to return data correctly, the language processor detects this and reports it as an
error.

If a syntax error occurs during the execution of an internal function, it can be
trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. If the
error is not trapped, the program is ended.

 Chapter 4. Functions 77

 Functions

 Built-in Functions
REXX provides a rich set of built-in functions, including character manipulation,
conversion, and information functions.

The following are general notes on the built-in functions:

� The parentheses in a function are always needed, even if no arguments are
required. The first parenthesis must follow the name of the function with no
space in between.

� The built-in functions work internally with NUMERIC DIGITS 9 and NUMERIC
FUZZ 0 and are unaffected by changes to the NUMERIC settings, except
where stated. Any argument named as a number is rounded, if necessary,
according to the current setting of NUMERIC DIGITS (just as though the
number had been added to 0) and checked for validity before use. This occurs
in the following functions: ABS, FORMAT, MAX, MIN, SIGN, and TRUNC, and
for certain options of DATATYPE.

� Any argument named as a string may be a null string.

� If an argument specifies a length, it must be a positive whole number or zero.
If it specifies a start character or word in a string, it must be a positive whole
number, unless otherwise stated.

� Where the last argument is optional, you can always include a comma to
indicate you have omitted it; for example, DATATYPE(1,), like DATATYPE(1),
would return NUM.

� If you specify a pad character, it must be exactly one character long. (A pad
character extends a string, usually on the right. For an example, see the LEFT
built-in function on page 93.)

� If a function has an option you can select by specifying the first character of a
string, that character can be in upper- or lowercase.

� A number of the functions described in this chapter support DBCS. A complete
list and descriptions of these functions are in Appendix A, “Double-Byte
Character Set (DBCS) Support” on page 177.

78 AS/400 REXX/400 Reference V4R1

 Functions

 ABBREV (Abbreviation)

��─ ──ABBREV(information,info ──┬ ┬───────── ─)────────────────────────��
└ ┘──,length

returns 1 if info is equal to the leading characters of information and the length of
info is not less than length. Returns � if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for
length is the number of characters in info.

Here are some examples:

ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri') -> �
ABBREV('PRINT','PRI',4) -> �
ABBREV('PRINT','PRY') -> �
ABBREV('PRINT','') -> 1
ABBREV('PRINT','',1) -> �

Note: A null string always matches if a length of � (or the default) is used. This
allows a default keyword to be selected automatically if desired; for example:

say 'Enter option:'; pull option .
select /: keyword1 is to be the default :/
when abbrev('keyword1',option) then ...
when abbrev('keyword2',option) then ...

 ...
 otherwise nop;
end;

ABS (Absolute Value)

��─ ──ABS(number) ───��

returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:

ABS('12.3') -> 12.3
ABS(' -�.3�7') -> �.3�7

 ADDRESS

��─ ──ADDRESS() ───��

returns the name of the environment to which commands are currently being
submitted. See the ADDRESS instruction (page 30) for more information. Trailing
blanks are removed from the result. For the default system environment,
ADDRESS returns the string COMMAND.

 Chapter 4. Functions 79

 Functions

Here are some examples:

ADDRESS() -> 'COMMAND' /: the CL environment :/
ADDRESS() -> 'EDIT' /: possible editor :/
ADDRESS() -> ':LIBL/ABC' /: your ABC program :/

Note: If the command environment has been specified using *LIBL or *CURLIB,
then ADDRESS() will return a string including *LIBL or *CURLIB. The actual library
used for the command environment is determined by the state of *CURLIB or *LIBL
when the first command was entered to the user-defined environment.

 ARG (Argument)

��─ ──ARG(──┬ ┬──────────────── ─)────────────────────────────────────��
 └ ┘ ─n─ ──┬ ┬─────────

└ ┘──,option

returns an argument string or information about the argument strings to a program
or internal routine.

If you do not specify n, the number of arguments passed to the program or internal
routine is returned.

If you specify only n, the nth argument string is returned. If the argument string
does not exist, the null string is returned. The n must be a positive whole number.

If you specify option, ARG tests for the existence of the nth argument string. The
following are valid options. (Only the capitalized and highlighted letter is needed;
all characters following it are ignored.)

Exists returns 1 if the nth argument exists; that is, if it was explicitly specified
when the routine was called. Returns � otherwise.

Omitted returns 1 if the nth argument was omitted; that is, if it was not explicitly
specified when the routine was called. Returns � otherwise.

Here are some examples:

/: following "Call name;" (no arguments) :/
ARG() -> �
ARG(1) -> ''
ARG(2) -> ''
ARG(1,'e') -> �
ARG(1,'O') -> 1

/: following "Call name 'a',,'b';" :/
ARG() -> 3
ARG(1) -> 'a'
ARG(2) -> ''
ARG(3) -> 'b'
ARG(n) -> '' /: for n>=4 :/
ARG(1,'e') -> 1
ARG(2,'E') -> �
ARG(2,'O') -> 1
ARG(3,'o') -> �
ARG(4,'o') -> 1

80 AS/400 REXX/400 Reference V4R1

 Functions

Notes:

1. The number of argument strings is the largest number n for which ARG(n,'e')
would return 1 or � if there are no explicit argument strings. That is, it is the
position of the last explicitly specified argument string.

2. Programs called as commands can have only 0 or 1 argument strings. The
program has 0 argument strings if it is called with the name only and has 1
argument string if anything else (including blanks) is included with the
command.

3. You can retrieve and directly parse the argument strings to a program or
internal routine with the ARG or PARSE ARG instructions. (See pages 33, 56,
and 111.)

BITAND (Bit by Bit AND)

��─ ──BITAND(string1 ──┬ ┬────────────────────────── ─)────────────────��
 └ ┘ ─,─ ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

returns a string composed of the two input strings logically ANDed together, bit by
bit. (The encodings of the strings are used in the logical operation.) The length of
the result is the length of the longer of the two strings. If no pad character is
provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the
partial result. If pad is provided, it extends the shorter of the two strings on the
right before carrying out the logical operation. The default for string2 is the zero
length (null) string.

Here are some examples:

BITAND('12'x) -> '12'x
BITAND('73'x,'27'x) -> '23'x
BITAND('13'x,'5555'x) -> '1155'x
BITAND('13'x,'5555'x,'74'x) -> '1154'x
BITAND('pQrS',,'BF'x) -> 'pqrs' /: EBCDIC :/

BITOR (Bit by Bit OR)

��─ ──BITOR(string1 ──┬ ┬────────────────────────── ─)─────────────────��
 └ ┘ ─,─ ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

returns a string composed of the two input strings logically inclusive-ORed together,
bit by bit. (The encodings of the strings are used in the logical operation.) The
length of the result is the length of the longer of the two strings. If no pad
character is provided, the OR operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the
partial result. If pad is provided, it extends the shorter of the two strings on the
right before carrying out the logical operation. The default for string2 is the zero
length (null) string.

 Chapter 4. Functions 81

 Functions

Here are some examples:

BITOR('12'x) -> '12'x
BITOR('15'x,'24'x) -> '35'x
BITOR('15'x,'2456'x) -> '3556'x
BITOR('15'x,'2456'x,'F�'x) -> '35F6'x
BITOR('1111'x,,'4D'x) -> '5D5D'x
BITOR('Fred',,'4�'x) -> 'FRED' /: EBCDIC :/

BITXOR (Bit by Bit Exclusive OR)

��─ ──BITXOR(string1 ──┬ ┬────────────────────────── ─)────────────────��
 └ ┘ ─,─ ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

returns a string composed of the two input strings logically eXclusive-ORed
together, bit by bit. (The encodings of the strings are used in the logical operation.)
The length of the result is the length of the longer of the two strings. If no pad
character is provided, the XOR operation stops when the shorter of the two strings
is exhausted, and the unprocessed portion of the longer string is appended to the
partial result. If pad is provided, it extends the shorter of the two strings on the
right before carrying out the logical operation. The default for string2 is the zero
length (null) string.

Here are some examples:

BITXOR('12'x) -> '12'x
BITXOR('12'x,'22'x) -> '3�'x
BITXOR('1211'x,'22'x) -> '3�11'x
BITXOR('1111'x,'444444'x) -> '555544'x
BITXOR('1111'x,'444444'x,'4�'x) -> '5555�4'x
BITXOR('1111'x,,'4D'x) -> '5C5C'x
BITXOR('C711'x,'222222'x,' ') -> 'E53362'x /: EBCDIC :/

B2X (Binary to Hexadecimal)

��─ ──B2X(binary_string) ──��

returns a string, in character format, that represents binary_string converted to
hexadecimal.

The binary_string is a string of binary (� or 1) digits. It can be of any length. You
can optionally include blanks in binary_string (at four-digit boundaries only, not
leading or trailing) to aid readability; they are ignored.

The returned string uses uppercase alphabetics for the values A–F, and does not
include blanks.

If binary_string is the null string, B2X returns a null string. If the number of binary
digits in binary_string is not a multiple of four, then up to three � digits are added
on the left before the conversion to make a total that is a multiple of four.

82 AS/400 REXX/400 Reference V4R1

 Functions

Here are some examples:

B2X('11����11') -> 'C3'
B2X('1�111') -> '17'
B2X('1�1') -> '5'
B2X('1 1111 ����') -> '1F�'

You can combine B2X with the functions X2D and X2C to convert a binary number
into other forms. For example:

X2D(B2X('1�111')) -> '23' /: decimal 23 :/

 CENTER/CENTRE

��─ ──┬ ┬──CENTER(──string,length ──┬ ┬────── ─)────────────────────────��
└ ┘──CENTRE(└ ┘──,pad

returns a string of length length with string centered in it, with pad characters added
as necessary to make up length. The length must be a positive whole number or
zero. The default pad character is blank. If the string is longer than length, it is
truncated at both ends to fit. If an odd number of characters are truncated or
added, the right-hand end loses or gains one more character than the left-hand
end.

Here are some examples:

CENTER(abc,7) -> ' ABC '
CENTER(abc,8,'-') -> '--ABC---'
CENTRE('The blue sky',8) -> 'e blue s'
CENTRE('The blue sky',7) -> 'e blue '

Note: To avoid errors because of the difference between British and American
spellings, this function can be called either CENTRE or CENTER.

 COMPARE

��─ ──COMPARE(string1,string2 ──┬ ┬────── ─)───────────────────────────��
└ ┘──,pad

returns � if the strings, string1 and string2, are identical. Otherwise, returns the
position of the first character that does not match. The shorter string is padded on
the right with pad if necessary. The default pad character is a blank.

Here are some examples:

COMPARE('abc','abc') -> �
COMPARE('abc','ak') -> 2
COMPARE('ab ','ab') -> �
COMPARE('ab ','ab',' ') -> �
COMPARE('ab ','ab','x') -> 3
COMPARE('ab-- ','ab','-') -> 5

 Chapter 4. Functions 83

 Functions

 CONDITION

��─ ──CONDITION(──┬ ┬──────── ─)──────────────────────────────────────��
 └ ┘─option─

returns the condition information associated with the current trapped condition.
(See Chapter 7, “Conditions and Condition Traps” on page 137 for a description of
condition traps.) You can request the following pieces of information:

� The name of the current trapped condition
� Any descriptive string associated with that condition
� The instruction processed as a result of the condition trap (CALL or SIGNAL)
� The status of the trapped condition.

To select the information to return, use the following options. (Only the capitalized
and highlighted letter is needed; all characters following it are ignored.)

Condition name returns the name of the current trapped condition.

Description returns any descriptive string associated with the current
trapped condition. See page 141 for the list of possible strings.
If no description is available, returns a null string.

Instruction returns either CALL or SIGNAL, the keyword for the instruction
processed when the current condition was trapped. This is the
default if you omit option.

Status returns the status of the current trapped condition. This can
change during processing, and is either:

ON - the condition is enabled

OFF - the condition is disabled

DELAY - any new occurrence of the condition is delayed or
ignored.

If no condition has been trapped, then the CONDITION function returns a null string
in all four cases.

Here are some examples:

CONDITION() -> 'CALL' /: perhaps :/
CONDITION('C') -> 'FAILURE'
CONDITION('I') -> 'CALL'
CONDITION('D') -> 'FailureTest'
CONDITION('S') -> 'OFF' /: perhaps :/

Note: The CONDITION function returns condition information that is saved and
restored across subroutine calls (including those a CALL ON condition trap
causes). Therefore, after a subroutine called with CALL ON trapname has
returned, the current trapped condition reverts to the condition that was current
before the CALL took place (which may be none). CONDITION returns the values
it returned before the condition was trapped.

84 AS/400 REXX/400 Reference V4R1

 Functions

 COPIES

��─ ──COPIES(string,n) ──��

returns n concatenated copies of string. The n must be a positive whole number or
zero.

Here are some examples:

COPIES('abc',3) -> 'abcabcabc'
COPIES('abc',�) -> ''

C2D (Character to Decimal)

��─ ──C2D(string ──┬ ┬──── ─)──��
└ ┘──,n

returns the decimal value of the binary representation of string. If the result cannot
be expressed as a whole number, an error results. That is, the result must not
have more digits than the current setting of NUMERIC DIGITS. If you specify n, it
is the length of the returned result. If you do not specify n, string is processed as
an unsigned binary number.

If string is null, returns �.

Here are some examples:

C2D('�9'X) -> 9
C2D('81'X) -> 129
C2D('FF81'X) -> 654�9
C2D('') -> �
C2D('a') -> 129 /: EBCDIC :/

If you specify n, the string is taken as a signed number expressed in n characters.
The number is positive if the leftmost bit is off, and negative, in two's complement
notation, if the leftmost bit is on. In both cases, it is converted to a whole number,
which may, therefore, be negative. The string is padded on the left with '00'x
characters (note, not “sign-extended”), or truncated on the left to n characters. This
padding or truncation is as though RIGHT(string,n,'��'x) had been processed. If
n is �, C2D always returns �.

Here are some examples:

C2D('81'X,1) -> -127
C2D('81'X,2) -> 129
C2D('FF81'X,2) -> -127
C2D('FF81'X,1) -> -127
C2D('FF7F'X,1) -> 127
C2D('F�81'X,2) -> -3967
C2D('F�81'X,1) -> -127
C2D('��31'X,�) -> �

Implementation maximum: The input string cannot have more than 250
characters that are significant in forming the final result. Leading sign characters
('00'x and 'FF'x) do not count toward this total.

 Chapter 4. Functions 85

 Functions

C2X (Character to Hexadecimal)

��─ ──C2X(string) ───��

returns a string, in character format, that represents string converted to
hexadecimal. The returned string contains twice as many bytes as the input string.
For example, on an EBCDIC system, C2X(1) returns F1 because the EBCDIC
representation of the character 1 is 'F1'X.

The string returned uses uppercase alphabetics for the values A–F and does not
include blanks. The string can be of any length. If string is null, returns a null
string.

Here are some examples:

C2X('72s') -> 'F7F2A2' /: 'C6F7C6F2C1F2'X in EBCDIC :/
C2X('�123'X) -> '�123' /: 'F�F1F2F3'X in EBCDIC :/

 DATATYPE

��─ ──DATATYPE(string ──┬ ┬─────── ─)──────────────────────────────────��
└ ┘──,type

returns NUM if you specify only string and if string is a valid REXX number that can
be added to 0 without error; returns CHAR if string is not a valid number.

If you specify type, returns 1 if string matches the type; otherwise returns �. If
string is null, the function returns � (except when type is X, which returns 1 for a null
string). The following are valid types. (Only the capitalized and highlighted letter is
needed; all characters following it are ignored. Note that for the hexadecimal
option, you must start your string specifying the name of the option with x rather
than h.)

Alphanumeric returns 1 if string contains only characters from the ranges a–z,
A–Z, and �–9.

Binary returns 1 if string contains only the characters � or 1 or both.

C returns 1 if string is a mixed SBCS/DBCS string.

Dbcs returns 1 if string is a DBCS-only string.

Lowercase returns 1 if string contains only characters from the range a–z.

Mixed case returns 1 if string contains only characters from the ranges a–z and
A–Z.

Number returns 1 if DATATYPE(string) would return NUM.

Symbol returns 1 if string is a valid symbol, that is if SYMBOL(string) would
not return BAD. (See page 11.) Note that both uppercase and
lowercase alphabetics are permitted.

Uppercase returns 1 if string contains only characters from the range A–Z.

Whole number returns 1 if string is a REXX whole number under the current
setting of NUMERIC DIGITS.

86 AS/400 REXX/400 Reference V4R1

 Functions

heXadecimal returns 1 if string contains only characters from the ranges a–f,
A–F, �–9, and blank (as long as blanks appear only between pairs
of hexadecimal characters). Also returns 1 if string is a null string,
which is a valid hexadecimal string.

Here are some examples:

DATATYPE(' 12 ') -> 'NUM'
DATATYPE('') -> 'CHAR'
DATATYPE('123:') -> 'CHAR'
DATATYPE('12.3','N') -> 1
DATATYPE('12.3','W') -> �
DATATYPE('Fred','M') -> 1
DATATYPE('','M') -> �
DATATYPE('Fred','L') -> �
DATATYPE('?2�K','s') -> 1
DATATYPE('BCd3','X') -> 1
DATATYPE('BC d3','X') -> 1

Note: The DATATYPE function tests the meaning or type of characters in a string,
independent of the encoding of those characters (for example, ASCII or EBCDIC).

 DATE

��─ ──DATE(──┬ ┬──────── ─)───��
 └ ┘─option─

returns, by default, the local date in the format: dd mon yyyy (day month year—for
example, 13 Mar 1992), with no leading zero or blank on the day. The first three
characters of the English name of the month are used.

You can use the following options to obtain specific formats. (Only the capitalized
and highlighted letter is needed; all characters following it are ignored.)

Base returns the number of complete days (that is, not including the current
day) since and including the base date, 1 January 0001, in the format:
dddddd (no leading zeros or blanks). The expression DATE('B')//7
returns a number in the range �–6 that corresponds to the current day
of the week, where � is Monday and 6 is Sunday.

Note: The base date of 1 January 0001 is determined by extending
the current Gregorian calendar backward (365 days each year, with
an extra day every year that is divisible by 4 except century years that
are not divisible by 400). It does not take into account any errors in
the calendar system that created the Gregorian calendar originally.

Days returns the number of days, including the current day, so far in this
year in the format: ddd (no leading zeros or blanks).

European returns date in the format: dd/mm/yy.

Month returns full English name of the current month, for example, August.

Normal returns date in the format: dd mon yyyy. This is the default.

Ordered returns date in the format: yy/mm/dd (suitable for sorting, and so
forth).

 Chapter 4. Functions 87

 Functions

Standard returns date in the format: yyyymmdd (suitable for sorting, and so
forth).

Usa returns date in the format: mm/dd/yy.

Weekday returns the English name for the day of the week, in mixed case, for
example, Tuesday.

Here are some examples, assuming today is 13 March 1992:

DATE() -> '13 Mar 1992'
DATE('B') -> 727269
DATE('D') -> 73
DATE('E') -> '13/�3/92'
DATE('M') -> 'March'
DATE('N') -> '13 Mar 1992'
DATE('O') -> '92/�3/13'
DATE('S') -> '1992�313'
DATE('U') -> '�3/13/92'
DATE('W') -> 'Friday'

Note: The first call to DATE or TIME in one clause causes a time stamp to be
made that is then used for all calls to these functions in that clause. Therefore,
multiple calls to any of the DATE or TIME functions or both in a single expression
or clause are guaranteed to be consistent with each other.

DBCS (Double-Byte Character Set Functions)
The following are all DBCS processing functions. See page 177.

DBADJUST DBRIGHT DBTOSBCS

DBBRACKET DBRLEFT DBUNBRACKET

DBCENTER DBRRIGHT DBVALIDATE

DBLEFT DBTODBCS DBWIDTH

DELSTR (Delete String)

��─ ──DELSTR(string,n ──┬ ┬───────── ─)────────────────────────────────��
└ ┘──,length

returns string after deleting the substring that begins at the nth character and is of
length characters. If you omit length, or if length is greater than the number of
characters from n to the end of string, the function deletes the rest of string
(including the nth character). The length must be a positive whole number or zero.
The n must be a positive whole number. If n is greater than the length of string,
the function returns string unchanged.

88 AS/400 REXX/400 Reference V4R1

 Functions

Here are some examples:

DELSTR('abcd',3) -> 'ab'
DELSTR('abcde',3,2) -> 'abe'
DELSTR('abcde',6) -> 'abcde'

DELWORD (Delete Word)

��─ ──DELWORD(string,n ──┬ ┬───────── ─)───────────────────────────────��
└ ┘──,length

returns string after deleting the substring that starts at the nth word and is of length
blank-delimited words. If you omit length, or if length is greater than the number of
words from n to the end of string, the function deletes the remaining words in string
(including the nth word). The length must be a positive whole number or zero. The
n must be a positive whole number. If n is greater than the number of words in
string, the function returns string unchanged. The string deleted includes any
blanks following the final word involved but none of the blanks preceding the first
word involved.

Here are some examples:

DELWORD('Now is the time',2,2) -> 'Now time'
DELWORD('Now is the time ',3) -> 'Now is '
DELWORD('Now is the time',5) -> 'Now is the time'
DELWORD('Now is the time',3,1) -> 'Now is time'

 DIGITS

��─ ──DIGITS() ──��

returns the current setting of NUMERIC DIGITS. See the NUMERIC instruction on
page 52 for more information.

Here is an example:

DIGITS() -> 9 /: by default :/

D2C (Decimal to Character)

��─ ──D2C(wholenumber ──┬ ┬──── ─)─────────────────────────────────────��
└ ┘──,n

returns a string, in character format, that represents wholenumber, a decimal
number, converted to binary. If you specify n, it is the length of the final result in
characters; after conversion, the input string is sign-extended to the required length.
If the number is too big to fit into n characters, then the result is truncated on the
left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the
result length is as needed. Therefore, the returned result has no leading '00'x
characters.

 Chapter 4. Functions 89

 Functions

Here are some examples:

D2C(9) -> ' ' /: '�9'x is unprintable in EBCDIC :/
D2C(129) -> 'a' /: '81'x is an EBCDIC 'a' :/
D2C(129,1) -> 'a' /: '81'x is an EBCDIC 'a' :/
D2C(129,2) -> ' a' /: '��81'x is EBCDIC ' a' :/
D2C(257,1) -> ' ' /: '�1'x is unprintable in EBCDIC :/
D2C(-127,1) -> 'a' /: '81'x is EBCDIC 'a' :/
D2C(-127,2) -> ' a' /: 'FF'x is unprintable EBCDIC; :/

/: '81'x is EBCDIC 'a' :/
D2C(-1,4) -> ' ' /: 'FFFFFFFF'x is unprintable in EBCDIC :/
D2C(12,�) -> '' /: '' is a null string :/

Implementation maximum: The output string may not have more than 250
significant characters, though a longer result is possible if it has additional leading
sign characters ('00'x and 'FF'x).

D2X (Decimal to Hexadecimal)

��─ ──D2X(wholenumber ──┬ ┬──── ─)─────────────────────────────────────��
└ ┘──,n

returns a string, in character format, that represents wholenumber, a decimal
number, converted to hexadecimal. The returned string uses uppercase
alphabetics for the values A–F and does not include blanks.

If you specify n, it is the length of the final result in characters; after conversion the
input string is sign-extended to the required length. If the number is too big to fit
into n characters, it is truncated on the left. The n must be a positive whole
number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the
returned result has no leading zeros.

Here are some examples:

D2X(9) -> '9'
D2X(129) -> '81'
D2X(129,1) -> '1'
D2X(129,2) -> '81'
D2X(129,4) -> '��81'
D2X(257,2) -> '�1'
D2X(-127,2) -> '81'
D2X(-127,4) -> 'FF81'
D2X(12,�) -> ''

Implementation maximum: The output string may not have more than 500
significant hexadecimal characters, though a longer result is possible if it has
additional leading sign characters (0 and F).

90 AS/400 REXX/400 Reference V4R1

 Functions

 ERRORTEXT

��─ ──ERRORTEXT(n) ──��

returns the REXX error message associated with error number n. The n must be in
the range �–99, and any other value is an error. Returns the null string if n is in
the allowed range but is not a defined REXX error number.

Here are some examples:

ERRORTEXT(16) -> 'Label not found'
ERRORTEXT(6�) -> ''

 FORM

��─ ──FORM() ──��

returns the current setting of NUMERIC FORM. See the NUMERIC instruction on
page 52 for more information.

Here is an example:

FORM() -> 'SCIENTIFIC' /: by default :/

 FORMAT

��─ ──FORMAT(number ──�

�─ ──┬ ┬─── ─)──────��
 └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬──
 └ ┘─before─ └ ┘ ─,─ ──┬ ┬─────── ──┬ ┬────────────────────────
 └ ┘─after─ └ ┘ ─,─ ──┬ ┬────── ──┬ ┬───────

└ ┘─expp─ └ ┘──,expt

returns number, rounded and formatted.

The number is first rounded according to standard REXX rules, just as though the
operation number+� had been carried out. The result is precisely that of this
operation if you specify only number. If you specify any other options, the number
is formatted as follows.

The before and after options describe how many characters are used for the
integer and decimal parts of the result, respectively. If you omit either or both of
these, the number of characters used for that part is as needed.

If before is not large enough to contain the integer part of the number (plus the sign
for a negative number), an error results. If before is larger than needed for that
part, the number is padded on the left with blanks. If after is not the same size as
the decimal part of the number, the number is rounded (or extended with zeros) to
fit. Specifying � causes the number to be rounded to an integer.

 Chapter 4. Functions 91

 Functions

Here are some examples:

FORMAT('3',4) -> ' 3'
FORMAT('1.73',4,�) -> ' 2'
FORMAT('1.73',4,3) -> ' 1.73�'
FORMAT('-.76',4,1) -> ' -�.8'
FORMAT('3.�3',4) -> ' 3.�3'
FORMAT(' - 12.73',,4) -> '-12.73��'
FORMAT(' - 12.73') -> '-12.73'
FORMAT('�.���') -> '�'

The first three arguments are as described previously. In addition, expp and expt
control the exponent part of the result, which, by default, is formatted according to
the current NUMERIC settings of DIGITS and FORM. The expp sets the number of
places for the exponent part; the default is to use as many as needed (which may
be zero). The expt sets the trigger point for use of exponential notation. The
default is the current setting of NUMERIC DIGITS.

If expp is �, no exponent is supplied, and the number is expressed in simple form
with added zeros as necessary. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or
twice expt, respectively, exponential notation is used. If expt is �, exponential
notation is always used unless the exponent would be �. (If expp is �, this
overrides a � value of expt.) If the exponent would be � when a nonzero expp is
specified, then expp+2 blanks are supplied for the exponent part of the result. If
the exponent would be � and expp is not specified, simple form is used.

Here are some examples:

FORMAT('12345.73',,,2,2) -> '1.234573E+�4'
FORMAT('12345.73',,3,,�) -> '1.235E+4'
FORMAT('1.234573',,3,,�) -> '1.235'
FORMAT('12345.73',,,3,6) -> '12345.73'
FORMAT('1234567e5',,3,�) -> '1234567�����.���'

 FUZZ

��─ ──FUZZ() ──��

returns the current setting of NUMERIC FUZZ. See the NUMERIC instruction on
page 52 for more information.

Here is an example:

FUZZ() -> � /: by default :/

 INSERT

��─ ──INSERT(new,target ──┬ ┬─────────────────────────────────────── ─)────────��
 └ ┘ ─,─ ──┬ ┬─── ──┬ ┬─────────────────────────
 └ ┘─n─ └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬──────

└ ┘─length─ └ ┘──,pad

92 AS/400 REXX/400 Reference V4R1

 Functions

inserts the string new, padded or truncated to length length, into the string target
after the nth character. The default value for n is �, which means insert before the
beginning of the string. If specified, n and length must be positive whole numbers
or zero. If n is greater than the length of the target string, padding is added before
the string new also. The default value for length is the length of new. If length is
less than the length of the string new, then INSERT truncates new to length length.
The default pad character is a blank.

Here are some examples:

INSERT(' ','abcdef',3) -> 'abc def'
INSERT('123','abc',5,6) -> 'abc 123 '
INSERT('123','abc',5,6,'+') -> 'abc++123+++'
INSERT('123','abc') -> '123abc'
INSERT('123','abc',,5,'-') -> '123--abc'

LASTPOS (Last Position)

��─ ──LASTPOS(needle,haystack ──┬ ┬──────── ─)─────────────────────────��
└ ┘──,start

returns the position of the last occurrence of one string, needle, in another,
haystack. (See also the POS function.) Returns � if needle is the null string or is
not found. By default the search starts at the last character of haystack and scans
backward. You can override this by specifying start, the point at which the
backward scan starts. start must be a positive whole number and defaults to
LENGTH(haystack) if larger than that value or omitted.

Here are some examples:

LASTPOS(' ','abc def ghi') -> 8
LASTPOS(' ','abcdefghi') -> �
LASTPOS('xy','efgxyz') -> 4
LASTPOS(' ','abc def ghi',7) -> 4

 LEFT

��─ ──LEFT(string,length ──┬ ┬────── ─)────────────────────────────────��
└ ┘──,pad

returns a string of length length, containing the leftmost length characters of string.
The string returned is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank. length must be a positive whole
number or zero. The LEFT function is exactly equivalent to:

��─ ──SUBSTR(string,1,length ──┬ ┬────── ─)──��
└ ┘──,pad

Here are some examples:

LEFT('abc d',8) -> 'abc d '
LEFT('abc d',8,'.') -> 'abc d...'
LEFT('abc def',7) -> 'abc de'

 Chapter 4. Functions 93

 Functions

 LENGTH

��─ ──LENGTH(string) ──��

returns the length of string.

Here are some examples:

LENGTH('abcdefgh') -> 8
LENGTH('abc defg') -> 8
LENGTH('') -> �

 MAX (Maximum)

 ┌ ┐─,──────
��─ ──MAX(───$ ┴─number─ ─)──��

returns the largest number from the list specified, formatted according to the current
NUMERIC settings.

Here are some examples:

MAX(12,6,7,9) -> 12
MAX(17.3,19,17.�3) -> 19
MAX(-7,-3,-4.3) -> -3
MAX(1,2,3,4,5,6,7,8,9,1�,11,12,13,14,15,16,17,18,19,MAX(2�,21)) -> 21

Implementation maximum: You can specify up to 20 numbers, and can nest calls
to MAX if more arguments are needed.

 MIN (Minimum)

 ┌ ┐─,──────
��─ ──MIN(───$ ┴─number─ ─)──��

returns the smallest number from the list specified, formatted according to the
current NUMERIC settings.

Here are some examples:

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.�3) -> 17.�3
MIN(-7,-3,-4.3) -> -7
MIN(21,2�,19,18,17,16,15,14,13,12,11,1�,9,8,7,6,5,4,3,MIN(2,1)) -> 1

Implementation maximum: You can specify up to 20 numbers, and can nest calls
to MIN if more arguments are needed.

94 AS/400 REXX/400 Reference V4R1

 Functions

 OVERLAY

��─ ──OVERLAY(new,target ──┬ ┬─────────────────────────────────────── ─)───────��
 └ ┘ ─,─ ──┬ ┬─── ──┬ ┬─────────────────────────
 └ ┘─n─ └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬──────

└ ┘─length─ └ ┘──,pad

returns the string target, which, starting at the nth character, is overlaid with the
string new, padded or truncated to length length. (The overlay may extend beyond
the end of the original target string.) If you specify length, it must be a positive
whole number or zero. The default value for length is the length of new. If n is
greater than the length of the target string, padding is added before the new string.
The default pad character is a blank, and the default value for n is 1. If you specify
n, it must be a positive whole number.

Here are some examples:

OVERLAY(' ','abcdef',3) -> 'ab def'
OVERLAY('.','abcdef',3,2) -> 'ab. ef'
OVERLAY('qq','abcd') -> 'qqcd'
OVERLAY('qq','abcd',4) -> 'abcqq'
OVERLAY('123','abc',5,6,'+') -> 'abc+123+++'

 POS (Position)

��─ ──POS(needle,haystack ──┬ ┬──────── ─)─────────────────────────────��
└ ┘──,start

returns the position of one string, needle, in another, haystack. (See also the
LASTPOS function.) Returns � if needle is the null string or is not found or if start
is greater than the length of haystack. By default the search starts at the first
character of haystack (that is, the value of start is 1). You can override this by
specifying start (which must be a positive whole number), the point at which the
search starts.

Here are some examples:

POS('day','Saturday') -> 6
POS('x','abc def ghi') -> �
POS(' ','abc def ghi') -> 4
POS(' ','abc def ghi',5) -> 8

 QUEUED

��─ ──QUEUED() ──��

returns the number of lines remaining in the external data queue when the function
is called. This includes all buffers, not just the current buffer. For more information
on the queue, see “Queuing Interfaces” on page 170.

Here is an example:

QUEUED() -> 5 /: Perhaps :/

 Chapter 4. Functions 95

 Functions

 RANDOM

��─ ──RANDOM(──┬ ┬────────────────────────────── ─)───────────────────��
 ├ ┤─max──────────────────────────
 └ ┘ ──┬ ┬──min ──┬ ┬────── ──┬ ┬───────

└ ┘─,─── └ ┘──,max └ ┘──,seed

returns a quasi-random nonnegative whole number in the range min to max
inclusive. If you specify max or min or both, max minus min cannot exceed
100000. The min and max default to � and 999, respectively. To start a
repeatable sequence of results, use a specific seed as the third argument, as
described in Note 1. This seed must be a positive whole number ranging from 0 to
999999999.

Here are some examples:

RANDOM() -> 3�5
RANDOM(5,8) -> 7
RANDOM(2) -> � /: � to 2 :/
RANDOM(,,1983) -> 123 /: reproducible :/

Notes:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a
number of times, but specify a seed only the first time. For example, to
simulate 40 throws of a 6-sided, unbiased die:

sequence = RANDOM(1,6,12345) /: any number would :/
/: do for a seed :/

do 39
sequence = sequence RANDOM(1,6)

 end
say sequence

The numbers are generated mathematically, using the initial seed, so that as
far as possible they appear to be random. Running the program again
produces the same sequence; using a different initial seed almost certainly
produces a different sequence. If you do not supply a seed the first time
RANDOM is called, REXX/400 generates one from the time-of-day clock.

2. The random number generator is global for an entire program; the current seed
is not saved across internal routine calls.

 REVERSE

��─ ──REVERSE(string) ───��

returns string, swapped end for end.

Here are some examples:

REVERSE('ABc.') -> '.cBA'
REVERSE('XYZ ') -> ' ZYX'

96 AS/400 REXX/400 Reference V4R1

 Functions

 RIGHT

��─ ──RIGHT(string,length ──┬ ┬────── ─)───────────────────────────────��
└ ┘──,pad

returns a string of length length containing the rightmost length characters of string.
The string returned is padded with pad characters (or truncated) on the left as
needed. The default pad character is a blank. The length must be a positive
whole number or zero.

Here are some examples:

RIGHT('abc d',8) -> ' abc d'
RIGHT('abc def',5) -> 'c def'
RIGHT('12',5,'�') -> '���12'

 SIGN

��─ ──SIGN(number) ──��

returns a number that indicates the sign of number. The number is first rounded
according to standard REXX rules, just as though the operation number+� had been
carried out. Returns -1 if number is less than �; returns � if it is �; and returns 1 if
it is greater than �.

Here are some examples:

SIGN('12.3') -> 1
SIGN(' -�.3�7') -> -1
SIGN(�.�) -> �

 SOURCELINE

��─ ──SOURCELINE(──┬ ┬─── ─)──��
 └ ┘─n─

returns the line number of the final line in the program if you omit n or � if the
implementation does not allow access to the source lines. If you specify n, returns
the nth line in the program if available at the time of execution; otherwise, returns
the null string. If specified, n must be a positive whole number and must not
exceed the number that a call to SOURCELINE with no arguments returns.

Here are some examples:

SOURCELINE() -> 1�
SOURCELINE(1) -> '/: This is a 1�-line REXX program :/'

 Chapter 4. Functions 97

 Functions

 SPACE

��─ ──SPACE(string ──┬ ┬──────────────────── ─)────────────────────────��
 └ ┘ ─,─ ──┬ ┬─── ──┬ ┬──────

└ ┘─n─ └ ┘──,pad

returns the blank-delimited words in string with n pad characters between each
word. If you specify n, it must be a positive whole number or zero. If it is �, all
blanks are removed. Leading and trailing blanks are always removed. The default
for n is 1, and the default pad character is a blank.

Here are some examples:

SPACE('abc def ') -> 'abc def'
SPACE(' abc def',3) -> 'abc def'
SPACE('abc def ',1) -> 'abc def'
SPACE('abc def ',�) -> 'abcdef'
SPACE('abc def ',2,'+') -> 'abc++def'

 STRIP

��─ ──STRIP(string ──┬ ┬────────────────────────── ─)──────────────────��
 └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬───────

└ ┘─option─ └ ┘──,char

returns string with leading or trailing characters or both removed, based on the
option you specify. The following are valid options. (Only the capitalized and
highlighted letter is needed; all characters following it are ignored.)

Both removes both leading and trailing characters from string. This is the
default.

Leading removes leading characters from string.

Trailing removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the default is
a blank. If you specify char, it must be exactly one character long.

Here are some examples:

STRIP(' ab c ') -> 'ab c'
STRIP(' ab c ','L') -> 'ab c '
STRIP(' ab c ','t') -> ' ab c'
STRIP('12.7���',,�) -> '12.7'
STRIP('��12.7��',,�) -> '12.7'

 SUBSTR (Substring)

��─ ──SUBSTR(string,n ──┬ ┬───────────────────────── ─)────────────────��
 └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬──────

└ ┘─length─ └ ┘──,pad

98 AS/400 REXX/400 Reference V4R1

 Functions

returns the substring of string that begins at the nth character and is of length
length, padded with pad if necessary. The n must be a positive whole number. If n
is greater than LENGTH(string), then only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a
blank.

Here are some examples:

SUBSTR('abc',2) -> 'bc'
SUBSTR('abc',2,4) -> 'bc '
SUBSTR('abc',2,6,'.') -> 'bc....'

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting substrings, especially if more than one substring is to
be extracted from a string. See also the LEFT and RIGHT functions.

 SUBWORD

��─ ──SUBWORD(string,n ──┬ ┬───────── ─)───────────────────────────────��
└ ┘──,length

returns the substring of string that starts at the nth word, and is up to length
blank-delimited words. The n must be a positive whole number. If you omit length,
it defaults to the number of remaining words in string. The returned string never
has leading or trailing blanks, but includes all blanks between the selected words.

Here are some examples:

SUBWORD('Now is the time',2,2) -> 'is the'
SUBWORD('Now is the time',3) -> 'the time'
SUBWORD('Now is the time',5) -> ''

 SYMBOL

��─ ──SYMBOL(name) ──��

returns the state of the symbol named by name. Returns BAD if name is not a valid
REXX symbol. Returns VAR if it is the name of a variable (that is, a symbol that has
been assigned a value). Otherwise returns LIT, indicating that it is either a
constant symbol or a symbol that has not yet been assigned a value (that is, a
literal).

As with symbols in REXX expressions, lowercase characters in name are translated
to uppercase and substitution in a compound name occurs if possible.

Note: You should specify name as a literal string (or it should be derived from an
expression) to prevent substitution before it is passed to the function.

 Chapter 4. Functions 99

 Functions

Here are some examples:

/: following: Drop A.3; J=3 :/
SYMBOL('J') -> 'VAR'
SYMBOL(J) -> 'LIT' /: has tested "3" :/
SYMBOL('a.j') -> 'LIT' /: has tested A.3 :/
SYMBOL(2) -> 'LIT' /: a constant symbol :/
SYMBOL(':') -> 'BAD' /: not a valid symbol :/

 TIME

��─ ──TIME(──┬ ┬──────── ─)───��
 └ ┘─option─

returns the local time in the 24-hour clock format: hh:mm:ss (hours, minutes, and
seconds) by default, for example, �4:41:37.

You can use the following options to obtain alternative formats, or to gain access to
the elapsed-time clock. (Only the capitalized and highlighted letter is needed; all
characters following it are ignored.)

Civil returns the time in Civil format: hh:mmxx. The hours may take the
values 1 through 12, and the minutes the values �� through 59. The
minutes are followed immediately by the letters am or pm. This
distinguishes times in the morning (12 midnight through 11:59
a.m.—appearing as 12:��am through 11:59am) from noon and afternoon
(12 noon through 11:59 p.m.—appearing as 12:��pm through 11:59pm).
The hour has no leading zero. The minute field shows the current
minute (rather than the nearest minute) for consistency with other TIME
results.

Elapsed returns sssssssss.uuuuuu, the number of seconds.microseconds since
the elapsed-time clock (described later) was started or reset. The
number has no leading zeros or blanks, and the setting of NUMERIC
DIGITS does not affect the number. The fractional part always has six
digits.

Hours returns up to two characters giving the number of hours since midnight
in the format: hh (no leading zeros or blanks, except for a result of �).

Long returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of
seconds, in microseconds). The first eight characters of the result follow
the same rules as for the Normal form, and the fractional part is always
six digits.

Minutes returns up to four characters giving the number of minutes since
midnight in the format: mmmm (no leading zeros or blanks, except for a
result of �).

Normal returns the time in the default format hh:mm:ss, as described previously.
The hours can have the values �� through 23, and minutes and
seconds, �� through 59. All these are always two digits. Any fractions
of seconds are ignored (times are never rounded up). This is the
default.

Reset returns sssssssss.uuuuuu, the number of seconds.microseconds since
the elapsed-time clock (described later) was started or reset and also
resets the elapsed-time clock to zero. The number has no leading zeros

100 AS/400 REXX/400 Reference V4R1

 Functions

or blanks, and the setting of NUMERIC DIGITS does not affect the
number. The fractional part always has six digits.

Seconds returns up to five characters giving the number of seconds since
midnight in the format: sssss (no leading zeros or blanks, except for a
result of �).

Note: REXX/400 provides precision to milliseconds for the L, R, and E options.
Trailing zeros are added for the remaining positions.

Here are some examples, assuming that the time is 4:54 p.m.:

TIME() -> '16:54:22'
TIME('C') -> '4:54pm'
TIME('H') -> '16'
TIME('L') -> '16:54:22.12����' /: Perhaps :/
TIME('M') -> '1�14' /: 54 + 6�:16 :/
TIME('N') -> '16:54:22'
TIME('S') -> '6�862' /: 22 + 6�:(54+6�:16) :/

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On the
first call in a program to TIME('E') or TIME('R'), the elapsed-time clock is started,
and either call returns �. From then on, calls to TIME('E') and to TIME('R') return
the elapsed time since that first call or since the last call to TIME('R').

The clock is saved across internal routine calls, which is to say that an internal
routine inherits the time clock its caller started. Any timing the caller is doing is not
affected, even if an internal routine resets the clock. An example of the
elapsed-time clock:

time('E') -> � /: The first call :/
/: pause of one second here :/
time('E') -> 1.�2���� /: or thereabouts :/
/: pause of one second here :/
time('R') -> 2.�3���� /: or thereabouts :/
/: pause of one second here :/
time('R') -> 1.�5���� /: or thereabouts :/

Note: See the note under DATE about consistency of times within a single clause.
The elapsed-time clock is synchronized to the other calls to TIME and DATE, so
multiple calls to the elapsed-time clock in a single clause always return the same
result. For the same reason, the interval between two usual TIME/DATE results
may be calculated exactly using the elapsed-time clock.

 TRACE

��─ ──TRACE(──┬ ┬──────── ─)──��
 └ ┘─option─

returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be the valid prefix ? or
one of the alphabetic character options associated with the TRACE instruction (that
is, starting with A, C, E, F, I, L, N, O, or R) or both. (See the TRACE instruction on
page 71 for full details.)

 Chapter 4. Functions 101

 Functions

Unlike the TRACE instruction, the TRACE function alters the trace action even if
interactive debug is active. Also unlike the TRACE instruction, option cannot be a
number.

Here are some examples:

TRACE() -> '?R' /: maybe :/
TRACE('O') -> '?R' /: also sets tracing off :/
TRACE('?I') -> 'O' /: now in interactive debug :/

 TRANSLATE

��─ ──TRANSLATE(string ──┬ ┬── ─)────��
 └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬─────────────────────────
 └ ┘─tableo─ └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬──────

└ ┘─tablei─ └ ┘──,pad

returns string with each character translated to another character or unchanged.
You can also use this function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE
searches tablei for each character in string. If the character is found, then the
corresponding character in tableo is used in the result string; if there are duplicates
in tablei, the first (leftmost) occurrence is used. If the character is not found, the
original character in string is used. The result string is always the same length as
string.

The tables can be of any length. If you specify neither translation table and omit
pad, string is simply translated to uppercase (that is, lowercase a–z to uppercase
A–Z), but, if you include pad, the language processor translates the entire string to
pad characters. tablei defaults to XRANGE('��'x,'FF'x), and tableo defaults to the
null string and is padded with pad or truncated as necessary. The default pad is a
blank.

Here are some examples:

TRANSLATE('abcdef') -> 'ABCDEF'
TRANSLATE('abbc','&','b') -> 'a&&c'
TRANSLATE('abcdef','12','ec') -> 'ab2d1f'
TRANSLATE('abcdef','12','abcd','.') -> '12..ef'
TRANSLATE('APQRV',,'PR') -> 'A Q V'
TRANSLATE('APQRV',XRANGE('��'X,'Q')) -> 'APQ '
TRANSLATE('4123','abcd','1234') -> 'dabc'

Note: The last example shows how to use the TRANSLATE function to reorder
the characters in a string. In the example, the last character of any four-character
string specified as the second argument would be moved to the beginning of the
string.

 TRUNC (Truncate)

��─ ──TRUNC(number ──┬ ┬──── ─)──��
└ ┘──,n

102 AS/400 REXX/400 Reference V4R1

 Functions

returns the integer part of number and n decimal places. The default n is � and
returns an integer with no decimal point. If you specify n, it must be a positive
whole number or zero. The number is first rounded according to standard REXX
rules, just as though the operation number+� had been carried out. The number is
then truncated to n decimal places (or trailing zeros are added if needed to make
up the specified length). The result is never in exponential form.

Here are some examples:

TRUNC(12.3) -> 12
TRUNC(127.�9782,3) -> 127.�97
TRUNC(127.1,3) -> 127.1��
TRUNC(127,2) -> 127.��

Note: The number is rounded according to the current setting of NUMERIC
DIGITS if necessary before the function processes it.

 VALUE

��─ ──VALUE(name ──┬ ┬───────────────── ─)─────────────────────────────��
 └ ┘ ─,─ ──┬ ┬──────────
 └ ┘─newvalue─

returns the value of the symbol that name (often constructed dynamically)
represents and optionally assigns it a new value. By default, VALUE refers to the
current REXX-variables environment. Lowercase characters in name are translated
to uppercase. Substitution in a compound name (see “Compound Symbols” on
page 22) occurs if possible.

If you specify newvalue, then the named variable is assigned this new value. This
does not affect the result returned; that is, the function returns the value of name as
it was before the new assignment.

Here are some examples:

/: After: Drop A3; A33=7; K=3; fred='K'; list.5='Hi' :/
VALUE('a'k) -> 'A3' /: looks up A3 :/
VALUE('a'k||k) -> '7' /: looks up A33 :/
VALUE('fred') -> 'K' /: looks up FRED :/
VALUE(fred) -> '3' /: looks up K :/
VALUE(fred,5) -> '3' /: looks up K and :/

/: then sets K=5 :/
VALUE(fred) -> '5' /: looks up K :/
VALUE('LIST.'k) -> 'Hi' /: looks up LIST.5 :/

Notes:

1. If the VALUE function refers to an uninitialized REXX variable then the default
value of the variable is always returned; the NOVALUE condition is not raised.

2. The VALUE function is used when a variable contains the name of another
variable, or when a name is constructed dynamically. If you specify the name
as a single literal string, the symbol is a constant and so the string between the
quotation marks can usually replace the whole function call. (For example,
fred=VALUE('k'); is identical with the assignment fred=k;, unless the
NOVALUE condition is being trapped. See Chapter 7, “Conditions and
Condition Traps” on page 137.)

 Chapter 4. Functions 103

 Functions

 VERIFY

��─ ──VERIFY(string,reference ──┬ ┬─────────────────────────── ─)──────��
 └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬────────

└ ┘─option─ └ ┘──,start

returns a number that, by default, indicates whether string is composed only of
characters from reference; returns � if all characters in string are in reference, or
returns the position of the first character in string not in reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized and
highlighted letter is needed. All characters following it are ignored, and it can be in
upper- or lowercase, as usual.) If you specify Match, the function returns the
position of the first character in string that is in reference, or returns � if none of the
characters are found.

The default for start is 1; thus, the search starts at the first character of string. You
can override this by specifying a different start point, which must be a positive
whole number.

If string is null, the function returns �, regardless of the value of the third argument.
Similarly, if start is greater than LENGTH(string), the function returns �. If reference
is null, the function returns � if you specify Match; otherwise the function returns the
start value.

Here are some examples:

VERIFY('123','123456789�') -> �
VERIFY('1Z3','123456789�') -> 2
VERIFY('AB4T','123456789�') -> 1
VERIFY('AB4T','123456789�','M') -> 3
VERIFY('AB4T','123456789�','N') -> 1
VERIFY('1P3Q4','123456789�',,3) -> 4
VERIFY('123','',N,2) -> 2
VERIFY('ABCDE','',,3) -> 3
VERIFY('AB3CD5','123456789�','M',4) -> 6

 WORD

��─ ──WORD(string,n) ──��

returns the nth blank-delimited word in string or returns the null string if fewer than
n words are in string. The n must be a positive whole number. This function is
exactly equivalent to SUBWORD(string,n,1).

104 AS/400 REXX/400 Reference V4R1

 Functions

Here are some examples:

WORD('Now is the time',3) -> 'the'
WORD('Now is the time',5) -> ''

 WORDINDEX

��─ ──WORDINDEX(string,n) ───��

returns the position of the first character in the nth blank-delimited word in string or
returns � if fewer than n words are in string. The n must be a positive whole
number.

Here are some examples:

WORDINDEX('Now is the time',3) -> 8
WORDINDEX('Now is the time',6) -> �

 WORDLENGTH

��─ ──WORDLENGTH(string,n) ──��

returns the length of the nth blank-delimited word in string or returns � if fewer than
n words are in string. The n must be a positive whole number.

Here are some examples:

WORDLENGTH('Now is the time',2) -> 2
WORDLENGTH('Now comes the time',2) -> 5
WORDLENGTH('Now is the time',6) -> �

WORDPOS (Word Position)

��─ ──WORDPOS(phrase,string ──┬ ┬──────── ─)───────────────────────────��
└ ┘──,start

returns the word number of the first word of phrase found in string or returns � if
phrase contains no words or if phrase is not found. Multiple blanks between words
in either phrase or string are treated as a single blank for the comparison, but
otherwise the words must match exactly.

By default the search starts at the first word in string. You can override this by
specifying start (which must be positive), the word at which to start the search.

Here are some examples:

WORDPOS('the','now is the time') -> 3
WORDPOS('The','now is the time') -> �
WORDPOS('is the','now is the time') -> 2
WORDPOS('is the','now is the time') -> 2
WORDPOS('is time ','now is the time') -> �
WORDPOS('be','To be or not to be') -> 2
WORDPOS('be','To be or not to be',3) -> 6

 Chapter 4. Functions 105

 Functions

 WORDS

��─ ──WORDS(string) ───��

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time') -> 4
WORDS(' ') -> �

XRANGE (Hexadecimal Range)

��─ ──XRANGE(──┬ ┬─────── ──┬ ┬────── ─)────────────────────────────────��
└ ┘─start─ └ ┘──,end

returns a string of all valid 1-byte encodings (in ascending order) between and
including the values start and end. The default value for start is '��'x, and the
default value for end is 'FF'x. If start is greater than end, the values wrap from
'FF'x to '��'x. If specified, start and end must be single characters.

Here are some examples:

XRANGE('a','f') -> 'abcdef'
XRANGE('�3'x,'�7'x) -> '�3�4�5�6�7'x
XRANGE(,'�4'x) -> '���1�2�3�4'x
XRANGE('i','j') -> '898A8B8C8D8E8F9�91'x /: EBCDIC :/
XRANGE('FE'x,'�2'x) -> 'FEFF���1�2'x
XRANGE('h','i') -> 'hi' /: EBCDIC or ASCII :/

X2B (Hexadecimal to Binary)

��─ ──X2B(hexstring) ──��

returns a string, in character format, that represents hexstring converted to binary.
The hexstring is a string of hexadecimal characters. It can be of any length. Each
hexadecimal character is converted to a string of four binary digits. You can
optionally include blanks in hexstring (at byte boundaries only, not leading or
trailing) to aid readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any
blanks.

If hexstring is null, the function returns a null string.

Here are some examples:

X2B('C3') -> '11����11'
X2B('7') -> '�111'
X2B('1 C1') -> '���111�����1'

You can combine X2B with the functions D2X and C2X to convert numbers or
character strings into binary form.

106 AS/400 REXX/400 Reference V4R1

 Functions

Here are some examples:

X2B(C2X('C3'x)) -> '11����11'
X2B(D2X('129')) -> '1������1'
X2B(D2X('12')) -> '11��'

X2C (Hexadecimal to Character)

��─ ──X2C(hexstring) ──��

returns a string, in character format, that represents hexstring converted to
character. The returned string is half as many bytes as the original hexstring.
hexstring can be of any length. If necessary, it is padded with a leading 0 to make
an even number of hexadecimal digits.

You can optionally include blanks in hexstring (at byte boundaries only, not leading
or trailing) to aid readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:

X2C('F7F2 A2') -> '72s' /: EBCDIC :/
X2C('F7f2a2') -> '72s' /: EBCDIC :/
X2C('F') -> ' ' /: '�F' is unprintable EBCDIC :/

X2D (Hexadecimal to Decimal)

��─ ──X2D(hexstring ──┬ ┬──── ─)───────────────────────────────────────��
└ ┘──,n

returns the decimal representation of hexstring. The hexstring is a string of
hexadecimal characters. If the result cannot be expressed as a whole number, an
error results. That is, the result must not have more digits than the current setting
of NUMERIC DIGITS.

You can optionally include blanks in hexstring (at byte boundaries only, not leading
or trailing) to aid readability; they are ignored.

If hexstring is null, the function returns �.

If you do not specify n, hexstring is processed as an unsigned binary number.

Here are some examples:

X2D('�E') -> 14
X2D('81') -> 129
X2D('F81') -> 3969
X2D('FF81') -> 654�9
X2D('c6 f�'X) -> 24� /: EBCDIC :/

If you specify n, the string is taken as a signed number expressed in n hexadecimal
digits. If the leftmost bit is off, then the number is positive; otherwise, it is a
negative number in two's complement notation. In both cases it is converted to a
whole number, which may, therefore, be negative. If n is �, the function returns 0.

 Chapter 4. Functions 107

 Functions

If necessary, hexstring is padded on the left with � characters (note, not
“sign-extended”), or truncated on the left to n characters.

Here are some examples:

X2D('81',2) -> -127
X2D('81',4) -> 129
X2D('F�81',4) -> -3967
X2D('F�81',3) -> 129
X2D('F�81',2) -> -127
X2D('F�81',1) -> 1
X2D('��31',�) -> �

Implementation maximum: The hexstring is limited to 500 hexadecimal digits.

AS/400 System-Specific Function
The SETMSGRC function is specific to REXX/400. It is not part of the SAA
definition, and therefore programs that use it may not be supported in other SAA
environments.

 SETMSGRC
The SETMSGRC function allows you to control what REXX does with *STATUS or
*NOTIFY messages sent to the language processor's program message queue
while the command is running. By default, the language processor will ignore all
*STATUS or *NOTIFY messages sent to its program message queue. This
function is not the same as a Monitor Message (MONMSG) command, but allows
you the flexibility to trap and handle *STATUS and *NOTIFY exceptions.

The SETMSGRC function can specify individual messages or a range of messages
that, if received, will be returned to the program in the RC special variable. Using
the SETMSGRC function causes the language processor to treat the specified
*STATUS and *NOTIFY messages like *ESCAPE. This function applies to all
command environments.

SETMSGRC settings are not saved and restored over function calls. Internal and
external REXX functions and subroutines inherit the SETMSGRC settings of their
callers, and any changes they make remain in effect when they return to their
caller.

Note: This function has no effect on the handling of escape messages.

The syntax of the SETMSGRC function is:

 ┌ ┐─Query──────────────────────
��─ ──SETMSGRC(──┼ ┼──────────────────────────── ─)──��
 ├ ┤─── ─ ──┬ ┬─Push─ ──┬ ┬──────────

│ │└ ┘─Set── └ ┘──,msglist
 └ ┘ ─Remove─────────────────────

The parameters are listed below. Only the capitalized and boldfaced letter is
needed; all characters following it are ignored.)

Query No action is taken. The function simply gives the return value described
in “SETMSGRC Return Value” on page 109. This is the default value.

108 AS/400 REXX/400 Reference V4R1

 Functions

Set Replaces the current list of message IDs with the list specified in the
msglist parameter. If msglist is null or not specified, then the current list
of IDs will be empty, that is, all *NOTIFY and *STATUS messages will
be ignored.

Push Saves the current list of message IDs and creates a new one from the
msglist parameter, making it the current list. If msglist is null or not
specified, then the new current list of IDs will be empty.

Remove Discards the current list of message IDs and makes the last previously
saved list the current list. If there is no previous list, the current list is
discarded, the new current list is set empty, and the string :EMPTY is
returned.

msglist String containing a set of message IDs or message ranges that are to
be set into the current message ID list. The format of this parameter is
shown in “Message ID List Format (Input).”

It should be noted that, while no direct interface is provided to change the current
message list, the function is available to the user by using the Query parameter to
retrieve the current list of messages, then using REXX string manipulation functions
to change it, and finally, using either Set or Push to establish the changed list.

Message ID List Format (Input): The msglist parameter is a string specified in
the following form:

 ┌ ┐─,───────────────────
��─ ───$ ┴─msgids─ ──┬ ┬───────── ─��
 └ ┘─:msgide─

Where:

msgids Specifies either a single message identifier or the starting message
identifier of a range of message identifiers that will, if received, be
returned in the RC variable.

msgide Specifies the ending message identifier of a range of message
identifiers.

Ranges of messages can also be specified as single message IDs within the list,
according to the Monitor Message (MONMSG) command convention. See the CL
Reference for further information on this convention. For example, CPF����
indicates all message identifiers beginning with CPF, while CPF12�� indicates all
message identifiers beginning with CPF12. These examples would be functionally
identical with the ranges CPF����:CPFFFFF and CPF12��:CPF12FF, respectively.

Note: The use of “wildcards” in message IDs for the MONMSG command are
limited to either 2 or 4 zeros at the end of the message ID. That characteristic is
respected here as well. For example, the identifier CPF2��� is equivalent to the
range CPF2���:CPF2�FF, not CPF2���:CPF2FFF as some might expect. Also, the
use of explicit ranges overrides any wildcards that might occur at either end of a
range (for example, the range CPF23��:CPF23�� would cause only message CPF23��
to be returned — CPF23�1 through CPF23FF would be excluded).

SETMSGRC Return Value: Regardless of the input parameters, the value
returned by SETMSGRC is always a string containing the current list of message
IDs that will be in effect after completion of this function. The string has the same
form as the msglist input parameter (described below), with the following caveats:

 Chapter 4. Functions 109

 Functions

1. There will be no blanks between message IDs, commas, and colons.

2. Adjacent and overlapping ranges and single IDs will be combined. For
example:

CPF2345:CPF3�56, CPF3���, CPF2344, CPF2789, CPI1234:CPZ1234, CPZ4567

would be combined into

 CPF2344:CPF3�FF,CPI1234:CPZ1234,CPZ4567

The return value is always guaranteed to be valid as input to another SETMSGRC
invocation that would set up exactly the same message list.

Note: To make sure that all *STATUS and *NOTIFY messages are returned
through RC, use the following:

x = setmsgrc('SE','AAA����:ZZZFFFF')

ERROR and FAILURE Conditions: When a *STATUS or *NOTIFY message is
received by the language processor, either the ERROR or FAILURE conditions are
raised. If the command environment to which the command was issued is
COMMAND, the ERROR condition will be raised. In all other command
environments, the FAILURE condition will be raised, since they are treated in the
same way as *ESCAPE messages. For more information on these conditions see
Chapter 7, “Conditions and Condition Traps” on page 137.

110 AS/400 REXX/400 Reference V4R1

 Parsing

 Chapter 5. Parsing

The parsing instructions are ARG, PARSE, and PULL (see “ARG” on page 33,
“PARSE” on page 56, and “PULL” on page 62).

The data to parse is a source string. Parsing splits up the data in a source string
and assigns pieces of it into the variables named in a template. A template is a
model specifying how to split the source string. The simplest kind of template
consists of only a list of variable names. Here is an example:

variable1 variable2 variable3

This kind of template parses the source string into blank-delimited words. More
complicated templates contain patterns in addition to variable names.

String patterns Match characters in the source string to specify where to split
it. (See “Templates Containing String Patterns” on page 113
for details.)

Positional patterns Indicate the character positions at which to split the source
string. (See “Templates Containing Positional (Numeric)
Patterns” on page 114 for details.)

Parsing is essentially a two-step process.

1. Parse the source string into appropriate substrings using patterns.
2. Parse each substring into words.

Simple Templates for Parsing into Words
Here is a parsing instruction:

parse value 'time and tide' with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to parse is between
the keywords PARSE VALUE and the keyword WITH, the source string time and tide.
Parsing divides the source string into blank-delimited words and assigns them to
the variables named in the template as follows:

var1='time'
var2='and'
var3='tide'

In this example, the source string to parse is a literal string, time and tide. In the
next example, the source string is a variable.

/: PARSE VALUE using a variable as the source string to parse :/
string='time and tide'
parse value string with var1 var2 var3 /: same results :/

(PARSE VALUE does not convert lowercase a–z in the source string to uppercase
A–Z. If you want to convert characters to uppercase, use PARSE UPPER VALUE.
See “Using UPPER” on page 118 for a summary of the effect of parsing
instructions on case.)

All of the parsing instructions assign the parts of a source string into the variables
named in a template. There are various parsing instructions because of differences
in the nature or origin of source strings. (A summary of all the parsing instructions
is on page 119.)

 Copyright IBM Corp. 1997 111

 Parsing

The PARSE VAR instruction is similar to PARSE VALUE except that the source
string to parse is always a variable. In PARSE VAR, the name of the variable
containing the source string follows the keywords PARSE VAR. In the next example,
the variable stars contains the source string. The template is star1 star2 star3.

/: PARSE VAR example :/
stars='Sirius Polaris Rigil'
parse var stars star1 star2 star3 /: star1='Sirius' :/

/: star2='Polaris' :/
 /: star3='Rigil' :/

All variables in a template receive new values. If there are more variables in the
template than words in the source string, the leftover variables receive null (empty)
values. This is true for all parsing: for parsing into words with simple templates
and for parsing with templates containing patterns. Here is an example using
parsing into words.

/: More variables in template than (words in) the source string :/
satellite='moon'
parse var satellite Earth Mercury /: Earth='moon' :/
 /: Mercury='' :/

If there are more words in the source string than variables in the template, the last
variable in the template receives all leftover data. Here is an example:

/: More (words in the) source string than variables in template :/
satellites='moon Io Europa Callisto...'
parse var satellites Earth Jupiter /: Earth='moon' :/

/: Jupiter='Io Europa Callisto...':/

Parsing into words removes leading and trailing blanks from each word before it is
assigned to a variable. The exception to this is the word or group of words
assigned to the last variable. The last variable in a template receives leftover data,
preserving extra leading and trailing blanks. Here is an example:

/: Preserving extra blanks :/
solar5='Mercury Venus Earth Mars Jupiter '
parse var solar5 var1 var2 var3 var4
/: var1 ='Mercury' :/
/: var2 ='Venus' :/
/: var3 ='Earth' :/
/: var4 =' Mars Jupiter ' :/

In the source string, Earth has two leading blanks. Parsing removes both of them
(the word-separator blank and the extra blank) before assigning var3='Earth'.
Mars has three leading blanks. Parsing removes one word-separator blank and
keeps the other two leading blanks. It also keeps all five blanks between Mars and
Jupiter and both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For
example:

parse value ' Pluto ' with var1 /: var1=' Pluto ':/

112 AS/400 REXX/400 Reference V4R1

 Parsing

The Period as a Placeholder
A period in a template is a placeholder. It is used instead of a variable name, but it
receives no data. It is useful:

� As a “dummy variable” in a list of variables
� Or to collect unwanted information at the end of a string.

The period in the first example is a placeholder. Be sure to separate adjacent
periods with spaces; otherwise, an error results.

/: Period as a placeholder :/
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars . . brightest . /: brightest='Sirius' :/

/: Alternative to period as placeholder :/
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /: brightest='Sirius' :/

A placeholder saves the overhead of unneeded variables.

Templates Containing String Patterns
A string pattern matches characters in the source string to indicate where to split it.
A string pattern can be a:

Literal string pattern One or more characters within quotation marks.

Variable string pattern A variable within parentheses with no plus (+) or minus
(-) or equal sign (=) before the left parenthesis. (See
page 118 for details.)

Here are two templates: a simple template and a template containing a literal string
pattern:

var1 var2 /: simple template :/
var1 ', ' var2 /: template with literal string pattern :/

The literal string pattern is: ', '. This template:

� Puts characters from the start of the source string up to (but not including) the
first character of the match (the comma) into var1

� Puts characters starting with the character after the last character of the match
(the character after the blank that follows the comma) and ending with the end
of the string into var2.

A template with a string pattern can omit some of the data in a source string when
assigning data into variables. The next two examples contrast simple templates
with templates containing literal string patterns.

/: Simple template :/
name='Smith, John'
parse var name ln fn /: Assigns: ln='Smith,' :/
 /: fn='John' :/

Notice that the comma remains (the variable ln contains 'Smith,'). In the next
example the template is ln ', ' fn. This removes the comma.

/: Template with literal string pattern :/
name='Smith, John'
parse var name ln ', ' fn /: Assigns: ln='Smith' :/
 /: fn='John' :/

 Chapter 5. Parsing 113

 Parsing

First, the language processor scans the source string for ', '. It splits the source
string at that point. The variable ln receives data starting with the first character of
the source string and ending with the last character before the match. The variable
fn receives data starting with the first character after the match and ending with the
end of string.

A template with a string pattern omits data in the source string that matches the
pattern. (There is a special case (on page 121) in which a template with a string
pattern does not omit matching data in the source string.) We used the pattern ',
' (with a blank) instead of ',' (no blank) because, without the blank in the pattern,
the variable fn receives ' John' (including a blank).

If the source string does not contain a match for a string pattern, then any variables
preceding the unmatched string pattern get all the data in question. Any variables
after that pattern receive the null string.

A null string is never found. It always matches the end of the source string.

Templates Containing Positional (Numeric) Patterns
A positional pattern is a number that identifies the character position at which to
split data in the source string. The number must be a whole number.

An absolute positional pattern is

� A number with no plus (+) or minus (-) sign preceding it or with an equal sign
(=) preceding it

� A variable in parentheses with an equal sign before the left parenthesis. (See
page 118 for details on variable positional patterns.)

The number specifies the absolute character position at which to split the source
string.

Here is a template with absolute positional patterns:

variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers to
the 11th position in the input string, 21 to the 21st position. This template:

� Puts characters 1 through 10 of the source string into variable1
� Puts characters 11 through 20 into variable2
� Puts characters 21 to the end into variable3.

Positional patterns are probably most useful for working with a file of records, such
as:

 character positions:
1 11 21 4�

 ┌──────────┬──────────┬────────────────────┐end of
 FIELDS: │LASTNAME │FIRST │PSEUDONYM │record
 └──────────┴──────────┴────────────────────┘

The following example uses this record structure.

114 AS/400 REXX/400 Reference V4R1

 Parsing

/: Parsing with absolute positional patterns in template :/
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
parse var record.n lastname 11 firstname 21 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /: Says 'By George!' after record 2 :/

The source string is first split at character position 11 and at position 21. The
language processor assigns characters 1 to 10 into lastname, characters 11 to 20
into firstname, and characters 21 to 40 into pseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

lastname 11 firstname 21 pseudonym

Specifying the 1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal
sign is the same as no sign before a number in a template. The number refers to a
particular character position in the source string. These two templates work the
same:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding
it. (It can also be a variable within parentheses, with a plus (+) or minus (-) sign
preceding the left parenthesis; for details see “Parsing with Variable Patterns” on
page 118.)

The number specifies the relative character position at which to split the source
string. The plus or minus indicates movement right or left, respectively, from the
start of the string (for the first pattern) or from the position of the last match. The
position of the last match is the first character of the last match. Here is the same
example as for absolute positional patterns done with relative positional patterns:

/: Parsing with relative positional patterns in template :/
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
parse var record.n lastname +1� firstname + 1� pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /: same results :/

Blanks between the sign and the number are insignificant. Therefore, +1� and + 1�
have the same meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable (except in the special
case (on page 121) when a string pattern precedes a variable name and a
positional pattern follows the variable name). The templates from the examples of
absolute and relative positional patterns give the same results.

 Chapter 5. Parsing 115

 Parsing

│ │ │lastname 11│ │firstname 21 │ │ pseudonym │
│ │ │lastname +1�│ │firstname + 1�│ │ pseudonym │
└──┬───┘ └──────┬─────┘ └──────┬───────┘ └─────┬─────┘
 │ │ │ │
(Implied Put characters Put characters Put characters
starting 1 through 1� 11 through 2� 21 through
point is in lastname. in firstname. end of string
position (Non─inclusive (Non─inclusive in pseudonym.
1.) stopping point stopping point

is 11 (1+1�).) is 21 (11+1�).)

Only with positional patterns can a matching operation back up to an earlier
position in the source string. Here is an example using absolute positional
patterns:

/: Backing up to an earlier position (with absolute positional) :/
string='astronomers'
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string 'study' var1||var2||var3||var4
/: Displays: "astronomers study stars" :/

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to
an earlier position. Here is the same example using relative positional patterns:

/: Backing up to an earlier position (with relative positional) :/
string='astronomers'
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string 'study' var1||var2||var3||var4 /: same results :/

In the previous example, the relative positional pattern -3 backs up to the first
character in the source string.

The templates in the last two examples are equivalent.

│ 2 │ │var1 4 │ │ 1 │ │var2 2│ │ 4 var3 5│ │11 var4 │
│ 2 │ │var1 +2 │ │ ─3 │ │var2 +1│ │+2 var3 +1│ │+6 var4 │
└──┬──┘ └───┬────┘ └──┬───┘ └───┬───┘ └────┬─────┘ └───┬────┘

│ │ │ │ │ │

Start Non─ Go to 1. Non─ Go to 4 Go to 11
at 2. inclusive (4─3=1) inclusive (2+2=4). (5+6=11).
 stopping stopping Non─inclusive

point is 4 point is stopping point
(2+2=4). 2 (1+1=2). is 5 (4+1=5).

You can use templates with positional patterns to make multiple assignments:

/: Making multiple assignments :/
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemarch'
parse var books 1 Eliot 1 Evans
/: Assigns the (entire) value of books to Eliot and to Evans. :/

Combining Patterns and Parsing Into Words
What happens when a template contains patterns that divide the source string into
sections containing multiple words? String and positional patterns divide the source
string into substrings. The language processor then applies a section of the
template to each substring, following the rules for parsing into words.

116 AS/400 REXX/400 Reference V4R1

 Parsing

/: Combining string pattern and parsing into words :/
name=' John Q. Public'
parse var name fn init '.' ln /: Assigns: fn='John' :/
 /: init=' Q' :/
 /: ln=' Public' :/

The pattern divides the template into two sections:

 � fn init
 � ln

The matching pattern splits the source string into two substrings:

 � ' John Q'
 � ' Public'

The language processor parses these substrings into words based on the
appropriate template section.

John had three leading blanks. All are removed because parsing into words
removes leading and trailing blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps
the rest because init is the last variable in that section of the template.

For the substring ' Public', parsing assigns the entire string into ln without
removing any blanks. This is because ln is the only variable in this section of the
template. (For details about treatment of blanks, see page 112.)

/: Combining positional patterns with parsing into words :/
string='R E X X'
parse var string var1 var2 4 var3 6 var4 /: Assigns: var1='R' :/
 /: var2='E' :/

/: var3=' X' :/
/: var4=' X' :/

The pattern divides the template into three sections:

 � var1 var2
 � var3
 � var4

The matching patterns split the source string into three substrings that are
individually parsed into words:

 � 'R E'
 � ' X'
 � ' X'

The variable var1 receives 'R'; var2 receives 'E'. Both var3 and var4 receive
' X' (with a blank before the X) because each is the only variable in its section of
the template. (For details on treatment of blanks, see page 112.)

 Chapter 5. Parsing 117

 Parsing

Parsing with Variable Patterns
You may want to specify a pattern by using the value of a variable instead of a
fixed string or number. You do this by placing the name of the variable in
parentheses. This is a variable reference. Blanks are not necessary inside or
outside the parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal string
pattern '. '.

parse var name fn init '. ' ln

Here is how to specify that pattern as a variable string pattern:

strngptrn='. '
parse var name fn init (strngptrn) ln

If no equal, plus, or minus sign precedes the parenthesis that is before the variable
name, the value of the variable is then treated as a string pattern. The variable can
be one that has been set earlier in the same template.

Example:

/: Using a variable as a string pattern :/
/: The variable (delim) is set in the same template :/
SAY "Enter a date (mm/dd/yy format). =====> " /: assume 11/15/9� :/
pull date
parse var date month 3 delim +1 day +2 (delim) year

/: Sets: month='11'; delim='/'; day='15'; year='9�' :/

If an equal, a plus, or a minus sign precedes the left parenthesis, then the value of
the variable is treated as an absolute or relative positional pattern. The value of
the variable must be a positive whole number or zero.

The variable can be one that has been set earlier in the same template. In the
following example, the first two fields specify the starting character positions of the
last two fields.

Example:

/: Using a variable as a positional pattern :/
dataline = '12 26Samuel ClemensMark Twain'
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/: Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' :/

Why is the positional pattern 6 needed in the template? Remember that word
parsing occurs after the language processor divides the source string into
substrings using patterns. Therefore, the positional pattern =(pos1) cannot be
correctly interpreted as =12 until after the language processor has split the string at
column 6 and assigned the blank-delimited words 12 and 26 to pos1 and pos2,
respectively.

 Using UPPER
Specifying UPPER on any of the PARSE instructions converts characters to
uppercase (lowercase a–z to uppercase A–Z) before parsing. The following table
summarizes the effect of the parsing instructions on case.

118 AS/400 REXX/400 Reference V4R1

 Parsing

The ARG instruction is simply a short form of PARSE UPPER ARG. The PULL
instruction is simply a short form of PARSE UPPER PULL. If you do not desire
uppercase translation, use PARSE ARG (instead of ARG or PARSE UPPER ARG)
and use PARSE PULL (instead of PULL or PARSE UPPER PULL).

Converts alphabetic characters to
uppercase before parsing

Maintains alphabetic characters in case
entered

ARG

PARSE UPPER ARG

PARSE ARG

PARSE UPPER LINEIN PARSE LINEIN

PULL

PARSE UPPER PULL

PARSE PULL

PARSE UPPER SOURCE PARSE SOURCE

PARSE UPPER VALUE PARSE VALUE

PARSE UPPER VAR PARSE VAR

PARSE UPPER VERSION PARSE VERSION

Parsing Instructions Summary
Remember: All parsing instructions assign parts of the source string into the
variables named in the template. The following table summarizes where the source
string comes from.

Instruction Where the source string comes from

ARG

PARSE ARG

Arguments you list when you call the program or arguments
in the call to a subroutine or function.

PARSE LINEIN Next line in the default input stream.

PULL

PARSE PULL

The string at the head of the external data queue. (If queue
empty, uses default input, typically the terminal.)

PARSE SOURCE System-supplied string giving information about the executing
program.

PARSE VALUE Expression between the keyword VALUE and the keyword
WITH in the instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION System-supplied string specifying the language, language
level, and (three-word) date.

Parsing Instructions Examples
All examples in this section parse source strings into words.

 Chapter 5. Parsing 119

 Parsing

ARG

/: ARG with source string named in REXX program invocation :/
/: Program name is PALETTE. Specify 2 primary colors (yellow, :/
/: red, blue) on call. Assume call is: palette red blue :/
arg var1 var2 /: Assigns: var1='RED'; var2='BLUE' :/
If var1<>'RED' & var1<>'YELLOW' & var1<>'BLUE' then signal err
If var2<>'RED' & var2<>'YELLOW' & var2<>'BLUE' then signal err
total=length(var1)+length(var2)
SELECT;
When total=7 then new='purple'
When total=9 then new='orange'
When total=1� then new='green'
Otherwise new=var1 /: entered duplicates :/

END
Say new; exit /: Displays: "purple" :/

Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of
ARG with the arguments in the CALL to a subroutine is in “Parsing Multiple Strings”
on page 121.

PARSE ARG works the same as ARG except that PARSE ARG does not convert
alphabetic characters to uppercase before parsing.

PARSE LINEIN

parse linein 'a=' num1 'c=' num2 /: Assume: 8 and 9 :/
sum=num1+num2 /: Enter: a=8 b=9 as input :/
say sum /: Displays: "17" :/

PARSE PULL

PUSH '8� 7' /: Puts data on queue :/
parse pull fourscore seven /: Assigns: fourscore='8�'; seven='7' :/
SAY fourscore+seven /: Displays: "87" :/

PARSE SOURCE

parse source sysname .
Say sysname /: Displays: "OS/4��" :/

PARSE VALUE example is on page 111.

PARSE VAR examples are throughout the chapter, starting on page 112.

PARSE VERSION

parse version . level .
say level /: Displays: "3.48" :/

PULL works the same as PARSE PULL except that PULL converts alphabetic
characters to uppercase before parsing.

120 AS/400 REXX/400 Reference V4R1

 Parsing

Advanced Topics in Parsing
This section includes parsing multiple strings and flow charts depicting a conceptual
view of parsing.

Parsing Multiple Strings
Only ARG and PARSE ARG can have more than one source string. To parse
multiple strings, you can specify multiple comma-separated templates. Here is an
example:

parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated
templates. (For an ARG instruction, the source strings to parse come from
arguments you specify when you call a program or CALL a subroutine or function.)
Each comma is an instruction to the parser to move on to the next string.

Example:

/: Parsing multiple strings in a subroutine :/
num='3'
musketeers="Porthos Athos Aramis D'Artagnon"
CALL Sub num,musketeers /: Passes num and musketeers to sub :/
SAY total; say fourth /: Displays: "4" and " D'Artagnon" :/
EXIT

Sub:
parse arg subtotal, . . . fourth
total=subtotal+1
RETURN

Note that when a REXX program is started as a command, only one argument
string is recognized. You can pass multiple argument strings for parsing:

� When one REXX program calls another REXX program with the CALL
instruction or a function call.

� When programs written in other languages start a REXX program.

If there are more templates than source strings, each variable in a leftover template
receives a null string. If there are more source strings than templates, the
language processor ignores leftover source strings. If a template is empty (two
commas in a row) or contains no variable names, parsing proceeds to the next
template and source string.

Combining String and Positional Patterns: A Special Case
There is a special case in which absolute and relative positional patterns do not
work identically. We have shown how parsing with a template containing a string
pattern skips over the data in the source string that matches the pattern (see page
114). But a template containing the sequence:

 � string pattern
 � variable name
� relative positional pattern

does not skip over the matching data. A relative positional pattern moves relative
to the first character matching a string pattern. As a result, assignment includes
the data in the source string that matches the string pattern.

 Chapter 5. Parsing 121

 Parsing

/: Template containing string pattern, then variable name, then :/
/: relative positional pattern does not skip over any data. :/
string='REstructured eXtended eXecutor'
parse var string var1 3 junk 'X' var2 +1 junk 'X' var3 +1 junk
say var1||var2||var3 /: Concatenates variables; displays: "REXX" :/

Here is how this template works:

│var1 3│ │junk 'X'│ │var2 +1│ │junk 'X'│ │var3 +1 │ │ junk │
└───┬───┘ └───┬────┘ └───┬───┘ └────┬────┘ └───┬────┘ └──┬───┘

│ │ │ │ │ │
Put Starting Starting Starting Starting Starting
characters at 3, put with first with char─ with with char─
1 through characters 'X' put 1 acter after second 'X' acter
2 in var1. up to (not (+1) first 'X' put 1 (+1) after sec─
(Stopping including) character put up to character ond 'X'
point is first 'X' in var2. second 'X' in var3. put rest
3.) in junk. in junk. in junk.

var1='RE' junk= var2='X' junk= var3='X' junk=
 'structured 'tended e' 'ecutor'
 e'

Parsing with DBCS Characters
Parsing with DBCS characters generally follows the same rules as parsing with
SBCS characters. Literal strings can contain DBCS characters, but numbers must
be in SBCS characters. See “PARSE” on page 180 for examples of DBCS
parsing.

Details of Steps in Parsing
The three figures that follow are to help you understand the concept of parsing.
Please note that the figures do not include error cases.

The figures include terms whose definitions are as follows:

string start is the beginning of the source string (or substring).

string end is the end of the source string (or substring).

length is the length of the source string.

match start is in the source string and is the first character of the match.

match end is in the source string. For a string pattern, it is the first character
after the end of the match. For a positional pattern, it is the same
as match start.

match position is in the source string. For a string pattern, it is the first matching
character. For a positional pattern, it is the position of the
matching character.

token is a distinct syntactic element in a template, such as a variable, a
period, a pattern, or a comma.

value is the numeric value of a positional pattern. This can be either a
constant or the resolved value of a variable.

122 AS/400 REXX/400 Reference V4R1

 Parsing

 ┌──┐
 $ │
 ┌────────────────────────────────┐ │
 │START │ │

│Token is first one in template. │ │
 │Length=length(source string) │ │

│Match start=1. Match end=1. │ │
 └─────────┬──────────────────────┘ │
┌──────────� │ │
│ $ │
│ ┌───────────────────┐yes ┌────────────────────┐ │
│ │End of template? ├───�│Parsing complete. │ │
│ └─────────┬─────────┘ └────────────────────┘ │
│ $ no │
│ ┌───────────────────┐ │
│ │CALL Find Next │ │
│ │ Pattern. │ │
│ └─────────┬─────────┘ │
│ $ │
│ ┌───────────────────┐ │
│ │CALL Word Parsing. │ │
│ └─────────┬─────────┘ │
│ $ │
│ ┌───────────────────┐ │
│ │Step to next token.│ │
│ └─────────┬─────────┘ │
│ $ │
│ ┌───────────────────┐ yes ┌────────────────────┐ │
│ │Token a comma? ├────�│Set next source │ │
│ └─────────┬─────────┘ │string and template.├───┘
│ │ no └────────────────────┘
└────────────┘

Figure 2. Conceptual Overview of Parsing

 Chapter 5. Parsing 123

 Parsing

 ┌──┐
 $ │
┌─────────────┐ ┌────────────────────────────────┐ │
│Start: │yes │String start=match end. │ │
│End of ├───�│Match start=length + 1. │ │
│template? │ │Match end=length + 1. Return. │ │
└─────┬───────┘ └────────────────────────────────┘ │
 $ no │
┌─────────────┐ ┌────────────────────────────────┐ │
│Token period │yes │ │ │
│or variable? ├───�│Step to next token. ├───┘
└─────┬───────┘ └────────────────────────────────┘
 $ no
┌─────────────┐ ┌─────────┐ ┌──────────┐ ┌───────────────────────────────────┐
│Token a plus?│yes │Variable │yes │Resolve │ │String start=match start. │
│ ├───�│form? ├───�│its value.├──�│Match start=min(length + 1, │
└─────┬───────┘ └────┬────┘ └──────────┘m │ match start + value). │

│ no │ no │ │Match end=match start. Return. │
 $ └─────────────────────┘ └───────────────────────────────────┘
┌─────────────┐ ┌─────────┐ ┌──────────┐ ┌───────────────────────────────────┐
│Token a │yes │Variable │yes │Resolve │ │String start=match start. │
│minus? ├───�│form? ├───�│its value.├──�│Match start=max(1, match │
└─────┬───────┘ └────┬────┘ └──────────┘m │ start ─ value). │

│ no │ no │ │Match end=match start. Return. │
 $ └─────────────────────┘ └───────────────────────────────────┘
┌─────────────┐ ┌─────────┐ ┌──────────┐ ┌───────────────────────────────────┐
│Token an │yes │Variable │yes │Resolve │ │String start=match end. │
│equal? ├───�│form? ├───�│its value.├──�│Match start=min(length+1, value). │
└─────┬───────┘ └────┬────┘ └──────────┘m │Match end=match start. Return. │
 │ no │ no │ └───────────────────────────────────┘
 $ └─────────────────────┘
┌─────────────┐ ┌───────────────────────────────────┐
│Token a │yes │String start=match end. │
│number? ├───�│Match start=min(length+1, value). │
└─────┬───────┘ │Match end=match start. Return. │
 $ no └───────────────────────────────────┘
┌─────────────┐
│Token a lit─ │yes
│eral string? ├──────────────────────────┐
└─────┬───────┘ │
 │ no │
 $ $
┌─────────────┐ ┌──────────┐ ┌───────────────┐ ┌─────────────────────────────┐
│Token a var─ │yes │Resolve │ │Match found in │yes │String start=match end. │
│iable string?├───�│its value.├──�│rest of string?├───�│Match start=match position. │
└─────┬───────┘ └──────────┘ └──────┬────────┘ │Match end=match position + │

│ no │ no │ pattern length. Return. │
 │ $ └─────────────────────────────┘
 │ ┌────────────────────────────────┐

│ │String start=match end. │
│ │Match start=length + 1. │
│ │Match end=length + 1. Return. │

 $ └────────────────────────────────┘
┌─────────────┐ ┌────────────────────────────────┐
│Token a │yes │Match start=length + 1. │
│ comma? ├─────────�│Match end=length + 1. Return. │
└─────────────┘ └────────────────────────────────┘

Figure 3. Conceptual View of Finding Next Pattern

124 AS/400 REXX/400 Reference V4R1

 Parsing

┌─────────────────────────┐ ┌────────────────────────┐
│Start: Match end <= │no │ │
│ string start? ├───�│String end=match start. │
└───────────┬─────────────┘ └────────────────────────┘
 $ yes
┌─────────────────────────┐
│String end=length + 1. │
└───────────┬─────────────┘
 $
┌──┐
│Substring=substr(source string,string start,(string end─string start))│
│Token=previous pattern. │
└───────────┬──┘
 $ �───┐
┌─────────────────────────┐no │
│Any more tokens? ├─────────────┐ │
└───────────┬─────────────┘ │ │
 $ yes │ │
┌─────────────────────────┐ │ │
│Step to next token. │ │ │
└───────────┬─────────────┘ │ │
 $ $ │

 ┌─────────────────────────┐no ┌────────────────────────┐ │
│Token a variable or a ├───�│Return. │ │
│period? │ └────────────────────────┘ │
└───────────┬─────────────┘ │
 $ yes │
┌─────────────────────────┐no │
│Any more tokens? ├─────────────┐ │
└───────────┬─────────────┘ │ │
 $ yes $ │
┌─────────────────────────┐ ┌────────────────────────┐ │
│Next token a variable or │ no │Assign rest of substring│ │
│period? ├───�│to variable. │ │
└───────────┬─────────────┘ └─────────────┬──────────┘ │
 $ yes └───────────────�│
┌─────────────────────────┐ no ┌────────────────────────┐ │
│Any substring left? ├───�│Assign null string to │ │
└───────────┬─────────────┘ │variable. │ │
 $ yes └─────────────┬──────────┘ │
┌─────────────────────────┐ └───────────────�│
│Strip any leading blanks.│ │
└───────────┬─────────────┘ │
 $ │
┌─────────────────────────┐ no ┌────────────────────────┐ │
│Any substring left? ├───�│Assign null string to │ │
└───────────┬─────────────┘ │variable. │ │
 │ └─────────────┬──────────┘ │
 $ yes └───────────────�│
┌─────────────────────────┐ no ┌────────────────────────┐ │
│Blank found in substring?├───�│Assign rest of substring│ │
│ │ │to variable. │ │
└───────────┬─────────────┘ └─────────────┬──────────┘ │
 $ yes └───────────────�│
┌───┐ │
│Assign word from substring to variable and step past blank.│ │
└───────────────────┬───────────────────────────────────────┘ │
 └───┘

Figure 4. Conceptual View of Word Parsing

 Chapter 5. Parsing 125

 Parsing

126 AS/400 REXX/400 Reference V4R1

 Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic

REXX defines the usual arithmetic operations (addition, subtraction, multiplication,
and division) in as natural a way as possible. What this really means is that the
rules followed are those that are conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the
rules vary considerably (indeed much more than generally appreciated) from person
to person and from application to application and in ways that are not always
predictable. The arithmetic described here is, therefore, a compromise that
(although not the simplest) should provide acceptable results in most applications.

 Introduction
Numbers (that is, character strings used as input to REXX arithmetic operations
and built-in functions) can be expressed very flexibly. Leading and trailing blanks
are permitted, and exponential notation can be used. Some valid numbers are:

12 /: a whole number :/
'-76' /: a signed whole number :/
12.76 /: decimal places :/

' + �.��3 ' /: blanks around the sign and so forth :/
17. /: same as "17" :/
.5 /: same as "�.5" :/

4E9 /: exponential notation :/
�.73e-7 /: exponential notation :/

In exponential notation, a number includes an exponent, a power of ten by which
the number is multiplied before use. The exponent indicates how the decimal point
is shifted. Thus, in the preceding examples, 4E9 is simply a short way of writing
4���������, and �.73e-7 is short for �.�������73.

The arithmetic operators include addition (+), subtraction (-), multiplication (:),
power (::), division (/), prefix plus (+), and prefix minus (-). In addition, there are
two further division operators: integer divide (%) divides and returns the integer
part; remainder (//) divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to
definite rules. The most important of these rules are as follows (see the “Definition”
section for full details):

� Results are calculated up to some maximum number of significant digits (the
default is 9, but you can alter this with the NUMERIC DIGITS instruction to give
whatever accuracy you need). Thus, if a result requires more than 9 digits, it
would usually be rounded to 9 digits. For example, the division of 2 by 3 would
result in 0.666666667 (it would require an infinite number of digits for perfect
accuracy).

� Except for division and power, trailing zeros are preserved (this is in contrast to
most popular calculators, which remove all trailing zeros in the decimal part of
results). So, for example:

2.4� + 2 -> 4.4�
2.4� - 2 -> �.4�
2.4� : 2 -> 4.8�
2.4� / 2 -> 1.2

 Copyright IBM Corp. 1997 127

 Numbers and Arithmetic

This behavior is desirable for most calculations (especially financial
calculations).

If necessary, you can remove trailing zeros with the STRIP function (see page
98), or by division by 1.

� A zero result is always expressed as the single digit �.

� Exponential form is used for a result depending on its value and the setting of
NUMERIC DIGITS (the default is 9). If the number of places needed before the
decimal point exceeds the NUMERIC DIGITS setting, or the number of places
after the point exceeds twice the NUMERIC DIGITS setting, the number is
expressed in exponential notation:

1e6 : 1e6 -> 1E+12 /: not 1������������ :/
1 / 3E1� -> 3.33333333E-11 /: not �.����������333333333 :/

 Definition
A precise definition of the arithmetic facilities of the REXX language is given here.

 Numbers
A number in REXX is a character string that includes one or more decimal digits,
with an optional decimal point. (See “Exponential Notation” on page 133 for an
extension of this definition.) The decimal point may be embedded in the number,
or may be a prefix or suffix. The group of digits (and optional decimal point)
constructed this way can have leading or trailing blanks and an optional sign (+ or
-) that must come before any digits or decimal point. The sign can also have
leading or trailing blanks.

Therefore, number is defined as:

��─ ──┬ ┬──────── ──┬ ┬────────────────── ──┬ ┬─digits──────── ──┬ ┬──────── ─��
 └ ┘─blanks─ └ ┘─sign─ ──┬ ┬──────── ├ ┤──digits.digits └ ┘─blanks─

└ ┘─blanks─ ├ ┤──.digits ──────
└ ┘──digits. ──────

blanks
are one or more spaces

sign
is either + or −

digits
are one or more of the decimal digits �–9.

Note that a single period alone is not a valid number.

 Precision
Precision is the maximum number of significant digits that can result from an
operation. This is controlled by the instruction:

��──NUMERIC DIGITS─ ──┬ ┬──────────── ─;──��
 └ ┘─expression─

128 AS/400 REXX/400 Reference V4R1

 Numbers and Arithmetic

The expression is evaluated and must result in a positive whole number. This
defines the precision (number of significant digits) to which calculations are carried
out. Results are rounded to that precision, if necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS
instruction has been processed since the start of a program, the default precision is
used. The REXX standard for the default precision is 9.

Note that NUMERIC DIGITS can set values below the default of nine. However,
use small values with care—the loss of precision and rounding thus requested
affects all REXX computations, including, for example, the computation of new
values for the control variable in DO loops.

 Arithmetic Operators
REXX arithmetic is performed by the operators +, -, :, /, %, //, and :: (add,
subtract, multiply, divide, integer divide, remainder, and power), which all act on two
terms, and the prefix plus and minus operators, which both act on a single term.
This section describes the way in which these operations are carried out.

Before every arithmetic operation, the term or terms being operated upon have
leading zeros removed (noting the position of any decimal point, and leaving only
one zero if all the digits in the number are zeros). They are then truncated (if
necessary) to DIGITS + 1 significant digits before being used in the computation.
(The extra digit is a “guard” digit. It improves accuracy because it is inspected at
the end of an operation, when a number is rounded to the required precision.) The
operation is then carried out under up to double that precision, as described under
the individual operations that follow. When the operation is completed, the result is
rounded if necessary to the precision specified by the NUMERIC DIGITS
instruction.

Rounding is done in the traditional manner. The digit to the right of the least
significant digit in the result (the “guard digit”) is inspected and values of 5 through
9 are rounded up, and values of � through 4 are rounded down. Even/odd rounding
would require the ability to calculate to arbitrary precision at all times and is,
therefore, not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point if otherwise there would
be no digit before it. Significant trailing zeros are retained for addition, subtraction,
and multiplication, according to the rules that follow, except that a result of zero is
always expressed as the single digit �. For division, insignificant trailing zeros are
removed after rounding.

The FORMAT built-in function (see page 91) allows a number to be represented in
a particular format if the standard result provided does not meet your requirements.

Arithmetic Operation Rules—Basic Operators
The basic operators (addition, subtraction, multiplication, and division) operate on
numbers as follows.

 Chapter 6. Numbers and Arithmetic 129

 Numbers and Arithmetic

Addition and Subtraction
If either number is �, the other number, rounded to NUMERIC DIGITS digits, if
necessary, is used as the result (with sign adjustment as appropriate). Otherwise,
the two numbers are extended on the right and left as necessary, up to a total
maximum of DIGITS + 1 digits (the number with the smaller absolute value may,
therefore, lose some or all of its digits on the right) and are then added or
subtracted as appropriate.

Example:

xxx.xxx + yy.yyyyy

becomes:

 xxx.xxx��
 + �yy.yyyyy
 ─────────────
 zzz.zzzzz

The result is then rounded to the current setting of NUMERIC DIGITS if necessary
(taking into account any extra “carry digit” on the left after addition, but otherwise
counting from the position corresponding to the most significant digit of the terms
being added or subtracted). Finally, any insignificant leading zeros are removed.

The prefix operators are evaluated using the same rules; the operations +number
and -number are calculated as �+number and �-number, respectively.

 Multiplication
The numbers are multiplied together (“long multiplication”) resulting in a number
that may be as long as the sum of the lengths of the two operands.

Example:

xxx.xxx : yy.yyyyy

becomes:

 zzzzz.zzzzzzzz

The result is then rounded, counting from the first significant digit of the result, to
the current setting of NUMERIC DIGITS.

 Division
For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is extended with zeros on the
right until it is larger than the number xxxxx (with note being taken of the change in
the power of ten that this implies). Thus, in this example, yyy might become yyy��.
Traditional long division then takes place. This might be written:

 zzzz
 ┌─────────
 xxxxx │ yyy��

The length of the result (zzzz) is such that the rightmost z is at least as far right as
the rightmost digit of the (extended) y number in the example. During the division,
the y number is extended further as necessary. The z number may increase up to
NUMERIC DIGITS+1 digits, at which point the division stops and the result is
rounded. Following completion of the division (and rounding if necessary),
insignificant trailing zeros are removed.

130 AS/400 REXX/400 Reference V4R1

 Numbers and Arithmetic

Basic Operator Examples
Following are some examples that illustrate the main implications of the rules just
described.

/: With: Numeric digits 5 :/
12+7.�� -> 19.��
1.3-1.�7 -> �.23
1.3-2.�7 -> -�.77
1.2�:3 -> 3.6�
7:3 -> 21
�.9:�.8 -> �.72
1/3 -> �.33333
2/3 -> �.66667
5/2 -> 2.5
1/1� -> �.1
12/12 -> 1
8.�/2 -> 4

Note: With all the basic operators, the position of the decimal point in the terms
being operated upon is arbitrary. The operations may be carried out as integer
operations with the exponent being calculated and applied afterward. Therefore,
the significant digits of a result are not in any way dependent on the position of the
decimal point in either of the terms involved in the operation.

Arithmetic Operation Rules—Additional Operators
The operation rules for the power (::), integer divide (%), and remainder (//)
operators follow.

 Power
The ** (power) operator raises a number to a power, which may be positive,
negative, or �. The power must be a whole number. (The second term in the
operation must be a whole number and is rounded to DIGITS digits, if necessary,
as described under “Numbers Used Directly by REXX” on page 135.) If negative,
the absolute value of the power is used, and then the result is inverted (divided into
1). For calculating the power, the number is effectively multiplied by itself for the
number of times expressed by the power, and finally trailing zeros are removed (as
though the result were divided by 1).

In practice (see Note 1 on page 132 for the reasons), the power is calculated by
the process of left-to-right binary reduction. For a::n: n is converted to binary,
and a temporary accumulator is set to 1. If n = � the initial calculation is complete.
(Thus, a::� = 1 for all a, including �::�.) Otherwise each bit (starting at the first
nonzero bit) is inspected from left to right. If the current bit is 1, the accumulator is
multiplied by a. If all bits have now been inspected, the initial calculation is
complete; otherwise the accumulator is squared and the next bit is inspected for
multiplication. When the initial calculation is complete, the temporary result is
divided into 1 if the power was negative.

The multiplications and division are done under the arithmetic operation rules, using
a precision of DIGITS + L + 1 digits. L is the length in digits of the integer part of
the whole number n (that is, excluding any decimal part, as though the built-in
function TRUNC(n) had been used). Finally, the result is rounded to NUMERIC
DIGITS digits, if necessary, and insignificant trailing zeros are removed.

 Chapter 6. Numbers and Arithmetic 131

 Numbers and Arithmetic

 Integer Division
The % (integer divide) operator divides two numbers and returns the integer part
of the result. The result returned is defined to be that which would result from
repeatedly subtracting the divisor from the dividend while the dividend is larger than
the divisor. During this subtraction, the absolute values of both the dividend and
the divisor are used: the sign of the final result is the same as that which would
result from regular division.

The result returned has no fractional part (that is, no decimal point or zeros
following it). If the result cannot be expressed as a whole number, the operation is
in error and will fail—that is, the result must not have more digits than the current
setting of NUMERIC DIGITS. For example, 1����������%3 requires 10 digits for
the result (3333333333) and would, therefore, fail if NUMERIC DIGITS 9 were in
effect.

 Remainder
The // (remainder) operator returns the remainder from integer division and is
defined as being the residue of the dividend after the operation of calculating
integer division as previously described. The sign of the remainder, if nonzero, is
the same as that of the original dividend.

This operation fails under the same conditions as integer division (that is, if integer
division on the same two terms would fail, the remainder cannot be calculated).

Additional Operator Examples
Following are some examples using the power, integer divide, and remainder
operators:

/: Again with: Numeric digits 5 :/
2::3 -> 8
2::-3 -> �.125
1.7::8 -> 69.758
2%3 -> �
2.1//3 -> 2.1
1�%3 -> 3
1�//3 -> 1
-1�//3 -> -1
1�.2//1 -> �.2
1�//�.3 -> �.1
3.6//1.3 -> 1.�

Notes:

1. A particular algorithm for calculating powers is used, because it is efficient
(though not optimal) and considerably reduces the number of actual
multiplications performed. It, therefore, gives better performance than the
simpler definition of repeated multiplication. Because results may differ from
those of repeated multiplication, the algorithm is defined here.

2. The integer divide and remainder operators are defined so that they can be
calculated as a by-product of the standard division operation. The division
process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

132 AS/400 REXX/400 Reference V4R1

 Numbers and Arithmetic

 Numeric Comparisons
The comparison operators are listed in “Comparison” on page 17. You can use
any of these for comparing numeric strings. However, you should not use ==, \==,
¬==, >>, \>>, ¬>>, <<, \<<, and ¬<< for comparing numbers because leading and
trailing blanks and leading zeros are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers
(calculating the difference) and then comparing the result with 0. That is, the
operation:

A ? Z

where ? is any numeric comparison operator, is identical with:

(A - Z) ? '�'

It is, therefore, the difference between two numbers, when subtracted under REXX
subtraction rules, that determines their equality.

A quantity called fuzz affects the comparison of two numbers. This controls the
amount by which two numbers may differ before being considered equal for the
purpose of comparison. The FUZZ value is set by the instruction:

��──NUMERIC FUZZ─ ──┬ ┬──────────── ─;──��
 └ ┘─expression─

Here expression must result in a positive whole number or zero. The default is �.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ value
for each numeric comparison. That is, the numbers are subtracted under a
precision of DIGITS minus FUZZ digits during the comparison. Clearly the FUZZ
setting must be less than DIGITS.

Thus if DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant
digits, just as though NUMERIC DIGITS 8 had been put in effect for the duration of
the operation.

Example:

Numeric digits 5
Numeric fuzz �
say 4.9999 = 5 /: Displays "�" :/
say 4.9999 < 5 /: Displays "1" :/
Numeric fuzz 1
say 4.9999 = 5 /: Displays "1" :/
say 4.9999 < 5 /: Displays "�" :/

 Exponential Notation
The preceding description of numbers describes “pure” numbers, in the sense that
the character strings that describe numbers can be very long. For example:

1���������� : 1����������

would give

1��������������������

and

.����������1 : .����������1

 Chapter 6. Numbers and Arithmetic 133

 Numbers and Arithmetic

would give

�.���������������������1

For both large and small numbers some form of exponential notation is useful, both
to make long numbers more readable, and to make execution possible in extreme
cases. In addition, exponential notation is used whenever the “simple” form would
give misleading information.

For example:

numeric digits 5
say 54321:54321

would display 295�8����� in long form. This is clearly misleading, and so the result
is expressed as 2.95�8E+9 instead.

The definition of numbers is, therefore, extended as:

��─ ──┬ ┬──────── ──┬ ┬────────────────── ──┬ ┬─digits──────── ──────────────────�
 └ ┘─blanks─ └ ┘─sign─ ──┬ ┬──────── ├ ┤──digits.digits

└ ┘─blanks─ ├ ┤──.digits ──────
└ ┘──digits. ──────

�─ ──┬ ┬───────────────────── ──┬ ┬──────── ─��
 └ ┘ ─E─ ──┬ ┬────── ─digits─ └ ┘─blanks─
 └ ┘─sign─

The integer following the E represents a power of ten that is to be applied to the
number. The E can be in uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be
numeric to the user. Specifically, because of the format of numbers in exponential
notation, strings, such as �E123 (0 raised to the 123 power) and 1E342 (1 raised to
the 342 power), are numeric. In addition, a comparison such as �E123=�E567 gives
a true result of 1 (0 is equal to 0). To prevent problems when comparing
nonnumeric strings, use the strict comparison operators.

Here are some examples:

12E7 = 12������� /: Displays "1" :/
12E-5 = �.���12 /: Displays "1" :/
-12e4 = -12���� /: Displays "1" :/
�e123 = �e456 /: Displays "1" :/
�e123 == �e456 /: Displays "�" :/

The preceding numbers are valid for input data at all times. The results of
calculations are returned in either conventional or exponential form, depending on
the setting of NUMERIC DIGITS. If the number of places needed before the
decimal point exceeds DIGITS, or the number of places after the point exceeds
twice DIGITS, exponential form is used. The exponential form REXX generates
always has a sign following the E to improve readability. If the exponent is �, then
the exponential part is omitted—that is, an exponential part of E+� is never
generated.

You can explicitly convert numbers to exponential form, or force them to be
displayed in long form, by using the FORMAT built-in function (see page 91).

Scientific notation is a form of exponential notation that adjusts the power of ten
so a single nonzero digit appears to the left of the decimal point. Engineering
notation is a form of exponential notation in which from one to three digits (but not

134 AS/400 REXX/400 Reference V4R1

 Numbers and Arithmetic

simply �) appear before the decimal point, and the power of ten is always
expressed as a multiple of three. The integer part may, therefore, range from 1
through 999. You can control whether Scientific or Engineering notation is used
with the instruction:

 ┌ ┐─SCIENTIFIC────────────
��──NUMERIC FORM─ ──┼ ┼─────────────────────── ─;──��
 ├ ┤─ENGINEERING───────────
 └ ┘ ──┬ ┬─────── ─expression─
 └ ┘─VALUE─

Scientific notation is the default.

/: after the instruction :/
Numeric form scientific

123.45 : 1e11 -> 1.2345E+13

/: after the instruction :/
Numeric form engineering

123.45 : 1e11 -> 12.345E+12

 Whole Numbers
Within the set of numbers REXX understands, it is useful to distinguish the subset
defined as whole numbers. A whole number in REXX is a number that has a
decimal part that is all zeros (or that has no decimal part). In addition, it must be
possible to express its integer part simply as digits within the precision set by the
NUMERIC DIGITS instruction. REXX would express larger numbers in exponential
notation, after rounding, and, therefore, these could no longer be safely described
or used as whole numbers.

Numbers Used Directly by REXX
As discussed, the result of any arithmetic operation is rounded (if necessary)
according to the setting of NUMERIC DIGITS. Similarly, when REXX directly uses
a number (which has not necessarily been involved in an arithmetic operation), the
same rounding is also applied. It is just as though the number had been added to
0.

In the following cases, the number used must be a whole number, and the largest
number you can use is 999999999.

� The positional patterns in parsing templates (including variable positional
patterns)

� The power value (right hand operand) of the power operator
� The values of exprr and exprf in the DO instruction
� The values given for DIGITS or FUZZ in the NUMERIC instruction
� Any number used in the numeric option in the TRACE instruction.

Notes:

1. FUZZ must always be less than DIGITS.

2. Values of exprr and exprf in the DO instruction are limited by the current
numeric precision.

 Chapter 6. Numbers and Arithmetic 135

 Numbers and Arithmetic

 Errors
Two types of errors may occur during arithmetic:

� Overflow or Underflow

This error occurs if the exponential part of a result would exceed the range that
the language processor can handle, when the result is formatted according to
the current settings of NUMERIC DIGITS and NUMERIC FORM. The language
defines a minimum capability for the exponential part, namely the largest
number that can be expressed as an exact integer in default precision.
Because the default precision is 9, AS/400 supports exponents in the range
-999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated
as a syntax error.

 � Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an
arithmetic operation may fail because of lack of storage. This is considered a
terminating error as usual, rather than an arithmetic error.

136 AS/400 REXX/400 Reference V4R1

 Conditions and Condition Traps

Chapter 7. Conditions and Condition Traps

A condition is a specified event or state that CALL ON or SIGNAL ON can trap. A
condition trap can modify the flow of execution in a REXX program. Condition
traps are turned on or off using the ON or OFF subkeywords of the SIGNAL and
CALL instructions (see “CALL” on page 35 and “SIGNAL” on page 68).

��─ ──┬ ┬─CALL─── ──┬ ┬─OFF──condition──────────────────── ─;──��
 └ ┘─SIGNAL─ └ ┘ ─ON──condition─ ──┬ ┬────────────────
 └ ┘ ─NAME──trapname─

condition and trapname are single symbols that are taken as constants. Following
one of these instructions, a condition trap is set to either ON (enabled) or OFF
(disabled). The initial setting for all condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to
the routine or label trapname if you have specified trapname. Otherwise, control
passes to the routine or label condition. CALL or SIGNAL is used, depending on
whether the most recent trap for the condition was set using CALL ON or SIGNAL
ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in function,
or an external routine. If you use SIGNAL, the trapname can be only an internal
label.

The conditions and their corresponding events that can be trapped are:

ERROR
raised if a command indicates an error condition upon return. It is also raised if
any command indicates failure and neither CALL ON FAILURE nor SIGNAL ON
FAILURE is active. The condition is raised at the end of the clause that called
the command but is ignored if the ERROR condition trap is already in the
delayed state. The delayed state is the state of a condition trap when the
condition has been raised but the trap has not yet been reset to the enabled
(ON) or disabled (OFF) state.

For more information on trapping command errors, see “Command Interface”
on page 153.

FAILURE
raised if a command indicates a failure condition upon return. The condition is
raised at the end of the clause that called the command but is ignored if the
FAILURE condition trap is already in the delayed state.

For more information on trapping command failures, see “Command Interface”
on page 153.

HALT
raised if an external attempt is made to interrupt and end execution of the
program. The condition is usually raised at the end of the clause that was
being processed when the external interruption occurred. This option is not
implemented for REXX programs running in the default system environment. In
such files, the SIGNAL ON HALT instruction is ignored.

 Copyright IBM Corp. 1997 137

 Conditions and Condition Traps

Note: Application programs that use the REXX language processor may
specify the RXHLT exit to stop execution of a REXX program. See “System
Exit Interfaces” on page 157.

NOVALUE
raised if an uninitialized variable is used:

� As a term in an expression
� As the name following the VAR subkeyword of a PARSE instruction
� As a variable reference in a parsing template, a PROCEDURE instruction,

or a DROP instruction.

Note: SIGNAL ON NOVALUE can trap any uninitialized variables except
tails in compound variables.

/: The following does not raise NOVALUE. :/
signal on novalue
a.=�
say a.z
say 'NOVALUE is not raised.'
exit

novalue:
say 'NOVALUE is raised.'

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language processing error is detected while the program is
running. This includes all kinds of processing errors, including true syntax
errors and “run-time” errors, such as attempting an arithmetic operation on
nonnumeric terms. You can specify this condition only for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF,
or DELAY, and any trapname) of that condition trap. Thus, a CALL ON HALT
replaces any current SIGNAL ON HALT (and a SIGNAL ON HALT replaces any
current CALL ON HALT), a CALL ON or SIGNAL ON with a new trap name
replaces any previous trap name, any OFF reference disables the trap for CALL or
SIGNAL, and so on.

Action Taken When a Condition Is Not Trapped
When a condition trap is currently disabled (OFF) and the specified condition
occurs, the default action depends on the condition:

� For HALT and SYNTAX, the processing of the program ends, and a message
describing the nature of the event that occurred usually indicates the condition.

� For all other conditions, the condition is ignored and its state remains OFF.

Action Taken When a Condition Is Trapped
When a condition trap is currently enabled (ON) and the specified condition occurs,
instead of the usual flow of control, a CALL trapname or SIGNAL trapname
instruction is processed automatically. You can specify the trapname after the
NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do not

138 AS/400 REXX/400 Reference V4R1

 Conditions and Condition Traps

specify a trapname, the name of the condition itself (ERROR, FAILURE, HALT,
NOVALUE, or SYNTAX) is used.

For example, the instruction call on error enables the condition trap for the
ERROR condition. If the condition occurred, then a call to the routine identified by
the name ERROR is made. The instruction call on error name commanderror
would enable the trap and call the routine COMMANDERROR if the condition
occurred.

The sequence of events, after a condition has been trapped, varies depending on
whether a SIGNAL or CALL is processed:

� If the action taken is a SIGNAL, execution of the current instruction ceases
immediately, the condition is disabled (set to OFF), and the SIGNAL takes
place in exactly the same way as usual (see page 68).

If any new occurrence of the condition is to be trapped, a new CALL ON or
SIGNAL ON instruction for the condition is required to re-enable it when the
label is reached. For example, if SIGNAL ON SYNTAX is enabled when a
SYNTAX condition occurs, then, if the SIGNAL ON SYNTAX label name is not
found, a usual syntax error termination occurs.

� If the action taken is a CALL (which can occur only at a clause boundary), the
CALL is made in the usual way (see page 35) except that the call does not
affect the special variable RESULT. If the routine should RETURN any data,
then the returned character string is ignored.

Because these conditions (ERROR, FAILURE, and HALT) can arise during
execution of an INTERPRET instruction, execution of the INTERPRET may be
interrupted and later resumed if CALL ON was used.

As the condition is raised, and before the CALL is made, the condition trap is
put into a delayed state. This state persists until the RETURN from the CALL,
or until an explicit CALL (or SIGNAL) ON (or OFF) is made for the condition.
This delayed state prevents a premature condition trap at the start of the
routine called to process a condition trap. When a condition trap is in the
delayed state it remains enabled, but if the condition is raised again, it is either
ignored (for ERROR or FAILURE) or (for the other conditions) any action
(including the updating of the condition information) is delayed until one of the
following events occurs:

1. A CALL ON or SIGNAL ON, for the delayed condition, is processed. In this
case a CALL or SIGNAL takes place immediately after the new CALL ON
or SIGNAL ON instruction has been processed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is processed. In
this case the condition trap is disabled and the default action for the
condition occurs at the end of the CALL OFF or SIGNAL OFF instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is
no longer delayed and the subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is,
the flow is not affected by the CALL).

 Chapter 7. Conditions and Condition Traps 139

 Conditions and Condition Traps

Notes:

1. In all cases, the condition is raised immediately upon detection. If SIGNAL
ON traps the condition, the current instruction is ended, if necessary.
Therefore, the instruction during which an event occurs may be only partly
processed. For example, if SYNTAX is raised during the evaluation of the
expression in an assignment, the assignment does not take place. Note
that the CALL for ERROR, FAILURE, and HALT traps can occur only at
clause boundaries. If these conditions arise in the middle of an
INTERPRET instruction, execution of INTERPRET may be interrupted and
later resumed. Similarly, other instructions, for example, DO or SELECT,
may be temporarily interrupted by a CALL at a clause boundary.

2. The state (ON, OFF, or DELAY, and any trapname) of each condition trap
is saved on entry to a subroutine and is then restored on RETURN. This
means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be
used in a subroutine without affecting the conditions set up by the caller.
See the CALL instruction (page 35) for details of other information that is
saved during a subroutine call.

3. The state of condition traps is not affected when an external routine is
called by a CALL, even if the external routine is a REXX program. On
entry to any REXX program, all condition traps have an initial setting of
OFF.

4. While user input is processed during interactive tracing, all condition traps
are temporarily set OFF. This prevents any unexpected transfer of
control—for example, should the user accidentally use an uninitialized
variable while SIGNAL ON NOVALUE is active. For the same reason, a
syntax error during interactive tracing does not cause exit from the program
but is trapped specially and then ignored after a message is given.

5. The system interface detects certain execution errors either before
execution of the program starts or after the program has ended. SIGNAL
ON SYNTAX cannot trap these errors.

Note that a label is a clause consisting of a single symbol followed by a colon.
Any number of successive clauses can be labels; therefore, multiple labels are
allowed before another type of clause.

 Condition Information
When any condition is trapped and causes a SIGNAL or CALL, this becomes the
current trapped condition, and certain condition information associated with it is
recorded. You can inspect this information by using the CONDITION built-in
function (see page 84).

The condition information includes:

� The name of the current trapped condition
� The name of the instruction processed as a result of the condition trap (CALL

or SIGNAL)
� The status of the trapped condition
� Any descriptive string associated with that condition.

The current condition information is replaced when control is passed to a label as
the result of a condition trap (CALL ON or SIGNAL ON). Condition information is

140 AS/400 REXX/400 Reference V4R1

 Conditions and Condition Traps

saved and restored across subroutine or function calls, including one because of a
CALL ON trap. Therefore, a routine called by a CALL ON can access the
appropriate condition information. Any previous condition information is still
available after the routine returns.

 Descriptive Strings
The descriptive string varies, depending on the condition trapped.

ERROR The string that was processed and resulted in the error condition.

FAILURE The string that was processed and resulted in the failure condition.

HALT Any string associated with the halt request. This can be the null
string if no string was provided.

NOVALUE The derived name of the variable whose attempted reference
caused the NOVALUE condition. The NOVALUE condition trap
can be enabled only using SIGNAL ON.

SYNTAX Any string the language processor associated with the error. This
can be the null string if you did not provide a specific string. Note
that the special variables RC and SIGL provide information on the
nature and position of the processing error. You can enable the
SYNTAX condition trap only by using SIGNAL ON.

 Special Variables
A special variable is one that may be set automatically during processing of a
REXX program. There are three special variables: RC, RESULT, and SIGL. None
of these has an initial value, but the program may alter them. (For information
about RESULT, see page 65.)

The Special Variable RC
For ERROR and FAILURE, the REXX special variable RC is set to the command
return code, as usual, before control is transferred to the condition label.

For SIGNAL ON SYNTAX, RC is set to the syntax error number.

The Special Variable SIGL
Following any transfer of control because of a CALL or SIGNAL, the program line
number of the clause causing the transfer of control is stored in the special variable
SIGL. Where the transfer of control is because of a condition trap, the line number
assigned to SIGL is that of the last clause processed (at the current subroutine
level) before the CALL or SIGNAL took place. This is especially useful for SIGNAL
ON SYNTAX when the number of the line in error can be used, for example, to
control a text editor. Typically, code following the SYNTAX label may PARSE
SOURCE to find the source of the data, then call an editor to edit the source file
positioned at the line in error. Note that in this case you may have to run the
program again before any changes made in the editor can take effect.

 Chapter 7. Conditions and Condition Traps 141

 Conditions and Condition Traps

Alternatively, SIGL can be used to help determine the cause of an error (such as
the occasional failure of a function call) as in the following example:

signal on syntax
a = a + 1 /: This is to create a syntax error :/
say 'SYNTAX error not raised'
exit

/: Standard handler for SIGNAL ON SYNTAX :/
syntax:
say 'REXX error' rc 'in line' sigl':' "ERRORTEXT"(rc)

 say "SOURCELINE"(sigl)
trace ?r; nop

This code first displays the error code, line number, and error message. It then
displays the line in error, and finally drops into debug mode to let you inspect the
values of the variables used at the line in error.

142 AS/400 REXX/400 Reference V4R1

 Input and Output

Chapter 8. Input and Output Streams

REXX uses standard streams for its display input and output. The standard
streams are automatically available to a REXX program. The three standard
streams REXX uses are:

Standard input The standard input stream is an input only stream with the
predefined label STDIN.

Standard output The standard output stream is an output only stream with the
predefined label STDOUT.

Standard error The standard error stream is an output only stream with the
predefined label STDERR.

REXX determines what the stream characteristics are and what operations are valid
for those streams.

The external data queue is also available to REXX programs for some line
operations.

Default Standard Streams
The standard input stream (STDIN), standard output stream (STDOUT), and
standard error stream (STDERR) are set, by default, as follows:

� If a REXX program is being run interactively, the standard streams all default to
the Integrated Language Environment (ILE) Session Manager. STDIN uses the
ILE Session Manager for input and STDOUT and STDERR use it for output.
These streams provide a line-at-a-time input and output to the display station.

� If a REXX program is being run in batch mode, the standard input stream
defaults to the file QINLINE while the standard output and standard error
streams default to the file QPRINT.

The standard streams open automatically when each is needed by the REXX
program. The SAY instruction uses STDOUT, the PULL instruction uses STDIN
when the external data queue is empty, and the TRACE instruction uses STDIN for
input and STDERR for output.

The standard stream defaults can be overridden with CL commands. Because of
the way standard streams are opened, these CL commands must be issued before
the first use of each stream by the REXX program. To override the standard input
stream, the file name on the CL command must be STDIN. Similarly, for the
standard output and standard error streams, the names must be STDOUT and
STDERR, respectively. The stream defaults can be changed in the following ways:

� STDOUT and STDERR can be redirected to a printer file other than the default
printer file.

� STDIN can be redirected to a database physical file or to a named inline
spooled file.

Since the standard streams are used by the SAY, PULL and TRACE instructions
you must be aware of the fact that overriding the standard streams will affect how
these instructions will operate.

 Copyright IBM Corp. 1997 143

 Input and Output

Note: For more details on the behavior of standard streams, see the ILE C/400
Programmer’s Guide, SC09-2069.

Standard Stream Open
Each standard stream is opened when the first attempt is made to read from or
write to it by the REXX program. Therefore, a REXX procedure may issue override
commands for the standard streams before they are first used within this invocation
of REXX, and they will take effect. If the overrides are issued after the first use,
the override will not affect the current invocation of REXX.

The External Data Queue
The external data queue is a queue of character strings that can only be accessed
by line operations. It is external to REXX procedures because other programs may
have access to the queue when REXX relinquishes control to some other program.
Non-REXX programs access the external data queue through the QREXQ
interface. For more information about the QREXQ interface, see “Queue
Application Programming Interface” on page 170. It is intended to be used as an
inter-program communication device and has the following characteristics:

� Data in the queue is arbitrary and no characters have any special meaning or
effect.

� Lines can be removed from the queue using the REXX instructions PULL and
PARSE PULL.

� When the queue is empty, a PULL or PARSE PULL instruction will read lines
from the default character input stream, the ILE Session Manager, see
“Terminal Input and Output” on page 149.

� If the queue is empty at the time of a request through the QREXQ interface the
“queue empty” return code will be issued.

� Lines can be added to the head of the queue with the PUSH instruction, or to
the tail with the QUEUE instruction.

� The queue may be logically subdivided into independent buffers.

� The QUEUED function returns the number of lines in the entire queue.

� The external data queue is globally available to all programs running within the
same job. One job cannot access another job's external data queue.

 Size Limits
The maximum size of all the data contained in the queue is 15.5MB. The size of a
single data item is limited to 32,767 bytes. Items which are longer than 32,767 will
be truncated with no error indication.

If, by using the PUSH or QUEUE instructions, the maximum size of the queue
would be exceeded, the queue is left unchanged and the following indication(s) are
returned to the program trying to perform the function:

� If the operation is a REXX program executing a PUSH or QUEUE instruction,
then the diagnostic message CPD7CF8, “REXX external data queue is full,” is
sent to the language processor's program message queue. REXX Error 48,
“Failure in system service,” (CPD7CB0) will be set, which in turn will raise the
SYNTAX condition.

144 AS/400 REXX/400 Reference V4R1

 Input and Output

Note: If there is a SIGNAL ON SYNTAX instruction in effect, the REXX
program can issue a RCVMSG command to receive the diagnostic and
determine the cause of Error 48.

� If the operation was a call to the QREXQ interface, then the escape message
CPF7CF8 “External data queue is full,” is issued to the caller's program
message queue and the return code parameter will be set to indicate “No
space available.” For more information about the QREXQ interface, see
“Queue Application Programming Interface” on page 170.

 Damage Handling
If the REXX language processor determines, while executing a queue operation,
that the external data queue has been damaged, the following action is taken:

� If the operation was a REXX PUSH, PULL, or QUEUE instruction, the
diagnostic message “REXX external data queue is damaged,” (CPD7CF7) is
sent to the language processor's program message queue. Then REXX Error
48, “Failure in system service,” (CPD7CB0) is set, which in turn causes the
SYNTAX condition to be raised.

Note: If there is a SIGNAL ON SYNTAX instruction in effect, the REXX
program can issue a RCVMSG command to receive the diagnostic and
determine the cause of the Error 48.

� If the operation was a call to QREXQ, CPF7CF7 is issued and the return code
parameter is set to indicate “queue damaged.”

In either case, the queue will be explicitly marked “damaged” to prevent further
queue operations. To clear this condition, the Remove REXX Buffer
(RMVREXBUF) command with the *ALL parameter can be used. This will delete
the external data queue and create a new one. All data on the queue will be lost.

Note: Once the queue has been damaged, no new REXX programs can be
started, because the REXX language processor's initialization code needs to refer
to the queue. In this situation, escape message CPD7CF7, “REXX external data
queue is damaged,” will be issued and the language processor will end.

CL Queue Commands
The Add REXX Buffer (ADDREXBUF) and Remove REXX Buffer (RMVREXBUF)
commands allow REXX procedures to establish and delete new buffers in the
external data queue. See the CL Reference for the full syntax and use of these
commands.

Example of the use of the REXX queue
/: :/
/: push/pull :/
/: :/
push date() time() /: push date and time :/
do 1��� /: lets pass some time :/
NOP /: doing nothing :/

end /: end of loop :/
pull a /: pull them :/
say 'Pushed at ' a ', Pulled at ' date() time() /: say now and then :/

 Chapter 8. Input and Output Streams 145

 Input and Output

146 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

Chapter 9. AS/400 System Interfaces

This chapter describes the use of the REXX language processor with programs
written in other languages and with other user-defined applications, as well as
some REXX/400 specific topics. The topics discussed in this chapter are:

� Entering REXX Source Code
� Starting the REXX Language Processor
� Terminal Input and Output

 � Pseudo-CL Variables
 � Security
� Return Codes and Values
� Starting the Language Processor from an Application

 � Command Interface
� Data Types and Structures
� External Functions and Subroutines
� Variable Pool Interface
� System Exit Interfaces

 � Queuing Interfaces.

Note: All examples of calling conventions are shown in the ILE/C programming
language. Refer to the Introduction for a list of other applicable languages.

REXX on the AS/400 System
Using REXX on the AS/400 system is discussed in detail in the REXX/400
Programmer’s Guide, SC41-5728. The following sections describe some of the
tools available for developing REXX/400 programs.

Entering REXX Source Code
Because REXX is an interpreted language, a REXX program is not compiled.
Rather, the source code of the program is run by starting the REXX language
processor and specifying the name of a REXX program (its source file and
member) to run. A source file, named QREXSRC, is available in the library QGPL.

The source code for REXX programs can be created using any system text facility,
including the Source Entry Utility (SEU). The SEU does not provide prompting or
syntax checking for REXX source entry. See the ADTS/400: Source Entry Utility
for more information.

Although the REXX language processor will accept a member of any source type,
using the source type REXX for source members that contain REXX programs
provides certain advantages in performance. The REXX language processor
converts the REXX source type into an internal form and saves it to be used for
subsequent calls to that program. For source types other than REXX, the internal
form is not saved when the REXX program ends. This means that every time the
program is run, this internal form will be re-created.

 Copyright IBM Corp. 1997 147

 AS/400 System Interfaces

Starting the REXX Language Processor
REXX programs are run by invoking the REXX language processor and specifying
the name of the REXX program to be run.

REXX can be started in one of two ways: 1) by using the Start REXX Procedure
(STRREXPRC) command or 2) by using a CL command that has a REXX program
as its command processing program (CPP).

In addition, REXX provides an application programming interface (API) to allow
programs written in other languages to make direct use of the language processor.
These interfaces are discussed in “Starting the Language Processor from an
Application” on page 151.

Starting REXX with the Start REXX Procedure (STRREXPRC)
Command
The Start REXX Procedure (STRREXPRC) command starts the REXX language
processor for a specified REXX program. The STRREXPRC command can be
used wherever a CL command is used. This is a way to run a REXX procedure
from a CL program. Another way is CALL QREXX in the QSYS library, see page
151 for more information.

For more information on the STRREXPRC command, see the CL Reference,
SC41-5722.

Starting REXX from a Command Definition Object (CDO)
The REXX language processor is started when a CL command that has a REXX
program specified as its command processing program (CPP) is run. A command
which has a REXX program as the CPP can be used like any other CL command.
In addition, a CDO can be called from within a program written in another
programming language by using the CALL QCMDEXEC facility. See the CL
Reference, SC41-5722, for more information.

The REXX language processor options available to a CL command using a REXX
program as its CPP differ from those available on STRREXPRC:

� You must specify *REXX as the CPP when the CL command is created. That
is, the CPP cannot be changed to or from *REXX by using the Change
Command (CHGCMD) command. Once you create a command, the only way
to change the CPP to or from *REXX is to delete the command and re-create
it.

� You can specify system exit programs and default command environments to
be used with the REXX program CPP when the CL command is created.
These, too, can be changed thereafter only by using CHGCMD.

� You can use more than one CL command parameter to provide input data to
be passed to the REXX program CPP. This differs from the STRREXPRC
command, which provides only one parameter field for data to be passed (as a
single string) to the REXX program.

A CL command using a REXX program as its CPP can define parameters as
needed. Most of the facilities of command definition are available for defining
the parameters. For more information, see the CL Reference, SC41-5722.

� When a REXX program acts as a CPP for a CL command, the input argument
string it receives differs from that passed by the STRREXPRC command. The

148 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

system builds this argument string from the input string, to which data from the
command definition object itself may be added. Only one argument is passed
to REXX by a command. The command string will be expanded to include
keywords and defaults which may not have been explicitly entered.

Terminal Input and Output
When a REXX program is running in interactive mode, all terminal input and output
is displayed by the ILE Session Manager. The ILE Session Manager is a system
facility that provides line mode access to the display for output and the keyboard for
input. This line mode operation is fixed and cannot be changed by the use of
display files.

The ILE Session Manager display provides the following features:

� Paging backward and forward with the PgUp/PgDn keys
� Retrieval of previous entries with function key F9
� Exit with function key F3
� End-of-file signalling with function key F4
� Print the scroller with function key F6
� Scroll to the top with function key F17
� Scroll to the bottom with function key F18
� Scroll to the left with function key F19
� Scroll to the right with function key F20
� Issue commands from the user window with function key F21
� Output of characters below '40'X.

Pseudo-CL Variables in REXX programs
In CL programming, parameters to a command can be specified as explicit values
or as variables. Values may be returned from a command in CL variables though
the use of RTNVAL(*YES) parameters. RTNVAL(*YES) parameters can be
specified when a command is created or changed. This is detailed in the CL
Reference, SC41-5722, REXX programs that call CL commands can use REXX
variables for these parameters. Variable names must conform to both the standard
rules for naming CL variables and to the rules for naming REXX symbols (see
“Assignments and Symbols” on page 21).

� The variable name must be immediately preceded by an ampersand (&) and
have a maximum of 10 characters, not including the ampersand.

� The variable name must begin with an alphabetic character and may contain
any alphabetic or numeric character (A-Z, a-z, 0-9), a period (.), or an
underscore (_).

� DBCS characters are not allowed.

Notes:

1. The period (.), which has no specific significance in CL variable names, is used
in REXX to build compound symbols and arrays.

2. The CL command environment detects all DBCS strings on CL command lines,
independent of REXX's own OPTIONS ETMODE and OPTIONS EXMODE
settings. For more information about DBCS support in REXX, see Appendix A,
“Double-Byte Character Set (DBCS) Support” on page 177.

 Chapter 9. AS/400 System Interfaces 149

 AS/400 System Interfaces

Compound Pseudo-CL Variables
Compound symbols (see “Compound Symbols” on page 22) can also be used to
pass parameters to CL commands.

During processing, REXX builds a derived name from the compound name by
substituting the values of the tail components for the components. REXX then
accesses the variable pool using the derived name. This allows REXX
programmers to simulate arrays, as well as more complex forms of associative
storage.

Consider the set of all REXX compound variables beginning with a given stem. A
REXX programmer can initialize every variable in this set to a given value by
initializing the stem to that value.

The following is an example of using stem variables.

Say A.B /: Program displays 'A.B' :/
A. = 'AS/4��'
Say A. /: Program displays 'AS/4��' :/
Say A.B /: Program displays 'AS/4��' :/
A.2 = 'second'
B = 2
Say A.B /: Program displays 'second' :/
A.THIRD = 3
C = 'THIRD'
Say A.C /: Program displays '3' :/

The order in which return values are assigned to REXX variables depends on the
order in which they occur in the command string. This has special significance
when using compound variables for the RTNVAL(*YES) parameters as
demonstrated in the compound variable example.

The following is an example of using pseudo-CL variables.

'RTVJOBA JOB(&JOBNAME) NBR(&NUM) CURLIB(&LIB.NUM)'
Say 'The name of this job is' jobname'.'
Say ' Its number is' num','
Say ' and its current library is' lib.num'.'

/: However...:/
num = 'ABC'
'RTVJOBA JOB(&JOBNAME) CURLIB(&LIB.NUM) NBR(&NUM)'
Say 'The name of this job is' jobname'.'
Say ' Its number is' num','
Say ' but its current library is not' lib.num'.'
/: Note that because the value of NUM has changed, the variable

LIB.NUM no longer is the one containing the current library.
LIB.ABC contains the current library, because NUM='ABC' is before
the command :/

 Security
Security of REXX procedures is managed at a source file level. REXX runs from
source members which are authorized only at the file level. Authorities and owners
cannot be set for individual members. For more information on AS/400 system
security, see the Security – Reference book.

150 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

 Application Interfaces
In this section, the term application refers to programs written in languages other
than REXX. The features described here allow an application to extend many parts
of the REXX language through the use of handlers for command, external function
and system exit processing.

Commands Commands are single clauses consisting of just an
expression. The expression is evaluated and the result is
passed as a command string to the currently addressed
environment.

External Functions External functions are direct extensions to the capabilities
of REXX. An application or REXX program can provide a
function to augment the set of built-in REXX functions.
Unlike commands which generally correspond to the
application's usual command set, functions are generally
very REXX specific and may only have a meaning from
within REXX.

System Exits System exits allow REXX to operate under
programmer-defined variations of the operating
environment. By using these exits, specific REXX actions
can be run as calls to routines provided by the caller of the
language processor, instead of using code of the language
processor itself.

In addition, REXX also provides the means for applications to manipulate the
variables in REXX programs (the variable pool interface) and to use and manipulate
the REXX external data queue (queuing services).

Return Codes and Values
Most system interfaces require that an integer code be returned from the interface
to indicate success or failure of the call. This is commonly called a return code.
Many interfaces also have a specific return value, not indicating success or failure,
but rather a value requested for use by the function. The return value in many
cases is set by the variable pool interface from commands to the RC variable
differs from return codes passed across interfaces to indicate success or failure.
For example, when using a system exit to handle commands, the following
happens:

1. The command is processed and a return value is set through the variable pool
interface. The return value is placed in the special variable RC as the
command's return code.

2. The return code parameter of the system exit program is set to an integer
which indicates success or failure of the system exit. This has no effect on the
value in the RC variable.

Starting the Language Processor from an Application
An application can start the REXX language processor by calling the program
QREXX in the QSYS library. The parameter structure that can be passed is:

Source Member Name (required)
The name of the source member that contains the REXX program to be run.
This parameter must be a 10-byte character field.

 Chapter 9. AS/400 System Interfaces 151

 AS/400 System Interfaces

Source File Name (required)
The qualified name of the source file that contains the member that is specified
in parameter 1 above. This parameter must be a 20-byte character field. The
file name occupies the first ten positions of this field and is left justified. The
library name occupies the second 10 positions and is also left justified. The
library name can be *LIBL, *CURLIB, or an actual library name.

Argument String (required)
A structure consisting of a 2-byte binary field followed by a character field. The
2-byte binary field contains a positive integer value that specifies the length of
the character field. The character field must be at least as long as specified by
the 2-byte binary field but may be longer. REXX will only process the specified
length. All data within the character field is treated as character data. The
character field is the argument string that will be made available to the REXX
program. The maximum length of the character field is 32,767. If there is no
argument string to be passed, then the length field must be zero.

Command Environment (required)
The name of the initial command environment when the REXX program is
started. This is a 20-byte character field. If the host CL command environment
is to be used, either the value COMMAND or *COMMAND can be placed in this
field, left justified. If this field is entirely blank, the value *COMMAND is
assumed. If a program is to be used, the first 10 positions contain the name of
the program, left justified, while the next ten bytes contain the library qualifier,
left justified. The library qualifier can be *LIBL, *CURLIB, or an actual library
name.

The CPICOMM, *CPICOMM, EXECSQL, and *EXECSQL values can also be
used as the initial command environment when the REXX program is started.

The CPICOMM environment, which is the communications element of the SAA
Common Programming Interface (CPI), lets you issue CPI-Communications
commands. For more information on CPI-Communications, see the CPI
Communications Reference.

The Structured Query Language (SQL) environment, called EXECSQL, lets you
use SQL, which is the standard database interface language used by DB2/400.
For more information on SQL statements, see the DB2 for AS/400 SQL
Reference, or for information on EXECSQL, see the DB2 for AS/400 SQL
Programming.

Note: To use the EXECSQL environment on a system which does not have
the DB2/400 Query Management and SQL Development Kit Version 3 LPP,
5763-ST1, installed, see the DB2 for AS/400 SQL Programming for special
instructions for handling the REXX program.

System Exits (required)
The array of structures that identify the system exits to be used by this
invocation of the REXX language processor. For each, a structure comprising
two subfields is used:

� A 20-byte character field that specifies the name of the program to be used
for this exit code. The first 10 positions specify the name of the program,
left justified. The second 10 positions specify the name of the library, also
left justified. The library name can be given as *LIBL, *CURLIB, or an
actual library name.

� A 2-byte binary field that specifies one of the valid system exit codes.

152 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

One such structure must be provided for each system exit being used. The
total number of structures must equal the number specified in the Number of
System Exits parameter.

Number of System Exits (required)
A 2-byte binary field that contains an integer value. This value specifies the
number of system exits that are being provided by the System Exit parameter.
If the value is 0, no system exits will be in use.

Note: Above parameters are positional and must be supplied. However, a null
parameter will work for parameters 3-6.

 Command Interface

The CL Command Environment (COMMAND)
The CL command environment is the default command environment. It processes
CL commands from within a REXX program.

Special handling is required when a command has RTNVAL(*YES) parameters.
See “Pseudo-CL Variables in REXX programs” on page 149 for details.

Command Logging: The AS/400 system uses the *LOGCLPGM job attribute
whenever a REXX program issues a command in the CL command environment
COMMAND. In other words, if *LOGCLPGM *YES is active, then CL commands
used in REXX programs are logged by the system when they are run. Note that if
REXX tracing is active, commands may appear twice in the job log, once as trace
output and once as logged by the system.

Return Codes from COMMAND: A command that ends without issuing an
escape message will cause the RC variable to be set to zero (0). Otherwise, the
RC variable is set to the message ID of the escape message received.

REXX monitors for escape messages issued by a CL command called by a REXX
program. Any command resulting in an escape message of CPF0001 or CPF9999
will raise a FAILURE condition. Once the FAILURE condition is raised, the special
variable RC will be set to that particular escape message ID.

Any command resulting in an escape message other than CPF0001 or CPF9999
will raise an ERROR condition. Once the ERROR condition is raised, the special
variable RC will be set to that particular escape message ID.

Notes:

1. If a command is longer than the maximum length of 6,000 bytes, a return code
of -1 is immediately returned to the REXX program in the RC variable, and the
command is not issued. The failure condition is raised.

2. Status and notify messages from the user-defined and CL command
environments can be trapped using the Set Message Return Code
(SETMSGRC) function. For more information on the SETMSGRC function, see
“SETMSGRC” on page 108.

 Chapter 9. AS/400 System Interfaces 153

 AS/400 System Interfaces

The CPI-Communications (CPICOMM) and Structured Query
Language (EXECSQL) Command Environments
The CPICOMM environment, which is the communications element of the SAA
Common Programming Interface (CPI), lets you issue CPI-Communications calls.
For more information on CPI-Communications, see the CPI Communications
Reference.

The Structured Query Language (SQL) environment, called EXECSQL, lets you use
SQL, which is the standard database interface language used by DB2/400. For
more information on SQL statements, see the DB2 for AS/400 SQL Reference, or
for information on EXECSQL, see the DB2 for AS/400 SQL Programming.

Note: To use the EXECSQL environment on a system which does not have the
DB2/400 Query Management and SQL Development Kit Version 3 LPP, 5763-ST1,
installed, see the DB2 for AS/400 SQL Programming for special instructions for
handling the REXX program.

Return Codes from CPICOMM: The REXX variable RC indicates either a
successful call to the CPI-Communications Interface or a failure to call the
CPI-Communications Interface. If the call completes successfully, the REXX RC
variable is set to zero. If the call cannot be completed, the REXX RC variable is
set to a negative number and the failure condition is raised. For more information
on values returned in the REXX RC variable for the CPICOMM environment, refer
to the REXX/400 Programmer’s Guide, SC41-5728.

Return Codes from EXECSQL: The REXX variable RC indicates the overall
status of a call to the SQL environment. If the call completes successfully, the
REXX RC variable is set to zero. A positive number indicates an SQL warning,
and a negative number indicates an SQL error condition. For more information on
values returned in the REXX RC variable for the EXECSQL environment, refer to
the REXX/400 Programmer’s Guide, SC41-5728, the DB2 for AS/400 SQL
Reference, SC41-5612, or the DB2 for AS/400 SQL Programming, SC41-5611.

User-Defined Command Environments
When a user-defined environment is active or addressed, a REXX command is
passed to the specified program as a parameter.

When it returns, the environment must pass back to REXX a return code that
indicates if the command was successfully processed. (See “ADDRESS” on
page 30 for the format of user-defined environment names.)

The program specified as the command environment must conform to REXX
linkage conventions. These conventions make use of a two-byte binary integer
data type, so not all programming languages can be used to code the program.
The value returned is placed into a special REXX variable, named RC, which can
then be used by the REXX program.

A standard system call to the program specified by the environment name is made,
and the return value passed back by the program sets RC. The program must
accept the following parameters:

1. The command in SHORT_VARSTRING format. The SHORT_VARSTRING
structure passes varying length strings between the REXX language processor
and command environments. It is defined as follows:

� A two-byte integer containing the length of the string

154 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

� The actual string.

2. The return value string for the RC variable in a SHORT_VARSTRING structure.
This buffer is pre-allocated by REXX to a length of 500 bytes and set to � (for
example, length=1, string=‘0’). The program must put the return value for the
RC variable into this buffer and set the length to the length of the data in the
buffer.

3. A two-byte integer to be set by the program to the proper Error or Failure code.
This parameter is initialized to 0. The following are the valid return codes for
this parameter, and the action the language processor takes as a result:

0 Command executed successfully. No action taken by the language
processor.

1 A command ERROR occurred. The language processor raises the
ERROR condition.

2 A command FAILURE occurred. The language processor raises the
FAILURE condition.

Return Codes from User-Defined Command Environments: Return codes from
user-defined command environments are obtained from the return value string
parameter. The only restriction is that the maximum length of a return code is 500
bytes. Escape messages may be used in place of the return value string
parameter. If an escape message is issued to the language processor by a
user-defined command environment, it will be treated exactly as an escape in the
CL command environment, except that for all escape messages the failure
condition is raised. For example, RC is set to the message ID of the escape
message, the message is left marked new, or other appropriate actions are taken.
The value, if any, in the return value string parameter is then ignored.

Note: If a command is longer than the maximum length of 6,000 bytes, a return
code of -1 is immediately returned to the REXX program in the RC variable, and
the command is not issued. The failure condition is raised.

Data Types and Structures
Many of the interfaces described in this chapter require a method by which
arguments may be passed. The data structure named RXSTRING is used for
communication between the REXX language processor and application programs.
A RXSTRING contains a pointer to a character string followed by a four-byte binary
value containing the length of the string. For example, in ILE/C an RXSTRING
could be declared as follows:

typedef struct {
char :rxstrptr; /: Pointer to the string :/
unsigned long rxstrlen; /: Length of the string :/

} RXSTRING

REXX arguments may either be given a value (which may be null, '') or not
specified at all.

� If an argument is specified, then the appropriate parts of the RXSTRING will be
given values.

� If a null string ('') is specified as the argument, then rxstrlen will be zero, and
rxstrptr will be nonzero.

� If no argument is specified, then rxstrptr will be zero.

 Chapter 9. AS/400 System Interfaces 155

 AS/400 System Interfaces

All of the interface examples in this section are written in ILE/C.

External Functions and Subroutines
External functions and subroutines may be written in REXX or in other languages
that support the system-dependent interface. Details on invoking REXX external
functions and subroutines are provided in Chapter 4, “Functions” on page 75. This
section describes the system-dependent interface to external functions and
subroutines written in languages other than REXX.

 Search Order
External functions and subroutines are located by using the methods used to
resolve a REXX CALL reference. They can reside in any library, and will be found
as long as the library is in the job's current library list. Note that explicit library
qualification is not supported.

 Arguments
All external functions, including those described here, require a method by which
string arguments may be passed. A maximum of 20 arguments in an external
function or subroutine invocation is allowed.

The following is an example:

typedef struct /: The RXSTRING structure. :/
{ char :rxstrptr ; /: Pointer to string data. :/

unsigned long rxstrlen ; /: Length of string. :/
} RXSTRING; /: :/

main(int argc, char :argv[])
{

/: Declaration of Local variables to receive the passed para- :/
/: meters follows: :/
RXSTRING :args ; /: Parameter array (see note 1). :/
short int numargs ; /: Number of elements in the :/

/: parameter array. :/
short int func_sub ; /: Function or external :/

/: subroutine call. :/
short int :errflag ; /: Success/Failure flag. :/

/: Some code to get the information passed into the declared :/
/: local variables following. :/

args = (RXSTRING :) argv[1] ; /: (See note 2.) :/
numargs = :(short int :) argv[2] ; /: Maximum of 2� allowed. :/
func_sub = :(short int :) argv[3] ; /: (See note 3.) :/
errflag = (short int :) argv[4] ; /: (See note 4.) :/

/: All the remaining ILE/C program statements. :/
}

The arguments are described as:

ARGS is the pointer to an array of RXSTRINGS.

NUMARGS is a two-byte integer which indicates the number of parameters.

156 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

FUNC_SUB is a two-byte integer flag which indicates how the program was
called. The possible values are:

1 indicates a subroutine invocation. For example,

Call EXTFUNC 1, 'A'

2 indicates a function invocation. For example,

x = EXTFUNC(1, 'A')

ERRFLAG is a two-byte integer return code which indicates success or failure.
If zero (0), the routine was called correctly and no serious errors
occurred. If nonzero, the language processor will assume that the
routine was called incorrectly. It will issue Error 40, “Incorrect call
to routine” and raise the SYNTAX condition. If no SIGNAL ON
SYNTAX instruction is in effect, the REXX program will be
terminated.

If the function wants to indicate an error situation to the language processor, it
should return a nonzero code in the ERRFLAG parameter. Escape messages will
be monitored, and kept as diagnostic messages, but will be treated like nonzero
return codes. The language processor will issue Error 40, “Incorrect call to routine”
and raise the SYNTAX condition.

 Return Value
All external functions must have a returned value.

External subroutines can have a returned value. This value is used to replace the
function invocation which is automatically placed in the special variable RESULT.
To set this value, the external functions and subroutines use the variable pool
interface, with function code SHVEXTFN.

System Exit Interfaces
User-written system exit programs can be used to define how an application which
is using the language processor controls certain services. Each exit interface
provides access to a separate type of service required by the language processor.
The exit may either replace or supplement the default action taken by the REXX
language processor. See “Exit Conditions” on page 160 for more information.
System exits can be written to control how REXX programs perform the following
tasks:

� Process external functions
 � Process commands
� Manipulate the external data queue
� Perform input and output

 � Halt processing
 � Trace
 � Initialize processing
 � Terminate processing.

When the REXX language processor is called, the exit routines may be specified
with the EXITPGM parameter of the Start REXX Procedure (STRREXPRC)
command, the REXEXITPGM of the Create Command (CRTCMD) and Change
Command (CHGCMD) commands, or the exitpgm parameter on a call to the
QREXX interface. See “Starting the Language Processor from an Application” on

 Chapter 9. AS/400 System Interfaces 157

 AS/400 System Interfaces

page 151 for details on how the exit programs are specified by the QREXX
interface. The specified system exits will be used whenever the language
processor requires that service.

The descriptions of each exit interface, explanations for when they are called, and
the required conventions are provided in the following sections.

Notes:

1. Because pointers are required for passing parameters to system exit programs,
system exits may only be written in languages which support a pointer data
type.

2. When exits are specified, all REXX programs called as external functions or
subroutines will also run using the exits specified for the top level program.
REXX programs called with a command will not use these exits unless they are
specified on the command.

System Exits and the Variable Pool
Many of the exits require that an arbitrary length character string is passed back to
the language processor as a result. The SHVEXIT function of the QREXVAR
program is available for this purpose. QREXVAR may only be called once per
invocation of the exit to return a value through SHVEXIT. If it is called more than
once, QREXVAR will return the code indicating that the requested service is not
available.

In general, the SHVEXIT function is the only variable pool function available to
system exit programs. However, the RXFNC, RXCMD, RXINI, and RXTER exits
have all the variable pool functions available to them.

System Exit Functions and Subfunctions
The following table lists the system exit functions and subfunctions defined for the
REXX language processor. These are passed to the exit programs in the FUNC
and SUBFUNC parameters.

158 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

Table 2. System Exit Functions and Subfunctions

Function Subfunction Description

RXFNC 2 Process external functions

RXFNCCAL 1 Currently the only subcode value

RXCMD 3 Process host commands

RXCMDHST 1 Currently the only subcode value

RXMSQ 4 Manipulate queue

RXMSQPLL 1 Pull a line from queue

RXMSQPSH 2 Place a line on queue

RXMSQSIZ 3 Return number of lines on queue

RXSIO 5 Session input and output

RXSIOSAY 1 SAY a line to STDOUT

RXSIOTRC 2 Trace output

RXSIOTRD 3 Read from session char stream

RXSIODTR 4 DEBUG read from session char stream

RXHLT 7 Halt processing

RXHLTCLR 1 Clear HALT indicator

RXHLTTST 2 Test HALT indicator

RXTRC 8 Test external trace indicator

RXTRCTST 1 Currently the only subcode value

RXINI 9 Initialization processing

RXINIEXT 1 Currently the only subcode value

RXTER 10 Termination processing

RXTEREXT 1 Currently the only subcode value

 Entry Conditions
A system exit is identified when REXX is called in order to control a specific REXX
service. A single program can serve as a handler for more than one exit, if
desired. The exit program parameter list must be declared as follows:

FUNC is the integer code, two-bytes in length.

SUBFUNC is the subfunction code for the exit, two-bytes in length.

RC is the four-byte integer return code to be set by the exit.

PARM is a pointer to the exit specific parameter structure that is identified by
the exit function and subfunction codes in the FUNC and SUBFUNC
parameters. See the exit descriptions for the format of the parameter
structure for each exit.

The following example shows how an exit program would access the parameters
passed to it.

 Chapter 9. AS/400 System Interfaces 159

 AS/400 System Interfaces

main (argc, argv)
int argc; /: Number of parameters, should be five (5):/
char :argv[]; /: Parameter array :/

/: Local variables :/
int :func; /: the function :/
int :subfunc; /: the sub-function :/
int :rc; /: exit return code :/
RXxxx_PARM :parm; /: must be cast to RXxxx_PARM depending :/

/: on func and subfunc :/

/: Some executable code to get the parameters into local variables :/
func = (int :) argv[1]; /: Function is first parm :/
subfunc = (int :) argv[2]; /: Sub-function is second parm :/
rc = (int :) argv[3]; /: Return Code is the third parm, :/

/: referenced in the program by :rc :/
parm = (RXxxx_PARM :) argv[4];

/: Exit-specific parameter block is fourth,:/
/: referenced in the program by :parm :/

 Exit Conditions
On return from the exit, the return code indicates the results of the exit call and the
parameter structure is updated by the exit interface. The return code can signal
one of three actions:

0 Exit performed successfully. The parameter structure has been updated
as appropriate for that exit.

1 Exit chose not to handle the request. The language processor will
handle the request using the default means.

-1 Exit detected an error during processing. REXX Error 48, “Failure in
system service,” (CPD7CB0) will be raised. The exit will not be
disabled.

If an exit program sends an escape message to the language processor, then Error
48, “Failure in system service,” (CPD7CB0) is raised, and the exit is disabled for
the duration of this invocation of the language processor.

 Exit Definitions
RXFNC This exit is called before an external function or subroutine is called by

the REXX program. The exit is responsible for locating and invoking the
requested routine.

Currently this service supports only one subfunction. The subfunction
request code is specified by the second parameter. The RXFNC
subfunction and parameter structure are:

RXFNCCAL Process external functions.

160 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

struct rxfnc_parm {
 struct {

unsigned char rxfferr; /: Character field with 1 byte length :/
/: 1 = Invalid call to routine :/
/: � = Valid call to routine :/

unsigned char rxffnfnd; /: Character field with 1 byte length :/
/: 1 = Routine not found :/
/: � = Routine found :/

unsigned char rxffsub; /: Character field with 1 byte length :/
/: 1 = Subroutine call :/
/: � = Function call :/

 } rxfnc_flags;
short int rxfnc_argc; /: Integer field with 2 byte length :/

/: Number of arguments in list :/
RXSTRING rxfnc_name; /: Routine name :/
PRXSTRING rxfnc_arguments; /: Pointer to argument list :/

}

The function to be called is defined by the rxfnc_name RXSTRING. The
arguments to the function are contained in the array pointed to by
rxfnc_arguments. The individual elements of the array are RXSTRINGs
that define each argument.

The flag rxffsub is on if the routine is called using the CALL instruction
rather than as a function.

On return from the exit, values in rxfnc_flags indicate the processing
status of the function.

� If neither rxfferr nor rxffnfnd is on, the routine was called
successfully and ran.

� If rxffnfnd is on, the exit handled the request, but could not locate
the requested function or subroutine. The language processor will
raise REXX Error 43, “Routine not found,” (CPD7CAB).

� If rxfferr is on, the exit handled the request, but an error occurred
during execution of the function or subroutine. In this situation, the
language processor will raise REXX Error 40, “Incorrect call to
routine,” (CPD7CA8).

Function return values are passed back to the language processor using
the SHVEXIT function of the QREXVAR routine. This routine may only
be called once per invocation of the exit to return a value. If the routine
was called as a function and a result was not returned, the language
processor will give REXX Error 44, “Function did not return data,”
(CPD7CAC). If the routine was called as a subroutine, the returned
result is optional.

 Chapter 9. AS/400 System Interfaces 161

 AS/400 System Interfaces

RXCMD This exit is called whenever the language processor is going to call a
command. The exit is responsible for locating and invoking the
command, given string and the current environment name.

RXCMDHST Invoke a host command.

struct rxcmd_parm {
 struct {

unsigned char rxfcfail; /: Character field with 1 byte length :/
/: 1 = Command FAILURE occurred :/
/: (can be trapped using SIGNAL or :/
/: CALL ON FAILURE) :/
/: � = Command FAILURE did not occur :/

unsigned char rxfcerr; /: Character field with 1 byte length :/
/: 1 = Command ERROR occurred :/
/: (can be trapped using SIGNAL :/
/: or CALL ON ERROR) :/
/: � = Command ERROR did not occur :/

 } rxcmd_flags;
RXSTRING rxcmd_address; /: Current address name :/
RXSTRING rxcmd_command; /: Command to be processed :/

}

The rxcmd_address RXSTRING describes the current address setting
under which the command is to be issued and rxcmd_command is the
actual command being issued.

The flags rxfcfail and rxfcerr are used by the exit to indicate that an
ERROR or FAILURE condition has occurred. The definition of what
constitutes an ERROR or FAILURE of a command is under the control
of the exit. Commands flagged as an ERROR will trigger a SIGNAL ON
ERROR or CALL ON ERROR trap, if one is in effect. Commands
flagged with a FAILURE condition will have a similar effect, with SIGNAL
ON FAILURE and CALL ON FAILURE. If both FAILURE and ERROR
are both being trapped, ERRORS are ignored.

Notes:

1. To cause CL commands to be processed from this exit, the system
program QCMDEXC must be used.

2. The QREXVAR interface is fully enabled during calls to the RXCMD
exits.

RXMSQ Manipulate queue.

This service supports a number of subfunctions for external data queue
services as specified by the second parameter. The parameter structure
depends on the particular subfunction called. The RXMSQ subfunctions
and their parameter structures are:

RXMSQPLL Pull a line from the queue. This exit is called to process
requests to pull a line from the external data queue for
PULL and PARSE PULL instructions. This exit only
handles the data queue requests, the session input
portion of the PULL and PARSE PULL commands would
be handled by the RXSIO set of exits. RXMSQSIZ is
called first, to determine if there are items in the queue.
If the queue is empty, RXSIO is called.

There are no parameters for this exit. The data to be
returned by the exit must be returned by using the
SHVEXIT function of the QREXVAR routine. This
routine may only be called once per invocation of the

162 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

exit to return a value. If the exit handles the call, but
returns no data by using SHVEXIT, it is treated as
though a null line was returned.

RXMSQPSH Place a line on the queue. This exit is called by the
PUSH and QUEUE instructions to place a line on the
external data queue.

struct rxmsq_parm {
 struct {

unsigned char rxfmlifo; /: Char. field - 1 byte length :/
/: 1 = Stack the line LIFO :/
/: � = Stack the line FIFO :/

 } rxmsq_flags;
RXSTRING rxmsq_value; /: Data to be stacked :/

}

The line to be placed on the queue is the result of
evaluating the expression specified on a PUSH or
QUEUE instruction. It is the responsibility of the exit to
handle truncation of this string if the exit has a restriction
on the maximum width of the queue. The queuing order
is indicated by the flag rxfmlifo.

RXMSQSIZ Return the number of lines in the queue. This exit is
called when the QUEUED() built-in function determines
the current size of the data queue.

struct rxmsq_parm {
unsigned long rxmsq_size; /: Number of lines in stack :/

}

On return from the exit, rxmsq_size contains the size of
the data queue as a four-byte integer.

Note: To access the external data queue from an exit program, the
QREXQ interface must be used.

RXSIO Session input and output.

This service supports a number of subfunctions for performing session
input and output. The second parameter specifies which RXSIO
subfunction is being requested. The exit parameter structure depends
on the particular subfunction called. The RXSIO subfunctions and their
parameter structures are:

RXSIOSAY Session output processing. This exit is called to process
the output from the SAY instruction.

struct rxsio_parm {
RXSTRING rxsio_value; /: Actual data to display :/

}

The line to be displayed on the standard output stream
is the result of evaluating the expression specified on a
SAY instruction. This string may be any length up to the
maximum possible string size of approximately 16MB. It
is the responsibility of the exit to handle truncation of this
string if the string is too long.

RXSIOTRC TRACE output processing. This exit is called to process
output resulting from the TRACE instruction.

struct rxsio_parm {
RXSTRING rxsio_value; /: Pointer to line to display :/

}

 Chapter 9. AS/400 System Interfaces 163

 AS/400 System Interfaces

The line to be displayed at the session is the result of a
traced line. This string may be any length up to 16MB.
It is the responsibility of the exit to handle truncation of
this string if the string is too long.

RXSIOTRD Read from session. This exit is called to handle the
session input and output portion of the PULL, PARSE
PULL, and PARSE LINEIN instructions. This exit is only
called for the actual input and output portion of these
instructions. Requests to read from the external data
queue are handled using the RXMSQ set of exits.

There are no parameters for this exit. The data to be
returned by the exit must be returned by using the
SHVEXIT function of the QREXVAR routine. This
routine may only be called once per invocation of the
exit to return a value. If the exit handles the call, but
returns no data using SHVEXIT, it is treated as though a
null line was returned.

RXSIODTR Trace read from session. This exit subfunction
processes input requests from REXX interactive debug
pauses.

There are no parameters for this exit. The data to be
returned by the exit must be returned using the
SHVEXIT function of the QREXVAR routine. SHVEXIT
may only be set once per invocation of the exit to return
a value. If the exit handles the call, but returns no data
using SHVEXIT, it is treated as though a null line was
returned.

RXHLT Halt processing.

This service supports a number of subfunctions for processing external
halt requests. The second parameter specifies which subfunction is to
be processed. The exit parameter structure depends on the particular
subfunction called. The RXHLT subfunctions and their parameter
structures are:

RXHLTCLR Clear halt indicator. This exit is called after the language
processor has recognized a halt request and the halt
request has been trapped by the REXX program using
SIGNAL ON HALT or CALL ON HALT. This exit has no
exit-specific parameter structure. It signals the exit
handling HALT processing that the condition has been
recognized and should be cleared.

RXHLTTST Test halt indicator. This exit is called after execution of
each clause of the REXX program to check if a halt
condition should be raised.

struct rxhlt_parm {
 struct {

unsigned char rxfhhalt; /: Char. field - 1 byte length :/
/: 1 = HALT cond. occurred :/
/: � = HALT cond. did not occur :/

 } rxhlt_flags;
}

164 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

On return from this exit, rxfhhalt will indicate whether a
halt condition has occurred. The exit may also return a
string that will be available using the CONDITION(D)
built-in function. This string is returned by using the
SHVEXIT function of the QREXVAR routine. This
routine may only be called once per invocation of the
exit to return a value.

Notes:

1. If the halt condition raised by a call to this exit is trapped by a
SIGNAL ON HALT or CALL ON HALT instruction, then a call to the
RXHLTCLR subfunction will occur to indicate that the condition has
been trapped and should be cleared.

2. Both the HALT and TRACE exits are called by the REXX language
processor each time a clause boundary within the REXX procedure
is encountered. The HALT exit is called first, but if the exit indicates
that a HALT should take place, the TRACE exit is still called. Thus,
it is possible to both raise the HALT condition and alter the trace
setting at one clause.

RXTRC This exit is called after execution of each clause of the REXX program
to check if tracing should be turned on or off.

RXTRCTST Test external trace indicator.

struct rxtrc_parm {
 struct {

unsigned char rxftrace; /: Character field with 1 byte length :/
/: 1 = Trace on external trace setting :/
/: � = Trace off external trace setting :/

 } rxtrc_flags;
}

On return from this exit, rxftrace will indicate whether an external trace
condition has occurred.

The language processor keeps a shadow copy of the rxtrctst return
value. When this setting changes from OFF to ON, the language
processor will turn on interactive debug mode as if the instruction
TRACE ?R had been issued within the program. If the language
processor detects a change in this setting from ON to OFF, then the
language processor will turn off tracing as if the instruction TRACE OFF
had been issued.

Note: Both the HALT and TRACE exits are called by the REXX
language processor each time a clause boundary within the REXX
procedure is encountered. The HALT exit is called first, but if the exit
indicates that a HALT should take place, the TRACE exit is still called.
Thus, it is possible to both raise the HALT condition and alter the trace
setting at one clause.

RXINI This exit is called before interpretation of the first instruction of a
program (including programs called as external functions and
subroutines).

RXINIEXT Initialization processing.

This exit has no exit-specific parameter structure. It is called before the
first instruction of the program is interpreted. The QREXVAR interface
is enabled when this exit is called.

 Chapter 9. AS/400 System Interfaces 165

 AS/400 System Interfaces

RXTER This exit is called after interpretation of the last instruction of a program
(including programs called as external functions and subroutines).

RXTEREXT Termination processing.

This exit has no exit-specific parameter structure. It is called after the
last instruction of the program is interpreted. The QREXVAR interface is
enabled when this exit is called.

The variable pool interface is used by other programs to manipulate the set of
variables available to the last active REXX program.

The QREXVAR Interface
QREXVAR, located in the QSYS library, is the program that performs the functions
of the variable pool interface. Its calling syntax is:

#pragma linkage(QREXVAR,OS)

extern void QREXVAR (SHVBLOCK :, short int :);

 QREXVAR(shvblock_list_ptr, &return_code);

where:

shvblock_list_ptr
is a pointer to a list of shared variable request blocks.

return_code
is a two-byte integer indicating success or failure.

A linked list of shared variable request blocks is passed to the REXX function
QREXVAR, with shvblock_list_ptr serving as the pointer to that list. Each request
block can specify a different operation for the language processor to perform. Each
request block is processed in turn, and control returns to the caller after the last
block is processed or after a severe error has occurred. Therefore, the language
processor can perform multiple operations with a single call to QREXVAR.

The two-byte SHVRET integer return code returned from the QREXVAR call
contains the return code from the entire set of requests. The return code for each
individual shared variable request block is found in a field of the block. The
possible return codes from QREXVAR are:

0 or positive
Entire shared variable request block list was processed. The return
code is the composite OR of the low-order shvret bytes. The bit
positions, and corresponding meanings, are shown in “Shared-Variable
Request Block.”

-1 Entry conditions were not valid. The variable pool interface is not
enabled at this time. The caller is not allowed to access the variable
pool at this time or a specific variable pool function is not currently
enabled.

Note: Many of the parameters for the QREXVAR interface are passed in the form
of an RXSTRING. See “Data Types and Structures” on page 155 for additional
detail.

166 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

Shared-Variable Request Block
The layout of a shared variable request block is as follows:

typedef struct shvnode {
struct shvnode :shvnext; /: chain pointer (� if last block):/

RXSTRING shvname; /: Pointer to variable name :/
RXSTRING shvvalue; /: Pointer to value buffer :/
unsigned char shvcode; /: Individual function code :/
unsigned char shvret; /: Individual return code flags :/

} SHVBLOCK;

The variable pool can have the following function codes.

The variable pool can return the following values.

The SHVCODE functions use either a symbolic or direct interface to work with
compound variables.

Symbolic The symbolic interface, used by SHVSYSET, SHVSYFET and
SHVSYDRO, evaluates compound variables in the same way REXX
does. See “Compound Symbols” on page 22 for more information.

Table 3. Variable Pool Function Codes

Function (shvcode) Value Description

SHVSET 0 Set variable from given value

SHVFETCH 1 Fetch value of variable

SHVDROPV 2 Drop variable

SHVSYSET 3 Symbolic name Set variable

SHVSYFET 4 Symbolic name Fetch variable

SHVSYDRO 5 Symbolic name Drop variable

SHVNEXTV 6 Fetch "next" variable

SHVPRIV 7 Fetch private information

SHVEXIT 8 Set system exit return value

SHVEXTFN 9 Set external function value

Table 4. Variable Pool Return Code Flags

Flag (shvret) Value (Hex) Description

SHVCLEAN 0x00 Execution was successful

SHVNEWV 0x01 Variable did not exist

SHVLVAR 0x02 Last variable transferred

SHVTRUNC 0x04 Truncation occurred (Fetch)

SHVBADN 0x08 Invalid variable name

SHVMEMFL 0x10 Out of memory failure

SHVBADF 0x80 Invalid function code (shvcode)

 Chapter 9. AS/400 System Interfaces 167

 AS/400 System Interfaces

Direct The direct interface does not evaluate compound variables. Therefore,
any characters are allowed following a valid REXX stem. This interface
is used by SHVSET, SHVFETCH, SHVDROPV, SHVNEXTV, SHVPRIV,
SHVEXIT, and SHVEXTFN.

The specific actions for each function code are as follows:

SHVSET and SHVSYSET
Set variable. The shvname RXSTRING describes the name of the
variable to be set, and shvvalue describes the value which is to be
assigned to it. The name is validated to ensure that it does not contain
invalid characters, and the variable is then set from the value given. If
the name is just a stem, all variables with that stem are set, just as
though this was a REXX assignment. SHVNEWV is set if the variable
did not exist before the operation.

SHVFETCH and SHVSYFET
Fetch variable. The shvname RXSTRING describes the name of the
variable to be fetched. shvvalue is a buffer into which the data is to be
copied, and the RXSTRING length contains the length of the buffer.
The name is validated to ensure that it does not contain invalid
characters, and the variable is then located and copied to the buffer.
The shvvalue RXSTRING length is updated with the total length of the
variable. If the value was truncated because the buffer was not big
enough, the SHVTRUNC bit is set and the length is changed to the
correct length. If the variable is shorter than the length of the buffer, no
padding takes place. If the name is a stem, the initial value of that
stem, if any, is returned.

SHVNEWV is set if the variable did not exist before the operation, and
in this case the value copied to the buffer is the derived name of the
variable. The variable still does not exist after this call.

SHVDROPV and SHVSYDRO
Drop variable. The shvname RXSTRING describes the name of the
variable to be dropped. shvvalue is not used. The name is validated to
ensure that it does not contain invalid characters, and the variable is
then dropped, if it exists. If the name given is a stem, all variables
starting with that stem are dropped. If the variable does not exist the
shvnewv flag is set.

SHVNEXTV
Fetch next variable. This function may be used to search through all the
variables known to the language processor — all those of the current
generation, excluding those “hidden” by PROCEDURE instructions. The
order in which the variables are revealed is not specified.

The language processor maintains a pointer to its list of variables. This
is reset to point to the first variable in the list whenever:

1. A host command is issued

2. An external function or subroutine is called

3. Any function other than SHVNEXTV is processed through the
QREXVAR interface.

Whenever a SHVNEXTV function is processed, the name and value of
the next variable available are copied to two buffers supplied by the
caller.

168 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

shvname is a buffer into which the name is to be copied. The total
length of the name is put into the length field of shvname, and if the
name was truncated, because the buffer was not big enough, the
SHVTRUNC bit is set and the length is changed to the correct length. If
the name is shorter than the length of the buffer, no padding takes
place. The value of the variable is copied to the shvvalue buffer area
using exactly the same protocol as for the Fetch operation.

If shvret has SHVLVAR set, the end of the list of known variables has
been found, the internal pointers have been reset, and no valid data has
been copied to the user buffers. If SHVTRUNC is set, either the name
or the value has been truncated.

By repeatedly executing the SHVNEXTV function, until the SHVLVAR
flag is set, a user program may locate all the REXX variables of the
current generation.

SHVPRIV Fetch private information. This interface is identical with the
SHVFETCH interface, except that the name refers to certain fixed
information items that are available. The entire name must be specified
for the fetch to occur. The following names are recognized:

PARM The number of arguments supplied to the procedure will be
placed in the caller's buffer. The number will be formatted as
a character string.

PARM.n The nth argument string will be placed in the caller's buffer.
If the nth argument was not supplied to the program, whether
omitted, null, or fewer than N parameters were specified,
then a null string will be returned.

SOURCE Fetch source string. The source string, as it is returned by
the PARSE SOURCE instruction (see page 57), is copied to
the user's buffer.

VERSION Fetch version string. The version string, as it is returned by
the PARSE VERSION instruction, is copied to the user's
buffer.

*CCSID A string describing the national language environment of the
current program. Four numbers, formatted as character
strings separated by blanks, are placed in the user's buffer:

ccsid The Coded Character Set ID (CCSID) of the file
containing the REXX program.

cpage The single-byte code page REXX uses to tokenize
the program source.

etmode The OPTIONS ETMODE setting:

� 1—on, REXX will respect DBCS characters in the
program source and variable names.

� 0—off, DBCS is not respected in source, SO/SI
characters are not valid in variable names.

exmode The OPTIONS EXMODE setting:

� 1—on, when performing string operations, REXX
will respect DBCS characters in variable data
values.

 Chapter 9. AS/400 System Interfaces 169

 AS/400 System Interfaces

� 0—off, DBCS in data is just another single-byte
value.

*SRCPGMID A string unique to the currently executing program. This
string may be used to determine if subsequent QREXVAR
operations are directed to the same instance of a REXX
program.

SHVEXIT Set system exit return value. Many system exits must have the
capability to return an exit value to the language processor. This
interface is identical with the SHVSET interface, except that no name is
specified.

SHVEXTFN
Set function return value. An external function written in a language
other than REXX must have the capability to return a function value to
the language processor. The value passed on this call is treated like
the argument of a RETURN instruction. For more information on the
RETURN instruction, see “RETURN” on page 65. This interface is
identical with the SHVSET interface, except that no name is specified.

Notes:

1. QREXVAR only provides access to the variable pool of the latest active REXX
program.

2. The full QREXVAR interface is only enabled during execution of commands
and external routines (functions and subroutines), and during initiation,
termination, command, and external function processing exits. It is enabled for
SHVEXIT operations only from system exits. It is enabled for SHVEXTFN
operations only from external functions. An attempt to call the QREXVAR entry
point when no REXX procedure is active will result in a return code of -1,
Invalid entry conditions.

3. An attempt to call the QREXVAR entry point with a pointer that is incorrect for
the current program state, will result in exception message CPF9872 being
signaled to the application. In addition, if the return code pointer is a valid
pointer, then a return code of -1, Invalid Entry conditions, will also be set.
Either or both of the above indicates that the requested Variable Pool
operations were not successful.

 Queuing Interfaces

Queue Application Programming Interface
The QREXQ interface is called with five parameters in the following order:

1. A one-byte field containing the function code that defines what function the
caller is requesting. The following values are valid:

A Add a line of data to the queue
N Create a new queue buffer
P Pull a line of data from the head of the queue
Q Query the number of lines in the queue
R Remove buffers from the queue.

170 AS/400 REXX/400 Reference V4R1

 AS/400 System Interfaces

2. A data buffer that either contains data to be placed on the queue, for the Add
function, or is the target where data removed from the queue will be placed (for
the Pull function). It is ignored for other functions.

3. An unsigned four-byte integer4 whose use depends on the function requested,
as follows:

A Contains the length of the data to be placed on the queue (INPUT)
N Contains the number of the newly-created queue buffer (OUTPUT)
P Contains the length of the data buffer (see item 2 above) into which

the data will be placed (INPUT), then is set to the actual length of
the data placed in the data buffer (OUTPUT)

Q Contains the number of lines in the queue (OUTPUT)
R If the operation flag is 1 (see item 4 below), contains the number of

the queue buffer to be removed. Otherwise, it is unused.

4. An unsigned two-byte integer4 field containing an operation flag.

� For the Add function, this flag indicates whether the data is to be added at
the head of the queue in LIFO order (flag = 1) or at the tail of the queue in
FIFO order (flag = 0).

� For the Remove function, the flag indicates where the entire queue is to be
cleared (flag=0) or if a specific queue buffer is to be removed (flag=1).
Setting this flag=0 is the same as Remove REXX Buffer (RMVREXBUF)
with a *ALL, and setting this flag=1 requires that the number of the buffer to
be removed is indicated by setting the third parameter to R.

5. An unsigned two-byte integer, containing the return code from the requested
function. The possible values are as follows:

0 OK - the function completed successfully
1 Not enough space available in the queue space object (valid only for

Add). This is accompanied by escape message CPF7CF8.
2 Queue is empty (valid only for Pull)
3 Queue space object is damaged and should be reinitialized using

the RMVREXBUF command. This is accompanied by escape
message CPF7CF7.

4 Flag field is invalid (the FIFO/LIFO flag for Add, or the remove
all/remove specific flag for Remove

5 Data buffer is too small (valid only on Pull operations)
6 Data item is too large (valid only on Add operations)
7 Function code is invalid.

Sample Invocation of the Queuing Services
Here is an example of how the REXX queuing services might be called:

4 In RPG, COBOL, and PL/I, the unsigned byte is binary. In FORTRAN and C, the unsigned byte is an integer.

 Chapter 9. AS/400 System Interfaces 171

 AS/400 System Interfaces

#pragma linkage(QREXQ,OS);
void QREXQ(char :, char :, unsigned int :, char :, unsigned short :);
char linetoadd[13] = "Line to add";
unsigned char function;
long int buffer_length;
char flag;
unsigned short return_code;

function = 'A';
buffer_length = 12;
flag = '\�'; /: Add to tail of queue :/

QREXQ(&function, linetoadd, &buffer_length, &flag, &return_code);
/: Note: The following code assumes that a trap for escape messages :/
/: is in effect that just ignores the escape and continues processing :/
if (return_code == 1) {
printf("Queue is full");

}
else if (return_code == 3) {
printf("Queue is damaged");

}
else if (return_code) {
printf("Unknown error with queue service");

}

172 AS/400 REXX/400 Reference V4R1

 Debug Aids

 Chapter 10. Debug Aids

In addition to the TRACE instruction, described in “TRACE” on page 70, there are
the following debug aids.

Interactive Debugging of Programs
The debug facility permits interactively controlled execution of a program. Adding
the prefix character ? to the TRACE instruction or the TRACE function (for
example, TRACE ?I or TRACE(?I)) turns on interactive debug and indicates to the
user that interactive debug is active. Further TRACE instructions in the program
are ignored, and the language processor pauses after nearly all instructions that
are traced at the console (see below for the exceptions). When the language
processor pauses, three debug actions are available:

1. Entering a null line (no blanks even) makes the language processor continue
execution until the next pause for debug input. Repeatedly entering a null line,
therefore, steps from pause point to pause point. For TRACE ?A, for example,
this is equivalent to single-stepping through the program.

2. Entering an equal sign (=) with no blanks makes the language processor
re-process the clause last traced. For example: if an IF clause is about to take
the wrong branch, you can change the value of the variable(s) on which it
depends, and then re-process it.

Once the clause has been re-processed, the language processor pauses again.

3. Anything else entered is treated as a line of one or more clauses, and
processed immediately The same rules apply as in the INTERPRET instruction
(for example, DO-END constructs must be complete). If an instruction has a
syntax error in it, a standard message is displayed and you are prompted for
input again. Similarly all the other SIGNAL conditions are disabled while the
string is processed to prevent unintentional transfer of control.

During execution of the string, no tracing takes place, except that nonzero
return codes from host commands are displayed. Host commands are always
processed, but the variable RC is not set. Once the string has been
processed, the language processor pauses again for further debug input.

Interactive debug is turned off:

� At any time, if TRACE O or TRACE with no options is entered.

The numeric form of the TRACE instruction may be used to allow sections of the
program to be run without pause for debug input. TRACE n (that is, positive result)
allows execution to continue, skipping the next n pauses (when interactive debug is
or becomes active). TRACE -n (that is, negative result) allows execution to
continue without pause and with tracing inhibited for n clauses that would otherwise
be traced. The trace action selected by a TRACE instruction is saved and restored
across subroutine calls. This means that if you are stepping through a program
(say after using TRACE ?R to trace Results) and then enter a subroutine in which
you have no interest, you can enter TRACE O to turn tracing off. No further
instructions in the subroutine are traced, but on return to the caller, tracing is
restored.

 Copyright IBM Corp. 1997 173

 Debug Aids

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing is
restored and hence (if tracing was off on entry to the subroutine) tracing (and
interactive debug) is turned off until the next entry to the subroutine.

Since any instructions may be processed in interactive debug you have
considerable control over execution.

Some examples:

Say expr /: displays the result of evaluating the :/
 /: expression. :/

name=expr /: alters the value of a variable. :/

Trace O /: (or Trace with no options) turns off :/
/: interactive debug and all tracing. :/

Trace ?A /: turns off interactive debug but continue :/
/: tracing all clauses. :/

exit /: terminates execution of the program. :/

Exceptions: Some clauses cannot safely be re-processed, and, therefore, the
language processor does not pause after them, even if they are traced. These are:

� Any repetitive DO clause, on the second or subsequent time around the loop

� All END clauses (not a useful place to pause in any case)

� All THEN, ELSE, OTHERWISE, or null clauses

� All RETURN clauses, except when returning from an internal function or
subroutine call

� All EXIT clauses

� All SIGNAL and CALL clauses (the language processor pauses after the target
label has been traced).

� Any clause that causes a syntax error. (These may be trapped by SIGNAL ON
SYNTAX, but cannot be re-processed.)

174 AS/400 REXX/400 Reference V4R1

 Keywords and Variables

Chapter 11. Reserved Keywords and Special Variables

Keywords may be used as ordinary symbols in many situations where there is no
ambiguity. The precise rules are given here.

There are three special variables: RC, RESULT, and SIGL.

 Reserved Keywords
The free syntax of REXX implies that some symbols are reserved for use by the
language processor in certain contexts.

Within particular instructions, some symbols may be reserved to separate the parts
of the instruction. These symbols are referred to as keywords. Examples of REXX
keywords are the WHILE in a DO instruction, and the THEN (which acts as a
clause terminator in this case) following an IF or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and
that are not followed by an “=” or “:” are checked to see if they are instruction
keywords; the symbols may be freely used elsewhere in clauses without being
taken to be keywords.

Be careful of host commands or commands with the same name as REXX
keywords, such as the CL command CALL. You can create problems if you
inadvertently indicate the CL CALL command when you mean the REXX CALL
instruction.

Several options are available to ensure that you indicate a command rather than an
instruction.

At least the first words in command line can be enclosed within quotation marks, as
shown in the following example:

'CALL QCMDEXC'

This also has an advantage in that it is more efficient, and the SIGNAL ON
NOVALUE condition may be used to check the integrity of your program.

An alternative strategy is to precede such command strings with two adjacent
quotation marks, which will have the effect of concatenating the null string on to the
front, as shown in the following example.

''CALL QCMDEXC

Note, however, that a SIGNAL ON NOVALUE will be triggered because
QCMDEXEC is an unassigned value.

A third option is to enclose the entire expression, or the first symbol, in
parentheses, as shown in the following example.

(CALL QCMDEXC)

 Copyright IBM Corp. 1997 175

 Keywords and Variables

 Special Variables
There are three special variables that may be set automatically by the language
processor:

RC is set to the return code from any processed host command (or
command). Following the SIGNAL events, SYNTAX, ERROR, and
FAILURE, RC is set to the code appropriate to the event: the syntax
error number or the command return code. RC is unchanged following
a NOVALUE or HALT event.

Note: Commands processed manually from debug mode do not cause
the value of RC to change.

RESULT is set by a RETURN instruction in a subroutine that has been CALLed if
the RETURN instruction specifies an expression. If the RETURN
instruction has no expression on it, RESULT is dropped (becomes
uninitialized.)

SIGL contains the line number of the clause currently executing when the last
transfer of control to a label took place. (This could be caused by a
SIGNAL, a CALL, an internal function invocation, or a trapped error
condition.)

None of these variables has an initial value. They may be altered by the user, just
like any other variable. They also may be accessed The PROCEDURE and DROP
instructions also affect these variables in the usual way.

Certain other information is always available to a REXX program. This includes the
name by which the program was called and the source of the program (which is
available using the PARSE SOURCE instruction, see page 57).

In addition, PARSE VERSION (see page 57) makes available the version and date
of the language processor code that is running. The built-in functions TRACE and
ADDRESS return the current trace setting and environment name respectively.

Finally, the current NUMERIC settings can be obtained using the DIGITS, FORM,
and FUZZ built-in functions.

176 AS/400 REXX/400 Reference V4R1

Appendix A. Double-Byte Character Set (DBCS) Support

A Double-Byte Character Set supports languages that have more characters than
can be represented by 8 bits (such as Korean Hangeul and Japanese kanji).
REXX has a full range of DBCS functions and handling techniques.

These include:

� Symbol and string handling capabilities with DBCS characters

� An option that allows DBCS characters in symbols, comments, and literal
strings.

� An option that allows data strings to contain DBCS characters.

� A number of functions that specifically support the processing of DBCS
character strings

� Defined DBCS enhancements to current instructions and functions.

Note: The use of DBCS does not affect the meaning of the built-in functions as
described in Chapter 4, “Functions” on page 75. This explains how the characters
in a result are obtained from the characters of the arguments by such actions as
selecting, concatenating, and padding. The appendix describes how the resulting
characters are represented as bytes. This internal representation is not usually
seen if the results are printed. It may be seen if the results are displayed on
certain terminals.

 General Description
The following characteristics help define the rules used by DBCS to represent
extended characters:

� Each DBCS character consists of 2 bytes.

� There are no DBCS control characters.

� The codes are within the ranges defined in the table, which shows the valid
DBCS code for the DBCS blank. You cannot have a DBCS blank in a simple
symbol, in the stem of a compound variable, or in a label.

� DBCS alphanumeric and special symbols

A DBCS contains double-byte representation of alphanumeric and special
symbols corresponding to those of the Single-Byte Character Set (SBCS). In
EBCDIC, the first byte of a double-byte alphanumeric or special symbol is
X'42' and the second is the same hex code as the corresponding EBCDIC
code.

Table 5. DBCS Ranges

Byte EBCDIC

1st X'41' to X'FE'

2nd X'41' to X'FE'

DBCS blank X'4040'

 Copyright IBM Corp. 1997 177

Here are some examples:

X'42C1' is an EBCDIC double-byte A
X'4281' is an EBCDIC double-byte a
X'427D' is an EBCDIC double-byte quote

� No case translation

In general, there is no concept of lowercase and uppercase in DBCS.

 � Notational conventions

This appendix uses the following notational conventions:

DBCS character -> .A .B .C .D
SBCS character -> a b c d e
DBCS blank -> '. '
EBCDIC shift-out (X'�E') -> <
EBCDIC shift-in (X'�F') -> >

Note: In EBCDIC, the shift-out (SO) and shift-in (SI) characters distinguish DBCS
characters from SBCS characters.

Enabling DBCS Data Operations
The OPTIONS instruction controls how REXX regards DBCS data. To enable
DBCS operations, use the EXMODE option. (See page 54 for more information.)

If OPTIONS ETMODE is in effect, the language processor does validation to
ensure that SO and SI are paired. Otherwise, the contents of the comment are not
checked. The comment delimiters (/* and */) must be SBCS characters.

Symbols and Strings
In DBCS, there are DBCS-only symbols and strings and mixed symbols and
strings.

DBCS-Only Symbols and Mixed SBCS/DBCS Symbols
A DBCS-only symbol consists of only non-blank DBCS codes as indicated in
Table 5 on page 177.

A mixed DBCS symbol is formed by a concatenation of SBCS symbols, DBCS-only
symbols, and other mixed DBCS symbols. In EBCDIC, the SO and SI bracket the
DBCS symbols and distinguish them from the SBCS symbols.

The default value of a DBCS symbol is the symbol itself, with SBCS characters
translated to uppercase.

A constant symbol must begin with an SBCS digit (�–9) or an SBCS period. The
delimiter (period) in a compound symbol must be an SBCS character.

In EBCDIC:

Mixed symbol -> <.A.B>.

178 AS/400 REXX/400 Reference V4R1

DBCS-Only Strings and Mixed SBCS/DBCS Strings
A DBCS-only string consists of only DBCS characters. A mixed SBCS/DBCS string
is formed by a combination of SBCS and DBCS characters. In EBCDIC, the SO
and SI bracket the DBCS data and distinguish it from the SBCS data. Because the
SO and SI are needed only in the mixed strings, they are not associated with the
DBCS-only strings.

In EBCDIC:

DBCS-only string -> .A.B.C
Mixed string -> ab<.A.B>
Mixed string -> <.A.B>
Mixed string -> ab<.C.D>ef

 Validation
The user must follow certain rules and conditions when using DBCS.

DBCS Symbol Validation
DBCS symbols are valid only if you comply with the following rules:

� The DBCS portion of the symbol must be an even number of bytes in length
� DBCS alphanumeric and special symbols are regarded as different to their

corresponding SBCS characters. Only the SBCS characters are recognized by
REXX in numbers, instruction keywords, or operators

� DBCS characters cannot be used as special characters in REXX
� SO and SI cannot be contiguous
� Nesting of SO or SI is not permitted
� SO and SI must be paired
� No part of a symbol consisting of DBCS characters may contain a DBCS blank.
� Each part of a symbol consisting of DBCS characters must be bracketed with

SO and SI.

These examples show some possible misuses:

<.A.BC> -> Incorrect because of odd byte length
<.A.B><.C> -> Incorrect contiguous SO/SI
<> -> Incorrect contiguous SO/SI (null DBCS symbol)
<.A<.B>.C> -> Incorrectly nested SO/SI
<.A.B.C -> Incorrect because SO/SI not paired
<.A. .B> -> Incorrect because contains blank
'. A<.B><.C> -> Incorrect symbol

Mixed String Validation
The validation of mixed strings depends on the instruction, operator, or function. If
you use a mixed string with an instruction, operator, or function that does not allow
mixed strings, this causes a syntax error.

The following rules must be followed for mixed string validation:

� DBCS strings must be an even number of bytes in length, unless you have SO
and SI.

EBCDIC only:

� SO and SI must be paired in a string.
� Nesting of SO or SI is not permitted.

 Appendix A. Double-Byte Character Set (DBCS) Support 179

These examples show some possible misuses:

'ab<cd' -> INCORRECT - not paired
'<.A<.B>.C> -> INCORRECT - nested
'<.A.BC>' -> INCORRECT - odd byte length

The end of a comment delimiter is not found within DBCS character sequences.
For example, when the program contains /: < :/, then the :/ is not recognized as
ending the comment because the scanning is looking for the > (SI) to go with the <
(SO) and not looking for :/.

When a variable is created, modified, or referred to in a REXX program under
OPTIONS EXMODE, it is validated whether it contains a correct mixed string or
not. When a referred variable contains a mixed string that is not valid, it depends
on the instruction, function, or operator whether it causes a syntax error.

 Instruction Examples
Here are some examples that illustrate how instructions work with DBCS.

 PARSE
In EBCDIC:

x1 = '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1
w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 1 w1
w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1 .
w1 -> '<.A.B>'

The leading and trailing SO and SI are unnecessary for word parsing and, thus,
they are stripped off. However, one pair is still needed for a valid mixed DBCS
string to be returned.

PARSE VAR x1 . w2
w2 -> '<. ><.E><.F><>'

Here the first blank delimited the word and the SO is added to the string to ensure
the DBCS blank and the valid mixed string.

180 AS/400 REXX/400 Reference V4R1

PARSE VAR x1 w1 w2
w1 -> '<.A.B>'
w2 -> '<. ><.E><.F><>'

PARSE VAR x1 w1 w2 .
w1 -> '<.A.B>'
w2 -> '<.E><.F>'

The word delimiting allows for unnecessary SO and SI to be dropped.

x2 = 'abc<>def <.A.B><><.C.D>'

PARSE VAR x2 w1 '' w2
w1 -> 'abc<>def <.A.B><><.C.D>'
w2 -> ''

PARSE VAR x2 w1 '<>' w2
w1 -> 'abc<>def <.A.B><><.C.D>'
w2 -> ''

PARSE VAR x2 w1 '<><>' w2
w1 -> 'abc<>def <.A.B><><.C.D>'
w2 -> ''

Note that for the last three examples '', <>, and <><> are each a null string (a
string of length �). When parsing, the null string matches the end of string. For
this reason, w1 is assigned the value of the entire string and w2 is assigned the null
string.

PUSH and QUEUE
The PUSH and QUEUE instructions add entries to the external data queue. Since
a queue entry is limited to 32,767, expression may be truncated. If the truncation
splits a DBCS string, REXX will ensure that the DBCS data integrity, that is the
double-byte boundary, will be kept under OPTIONS EXMODE.

Note: In EBCDIC, DBCS data integrity includes maintaining the SO-SI pairing.

SAY and TRACE
When the data is split up in shorter lengths, again the DBCS data integrity is kept
under OPTIONS EXMODE. In EBCDIC, if the terminal line size is less than 4, the
string is treated as SBCS data, because 4 is the minimum for mixed string data.

DBCS Function Handling
Some built-in functions can handle DBCS. The functions that deal with word
delimiting and length determining conform with the following rules under OPTIONS
EXMODE:

1. Counting characters—Logical character lengths are used when counting the
length of a string (that is, 1 byte for one SBCS logical character, 2 bytes for
one DBCS logical character). In EBCDIC, SO and SI are considered to be
transparent, and are not counted, for every string operation.

2. Character extraction from a string—Characters are extracted from a string on
a logical character basis. In EBCDIC, leading SO and trailing SI are not
considered as part of one DBCS character. For instance, .A and .B are
extracted from <.A.B>, and SO and SI are added to each DBCS character
when they are finally preserved as completed DBCS characters. When multiple

 Appendix A. Double-Byte Character Set (DBCS) Support 181

characters are consecutively extracted from a string, SO and SI that are
between characters are also extracted. For example, .A><.B is extracted from
<.A><.B>, and when the string is finally used as a completed string, the SO
prefixes it and the SI suffixes it to give <.A><.B>.

Here are some EBCDIC examples:

S1 = 'abc<>def'

SUBSTR(S1,3,1) -> 'c'
SUBSTR(S1,4,1) -> 'd'
SUBSTR(S1,3,2) -> 'c<>d'

S2 = '<><.A.B><>'

SUBSTR(S2,1,1) -> '<.A>'
SUBSTR(S2,2,1) -> '<.B>'
SUBSTR(S2,1,2) -> '<.A.B>'
SUBSTR(S2,1,3,'x') -> '<.A.B><>x'

S3 = 'abc<><.A.B>'

SUBSTR(S3,3,1) -> 'c'
SUBSTR(S3,4,1) -> '<.A>'
SUBSTR(S3,3,2) -> 'c<><.A>'
DELSTR(S3,3,1) -> 'ab<><.A.B>'
DELSTR(S3,4,1) -> 'abc<><.B>'
DELSTR(S3,3,2) -> 'ab<.B>'

3. Character concatenation—String concatenation can only be done with valid
mixed strings. In EBCDIC, adjacent SI and SO (or SO and SI) that are a result
of string concatenation are removed. Even during implicit concatenation as in
the DELSTR function, unnecessary SO and SI are removed.

4. Character comparison—Valid mixed strings are used when comparing strings
on a character basis. A DBCS character is always considered greater than an
SBCS one if they are compared. In all but the strict comparisons, SBCS
blanks, DBCS blanks, and leading and trailing contiguous SO and SI (or SI and
SO) in EBCDIC are removed. SBCS blanks may be added if the lengths are
not identical.

In EBCDIC, contiguous SO and SI (or SI and SO) between nonblank
characters are also removed for comparison.

Note: The strict comparison operators do not cause syntax errors even if you
specify mixed strings that are not valid.

In EBCDIC:

'<.A>' = '<.A. >' -> 1 /: true :/
'<><><.A>' = '<.A><><>' -> 1 /: true :/

 '<> <.A>' = '<.A>' -> 1 /: true :/
'<.A><><.B>' = '<.A.B>' -> 1 /: true :/

'abc' < 'ab<. >' -> � /: false :/

5. Word extraction from a string—“Word” means that characters in a string are
delimited by an SBCS or a DBCS blank.

In EBCDIC, leading and trailing contiguous SO and SI (or SI and SO) are also
removed when words are separated in a string, but contiguous SO and SI (or
SI and SO) in a word are not removed or separated for word operations.

182 AS/400 REXX/400 Reference V4R1

Leading and trailing contiguous SO and SI (or SI and SO) of a word are not
removed if they are among words that are extracted at the same time.

In EBCDIC:

W1 = '<><. .A. . .B><.C. .D><>'

SUBWORD(W1,1,1) -> '<.A>'
SUBWORD(W1,1,2) -> '<.A. . .B><.C>'
SUBWORD(W1,3,1) -> '<.D>'
SUBWORD(W1,3) -> '<.D>'

W2 = '<.A. .B><.C><> <.D>'

SUBWORD(W2,2,1) -> '<.B><.C>'
SUBWORD(W2,2,2) -> '<.B><.C><> <.D>'

Built-in Function Examples
Examples for built-in functions, those that support DBCS and follow the rules
defined, are given in this section. For full function descriptions and the syntax
diagrams, refer to Chapter 4, “Functions” on page 75.

 ABBREV
In EBCDIC:

ABBREV('<.A.B.C>','<.A.B>') -> 1
ABBREV('<.A.B.C>','<.A.C>') -> �
ABBREV('<.A><.B.C>','<.A.B>') -> 1
ABBREV('aa<>bbccdd','aabbcc') -> 1

Applying the character comparison and character extraction from a string rules.

 COMPARE
In EBCDIC:

COMPARE('<.A.B.C>','<.A.B><.C>') -> �
COMPARE('<.A.B.C>','<.A.B.D>') -> 3
COMPARE('ab<>cde','abcdx') -> 5
COMPARE('<.A><>','<.A>','<. >') -> �

Applying the character concatenation for padding, character extraction from a
string, and character comparison rules.

 COPIES
In EBCDIC:

COPIES('<.A.B>',2) -> '<.A.B.A.B>'
COPIES('<.A><.B>',2) -> '<.A><.B.A><.B>'
COPIES('<.A.B><>',2) -> '<.A.B><.A.B><>'

Applying the character concatenation rule. Applying the character extraction from a
string and character comparison rules.

 Appendix A. Double-Byte Character Set (DBCS) Support 183

INSERT and OVERLAY
In EBCDIC:

INSERT('a','b<><.A.B>',1) -> 'ba<><.A.B>'
INSERT('<.A.B>','<.C.D><>',2) -> '<.C.D.A.B><>'
INSERT('<.A.B>','<.C.D><><.E>',2) -> '<.C.D.A.B><><.E>'
INSERT('<.A.B>','<.C.D><>',3,,'<.E>') -> '<.C.D><.E.A.B>'

OVERLAY('<.A.B>','<.C.D><>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',3) -> '<.C.D><><.A.B>'
OVERLAY('<.A.B>','<.C.D><>',4,,'<.E>') -> '<.C.D><.E.A.B>'
OVERLAY('<.A>','<.C.D><.E>',2) -> '<.C.A><.E>'

Applying the character extraction from a string and character comparison rules.

LEFT, RIGHT, and CENTER
In EBCDIC:

LEFT('<.A.B.C.D.E>',4) -> '<.A.B.C.D>'
LEFT('a<>',2) -> 'a<> '
LEFT('<.A>',2,':') -> '<.A>:'
RIGHT('<.A.B.C.D.E>',4) -> '<.B.C.D.E>'
RIGHT('a<>',2) -> ' a'
CENTER('<.A.B>',1�,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E>'
CENTER('<.A.B>',11,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E.E>'
CENTER('<.A.B>',1�,'e') -> 'eeee<.A.B>eeee'

Applying the character concatenation for padding and character extraction from a
string rules.

 LENGTH
In EBCDIC:

LENGTH('<.A.B><.C.D><>') -> 4

Applying the counting characters rule.

 REVERSE
In EBCDIC:

REVERSE('<.A.B><.C.D><>') -> '<><.D.C><.B.A>'

Applying the character extraction from a string and character concatenation rules.

 SPACE
In EBCDIC:

SPACE('a<.A.B. .C.D>',1) -> 'a<.A.B> <.C.D>'
SPACE('a<.A><><. .C.D>',1,'x') -> 'a<.A>x<.C.D>'
SPACE('a<.A><. .C.D>',1,'<.E>') -> 'a<.A.E.C.D>'

Applying the word extraction from a string and character concatenation rules.

 STRIP
In EBCDIC:

STRIP('<><.A><.B><.A><>',,'<.A>') -> '<.B>'

Applying the character extraction from a string and character concatenation rules.

184 AS/400 REXX/400 Reference V4R1

SUBSTR and DELSTR
In EBCDIC:

SUBSTR('<><.A><><.B><.C.D>',1,2) -> '<.A><><.B>'
DELSTR('<><.A><><.B><.C.D>',1,2) -> '<><.C.D>'
SUBSTR('<.A><><.B><.C.D>',2,2) -> '<.B><.C>'
DELSTR('<.A><><.B><.C.D>',2,2) -> '<.A><><.D>'
SUBSTR('<.A.B><>',1,2) -> '<.A.B>'
SUBSTR('<.A.B><>',1) -> '<.A.B><>'

Applying the character extraction from a string and character concatenation rules.

SUBWORD and DELWORD
In EBCDIC:

SUBWORD('<><. .A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><. .A. . .B><.C. .D>',1,2) -> '<><. .D>'
SUBWORD('<><.A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><.A. . .B><.C. .D>',1,2) -> '<><.D>'
SUBWORD('<.A. .B><.C><> <.D>',1,2) -> '<.A. .B><.C>'
DELWORD('<.A. .B><.C><> <.D>',1,2) -> '<.D>'

Applying the word extraction from a string and character concatenation rules.

 SYMBOL
In EBCDIC:

Drop A.3 ; <.A.B>=3
SYMBOL('<.A.B>') -> 'VAR'
SYMBOL(<.A.B>) -> 'LIT' /: has tested “3” :/
SYMBOL('a.<.A.B>') -> 'LIT' /: has tested A.3 :/

 TRANSLATE
In EBCDIC:

TRANSLATE('abcd','<.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>bcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>xcd','<><.A.B.C>','ab<>c') -> '<.A>x<.C>d'

Applying the character extraction from a string, character comparison, and
character concatenation rules.

 VALUE
In EBCDIC:

Drop A3 ; <.A.B>=3 ; fred='<.A.B>'
VALUE('fred') -> '<.A.B>' /: looks up FRED :/
VALUE(fred) -> '3' /: looks up <.A.B> :/
VALUE('a'<.A.B>) -> 'A3'

 VERIFY
In EBCDIC:

VERIFY('<><><.A.B><><.X>','<.B.A.C.D.E>') -> 3

Applying the character extraction from a string and character comparison rules.

 Appendix A. Double-Byte Character Set (DBCS) Support 185

WORD, WORDINDEX, and WORDLENGTH
In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORD(W,1) -> '<.A>'
WORDINDEX(W,1) -> 2
WORDLENGTH(W,1) -> 1

Y = '<><.A. . .B><.C. .D>'

WORD(Y,1) -> '<.A>'
WORDINDEX(Y,1) -> 1
WORDLENGTH(Y,1) -> 1

Z = '<.A .B><.C> <.D>'

WORD(Z,2) -> '<.B><.C>'
WORDINDEX(Z,2) -> 3
WORDLENGTH(Z,2) -> 2

Applying the word extraction from a string and (for WORDINDEX and
WORDLENGTH) counting characters rules.

 WORDS
In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORDS(W) -> 3

Applying the word extraction from a string rule.

 WORDPOS
In EBCDIC:

WORDPOS('<.B.C> abc','<.A. .B.C> abc') -> 2
WORDPOS('<.A.B>','<.A.B. .A.B><. .B.C. .A.B>',3) -> 4

Applying the word extraction from a string and character comparison rules.

DBCS Processing Functions
This section describes the functions that support DBCS mixed strings. These
functions handle mixed strings regardless of the OPTIONS mode.

Note: When used with DBCS functions, length is always measured in bytes (as
opposed to LENGTH(string), which is measured in characters).

 Counting Option
In EBCDIC, when specified in the functions, the counting option can control
whether the SO and SI are considered present when determining the length. Y
specifies counting SO and SI within mixed strings. N specifies not to count the SO
and SI, and is the default.

186 AS/400 REXX/400 Reference V4R1

 Function Descriptions
The following are the DBCS functions and their descriptions.

 DBADJUST

��─ ──DBADJUST(string ──┬ ┬──────────── ─)─────────────────────────────��
└ ┘──,operation

In EBCDIC, adjusts all contiguous SI and SO (or SO and SI) characters in string
based on the operation specified. The following are valid operations. Only the
capitalized and highlighted letter is needed; all characters following it are ignored.

Blank changes contiguous characters to blanks (X'4040').

Remove removes contiguous characters, and is the default.

Here are some EBCDIC examples:

DBADJUST('<.A><.B>a<>b','B') -> '<.A. .B>a b'
DBADJUST('<.A><.B>a<>b','R') -> '<.A.B>ab'
DBADJUST('<><.A.B>','B') -> '<. .A.B>'

 DBBRACKET

��─ ──DBBRACKET(string) ───��

In EBCDIC, adds SO and SI brackets to a DBCS-only string. If string is not a
DBCS-only string, a SYNTAX error results. That is, the input string must be an
even number of bytes in length and each byte must be a valid DBCS value.

Here are some EBCDIC examples:

DBBRACKET('.A.B') -> '<.A.B>'
DBBRACKET('abc') -> SYNTAX error
DBBRACKET('<.A.B>') -> SYNTAX error

 DBCENTER

��─ ──DBCENTER(string,length ──┬ ┬───────────────────────── ─)─────────��
 └ ┘ ─,─ ──┬ ┬───── ──┬ ┬─────────

└ ┘─pad─ └ ┘──,option

returns a string of length length with string centered in it, with pad characters added
as necessary to make up length. The default pad character is a blank. If string is
longer than length, it is truncated at both ends to fit. If an odd number of
characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

 Appendix A. Double-Byte Character Set (DBCS) Support 187

Here are some EBCDIC examples:

DBCENTER('<.A.B.C>',4) -> ' <.B> '
DBCENTER('<.A.B.C>',3) -> ' <.B>'
DBCENTER('<.A.B.C>',1�,'x') -> 'xx<.A.B.C>xx'
DBCENTER('<.A.B.C>',1�,'x','Y') -> 'x<.A.B.C>x'
DBCENTER('<.A.B.C>',4,'x','Y') -> '<.B>'
DBCENTER('<.A.B.C>',5,'x','Y') -> 'x<.B>'
DBCENTER('<.A.B.C>',8,'<.P>') -> ' <.A.B.C> '
DBCENTER('<.A.B.C>',9,'<.P>') -> ' <.A.B.C.P>'
DBCENTER('<.A.B.C>',1�,'<.P>') -> '<.P.A.B.C.P>'
DBCENTER('<.A.B.C>',12,'<.P>','Y') -> '<.P.A.B.C.P>'

 DBLEFT

��─ ──DBLEFT(string,length ──┬ ┬───────────────────────── ─)───────────��
 └ ┘ ─,─ ──┬ ┬───── ──┬ ┬─────────

└ ┘─pad─ └ ┘──,option

returns a string of length length containing the leftmost length characters of string.
The string returned is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBLEFT('ab<.A.B>',4) -> 'ab<.A>'
DBLEFT('ab<.A.B>',3) -> 'ab '
DBLEFT('ab<.A.B>',4,'x','Y') -> 'abxx'
DBLEFT('ab<.A.B>',3,'x','Y') -> 'abx'
DBLEFT('ab<.A.B>',8,'<.P>') -> 'ab<.A.B.P>'
DBLEFT('ab<.A.B>',9,'<.P>') -> 'ab<.A.B.P> '
DBLEFT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBLEFT('ab<.A.B>',9,'<.P>','Y') -> 'ab<.A.B> '

 DBRIGHT

��─ ──DBRIGHT(string,length ──┬ ┬───────────────────────── ─)──────────��
 └ ┘ ─,─ ──┬ ┬───── ──┬ ┬─────────

└ ┘─pad─ └ ┘──,option

returns a string of length length containing the rightmost length characters of string.
The string returned is padded with pad characters (or truncated) on the left as
needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

188 AS/400 REXX/400 Reference V4R1

DBRIGHT('ab<.A.B>',4) -> '<.A.B>'
DBRIGHT('ab<.A.B>',3) -> ' <.B>'
DBRIGHT('ab<.A.B>',5,'x','Y') -> 'x<.B>'
DBRIGHT('ab<.A.B>',1�,'x','Y') -> 'xxab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>') -> '<.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',9,'<.P>') -> ' <.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBRIGHT('ab<.A.B>',11,'<.P>','Y') -> ' ab<.A.B>'
DBRIGHT('ab<.A.B>',12,'<.P>','Y') -> '<.P>ab<.A.B>'

 DBRLEFT

��─ ──DBRLEFT(string,length ──┬ ┬───────── ─)──────────────────────────��
└ ┘──,option

returns the remainder from the DBLEFT function of string. If length is greater than
the length of string, returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRLEFT('ab<.A.B>',4) -> '<.B>'
DBRLEFT('ab<.A.B>',3) -> '<.A.B>'
DBRLEFT('ab<.A.B>',4,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',3,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',8) -> ''
DBRLEFT('ab<.A.B>',9,'Y') -> ''

 DBRRIGHT

��─ ──DBRRIGHT(string,length ──┬ ┬───────── ─)─────────────────────────��
└ ┘──,option

returns the remainder from the DBRIGHT function of string. If length is greater
than the length of string, returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRRIGHT('ab<.A.B>',4) -> 'ab'
DBRRIGHT('ab<.A.B>',3) -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5) -> 'a'
DBRRIGHT('ab<.A.B>',4,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',8) -> ''
DBRRIGHT('ab<.A.B>',8,'Y') -> ''

 Appendix A. Double-Byte Character Set (DBCS) Support 189

 DBTODBCS

��─ ──DBTODBCS(string) ──��

converts all passed, valid SBCS characters (including the SBCS blank) within string
to the corresponding DBCS equivalents. Other single-byte codes and all DBCS
characters are not changed. In EBCDIC, SO and SI brackets are added and
removed where appropriate.

Here are some EBCDIC examples:

DBTODBCS('Rexx 1988') -> '<.R.e.x.x. .1.9.8.8>'
DBTODBCS('<.A> <.B>') -> '<.A. .B>'

Note: In these examples, the .x is the DBCS character corresponding to an SBCS
x.

 DBTOSBCS

��─ ──DBTOSBCS(string) ──��

converts all passed, valid DBCS characters (including the DBCS blank) within string
to the corresponding SBCS equivalents. Other DBCS characters and all SBCS
characters are not changed. In EBCDIC, SO and SI brackets are removed where
appropriate.

Here are some EBCDIC examples:

DBTOSBCS('<.S.d>/<.2.-.1>') -> 'Sd/2-1'
DBTOSBCS('<.X. .Y>') -> '<.X> <.Y>'

Note: In these examples, the .d is the DBCS character corresponding to an SBCS
d. But the .X and .Y do not have corresponding SBCS characters and are not
converted.

 DBUNBRACKET

��─ ──DBUNBRACKET(string) ───��

In EBCDIC, removes the SO and SI brackets from a DBCS-only string enclosed by
SO and SI brackets. If the string is not bracketed, a SYNTAX error results.

Here are some EBCDIC examples:

DBUNBRACKET('<.A.B>') -> '.A.B'
DBUNBRACKET('ab<.A>') -> SYNTAX error

 DBVALIDATE

��─ ──DBVALIDATE(string ──┬ ┬────── ─)─────────────────────────────────��
└ ┘──,'C'

190 AS/400 REXX/400 Reference V4R1

returns 1 if the string is a valid mixed string or SBCS string. Otherwise, returns �.
Mixed string validation rules are:

1. Only valid DBCS character codes

2. DBCS string is an even number of bytes in length

3. EBCDIC only — Proper SO and SI pairing.

In EBCDIC, if C is omitted, only the leftmost byte of each DBCS character is
checked to see that it falls in the valid range for the implementation it is being run
on (that is, in EBCDIC, the leftmost byte range is from X'41' to X'FE').

Here are some EBCDIC examples:

z='abc<de'

DBVALIDATE('ab<.A.B>') -> 1
DBVALIDATE(z) -> �

y='C1C2�E11121314�F'X

DBVALIDATE(y) -> 1
DBVALIDATE(y,'C') -> �

 DBWIDTH

��─ ──DBWIDTH(string ──┬ ┬───────── ─)─────────────────────────────────��
└ ┘──,option

returns the length of string in bytes.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBWIDTH('ab<.A.B>','Y') -> 8
DBWIDTH('ab<.A.B>','N') -> 6

 Appendix A. Double-Byte Character Set (DBCS) Support 191

192 AS/400 REXX/400 Reference V4R1

 Implementation Limits

Appendix B. REXX/400 Implementation Limits

The SAA Procedures Language Definition defines a set of minimum values for
specific features of the language. All implementations must either meet or exceed
these limits to conform to the language definitions. The following table describes
the limits imposed by the REXX/400 implementation.

Notes:

1. This assumes that the entries are an average of 20 bytes each in length. The
total size of the queue is limited to 15.5MB.

2. There is no absolute limit on the NUMERIC DIGITS value. The only limit is that
the storage for all REXX variables within an invocation of the language
processor may not exceed 16MB.

Table 6. AS/400 Implementation Limits

Item AS/400

Literal strings 250 bytes

Symbol (variable name) length 250 bytes

Nesting control structures 100

Call arguments 20

MIN and MAX function arguments 20

Queue entries Approximately 500,000 (see
note 1)

Queue entry length 32,767 bytes

NUMERIC DIGITS value space available (see note 2)

Notational exponent value 999 999 999

Hexadecimal strings 250 bytes

Binary strings 100 bytes

C2D input string 250 bytes

D2C output string 250 bytes

D2X input string 500 bytes

X2D input string 500 bytes

 Copyright IBM Corp. 1997 193

 Implementation Limits

194 AS/400 REXX/400 Reference V4R1

 Index

Special Characters
, (comma)

as continuation character 14
in CALL instruction 35
in function calls 75
in parsing template list 33, 121
separator of arguments 35, 75

: (colon)
as a special character 13
in a label 20

? prefix on TRACE option 71
/ (division operator) 16, 129
// (remainder operator) 16, 132
. (period)

as placeholder in parsing 113
causing substitution in variable names 22
in numbers 128

* (multiplication operator) 16, 129
- tracing flag 73
** (power operator) 16, 131
\ (NOT operator) 18
\< (not less than operator) 17
\<< (strictly not less than operator) 18
\= (not equal operator) 17
\== (strictly not equal operator) 17
\> (not greater than operator) 17
\>> (strictly not greater than operator) 18
& (AND logical operator) 18
&& (exclusive OR operator) 18
% (integer division operator) 16, 132
+ (addition operator) 16, 129
+++ tracing flag 73
< (less than operator) 17
<< (strictly less than operator) 17
<<= (strictly less than or equal operator) 18
<= (less than or equal operator) 17
<> (less than or greater than operator) 17
= (equal sign)

assignment indicator 21
equal operator 17
immediate debug command 173
in DO instruction 39
in parsing template 115

== (strictly equal operator) 16, 17, 129
- (subtraction operator) 16
> (greater than operator) 17
>.> tracing flag 73
>< (greater than or less than operator) 17
>= (greater than or equal operator) 17
>> (strictly greater than operator) 17

>>= (strictly greater than or equal operator) 17
>>> tracing flag 73
>C> tracing flag 73
>F> tracing flag 73
>L> tracing flag 73
>O> tracing flag 73
>P> tracing flag 73
>V> tracing flag 73
| (inclusive OR operator) 18
|| (concatenation operator) 16

Numerics
400/REXX

See REstructured eXtended eXecutor/400
(REXX/400)

A
ABBREV function

description 79
example 79
testing abbreviations 79
using to select a default 79

abbreviations
testing with ABBREV function 79

ABS function
description 79
example 79

absolute value
finding using ABS function 79
function 79
used with power 131

abuttal 16
action taken when a condition is not trapped 138
action taken when a condition is trapped 138
active loops 49
addition

description 130
operator 16

additional operator examples 132
ADDRESS function

description 79
determining current environment 79
example 80

ADDRESS instruction
description 30
example 30, 31
settings saved during subroutine calls 37

address setting 31, 37
ADDREXBUF command 145

 Copyright IBM Corp. 1997 195

advanced topics in parsing 121
algebraic precedence 18
alphabetic character word options in TRACE 71
alphabetics

checking with DATATYPE 86
used as symbols 11

alphanumeric checking with DATATYPE 86
altering

flow within a repetitive DO loop 49
special variables 26
TRACE setting 101

AND, logical operator 18
ANDing character strings together 81
application program interfaces

command interface 153, 154
data types and structures 155
external functions and subroutines 156
queuing interface 170
system exit interface 157
variable pool interface 166

ARG function
description 80
example 80

ARG instruction
description 33
example 33

ARG option of PARSE instruction 56
arguments 156

checking with ARG function 80
of functions 33, 75
of programs 33
of subroutines 33, 35
passing to functions 75
retrieving with ARG function 80
retrieving with ARG instruction 33
retrieving with the PARSE ARG instruction 56

arithmetic
basic operator examples 131
comparisons 133
errors 136
exponential notation example 134
numeric comparisons, example 133
NUMERIC settings 52
operation rules 129
operator examples 132
operators 16, 127, 129
overflow 136
precision 128
underflow 136
whole numbers 135

array
initialization of 24
setting up 22

AS/400 System
issuing commands to 30

assigning
data to variables 56

assignment
description 21
indicator (=) 21
multiple assignments 116
of compound variables 22, 24

associative storage 22

B
B2X function

description 82
example 83

backslash, use of 13, 18
Base option of DATE function 87
basic operator examples 131
binary

description 10
digits 10
strings

implementation maximum 11
nibbles 10

to hexadecimal conversion 82
BITAND function

description 81
example 81
logical bit operations 81

BITOR function
description 81
example 82
logical bit operations, BITOR 81

bits checked using DATATYPE 86
BITXOR function

description 82
example 82
logical bit operations, BITXOR 82

blanks
adjacent to special character 8
as concatenation operator 16
in parsing, treatment of 112
removal with STRIP function 98

boolean operations 18
bottom of program reached during execution 45
bracketed DBCS strings

DBBRACKET function 187
DBUNBRACKET function 190

built-in functions
ABBREV 79
ABS 79
ADDRESS 79
ARG 80
B2X 82
BITAND 81
BITOR 81
BITXOR 82

196 AS/400 REXX/400 Reference V4R1

built-in functions (continued)
C2D 85
C2X 86
calling 35
CENTER 83
CENTRE 83
COMPARE 83
CONDITION 84
COPIES 85
D2C 89
D2X 90
DATATYPE 86
DATE 87
DBCS functions 187
definition 35
DELSTR 88
DELWORD 89
description 78
DIGITS 89
ERRORTEXT 91
FORM 91
FORMAT 91
FUZZ 92
INSERT 93
LASTPOS 93
LEFT 93
LENGTH 94
MAX 94
MIN 94
OVERLAY 95
POS 95
QUEUED 95
RANDOM 96
REVERSE 96
RIGHT 97
SIGN 97
SOURCELINE 97
SPACE 98
STRIP 98
SUBSTR 99
SUBWORD 99
SYMBOL 99
TIME 100
TRACE 101
TRANSLATE 102
TRUNC 103
VALUE 103
VERIFY 104
WORD 104
WORDINDEX 105
WORDLENGTH 105
WORDPOS 105
WORDS 106
X2B 106
X2C 107
X2D 107

built-in functions (continued)
XRANGE 106

BY phrase of DO instruction 39

C
C2D function

description 85
example 85
implementation maximum 85

C2X function
description 86
example 86

CALL instruction
description 35
example 37
implementation maximum 38

calls
recursive 36

CCSID (coded character set identifier)
See coded character set identifier (CCSID)

CENTER function
description 83
example 83

centering a string using
CENTER function 83
CENTRE function 83

CENTRE function
description 83
example 83

changing destination of commands 30
character

definition 8
position of a string 93
removal with STRIP function 98
strings, ANDing 81
strings, exclusive-ORing 82
strings, ORing 81
to decimal conversion 85
to hexadecimal conversion 86
word options, alphabetic in TRACE 71

character input and output 143
checking arguments with ARG function 80
CHGCMD command 148, 157
CL Command Environment (COMMAND) 153
CL variables in REXX programs 149
clauses

assignment 20, 21
commands 21
continuation of 14
description 8, 20
instructions 20
keyword instructions 20
labels 20
null 20

 Index 197

clock, elapsed time
See elapsed-time clock

code page 8
coded character set identifier (CCSID)

mixed 54
with ETMODE 54
with NOETMODE 54

collating sequence using XRANGE 106
collections of variables 103
colon

as a special character 13
as label terminators 20
in a label 20

combining string and positional patterns 121
comma

as continuation character 14
in CALL instruction 35
in function calls 75
in parsing template list 33, 121
separator of arguments 35, 75

command
addressing of 30
alternative destinations 25
clause 21
destination of 30
errors, trapping 137
issuing to host 25

command environments
See also environment
COMMAND 153
CPICOMM 152, 154
EXECSQL 152, 154
user-defined 154

command inhibition
See TRACE instruction

comments
description 8
examples 8

common programming interface 2
COMPARE function

description 83
example 83

comparisons
description 17
numeric, example 133
of numbers 17, 133
of strings

using COMPARE 83
compound

symbols 22
variable

description 22
setting new value 24

concatenation
of strings 16
operator

|| 16

concatenation (continued)
operator (continued)

abuttal 16
blank 16

conceptual overview of parsing 122
condition

action taken when not trapped 138
action taken when trapped 138
definition 137
ERROR 137
FAILURE 137
HALT 137
information 140
information, definition 37
NOVALUE 138
saved during subroutine calls 37
SYNTAX 138
trap information using CONDITION 84
trapping of 137
traps, notes 140

CONDITION function
description 84
example 84

conditional
loops 39
phrase 42

console
reading from with PULL 62
writing to with SAY 66

constant symbols 22
content addressable storage 22
contents of this book xi
continuation

character 14
clauses 14
example 14
of data for display 66

control variable 40
controlled loops 40
conversion

binary to hexadecimal 82
character to decimal 85
character to hexadecimal 86
conversion functions 78
decimal to character 89
decimal to hexadecimal 90
formatting numbers 91
functions 108
hexadecimal to binary 106
hexadecimal to character 107
hexadecimal to decimal 107

COPIES function
description 85
example 85

copying a string using COPIES 85

198 AS/400 REXX/400 Reference V4R1

counting
option in DBCS 186
words in a string 106

CPI-Communications command environment
(CPICOMM) 154

CPICOMM command environment 152
CPICOMM, use of 30
CRTCMD command 157

D
D2C function

description 89
example 90
implementation maximum 90

D2X function
description 90
example 90
implementation maximum 90

data
length 15
terms 15

DATATYPE function
description 86
example 87

date and version of the language processor 57
DATE function

description 87
example 88

DBADJUST function
description 187
example 187

DBBRACKET function
description 187
example 187

DBCENTER function
description 187
example 188

DBCS
built-in function descriptions 187
built-in function examples 183
characters 177
counting option 186
description 177
enabling data operations 178
EXMODE 178
function handling 181
functions

DBADJUST 187
DBBRACKET 187
DBCENTER 187
DBLEFT 188
DBRIGHT 188
DBRLEFT 189
DBRRIGHT 189
DBTODBCS 190
DBTOSBCS 190

DBCS (continued)
functions (continued)

DBUNBRACKET 190
DBVALIDATE 191
DBWIDTH 191

handling 177
instruction examples 180
mixed SBCS/DBCS string 179
mixed string validation example 180
mixed symbol 178
notational conventions 178
parsing characters 122
processing functions 186
ranges 11
SBCS strings 177
shift-in (SI) characters 178, 182
shift-out (SO) characters 178, 182
string, DBCS-only 179
string, mixed SBCS/DBCS 179
strings 54, 177
strings and symbols 178
support 191
symbol validation and example 179
symbol, DBCS-only 178
symbol, mixed 178
symbols and strings 178
validation, mixed string 179

DBCS-only string 86
DBLEFT function

description 188
example 188

DBRIGHT function
description 188
example 188

DBRLEFT function
description 189
example 189

DBRRIGHT function
description 189
example 189

DBTODBCS function
description 190

DBTOSBCS function
description 190
example 190

DBUNBRACKET function
description 190
example 190

DBVALIDATE function
description 191
example 191

DBWIDTH function
description 191
example 191

debugging programs
See interactive debug

 Index 199

debugging programs (continued)
See TRACE instruction

decimal
arithmetic 127—136
to character conversion 89
to hexadecimal conversion 90

default
environment 25
selecting with ABBREV function 79

default character streams
See character input and output

delayed state
description 137

deleting
part of a string 88
words from a string 89

delimiters in a clause
See colon
See semicolons

DELSTR function
description 88
example 89

DELWORD function
description 89
example 89

derived names of variables 22
description

of built-in functions for DBCS 187
DIGITS function

description 89
example 89

DIGITS option of NUMERIC instruction 52, 128
displaying data

See SAY instruction
division

description 130
operator 16

DO instruction
See also loops
description 39
example 41

Double-Byte Character Set
See DBCS

DROP instruction
description 44
example 44

dummy instruction
See NOP instruction

E
elapsed-time clock

measuring intervals with 100
saved during subroutine calls 37

ELSE keyword
See IF instruction

END clause
See also DO instruction
See also SELECT instruction
specifying control variable 40

engineering notation 134
environment

addressing of 30
default 31, 57
determining current using ADDRESS function 79
name, definition 30
SAA supported 2
temporary change of 30

equal
operator 17
sign

in parsing template 114, 115
to indicate assignment 13, 21

equality, testing of 17
error

definition 26
during execution of functions 77
from commands 26
messages

retrieving with ERRORTEXT 91
traceback after 73
trapping 137

ERROR condition of SIGNAL and CALL
instructions 141

ERRORTEXT function
description 91
example 91

ETMODE 54
European option of DATE function 87
evaluation of expressions 15
example

ABBREV function 79
ABS function 79
ADDRESS function 80
ADDRESS instruction 30, 31
ARG function 80
ARG instruction 33
B2X function 83
basic arithmetic operators 131
BITAND function 81
BITOR function 82
BITXOR function 82
built-in function in DBCS 183
C2D function 85
C2X function 86
CALL instruction 37
CENTER function 83
CENTRE function 83
character 14
clauses 14
combining positional pattern and parsing into

words 117

200 AS/400 REXX/400 Reference V4R1

example (continued)
combining string and positional patterns 121
combining string pattern and parsing into

words 116
comments 8
COMPARE function 83
CONDITION function 84
continuation 14
COPIES function 85
D2C function 90
D2X function 90
DATATYPE function 87
DATE function 88
DBADJUST function 187
DBBRACKET function 187
DBCENTER function 188
DBCS instruction 180
DBLEFT function 188
DBRIGHT function 188
DBRLEFT function 189
DBRRIGHT function 189
DBTOSBCS function 190
DBUNBRACKET function 190
DBVALIDATE function 191
DBWIDTH function 191
DELSTR function 89
DELWORD function 89
DIGITS function 89
DO instruction 41
DROP instruction 44
ERRORTEXT function 91
EXIT instruction 45
exponential notation 134
expressions 19
FORM function 91
FORMAT function 92
FUZZ function 92
IF instruction 46
INSERT function 93
INTERPRET instruction 47, 48
ITERATE instruction 49
LASTPOS function 93
LEAVE instruction 50
LEFT function 93
LENGTH function 94
MAX function 94
MIN function 94
mixed string validation 180
NOP instruction 51
numeric comparisons 133
OVERLAY function 95
parsing instructions 119
parsing multiple strings in a subroutine 121
period as a placeholder 113
POS function 95
PROCEDURE instruction 60

example (continued)
PULL instruction 62
PUSH instruction 63
QUEUE instruction 64
QUEUED function 95
RANDOM function 96
REVERSE function 96
RIGHT function 97
SAY instruction 66
SELECT instruction 67
SIGL, special variable 142
SIGN function 97
SIGNAL instruction 68
simple templates, parsing 111
SOURCELINE function 97
SPACE function 98
special characters 13
STRIP function 98
SUBSTR function 99
SUBWORD function 99
SYMBOL function 100
symbol validation 179
templates containing positional patterns 114
templates containing string patterns 113
TIME function 101
TRACE function 102
TRACE instruction 72
TRANSLATE function 102
TRUNC function 103
using a variable as a positional pattern 118
using a variable as a string pattern 118
VALUE function 103
VERIFY function 104
WORD function 105
WORDINDEX function 105
WORDLENGTH function 105
WORDPOS function 105
WORDS function 106
X2B function 106
X2C function 107
X2D function 107
XRANGE function 106

exception conditions saved during subroutine
calls 37

exclusive OR operator 18
exclusive-ORing character strings together 82
EXECSQL command environment 152
EXECSQL, use of 30
execution

by language processor 7
of data 47

EXIT instruction
description 45
example 45

EXMODE
in DBCS 178

 Index 201

EXMODE (continued)
with OPTIONS instruction 54

exponential notation
description 127, 133
example 134
usage 12

exponentiation
description 133
operator 16

EXPOSE option of PROCEDURE instruction 59
exposed variable 59
expressions

evaluation 15
examples 19
parsing of 57
results of 15
tracing results of 71

external
application program interface 156
arguments within 156
data queue

counting lines in 95
maximum length of items 63, 64
reading from with PULL 62
writing to with PUSH 63
writing to with QUEUE 64

functions
description 76

return values from 157
routine

calling 35
definition 35

search order 156
subroutines

description 76
variables

access with VALUE function 103
external character streams

See character input and output
external data queue 144

damage to 170
extracting

substring 99
word from a string 104
words from a string 99

F
FAILURE condition of SIGNAL and CALL

instructions 137, 141
failure, definition 26
FIFO (first-in/first-out) stacking 64
files

See character input and output
finding

mismatch using COMPARE 83

finding (continued)
string in another string 95
string length 94
word length 105

flags, tracing
- 73
+++ 73
>.> 73
>>> 73
>C> 73
>F> 73
>L> 73
>O> 73
>P> 73
>V> 73

flow of control
unusual, with CALL 137
unusual, with SIGNAL 137
with CALL/RETURN 35
with DO construct 39
with IF construct 46
with SELECT construct 67

FOR phrase of DO instruction 39
FOREVER repetitor on DO instruction 39
FORM function

description 91
example 91

FORM option of NUMERIC instruction 52, 135
FORMAT function

description 91
example 92

formatting
DBCS blank adjustments 187
DBCS bracket adding 187
DBCS bracket stripping 190
DBCS EBCDIC to DBCS 190
DBCS string width 191
DBCS strings to SBCS 190
numbers for display 91
numbers with TRUNC 103
of output during tracing 73
text centering 83
text left justification 93, 188
text left remainder justification 189
text right justification 97, 188
text right remainder justification 189
text spacing 98
text validation function 191

function, built-in
See built-in functions

functions 75—108
ABS 79
ADDRESS 79
ARG 80
AS/400 Specific 108
B2X 82

202 AS/400 REXX/400 Reference V4R1

functions (continued)
BITAND 81
BITOR 81
BITXOR 82
built-in 79—107
built-in, description 78
C2D 85
C2X 86
call, definition 75
calling 75
CENTER 83
CENTRE 83
COMPARE 83
CONDITION 84
COPIES 85
D2C 89
D2X 90
DATATYPE 86
DATE 87
definition 75
DELSTR 88
DELWORD 89
description 75
DIGITS 89
ERRORTEXT 91
external 76
forcing built-in or external reference 77
FORM 91
FORMAT 91
FUZZ 92
INSERT 93
internal 76
LASTPOS 93
LEFT 93
LENGTH 94
MAX 94
MIN 94
numeric arguments of 135
OVERLAY 95
POS 95
processing in DBCS 186
QUEUED 95
RANDOM 96
return from 65
REVERSE 96
RIGHT 97
SETMSGRC 108
SIGN 97
SOURCELINE 97
SPACE 98
STRIP 98
SUBSTR 99
SUBWORD 99
SYMBOL 99
TIME 100
TRACE 101

functions (continued)
TRANSLATE 102
TRUNC 103
VALUE 103
variables in 59
VERIFY 104
WORD 104
WORDINDEX 105
WORDLENGTH 105
WORDPOS 105
WORDS 106
X2B 106
X2C 107
X2D 107
XRANGE 106

FUZZ
controlling numeric comparison 133
option of NUMERIC instruction 52, 133

FUZZ function
description 92
example 92

G
general concepts 7—27
global variables

access with VALUE function 103
GOTO, unusual 137
greater than operator 17
greater than or equal operator (>=) 17
greater than or less than operator (><) 17
group, DO 39
grouping instructions to run repetitively 39
guard digit 129

H
HALT condition of SIGNAL and CALL

instructions 137, 141
halt, trapping 137
hexadecimal

See also conversion
checking with DATATYPE 86
description 10
digits 10
strings

implementation maximum 10
to binary, converting with X2B 106
to character, converting with X2C 107
to decimal, converting with X2D 107

host commands
issuing commands to underlying operating

system 25
hours calculated from midnight 100
how to use this book 2

 Index 203

I
IF instruction

description 46
example 46

ILE Session Manager display
features provided by 149
input to PARSE PULL instruction 57
input to PULL instruction 62
output of SAY instruction 66

implementation maximum
binary strings 11
C2D function 85
CALL instruction 38
D2C function 90
D2X function 90
hexadecimal strings 10
literal strings 10
MAX function 94
MIN function 94
numbers 13
operator characters 15, 23
PUSH instruction 63
QUEUE instruction 64
storage limit 7
symbols 12
X2D function 108

implied semicolons 14
imprecise numeric comparison 133
inclusive OR operator 18
indefinite loops 41
indentation during tracing 73
indirect evaluation of data 47
inequality, testing of 17
infinite loops 39
information, more REXX 4
initialization

of arrays 24
of compound variables 24

 input and output model 143
input and output streams 143
 input from the user 143
INSERT function

description 93
example 93

inserting a string into another 93
instructions

ADDRESS 30
ARG 33
CALL 35
definition 20
DO 39
DROP 44
EXIT 45
IF 46
INTERPRET 47

instructions (continued)
ITERATE 49
keyword 20

description 29
LEAVE 50
NOP 51
NUMERIC 52
OPTIONS 54
PARSE 56
parsing, summary 119
PROCEDURE 59
PULL 62
PUSH 63
QUEUE 64
RETURN 65
SAY 66
SELECT 67
SIGNAL 68
TRACE 70

integer
arithmetic 127—136
division

description 127, 132
operator 16

interactive debug 70
See also TRACE instruction

internal
functions

description 76
return from 65
variables in 59

routine
calling 35
definition 35

INTERPRET instruction
description 47
example 47, 48

interpretive execution of data 47
invoking

built-in functions 35
routines 35

ITERATE instruction
See also DO instruction
description 49
example 49
use of variable on 49

J
justification, text right, RIGHT function 97

K
keyword

See also instructions
conflict with commands 175

204 AS/400 REXX/400 Reference V4R1

keyword (continued)
description 29
mixed case 29
reservation of 175

L
label

as target of CALL 35
as target of SIGNAL 68
description 20
duplicate 68
in INTERPRET instruction 47
search algorithm 68

language
processor date and version 57
structure and syntax 8

language limitations 193
language processor, starting the 148

from a CDO 148
using QREXX 151
using the STRREXPRC command 148

LASTPOS function
description 93
example 93

leading
blank removal with STRIP function 98
zeros

adding with the RIGHT function 97
removing with STRIP function 98

LEAVE instruction
See also DO instruction
description 50
example 50
use of variable on 50

leaving your program 45
LEFT function

description 93
example 93

LENGTH function
description 94
example 94

less than operator (<) 17
less than or equal operator (<=) 17
less than or greater than operator (<>) 17
LIFO (last-in/first-out) stacking 63
limitations, language 193
line input and output

See character input and output
LINEIN option of PARSE instruction 56
lines from stream 56
list

template
ARG instruction 33
PARSE instruction 56
PULL instruction 62

literal string
description 9
implementation maximum 10
patterns 113

locating
string in another string 95
word in a string 105

logical
bit operations

BITAND 81
BITOR 81
BITXOR 82

operations 18
loops

See also DO instruction
active 49
execution model 42
modification of 49
repetitive 40
termination of 50

lowercase symbols 11

M
MAX function

description 94
example 94
implementation maximum 94

MIN function
description 94
example 94
implementation maximum 94

minutes calculated from midnight 100
mixed DBCS string 86
 model of input and output 143
Month option of DATE function 87
more REXX information 4
multi-way call 36, 69
multiple

assignments in parsing 116
string parsing 121

multiplication
description 130
operator 16

N
names

of functions 76
of programs 57
of subroutines 35
of variables 12

National Language Character Set (NLCS) Support
character length 7
with labels 20

 Index 205

negation
of logical values 18
of numbers 16

nesting of control structures 38
nibbles 10
NLCS (National Language Character Set) Support

See National Language Character Set (NLCS)
Support

NOETMODE 54
NOEXMODE 54
NOP instruction

description 51
example 51

Normal option of DATE function 87
not equal operator 17
not greater than operator 17
not less than operator 17
NOT operator 13, 18
notation

engineering 134
exponential, example 134
scientific 134

note
condition traps 140

NOVALUE condition
not raised by VALUE function 103
of SIGNAL instruction 141
on SIGNAL instruction 138
use of 175

null
clauses 20
strings 9, 15

null instruction
See NOP instruction

numbers
arithmetic on 16, 127, 129
checking with DATATYPE 86
comparison of 17, 133
description 12, 127, 128
formatting for display 91
implementation maximum 13
in DO instruction 39
truncating 103
use in the language 135
whole 135

numeric
comparisons, example 133
options in TRACE 72

NUMERIC instruction
description 52
DIGITS option 52
FORM option 52, 135
FUZZ option 52
settings saved during subroutine calls 37

numeric patterns
See positional patterns

O
operations

arithmetic 129
tracing results 70

operator
arithmetic

description 15, 127, 129
list 16

as special characters 13
characters

description 13
implementation maximum 15, 23

comparison 17, 133
concatenation 16
examples 131, 132
logical 18
precedence (priorities) of 18

options
alphabetic character word in TRACE 71
numeric in TRACE 72

OPTIONS instruction
description 54

OR, logical
exclusive 18
inclusive 18

Ordered option of DATE function 87
ORing character strings together 81
OTHERWISE clause

See SELECT instruction
 output to the user 143
overflow, arithmetic 136
OVERLAY function

description 95
example 95

overlaying a string onto another 95
overview of parsing 122

P
¬ (NOT operator) 18
¬< (not less than operator) 17
¬<< (strictly not less than operator) 18
¬= (not equal operator) 17
¬== (strictly not equal operator) 17
¬> (not greater than operator) 17
¬>> (strictly not greater than operator) 18
packing a string with X2C 107
pad character, definition 78
page, code 8
parentheses

adjacent to blanks 13
in expressions 18
in function calls 75
in parsing templates 118

206 AS/400 REXX/400 Reference V4R1

PARSE instruction
description 56

PARSE LINEIN
role in input and output 143

PARSE PULL
role in input and output 143

parsing
advanced topics 121
combining patterns and parsing into words 116
combining string and positional patterns 121
conceptual overview 122
definition 111
description 111—125
equal sign 115
examples

combining positional pattern and parsing into
words 117

combining string and positional patterns 121
combining string pattern and parsing into

words 116
parsing instructions 119
parsing multiple strings in a subroutine 121
period as a placeholder 113
simple templates 111
templates containing positional patterns 114
templates containing string patterns 113
using a variable as a positional pattern 118
using a variable as a string pattern 118

into words 111
multiple assignments 116
multiple strings 121
patterns

conceptual view 124
positional 111, 114
string 111, 113

period as placeholder 113
positional patterns 111

absolute 114
relative 115
variable 118

selecting words 111
source string 111
special case 121
steps 122
string patterns 111

literal string patterns 113
variable string patterns 118

summary of instructions 119
templates

in ARG instruction 33
in PARSE instruction 56
in PULL instruction 62

treatment of blanks 112
UPPER, use of 118
variable patterns

positional 118
string 118

parsing (continued)
with DBCS characters 122
word parsing

conceptual view 125
description and examples 111

patterns in parsing
combined with parsing into words 116
conceptual view 124
positional 111, 114
string 111, 113

period
as placeholder in parsing 113
causing substitution in variable names 22
in numbers 128

permanent command destination change 30
POS function

description 95
example 95

position
last occurrence of a string 93

positional patterns
absolute 114
description 111
relative 115
variable 118

powers of ten in numbers 12
precedence of operators 18
precision of arithmetic 128
preface xi
prefix

operators 16, 18
presumed command destinations 30
PROCEDURE instruction

description 59
example 60

Procedures Language REXX/400
See REstructured eXtended eXecutor/400

(REXX/400)
programming

interface, common 2
restrictions 7

programs
arguments to 33
retrieving lines with SOURCELINE 97

protecting variables 59
pseudo random number function of RANDOM 96
publications

REXX 4
REXX/400 Programmer's Guide 4
SAA Common Programming Interface REXX Level 2

Reference 4
PULL instruction

description 62
example 62
role in input and output 143

 Index 207

PULL option of PARSE instruction 57
purpose

of this book xi
SAA 1

PUSH instruction
description 63
example 63
implementation maximum 63
role in input and output 143

Q
QREXQ interface 144, 163, 170, 171
QREXVAR interface 166

SHVBLOCK map 167
symbolic vs. direct 167

QREXX, parameter structure 151
querying TRACE setting 101
queue

See external, data queue
QUEUE instruction

description 64
example 64
implementation maximum 64
role in input and output 143

QUEUED function
description 95
example 95
role in input and output 143

queuing API 170

R
RANDOM function

description 96
example 96

random number function of RANDOM 96
RC (return code)

from CL commands 153
from other commands 155
maximum length 155
not set during interactive debug 173
set by commands 26
special variable 141, 176

recursive call 36
relative positional patterns 115
remainder

description 127, 132
operator 16

reordering data with TRANSLATE function 102
repeating a string with COPIES 85
repetitive loops

altering flow 50
controlled repetitive loops 40
exiting 50
simple DO group 40

repetitive loops (continued)
simple repetitive loops 40

reservation of keywords 175
restoring variables 44
restrictions

embedded blanks in numbers 12
first character of variable name 21
in programming 7
maximum length of results 15

REstructured eXtended eXecutor (REXX) Language
See REXX

REstructured eXtended eXecutor/400 (REXX/400)
description 1

RESULT
set by RETURN instruction 36, 65
special variable 176

results
length of 15

retrieving
argument strings with ARG 33
arguments with ARG function 80
lines with SOURCELINE 97

return
code

as set by commands 26
setting on exit 45

string
setting on exit 45

return codes and values 151
RETURN instruction

description 65
returning control from REXX program 65
REVERSE function

description 96
example 96

REXX
description 1
information, more 4
publications 4

REXX/400
See REstructured eXtended eXecutor/400

(REXX/400)
REXX/400 Programmer's Guide 4
RIGHT function

description 97
example 97

RMVREXBUF command 145
rounding

description 129
using a character string as a number 12

routines
See functions
See subroutines

running off the end of a program 45

208 AS/400 REXX/400 Reference V4R1

S
SAA

books 4
purpose 1
solution 1
supported environments 2

SAY instruction
description 66
displaying data 66
example 66
role in input and output 143

SBCS strings 177
scientific notation 134
search order

for functions 77
for subroutines 36

seconds calculated from midnight 101
security characteristics for REXX/400 150
SELECT instruction

description 67
example 67

selecting a default with ABBREV function 79
semicolons

implied 14
omission of 29
within a clause 8

sequence, collating using XRANGE 106
serial input and output

See character input and output
SETMSGRC function 108
shift-in (SI) characters 178, 182
shift-out (SO) characters 178, 182
SHORT_VARSTRING 154

return codes from 155
SIGL

set by CALL instruction 36
set by SIGNAL instruction 68
special variable 141, 176

example 142
SIGN function

description 97
example 97

SIGNAL instruction
description 68
example 68
execution of in subroutines 37

significant digits in arithmetic 128
simple

repetitive loops 40
symbols 22

single stepping
See interactive debug

solution, SAA 1
source

of program and retrieval of information 57

source (continued)
string 111

source code
entering 147

SOURCE option of PARSE instruction 57
SOURCELINE function

description 97
example 97

SPACE function
description 98
example 98

spacing, formatting, SPACE function 98
special

characters and example 13
parsing case 121
RC 176
RESULT 157, 176
SIGL 176
variables

RC 26, 141
RESULT 36, 65
SIGL 36, 141

Standard option of DATE function 88
standard streams 143

default 143
STDERR 143
STDIN 143
STDOUT 143

stem of a variable
assignment to 24
description 22
used in DROP instruction 44
used in PROCEDURE instruction 59

stepping through programs
See interactive debug

steps in parsing 122
stream

See character input and output
strict comparison 17
strictly equal operator 17
strictly greater than operator 17
strictly greater than or equal operator 17
strictly less than operator 17
strictly less than or equal operator 18
strictly not equal operator 17
strictly not greater than operator 18
strictly not less than operator 18
string

and symbols in DBCS 178
as literal constant 9
as name of function 9
as name of subroutine 35
binary specification of 10
centering using CENTER function 83
centering using CENTRE function 83
comparison of 17

 Index 209

string (continued)
concatenation of 16
copying using COPIES 85
DBCS 177
DBCS-only 179
deleting part, DELSTR function 88
description 9
extracting words with SUBWORD 99
hexadecimal specification of 10
interpretation of 47
length of 15
mixed SBCS/DBCS 179
mixed, validation 179
null 9, 15
patterns

description 111
literal 113
variable 118

quotation marks in 9
repeating using COPIES 85
SBCS 177
verifying contents of 104

STRIP function
description 98
example 98

STRREXPRC command 26, 38, 45, 57, 65, 148, 157
structure and syntax 8
Structured Query Language command environment

(EXECSQL) 154
subexpression 15
subkeyword 21
subroutines

calling of 35
definition 75
forcing built-in or external reference 36
naming of 35
passing back values from 65
return from 65
use of labels 35
variables in 59

subsidiary list 44, 59
substitution

in expressions 15
in variable names 22

SUBSTR function
description 99
example 99

substring, extracting with SUBSTR function 99
subtraction

description 130
operator 16

SUBWORD function
description 99
example 99

summary
parsing instructions 119

symbol
assigning values to 21
classifying 21
compound 22
constant 22
DBCS validation 179
DBCS-only 178
description 11
implementation maximum 12
mixed DBCS 178
simple 22
uppercase translation 11
use of 21
valid names 12

SYMBOL function
description 99
example 100

symbols and strings in DBCS 178
syntax

diagrams 3
error

traceback after 73
trapping with SIGNAL instruction 137

general 8
syntax checking

See TRACE instruction
SYNTAX condition of SIGNAL instruction 138, 141
system exit interfaces

entry conditions 159
exit definitions 160
functions and subfunctions 158
return codes 160
variable pool 158

system exits
external function exit 160
external HALT exit 164
external trace exit 165
host command exit 162
initialization exit 165
queue exit 162
RXCMD exit 162

RXCMDHST exit 162
RXFNC exit 160

RXFNCCAL exit 160
RXHLT exit 164

RXHLTCLR exit 164
RXHLTTST exit 164

RXINI exit 165
RXINIEXT exit 165

RXMSQ exit 162
RXMSQPLL exit 162
RXMSQPSH exit 163
RXMSQSIZ exit 163

RXSIO exit 163
RXSIODTR exit 164
RXSIOSAY exit 163
RXSIOTRC exit 163

210 AS/400 REXX/400 Reference V4R1

system exits (continued)
RXSIO exit (continued)

RXSIOTRD exit 164
RXTER exit 166

RXTEREXT exit 166
RXTRC exit 165

RXTRCTST exit 165
session I/O exit 163
termination exit 166

T
tail 22
template

definition 111
in PULL instruction 62
list

ARG instruction 33
PARSE instruction 56

parsing
definition 111
general description 111
in ARG instruction 33
in PARSE instruction 56
PULL instruction 62

temporary command destination change 30
ten, powers of 134
terminal input and output

display of 149
terminals

reading from with PULL 62
writing to with SAY 66

terms and data 15
testing

abbreviations with ABBREV function 79
variable initialization 99

text formatting
See formatting
See word

THEN
as free standing clause 29
following IF clause 46
following WHEN clause 67

TIME function
description 100
example 101

tips, tracing 72
TO phrase of DO instruction 39
trace

tags 73
TRACE function

description 101
example 102

TRACE instruction
See also interactive debug
alphabetic character word options 71

TRACE instruction (continued)
description 70
example 72

TRACE setting
altering with TRACE function 101
altering with TRACE instruction 70
querying 101

traceback, on syntax error 73
tracing

action saved during subroutine calls 37
by interactive debug 173
data identifiers 73
execution of programs 70
tips 72

tracing flags
- 73
+++ 73
>.> 73
>>> 73
>C> 73
>F> 73
>L> 73
>O> 73
>P> 73
>V> 73

trailing
blank removed using STRIP function 98
zeros 129

TRANSLATE function
description 102
example 102

translation
See also uppercase translation
with TRANSLATE function 102

trap conditions
explanation 137
how to trap 137
information about trapped condition 84
using CONDITION function 84

trapname
description 138

TRUNC function
description 103
example 103

truncating numbers 103
type of data checking with DATATYPE 86
typing data

See SAY instruction

U
unassigning variables 44
unconditionally leaving your program 45
underflow, arithmetic 136
uninitialized variable 21

 Index 211

unpacking a string
with B2X 82
with C2X 86

UNTIL phrase of DO instruction 39
unusual change in flow of control 137
UPPER

in parsing 118
option of PARSE instruction 56

uppercase translation
during ARG instruction 33
during PULL instruction 62
of symbols 11
with PARSE UPPER 56
with TRANSLATE function 102

Usa option of DATE function 88
user input and output 143
user-defined command environment 154

return codes from 153
 utterances 143

V
validation

DBCS symbol 179
mixed string 179

VALUE function
description 103
example 103

value of variable, getting with VALUE 103
VALUE option of PARSE instruction 57
VAR option of PARSE instruction 57
variable

compound 22
compound pseudo-CL in REXX programs 150
controlling loops 40
description 21
dropping of 44
exposing to caller 59
external collections 103
getting value with VALUE 103
global 103
in internal functions 59
in subroutines 59
names 12
new level of 59
parsing of 57
patterns, parsing with

positional 118
string 118

pool interface 21
positional patterns 118
reference 118
resetting of 44
setting new value 21
SIGL 142
simple 22

variable (continued)
special

RC 26, 141, 176
RESULT 65, 176
SIGL 36, 141, 176

string patterns, parsing with 118
testing for initialization 99
valid names 21

variable pool function code
SHVDROPV 168
SHVEXIT 170
SHVEXTFN 170
SHVFETCH 168
SHVNEXTV 168
SHVPRIV 169
SHVSET 168
SHVSYDRO 168
SHVSYFET 168
SHVSYSET 168

variable pool interface
functions
QREXVAR Service 166
Shared-Variable Request Block 167
SHVEXIT 157

VERIFY function
description 104
example 104

verifying contents of a string 104
VERSION option of PARSE instruction 57

W
Weekday option of DATE function 88
WHEN clause

See SELECT instruction
where to find more information xi
WHILE phrase of DO instruction 39
who should read this book xi
whole numbers

checking with DATATYPE 86
description 13, 135

word
alphabetic character options in TRACE 71
counting in a string 106
deleting from a string 89
extracting from a string 99, 104
finding length of 105
in parsing 111
locating in a string 105
parsing

conceptual view 125
description and examples 111

WORD function
description 104
example 105

212 AS/400 REXX/400 Reference V4R1

word processing
See formatting

WORDINDEX function
description 105
example 105

WORDLENGTH function
description 105
example 105

WORDPOS function
description 105
example 105

WORDS function
description 106
example 106

writing
to the stack

with PUSH 63
with QUEUE 64

X
X2B function

description 106
example 106

X2C function
description 107
example 107

X2D function
description 107
example 107
implementation maximum 108

XOR, logical 18
XORing character strings together 82
XRANGE function

description 106
example 106

Z
zeros

added on the left 97
removal with STRIP function 98

 Index 213

Reader Comments—We'd Like to Hear from You!

AS/400 Advanced Series
REXX/400 Reference
Version 4

Publication No. SC41-5729-00

Overall, how would you rate this manual?

Very
Satisfied Satisfied Dissatisfied Very

Dissatisfied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

T H A N K Y O U !

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No
Phone: (____) ___________ Fax: (____) ___________ Internet: ___________

To return this form:

 � Mail it
 � Fax it

United States and Canada: 800+937-3430
 Other countries: (+1)+507+253-5192
� Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader Comments—We'd Like to Hear from You!
SC41-5729-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 542 IDCLERK
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986

Fold and Tape Please do not staple Fold and Tape

SC41-5729-00

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5729-��

S
pine inform

ation:

IB
M

A
S/400 A

dvanced Series
R

E
X

X
/400 R

eference
V

ersion 4

