
IBM Tivoli NetView for z/OS
Version 6 Release 1

Programming: REXX and the NetView
Command List Language

SC27-2861-01

���

IBM Tivoli NetView for z/OS
Version 6 Release 1

Programming: REXX and the NetView
Command List Language

SC27-2861-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 203.

This edition applies to version 6, release 1 of IBM Tivoli NetView for z/OS (product number 5697-NV6) and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions.

This edition replaces SC27-2861-00.

© Copyright IBM Corporation 1997, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

About this publication . ix
Intended audience . ix
Publications . ix

IBM Tivoli NetView for z/OS library . ix
Related publications . xi
Accessing terminology online . xi
Using NetView for z/OS online help . xii
Using LookAt to look up message explanations . xii
Accessing publications online . xiii
Ordering publications. xiii

Accessibility . xiii
Tivoli technical training . xiv
Tivoli user groups . xiv
Downloads . xiv
Support information . xiv
Conventions used in this publication . xv

Typeface conventions . xv
Operating system-dependent variables and paths. xv
Syntax diagrams . xvi

Chapter 1. Getting Started . 1
The Benefits of Using Command Lists . 1

Examples of Common Startup Command Lists . 2
Examples of Activating a Network Control Program . 2

Creating Command Lists . 2
Controlling Access to Command Lists . 4
Loading Command Lists into Storage . 4
Running Command Lists . 6

Running Command Lists When NetView Is Started . 6
Running Command Lists When Logging On. 6
Running Command Lists after Receiving a Message or MSU 7
Running Command Lists from a Terminal . 7
Running Command Lists at a Specified Time or Time Interval 7
Running Command Lists from Another Command List . 8
Running Command Lists from a User-Written Command Processor 10

Using Network Commands in Command Lists . 10
Using System Commands in Command Lists . 10
Using Long-Running Commands in Command Lists. 10
Using Tivoli NetView for z/OS Pipelines . 11
Using the VIEW Command . 12
Using Full-Screen Commands . 12
Primary POI Task Restrictions . 12
AUTOTASK OST Restrictions . 13

Controlling Command List Output . 13
Working with Messages . 14

Chapter 2. REXX Language Overview . 17
Introduction to the REXX Language . 17
Compiling and Running REXX Command Lists . 17
Using %INCLUDE with Interpreted REXX . 18
Using Data REXX . 18

Processing Data REXX Files . 20
Additional Information . 21

© Copyright IBM Corp. 1997, 2011 iii

Data REXX Directives . 22
/*%DATA . 22
/*%LOGIC . 23

Coding Conventions for REXX Command Lists and Data REXX Files 23
Record Size . 23
Using Quotation Marks . 24
Suppressing Display of Non-REXX Commands . 26

Tivoli NetView for z/OS Restrictions on REXX Instructions 26
Pausing for Operator Input . 26
Using the SAY Instruction . 27
Using the CALL Instruction . 27

NetView Restrictions on REXX Functions . 28
Writing REXX Function Packages . 28
Changing the Environment Addressed by REXX Command Lists 28
Data REXX Host Command Environment . 29
Using the EXECIO Command . 29
Using MVS and VTAM Commands . 30
Using the NetView ALLOCATE and FREE Commands . 30
Using REXX Command Lists . 30
Nesting REXX Command Lists from Assembler, C, or PL/I 31
Parsing in REXX Command Lists . 32
Tracing REXX Command Lists . 32
Return Codes in REXX Command Lists . 33
Recovering from Errors in REXX Command Lists. 33

Chapter 3. REXX Instructions for Command Lists Run in a NetView Environment . . . 35
Using TRAP in Nested REXX Command Lists . 36
Using WAIT in Nested Command Lists . 36
Using MSGREAD in Nested Command Lists . 37
Functions Set by MSGREAD. 37

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 39
Translation Functions . 40
IP Address Processing . 43
Command List Information . 44
Cross-Domain Information Functions . 49
Data Set Information Functions . 50
Global Variable Information Functions . 52
Message Processing Information Functions . 52

Message Processing Information . 53
ROUTCDE Examples . 65

Command Processing Information Functions . 65
REXX Management Services Unit Information Functions . 67

Hardware Monitor (HMxxxxxx) Examples . 76
MSUSEG Syntax and Examples. 79
Probable Cause Syntax and Examples . 81

Operator Information Functions . 82
Session Information Functions . 83
REXX Environment Information Functions . 87
Terminal Information Functions . 87
Time and Date Variables . 88
Nulls and Blanks Stripping . 88

Chapter 5. Automation Resource Management 91
Defining NetView Automation Table Command Lists . 91
Routing Messages from Automation-Table-Driven Command Lists 91
Implementing NetView Automation . 91

Suppressing Messages . 92
Determining the Environment for a Command List . 92
Testing Automation Command Lists . 92

iv Programming: REXX and the NetView Command List Language

Looping and Automation . 93
Considering Operator Interaction . 94
Common Automation Problems . 94

Appendix A. Writing Simple Command Lists in the NetView Command List Language 97
What the NetView Command List Language Includes . 97
Coding Conventions for NetView Command List Language Statements 97

Conventions for General Coding . 98
Conventions for Continuing a Statement. 98
Conventions for Double-Byte Character Set Text . 99
Conventions for Suppression Characters . 99

Labels . 100
Variables . 101

Variable Substitution Order. 101
Parameter Variables . 102
Passing Parameter Variable Information to a Command List 103
Using Parameter Variables in a Command List . 103
Passing Parameter Variables to a Nested Command List 104
Using Quoted Strings or Special Characters in Parameter Variables 105
Null Parameter Values . 105
Control Variables . 106
User Variables . 106

Hexadecimal Notation . 107
Comments . 107
Null Statements . 108
Assignment Statements . 108
Control Statements . 110

&CONTROL Statement . 110
Writing to the Operator . 111
Using NetView Commands with &PAUSE. 115
An Example Using &PAUSE . 116

NetView Built-in Functions . 117
&BITAND . 117
&BITOR . 118
&BITXOR. 119
&CONCAT . 119
&HIER . 120
&LENGTH . 122
&MSUSEG . 123
&NCCFID . 124
&NCCFSTAT . 125
&SUBSTR . 126

Appendix B. NetView Command List Language Branching 129
&IF Control Statement . 129
&GOTO Control Statement . 131
&EXIT Control Statement . 131
&WAIT Control Statement . 133

Coding an &WAIT Control Statement . 134
Ending an &WAIT. 138
Using NetView Commands with &WAIT . 138
Control and Parameter Variables Used with &WAIT . 139
Using &WAIT in Nested Command Lists . 140
Customizing the &WAIT Statement . 141
Ending &WAIT If CONTWAIT Is in Effect. 143
Suggestions for Coding &WAIT . 143
Sample Using &WAIT . 144

Appendix C. NetView Command List Language Global Variables 147
Using &TGLOBAL and &CGLOBAL . 148

Contents v

&TGLOBAL . 148
&CGLOBAL. 149

Updating Task Global Variables Using &TGLOBAL . 150
Extent of Variables When Using &TGLOBAL and &CGLOBAL 151
GLOBALV Command . 154

Appendix D. Common Operations Services Commands 155
Common Operations Services . 155
Common Operations Services Return Codes . 156
LINKDATA and LINKTEST Results . 156

LINKDATA and LINKTEST Variables . 156
LINKTEST Additional Variables . 157

LINKPD Results . 157
RUNCMD Results . 158

Using RUNCMD in a Pipeline. 158

Appendix E. Comparison of REXX and NetView Command List Language 161
Comparison of REXX Instructions and NetView Command List Language Control Statements 161
Comparison of REXX Functions and NetView Command List Language Control Variables and Functions . . . 162
Commands Used in Command Lists . 166

Appendix F. Command List Examples Index 167
REXX Command List Examples . 167
NetView Command List Language Examples . 168

Appendix G. Examples of REXX Command Lists for NetView 169
ACTAPPLS Example . 169
ACTLU Example . 171
CHKOPNUM Example . 171
CHKRSTAT Example . 173
CNMS1101 . 175
CNME1080 . 187
CNMSRVAR Example . 188
CNMSRVMC Example . 191
DSPRSTAT Example . 193
GETCG Example . 194
GREETING Example . 195
LISTVAR Example. 195
PRINT Example . 197
TYPE Example . 199
TYPEIT Example . 199
UPDCGLOB Example . 201

Notices . 203
Programming Interfaces . 205
Trademarks . 205

Index . 207

vi Programming: REXX and the NetView Command List Language

Figures

1. STARTUP1 Command List 2
2. Example of Activating an NCP 2
3. Example of Concatenating Data Sets with the

DSICLD Statement 3
4. Nested Command Lists 8
5. REXX Example to Test for Bit 17 65
6. NetView Command List Language Example to

Test for Bit 17 65
7. Using the REXX POS Function to Test for Bit

17 65
8. HMASPRID Example A 76
9. HMASPRID Example B 77

10. HMBLKACT Example A 77
11. HMBLKACT Example B 77
12. HMBLKACT Example C 77
13. HMCPLINK Example A 77
14. HMCPLINK Example B 77
15. HMEPNAU, HMEPNET, and HMFWDSNA

Example 77
16. HMEPNETV Example 77
17. HMEVTYPE Example A 78
18. HMEVTYPE Example B 78
19. HMFWDED Example A 78
20. HMFWDED Example B 78
21. HMGENCAU Example A 78
22. HMGENCAU Example B 78
23. HMONMSU Example A 78
24. HMONMSU Example B 78
25. HMORIGIN Example 79
26. HMSECREC Example 79
27. HMSPECAU Example A 79
28. HMSPECAU Example B 79
29. HMUSRDAT Example 79
30. MSUSEG() Example 1 81
31. MSUSEG() Example 2 81
32. MSUSEG() Example 3 81
33. MSUSEG() Example 4 81

34. Example of Using Suppression Characters 100
35. Assignment Statement 108
36. Result of PATH Example Command List 112
37. Sending One-line Messages to the Operator 113
38. &BEGWRITE with Variable Substitution 114
39. Result of ENDIT Example Command List 114
40. Example of a &HIER Parsing Template 121
41. Using &APPLID to Determine the Domain

Name 127
42. Example of a CLIST to Stop TAF Sessions 132
43. Examples of Coding Tokens with Special

Characters 136
44. Command List Issuing &WAIT for One

Message 144
45. ACTONE NODE1 Message Text 145
46. CLIST1 Command List to Define, Update,

and Reference Task Global Variables 150
47. UPDT1 Command List to Update Task Global

Variables 151
48. GLOBVAR1 Example Showing Extent of

Global Variables 152
49. ACTAPPLS Example 169
50. ACTLU Example 171
51. CHKOPNUM Example 172
52. CHKRSTAT Example 174
53. CNMS1101 Example 176
54. CNME1080 Example 187
55. CNMSRVAR Example. 189
56. CNMSRVMC Example 192
57. DSPRSTAT Example 194
58. GETCG Example 195
59. GREETING Example 195
60. LISTVAR example 196
61. PRINT Example. 198
62. TYPE Example 199
63. TYPEIT Example 200
64. UPDCGLOB Example 201

© Copyright IBM Corp. 1997, 2011 vii

viii Programming: REXX and the NetView Command List Language

About this publication

The IBM® Tivoli® NetView® for z/OS® product provides advanced capabilities that
you can use to maintain the highest degree of availability of your complex,
multi-platform, multi-vendor networks and systems from a single point of control.
This publication, IBM Tivoli NetView for z/OS Programming: REXX and the NetView
Command List Language, describes how to write command lists for the NetView
product using either the Restructured Extended Executor (REXX) language or the
NetView command list language.

Note: This publication does not provide descriptions of NetView commands. If a
command is not familiar, see the NetView online help.

Intended audience
This publication is for system programmers and operators who write or run REXX
programs under NetView control. A REXX program can be used as a regular
command, as a subroutine, as a function from either a regular command or a
subroutine, or as Data REXX. Readers should be familiar with how the NetView
program is used in their network.

Publications
This section lists publications in the IBM Tivoli NetView for z/OS library and
related documents. It also describes how to access Tivoli publications online and
how to order Tivoli publications.

IBM Tivoli NetView for z/OS library
The following documents are available in the IBM Tivoli NetView for z/OS library:
v Administration Reference, SC27-2869, describes the NetView program definition

statements required for system administration.
v Application Programmer's Guide, SC27-2870, describes the NetView

program-to-program interface (PPI) and how to use the NetView application
programming interfaces (APIs).

v Automation Guide, SC27-2846, describes how to use automated operations to
improve system and network efficiency and operator productivity.

v Command Reference Volume 1 (A-N), SC27-2847, and Command Reference Volume 2
(O-Z), SC27-2848, describe the NetView commands, which can be used for
network and system operation and in command lists and command procedures.

v Customization Guide, SC27-2849, describes how to customize the NetView product
and points to sources of related information.

v Data Model Reference, SC27-2850, provides information about the Graphic
Monitor Facility host subsystem (GMFHS), SNA topology manager, and
MultiSystem Manager data models.

v Installation: Configuring Additional Components, GC27-2851, describes how to
configure NetView functions beyond the base functions.

v Installation: Configuring Graphical Components, GC27-2852, describes how to install
and configure the NetView graphics components.

© Copyright IBM Corp. 1997, 2011 ix

v Installation: Configuring the GDPS Active/Active Continuous Availability Solution,
SC14-7477, describes how to configure the NetView functions that are used with
the GDPS Active/Active Continuous Availability solution.

v Installation: Configuring the NetView Enterprise Management Agent, GC27-2853,
describes how to install and configure the NetView for z/OS Enterprise
Management Agent.

v Installation: Getting Started, GI11-9443, describes how to install and configure the
base NetView functions.

v Installation: Migration Guide, GC27-2854, describes the new functions that are
provided by the current release of the NetView product and the migration of the
base functions from a previous release.

v IP Management, SC27-2855, describes how to use the NetView product to manage
IP networks.

v Messages and Codes Volume 1 (AAU-DSI), GC27-2856, and Messages and Codes
Volume 2 (DUI-IHS), GC27-2857, describe the messages for the NetView product,
the NetView abend codes, the sense codes that are included in NetView
messages, and generic alert code points.

v Programming: Assembler, SC27-2858, describes how to write exit routines,
command processors, and subtasks for the NetView product using assembler
language.

v Programming: Pipes, SC27-2859, describes how to use the NetView pipelines to
customize a NetView installation.

v Programming: PL/I and C, SC27-2860, describes how to write command processors
and installation exit routines for the NetView product using PL/I or C.

v Programming: REXX and the NetView Command List Language, SC27-2861, describes
how to write command lists for the NetView product using the Restructured
Extended Executor language (REXX) or the NetView command list language.

v Resource Object Data Manager and GMFHS Programmer's Guide, SC27-2862,
describes the NetView Resource Object Data Manager (RODM), including how
to define your non-SNA network to RODM and use RODM for network
automation and for application programming.

v Security Reference, SC27-2863, describes how to implement authorization checking
for the NetView environment.

v SNA Topology Manager Implementation Guide, SC27-2864, describes planning for
and implementing the NetView SNA topology manager, which can be used to
manage subarea, Advanced Peer-to-Peer Networking, and TN3270 resources.

v Troubleshooting Guide, GC27-2865, provides information about documenting,
diagnosing, and solving problems that occur in the NetView product.

v Tuning Guide, SC27-2874, provides tuning information to help achieve certain
performance goals for the NetView product and the network environment.

v User's Guide: Automated Operations Network, SC27-2866, describes how to use the
NetView Automated Operations Network (AON) component, which provides
event-driven network automation, to improve system and network efficiency. It
also describes how to tailor and extend the automated operations capabilities of
the AON component.

v User's Guide: NetView, SC27-2867, describes how to use the NetView product to
manage complex, multivendor networks and systems from a single point.

v User's Guide: NetView Enterprise Management Agent, SC27-2876, describes how to
use the NetView Enterprise Management Agent.

v User's Guide: NetView Management Console, SC27-2868, provides information
about the NetView management console interface of the NetView product.

x Programming: REXX and the NetView Command List Language

v Licensed Program Specifications, GC31-8848, provides the license information for
the NetView product.

v Program Directory for IBM Tivoli NetView for z/OS US English, GI11-9444, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

v Program Directory for IBM Tivoli NetView for z/OS Japanese, GI11-9445, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

v Program Directory for IBM Tivoli NetView for z/OS Enterprise Management Agent,
GI11-9446, contains information about the material and procedures that are
associated with installing the IBM Tivoli NetView for z/OS Enterprise
Management Agent.

v IBM Tivoli NetView for z/OS V6R1 Online Library, LCD7-4913, contains the
publications that are in the NetView for z/OS library. The publications are
available in PDF, HTML, and BookManager® formats.

Technical changes that were made to the text since Version 6.1 are indicated with a
vertical bar (|) to the left of the change.

Related publications
For more information about REXX, refer to the TSO/E REXX library.

You can find additional product information on the NetView for z/OS web site at
http://www.ibm.com/software/tivoli/products/netview-zos/.

For information about the NetView Bridge function, see Tivoli NetView for OS/390
Bridge Implementation, SC31-8238-03 (available only in the V1R4 library).

Accessing terminology online
The IBM Terminology web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology web site at
http://www.ibm.com/software/globalization/terminology/.

For NetView for z/OS terms and definitions, see the IBM Terminology web site.
The following terms are used in this library:

NetView
For the following products:
v Tivoli NetView for z/OS version 6 release 1
v Tivoli NetView for z/OS version 5 release 4
v Tivoli NetView for z/OS version 5 release 3
v Tivoli NetView for z/OS version 5 release 2
v Tivoli NetView for z/OS version 5 release 1
v Tivoli NetView for OS/390® version 1 release 4

CNMCMD
For the CNMCMD member and the members that are included in it using
the %INCLUDE statement

CNMSTYLE
For the CNMSTYLE member and the members that are included in it using
the %INCLUDE statement

PARMLIB
For SYS1.PARMLIB and other data sets in the concatenation sequence

About this publication xi

|
|
|

http://www.ibm.com/software/tivoli/products/netview-zos/
http://www.ibm.com/software/globalization/terminology/

MVS™ For z/OS operating systems

MVS element
For the base control program (BCP) element of the z/OS operating system

VTAM®

For Communications Server - SNA Services

IBM Tivoli Network Manager
For either of these products:
v IBM Tivoli Network Manager
v IBM Tivoli OMNIbus and Network Manager

IBM Tivoli Netcool/OMNIbus
For either of these products:
v IBM Tivoli Netcool/OMNIbus
v IBM Tivoli OMNIbus and Network Manager

Unless otherwise indicated, references to programs indicate the latest version and
release of the programs. If only a version is indicated, the reference is to all
releases within that version.

When a reference is made about using a personal computer or workstation, any
programmable workstation can be used.

Using NetView for z/OS online help
The following types of NetView for z/OS mainframe online help are available,
depending on your installation and configuration:
v General help and component information
v Command help
v Message help
v Sense code information
v Recommended actions

Using LookAt to look up message explanations
LookAt is an online facility that you can use to look up explanations for most of
the IBM messages you encounter, and for some system abends and codes. Using
LookAt to find information is faster than a conventional search because, in most
cases, LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message
explanations for z/OS elements and features, z/VM®, VSE/ESA, and Clusters for
AIX® and Linux systems:
v The Internet. You can access IBM message explanations directly from the LookAt

web site at http://www.ibm.com/systems/z/os/zos/bkserv/lookat/.
v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

system to access IBM message explanations, using LookAt from a TSO/E
command line (for example, TSO/E prompt, ISPF, or z/OS UNIX System
Services running OMVS).

v Your Microsoft Windows workstation. You can install LookAt directly from the
z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

xii Programming: REXX and the NetView Command List Language

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition from
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html with a
handheld device that has wireless access and an Internet browser.

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from the following locations:
v A CD in the z/OS Collection (SK3T-4269).
v The z/OS and Software Products DVD Collection (SK3T-4271).
v The LookAt web site. Click Download and then select the platform, release,

collection, and location that you want. More information is available in the
LOOKAT.ME files that is available during the download process.

Accessing publications online
The documentation DVD, IBM Tivoli NetView for z/OS V6R1 Online Library,
SK2T-6175, contains the publications that are in the product library. The
publications are available in PDF, HTML, and BookManager formats. Refer to the
readme file on the DVD for instructions on how to access the documentation.

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center web
site at http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp.

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File → Print window that enables Adobe Reader to print letter-sized
pages on your local paper.

Ordering publications
You can order many Tivoli publications online at
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site to see an information page that includes the telephone

number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. Standard shortcut
and accelerator keys are used by the product and are documented by the operating
system. Refer to the documentation provided by your operating system for more
information.

For additional information, see the Accessibility appendix in the User's Guide:
NetView.

About this publication xiii

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education web site at http://www.ibm.com/software/tivoli/education.

Tivoli user groups
Tivoli user groups are independent, user-run membership organizations that
provide Tivoli users with information to assist them in the implementation of
Tivoli Software solutions. Through these groups, members can share information
and learn from the knowledge and experience of other Tivoli users.

Access the Tivoli Users Group at http://www.tivoli-ug.org.

Downloads
Clients and agents, NetView product demonstrations, and several free NetView
applications can be downloaded from the NetView for z/OS support web site:

http://www.ibm.com/software/sysmgmt/products/support/
IBMTivoliNetViewforzOS.html

In the "IBM Tivoli for NetView for z/OS support" pane, click Download to go to a
page where you can search for or select downloads.

These applications can help with the following tasks:
v Migrating customization parameters and initialization statements from earlier

releases to the CNMSTUSR member and command definitions from earlier
releases to the CNMCMDU member.

v Getting statistics for your automation table and merging the statistics with a
listing of the automation table

v Displaying the status of a job entry subsystem (JES) job or canceling a specified
JES job

v Sending alerts to the NetView program using the program-to-program interface
(PPI)

v Sending and receiving MVS commands using the PPI
v Sending Time Sharing Option (TSO) commands and receiving responses

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Access the Tivoli Software Support site at http://www.ibm.com/software/
sysmgmt/products/support/index.html?ibmprd=tivman. Access the IBM
Software Support site at http://www.ibm.com/software/support/
probsub.html.

IBM Support Assistant
The IBM Support Assistant is a free local software serviceability workbench
that helps you resolve questions and problems with IBM software
products. The Support Assistant provides quick access to support-related

xiv Programming: REXX and the NetView Command List Language

http://www.ibm.com/software/tivoli/education
http://www.tivoli-ug.org
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html
http://www.ibm.com/software/sysmgmt/products/support/index.html?ibmprd=tivman
http://www.ibm.com/software/sysmgmt/products/support/index.html?ibmprd=tivman
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html

information and serviceability tools for problem determination. To install
the Support Assistant software, go to http://www.ibm.com/software/
support/isa/.

Troubleshooting information
For more information about resolving problems with the NetView for z/OS
product, see the IBM Tivoli NetView for z/OS Troubleshooting Guide.
Additional support for the NetView for z/OS product is available through
the NetView user group on Yahoo at
http://groups.yahoo.com/group/NetView/. This support is for NetView
for z/OS customers only, and registration is required. This forum is
monitored by NetView developers who answer questions and provide
guidance. When a problem with the code is found, you are asked to open
an official problem management record (PMR) to obtain resolution.

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and command syntax.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents...

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
For workstation components, this publication uses the UNIX convention for
specifying environment variables and for directory notation.

About this publication xv

http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/
http://groups.yahoo.com/group/NetView/

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Syntax diagrams
This section describes how syntax elements are shown in syntax diagrams. Read
syntax diagrams from left-to-right, top-to-bottom, following the horizontal line (the
main path).

Symbols
The following symbols are used in syntax diagrams:

�� Marks the beginning of the command syntax.

� Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

�� Marks the end of the command syntax.

Parameters
The following types of parameters are used in syntax diagrams:

Required Required parameters are shown on the main path.

Optional Optional parameters are shown below the main path.

Default Default parameters are shown above the main path. In parameter
descriptions, default parameters are underlined.

Syntax diagrams do not rely on highlighting, brackets, or braces. In syntax
diagrams, the position of the elements relative to the main syntax line indicates
whether an element is required, optional, or the default value.

Parameters are classified as keywords or variables. Keywords are shown in
uppercase letters. Variables, which represent names or values that you supply, are
shown in lowercase letters and are either italicized or, in NetView help and
BookManager publications, displayed in a differentiating color.

In the following example, the USER command is a keyword, the user_id parameter
is a required variable, and the password parameter is an optional variable.

�� USER user_id
password

��

Punctuation and parentheses
You must include all punctuation that is shown in the syntax diagram, such as
colons, semicolons, commas, minus signs, and both single and double quotation
marks.

xvi Programming: REXX and the NetView Command List Language

When an operand can have more than one value, the values are typically enclosed
in parentheses and separated by commas. For a single value, the parentheses
typically can be omitted. For more information, see “Multiple operands or values”
on page xviii.

If a command requires positional commas to separate keywords and variables, the
commas are shown before the keywords or variables.

When examples of commands are shown, commas are also used to indicate the
absence of a positional operand. For example, the second comma indicates that an
optional operand is not being used:
COMMAND_NAME opt_variable_1,,opt_variable_3

You do not need to specify the trailing positional commas. Trailing positional and
non-positional commas either are ignored or cause a command to be rejected.
Restrictions for each command state whether trailing commas cause the command
to be rejected.

Abbreviations
Command and keyword abbreviations are listed in synonym tables after each
command description.

Syntax examples
This section show examples for the different uses of syntax elements.

Required syntax elements: Required keywords and variables are shown on the
main syntax line. You must code required keywords and variables.

�� REQUIRED_KEYWORD required_variable ��

A required choice (two or more items) is shown in a vertical stack on the main
path. The items are shown in alphanumeric order.

�� REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

��

Optional syntax elements: Optional keywords and variables are shown below the
main syntax line. You can choose not to code optional keywords and variables.

��
OPTIONAL_OPERAND

��

A required choice (two or more items) is shown in a vertical stack below the main
path. The items are shown in alphanumeric order.

��
OPTIONAL_OPERAND_OR_VALUE_1
OPTIONAL_OPERAND_OR_VALUE_2

��

Default keywords and values: Default keywords and values are shown above the
main syntax line in one of the following ways:

About this publication xvii

v A default keyword is shown only above the main syntax line. You can specify
this keyword or allow it to default. The following syntax example shows the
default keyword KEYWORD1 above the main syntax line and the rest of the
optional keywords below the main syntax line.

v If an operand has a default value, the operand is shown both above and below
the main syntax line. A value below the main syntax line indicates that if you
specify the operand, you must also specify either the default value or another
value shown. If you do not specify the operand, the default value above the
main syntax line is used. The following syntax example shows the default values
for operand OPTION=* above and below the main syntax line.

�� COMMAND_NAME
KEYWORD1

KEYWORD2
KEYWORD3
KEYWORD4

OPTION=*

OPTION= *
VALUE1
VALUE2

��

Multiple operands or values: An arrow returning to the left above a group of
operands or values indicates that more than one can be selected or that a single
one can be repeated.

��

�

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPERAND_OR_VALUE_3

�

,

KEYWORD=(value_n) ��

Syntax that is longer than one line: If a diagram is longer than one line, each line
that is to be continued ends with a single arrowhead and the following line begins
with a single arrowhead.

�� OPERAND1 OPERAND2 OPERAND3 OPERAND4 OPERAND5 OPERAND6 �

� OPERAND7 OPERAND8 ��

Syntax fragments: Some syntax diagrams contain syntax fragments, which are
used for lengthy, complex, or repeated sections of syntax. Syntax fragments follow
the main diagram. Each syntax fragment name is mixed case and is shown in the
main diagram and in the heading of the fragment. The following syntax example
shows a syntax diagram with two fragments that are identified as Fragment1 and
Fragment2.

�� COMMAND_NAME Fragment1
Fragment2

��

Fragment1

KEYWORD_A=valueA KEYWORD_B KEYWORD_C

xviii Programming: REXX and the NetView Command List Language

Fragment2

KEYWORD_D KEYWORD_E=valueE KEYWORD_F

About this publication xix

xx Programming: REXX and the NetView Command List Language

Chapter 1. Getting Started

The Tivoli NetView for z/OS program can be used to manage complex,
multivendor networks and systems from a single point. A command list is a set of
commands and special instructions that are grouped under one name, like a
computer program. For the Tivoli NetView for z/OS program, a command list can
be written in either Restructured Extended Executor language (REXX) or the
NetView command list language.

REXX has many functions and enhancements that are not available in the NetView
command list language.

When you type a command list name at a terminal, the commands and
instructions in that command list are interpreted and processed. You can also run
command lists in other ways. For example, you can issue a timer command to run
a command list at a specified time or at time intervals. You can also run more than
one command list at the same time under different tasks. See “Running Command
Lists” on page 6 for more information.

This chapter describes how to:
v Create command lists
v Run command lists
v Use command lists

The Benefits of Using Command Lists
Command lists help you to automate and manage your network and to improve
the efficiency of operators. Command lists obtain information from operators, other
tasks, system resources, or messages. The command list uses this information to
perform processing or to decide the next action. With this flexibility, you can
automate repetitive or complex operations, perform resource recovery, and handle
operations consistently among different operators. For example, system
programmers or operators can write command lists to:
v Automatically issue command lists at a specified time or time interval using the

NetView timer commands AT, EVERY, CHRON, and AFTER.
v Under certain conditions, reword, delete, or reply to a message before the

operator sees it.
v Provide for command lists to be issued automatically when specific messages or

management services units (MSUs) are received during the operation of systems,
networks, and applications.

v Wait for the NetView program to receive a message or group of messages and
act based on the message content.

v Speed backup and recovery procedures, for example, automatic recovery of a
failing resource.

v Monitor and restart subsystems and programs (for example, VTAM, CICS®, and
TSO).

v Display information about an operator screen.
v Simplify the entry of operator commands.
v Tailor operator commands and procedures for your network.

© Copyright IBM Corp. 1997, 2011 1

v Ensure completeness and correct order when a sequence of commands must be
issued.

v Implement specialized operator dialogs that extend the role of the operator or
increase the efficiency and productivity of operators.

Before you write a command list, analyze your system, network operating
procedures, and the tasks that operators regularly perform. Decide which of these
jobs you want to perform using command lists. Start by writing simple command
lists and add the more complex functions as you gain experience.

Note: This document does not describe how to use NetView operator commands.
If you need information about a specific command, refer to the NetView
online help or the IBM Tivoli NetView for z/OS Command Reference Volume 2
(O-Z).

Examples of Common Startup Command Lists
If you want to set up terminal access facility (TAF) sessions with the Information
Management System (IMS™) and the Host Command Facility (HCF), you can use a
command list instead of entering individual commands.

Figure 1, written in REXX, establishes terminal access facility (TAF) sessions with
IMS and HCF.

Instead of having to remember and enter three commands, operators can enter the
command list name STARTUP1. The command list starts the three sessions and
operators receive the same messages they receive if they issue all three commands.

Examples of Activating a Network Control Program
You can write a command list to simplify the activation of a Network Control
Program (NCP). Figure 2 is an example of a REXX command list that activates an
NCP.

Creating Command Lists
You can create command lists before the NetView program is started or while it is
running. Code each command list as a member of a command list partitioned data
set (PDS). After you create the command list, use facilities such as ISPF or
IEBUPDTE to update the command list.

The PDS member name is the name you enter to run the command unless you
define another name for the command list on a CMDSYN keyword on the
CMDDEF statement. For more information about CMDSYN, refer to the IBM Tivoli
NetView for z/OS Administration Reference.

/* STARTUP1 */
’BGNSESS OPCTL,APPLID=IMS1,SRCLU=TAF11,LOGMODE=OPCTLLOG,SESSID=IMS’
’BGNSESS OPCTL,APPLID=HCF1,SRCLU=TAF11,LOGMODE=OPCTLLOG,SESSID=HCFA’
’BGNSESS OPCTL,APPLID=HCF1,SRCLU=TAF12,LOGMODE=OPCTLLOG,SESSID=HCFB’
EXIT

Figure 1. STARTUP1 Command List

/* NCP1 */
’V NET,ACT,ID=NCP1,LOAD=YES,LOADSTA=LINK1’
EXIT

Figure 2. Example of Activating an NCP

Basic Topics

2 Programming: REXX and the NetView Command List Language

The command list name must begin with a nonnumeric character and can be from
one to eight characters. The following characters are valid: 0- 9, A - Z, and the
special characters @ $ #.

After a command list is created and saved as a PDS member, it is ready for the
operator to use.

Note: To avoid naming conflicts, give your user-written command lists names
other than the command synonym (CMDSYN) names used for the command
lists that are provided with the NetView program. Also, do not begin your
command list names with any of the three-character prefixes used by the
NetView program: AAU, BNH, BNJ, CNM, DSI, DUI, EZL, FLC, FKX, and FKV.

The NetView program supports command lists in data sets that are concatenated
across volumes.
1. Create the data set to be used to store the command lists.
2. Code each command list as a separate member of a command list data set. To

define the name of the command list data set to the NetView startup
procedure, code the JCL DD statement for the DSICLD as follows:
//DSICLD DD DSN=datasetname,DISP=SHR

3. Concatenate data sets by coding the DSICLD statement as shown in Figure 3.

4. Ensure that the first command list data set defined under DSICLD has the
largest block size of any concatenated command list data sets, or that the first
DD statement has a DCB=(BLKSIZE=xxxx) statement, where xxxx is equal to
the largest block size of the concatenated data sets.

When the Tivoli NetView for z/OS program is operating on a z/OS system and
you plan to update or create command lists while it is running, define your
command list data sets without secondary extents. Otherwise, a command list
might be filed in a new extent. If this occurs, a secondary extent failure can occur
causing error recovery and loss of a single instance of running the command list. If
the error recovery succeeds and a second attempt to call the command list is made,
the command list is then available.

If the data set becomes full and you must compress the data set to add more
command lists, use the REACC command; for more information, see the IBM Tivoli
NetView for z/OS Command Reference Volume 2 (O-Z). You can also call a command
list in any data set by reading the data set using the pipeline QSAM and saving
the procedure in memory using INSTORE DSICLD.clistname; for more information,
see IBM Tivoli NetView for z/OS Programming: Pipes.

The block size must be an even multiple of the record length and the record length
must be 80. The records must be formatted as fixed or fixed block at 80.

Ensure that the block size is 3920 or less to reduce paging caused by the block size
exceeding the size of a page of memory.

//DSICLD DD DSN=datasetname1,DISP=SHR
// DD DSN=datasetname2,DISP=SHR
// DD DSN=datasetname3,DISP=SHR
// DD DSN=datasetnamen,DISP=SHR

Figure 3. Example of Concatenating Data Sets with the DSICLD Statement

Basic Topics

Chapter 1. Getting Started 3

Controlling Access to Command Lists
You can use command authorization to specify which operators can issue a
particular command list.

The following command-authorization methods are available:
v NetView command authorization table
v NETCMDS class of a System Authorization Facility product such as RACF®

Use the LIST SECOPTS command to determine which method is in effect.

The method for restricting access to commands is defined in the CNMSTYLE
member and can be changed dynamically using the NetView REFRESH command.

The Tivoli NetView for z/OS program automatically checks the operator
authorization for a command list before it is called. However, authorization for
keywords and values must be checked in the following ways by command list
statements coded for that purpose:
v The called command list can check the parameters that are passed and check the

operator that called it. Then the called command list is coded to exit if it was
called inappropriately.

v REXX command lists can use the AUTHCHK() function.
v You can start a command list from a PL/I or C command processor. Use the

command processor to authorize a keyword and value, start the command list,
and pass the operands to the command list. The command list must then be
coded to verify that it was called properly. You can use the opid S function or
the genealogy list available from the PIPE ENVDATA command to do this
verification; for more information, see IBM Tivoli NetView for z/OS Programming:
Pipes.

Generally, commands or command lists that are called from a command list are
also eligible for command authorization. An exception to this rule is when a
command list is called from the automation table, and AUTOSEC=BYPASS is in
effect; refer to the DEFAULTS command in the NetView online help for more
information. Another exception is when a command list is privileged by inclusion
in the DSIAUTB member of DSIPARM and uses the AUTBYPAS function described
in the IBM Tivoli NetView for z/OS Security Reference.

For more information about how to protect command lists from unauthorized
users, refer to the IBM Tivoli NetView for z/OS Security Reference. For more
information about writing command processors in PL/I or C, refer to the IBM
Tivoli NetView for z/OS Programming: PL/I and C book.

Loading Command Lists into Storage
The Tivoli NetView for z/OS program provides several means to preload data into
main storage to reduce I/O and improve performance. Two methods, MEMSTORE
and LOADCL, are appropriate for REXX or NetView Command List Language
procedures.

MEMSTORE runs as an autotask and monitors usage of various members. It loads
members into storage based on frequency of use, weighted by age. Usually,
MEMSTORE is started by your Style processing, with limits and exceptions
appropriate to your installation having been set by your system programmer. If
you change any REXX or NetView Command List Language procedures, use the

Basic Topics

4 Programming: REXX and the NetView Command List Language

MEMSTOUT REFRESH procname command to ensure that MEMSTORE has not
cached an older copy. When making many changes, as with testing, you might
want to issue MEMSTOUT UNLOAD DSICLD.procname to permanently prevent
MEMSTORE from loading your procedure. For more information about
MEMSTORE and MEMSTOUT, see the online help for these commands; additional
information can also be found in IBM Tivoli NetView for z/OS Installation: Getting
Started.

Note: If you call a command list that has not been preloaded, the command list is
loaded into main storage, run, and then dropped from main storage.
Therefore, each time the command list is run, it must be retrieved from the
auxiliary storage device where it resides. If you preload the command list, it
can be run multiple times without having to be retrieved from auxiliary
storage each time.

The action of MEMSTORE affects all standard means of accessing a member of any
of the NetView standard DD names. For example, if a REXX procedure has been
loaded into main storage by MEMSTORE, and you use the BROWSE command to
view the member, then BROWSE shows the data previously loaded, and you see
DATASET: 0 where the concatenation level is listed. Similarly, the LISTA DSICLD
membname command shows an INSTORE level listing for the member. When the
procedure is called, the member is "read" or copied into another location, where it
is formatted for interpretation. You can avoid this copying and formatting step and
obtain a small additional performance enhancement by using LOADCL. Use
LOADCL only for procedures in DD=DSICLD. After LOADCL, the BROWSE
command still shows the member as it exists on auxiliary storage. However, you
can use the LIST CLIST command to review the member as it exists in main
storage.

These NetView commands can be used to move command lists into and out of
main storage, and to list command lists that are currently in main storage:

LOADCL
Works with DROPCL and MAPCL to provide information and control
about procedures that have been loaded.

DROPCL
Drops a command list that was previously loaded into main storage using
the LOADCL command

MAPCL
Lists command lists that currently reside in main storage

For more information about the LOADCL, DROPCL, or MAPCL commands, refer
to the NetView online help.

The Tivoli NetView for z/OS program provides a REXX command list,
AUTODROP (CNMS8003), that can help you manage the number of command lists
that are loaded into storage using the LOADCL command. AUTODROP uses the
MAPCL and DROPCL commands to conditionally drop commands from main
storage.

Note: The NetView program confirms the existence of a REXX/CLIST by loading
it before authorization checking occurs. This prevents an erroneous security
violation, such as message ICH4081 from RACF or a system management
facilities (SMF) record (or both a RACF message and an SMF record) when
an invalid command is entered.

Basic Topics

Chapter 1. Getting Started 5

Running Command Lists
Design command lists that run with little assistance from operators. The following
list shows some of the ways you can run command lists:
v When the Tivoli NetView for z/OS program is started
v When the operator logs on
v After receiving a message or MSU
v From a terminal
v At a specified time or time interval
v From another command list
v From a user-written command processor
v From the NetView management console
v From a web page
v From a remote NetView domain
v From user exits and optional tasks

Running Command Lists When NetView Is Started
You can specify that command procedures run automatically when the Tivoli
NetView for z/OS program is started by defining them in the CNMSTUSR or
CxxSTGEN that is included in the CNMSTYLE member using auxInitCmd
statements. Refer to the IBM Tivoli NetView for z/OS Administration Reference for
more information. These commands run under the primary program operator
interface task (PPT). See “Primary POI Task Restrictions” on page 12 for
information about PPT restrictions.

Running Command Lists When Logging On
You can define a command list to run automatically after an operator successfully
logs on. You can define only one command list to run when an operator logs on,
but this command list can activate other command lists. See “Running Command
Lists from Another Command List” on page 8 for rules that apply when calling
another command list.

Code the name of the command list you want to run in the profile for the operator
using the IC operand of the PROFILE statement, or the IC field in the NETVIEW
segment of the SAF product. For example, if you want to run the HELLO
command list each time an operator logs on, and if the operator has a profile of
PROFBEG, the IC operand can be added to the profile for the operator in the
following way:
PROFBEG PROFILE IC=HELLO

For more information about the PROFILE definition statement, refer to the IBM
Tivoli NetView for z/OS Administration Reference.

You can include many types of commands in your initialization command list. The
following list describes some of the commands you can include:
v To start autotasks, use AUTOTASK commands. Use START commands to start

other tasks, such as DSTs (data services tasks).
v To restore all task global variables that were saved using the GLOBALV SAVET

command, include:
GLOBALV RESTORET *

Note: The RESTORET depends on two things: the task having previously
performed a SAVET, and the DSISVRT DST being active.

Basic Topics

6 Programming: REXX and the NetView Command List Language

v To set operator-specific defaults that override NetView-wide values set using the
DEFAULTS command, use the OVERRIDE command.

Running Command Lists after Receiving a Message or MSU
The NetView automation table can initiate a command list upon receipt of a
message or MSU. These command lists can automatically respond to the message
or MSU, saving an operator from having to respond to them.

Command lists that the Tivoli NetView for z/OS program initiates upon receipt of
a message or MSU can contain a series of commands to perform a function as a
result of the message or MSU. For example, if the message or MSU reported that
an NCP failed, the command list can issue the VTAM command to reactivate the
NCP. Chapter 5, “Automation Resource Management,” on page 91 contains
additional information about performing NetView automation using command
lists.

Running Command Lists from a Terminal
You can enter a command list name from the terminal the same way that you enter
any other command and operands. When you enter the name of the command list,
the command list starts processing. Message responses and other information can
be sent to the operator, depending on how the command list is written.

Running Command Lists at a Specified Time or Time Interval
Operators can use the following NetView commands to run command lists at a
specified time or time interval:

AFTER
Instructs the Tivoli NetView for z/OS program to run the command list
after a specified period.

AT Instructs the Tivoli NetView for z/OS program to run the command list at
a particular time.

CHRON
Instructs the Tivoli NetView for z/OS program to run commands in varied
and flexible ways.

EVERY
Instructs the Tivoli NetView for z/OS program to run the command list
repeatedly at a certain time interval.

You can also issue the AFTER, AT, CHRON, and EVERY commands from a
command list.

You can set up the AT, EVERY, CHRON, and AFTER commands so the command
list runs even if the operator is not logged on at the time. Do this by choosing an
autotask that will be active and by coding the oper operand of the ROUTE
command in the timer command. You can run command lists under the primary
POI task (PPT); restrictions in doing so are described in “Primary POI Task
Restrictions” on page 12. However, whenever possible, run command lists under
an autotask; restrictions in using the AUTOTASK command are described in
“AUTOTASK OST Restrictions” on page 13.

You can define command lists so that they always interrupt the processing of other
command lists. You do this using the TYPE=H (high priority) operand of the
CMDDEF statement, or by prefixing your command with CMD HIGH. For more

Basic Topics

Chapter 1. Getting Started 7

information about how to code CMDDEF statements, see the IBM Tivoli NetView for
z/OS Administration Reference. For more information about the CMD command, see
the online help.

To learn more about the AT, EVERY, CHRON, and AFTER commands, refer to the
NetView online help.

Running Command Lists from Another Command List
One command list can activate another command list. When a command list is
running under the control of another command list, it is nested within the calling
command list. To nest a command list within another command list, code the name
of the called command list as a command within the controlling command list.
When theTivoli NetView for z/OS program reaches a statement with the name of a
command list, it starts running the nested command list. When the end of the
nested command list is reached, control is returned to the calling command list, as
shown in Figure 4.

When planning to create command lists that run other command lists, keep in
mind the following considerations:
v A REXX command list can be called as a REXX command, subroutine, or

function.
v A REXX command list can call a command list written in the NetView command

list language as a command but not as a subroutine or a function.
v A command list written in the NetView command list language can call another

command list written in either the NetView command list language or in a
REXX command list as a command.

v Command lists written in REXX and command lists written in the NetView
command list language can call each other.

v You can have 250 levels of externally nested command lists.
Only REXX command lists called as commands, external subroutines, or external
functions count as one of the 250 levels of externally nested command lists. You
can call up to 250 REXX command lists as internal subroutines and functions,
but they do not count toward the 250 levels of externally nested command lists.

v Test each command list before running the command list as part of a nested
chain of command lists.

For information about REXX subroutines and functions, refer to the REXX library.

statement1a
statement2a
statement3a

statement5a
statement6a
statement7a
statement8a
statement9a

EXIT

CMDLISTB

CMDLISTA CMDLISTB CMDLISTC

statement1c
statement2c
statement3c
statement4c
statement5c
statement6c
statement7c

EXIT

statement1b
statement2b
statement3b
statement4b
CMDLISTC
statement6b

EXIT

Figure 4. Nested Command Lists

Basic Topics

8 Programming: REXX and the NetView Command List Language

Passing Information from One Command List to Another
When REXX command lists and command lists written in the NetView command
list language call each other, operands can be passed from the calling command list
to the nested command list. However, when the nested command list is finished,
only a return code is sent to the calling command list.

To pass additional information, you can use the pipeline SAFE, STEM, or VAR
stages, or the global variable pool.

SAFE stage
NetView messages, or any other data in a pipeline, can be placed into a
named SAFE stage by either the calling procedure or the called procedure.
Named SAFE stages endure as long as any member of the nested family is
still running. Either the calling procedure or the called procedure can add
to, modify, or delete data from the SAFE. See IBM Tivoli NetView for
z/OS Programming: Pipes for more information about the SAFE stage

KEEP stage
The pipeline KEEP stage is similar to the SAFE stage, and you can use it to
define a task-global place to store messages. See IBM Tivoli NetView for
z/OS Programming: Pipes for more information about the KEEP stage.

STEM stage and VAR stage
Using pipeline STEM and VAR stages, a called procedure can read from
and write to the variables of the calling procedure, if those variable names
are known. A calling procedure written in REXX can control such access
using REXX built-in PROCEDURE and EXPOSE keywords. For example,
the WINDOW (CNME1505) procedure calls customer-defined
subcommands from an internal procedure named exterCmd and limits
variable access to a list named toShow. See CNME1505 and the example
subcommand CNMEXEC for additional details on using this procedure.

Global variables
Procedures can store and modify data in COMMON or TASK global
variables. The GLOBALV command provides one way to do this in a
manner similar to using the pipeline VAR and STEM stages. Using the
COMMON or TASK global variables allows data to be shared with other
procedures, whether they are called directly or called by any other means.
Be sure to provide a means of verifying the accuracy of any data so shared
in case any of the procedures involved encounters a failure.

Error Handling
If a nested command list encounters an unrecoverable error, the command list ends
and passes the error back to the command list from which it was called.

Note: A list of return codes can be found at “Return Codes in REXX Command
Lists” on page 33.

If the calling command list is written in REXX, it might be able to recover from the
error passed to it from the nested command list. For information about coding
REXX command lists that can recover from errors, see “Recovering from Errors in
REXX Command Lists” on page 33.

If the calling command list is written in the NetView command list language, and
an error occurs in the nested command list, the calling command list also ends. If
the calling command list was called by another command list, it continues to pass
the error back to the command list from which it was called.

Basic Topics

Chapter 1. Getting Started 9

Running Command Lists from a User-Written Command
Processor

You can write a command processor that calls a command list. Command
processors are programs written in assembler, PL/I, or C. For information about
how to write command processors, refer to IBM Tivoli NetView for
z/OS Programming: Assembler or IBM Tivoli NetView for z/OS Programming: PL/I and
C.

Using Network Commands in Command Lists
This section describes how you can use network commands in command lists. The
following commands are some of the types of network commands you can include:
v NetView commands
v User-written NetView commands
v VTAM commands

The commands used within command lists are subject to command authorization,
unless either SEC=BY was specified on the CMDDEF statement,
AUTOSEC=BYPASS is in effect, or the command list is privileged by inclusion in
the DSIAUTB member of DSIPARM and uses the AUTBYPAS function described in
this manual. For more information, refer to the IBM Tivoli NetView for
z/OS Administration Reference.

Notes:

1. The NetView RETURN command is not valid in a command list.
2. You can use Tivoli NetView for z/OS and user-written commands that are

defined on the CMDDEF statement as regular, high, or both (TYPE=R,
TYPE=H, or TYPE=B). You can also use command lists that are undefined.

3. You must use the appropriate prefix:
v NLDM for session monitor commands
v NPDA for hardware monitor commands
v STATMON for status monitor commands

Using System Commands in Command Lists
You can use system commands in command lists. For example, use one of the
following NetView MVS commands to enter MVS commands:
v MVS S jobname
v MVS D A,L

Refer to the Tivoli NetView for z/OS online help for more information.

Using Long-Running Commands in Command Lists
Most NetView commands and some customer-written commands block a calling
procedure to wait for either operator input, data from an optional task, or some
other asynchronous event. These commands are called long-running commands. You
can use long-running commands in your command lists. Using long-running
commands in your command list enables other commands on the low-priority
queue to begin running. Refer to the NetView online help for more information
about command priorities.

Long-running commands use assembler macro DSIPUSH to accomplish the required
wait while allowing essential NetView functions like message automation to

Basic Topics

10 Programming: REXX and the NetView Command List Language

continue. Additional information about the DSIPUSH macro can be found in IBM
Tivoli NetView for z/OS Programming: Assembler. Examples of long-running
commands are NPDA and VIEW.

The type of long-running command, and whether the command list uses the CMD
command to queue the command, determines whether the long-running command
or the issuing command list receives processing priority. This is described further
in “Queuing Long-Running Commands.”

When coding a long-running command, it is important to plan for two kinds of
events that can occur during the extended period before the next instruction of
your procedure:

Implied Cancellation
The operator generally has an opportunity to enter commands (although
some exceptions are noted in the IBM Tivoli NetView for z/OS Customization
Guide). If the operator calls the same long-running command (or VIEW
with the same component name), then that procedure is halted. For this
reason, REXX procedures that call long-running commands always need to
code SIGNAL ON HALT. At that HALT label, code an EXIT –5 in addition
to any other cleanup processing that you need to do. The –5 return code
propagates the halt condition to the caller of the procedure, if any. You can
also exercise some degree of control over this halt condition using the
UNIQUE command. See the IBM Tivoli NetView for z/OS Customization
Guide for more information about UNIQUE.

Interruption
Usually, your procedure is not interrupted by another command queued
from message automation, operator action, a timed command, or an
EXCMD from another commands (although some exceptions are noted in
the command help for the DEFAULTS command). When a long-running
command is called, the wait for operator input can be protracted, so the
Tivoli NetView for z/OS program calls any other commands that are
queued. That can affect your procedure if you use global variables or if
you query and then take action on the status of any external resource.

Queuing Long-Running Commands
You can control the processing of long-running commands by using the NetView
CMD command to queue them. Queuing a long-running command causes it to be
processed independently of your command list. The result of the long-running
command does not influence the result of the command list. When you queue a
long-running command, the return code indicates the result of the queuing
operation only. You cannot get a return code from the queued command.

To delay the processing of NLDM until your command list is stacked, canceled,
interrupted, or completed, use CMD LOW NLDM.

Using Tivoli NetView for z/OS Pipelines
Tivoli NetView for z/OS pipelines provide another level of function and flexibility
to command lists. Among many pipeline capabilities is the automation of
full-screen applications. For more information, refer to IBM Tivoli NetView for
z/OS Programming: Pipes or the NetView online help.

Basic Topics

Chapter 1. Getting Started 11

Using the VIEW Command
You can use the VIEW command in command lists to display panels. The VIEW
command has access to local and global variables set in the command list that
issues the VIEW command and to NetView local variables.

Refer to the IBM Tivoli NetView for z/OS Customization Guide for more information
about local and global variables, and using the VIEW command with commands
and command lists.

Using Full-Screen Commands
If a command list that is run from a full-screen processor issues a full-screen
command, the Tivoli NetView for z/OS program can display the command facility
panel before displaying the output of the full-screen command. The command
facility panel is displayed only if the command list generates any other output that
is displayed to the operator. Display of the command facility panel suspends any
AUTOWRAP setting and prevents the full-screen output from being automatically
displayed. To minimize the possibility of displaying command facility panel
output, define and code the command list so that it does not generate any other
output to be displayed. For example:
v Code a CMDDEF definition statement with ECHO=N for the command list.

Refer to the IBM Tivoli NetView for z/OS Administration Reference for information
about coding a CMDDEF statement.

v Code TRACE ERRORS or TRACE OFF at the beginning of a REXX command
list. Refer to the REXX library for information about the TRACE instruction.

v Do not code SAY instructions in a REXX command list.
v Code &CONTROL ERR at the beginning of a command list written in the

NetView command list language.
v Do not code &WRITE or &BEGWRITE control statements in a command list

written in the NetView command list language.
v Do not issue commands that have line mode output.

Note: If a command list encounters a statement with a timeout greater than 30
seconds while a full-screen command processor is running, the following
message is issued:
DSI594A COMMAND PROCEDURE cmdlistname WARNING - type STATE ENTERED

You can then enter the necessary information if the command list is waiting
for an operator response, or ensure that a WAIT or &WAIT is satisfied
before rolling to other components.

Primary POI Task Restrictions
Command lists can run under the primary POI task (PPT). However, when
possible, run command lists under an autotask. See “AUTOTASK OST
Restrictions” on page 13 for more information about running command lists under
an autotask.

You can run command lists under the PPT when the command lists meet any of
the following criteria:
v Routed to the PPT for processing as a result of NetView automation.
v Coded on a CNMSTYLE definition statement to run when the Tivoli NetView

for z/OS program is initialized.

Basic Topics

12 Programming: REXX and the NetView Command List Language

v Called with an AT, EVERY, AFTER, or EXCMD command that uses the PPT as
an operand. (PPT on AT, EVERY, and AFTER enables the command to be run
even when the operator who scheduled it is not logged on.)

Many commands cannot run under the PPT. These are some restrictions that apply
to command lists that run under the PPT:
v In general, you cannot use full-screen commands and immediate commands. Do

not use the following NetView commands:
– AUTOWRAP
– BGNSESS
– INPUT
– LOGOFF
– ROUTE
– SET
– SUBMIT
– TRAP
– WAIT

v Do not use the following REXX instructions:
– FLUSHQ
– MSGREAD
– PARSE EXTERNAL
– PARSE PULL if nothing is in the REXX data stack
– PULL if nothing is in the REXX data stack

v Do not use the following NetView command list language control statements:
– &PAUSE
– &WAIT

When command lists running under the PPT generate messages, the messages go
to the authorized receiver, if any. If no authorized receiver exists, these messages
go to the system console and they should not contain non-Latin characters, such as
double-byte characters.

AUTOTASK OST Restrictions
This restriction applies to automation tasks that are started with the AUTOTASK
command:
v Use the ATTACH command to automate full screen commands.

Because autotasks have fewer restrictions than the PPT, use them instead of the
PPT whenever possible.

Controlling Command List Output
You can control the amount of data that is displayed to the operator during the
processing of a command list. Responses to commands in the command list or
messages that the command list sends to the terminal screen can be displayed to
the operator.

To control the amount of data that is displayed to the operator during the
processing of a REXX command list, use the NetView PIPE CONSOLE command,
TRAP instruction, or the suppression character (see “Suppressing Display of
Non-REXX Commands” on page 26). Refer to the NetView online help and the
REXX library for information about the TRAP instruction.

To control the amount of data that is displayed to the operator during the
processing of a command list written in the NetView command list language, use

Basic Topics

Chapter 1. Getting Started 13

the &CONTROL statement (see “&CONTROL Statement” on page 110), the &WAIT
SUPPRESS control statement (see “Customizing the &WAIT Statement” on page
141) or the suppression character (see “Conventions for Suppression Characters”
on page 99).

The commands and messages that are displayed during processing of a command
list are shown in the message area of the NetView command facility panel.
Generally, output from the command list is preceded by a type code of C. For a
complete description of the NetView panel layout and the format of messages sent
to the panel, refer to the IBM Tivoli NetView for z/OS User's Guide: NetView.

Working with Messages
A message is an object that consists of the following parts:
v An optional reply ID
v One or more lines of text
v Attributes associated with each line of text
v Attributes associated with the message as a whole

At most, only one current message exists at any given time. The current message is
set by the most recent occurrence of any of these events:
v Message automation. The message that triggered the automation is the current

message when the procedure is called. See Chapter 5, “Automation Resource
Management,” on page 91 for more information about NetView automation.

v A pipeline. When calling of the procedure is triggered by a message passed from
a previous stage, then that message becomes the current message.

v For REXX, a MSGREAD that occurs after a successful TRAP of a message. For
NetView CLIST language, an &WAIT. See “Control and Parameter Variables
Used with &WAIT” on page 139 for more information about using control
variables with &WAIT.

v When the procedure calls a NetView pipeline with SAFE * operating as a "not
first" stage.

v When the results of a LINKPD command are processed. See “LINKPD Results”
on page 157 for more information about the LINKPD command.

All of the previously listed means of setting a current message return data from
the current message regardless of how that message was made the current
message. For a multiline write-to-operator message (MLWTO), only the first line of
the message is considered by these functions.

Information about the current message can be retrieved using the REXX functions or
NetView CLIST variables (refer to “Message Processing Information Functions” on
page 52), MSU functions (refer to “REXX Management Services Unit Information
Functions” on page 67), or message information commands (refer to “Commands
Used in Command Lists” on page 166).

Notes:

1. Usually, the first blank-delimited word from the first line of text is considered
the message ID. A reply ID, if present, is ignored.

2. To test for the existence of a current message, issue this command:
PIPE SAFE * | COUNT LINES | VAR LINECOUNT

If variable LINECOUNT contains 0, no current message exists; if LINECOUNT
contains a value other a 0, a current message does exist.

Basic Topics

14 Programming: REXX and the NetView Command List Language

3. REXX functions that return data pertinent to the current message do so
regardless of how the message was made current. For multiline messages, only
the first line is considered by these functions, unless documentation for that
function states otherwise.

4. When a MSGREAD, &WAIT, PIPE SAFE *, or LINKPD occurs, the resulting message
becomes the current message, even if the message is null (such as when
MSGREAD has RC=4).

Basic Topics

Chapter 1. Getting Started 15

Basic Topics

16 Programming: REXX and the NetView Command List Language

Chapter 2. REXX Language Overview

This chapter includes a brief introduction to REXX. Not all of the features and
syntax rules of REXX are described in this document. This document focuses
primarily on the REXX instructions and functions provided by the Tivoli NetView
for z/OS program.

Note: For complete information about REXX, refer to the TSO/E REXX library.

Introduction to the REXX Language
REXX is often used as an interpretive language; the REXX interpreter operates
directly on the program as it runs, line-by-line and word-by-word. An interpreted
language is different from other programming languages, such as COBOL, because
it is not necessary to compile a REXX command list before running it. However,
you can choose to compile a REXX command list before running it to reduce
processing time.

Each NetView REXX command list or Data REXX file must begin with a comment.
REXX comments are marked with /* at the beginning and */ at the end, and can
be used in your REXX command list wherever necessary.

A REXX command list or Data REXX file consists of a series of clauses, each
having a separate purpose. In a simple REXX command list, the clauses are
interpreted in the sequence in which they are coded. You can control the sequence
in which clauses are run by using specific commands that alter the processing
order.

A REXX instruction tells the REXX interpreter to do something. A REXX instruction
is identified by its keyword, which must be the first item in the clause.

When an equal sign (=) is the second item in a clause, the clause is identified as an
assignment clause. Use assignment clauses to give a value to a variable. Variables
define different values for the clauses within a command list.

When the second item in a clause is a colon (:), the clause is interpreted as a label.
Labels identify the target statement for a transfer of control.

Use the REXX language to call internal or external routines, called functions. REXX
function names must always be followed by parentheses. There can be up to 10
expressions, separated by commas, between the parentheses. An expression is
something that can be computed. The REXX interpreter performs the computation
named by the function and returns a result. The result is then used in the
expression in place of the function call. To use a function, place the function name
in the command list or Data REXX file at the location where you want the result to
be accessed. Several built-in functions are also included in the REXX language that
perform predefined operations. Refer to the REXX library for a complete
description of the features of the REXX language.

Compiling and Running REXX Command Lists
REXX command lists can be compiled to significantly improve performance.

© Copyright IBM Corp. 1997, 2011 17

The IBM REXX/370 Compiler product must be installed on the system where the
command lists is to be compiled.

Refer to the REXX library for directions on how to compile a REXX command list.
For additional performance information about compiled REXX command lists, refer
to the IBM Tivoli NetView for z/OS Tuning Guide.

Notes:

1. You do not need to install or start the compiler on the system where the Tivoli
NetView for z/OS program resides.

2. The compiled executable file might be larger (take up more space) than the
original uncompiled command list.

3. The Tivoli NetView for z/OS program supports the CEXEC (compiled EXEC)
and OBJECT (object deck) output formats of the REXX/370 Compiler.

4. When creating a load module from an object deck, note the following items:
v The object deck must be created and saved from a REXX compiler.
v Two DDNAMEs in the REXXL cataloged procedure are particularly

important:
– The SYSIN DD statement must refer to the object deck (input).
– The SYSLMOD DD statement must refer to the load library specified with

the load module (output).
– The object deck must be link-edited with the EFPL stub to create a load

module, and the load module name cannot conflict with any NetView,
REXX, or other load module name.

– The REXXL cataloged procedure is used to create a load module; the
procedure can be found in REXX.V6R1M0.EAGPRC.

– The load module can be called only through or by a REXX CALL
instruction, or as a REXX function.

5. To run CEXEC format compiled REXX command lists, place the output file into
a member of one of the DSICLD data sets.

6. Install the compiler runtime library in an authorized library on the system that
runs the compiled REXX command lists.

Using %INCLUDE with Interpreted REXX
To facilitate code reuse, you can create members of the DSICLD data definition
with segments of REXX code and use the %INCLUDE capability provided by the
NetView program. To include a prepared code segment, the first line of your
program must begin with /*%NETVINCL followed by comments of your choice.
Then, anywhere in your program, on a separate line, code %INCLUDE followed by
the member name you have prepared. The prepared code segment is present when
your program is interpreted, just as if it had been embedded in your program.

Do not use the INCLUDE function if you intend to compile your REXX program.

Using Data REXX
Data REXX files are special REXX programs that send data (rather than commands)
to an environment external to the Data REXX program.

For any NetView application that supports %INCLUDE processing, you can
substitute a Data REXX program file for the member that the application ordinarily
reads. The data generated by your program becomes the data delivered to the
application.

REXX Language Overview

18 Programming: REXX and the NetView Command List Language

The REXX language supports an external ADDRESS environment. Generally, this is
for commands to be called. In Data REXX, the only ADDRESS environment
supported is NETVDATA. The character strings submitted to the NETVDATA
environment become data instead of commands. This data is delivered to the
application after the Data REXX program file is read and processed. No trace of
the REXX language elements in the Data REXX program is seen by the application.

Note: In this discussion, the term generated data is used to mean data that contains
REXX variables or function calls that must be evaluated before the data is
ready to be sent to the receiving application. One example of a receiving
application is a phase of style sheet processing during Tivoli NetView for
z/OS initialization.

By definition, Data REXX files are any NetView data files that begin with the Data
REXX file directives /*%DATA or /*%LOGIC in the first column of the first record.
The Data REXX file directives determine the format of the Data REXX code that
follows the directive. These directives provide a convenient way of switching
between the logic and data formats. The following paragraphs further describe
these directives.

When the /*%LOGIC Data REXX directive is in effect, data is embedded or
generated in a Data REXX program the same way commands are in a traditional
REXX program. This is also referred to as logic mode.

When the /*%DATA directive is in effect, embedded or literal data is programmed
exactly as the application program expects to see it. REXX programming, including
generated data clauses for the NETVDATA address environment, is written with
%> in columns 1 and 2 of each record. This is also referred to as data mode.

Sample BNJMBDST is an example of a logic file. Sample CNMCMSYS is an
example of a data file. Sample CNMSTASK uses both data and logic formats.

Data mode is a convenient way to write large sections of the Data REXX program
that contain literal data that can be written exactly as the receiving application is to
receive the data. Data that you program dynamically generated in whole or in part
must be preceded with %> in columns 1 and 2 of the Data REXX program file. For
example, to create a data record with the domain name of the Tivoli NetView for
z/OS program on which your application is currently running, you might code the
following statement starting in column 1:
%> ’My domain name is’ domain()’.’

If the domain name of the Tivoli NetView for z/OS program on which your
application is currently running is CNM01, then the following data record is read:
My domain name is CNM01.

If a Data REXX generated data record is written to be continued on the next
record, include %> at the beginning of column 1 of the next record. For example,
to write a continuation for the previous example that contains the version and
release of the Tivoli NetView for z/OS program on which your application is
currently running, code the following statements starting in column 1:
%> ’My domain name is’ domain() ’and my NetView version is’,
%> substr(netview(),3,1) ’and release is,
%> substr(netview(),4,1)’.’

REXX Language Overview

Chapter 2. REXX Language Overview 19

If the domain name of the Tivoli NetView for z/OS program on which your
application is currently running is CNM01, and the Tivoli NetView for z/OS
program version is 5 and the release is 4, then the following data record is read:
My domain name is CNM01 and my NetView version is 5 and release is 4.

Processing Data REXX Files
When a NetView application reads a Data REXX program file, processing occurs in
three steps:
1. A REXX program is loaded. A NetView application must use the NetView

DSIDKS services to access Data REXX files and have them processed as Data
REXX files. When DSIDKS services finds the file member, it reads the first
record of the file and determines if the file begins with one of the two Data
REXX directives. If it does, then the Data REXX file is loaded into storage in its
entirety. As it is loaded, the file is reformatted into a form that the REXX
interpreter can run. If in data mode, the records are loaded so that the %>
symbols are not seen by the REXX interpreter. Records without leading %>
symbols are loaded in such a way that they are presented to the NETVDATA
address environment without being evaluated by the REXX interpreter.
Records that are read in logic mode are read into storage unchanged. The Data
REXX directives are not removed because they are seen by REXX as REXX
comments and are ignored, but not removed. %INCLUDE statements are not
processed at this time.

2. The REXX program runs to completion. After loading the REXX program, the
program is passed to the REXX interpreter to run. While running, any REXX
clauses that are seen by REXX as external commands are sent to the
NETVDATA address environment. These commands are actually the data
records that are collected by the Tivoli NetView for z/OS program and passed
to the NetView application. Note that %INCLUDE statements can be generated
by the Data REXX program during this step.

3. The resulting data is read by the application. After all the data records have
been collected by the Tivoli NetView for z/OS program, they are passed to the
NetView application. It is transparent to the NetView application whether the
file being read is a Data REXX program. During this step that any %INCLUDE
statements are processed as they are encountered by DSIDKS services. Included
files are also checked to determine if they are Data REXX files (as determined
by the first line) and are processed, independently, in the same three-step
manner if they are.

During the first step, each line of the source file is processed individually.
However, in the second step, REXX interprets the entire Data REXX program
according to the rules of the REXX language. Thus, REXX elements on one line can
affect how the following lines are interpreted. For example, consider the following
Data REXX file:
1 /*%DATA Put any comments you want here. */
2 %> x = cglobal(’y’); /* getting a value for x
3 PASSWORD = XYZ
4 %> any comment */
5 %> IF tower(’AON’) THEN
6 AUTOCMD.mytable.ORDER = C

Note the absence of %> coding in lines 3 and 6.

If the tower(’AON’) function is evaluated as true, then the following record is
generated by the example:
AUTOCMD.mytable.ORDER = C

REXX Language Overview

20 Programming: REXX and the NetView Command List Language

During the first step, line 3 is loaded. However, line 3 is never seen during step 3
because the REXX comment start delimiter, /*, in line 2 matches the REXX
comment end delimiter, */, in line 4.

Line 6 is conditional on the previous IF-THEN evaluation, although it is not
prefixed with the %> data REXX designator. Line 6 is not evaluated by the Data
REXX interpreter, despite its similarity to REXX code. This line is sent exactly as
written to the NETVDATA address environment (if the tower(’AON’) function is
evaluated as true). The same is true if line 6 was an %INCLUDE instruction. In
such a case, the %INCLUDE statement is processed by the Tivoli NetView for
z/OS program after the Data REXX program completes.

Additional Information
The following information applies to both data and logic files:
v Data REXX is supported only in the following places:

– CNMCMD
– CNMSTYLE
– DSICNM
– DSIOPF
– Automation tables
– Code point tables
– Command authorization tables
– Command facility panel-format definition members, such as CNMSCNFT
– Hardware monitor (NPDA) members (but not BNJHEADR)
– Members read using NetView disk services with the INCL option
– Operator profile (DSIPRF) members
– Session monitor (NLDM) members
– Span tables
– HELPMAP

v Data REXX is not supported in VSAM files.
v REXX clauses that are processed as commands in a typical REXX environment

are instead passed to the NETVDATA environment. As a result, these clauses are
seen as data by the application reading the member.

v Data REXX files must be small because they are read entirely into storage.
%INCLUDE files that are referenced in a Data REXX file are also read into
storage if they are Data REXX files; files that are not Data REXX files are not
read entirely into storage. Therefore, to save storage, do not use Data REXX files
in %INCLUDE files.

v Output strings that result from SAY and TRACE instructions are written to the
network log.

v The REXX keyword instruction ADDRESS can be used; however, only the
NETVDATA address is supported.

v The following REXX functions cannot be used in Data REXX files:
– GETMSG
– LISTDSI
– MSG
– MVSVAR
– OUTTRAP
– PROMPT
– SETLANG
– STORAGE
– SYSDSN
– SYSVAR

REXX Language Overview

Chapter 2. REXX Language Overview 21

v The following REXX keyword instructions cannot be used in Data REXX files:
– TRACE ? (interactive trace)
– PARSE EXTERNAL

v The PULL and PARSE PULL instructions can be used only to access data from
the REXX data stack. Do not use PULL and PARSE PULL to pause for operator
input. Data REXX has no operator input facility.

v REXX functions called from Data REXX using synonym names are not supported
during NetView initialization CNMSTYLE processing.

Data REXX Directives
The Data REXX file directives determine the format of Data REXX code. These
directives provide a convenient way of switching between the logic and data
formats.

/*%DATA
The NetView REXX /*%DATA directive specifies data mode for the Data REXX
code that follows it. The file remains in data mode until either the /*%LOGIC
directive is encountered or the end of file (EOF) is reached.

The NetView REXX /*%DATA directive has the following syntax:

/*%DATA

�� /*%DATA comments*/ ��

where:

/*%DATA
The /*%DATA directive must begin with the slash symbol (/) in column one.
A space is required after DATA and the word DATA must be in all capital
letters. The file must begin with either a DATA or LOGIC directive in the first
line.

comments
Specifies any comments that you want to include. Comments can span
multiple lines.

*/ Specifies the end of the DATA directive.

Usage Notes

v In data mode, all REXX instructions must be preceded by %> in column one.
Lines that do not begin with %> are treated as data.

Example: The following example shows how to code Data REXX in data mode:
/*%DATA --- demonstrate data mode */

Data line (this line has two leading blanks)
%>IF CGLOBAL(’ABC’) = 1 THEN

%INCLUDE ABCFILE
%>ELSE
%> DO
%> ’%INCLUDE’ CGLOBAL(XYZfilenameVar)
Another data line
%> END
Final data line

Related Statements: /*%LOGIC

REXX Language Overview

22 Programming: REXX and the NetView Command List Language

/*%LOGIC
The NetView REXX /*%LOGIC directive specifies logic mode for the Data REXX
code that follows it. The file remains in logic mode until either the /*%DATA
directive is encountered or the end of file (EOF) is reached.

The NetView REXX /*%LOGIC directive has the following syntax:

/*%LOGIC

�� /*%LOGIC comments*/ ��

where:

/*%LOGIC
The /*%LOGIC directive must begin with the slash symbol (/) in column 1. A
space is required after LOGIC and the word LOGIC must be in all capital
letters. The file must begin with either a DATA or LOGIC directive in the first
line.

comments
Specifies any comments that you want to include. Comments can span
multiple lines.

*/ Specifies the end of the LOGIC directive.

Usage Notes

v REXX clauses are processed as commands in a normal REXX environment are
instead passed to the NETVDATA environment. As a result, these clauses are
seen as data by the application reading the member.

v In logic mode, REXX instructions must not be preceded by %>.

Example: The following example shows how to code Data REXX in logic mode:
/*%LOGIC --- demonstrate logic mode */
’ Data line (this line has two leading blanks)’
IF CGLOBAL(’ABC’) = 1 THEN

’ %INCLUDE ABCFILE’
ELSE

DO
’%INCLUDE’ CGLOBAL(XYZfilenameVar)
’Another data line’
END

’Final data line’

Related Statements: /*%DATA

Coding Conventions for REXX Command Lists and Data REXX Files
This section describes the syntax rules that apply when coding REXX command
lists or Data REXX files for the Tivoli NetView for z/OS program.

Record Size
The data portion of records in REXX command lists or Data REXX files for the
Tivoli NetView for z/OS program can be up to 80 characters in length (the records
must be a fixed length of 80 characters). If the first record of a REXX command list
or Data REXX file contains numeric characters in columns 73 through 80, the
command list or Data REXX file is assumed to contain sequence numbers. The
Tivoli NetView for z/OS program removes the sequence numbers from lines

REXX Language Overview

Chapter 2. REXX Language Overview 23

containing executable statements or Data REXX control statements. That is,
sequence numbers are preserved on lines that are known to be data-only (those
lines that are contained within a /*%DATA section and are not prefixed with %>).
The Tivoli NetView for z/OS program also truncates trailing blanks from all REXX
records in REXX command lists and Data REXX files. Blank REXX records are not
discarded, but are truncated to one blank character.

Using Quotation Marks
To avoid variable substitution on a string in a REXX command list or Data REXX
file in logic mode, enclose the string in either single quotation marks (') or double
quotation marks ("). The quotation marks signify that you do not want REXX to
perform variable substitution on the string. That is, you do not want the REXX
interpreter to interpret the string. When REXX encounters a beginning quotation
mark (single or double) on a command list statement or Data REXX statement, it
stops interpreting until it reaches a matching ending quotation mark.

Do not enclose REXX instructions in quotation marks. REXX recognizes its own
instructions and does not perform variable substitution on REXX instructions. The
following examples show how to use quotation marks to prevent variable
substitution with the REXX SAY instruction:

SAY ’THIS IS A STRING WITH SINGLE QUOTATION MARKS’
SAY "THIS IS A STRING WITH DOUBLE QUOTATION MARKS"

These two instructions display the following text at your terminal when using
REXX or write to the network log when using Data REXX:

THIS IS A STRING WITH SINGLE QUOTATION MARKS
THIS IS A STRING WITH DOUBLE QUOTATION MARKS

To use an apostrophe or double quotation marks within the text of a string
enclosed in quotation marks, you can code the following lines:

SAY "IT’S EIGHT O’CLOCK. TIME TO BRING UP CICS."
SAY ’IT’’S EIGHT O’’CLOCK. TIME TO BRING UP CICS.’
SAY ’PLEASE ENTER "GO NODENAME" OR "GO STOP"’
SAY "PLEASE ENTER ""GO NODENAME"" OR ""GO STOP"""

In the following example, either of the first two instructions displays the first line
or writes to the network log when using Data REXX. Either of the last two
instructions display the second line:

IT’S EIGHT O’CLOCK. TIME TO BRING UP CICS.
PLEASE ENTER "GO NODENAME" OR "GO STOP"

Generally, you enclose any NetView commands, or system commands recognized
by the Tivoli NetView for z/OS program, in quotation marks. The exception is
when you want variable substitution to take place on an operand of such a
command. If you want variable substitution to take place, leave the operand
outside the quotation marks.

Note: NetView commands cannot be issued from Data REXX files. The only
address environment supported by Data REXX is ADDRESS NETVDATA.
When REXX clauses are treated as external commands by REXX, they are
treated as external data by Data REXX.

For example, if you want to use the NetView INACT command in a command list
to deactivate a node named NODE1, code:

’INACT NODE1’

REXX Language Overview

24 Programming: REXX and the NetView Command List Language

If the command list contains a variable named NODE and you want to deactivate
the node whose name is the current value of the NODE variable, code:

’INACT ’ NODE

The next example uses quotation marks to have REXX perform variable
substitution for only part of a command. The example assumes that the DDNAME
has already been allocated. This example first parses the user input into a variable
called DDNAME. The TSO/E EXECIO command is then used to read a line of that
DDNAME. ADDRESS MVS is a REXX instruction, so it is not enclosed in quotation
marks. The quotation marks begin before EXECIO because it is a TSO/E
command. The quotation marks end before DDNAME to enable REXX to
substitute the current value of the DDNAME variable into the EXECIO command.
The rest of the EXECIO command is enclosed in quotation marks so that variable
substitution does not take place on the STEM and LINE operands.

ARG DDNAME
ADDRESS MVS ’EXECIO 1 DISKR ’ DDNAME ’ (STEM LINE’

Notes:

1. Use caution when writing REXX clauses that have quoted strings that span
multiple records. Because the Tivoli NetView for z/OS program truncates
trailing blanks from all REXX command list records before running the
command list, REXX clauses that have quoted strings that span multiple
records might not run as expected. For example, in the following set of REXX
clauses that span records, The Tivoli NetView for z/OS program removes the
blanks in the middle of the quoted string from the output.
Enter the following command:

say ’ABC
DEF’

The output is the following text:
ABCDEF

All the trailing blanks were removed between the characters C and D.
Blanks that are to be retained are coded on the next line as in the following
example:

say ’ABC
DEF’

The output is the following text:
ABC DEF

2. When it is necessary to continue a quoted string on the next line in a NetView
command list, code the following statement:

SAY ’THIS IS AN EXAMPLE OF A LONG’,
’QUOTED STRING’

The output is the following text:
THIS IS AN EXAMPLE OF A LONG QUOTED STRING

Notice that the continuation comma displays a blank at your terminal after
displaying the first quoted string. If you do not want the space, you can use
concatenation bars to eliminate it. This is useful when you code long system
commands in your command list. Code the concatenation bars in the following
way:

SAY ’THIS IS AN EXAMPLE OF A LONG QUO’||,
’TED STRING’

The output is the following text:
THIS IS AN EXAMPLE OF A LONG QUOTED STRING

REXX Language Overview

Chapter 2. REXX Language Overview 25

Suppressing Display of Non-REXX Commands
Use the REXX TRACE command to control the echoing of REXX instructions. Use
the SUPPCHAR statement in the CNMSTYLE member to suppress non-REXX (for
example, NetView) commands.

Notes:

1. IGNRLSUP is ignored for commands issued from a REXX command list.
2. FOLDUP is ignored for commands issued from a REXX command list.

See the IBM Tivoli NetView for z/OS Command Reference Volume 1 (A-N) and the IBM
Tivoli NetView for z/OS Command Reference Volume 2 (O-Z) for more information
about the IGNRLSUP and FOLDUP commands.

When issuing a command that returns its status in the return code, you can
enhance the performance of your command list by suppressing synchronous
output from the command. To suppress synchronous output, code the suppression
character twice. If the suppression character is not known, or it might change, or a
suppression character is not explicitly defined in the CNMSTYLE member, use the
following general form for suppression:

SUPPCHAR()||SUPPCHAR()||’SET PF24 IMMED RETRIEVE’

No synchronous output from the command is displayed to the operator.

Use the double suppression character when sufficient status is provided by the
return code and to enhance performance of commands that produce line mode
messages synchronously. Using the double suppression character does not affect
output that is scheduled by a command (for example, D NET,APPLS), nor does it
reliably reduce output from a long-running command (for example, NLDM).

See the SUPPCHAR() function in “Session Information Functions” on page 83 for
more information about suppression characters. You can also do suppression with
the HOLE stage of the PIPE command. Refer to IBM Tivoli NetView for
z/OS Programming: Pipes for information.

Tivoli NetView for z/OS Restrictions on REXX Instructions
This section describes the restrictions that apply when coding REXX instructions in
REXX command lists for the NetView program.

Pausing for Operator Input
The REXX instructions (PARSE EXTERNAL, PARSE PULL, PULL, and TRACE ?)
cause a command list to pause for operator input.

Note: You can use this method only if it is directly issued by an operator on a
3270-type screen. Do not use this method to communicate with the operator
if your command list might have its origin in any of these items:
v the NetView management console
v a pipeline,
v an autotask
v some attended MVS console interfaces
v a call issued remotely by the EXCMD or RMTCMD command

Using the PARSE EXTERNAL or PARSE PULL instructions along with other
instructions, you can code command lists that ask the operator questions and pick
up entered responses. Use the REXX SAY instruction to describe what the operator

REXX Language Overview

26 Programming: REXX and the NetView Command List Language

must enter. Code the PARSE EXTERNAL or PARSE PULL instruction after the SAY
instruction to temporarily stop the command list (unless, in the case of PARSE
PULL, data exists on the REXX data stack). After the command list has temporarily
stopped, the operator enters the NetView GO command before it continues. Any
data to be passed to the command list is to be entered as an operand or operands
on the GO command. For example, to have the command list process a YES or NO
answer from the operator, code the following SAY and PARSE EXTERNAL
instructions:
SAY ’ENTER "GO YES" OR "GO NO" TO CONTINUE’
PARSE EXTERNAL ANSWER

The operator responds to the command list with either GO YES or GO NO. The
GO command causes the command list to continue processing, and the YES or NO
value is picked up by the PARSE EXTERNAL instruction by placing the value in
the variable ANSWER.

For restrictions on using PARSE EXTERNAL, PARSE PULL, PULL, and TRACE in
Data REXX files, see “Using Data REXX” on page 18.

Using the SAY Instruction
The REXX SAY instruction enables a character string of any length; however, Tivoli
NetView for z/OS can display only 32 000 characters at a time.

When you issue a REXX SAY instruction in a REXX command list for the Tivoli
NetView for z/OS program, a header precedes the data displayed on the operator
screen. The header is defined by the screen format member in effect and, by
default, is 12 characters in length.

For Data REXX files, output strings that result from the SAY and TRACE
instructions are written to the network log.

Be careful when you specify MSGID() as the first item of output from a SAY
instruction because the text of the SAY instruction is processed as a regular
NetView message. This processing can cause the message to be trapped by a TRAP
instruction and can incorrectly satisfy a WAIT instruction, or cause automation
processing to loop.

Using the CALL Instruction
Use the REXX CALL instruction to pass data (arguments) in a way that can be
parsed more easily by the called routine. For more information about the CALL
instruction, see the TSO/E REXX library. However, when you use the CALL
instruction, the called program cannot access variables in the calling program by
PIPE VAR and STEM stages.

Be careful when you use the CALL instruction to call a REXX command list from
another REXX command list. The command list you call is treated like a
subroutine, and some data is shared between the initial command list and the
called command list. For example, trapped message queues, values of NetView
commands (such as GETMLINE), and the values of message processing REXX
functions (such as MSGID) are shared between the two command lists. To prevent
this sharing of data, call the routine as a NetView command rather than using the
CALL instruction. Note that this option is not available when using Data REXX.

REXX Language Overview

Chapter 2. REXX Language Overview 27

NetView Restrictions on REXX Functions
This section describes the restrictions that apply when coding REXX functions in
REXX command lists or Data REXX files for the Tivoli NetView for z/OS program.

The REXX LINESIZE() function always returns the value 32 728 when used in
REXX command lists or Data REXX files for Tivoli NetView for z/OS.

For restrictions on using REXX functions in Data REXX files, see “Using Data
REXX” on page 18.

Use the REXXSTRF keyword on the DEFAULTS or OVERRIDE command to enable
the REXX STORAGE() function.

The REXX STORAGE() function cannot be used in Data REXX files.

Writing REXX Function Packages
You can write your own REXX function packages for the Tivoli NetView for z/OS
program. The Tivoli NetView for z/OS program supplies two dummy directories
to help you write function packages for use with NetView REXX command lists.
One directory is for a user function package (DSIRXUFP), and the other directory
is for a local function package (DSIRXLFP).

Link edit the real directory and function code into load module DSIRXUFP for a
user function package or into DSIRXLFP for a local function package. As part of
coding the interface to your function code, use the NetView DSIRXEBS macro to
obtain a new EVALBLOCK.

See the REXX library for instructions on coding a real directory and coding the
interface to your function code.

See the IBM Tivoli NetView for z/OS Programming: Assembler for information about
the DSIRXEBS macro and function packages, and about writing function package
directories.

See the IBM Tivoli NetView for z/OS Installation: Configuring Additional Components
and the IBM Tivoli NetView for z/OS Tuning Guide for information about improving
the performance of REXX function packages for the Tivoli NetView for z/OS
program.

Changing the Environment Addressed by REXX Command Lists
REXX command lists for the Tivoli NetView for z/OS program use Tivoli NetView
for z/OS as the default addressing environment. If you want to change the
environment, use the REXX ADDRESS instruction. For example, if you want your
command list to run MVS subcommands, first change the addressing environment
with an ADDRESS MVS instruction.

In ADDRESS MVS, you can use the following commands:
v DELSTACK
v DROPBUF
v EXECIO
v MAKEBUF
v NEWSTACK
v QBUF

REXX Language Overview

28 Programming: REXX and the NetView Command List Language

v QELEM
v QSTACK
v SUBCOM
v TE
v TS

See the TSO/E REXX library for more information about these commands and the
REXX ADDRESS instruction.

In the NETVIEW addressing environment, the entire command string is converted
to uppercase characters. If you want to issue a command using lowercase
characters, change the addressing environment to NETVASIS, in the following way:

address netvasis 'WTO This is a mixed case message.'

Notes:

1. The only valid addressing environments recognized in a NetView REXX
command list are NETVIEW, NETVASIS, and those supported by TSO/E REXX
in any MVS address space.

2. Programs such as SDSF that do program calls abend if they are linked or
attached. For example, the NetView status monitor and the subsystem router
are examples of programs that can perform program calls. The Tivoli NetView
for z/OS program cannot link or attach to any such program that can perform
program calls.

3. The Tivoli NetView for z/OS program does not support a TSO/E environment
in the NetView address space.

4. The Tivoli NetView for z/OS program returns an error if you try to run a
command that is routed to an incorrect addressing environment.

5. The ADDRESS command supports only address environment NETVDATA
when issued from Data REXX files.

Data REXX Host Command Environment
NETVDATA is the host command environment for Data REXX. No other
environments are supported. This host command environment does not support
commands.

Using the EXECIO Command
If you use the EXECIO command in a command list, code the command list so that
it issues an EXECIO command with the FINIS option before the command list
completes its processing. If the command list using EXECIO is part of a nested
chain of command lists, code the chain so that one of the command lists issues
EXECIO with the FINIS option before the chain of command lists completes
processing. You can code SIGNAL ON HALT to ensure that the FINIS option gets
an opportunity to run.

If the EXECIO command encounters an error, it sets the RC variable to a nonzero
return code. See the REXX library for information about return codes used by the
EXECIO command.

If you use EXECIO to read or write a member of a partitioned data set (PDS) and
are not sure whether the member exists, use the NetView REXX FNDMBR(...)
function to determine the members existence before issuing the EXECIO command.

REXX Language Overview

Chapter 2. REXX Language Overview 29

See “PRINT Example” on page 197 and “TYPE Example” on page 199 for examples
of how EXECIO can be used in a REXX command list.

Note: The EXECIO command cannot be used in Data REXX files.

Using MVS and VTAM Commands
MVS and VTAM commands are examples of asynchronous commands. To obtain
the output of these commands for processing by your procedure, use either
NetView pipelines or the techniques described for TRAP and WAIT.

Notes:

1. When REXX clauses are treated as external commands by REXX, they are
treated as external data by Data REXX.

2. Pipelines are not supported with Data REXX files.

Using the NetView ALLOCATE and FREE Commands
The NetView ALLOCATE and FREE commands dynamically allocate and
deallocate data sets from the Tivoli NetView for z/OS program.

These commands closely resemble the TSO/E commands for allocating and
deallocating data sets. However, because these commands are provided by the
Tivoli NetView for z/OS program, you do not need to use the ADDRESS MVS
instruction when using these commands in a command list. Enclose the commands
in quotation marks as you do for other NetView commands. The TYPE, TYPEIT,
and PRINT examples in Appendix G, “Examples of REXX Command Lists for
NetView,” on page 169 use the NetView ALLOCATE command.

See the NetView online help for the syntax of the ALLOCATE and FREE
commands.

Note: When REXX clauses are treated as external commands by REXX, they are
treated as external data by Data REXX.

Using REXX Command Lists

Each time a REXX command list is run in the Tivoli NetView for z/OS program,
REXX sets up a REXX environment for the Tivoli NetView for z/OS program.
When the command list ends, this unique environment can be held for reuse by
the same task. If two command lists are running at the same time on one operator
task (for example, one command list is suspended while the other is running), two
environments are required. Any REXX command lists called from another REXX
command list use the REXX environment of the caller.

Before running REXX command lists, consider how many concurrent REXX
command lists are usually active for any given NetView task. NetView retains up
to 10 REXX environments and their associated storage until you log off, unless you
use the DEFAULTS or OVERRIDE command to change the number of REXX
environments retained. See the NetView online help for additional information
about the DEFAULTS and OVERRIDE commands.

The Tivoli NetView for z/OS program retains REXX environments to improve
REXX environment initialization performance. If more than one REXX environment
is available when a REXX command list is run, the REXX command list can run

REXX Language Overview

30 Programming: REXX and the NetView Command List Language

using a different REXX environment. Whether this occurs depends on the order in
which other REXX command lists were started and ended during concurrent
processing of the REXX command lists. Storage associated with each REXX
environment can increase depending on the needs of the REXX command lists.
Since each REXX command list can have different storage needs, REXX
environments can grow to meet the needs of the most demanding REXX command
list.

You can reduce the number of REXX environments the Tivoli NetView for z/OS
program retains, to minimize the storage each task using REXX requires. However,
if you set this number to zero, the Tivoli NetView for z/OS program does not save
any REXX environments and the initialization performance of every REXX
command list is affected.

Consider the storage required to initialize a REXX environment before running any
REXX command lists. By default, REXX gets sufficient storage for a REXX
command list with about six levels of nested calls. You can change the acquired
storage amount with the DEFAULTS or OVERRIDE command.

REXX command lists that use large numbers of REXX variables or that nest more
than six levels cause the storage to increase as needed. Each REXX command list
requires approximately 12K of storage to start. If you set the amount of
initialization storage to zero, storage is acquired as needed, but performance is
degraded for the first REXX command list using this REXX environment.

Notes:

1. Two entries in the REXX IRXANCHR table are required for each non-nested
NetView or REXX command list to run. If a REXX command list is called from
another REXX command list, a new environment is not required. The nested
command list uses the environment of the primary command list.

2. A recommended default number of REXX environments slots in IRXANCHR
for the Tivoli NetView for z/OS program is twice the maximum number of
command lists that can be scheduled to run concurrently under all active
NetView tasks, plus one for Data REXX for each active NetView task.

3. The number of REXX environments that are allowed to be initialized by any
NetView task can be controlled through the use of the DEFAULTS command
REXXENVL keyword and the OVERRIDE command REXXENVL keyword. The
number of initialized REXX environments for a NetView task and their relative
percentage to all REXX environments can be displayed using the LIST operator
command or the LIST STATUS=TASKS,RXENVCNT=YES command. The latter
command also displays the total number of REXX environments that are
available to NetView and the total number of REXX environments that are
initialized followed by the percentage of the total number in parentheses. It
also displays the number of REXX environments that are initialized for each
NetView task followed by the percentage of the total number in parentheses.

Nesting REXX Command Lists from Assembler, C, or PL/I
Each time a REXX command list is nested by an assembler, C, or PL/I command
processor, a unique REXX environment is created for that REXX command list. The
data stacks from any previous REXX command lists in the nested chain are not
passed to the additional unique environment. For example, if a REXX command
list calls a PL/I command processor and the PL/I command processor calls
another REXX command list, an additional unique REXX environment is created
for the second REXX command list.

REXX Language Overview

Chapter 2. REXX Language Overview 31

The number of unique REXX environments that can be created at one time is
limited by MVS. Therefore, your nested chains are also limited in the number of
REXX command lists that can be called by the assembler, C, or PL/I command
processors.

See the REXX library for information about the maximum number of environments
in an address space.

Parsing in REXX Command Lists
In a REXX command list, you can parse character strings using either the REXX
PARSE instruction, the NetView PARSEL2R command, or the PIPE EDIT stage.

PARSEL2R is provided by the Tivoli NetView for z/OS program to make an
instruction equivalent to the REXX PARSE instruction available in both the
NetView command list language and REXX. The REXX PARSE instruction
performs better than PARSEL2R,; use it where possible.

When you use PARSEL2R in a REXX command list, enclose the command in
quotation marks to avoid variable substitution. For example:

TITLE = ’PROCEDURE/ACTION NOT SUPPORTED: X'’087D’'’
’PARSEL2R TITLE A1 A2 A3 A4 A5 A6 A7 A8’

See the NetView online help for information about the PIPE EDIT and PARSEL2R
commands. See the REXX library for information about the REXX PARSE
instruction.

Note: Data REXX supports only the REXX PARSE instruction.

Tracing REXX Command Lists
During the creation of a REXX command list for the Tivoli NetView for z/OS
program, you can see how the REXX interpreter evaluates an expression using the
TRACE START (TS) command. The TS command sets an indicator that is checked
by the REXX interpreter when it starts to interpret a command list or when control
is returned to a command list after a nested command list completes. The TS
command has the following syntax:

After receiving the following message:
CNM431I REXX INTERACTIVE TRACE. ENTER ’GO TRACE OFF’ TO END TRACE,
ENTER ’GO’ TO CONTINUE.

enter GO TRACE OFF to end the trace, or enter GO to continue tracing. Also, after
receiving one of the messages indicating a trace point is reached, you can enter GO
followed by a command or instruction you want to run at a given point in the
command list. For example, to set a variable to a certain value at that point in the
command list, you can enter:

GO X=5

Or, to display the current value of a variable, you can enter:

TS

�� TS ��

REXX Language Overview

32 Programming: REXX and the NetView Command List Language

GO SAY ’VAR1 CURRENTLY IS ’VAR1

If you enter a TS command but decide before the trace begins that you do not
want to run the trace, use the TRACE END (TE) command to cancel the trace. You
can also use the TE command to end a trace that is not interactive.

Note: The TS and TE commands are not supported in Data REXX.

The TE command has the following syntax:

For more information about TS and TE, see the NetView online help.

Return Codes in REXX Command Lists
The REXX return code variable, RC, is set after completion of each instruction,
command, or nested command list. You can use the EXIT statement in a nested
command list to end the command list and set RC to a value that is passed back to
the calling command list. RC is not given an initial value when a command list
begins.

The following RC values and meanings are possible:

Values Meaning

0 No error. The command, instruction, or nested command list completed
successfully.

–1 The command, instruction, or nested command list encountered an error.
The –1 return code passes control to the FAILURE label if you code
SIGNAL ON FAILURE.

–3 The command or nested command list is not authorized for this operator
or the REXX ADDRESS environment is not valid. The –3 return code
passes control to the FAILURE label if you code SIGNAL ON FAILURE.

–5 The command list is canceled. The –5 return code passes control to the
HALT label if you code SIGNAL ON HALT.

Others
Other return codes are set by individual commands, instructions, or nested
command lists.

See “Recovering from Errors in REXX Command Lists” for more information about
using the SIGNAL instruction with the Tivoli NetView for z/OS program.

Recovering from Errors in REXX Command Lists
When an error occurs in a REXX command list, you can use the SIGNAL
instruction to enable processing to continue at a certain point. If the REXX
command list calls a command processor that is external to REXX, such as TRAP
or WAIT, use the SIGNAL instruction to handle error conditions from that
command processor. A command list can encounter an error for the following
reasons:
v An error exists in the coding of the command list.

TE

�� TE ��

REXX Language Overview

Chapter 2. REXX Language Overview 33

v The command list is part of a nested chain, and one of the other command lists
in the chain contains an error that is passed back to the calling command list.

v An operator enters a command that causes an error in the command list.

If an error occurs, the SIGNAL instruction passes control to another part of the
command list. Depending on the error condition, the SIGNAL instruction can pass
control to the following three different labels in the command list:
v SIGNAL ON FAILURE passes control to a label named FAILURE when the error

condition results in a negative return code. The only negative return codes
returned by the Tivoli NetView for z/OS program are –1 and –3. However, if
your command list calls user-written commands, control is passed to FAILURE
when any negative return code, except –5, is returned.
If your command list recovers from the error, you can return the appropriate
return code to the calling command list. If your command list does not recover
from the error, pass the failure to the calling command list with EXIT –1.

v SIGNAL ON ERROR passes control to a label named ERROR when any
command or function in your command list returns a positive return code.
Control is also passed to ERROR when you do not code SIGNAL ON FAILURE
and a command or function returns any negative return code except –5.
The return code you pass to any command list that nested your command list
must reflect the severity of the error. A zero (0) return code is recognized by all
NetView commands as an indication of successful completion, while all positive
return codes indicate that an error occurred.

v SIGNAL ON HALT passes control to a label named HALT when the command
list is canceled. A command list is canceled when:
– A RESET NORMAL command is run on the current operator task while your

command list is running.
– A CLOSE IMMED command is run on any task in your Tivoli NetView for

z/OS program while your command list is running. The command list
continues processing as long as it does not issue NetView commands.

– During SNA sessions, an operator presses the Attn key while your command
list is running.

– A command issued by your command list is canceled or returns a return code
of –5.

– The operator terminal session is lost for any reason, including the operator
entering the LOGOFF command, while the command list is running.

To pass the HALT condition to any command list that nested your command list,
end the command list with EXIT –5.

Notes:

1. If you do not code SIGNAL ON HALT, the Tivoli NetView for z/OS program
passes the halt condition to the command list that nested your command list.

2. Whenever you call another REXX command list as a function or subroutine, the
next sequential statement of the command list tests the RESULT variable for the
–5 cancel condition.

3. If you code SIGNAL ON FAILURE, the Tivoli NetView for z/OS program
passes only the halt condition to the calling command list if you code EXIT –1.

For more information about the SIGNAL instruction, see the REXX library.

REXX Language Overview

34 Programming: REXX and the NetView Command List Language

Chapter 3. REXX Instructions for Command Lists Run in a
NetView Environment

Some instructions used in REXX command lists for the NetView program are
provided as part of the NetView program so that REXX command lists can
perform specific NetView activities. Because these instructions are provided by the
program and are not standard REXX instructions, they can be used only in
command lists that run in a NetView environment. These instructions do not
function in REXX EXECs that are running in non-NetView environments. The
REXX instructions provided by the NetView program can be used only in
command lists, and are not available for entry at operator consoles. To handle error
conditions, code the SIGNAL instruction in any REXX command list that uses one
of these NetView instructions.

This chapter contains a description of each REXX instruction provided by the
NetView program, how the instruction works, and how to code the instruction in a
REXX command list.

See Appendix E, “Comparison of REXX and NetView Command List Language,”
on page 161 for a complete list of the REXX instructions that are equivalent to
NetView command list language control statements. This list includes both
instructions provided by NetView and instructions provided by REXX. Note that
the REXX instructions MSGREAD and FLUSHQ are provided by the NetView
program; however, these instructions are not supported by Data REXX. No
commands are support by Data REXX.

Pipelines, called with the PIPE command, provide both extended function and
reduced complexity for the automation of message handling. The PIPE command
is an alternative to the TRAP and WAIT instructions.

For information about NetView pipelines, see the IBM Tivoli NetView for
z/OS Programming: Pipes.

For more information about REXX syntax rules and information about other REXX
instructions, see the REXX library.

TRAP, WAIT, and MSGREAD monitor the operator station task (OST) for specific
messages or wait for a specified period.

Use the TRAP command to define the messages for which the command list must
wait. When a TRAP instruction is issued, NetView begins monitoring the operator
task for an occurrence of a specified message. If the message is received, it is
stored in a message queue.

When a WAIT command is issued, the command list stops processing until one or
more of the messages specified on the TRAP instruction is received, or when a
Persist action provides a message for the TRAP instruction. When a WAIT
instruction completes, the value returned by the EVENT() function indicates the
reason that the WAIT instruction completed.

© Copyright IBM Corp. 1997, 2011 35

If the operator task receives any of the messages specified on a TRAP instruction,
you can use the MSGREAD instruction to read the trapped messages from the
message queue. The command list can then take action based on the content of
each message.

The FLUSHQ instruction is used to remove all trapped messages from the message
queue.

The GLOBALV command defines, gets, puts, saves, restores, and purges tasks and
common global variables in REXX command lists.

See the NetView online help for more information about these REXX instructions
and their syntax.

Using TRAP in Nested REXX Command Lists
You can code a TRAP command in a REXX command list that contains nested
command lists. Nested REXX command lists can also contain a TRAP instruction.
However, trapped messages are available only to the command list that issued the
TRAP instruction.

Note: The TRAP instruction cannot be used in Data REXX files.

REXX command lists called as subroutines or functions are considered to be part of
the calling command list. Therefore, TRAP commands issued from subroutines or
functions operate the same as if they were called in the calling command list.

If you used the REXX CALL instruction to call the nested command list, trapped
messages that have not been removed using MSGREAD remain available because
the trap message queue is shared with the nested command list. However, if you
called the nested command list without using the CALL instruction, the trapped
messages are available only to the command list that issued the TRAP instruction.

Note: If a nested command list ends before trapped messages return and these
same messages were being trapped by the calling command list, the
messages are available to the calling command list and are placed in the
message queue. It is possible, therefore, for the message queue to grow large
enough for the NetView program to run out of storage.

To prevent that from happening, you can take one of the following actions:
v End the calling command list.
v Issue the instruction TRAP NO MESSAGES.
v Issue the instruction FLUSHQ periodically

Using WAIT in Nested Command Lists
REXX command lists can issue a WAIT command if the command list is called as a
regular command, as a subroutine, or as a function.

Notes:

1. The WAIT command cannot be used in Data REXX files.
2. If the command list starts VIEW, you do not need to use the WAIT command

to wait for messages or to wait for operator input. For more information about
VIEW, see the IBM Tivoli NetView for z/OS Customization Guide.

3. The WAIT command cannot be used under the PPT task.

NetView REXX Instructions

36 Programming: REXX and the NetView Command List Language

The following considerations apply when using WAIT with nested command lists:
v Messages that arrive for the waiting command list are queued until the nested

command list finishes processing.
v If you specify the same message number on TRAP commands in both the

waiting and nested command lists, the message satisfies the WAIT in the nested
command list.

v If you used the REXX CALL instruction to call the nested command list, trapped
messages that have not been removed using MSGREAD remain available
because the trap message queue is shared with the nested command list.
However, if you called the nested command list as a command, the trapped
messages are available only to the command list that issued the TRAP
command.

Using MSGREAD in Nested Command Lists
You can code MSGREAD in both a nested REXX command list and the initial
REXX command list. If you use the REXX CALL instruction to call a nested
command list, trapped messages are available to both the initial and nested
command lists. If you call a nested command list without using the CALL
instruction, trapped messages are available only to the command list that issued
the TRAP instruction.

Note: The MSGREAD instruction cannot be used in Data REXX files.

Functions Set by MSGREAD
The MSGREAD instruction affects all REXX functions that refer to the current
message.

For example, if MSGREAD is used to read the following message from domain
DOM01:
DSI008I SPAN1 NOT ACTIVE

The following functions are set:

Variable Value
MSGORIGN() DOM01
MSGID() DSI008I
MSGSTR() SPAN1 NOT ACTIVE
MSGCNT() 3
MSGVAR(1) SPAN1
MSGVAR(2) NOT
MSGVAR(3) ACTIVE
MSGVAR(4)–MSGVAR(31) null

For more information about these and other message processing functions, see
“Message Processing Information Functions” on page 52.

Notes:

1. Before a MSGREAD instruction is issued, the values of MSGID(),
MSGORIGN(), and MSGSTR() are null. The value of MSGCNT() is 0. The
MSGVAR(n) functions retain any values they are given when the command list
is run.

NetView REXX Instructions

Chapter 3. REXX Instructions for Command Lists Run in a NetView Environment 37

2. If you issue a MSGREAD instruction when the message queue is empty, the
values of MSGID(), MSGORIGN(), MSGSTR(), and MSGVAR(n) are set to null.
The value of MSGCNT() is zero.

3. If the MSGREAD instruction reads a multiline message, the functions are set
according to the first line of the message. Refer to the GETM commands in the
NetView online help or the IBM Tivoli NetView for z/OS Command Reference
Volume 1 (A-N) for information concerning working with multiline messages.

4. The MSGVAR(1) - MSGVAR(31) functions can be given values when a
command list is called in the same way as the &1 - &31 NetView command list
language parameter variables. If MSGVAR(1) - MSGVAR(31) are given values
when the command list is called, save those values in variables before issuing a
MSGREAD instruction. This lets you use the values that are modified by the
MSGREAD instruction.

5. After using the MSGREAD instruction, save the values of the message
functions in variables before issuing another MSGREAD instruction.

NetView REXX Instructions

38 Programming: REXX and the NetView Command List Language

Chapter 4. REXX Instructions for NetView REXX Command
Lists and Data REXX Files

The NetView program provides a number of REXX functions for use only in
NetView REXX command lists and Data REXX files. These functions are provided
so that command lists and Data REXX files written in REXX can perform specific
NetView activities. Because these functions are provided by the NetView program
and are not standard REXX functions, you can use them only in command lists
and Data REXX files that run in a NetView environment.

You can improve the performance of your REXX command list by limiting the use
of REXX functions provided by the NetView program. If the same function,
provided by NetView, is used several times in the command list without a change
in value, use the function once to set a local variable to the returned value of the
function. You can then use the local variable in place of the function. If the value
returned by the function might change during processing of the command list, you
must use the function each time (instead of the local variable) to access its current
value.

The functions provided by the NetView program return values based on system
information. To use a function, you must place the function name in the REXX
command list at the location where you want the information to be accessed.
When the command list runs, the NetView program returns the current value of
the related system information of the function.

Use these functions to obtain information about the operating environment, test
conditions in a command list, and take actions based on the results.

For more information about REXX syntax rules and other REXX functions, refer to
the REXX library.

See Appendix E, “Comparison of REXX and NetView Command List Language,”
on page 161 for a complete list of the REXX functions that are equivalent to
NetView command list language control variables. This list includes both functions
provided by the NetView program and functions provided by REXX itself.

The tables in this chapter show the tasks performed by each NetView REXX
function and equivalent NetView command list language control variable used in
NetView command lists. The tables are listed by NetView functions. REXX
functions and equivalent NetView command list language control variables are in
alphabetic order, with the REXX function shown first.

In the tables, the function and control variable are followed by the description.

Notes:

1. Where both a NetView command list language control variable and a REXX
function exist for a task, descriptions are given generically without the NetView
command list language ampersand prefix or the REXX open/close parentheses
suffix.

© Copyright IBM Corp. 1997, 2011 39

2. Where NetView command list language control variables and REXX versions of
a function differ operationally, descriptions for each are given separately; the
NetView command list language control variable description contains only the
differences between the two versions.

3. REXX functions provided for use by the NetView program can be used only
with the NetView program. These functions are not supported by the REXX
interpreter and cannot be used in REXX execs run in a non-NetView
environment.

4. Not all NetView REXX functions can be used in Data REXX files. See the
function description to determine if a function can be used in a Data REXX file.

5. REXX functions listed in Table 7 on page 53 and Table 10 on page 68 return a
value consistent with no message to process when used in Data REXX files.

Translation Functions
Table 1. Translation Functions

Function or Variable Description

CODE2TXT(table,code) Provides translation for various types of code points to national language text.

You can use the NetView program with a problem management database to open
problem records when NetView alerts are received. The code point translation function
is provided in REXX to translate the numeric code points received in the alert into
readable text.

The CODE2TXT function has the following syntax:

CODE2TXT

�� CODE2TXT(table,code) ��

REXX Functions

40 Programming: REXX and the NetView Command List Language

Table 1. Translation Functions (continued)

Function or Variable Description

CODE2TXT(table,code)
(continued)

where:

code
Indicates the code point to translate. This field is specified as a 1-4 character value
representing the hexadecimal code point. The characters can be uppercase or
lowercase. Leading zeros are ignored but are counted as characters in the four
character limit.

Code points in the SNADATA tables are only two characters. To make them the
same length as code points in other tables, CODE2TXT adjusts your code by
concatenating "00" on the end (for example, "DD" becomes "DD00" and "01"
becomes "0100"). Refer to the BNJ82TBL sample and the IBM Tivoli NetView for
z/OS Customization Guide for more information.

table
Specifies the name of the table to use in the translation. The following tables are
valid:
SNAALERT Systems Network Architecture (SNA) alert description code

point
SNACAUSE SNA probable cause code point
SNADDATA SNA detailed data code point from subfield X'82'
SNADDAT5 SNA detailed data code point from subfield X'85'
SNADDAT6 SNA actual action code point for resolution major vector
SNAFCAUS SNA failure cause code point
SNAICAUS SNA install cause code point
SNAREACT SNA recommended actions code point
SNAUCAUS SNA user cause code point

An example of using CODE2TXT follows:

CODE2TXT(SNAALERT,362B)

The example translates code point 362B in the SNAALERT table to “TRANSMITTER
FAILURE”.

Error Processing: Error conditions encountered by this function are handled in the
following way:
v Non-valid operand: If a non-valid operand (such as a non-valid table name) is

detected, the NetView program issues message CNM432I (non-valid operand). A
REXX syntax condition flag is raised and the REXX interpreter then generates a
message.

v Non-valid code syntax: If a non-valid syntax is detected, the NetView program
issues message CNM423I (non-valid syntax). A REXX syntax condition flag is raised
and the REXX interpreter generates a message.

v Too many operands: Extraneous operands are ignored.
v Code point not found in table: A null string is returned, but no flag is raised.

Translation

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 41

Table 1. Translation Functions (continued)

Function or Variable Description

SUBSYM(symbolic) Returns a literal or variable character string (any character string that has multiple
MVS system symbolics or a single MVS system symbolic embedded in it) with the
MVS system symbolics replaced within that string.

Substitution is always performed on the &DOMAIN symbolic, unless either
substitution was disabled when NetView was started or else because you have not
defined an MVS system symbolic on your MVS system.

The SUBSYM function has the following syntax:

SUBSYM

�� SUBSYM(symbolic) ��
where:

symbolic
Specifies the name of the MVS system symbolic.

An example using SUBSYM to find out the name of the &DOMAIN follows:

SUBSYM(’&DOMAIN’)

Translation

42 Programming: REXX and the NetView Command List Language

IP Address Processing
Table 2. IP address Processing

Function or Variable Description

IPXLATE('xltype', 'xlindata') Used to validate a presentation form IP address and convert it to another format,
either a standard format or a compressed format.

The IPXLATE function has the following syntax:

IPXLATE

�� IPXLATE(xltype,xlindata) ��

Where:

xltype
Is a string containing the type of IP address verification or translation to be
performed. Following are the valid strings:

COMPRESS
Convert an IP address in presentation form to presentation form compressed,
in which one group of multiple, consecutive zero address segments is
replaced by a double-colon (::). The compression applies only to IPv4-mapped
IPv6, IPv4-compatible IPv6, and IPv6 addresses. The IPv4 addresses are
returned in standard presentation form.

STANDARD
Convert an IP address in presentation form to standard presentation form, in
which IPv4, IPv4-mapped IPv6, and IPv4-compatible IPv6 addresses are
presented in dotted decimal IPv4 address format. The IPv6 addresses are
presented in hexadecimal format. In a standard presentation form, all
segments of an address are present and leading zeros are removed.

VERIFY
Verify that the input data is an IP address in presentation form.

V42STD
Convert an IP address in presentation form to an IPv6 presentation form. The
IPv4 and IPv4-mapped IPv6 addresses are presented as IPv4-mapped IPv6
addresses. All IP addresses are returned in standard presentation form.

xlindata
Is a string containing an IP address in presentation form.

Return Codes: The output from the IPXLATE function is a string containing the return
code, and, if the return code is 0 and the type parameter is not VERIFY, the translated
IP address string. When the type parameter is VERIFY, no IP address string is
returned.

The output string can be parsed as follows:

parse var xxxxxx trancode ipaddr

Where xxxxxx is the variable name which contains the result of the translation, trancode
is the return code from the translation service, and ipaddr, if present, is the translated
address string. The values of trancode are as follows:

0 The function was successful.

4 - 16 The IP address translation failed because of an internal error in the translation
routines. Check the NetView log for the DWO050E message and contact IBM
Software Support.

20 or above
The IP address passed to the service was not valid.

IP Address Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 43

Command List Information
Table 3. Command List Information

Function or Variable Description

AUTBYPAS For information about this function, refer to the IBM Tivoli NetView for z/OS Security
Reference.

AUTHCHK(keyword=value)
This REXX-only function makes a command security check for keywords and values
from a REXX program. Use this to check the parameters that are passed to the
command list, or any other items you want to check as keywords and values related to
this command list.

The AUTHCHK function has the following syntax:

�� �

,

AUTHCHK (keyword=value)
keyword

��

where:

keyword
Specifies the keyword to be authority checked. Each keyword can contain a
maximum of 8 characters. A maximum of 20 keywords with optional values can
be passed to the program. Because variable substitution can yield a null keyword,
AUTHCHK can accept a null keyword. For example, AUTHCHK() is a valid call of
the AUTHCHK function. When a null keyword is passed to the AUTHCHK
function, authority is assumed to be granted for that particular keyword.

value
Specifies a value for the keyword. Each value can contain a maximum of 8
characters. You cannot specify value without also specifying the keyword=
parameter.

Because variable substitution can yield a null value, AUTHCHK can accept a null
value and strip the "=" (equal sign) to yield an only security check. For example,
after variable substitution, this is a valid call of the AUTHCHK function:
AUTHCHK(1=,2=value2,keyword3,keyword4=value4)

Keywords and keyword=value combinations must be separated by commas.

Usage notes:

1. If the keyword and value are both null, the null string is returned, which
implies that authority is granted.

2. keyword=value can be any of the following items:
v The value of a single variable.
v Two variables with ‘=’ in between. The = sign must be enclosed in single

quotation marks.
v Two literal strings with ‘=’ in between. The = sign must be enclosed in

single quotation marks.
v A literal and a variable with ‘=’ in between. The = sign must be enclosed in

single quotation marks.

IP Address Processing

44 Programming: REXX and the NetView Command List Language

Table 3. Command List Information (continued)

Function or Variable Description

AUTHCHK() (continued) If all keyword or keyword=value combinations in the list pass authority checking,
AUTHCHK returns a null string. Otherwise, the first keyword to fail authority
checking is returned and any remaining keywords are not checked. If a value fails
authority checking, the first keyword=value combination to fail is returned and any
remaining keywords are not checked. If a syntax error occurs, the keyword or the
keyword=value combination containing the syntax error is returned and the remaining
keywords are not checked.

For example, if a REXX program was run by entering NVRXCMD START,LU=LU200,
authority checking of the keywords START and LU=LU200 can be done by coding the
following statements in the NVRXCMD program:

/* NVRXCMD:
SAMPLE REXX PROGRAM

*/
PARSE ARG P1’,’P2’,’.
RESULT=AUTHCHK(P1,P2)
...
IF RESULT¬=’’ THEN

DO
SAY OPID() ’IS NOT AUTHORIZED TO KEYWORD/VALUE’ RESULT
EXIT

END
...

In this example, if either of the parameters passed in the variables P1 and P2 does not
pass authority checking, a non-null value is returned by AUTHCHK. If a keyword
fails, it is included in a message and the REXX program ends. If a value fails, the
keyword and value are included in a message and the REXX program ends. For
example, if OPER1 enters NVRXCMD START,LU=LU200, but is not authorized to use the
START keyword, OPER1 IS NOT AUTHORIZED TO KEYWORD/VALUE START is displayed and
NVRXCMD ends. If OPER1 enters NVRXCMD START,LU=LU202, but is not authorized to
use the value LU202, OPER1 IS NOT AUTHORIZED TO KEYWORD/VALUE LU=LU202 is
displayed and NVRXCMD ends.

For information about keyword security, refer to the RACF library and the IBM Tivoli
NetView for z/OS Administration Reference.

Command List Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 45

Table 3. Command List Information (continued)

Function or Variable Description

AUTHCHKX(command,
keyword=value) This REXX-only function can be used to make a command security check for a

command and its associated keywords and values from a REXX program. Use this
function to check a command and any keywords, keywords and values, or any other
items you want to check as keywords and values related to the command. The
AUTHCHKX function has the following syntax:

�� �

,

AUTHCHKX (command,)
keyword
keyword=value

��

where:

command
Specifies the command to be used for the authorization checks. This is a required
parameter. If a null or blank command is passed, a syntax error occurs. The
command parameter can contain a maximum of eight characters. It cannot contain
an embedded blank, comma, or equal sign.

Command security checking is first performed on the command, which can be a
command synonym. If the value is not a valid command, or if the command is not
authorized to be issued by the current operator, the command parameter is
returned.

keyword
Specifies the keyword, or the keyword portion of the keyword=value pair, to be
authority checked. The keyword cannot contain an embedded blank or comma.
Each keyword can contain a maximum of 246 characters. A maximum of 19
keywords with optional values can be passed to the program, because REXX
supports up to 20 parameters on a function call. If the keyword is not a valid
keyword, or if the current operator is not allowed to execute the specified
command with the specified keyword, the keyword is returned.

value
Specifies a value for the keyword. Each value can contain a maximum of 246
characters. You cannot specify value without keyword and the = (equal sign).

Because variable substitution can yield a null value, AUTHCHKX can accept a
null value and strip the = (equal sign) to yield a keyword-only security check. For
example, after variable substitution, this example is a valid call of the
AUTHCHKX function:

AUTHCHKX(command,keyword1=,keyword2=value2

If the current operator is not allowed to execute the specified command with the
specified keyword=value pair, the keyword=value pair is returned.

Command List Information

46 Programming: REXX and the NetView Command List Language

|
||
|
|
|
|

|||||||||||||||||||||||

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|

Table 3. Command List Information (continued)

Function or Variable Description

AUTHCHKX()(continued)
Usage notes:

1. All parameters on the AUTHCHKX invocation must be separated by commas,
which is the proper format for REXX function calls.

2. All security checks are performed using parameters that have been stripped of
leading and trailing blanks.

3. If a keyword or keyword=value pair parameter is null or all blanks, or if it is
considered valid and passes security checking, processing continues to the next
parameter.

4. If the current command is running with security checking bypassed (such as with
AUTBYPAS(ON)), all security checking passes.

5. f the current operator is authorized to issue the specified command with all of the
specified keyword and keyword=value pairs, and all parameters are considered to
be valid, the null string is returned, indicating that authority is allowed.

6. Parameters that can be specified on certain commands (such as READSEC and
WRITESEC) do not follow the standard keyword=value syntax when the command
processor performs authorization checking. To have AUTHCHKX perform
equivalent authorization checking for these parameters, specify them in the
required keyword=value syntax instead of the syntax that the command requires.
Refer to all available documentation on existing commands before coding the
desired AUTHCHKX function invocation.

7. For information about keyword security, refer to the RACF library and the IBM
Tivoli NetView for z/OS Security Reference.

Example:

If a NetView command list language program NVCLCMD needs to perform authority
checks on two parameters that are passed to it, it can call REXX program NVCHKAUT
as follows:

NVCHKAUT NVCLCMD,&P1,&P2

NVCHKAUT can be coded in the following way (after the initial REXX comment line):

PARSE ARG cmd’,’parm1’,’parm2
res=AUTHCHKX(cmd,parm1,parm2)
Return_Code = 0
IF res <> ’’ THEN

DO
SAY OPID() ’IS NOT AUTHORIZED TO ISSUE’ ,

cmd ’WITH’ res
Return_Code = 8

END
Return Return_Code

In this example, if either of the parameters passed in parm1 or parm2 does not pass
authority checking with the command passed in cmd, a non-null value is returned by
AUTHCHKX. Because keyword=value is currently running, that command must be
allowed under the current operator. If a keyword fails, it is included in a message
along with the command that was passed, and the REXX program sets a return code
of 8 and returns. If a value fails, the keyword and value are included in a message
along with the command that was passed, and the REXX program sets a return code
of 8 and returns. For example, if OPER1 enters NVCLCMD START, LU=LU200, but is
not authorized to use the START keyword, the message OPER1 IS NOT
AUTHORIZED TO ISSUE NVCLCMD WITH START is displayed, and NVCHKAUT
returns a return code of 8 to NVCLCMD. NVCLCMD should then end without further
processing.

Command List Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 47

Table 3. Command List Information (continued)

Function or Variable Description

CMDNAME() This REXX-only function returns the name by which the program was called. This
name can be the same as the name returned in the third token by the REXX PARSE
SOURCE command. This name is the command as it was entered, which is possibly a
synonym.

For Data REXX, this function returns the member name of the file that is being
processed.

IPV6ENV() Provides access to the configuration value for IPv4 or IPv6 specifications.

The following values returned by this function are as follows:

NONE When this value is returned, NetView services, functions, and components
should not attempt to perform IPv6 operations and should use only IPv4
operations, failing even if only IPv6 addresses are available.

MIXED
When this value is returned, NetView services, functions, and components
should attempt to perform IPv6 operations first, and if they fail, use IPv4
operations. In many circumstances, it will be possible to use operations that
support both IPv4 and IPv6 operations at the same time. For example, it is
possible to listen on an AFINET6 socket for either IPv4 datagrams or IPv6
datagrams, either of which can represent SNMP traps. In mixed
environments, the explicit specification of the address family for the IP
command in process should be respected. The explicit specification of an
address family that conflicts with the DEFAULT.IPV6ENV variable
specification should be treated as an error. A description of the
DEFAULT.IPV6ENV variable specification can be found in the IBM Tivoli
NetView for z/OS Administration Reference.

ONLY When this value is returned, NetView services, functions, and components
should only attempt to perform IPv6 operations and fail if they do not
succeed or if only IPv4 addresses are available.

PARMCNT()

&PARMCNT

Returns the number of parameter variables that are entered when a command list is
initiated. For example, if command list RESC is initiated by entering RESC ACT,LU200,
then PARMCNT becomes 2. If no parameter variables exist, PARMCNT is zero.

&PARMSTR Returns the string of parameter values used when the command list is initiated.
&PARMSTR does not include the command list name. For example, if command list
RESC is initiated by entering RESC ACT,LU200, then &PARMSTR becomes ACT,LU200.
If no parameter variables exist, &PARMSTR is null. The maximum length of the string
returned by &PARMSTR is 255 characters.

Command List Information

48 Programming: REXX and the NetView Command List Language

Table 3. Command List Information (continued)

Function or Variable Description

&RETCODE Returns the return code set by either the most recent command procedure or the most
recently activated or nested command list.

&RETCODE is initialized to zero. &RETCODE is set by a command procedure or
nested command list. When you write a command list that is called by another
command list, you can set a return code on the &EXIT statement in the nested
command list. You can use &RETCODE to test this return code in the calling
command list. See “&EXIT Control Statement” on page 131.

On the &EXIT statement, you can set the return code to 0, −1, or a positive integer.
The NetView program can set the return code to 0, −1, −2, −3 or −5. You cannot code
−2 or −3 on the &EXIT statement, but you can test for them. All other negative return
codes are reserved.

The following values and meanings of &RETCODE are possible:

n A positive integer; you define the meaning. If &CONTROL ERR is in effect,
the command is echoed on the panel.

0 No error.

–1 An error is found. This command list and all nested command lists end.
Message DSI197I is issued for this command list.

–2 A command in the command list is not correct. The message DSI209I is
displayed with the incorrect command. The command is ignored, and the
command list continues.

–3 A command in the command list is not authorized for this operator. The
incorrect command list statement is displayed along with message DSI210I.
The command is ignored, and the command list continues.

–5 A command list is stopped as the result of a RESET or other failure.

Cross-Domain Information Functions
Table 4. Cross-Domain Information Functions

Function or Variable Description

NVCNT()

&NCCFCNT

Returns the number of NetView domains with which the operator can establish a
cross-domain session.

Command List Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 49

Table 4. Cross-Domain Information Functions (continued)

Function or Variable Description

NVID(n)

&NCCFID n

Returns the NetView domain identifier of a domain with which you can establish a
cross-domain session. The domains with which you can establish cross-domain
sessions are defined by the DOMAINS statement of your operator profile.

However, if your profile specifies AUTH CTL=GLOBAL, you can establish
cross-domain sessions with the domains specified by the RRD statement in the
CNMSTYLE member. If neither DOMAINS nor CTL=GLOBAL is specified in your
operator profile, you receive an error message when using this function.

For more information about the DOMAINS and RRD statements, refer to the IBM
Tivoli NetView for z/OS Administration Reference.

The value of n is either a number or a variable with a numeric value. The maximum
value of n is the value of NVCNT.

Notes:

1. If you specify a value that is not valid in n for:
v NVID, a null value is returned
v &NCCFID, an error message is returned

2. To obtain the local domain identifier, use the APPLID function. APPLID returns the
local domain ID appended with a three-character alphanumeric value assigned by
the NetView program.

NVMASTER() Returns the domain name of the master NetView program in the sysplex or a null
value if there is no master NetView program.

NVSTAT(name)

&NCCFSTAT name

Indicates whether you have an active session with a domain. The value of name is the
domain identifier of the domain you are querying. If you have an active session with
the domain, NVSTAT(name) or &NCCFSTAT return a value of ACT. If you do not have
an active session with the domain, INACT is returned.
Note: If you specify no name or a name that is not valid for:
v NVSTAT, a null is returned.
v &NCCFSTAT, an error message is returned.

Data Set Information Functions
Table 5. Data Set Information Functions

Function or Variable Description

FNDMBR
(DD_name,member_name)

Tries to find the specified member in the files identified by the DD name. The files
must already be allocated by NetView when FNDMBR is processed. The allocated files
must be a partitioned data set (PDS). FNDMBR returns two determinant results and
various indeterminate results that you can use to debug your REXX program.

The arguments of the FNDMBR function are defined in the following way:
DD_name

Specifies the DD name by which the allocated PDS file is known to the
NetView program.

member_name
Specifies the name of the member of the allocated PDS file to be located.

Cross Domain and Global Variable

50 Programming: REXX and the NetView Command List Language

Table 5. Data Set Information Functions (continued)

Function or Variable Description

FNDMBR
(DD_name,member_name)
(continued)

The following results can be returned by the FNDMBR function:
0 Indicates that the specified member name was found.
4 Indicates that the specified member name was not found.
100 Indicates that a system error was encountered while trying to process this

request.
F cccccccc rrrrrrrr

where:
F Indicates that the MVS FIND macro failed.
cccccccc Is the FIND macro return code.
rrrrrrrr Is the FIND macro reason code.

O cccccccc rrrrrrrr
where:
O Indicates that the MVS OPEN macro failed.
cccccccc Is the OPEN macro system ABEND code or zero.
rrrrrrrr Is the OPEN macro return code. If cccccccc is not zero, this is the

same as the return code value in the IEC1nnI message associated
with the OPEN macro system abend code. If cccccccc is zero, this is
the return code from the OPEN macro. For example, a return code of
8 in this case might mean that the DD statement is missing or the file
is not allocated.

The following example shows the FNDMBR function usage:

IF FNDMBR(’DSICLD’,’MYREXX’) = 0 THEN

This REXX statement is evaluated as true if MYREXX exists in DSICLD or as false if
MYREXX does not exist in DSICLD.

Notes:

1. Refer to the MVS/DFP library for the OPEN macro return codes. Refer to the
MVS/ESA library for the OPEN macro system abend codes (X'n13' abend codes)
and IEC1nnI message explanations.

2. If a REXX variable is used to hold the DD name or the member name for the
FNDMBR function, to help insure that the text substituted for the variable does not
exceed 8 characters, strip the leading and trailing blanks from the value before
calling the FNDMBR function.

3. If the NetView ALLOCATE command was used to allocate the data set, be sure not
to use the FREE option on the ALLOCATE when using the FNDMBR function
together with another command (for example, EXECIO) to access the allocated file.
The FNDMBR function runs an MVS OPEN and CLOSE, which causes the
allocated file to be deallocated if the FREE option was coded on the allocate
command. This restriction does not apply to files allocated using the DD
statements in the NetView startup procedure.

4. The data set can be allocated down to the member level. However, do not do that
because an IEC141I message is issued if the member is not found.

Data Set Information Functions

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 51

Global Variable Information Functions
Table 6. Global Variable Information Functions

Function or Variable Description

CGLOBAL(name)
REXX

Returns the value of the named common global variable if it exists. If no common
global variable with the specified name exists, a null value is returned. If you do not
specify name, or if you specify more than one name, a syntax error occurs.

End of REXX

NetView Command List Language

The NetView command list language control statement &CGLOBAL is operationally
different than the NetView REXX function described here. See “Using &TGLOBAL and
&CGLOBAL” on page 148.

End of NetView Command List Language

TGLOBAL(name)
REXX

Returns the value of the named task global variable if it exists. If no task global
variable with the specified name exists, a null value is returned. If you do not specify
name or specify more than one name, a syntax error occurs.

End of REXX

NetView Command List Language

The NetView command list language control statement &TGLOBAL is operationally
different than the NetView REXX function described here. See “Using &TGLOBAL and
&CGLOBAL” on page 148.

End of NetView Command List Language

Message Processing Information Functions
Table 7 on page 53 lists functions and variables that, unless otherwise noted, are
available for use on messages generated by all operating system platforms
supported by the NetView program.

The value of the NetView command list language control variable and REXX
function is null unless otherwise stated if no message processing information is
available.

Some of the functions and variables that are listed in this section contain
discussion of a current message. “Working with Messages” on page 14 contains
additional information about current message.

Data Set Information Functions

52 Programming: REXX and the NetView Command List Language

Message Processing Information
Table 7. Message Processing Information

Function or Variable Description

ACTIONDL()

&ACTIONDL

Returns the reason for which the NetView program deleted the associated message,
which is one of the following values:

(null) The message is not being deleted.

LOCAL The message was deleted by operator overstrike of the CONSOLE
DELETE stage.

NETVIEW The message was deleted using the NetView DOM NVDELID or
CURMSG options, or by the NetView program.

SMSGID The message was deleted by MVS DOM using SMSGID.

TOKEN The message was deleted by MVS DOM using TOKEN.

TCB The message was deleted by MVS DOM for task end.

ASID The message was deleted by MVS DOM for address end space.

INVALID The message has a combination of control flag settings that are not
valid.

ACTIONMG()

&ACTIONMG

Returns a 1 if the message is an action message. Otherwise it returns a 0.

AREAID()

&AREAID

Returns a 1-letter (A - Z) identifier for the area on the multiple console support console
panel that displays the message.

ATTNID()

&ATTNID

Returns the VSE attention identifier ID. A plus sign (+) indicates that a reply is
required for this message immediately. A minus sign (−) indicates that a reply is
required for this message.

This function has a value if the message is from a VSE system, but null for non-VSE
messages.

AUTOTOKE()

&AUTOTOKE

Returns the 1 - 8 character name of the MVS message processing facility (MPF)
automation token.
Note: If you have specified AUTO(YES) or AUTO(NO) in the MPF table, the values YES
and NO are not automation tokens.

DESC()

&DESC

Returns the MVS DESCriptor codes as a series of 16 on (1) and off (0) EBCDIC
characters representing the bits in order. Refer to the MVS library for information
about code values.

Message Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 53

Table 7. Message Processing Information (continued)

Function or Variable Description

EVENT() The NetView event that satisfied the WAIT instruction is determined by the value of
the REXX EVENT() function. The REXX command list can use the EVENT() function to
set a variable and take appropriate action based on the set value. The following
returned values from the EVENT() function are possible:

M The message for which the command list is waiting has arrived. The message
can be read using the MSGREAD instruction.

T The time period for which the command list was waiting has expired, and
processing is resumed.

G You entered the GO command, and processing is resumed.

E You did not code the WAIT or TRAP instructions correctly. For example, you
entered the operands in the incorrect order or issued a WAIT for messages
instruction without a matching TRAP instruction. The command list resumes
processing.

X A PERSIST TRAP for additional data is active and the PERSIST has
completed.

If you do not issue a WAIT instruction in a command list, the value of the EVENT()
function is replaced with a value of null.

HDRMTYPE()

&HDRMTYPE

Specifies the 1-character NetView buffer type of the received message or MSU. Buffer
types are described in IBM Tivoli NetView for z/OS Programming: Assembler.

IFRAUGMT()

&IFRAUGMT

Returns the UTC mean time when the automation internal function request (AIFR) was
created. The variable IFRAUGMT is returned as an 8-byte hexadecimal value in store
clock format.

IFRAUIND()

&IFRAUIND

Returns 2 bytes of indicator bits as a series of 16 on (1) and off (0) EBCDIC characters
representing the bits in order. This data is mapped in DSIIFR. The following bit
positions are valid:

1 MVS system information attached (WQE data).
5 Message from NetView PPT.
6 Message received cross-domain.

11 Message was PRI routed by ASSIGN command.
12 Message was SEC routed by ASSIGN command.
13 Message was COPY routed by ASSIGN command.
14 Message was routed to authorized receiver.
15 The message was revised by the NetView message revision table.
16 Message was unsolicited.

Notes:

1. Other bits can be tested, but have no defined use. All the bits are defined in the
DSIIFR mapping control blocks. For more information, refer to IBM Tivoli NetView
for z/OS Programming: Assembler.

2. Messages with the unsolicited flag on are eligible for ASSIGN PRI and SEC
routing.

3. This field indicates the AIFR indicator fields IFRAUIND and IFRAUIN2.

4. MVS system messages routed to any task except the subsystem router CNMCSSIR
are considered solicited messages.

5. For more information about solicited and unsolicited messages, refer to the IBM
Tivoli NetView for z/OS Automation Guide.

Message Processing

54 Programming: REXX and the NetView Command List Language

Table 7. Message Processing Information (continued)

Function or Variable Description

IFRAUIN3()

&IFRAUIN3

Returns 1 byte of indicator bits as a series of eight on (1) and off (0) EBCDIC
characters representing the bits in order. This data is mapped in DSIIFR. The following
bit positions and meanings are valid:
1-2 00 = Default priority

01 = Low priority
10 = High priority
11 = Test the receiver for priority

3 VM PMX

IFRAUI3X()

&IFRAUI3X

Returns a 32-byte string of '1' and 0' values corresponding to control flags in the
IFRAUI3X word of the DSIIFR. The first 8 bits are the same as IFRAUIN3, allowing all
32 bits to be accessed at once.

IFRAUSB2()

&IFRAUSB2

Returns a 2-byte user field in DSIIFR as a string of 2 characters.

Notes:

1. This function is null if the field is all blanks or binary zeros in any combination.

2. IFRAUSB2 and IFRAUSRB refer to the same user field, but return the value in
different formats.

IFRAUSC2()

&IFRAUSC2

Returns a 16-byte user field in DSIIFR as a series of 128 on (1) and off (0) EBCDIC
characters representing the bits in order.
Note: IFRAUSC2 and IFRAUSRC refer to the same user field, but return the value in
different formats.

IFRAUSDR()

&IFRAUSDR

Returns the 1 - 8 character name of the originating NetView task.

IFRAUSRB()

&IFRAUSRB

Returns a 2-byte user field in DSIIFR as a series of 16 on (1) and off (0) EBCDIC
characters representing the bits in order.
Note: IFRAUSRB and IFRAUSB2 refer to the same user field, but return the value in
different formats.

IFRAUSRC()

&IFRAUSRC

Returns a 16-byte user field in DSIIFR as a string of 16 characters.

Notes:

1. This function is null if the field is all blanks or binary zeros in any combination.

2. IFRAUSRC and IFRAUSC2 refer to the same user field, but return the value in
different formats.

Message Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 55

Table 7. Message Processing Information (continued)

Function or Variable Description

IFRAUTA1()

&IFRAUTA1

Returns 6 bytes of indicator bits as a series of 48 on (1) and off (0) EBCDIC characters
representing the bits in order. IFRAUTA1 enables checking of control information. The
following bit positions are valid:
1, 2, 25 HOLD action.
5, 6, 26 SYSLOG action.
7, 8, 27 NETLOG action.
9, 10, 28 HCYLOG action.
11, 12, 29 DISPLAY action.
13, 14, 30 BEEP action.
16 Command echo
20 Message from MVS.
23 VSE format message.
24 Action message.
47 Automation vector extensions exist.
48 Presentation vectors exist in data buffers.

Notes:

1. Other bits can be tested but have no defined use.

2. Refer to the description of DSIIFR fields IFRAUTA1 through IFRAUTA6 in IBM
Tivoli NetView for z/OS Programming: Assembler.

IFRAUWF1()

&IFRAUWF1

Returns 4-byte MVS-specific WTO information as a series of 32 on (1) and off (0)
EBCDIC characters representing the bits in order. The following specific bit positions
with defined uses are valid:

6 Message is a WTOR.
7 Message is suppressed.
8 Broadcast to all.
9 Display JOBNAMES.

10 Display STATUS.
14 DISPLAY SESSION.
Note: Other bits can be tested but have no defined use. MLWTO flags in this area also
have no defined use. MLWTO indicators are moved into the data buffers.

JOBNAME()

&JOBNAME

Returns the 1 - 8 character MVS job name identifier. Because JOBNAME is the name of
the job that originated the message, it might not always be the same as the name of
the job to which the message is referring. For example, the job names might be
different when MVS issues a message about the NetView job. Also, JOBNAME can
contain the name of an initiator (instead of the actual job name) when a job is started
or stopped. If the message is issued during startup or stopping, extract the job name
from the message text rather than using the JOBNAME function.

The same information is available using MSGCOJBN; refer to the information about
MSGCOJBN on page 58.

JOBNUM()

&JOBNUM

Returns the 8-character MVS job number identifier.
Note: The MVS job identifier might contain embedded blanks.

KEY()

&KEY

Returns the 8-character retrieval key associated with the message.

Message Processing

56 Programming: REXX and the NetView Command List Language

Table 7. Message Processing Information (continued)

Function or Variable Description

LINETYPE()

&LINETYPE

Returns the following multiline write-to-operator (MLWTO) line type or MSU data
buffer type:
C Message control line.
L Message label line.
D Message data line.
DE Last message data line.
E The line is the last message line and contains no data.
H The line is the HIER data buffer type.
M The line is the MSU data buffer type.
blank The message is a single-line message.
null No message or MSU data buffer is associated with this command list.

MCSFLAG()

&MCSFLAG

Returns the system message flags in a series of eight on (1) and off (0) EBCDIC
characters representing the bits in order. The following bit positions and meanings are
valid:
1 Send message conditionally to console SYSCONID.
2 Send message unconditionally to console SYSCONID.
3 RESP.
4 REPLY.
5 BRDCST.
6 HRDCPY only.
7 NOTIME.
8 NOCPY.

Notes:

1. This function does not return the same mapping of multiple console support flags
as the automation table compare item.

2. Setting MCSFLAG='00000000' is valid. It overrides MCSFLAG set by an incoming
WTO.

MSGASID()

&MSGASID

Returns the MVS system address space identifier from which the message was issued.
The value of MSGASID is a 1–5 digit decimal number.
Note: This value is null for messages that do not come from an MVS address space.

MSGAUTH()

&MSGAUTH

Returns the 2-character value indicating whether the message was issued from an
authorized program.
00 WTO message is not from MVS.
10 WTO is from an unauthorized program.
11 WTO is from an authorized program.

MSGCATTR()

&MSGCATTR

Returns the 16-bit MVS message attribute flags as a series of on (1) and off (0) EBCDIC
characters representing the bits in order. The following bit positions and meanings are
valid:
1 Message is suppressed.
2 Message is a command response.
3 Message issued by authorized program.
4 Message is to be retained by Automation Message Retention Facility (AMRF).
Note: Other bits can be tested but have no defined use.

MSGCMISC()

&MSGCMISC

Returns the 8-bit MVS miscellaneous routing flags as a series of on (1) and off (0)
EBCDIC characters representing the bits in order. The following bit positions and
meanings are valid:
1 Display UD (undeliverable) messages.
2 Display only UD messages.
3 Queue by ID only.
4 Indicates whether the message has been marked in the message processing

facility (MPF) table as eligible for NetView automation.
Note: Other bits can be tested but have no defined use.

Message Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 57

Table 7. Message Processing Information (continued)

Function or Variable Description

MSGCMLVL()

&MSGCMLVL

Returns the 16-bit MVS message level flags as a series of on (1) and off (0) EBCDIC
characters representing the bits in order. The following bit positions and meanings are
valid:
1 WTOR
2 Immediate action
3 Critical eventual action
4 Eventual action
5 Informational
6 Broadcast
Note: Other bits can be tested but have no defined use.

MSGCMSGT()

&MSGCMSGT

Returns the 16-bit MVS message type flags as a series of on (1) and off (0) EBCDIC
characters representing the bits in order. The following bit positions and meanings are
valid:
1 Display job names
2 Display status
3 Monitor active
6 Monitor SESS
Note: Other bits can be tested but have no defined use.

MSGCNT()

&MSGCNT
REXX

Returns the number of items in the message string of the current message (see
“Working with Messages” on page 14 for information about current message).

End of REXX

NetView Command List Language

Returns the number of words in a message string.

See “Control and Parameter Variables Used with &WAIT” on page 139 for more
information about using control variables with &WAIT.

End of NetView Command List Language

MSGCOJBN()

&MSGCOJBN

Returns the 1 - 8 character originating job name. (The same information is available
using JOBNAME, described on page 56.)

MSGCPROD()

&MSGCPROD

Returns the 16-character MVS product level. The characters are defined in the
following way:
v The first 4 characters represent an MVS control point object version level.
v The next 4 characters represent the control program name (MVS).
v The last 8 characters represent the function modification identifier (FMID) of the

originating system.

MSGCSPLX()

&MSGCSPLX

Returns the 1- 8 character name of the MVS SYSPLEX where the received message
originated. Available when running under MVS/ESA Version 4 Release 3 or later.

MSGCSYID()

&MSGCSYID

Returns the 1 - 3 digit decimal number system identification for DOM.

Message Processing

58 Programming: REXX and the NetView Command List Language

Table 7. Message Processing Information (continued)

Function or Variable Description

MSGDOMFL()

&MSGDOMFL

Returns the 8-bit MVS DOM flags as a series of on (1) and off (0) EBCDIC characters
representing the bits in order. The following bit positions and meanings are valid:
1 DOM by message ID
2 DOM by system ID
3 DOM by ASID
4 DOM by job step TCB
5 DOM by token

MSGGBGPA()

&MSGGBGPA

Returns the 4-byte hexadecimal background presentation attributes. The following
bytes and descriptions are valid:
1 Background control field
2 Background color field
3 Background highlighting field
4 Background intensity field.
Use one of the following forms to check for hexadecimal values:

REXX

IF MSGGBGPA() = ’12345678’X THEN ...

End of REXX

NetView Command List Language

&IF &MSGGBGPA = X’12345678’ &THEN ...

End of NetView Command List Language

MSGGDATE()

&MSGGDATE

Returns the message date in a 7-character format of yyyyddd, where yyyy is the year
and ddd indicates a calendar day.
Note: This is not necessarily the current date. It might be the date with which MVS
associates the message as having been issued.

MSGGFGPA()

&MSGGFGPA

Returns the 4-byte hexadecimal foreground presentation attributes. The following bytes
and meanings are valid:
1 Foreground control field
2 Foreground color field
3 Foreground highlighting field
4 Foreground intensity field
You can use one of the following forms to check for hexadecimal values:

REXX

IF MSGGFGPA() = ’12345678’X THEN ...

End of REXX

NetView Command List Language

&IF &MSGGFGPA = X’12345678’ &THEN ...

End of NetView Command List Language

MSGGMFLG()

&MSGGMFLG

Returns the 16-bit MVS general message flags. The following bit positions and
meanings are valid:
1 DOM (delete operator message)

Message Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 59

Table 7. Message Processing Information (continued)

Function or Variable Description

MSGGMID()

&MSGGMID

Returns the 4-character hexadecimal value MVS message identifier field.

MSGGSEQ()

&MSGGSEQ

Returns the 1 - 8 character numeric decimal sequence number. This function represents
the last three bytes of MSGGMID.

MSGGSYID()

&MSGGSYID

Returns the 1 - 3 character numeric decimal system identification. This is the first byte
of MSGGMID.

MSGGTIME()

&MSGGTIME

Returns an 11-character (including periods) time in the form hh.mm.ss.th, where hh is
the hours, mm is the minutes, ss is the seconds, and th is tenths and hundredths of
seconds.

MSGID()

&MSGID
REXX

Returns the message identifier of the current message (see “Working with Messages” on
page 14 for a definition of current message.) This is the first token, where tokens are
determined by blanks. A reply ID, if present, is ignored. If a reply ID is sent with the
message, it is not used as the first token. For a multiline write-to-operator (MLWTO)
message, MSGID uses the first token of the first line of the message. When an MSU
buffer is being processed, MSGID is equal to null ('').
Note: For messages received over the VM PROP/PMX interface, MSGID cannot be set
to the actual message identifier because of information added to the front of the
message.

End of REXX

NetView Command List Language

The difference from REXX is that &MSGID is used in NetView automation, with
&WAIT, and with the LINKPD command.

End of NetView Command List Language

MSGITEM(n)

&MSGITEM
REXX

Returns an item from the current message (“Working with Messages” on page 14
contains additional information about current message.) The first blank-delimited string
after a reply ID (if one exists) is considered the message ID, and also item 0. After the
message ID, the following parsing for items 1 through MSGCNT() is performed:

v Strings can be delimited by either blanks or commas.

v A string beginning with a single quotation mark preceded by a blank or comma,
and ending with a single quotation mark followed by a blank or comma, is
considered a quoted string, and is treated as a single item, which does not include
the surrounding quotation marks.

v Every other delimited string that is not in a quoted string is treated as a single item.

v Delimiters that are not within quoted strings are not part of any item.

MSGITEM can return strings longer than 255.

End of REXX

Message Processing

60 Programming: REXX and the NetView Command List Language

Table 7. Message Processing Information (continued)

Function or Variable Description

MSGORIGN()

&MSGORIGIN
REXX

Returns the domain where the last message read by MSGREAD originated.
MSGORIGN() is used for NetView automation, with MSGREAD, and with the
LINKPD command.

Refer to the NetView online help for more information about using functions with
MSGREAD.

End of REXX

NetView Command List Language

Specifies the domain where the message originated. &MSGORIGIN is used in NetView
automation, with &WAIT, and with the LINKPD command.

See Chapter 5, “Automation Resource Management,” on page 91 for more information
about NetView automation.

See “Control and Parameter Variables Used with &WAIT” on page 139 for more
information about using control variables with &WAIT.

See “LINKPD Results” on page 157 for more information about the LINKPD
command.

End of NetView Command List Language

Note: The NetView command list language and REXX versions of this command are
spelled slightly differently; be sure to use the correct spelling when writing your
command list.

MSGSRCNM()

&MSGSRCNM

Returns the 1 - 17 character source object name. This source name is an identifier from
the source object that was provided by either the DSIMMDBS or CNMPMDB
application programming interface (API) call.

For more information about DSIMMDBS, refer to IBM Tivoli NetView for
z/OS Programming: Assembler. For more information about CNMPMDB, refer to IBM
Tivoli NetView for z/OS Programming: PL/I and C.

The source name is selected from the source object by the following rules:

v The first nickname, if any

v The first network identifier concatenated to a network addressable unit (NAU)
name, with a period (.) between, if both exist in sequence

v The first NAU name, if it exists

v The string “N/A” if none of the other names in this list are specified in the source
object

v Null, if no source object exists

For more information about how the source object is defined, refer to the DSIAIFRO
mapping in IBM Tivoli NetView for z/OS Programming: Assembler.

Message Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 61

Table 7. Message Processing Information (continued)

Function or Variable Description

MSGSTR()

&MSGSTR
REXX

Returns the message text of the current message (see “Working with Messages” on
page 14 for information about current message). MSGSTR() does not include the
message identifier—the token used by the MSGID() function. For a multiline
write-to-operator (MLWTO) message, MSGSTR() becomes the message text of the first
line of the message.

End of REXX

NetView Command List Language

Is the message text of the message most recently received by NetView. &MSGSTR does
not include the message identifier (the token used by the &MSGID control variable).
&MSGSTR is used with &WAIT and with the LINKPD command.

See “Control and Parameter Variables Used with &WAIT” on page 139 for more
information about using control variables with &WAIT.

See “LINKPD Results” on page 157 for more information about the LINKPD
command.

End of NetView Command List Language

MSGTOKEN()

&MSGTOKEN

Returns a 1 - 10 digit decimal number that indicates the token associated with the
message.
Note: You can use a TOKEN value to group WTOs by setting MSGTOKEN before
issuing the WTO command. Later, these messages can be deleted using a single DOM
command by specifying the token value in MSGTOKEN.

MSGTSTMP()

&MSGTSTMP

Returns the message time stamp. The value of this field is the time when the NetView
message buffer was created. The field is a 6-character string in the form of hhmmss,
where:
hh Hours
mm Minutes
ss Seconds

Message Processing

62 Programming: REXX and the NetView Command List Language

Table 7. Message Processing Information (continued)

Function or Variable Description

MSGVAR(n) Note: The use of MSGVAR is supported for compatibility purposes. Use MSGITEM
because the MSGVAR(n) functions do not return data relevant to the current message as
described in “Working with Messages” on page 14. Use the MSGITEM(n) functions to
return current message information.

Returns the text of a message. The NetView program changes the values of the
MSGVAR(1) through MSGVAR(31) functions to reflect the text of the message.
Note: MSGVAR(1) through MSGVAR(31) are equivalent to the NetView command list
language variables &1–&31.

Each MSGVAR(n) function is set to a token of the last message read by MSGREAD.
MSGVAR(1) is set to the token following the message identifier—the token used by the
MSGID() function. MSGVAR(2) is set to the next token to the right of MSGVAR(1), and
so on, up to a maximum of 31 variables. MSGVAR(n) is used for NetView automation,
with MSGREAD, and with the LINKPD command.

Refer to the NetView online help for more information about using functions with
MSGREAD.

See “LINKPD Results” on page 157 for more information about the LINKPD
command.

The MSGVAR(n) functions can be given values when a command list is called in the
same way as are the &1–&31 NetView command list language parameter variables.

MSGTYP()

&MSGTYP

Returns the system message type as a series of three on (1) and off (0) EBCDIC
characters representing the bits in order. An on character (1) in one of the positions
corresponds to the following values:
1 SESS — Corresponds to IFRAUWF1(14)
2 JOBNAMES — Corresponds to IFRAUWF1(9)
3 STATUS — Corresponds to IFRAUWF1(10)

MVSRTAIN()

&MVSRTAIN

In the automation table, a 3-bit field describing MVS retain characteristics of the
message.
Note: The 3 flags correspond to 3 flags defined in the MVS WQE control block when
NetView is using the SSI interface, and corresponds to 3 similar flags in the MDB
when running in Extended Console Mode. The exact meaning and use of the flags is a
property of the operating system.

&MVSRTAIN in NetView command list language is a 3-bit field describing MVS retain
characteristics of the message.

NVDELID()

&NVDELID

Returns the 24-character NetView deletion identifier for a message. You can remove
the message from the held queue for all tasks in the NetView program using the
NetView DOM NVDELID command. This is the NetView equivalent of the MVS DOM
function, but is used for messages that are not MVS WTOs or WTORs.

PRTY()

&PRTY

Returns the priority of the message as set by the originator. This field is a 1–5 digit
decimal number. The NetView program does not use this field when processing the
message.

REPLYID()

&REPLYID

Returns the reply identifier for WTORs. This field has a maximum length of 8
characters.

For messages from VSE systems, the REPLYID is the last three characters of the
6-character message prefix. The three returned characters are the message reply ID
only if the sending system uses those characters to designate a reply ID for a message.

Message Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 63

Table 7. Message Processing Information (continued)

Function or Variable Description

ROUTCDE()

&ROUTCDE

Returns the MVS routing code or codes assigned to the message. The value of the field
is a series of on (1) and off (0) EBCDIC characters representing the bits in order. The
maximum number of ROUTCDEs assigned to a message is 128.

Notes:

1. After the first 16 bits, the number of characters returned in ROUTCDE is the lowest
multiple of 8 that contains one or more on (1) characters. Therefore, compare
against a specific substring of ROUTCDE rather than against the entire string.

For example, if only bit 17 is turned on, a string of 16 zeros, a 1, and 7 more zeros
are returned (000000000000000010000000). One method to test for bit 17 being on is
shown in the REXX example in Figure 5 on page 65.

The functionally equivalent code written in NetView command list language is
shown in Figure 6 on page 65.

2. Another method to check for a specific bit is to use the REXX environment POS
(position) function, as shown in Figure 7 on page 65.

3. For details on using the REXX POS function, refer to the REXX library.

SESSID()

&SESSID

Returns the 1 - 8 character ID of the TAF (terminal access facility) session that sent the
message.

See Chapter 5, “Automation Resource Management,” on page 91 for more information
about NetView automation.
Note: If TAF session is started with a SESSID equal to the domain ID, SESSID is set
unpredictably and might give unpredictable results. If the current message originated
from a PPI receiver pipe stage, SESSID shows the SAF ID.

SMSGID()

&SMSGID

Returns a 1 - 10 character decimal number that identifies a particular instance of a
message. This function can be used by the DOM command to identify action messages
to be removed from the display. Refer to the NetView online help for more
information about DOM.

This field contains the same information as MSGGMID, except that SMSGID is
returned as a decimal number and MSGGMID is returned as a hexadecimal value.

SYSCONID()

&SYSCONID

Returns the MVS system console name associated with the message. System console
names are 2 - 8 characters in length.
Note: In the command revision environment, returns the system ID under which the
command was issued.

SYSID()

&SYSID

Returns the 1-8 character identifier of the MVS system from which a message arrived.
Note: In the command revision environment, returns the console name under which
the command was issued.

WTO.REPLY

&WTOREPLY

Returns an operator reply to a WTOR.

REXX

The REXX version is not a function. It is a local variable and therefore does not have
parentheses on the end.

End of REXX

Message Processing

64 Programming: REXX and the NetView Command List Language

|
|

ROUTCDE Examples

Command Processing Information Functions
Table 8 on page 65 lists functions that are available for use with commands
originating in the command revision environment.

Table 8. Command Processing Information

Function or Variable Description

RECEDATA() Provides information about the origin of a command that was transferred to the
NetView environment by using a NETVONLY action in a Command Revision Table.
For more information, see Table 9.

SYSCONID() Returns the console name under which the command was issued.

SYSID() Returns the console name under which the command was issued.

Table 9 lists the arguments that you can specify and the values that are returned
when you use the RECEDATA function:

Table 9. RECEDATA Arguments

Argument Synonym Data returned

Null When no arguments are entered, the following values are
returned:

Value Description

0 if the invoking procedure was not driven by a
NETVONLY action

asid a four character hexadecimal representation of the
Address Space Identifier for the originating
address space

/* STANDARD COMPARE */
IF ROUTCDE() = ’000000000000000010000000’

THEN SAY ’ROUTCDE BIT 17 IS SET.’

Figure 5. REXX Example to Test for Bit 17

&IF &ROUTCDE = 000000000000000010000000 &THEN
&WRITE ROUTCDE BIT 17 IS SET

Figure 6. NetView Command List Language Example to Test for Bit 17

/* POS COMPARE (Using the REXX environment function) */
BIT2CHK = 17
IF POS(’1’,ROUTCDE(),BIT2CHK) = BIT2CHK

THEN SAY ’ROUTCDE BIT 17 IS SET’

Figure 7. Using the REXX POS Function to Test for Bit 17

Message Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 65

Table 9. RECEDATA Arguments (continued)

Argument Synonym Data returned

ASTYPE T
TYPE

Type of address space (job type). A one-character value is
returned:

Value Description

D USS persistent procedure.

The address space has a name for initiated
programs, appropriate for a JOB. However, the
existence of an OpenMVS address space block
indicates a special purpose USS persistent
procedure.

J The address space is a JOB.

N The address space is a system address space
started during operating system initialization
(NIP) processing.

S The address space is a Started Task (STC).

T The address space is a Time-Sharing User (TSO).

U The address space is a USS forked or created
procedure.

* Error: the address space where the command
originated has closed.

? Error: inconsistent data (might be a transient
condition).

! Error: inconsistent data.

> Error: the ASID that was specified is greater than
the system-generated maximum value for an
ASID

AUTH A Authority of the console. A one-character value is
returned:

Value Description

C CONSOLE

I I/O

M Master

S SYS

GROUP G SAF group

JOBNAME J The 1 - 8 character MVS job name identifier

TESTMODE X Test mode status at the time the table was loaded:

Value Description

0 Test mode was not requested

1 Test mode was requested

USER U SAF username

Usage Note: If the RECEDATA function is started with an argument and the
starting procedure is not driven by a NETVONLY action, a REXX
error is generated. Consider using the RECEDATA function initially

Command Processing

66 Programming: REXX and the NetView Command List Language

without an argument to check for a 0 value before performing any
actions in the command revision environment.

REXX Management Services Unit Information Functions
Table 10 on page 68 lists REXX functions for management services unit (MSU)
processing. MSUs include:
v Control point management services units (CP_MSU)
v Multiple domain support message units (MDS_MU)
v Network management vector transports (NMVT)
v Record maintenance statistics (RECMS)
v Record formatted maintenance statistics (RECFMS)

For more information about MSUs, refer to the IBM Tivoli NetView for
z/OS Automation Guide.

The following terms are used in Table 10 on page 68:

Generic MSU
All MSUs that contain subvector 92. Generic MSUs include:
v Alerts that contain subvector 92
v Resolutions, which always contain subvector 92

Statistics-only RECMS
Some RECMS records contain only statistical data. The RECMS records that
contain only statistical data are those with recording mode (byte 8, 1-offset,
into the RECMS) X'81', X'86', and X'87' (for X'87' that represent temporary
errors, not permanent errors).

Statistics-only RECFMS
Some RECFMS records contain only statistical data. The RECFMS records
that contain only statistical data are those with RECFMS types (byte 8,
1-offset, into the RECFMS) 1, 4, and 5.

Command Processing

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 67

Table 10. Management Services Units (MSU) Information Functions

Function Description

HIER (n) Provides user access to the NetView hardware monitor hierarchy data associated with
an MSU. The n specifies the index number (1–5) of a specific name/type pair.

Notes:

1. HIER() (without the n) returns a resource hierarchy slightly different from that
found in BNJ146I messages. The following example shows name/type pairs:

aaaaaaaa1111bbbbbbbb2222....eeeeeeee5555

The letters represent the resource name and numbers represent the resource type.

The hardware monitor defines from one to five name/type pairs. Each name is
eight characters long and each type is four characters. The names and types are
padded with blanks if necessary.

2. HIER (n) returns the name/type pair aaaaaaaa1111 that corresponds to n. If no
name/type pair corresponds to n, then a null value is returned.

3. HIER(n) returns null under the following conditions:
v If the command list is not run by the automation table
v If the automation table was not driven by an MSU
v If the MSU does not have a hardware monitor resource hierarchy

4. Use the HMSECREC function with HIER to determine the resource name of the
hierarchy level where secondary recording is performed. For more information, see
the description of HMSECREC on page 74.

5. If a complex link exists in a resource hierarchy, there might be resource levels that
are not in the information returned by HIER(). You must use a system schematic to
determine the complete hierarchy configuration when a complex link is present.
Use the HMCPLINK function to check whether a complex link exists. See Table 10
on page 68 for more information about the HMCPLINK function.

6. For information about the NetView built-in function &HIER, see “&HIER” on page
120.

HMASPRID() Returns a 1 - 9 character alert-sender product ID. This value is identical to the prodid
value described for the SRFILTER (SRF) command. The ID can be one of the following
IDs:
v 1–4 character hardware product ID
v 1–9 character software product ID

Trailing blanks are removed.

HMASPRID returns null if:
v An MSU is not a generic record.
v An MSU is not submitted to automation by the hardware monitor.

The maximum length is 9 characters.

HMASPRID applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMASPRID” on page 76.

MSU Information

68 Programming: REXX and the NetView Command List Language

Table 10. Management Services Units (MSU) Information Functions (continued)

Function Description

HMBLKACT() Returns a 5-character value consisting of a 3-character block ID and a 2-character
action code. This value is identical to the code value described for the SRFILTER (SRF)
command.

HMBLKACT returns null if an MSU is one of the following types or is not submitted
to the automation table by the hardware monitor:
v A generic alert (X'0000')
v A resolution (X'0002')
v A PD statistic (X'0025')
v A link configuration data (X'1332')
v A statistics-only RECMS
v A statistics-only RECFMS

Otherwise, a value is returned.

Examples of MSUs that HMBLKACT returns a value for include nongeneric alerts
(X'0000'), RECMSs that are not statistics-only, and RECFMSs that are not statistics-only.

The maximum length is 5 characters.

HMBLKACT applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMBLKACT” on page 77.

HMCPLINK() Returns a 0, 1, or null to indicate whether a complex link exists, where:

1 A complex link exists.

If a complex link exists, there might be resource levels that are not in the
resource hierarchy returned by the HIER function. You must use a system
schematic to determine the complete hierarchy configuration when a complex
link is present. See the description of HIER on page 68 for more information.

Hardware monitor panels, such as Most Recent Events, indicate that a
complex link exists by placing an asterisk (*) in the pictorial resource
hierarchy at the top of the panel and displaying message BNJ1538I in the
message line near the bottom of the panel.

0 A complex link does not exist.

Null The MSU was not submitted to automation by the hardware monitor.

The maximum length is 1 character.

HMCPLINK applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMCPLINK” on page 77.

MSU Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 69

Table 10. Management Services Units (MSU) Information Functions (continued)

Function Description

HMEPNAU() HMEPNAU returns the NAU name of the entry point node where the MSU originated
for alerts forwarded using the NV-UNIQ/LUC alert forwarding protocol.

HMEPNAU returns the local NAU (domain) name for local MSUs.

For alerts forwarded using the SNA-MDS/LU 6.2 alert forwarding protocol,
HMEPNAU returns the NAU name of the entry point node that contains the MS
application that first forwarded the alert to the ALERT_NETOP application.
HMEPNAU adds an asterisk (*) to the beginning of the NAU name to indicate that the
name returned might not be the entry point node name. For example, if the node
name is NETV01 and HMEPNAU cannot determine if the node is an intermediate
node or the entry point node, it returns *NETV01.
Note: Refer to the IBM Tivoli NetView for z/OS Automation Guide for more information.

The maximum length is 9 characters.

HMEPNAU applies only to MSUs submitted to automation by the hardware monitor.
HMEPNAU returns null for all other MSUs.

See the example in “HMEPNAU, HMEPNET, and HMFWDSNA” on page 77.

HMEPNET() HMEPNET returns the NETID name of the entry point where the MSU originated. For
alerts forwarded using the SNA-MDS/LU 6.2 alert forwarding protocol, HMEPNET
returns the NETID name of the entry point node that contains the MS application that
first forwarded the alert to the ALERT_NETOP application. HMEPNET adds an
asterisk (*) to the beginning of the NETID name to indicate that the name returned
might not be the entry point node name.

HMEPNET returns the local NETID name for local MSUs.

If the hardware monitor cannot determine the NETID name of the entry point,
HMEPNET returns an asterisk (*).

HMEPNET returns an asterisk (*), indicating that the NETID name cannot be
determined by the hardware monitor, for all MSUs forwarded by the NV-UNIQ/LUC
alert forwarding protocol.
Note: Refer to the IBM Tivoli NetView for z/OS Automation Guide for more information.

The maximum length is 9 characters.

HMEPNET applies only to MSUs submitted to automation by the hardware monitor.
HMEPNET returns null for all other MSUs.

See the example in “HMEPNAU, HMEPNET, and HMFWDSNA” on page 77.

MSU Information

70 Programming: REXX and the NetView Command List Language

Table 10. Management Services Units (MSU) Information Functions (continued)

Function Description

HMEPNETV() Returns a 0, 1, or null to indicate whether the entry point where the MSU originated
was a remote node NetView program. This function applies only to MSUs forwarded
using the SNA-MDS/LU 6.2 alert forwarding protocol.

1 The entry point was a NetView program.

0 The entry point was not a NetView program.

null The MSU was not forwarded using the SNA-MDS/LU 6.2 alert forwarding
protocol.

Notes:

1. Refer to the IBM Tivoli NetView for z/OS Automation Guide for more information
about forwarding mechanisms.

2. The maximum length is 1 character.

3. HMEPNETV applies only to MSUs submitted to automation by the hardware
monitor. HMEPNETV returns null for all other MSUs.

4. See the example in “HMEPNETV” on page 77.

HMEVTYPE() Returns the event type of an MSU. Any trailing blanks in the event type are removed.
The following event types are valid:

AVAL BYPS CUST DLRC HMV HELD IMPD IMR
INST INTV NTFY PAFF PERF PERM PROC REDL
RSLV RSNT SCUR SNA TEMP USER UNKN

For a complete description of all event types, see the NetView online help

HMEVTYPE returns null if an MSUis one of the following types or is not submitted to
automation by the hardware monitor:
v A PD statistic (X'0025')
v A link configuration data (X'1332')
v A statistics-only RECMS
v A statistics-only RECFMS

The maximum length is 4 characters.

HMEVTYPE applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMEVTYPE” on page 78.

MSU Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 71

Table 10. Management Services Units (MSU) Information Functions (continued)

Function Description

HMFWDED() Returns a 0, 1, or null to indicate whether an MSU was forwarded from another
NetView node, where:

1 An MSU was forwarded from another NetView program through the
NV-UNIQ/LUC alert forwarding protocol.

0 An MSU was not forwarded from another NetView program, or was
forwarded using the SNA-MDS/LU 6.2 alert forwarding protocol. Examples
of when a 0 is returned include:
v Local MSUs received over the CNM interface
v Local MSUs received from the operating system
v MSUs received over the PPI
v MSUs received using the SNA-MDS/LU 6.2 alert forwarding protocol

Null The MSU was not submitted to automation by the hardware monitor

RECMS and RECFMS records forwarded from an entry point NetView program to a
focal point NetView program by the LUC forwarding method are not submitted to
automation by the hardware monitor of the receiving focal point. These RECMS and
RECFMS records can be automated only by the sending entry point NetView program.

Refer to the IBM Tivoli NetView for z/OS Automation Guide for more information about
forwarding mechanisms.

The maximum length is 1 character.

HMFWDED applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMFWDED” on page 78.

HMFWDSNA() Returns a 0 or 1 to indicate if an MSU was forwarded from a remote entry point node
using the SNA-MDS/LU 6.2 alert forwarding protocol.

1 An MSU was forwarded from a remote entry point node using SNA-MDS/LU
6.2 alert forwarding protocol.

0 An MSU was not forwarded from a remote entry point node using
SNA-MDS/LU 6.2 alert forwarding protocol.

null An MSU was not submitted to automation by the hardware monitor.

Refer to the IBM Tivoli NetView for z/OS Automation Guide for more information about
forwarding mechanisms.

The maximum length is 1 character.

The HMFWDSNA function applies only to MSUs submitted to automation by the
hardware monitor. The HMFWDSNA function returns null for all other MSUs.

See the example in “HMEPNAU, HMEPNET, and HMFWDSNA” on page 77.

MSU Information

72 Programming: REXX and the NetView Command List Language

Table 10. Management Services Units (MSU) Information Functions (continued)

Function Description

HMGENCAU() Returns the 1-character hexadecimal general cause code of an MSU. The general cause
code indicates both the general classification and exception condition that caused the
MSU to be created. For more details about general cause codes, refer to the
information about basic alert (X'91') alert MS subvectors in the SNA library.

HMGENCAU returns null if an MSU is one of the following types or is not submitted
to the automation table by the hardware monitor:
v A generic alert (X'0000')
v A link event (X'0001')
v A resolution (X'0002')
v A PD statistic (X'0025')
v A link configuration data (X'1332')
v A statistics-only RECMS
v A statistics-only RECFMS

Otherwise, a general cause code is returned.

Examples of MSUs that HMGENCAU returns a value for include nongeneric alerts
(X'0000'), RECMS records that are not statistics-only, and RECFMS records that are not
statistics-only.

The maximum length is 1 hexadecimal character.

HMGENCAU applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMGENCAU” on page 78.

HMONMSU() Returns 0 or 1 to indicate whether an MSU was submitted to automation by the
hardware monitor, where:

1 Indicates that an MSU was submitted to automation by the hardware monitor.

0 Indicates that an MSU was not submitted to automation by the hardware
monitor (for example, it was submitted to automation by the generic receiver
MS application).

The maximum length is 1 character.

HMONMSU applies to all MSUs.

See the examples in “HMONMSU” on page 78.

MSU Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 73

Table 10. Management Services Units (MSU) Information Functions (continued)

Function Description

HMORIGIN() Returns the name of the resource sending the MSU. Any trailing blanks are removed
from the value returned.

The resource name returned by HMORIGIN is the same name displayed on the
hardware monitor Alerts Dynamic, Alerts Static, and Alerts History panels when
ALT_ALERT ORIGIN is specified in BNJMBDST. Refer to the IBM Tivoli NetView for
z/OS Administration Reference for information about the statements used in BNJMBDST.

If a complex link does not exist in a resource hierarchy, the resource name returned
with HMORIGIN matches one of the resource names returned with the HIER function.
If a complex link does exist, the resource name might not be one of the names
returned with HIER. Use the HMCPLINK function to determine whether a complex
link exists. For more information, see the description of HMCPLINK, on page 69, and
the description of HIER, on page 68.

HMORGIN returns null if an MSU is not submitted to automation by the hardware
monitor.

The maximum length is 8 characters.

HMORIGIN applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMORIGIN” on page 79.

HMSECREC() Returns 0, 1, or null to indicate whether the hardware monitor performs secondary
recording for an MSU, where:

1 Secondary recording is performed for an MSU at the resource level returned
by the HIER function. See the description of HIER, on page 68, for more
information.

0 Secondary recording is not performed for an MSU. HMSECREC always
returns a 0 for PD statistics (X'0025') and frame relays (X'1332') because the
hardware monitor never performs secondary recording for these MSUs.

Null The MSU was not submitted to automation by the hardware monitor.

The maximum length is 1 character.

HMSECREC applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMSECREC” on page 79.

MSU Information

74 Programming: REXX and the NetView Command List Language

Table 10. Management Services Units (MSU) Information Functions (continued)

Function Description

HMSPECAU() Returns the 2-character hexadecimal-specific component code of an MSU.

The specific component code indicates the generic type of component, subcomponent,
or logical resource that is most closely related to the exception condition that caused
the MSU to be created. For more details about specific component codes, refer to the
information about Basic Alert (X'91') Alert MS subvector in the SNA library. Note that
these codes are valid for RECMS and RECFMS records.

HMSPECAU returns null if an MSUis one of the following types or is not submitted to
the automation table by the hardware monitor:
v A generic alert (X'0000')
v A link event (X'0001')
v A resolution (X'0002')
v A PD statistic (X'0025')
v A link configuration data (X'1332')
v A statistics-only RECMS
v A statistics-only RECFMS

Otherwise, a general cause code is returned.

Examples of MSUs that HMSPECAU returns a value for include nongeneric alerts
(X'0000'), RECMS records that are not statistics-only, and RECFMS records that are not
statistics-only.

The maximum length is 2 hexadecimal characters.

HMSPECAU applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMSPECAU” on page 79.

MSU Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 75

Table 10. Management Services Units (MSU) Information Functions (continued)

Function Description

HMUSRDAT() Returns 1 to 5 characters of user-specified data from subvector 33 of an MSU. Trailing
blanks are removed from the value returned. This data can be used with hardware
monitor filtering.

The hardware monitor translates any unprintable data in subvector 33 to underscores
(_) and translates lowercase characters to uppercase. The characters returned with
HMUSRDAT reflect any translation done by the hardware monitor and therefore might
not be the same characters in subvector 33. You can use HMUSRDAT to determine
whether the hardware monitor has translated any data in subvector 33 to underscores
or uppercase. Although translated data and subvector 33 data are often identical,
hardware monitor filtering is performed against the translated data, not against the
subvector 33 data.

You can use MSUSEG to retrieve untranslated user-specified data from subvector 33 in
an MSU.

For more information about subvector 33 data, see the UDAT option of the
GENALERT command and the U option of the SRFILTER command.

HMUSRDAT returns a null if an MSU has the following characteristics:

v Does not contain subvector 33. Note that subvector 33 is never present in RECMS or
RECFMS records. According to the SNA architecture, only generic major vectors can
contain subvector 33. However, the hardware monitor accepts and processes
subvector 33 information in any of the major vectors submitted to automation.

v Is a frame relay (key X'1332').

v Is not submitted to automation by the hardware monitor.

The maximum length is 5 characters.

HMUSRDAT applies to all MSUs submitted to automation by the hardware monitor.

See the examples in “HMUSRDAT” on page 79.

MSUSEG(operands) Provides the parsing capability needed to extract information from a management
services unit (MSU) or other similarly designed pieces of data. Use this function in a
command list that is called by the NetView automation table or an LU6.2 application.

For complete MSUSEG syntax and some examples of usage, see “MSUSEG Syntax and
Examples” on page 79.

For information about the built-in function &MSUSEG, see “&MSUSEG” on page 123.

NPDABA(operands) Returns the associated hardware monitor probable-cause and error-description text.

For complete NPDABA syntax and some examples of usage, see “Probable Cause
Syntax and Examples” on page 81.

Hardware Monitor (HMxxxxxx) Examples

HMASPRID

/* Example A: The following example checks for a generic */
/* hardware monitor MSU. */
IF HMASPRID() ¬= ’’ THEN

Figure 8. HMASPRID Example A

MSU Information

76 Programming: REXX and the NetView Command List Language

HMBLKACT

HMCPLINK

HMEPNAU, HMEPNET, and HMFWDSNA

HMEPNETV

/* Example B: The following example checks for a generic */
/* MSU from a 3745 device. */
IF HMASPRID() = ’3745’ THEN

Figure 9. HMASPRID Example B

/* Example A: The following example checks for a block id */
/* and action code that is not null. */
IF HMBLKACT() ¬= ’’ THEN

Figure 10. HMBLKACT Example A

/* Example B: The following example checks for a block id */
/* of ’FFD’ and action code of ’03’. */
IF HMBLKACT() = ’FFD03’ THEN

Figure 11. HMBLKACT Example B

/* Example C: The following example checks for a block id */
/* of ’FFD’. It does not check for a specific action code. */
IF SUBSTR(HMBLKACT(),1,3) = ’FFD’ THEN

Figure 12. HMBLKACT Example C

/* Example A: The following example checks for an MSU */
/* with a complex link. */
IF HMCPLINK() = 1 THEN

Figure 13. HMCPLINK Example A

/* Example B: The following example checks for an MSU */
/* that has no complex link. */
IF HMCPLINK() = 0 THEN

Figure 14. HMCPLINK Example B

/*===*/
/* Example A: Was the MSU was forwarded from node NETA.CNM01 */
/* over LU 6.2? */
/*===*/
IF (HMFWDSNA() = ’1’) & , /* MSU forwarded over LU 6.2? */

(HMEPNET() = ’NETA’) & , /* From network NETA? */
(HMEPNAU() = ’CNM01’) THEN ... /* And nau CNM01? Then do ... */

Figure 15. HMEPNAU, HMEPNET, and HMFWDSNA Example

/*===*/
/* Example A: Was the MSU was forwarded from a remote node */
/* entry point NetView over LU 6.2? */
/*===*/
IF HMEPNETV() = ’1’ THEN ...

Figure 16. HMEPNETV Example

MSU Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 77

HMEVTYPE

HMFWDED

HMGENCAU

HMONMSU
Example A shows one way to check for MSUs that have been submitted by the
hardware monitor.

Example B shows one way to check for MSUs that have not been submitted by the
hardware monitor.

/* Example A: The following example checks for hardware */
/* monitor MSUs with an event type of PERM. */
IF HMEVTYPE() = ’PERM’ THEN

Figure 17. HMEVTYPE Example A

/* Example B: The following example checks for hardware */
/* monitor MSUs that do not have an event type of null. */
IF HMEVTYPE() ¬= ’’ THEN

Figure 18. HMEVTYPE Example B

/* Example A: The following example checks for hardware */
/* monitor MSUs forwarded from another NetView program */
/* using the NV-UNIQ/LUC.. */
IF HMFWDED() = 1 THEN

Figure 19. HMFWDED Example A

/* Example B: The following example checks for hardware */
/* monitor MSUs not forwarded from another NetView program */
/* using the NV-UNIQ/LUC.. */
IF HMFWDED() = 0 THEN

Figure 20. HMFWDED Example B

/* Example A: The following example checks for a general */
/* cause code that is not null. */
IF HMGENCAU() ¬= ’’ THEN

Figure 21. HMGENCAU Example A

/* Example B: The following example checks for a general */
/* cause code of ’01’X. */
IF HMGENCAU() = ’01’X THEN

Figure 22. HMGENCAU Example B

/* Example A */
IF HMONMSU() = 1 THEN

Figure 23. HMONMSU Example A

/* Example B */
IF HMONMSU() = 0 THEN

Figure 24. HMONMSU Example B

MSU Information

78 Programming: REXX and the NetView Command List Language

HMORIGIN

HMSECREC

HMSPECAU

HMUSRDAT

MSUSEG Syntax and Examples

Syntax
The MSUSEG(operands) has the following syntax:

MSUSEG

�� �

.
(1)

MSUSEG(' id ')
H (occ) 1

��

1
,

byte ,length

/* Example: The following example checks for hardware */
/* monitor MSUs sent from a resource named GENALERT. */
IF HMORIGIN() = ’GENALERT’ THEN

Figure 25. HMORIGIN Example

/* Example: The following example checks for secondary */
/* recording on an MSU and displays the resource hierarchy. */
IF HMSECREC() = 1 THEN

DO
SAY ’Secondary recording is being done for an MSU at’
SAY ’resource level: ’ HIER()
SAY ’The name and type pair displayed last is most likely’
SAY ’involved with the error.’

END

Figure 26. HMSECREC Example

/* Example A: The following example checks for a specific */
/* component code that is not null. */
IF HMSPECAU() ¬= ’’ THEN

Figure 27. HMSPECAU Example A

/* Example B: The following example checks for a specific */
/* component code of ’0001’X. */
IF HMSPECAU() = ’0001’X THEN

Figure 28. HMSPECAU Example B

/* Example: The following example checks for hardware */
/* monitor MSUs with user specified data of MYDAT in */
/* subvector 33. */
IF HMUSRDAT() = ’MYDAT’ THEN

Figure 29. HMUSRDAT Example

MSU Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 79

where:

byte
Is the byte position into the lowest ID specified in id, counting from 1. Position
1 is the first length byte in the header of the lowest ID. The header is
composed of one or two length bytes followed by the 1- or 2-byte ID. This
entry is optional. The default is 1.

H Is inserted if the first ID is to be obtained from the next higher level
multiple-domain support message unit (MDS-MU) as opposed to the
NMVT/control point management services unit (CP-MSU) level. You can code
the H in uppercase or lowercase. You can place H inside or outside of the
single quotation marks when single quotation marks are coded.

id Is the 2- or 4-character representation of the 1- or 2-byte hexadecimal ID of
GDS, major vector (MV), subvector, subfield, or sub-subfield. The hexadecimal
characters (0 - 9, A - F, a - f) can be mixed case. The first ID is required;
additional IDs are optional.

length
Is the number of bytes in decimal to be returned from the lowest ID specified
in id and starting at the byte position. This entry is optional. The default is
equal to the remainder of the lowest id specified, and starting at the byte
position.

occ
Is the occurrence number, counting from one (1) in decimal. You can use an
asterisk (*) to specify the first occurrence found. This entry is optional at every
level. The default is 1.

The single quotation marks shown in the REXX syntax diagram are required
only when an occ is specified. If you do not explicitly code an occ, the
quotation marks are optional.

. The period (.) establishes a hierarchy of IDs. Thus, the vector ID specified on
the right side of the period is contained within the vector specified on the left
side.

Notes:

1. With MSUSEG(operands), as with other REXX function operands, if operands
are specified, they must be delimited by commas. Two successive commas
indicate an omitted operand.

2. If the location is not found, or if the command list containing the
MSUSEG(operands) was not run by an automation table statement because of an
MSU, or if the function was not driven by an MSU, then the value of the
MSUSEG(operands) is null.

3. If you do not specify a byte position, the data returned includes the 1- or 2-byte
length followed by the 1-or 2-byte ID of the lowest ID specified in id.

4. If the byte position is beyond the end of the location, a null value is returned.
5. If the specified length is longer than what remains at the location specified,

whatever remains at the location is returned.
6. Examples of using MSUSEG(operands) are shown in the figures in “MSUSEG

Syntax and Examples” on page 79.
7. For more information about the automation table, refer to the IBM Tivoli

NetView for z/OS Automation Guide. For more information about vector
definitions, refer to the SNA library. For more LU6.2 and MSU information,
refer to the IBM Tivoli NetView for z/OS Application Programmer's Guide.

MSU Information

80 Programming: REXX and the NetView Command List Language

8. For information about using the built-in function &MSUSEG in NetView
command list language CLISTs, see “&MSUSEG” on page 123.

Examples
The following examples show MSUSEG() function usage.

In Figure 30, the third byte of subvector A0 within the Alert major vector (0000)
starts with ’OPEN’. The Alert can be in any of the supported envelopes.

In Figure 31, Alert subvector A0 has ’LINE’ followed by ’DOWN’ anywhere in it.
Literals can be in hex and EBCDIC.

In Figure 32, Alert subvector A1 has bits '01X01X00XX11XXXX', including
unimportant bits, starting from the first bit of the fourth byte.

Figure 33 shows an MDS-MU whose first 1212 (CP-MSU) contains a 1323, the first
of which contains any 1326s, the second of which contains 132Bs, the third of
which contains a subvector 01.

Probable Cause Syntax and Examples

Syntax
NPDABA has the following syntax:

NPDABA

�� NPDABA('bbbaa') ��

where:

bbbaa
The 5-character string that defines the pre-generic alert:
v bbb is a hardware monitor block ID.

The block ID is the code used to identify the IBM hardware or software
associated with the record.

v aa is an associated hardware monitor action-code.
The action code is the specific alert ID within a block ID.

IF MSUSEG(’0000.A0’,3,4) = ’OPEN’

Figure 30. MSUSEG() Example 1

INTERPRET ’PARSE VALUE "’MSUSEG(’0000.A0’)’" WITH ’LINE’X +4
’DOWN’’ Y +4 .’
IF X ¬= ’’ & Y ¬= ’’

Figure 31. MSUSEG() Example 2

IF BITAND(MSUSEG(’0000.A1’,4,2),’DB30’X) = ’4830’X

Figure 32. MSUSEG() Example 3

IF MSUSEG(’H1212.1323.1326(2).132B(3).01’) ¬= ’’

Figure 33. MSUSEG() Example 4

MSU Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 81

Note: The NPDABA function returns the associated hardware monitor
probable-cause and error-description text (maximum length of 48
characters).

Examples
Table 11. NPDABA Examples

Example Probable Cause

NPDABA(’FFF03’)

The NPDA block ID is FFF and
the associated action code is 03.

’ADAPTER FEEDBK CHK:COMMUN CTRLR PGM/COMMUN CTRLR’

NPDABA(’123456’)

The input is 6 characters, which
is not a valid length.

’INCORRECT INPUT’

The input is not valid (not a valid hexadecimal number
or not 5 characters in length).

NPDABA(’12345’)

The input is 5 characters, but is
not a valid block ID and action
code.

’NOT AVAILABLE’

The hardware monitor does not recognize this
combination of block ID (123) and action code (45).

Operator Information Functions
You can use the following operator information function in REXX command lists
or Data REXX files for the NetView program.

Table 12. Operator Information Functions

Function or Variable Description

getpw() This is intended primarily for use in datarexx. This function can also be used when a
REXX procedure is driven from automation. The value is not available when a member
is browsed with the BROWSE command or by some other means.

OPID()

&OPID

Returns the operator or task ID the same as OPID ('O'). OPID is a 1 - 8 character
identifier.

OPID('x') Returns the operator or task ID as a 1 - 8 character identifier where x is one of the
following values:
O Returns the identity of the owner. On a regular OST, it is the same as OPID(),

but on a VOST, it returns the operator ID of the owning OST.
R Returns the operator ID of a remote task controlling the distributed autotask.

If the task is not a distributed autotask, it returns a null.
S Returns the source ID of the operator that originated the command that is

running. The following special values, other than the operator ID, might be
returned:

automation
The command originated in the automation table processing.

(null) The command originated at an optional task or otherwise in
assembler code that specified that the source is ignored.
Note: Currently no case exists in which the NetView program calls
REXX in this way. Customer-written code or code from other venders
might.

T Returns the target identity, the identity of the task on which the REXX
program is running.

MSU Information

82 Programming: REXX and the NetView Command List Language

Session Information Functions
You can use the following session information functions in REXX command lists
and Data REXX files for NetView.

Table 13. Session Information Functions

Function or Variable Description

APPLID()

&APPLID

Returns the application program identifier for the task under which the command list
is running. APPLID is the NetView domain ID appended with a 3-character
hexadecimal suffix assigned by the NetView program. For example, if your domain ID
is PARIS, APPLID might be PARIS001. The NetView program attempts to use an
APPLID that is both defined and available. If successful in this attempt, each APPLID
is unique. If no defined APPLID is available, an APPLID of notInit! is used until a
defined APPLID is available. In this case, the notInit! APPLID is not guaranteed to be
unique as multiple tasks might be in this situation.

ASID()

&ASID

Returns the current NetView address space identifier. The value of ASID is a 1 - 5 digit
decimal number.

ATTENDED()

&ATTENDED

Returns a single-character value of either 1 or 0. The following values are defined:

1 Indicates that the task is one of the following types:
v An OST with a display
v An NNT with a corresponding OST
v An autotask with an associated MVS console assigned using the

AUTOTASK command
v A distributed autotask

0 Indicates that the task is one of the following types:
v An autotask without an associated MVS console assigned using the

AUTOTASK command
v Another type of task, such as a DST or an OPT task

Notes:

1. If the associated operator is an AUTOTASK, the presentation data is not eligible for
display unless the AUTOTASK is associated with an active MVS console.

2. ATTENDED can be used with DISTAUTO and AUTOTASK variables to further
determine the characteristics of the task. For example, if ATTENDED is 1,
DISTAUTO is 0, and AUTOTASK is 1, the task is an AUTOTASK with an
associated MVS console.

AUTCONID()

&AUTCONID

Returns the MVS console identifier associated with this autotask. This association was
made using the AUTOTASK command with the CONSOLE keyword. The value of
AUTCONID is the console name of the MVS console where NetView commands can
be entered to run under this autotask.

AUTOTASK()

&AUTOTASK

Returns a single-character value of either 1 or 0 indicating whether the task is an
autotask. The following values are valid:

1 An autotask

0 Not an autotask

CGI() Returns a single-character value of either 1 or 0. The following values are valid:

1 The procedure was called by the NetView web server.

0 The procedure was not called by the NetView web server.

CLOSING() Returns a value of 1 during post CLOSE command processing; otherwise a value of 0
is returned.

Use this function to identify commands that are scheduled to run using the ENDCMD
option for a pipe KEEP stage with the GLOBAL option.

Session Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 83

Table 13. Session Information Functions (continued)

Function or Variable Description

CURCONID()

&CURCONID

Returns the MVS console identifier obtained by a NetView task. This console was
obtained with the GETCONID command or by issuing an MVS command. The value
of CURCONID is the console name of the MVS console that this task uses to enter
MVS commands.

CURSYS()

&CURSYS

Returns the 1 - 8 character current system name.

DISC() Returns a single-character value of either 1 or 0 that indicates whether the task is
disconnected. The following values can be returned

1 Autotask is disconnected.

0 Autotask is not disconnected.

DISTAUTO()

&DISTAUTO

Returns a single-character value of either 1 or 0 that indicates whether a task is a
distributed autotask started with the RMTCMD command. The following values are
valid:

1 A distributed autotask

0 Not a distributed autotask
Note: This corresponds to the value of TVBDAUT.

DOMAIN()

&DOMAIN

Returns the 1 - 5 character name of the current NetView domain.

DOMAIN('x') Returns the 1 - 5 character name of a NetView domain, where x is the following value

R Returns the domain name of a remote task controlling the distributed
autotask. If the task is not a distributed autotask, it returns a null.

ECVTPSEQ() Is the z/OS product sequence number found in the MVS IHAECVT data area. For
example, if you are running on z/OS v1.6, ECVTPSEQ returns a value of 01010600.

ENVDATA('x') Returns a numeric value or character string, where x is one of the following values

C Returns the screen color count.

D Returns the screen depth (number of rows on the screen).

W Returns the screen width (number of columns on the screen).

G Returns a list of blank delimited entries representing the REXX, PL/I, and C
procedures in the calling sequence or procedure group that was active when
ENVDATA was called.

Each entry consists of two names separated by a slash (/), in the format
command/name. command is the command verb or synonym used to call the
procedure. name is one of the following names:

v The module name if the procedure is PL/I or C.

v The member name in DSICLD if the procedure is REXX.

Multiple entries show the calling sequence in reverse order. The command the
operator entered is the last entry listed.

JOBNAME(*) Returns the 1 - 8 character name of the name of the job under which the NetView
program is running. An asterisk (*) is the only parameter value allowed.

MVSLEVEL()

&MVSLEVEL

Returns the version of MVS currently running. For example, if you are running
MVS/ESA 4.2.2, MVSLEVEL returns SP4.2.2.

NETID()

&NETID

Returns the VTAM network identifier. This field has a maximum length of 8
characters. If VTAM has never been active when the NetView program is active, the
value of NETID is null.

Session Information

84 Programming: REXX and the NetView Command List Language

|

Table 13. Session Information Functions (continued)

Function or Variable Description

NETVIEW()

&NETVIEW

Returns the version and release of the currently running NetView program. The value
of NETVIEW is a 4-character string in the form of NVvr, where:
v Indicates the version number of the NetView program
r Indicates the release number of the NetView program

NETVIEW('x') Returns a text string, where x has the following value:

T Returns the text string containing the official NetView name.

OPSYSTEM()

&OPSYSTEM

Returns the type of operating system for which the NetView program was compiled.

PANEL() Returns a single-character value of either 1 or 0. The following values are valid:
1 Panel commands can be issued.
0 Panel commands are not allowed.

PARTID()

&PARTID

Returns the first two characters of the six-character prefix for VSE messages. The two
returned characters are the message partition ID only if the sending system uses those
characters to designate a partition ID for a message.

STCKGMT()

&STCKGMT

Returns the current UTC mean time in store-clock format. This field is returned as an
8-byte hexadecimal value.

SUPPCHAR()

&SUPPCHAR

Returns the suppression character for your installation. (The suppression character
prevents the NetView program from writing the command out to the terminal,
hardcopy log, and network log.)

SUPPCHAR is a single character that you define in the CNMSTUSR or CxxSTGEN
member that is included in the CNMSTYLE member. The default suppression
character that is defined in these members is the question mark (X'6F').

If you do not define a suppression character in the CNMSTUSR or CxxSTGEN
member that is included in the CNMSTYLE member, SUPPCHAR defaults to X'3F'.
Note: The SUPPCHAR default character of X'3F' cannot be typed at the operator
console. Therefore, if you do not define a suppression character, the operator is
prevented from using one.

SYSPLEX()

&SYSPLEX

Returns the 1 - 8 character name of the MVS SYSPLEX where the command list is
running. Available for MVS/ESA Version 4 Release 2.2 or later.
Note: This function returns a value only if the command list is running on an MVS
SYSPLEX.

TASK()

&TASK

Returns the 3-character string indicating the type of task under which the command
list is running. The following values are possible:
PPT Primary POI task
OST Operator station task
NNT NetView-to-NetView task

For Data REXX, in addition to PPT, OST, and NNT, any of these values can be
returned:
DST Data services task
HCT Hardcopy task
MNT Main task
OPT Optional task
UNK Unknown task

Note: This value indicates that an error has occurred. Contact IBM Software
Support for more information.

TASK enables the same command list to run under any of these tasks because the
command list can test for the task type and process accordingly. For example, some
restrictions apply to command lists running under the PPT. See “Primary POI Task
Restrictions” on page 12.

Session Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 85

Table 13. Session Information Functions (continued)

Function or Variable Description

TOWER(string) Returns either a binary value that indicates whether a tower or subtower is enabled, or
the name of the towers and subtowers that are enabled.

If a string does not end with an asterisk (*), a single-character of either 1 or 0 is
returned. The following values are valid:

1 The tower or subtower is enabled.

0 The tower or subtower is not enabled.
For example, assume that the AON tower and the SNA subtower are enabled, but the
TCP subtower is not, SAY TOWER(AON.SNA) returns 1 and SAY TOWER(’aon.TCP’)
returns 0.

Strings that end with an asterisk (*) return the names of the towers and subtowers that
are enabled. Note that asterisks can be either used alone or used together with a tower
name to determine the subtowers that are enabled. For example, if the AON tower and
the SNA and TCP subtowers are enabled, SAY TOWER(’*’) returns AON SNA TCP and SAY
TOWER(’aon.*’) returns SNA TCP.

Input strings are not case-sensitive and mixed case strings can be returned. Tower and
subtower combinations must be concatenated with a period (.). Towers and subtowers
are enabled in the CNMSTUSR or CxxSTGEN member that is included in the
CNMSTYLE member. Refer to the IBM Tivoli NetView for z/OS Administration Reference
for more information.

TRAP() Returns a binary value that indicates whether a TRAP command will fail because of a
conflicting correlation environment. Values are:
1 TRAP command is acceptable.
0 TRAP command will fail with message DWO373E.

TYPE() Returns a 3-character string that indicates the level of the NetView program that is
installed. The following values are possible:
ENT Enterprise option
SYS NetView System Services

VTAM()

&VTAM

Returns the version and release of VTAM as a 4-character string in the form of either
VTvr or Vvrm, where:
v Is the version number
r Is the release number
m Is the modification number
Note: The value of VTAM is null if the VTAM program is not active.

VTCOMPID()

&VTCOMPID

Returns the 14-character VTAM component identifier. The following list shows the
VTAM component identifiers:
MVS/ESA 5685-08501-xxx (for VTAM Version 3)
z/OS 5695-11701-xxx (for VTAM Version 4) and later
MVS/XA 5665-28901-xxx
VSE/ESA 5666-36301-xxx
VM/SP 5664-28001-xxx
VM/9370 5684-05201-xxx
VM/ESA® 5684-09501-xxx
where xxx is the release number.

Additional VTAM component identifiers might be added in future updates to VTAM.
The value of VTCOMPID is null if VTAM is not active.

Session Information

86 Programming: REXX and the NetView Command List Language

Table 13. Session Information Functions (continued)

Function or Variable Description

WEEKDAYN()

&WEEKDAYN

Returns a numeric value in the range of 1 -7 indicating the day of week (from Monday
through Sunday), as shown here:
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
7 Sunday

REXX Environment Information Functions
You can use the following REXX environment functions in REXX command lists
for the NetView program.

Refer to the IBM Tivoli NetView for z/OS Tuning Guide for the rationale on the use
of these functions.

Note: Refer to the DEFAULTS command and the OVERRIDE command in the
NetView online help for more information about the meaning of the
following REXX values. These functions return a null value for operating
systems other than MVS/XA, MVS/ESA, and VSE/ESA.

Table 14. REXX Environment Information Functions

Function or Variable Description

RXDEFENV()

&RXDEFENV

Returns the default number of NetView REXX environments set by the REXXENV
parameter of the DEFAULTS command.

RXDEFSTR()

&RXDEFSTR

Returns the default NetView REXX environment initial storage size set by the
REXXSTOR parameter of the DEFAULTS command. This value can be -1 if REXXSTOR
was set to the default or was never set.

RXNUMENV()

&RXNUMENV

Returns the current number of REXX environments initialized for this task. For
RXNUMENV(), this number is always at least 1, representing the REXX environment
currently running. For &RXNUMENV, this number can be zero (0).

RXOVRENV()

&RXOVRENV

Returns the override number of NetView REXX environments set by the REXXENV
parameter of the OVERRIDE command. If the number of REXX environments has not
been overridden or is set to the default value, a null value is returned.

RXOVRSTR()

&RXOVRSTR

Returns the override NetView REXX environment initial storage size set by the
REXXSTOR parameter of the DEFAULTS command. If the REXX initial storage size has
not been overridden or is set to the default value, a null value is returned.

Terminal Information Functions
You can use the following terminal information functions in command lists for
NetView.

Table 15. Terminal Information Functions

Function or Variable Description

HCOPY()

&HCOPY

Returns the name of device defined as the hardcopy log printer started by the
operator. If no device is defined as the hardcopy printer for this operator, HCOPY is
null.

Session Information

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 87

Table 15. Terminal Information Functions (continued)

Function or Variable Description

LU()

&LU

Returns the logical unit name for this operator terminal.

Time and Date Variables
You can use the following time and date control variables in the NetView
command list language:

Table 16. Date and Time Variables

Function or Variable Description

&DATE Returns the current date in the form of mm/dd/yy, where mm is the month, dd is the
day, and yy is the year.

&TIME Returns the processor time in the format hh:mm, where hh is the hour and mm is the
minutes. The time is based on a 24-hour clock, so 3:00 p.m. is shown as 15:00.

Note: Because &TIME and &DATE are separate variables, you might need extra
coding to determine the correctly matched time and date. For example, if
you get &DATE first, midnight can occur before you get &TIME, so you
have the wrong date for the current time. If you get &TIME first, midnight
can occur before you get &DATE, and then you have the wrong time for the
current date.

The following example shows some NetView command list language code that you
can use to determine if you have the correct date and time:

-RETRY
&TDATE = &DATE
&TTIME = &TIME
&IF &TDATE NE &DATE &THEN &GOTO RETRY
&WRITE &TDATE &TTIME

REXX provides equivalent but more comprehensive time and date functions. For
more information, refer to the REXX library.

Nulls and Blanks Stripping
The stripping (removal) of trailing nulls and blanks is automatically performed by
the NetView program on some of the NetView command list language control
variables and NetView REXX functions that have character values. Notice that
some control variables and REXX functions have different levels of trailing
character removal.

REXX Environment and Terminal Information

88 Programming: REXX and the NetView Command List Language

Function or Variable Stripping Provided
ACTIONDL(), &ACTIONDL Nulls and blanks
ACTIONMG(), &ACTIONMG Nulls and blanks
APPLID(), &APPLID None
AREAID(), &AREAID None
AUTCONID(), &AUTCONID Nulls and blanks
AUTOTOKE(), &AUTOTOKE Nulls and blanks
CURCONID(), &CURCONID Nulls and blanks
CURSYS(), &CURSYS Nulls and blanks
CMDNAME() Blanks
DCO(), &DCO None
DOMAIN(), &DOMAIN Nulls and blanks
HCOPY(), &HCOPY Blanks
HMASPRID() Blanks
HMEVTYPE() Blanks
HMORIGIN() Blanks
HMUSRDAT() Blanks
IFRAUI3X(), &IFRAUI3X Nulls and blanks
IFRAUSB2(), &IFRAUSB2 Nulls and blanks
IFRAUSDR(), &IFRAUSDR Nulls and blanks
IFRAUSRC(), &IFRAUSRC Nulls and blanks
JOBNAME(), &JOBNAME Blanks
JOBNUM(), &JOBNUM None
LU(), &LU Blanks
MSGCOJBN(), &MSGCOJBN Nulls and blanks
MSGCPROD(), &MSGCPROD Nulls and blanks
MSGCSPLX(), &MSGCSPLX Nulls and blanks
MVSLEVEL(), &MVSLEVEL Nulls and blanks
NVDELID(), &NVDELID None
OPID(), &OPID Blanks
SESSID(), &SESSID Blanks
SYSCONID(), &SYSCONID Nulls and blanks
SYSID(), &SYSID None
SYSPLEX(), &SYSPLEX Nulls and blanks

Nulls and Blanks Stripping

Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files 89

Nulls and Blanks Stripping

90 Programming: REXX and the NetView Command List Language

Chapter 5. Automation Resource Management

This chapter is intended to help you perform NetView automation using command
lists.

Defining NetView Automation Table Command Lists
The automation table identifies which messages or MSUs are automated. It consists
of statements filed in a member of DSIPARM. The statements identify which
messages or MSUs are to be automated based on almost any attribute of the
message or MSU, such as:
v Message number
v Specific MSU field values
v Origin of message or MSU

As a result, the automation table can change display, logging, routing, or almost
any other disposition of the message. Commands or command lists can be called
to analyze the message or MSU either before or in addition to any action taken.

To define an automation table, code automation statements in a member of
DSIPARM and then issue the AUTOTBL command using the name of that specific
NetView automation table. You can enter the AUTOTBL command anywhere a
regular command can be issued, and you can activate a table from the CNMSTYLE
member.

Notes:

1. A regular command is a command or command list defined with TYPE=H or
TYPE=R. See IBM Tivoli NetView for z/OS Administration Reference for further
explanation of a regular command.

2. You cannot run the AUTOTBL command under a DST.

For a complete definition of the syntax of the NetView automation statement, refer
to the IBM Tivoli NetView for z/OS Automation Guide. For the syntax of the
AUTOTBL command, refer to the NetView online help.

Routing Messages from Automation-Table-Driven Command Lists
You might have difficulty deciding where to route a message from the NetView
automation table. To decide, cause a command list to be driven and use the
MSGROUTE command or the ROUTE stage to route the message to operators or
groups of operators.

For more information about the MSGROUTE command, refer to the NetView
online help.

Implementing NetView Automation
This section provides suggestions to help you implement NetView automation. For
more information, refer to the IBM Tivoli NetView for z/OS Automation Guide.

© Copyright IBM Corp. 1997, 2011 91

Suppressing Messages
You can suppress some messages so that no operator receives them. To suppress
messages with NetView automation, make an entry in the NetView automation
member. Assume, for example, that you do not want the message IST4001
TERMINATION IN PROGRESS FOR APPLID applnm to be displayed. The following
example shows the NetView automation statement:
IF MSGID=’IST400I’ THEN DISPLAY(N);

Determining the Environment for a Command List
In REXX, if you are not sure of the type of task or condition under which a
command list is to run, have the command list check the TASK() function, the
PANEL function, or the AUTOTASK function. You can then use conditional
processing to make the command list flexible enough to run differently under
different tasks.

In NetView command list language, if you are not sure of the type of task or
condition under which a command list is to run, have the command list check the
&TASK control variable or AUTOTASK function in the beginning of the command
list. You can then use conditional processing to make the command list flexible
enough to run differently under different tasks. See Appendix B, “NetView
Command List Language Branching,” on page 129 for more information about
conditional processing.

Testing Automation Command Lists
An automation command list can be tested in several ways to ensure that it is
called correctly from the NetView automation table and processes correctly after
being called.

Verifying Proper Operation of Automation Command Lists
To thoroughly test your REXX automation, you might want to verify proper
automation of your NetView CLIST before you put it in the AUTOTABLE. The
NetView program provides a means to simulate the current message that is present
when your REXX program is driven from the automation table. Sometimes it is
sufficient to use the LITERAL stage to create your simulated message. However,
LITERAL cannot set message attributes, such as job name or automation token,
that might be important to your automation. If these message attributes are
relevant to your testing, you can obtain an exact copy of the message for testing
purposes by temporarily coding the HOLD(Y) automation action in place of the
planned action.

After this temporary automation is called, with the subject message held on your
NCCF screen, you can use the HELDMSG stage to create accurate copies for
testing. You can test this by issuing the TS command to cause tracing and then
issue a command such as this:
PIPE HELDMSG | NETV CMD (HIGH) yourcmd yourarguments

If more than one held message is on the NCCF screen, you might also add a
LOCATE or TAKE stage. After the PIPE HELDMSG command completes, yourcmd
is running outside of pipelines, and functions such as JOBNAME() and PIPE SAFE
* in your procedure return accurate results from the current message provided by
the pipeline.

You can stop this command and then reissued the TS and the pipe command to
test repeatedly.

Advanced Topics

92 Programming: REXX and the NetView Command List Language

Verifying NetView Automation Table Entries
You can verify that an automation command list is driven correctly by the NetView
automation table by issuing the message from an operator station or command list.
From a NetView operator console, enter the message ID and message text from the
command line.

From a REXX command list, use the SAY instruction with the message ID and
message text in quotation marks.

From NetView command list language, use the &WRITE statement with the
message ID and message text in quotation marks.

If the message you create matches an entry in the NetView automation table, the
table processes any actions specified for that entry. Through this process, you can
test NetView automation table entries. This method works only if limited
information, such as the message identifier and message text, is checked in the
NetView automation table entry.

By using the AUTOCNT command with the STATS=DETAIL option, detailed
information, including the number of automated comparisons and matches, are
shown for each automation table statement. When your created message is
automated, the count of the number of comparisons and matches is incremented if
the message matches the intended automation statement.

Keeping a Record of Automation Command Lists Processed
Command lists can use the NetView MSG command to place information in the
network log. This transfer of information might be necessary because not all
command lists are run directly from the NetView automation table. By having
automation command lists send a message to the network log using the NetView
PIPE LOGTO statement, you can track which automation command lists are driven
by which tasks and at what time.

Testing Automation Command List Processing
To test REXX automation command lists by tracing their processing, use the
TRACE command. If your command list is being run by a NetView automated
operator (autotask), the result of SAY or TRACE is not displayed unless the
autotask is assigned an MVS console. The results are displayed in the network log
regardless of whether the autotask is assigned to a console.

To test NetView command list language automation command lists by tracing their
processing, use the &CONTROL statement. If your command list is being run by a
NetView automated operator (autotask), the results of &WRITE, &BEGWRITE, or
&CONTROL are not displayed unless the autotask is assigned an MVS console.
The results are displayed in the network log regardless of whether the autotask is
assigned to a console. Refer to the AUTOTASK command in the NetView online
help for more information about assigning an autotask to an MVS console.

Looping and Automation
Messages issued from command lists are subject to automation unless you take
measures to prevent it. If a message issued by a command list causes the same
command list to be driven, then a looping situation occurs. In some cases, such
looping can involve multiple messages and multiple tasks. If you know which
operators or autotasks are involved in the loop, you might be able to end the loop
using the STOP FORCE command or the RESET command. In extreme cases, you
must disable the automation that is creating the loop; see the AUTOTBL command.

Advanced Topics

Chapter 5. Automation Resource Management 93

You can prevent a displayed message from causing a loop in either of two ways:
v Display from a pipeline using CONSOLE ONLY
v Alter the message so that it does not match the automation statement.

Another way to avoid a loop is to display the original message with its attributes
intact. One of those attributes is already automated. An example is
PIPE SAFE * | CONSOLE

Considering Operator Interaction
Command lists used for automation of unsolicited messages should not ask the
operator for data.

For example, a REXX command list using a WAIT instruction requiring a GO
command is not appropriate.

For example, in NetView command list language, using either the &PAUSE or
&WAIT statement and requiring a GO command is not appropriate.

Consider how messages from a command list affect operator requests, and try to
make automation command lists interfere as little as possible, because automation
runs at the same time operators enter requests.

Common Automation Problems
Because NetView automation is called after the command facility exit routines (for
example, DSIEX02A, DSIEX06, and DSIEX11) are called, changes made to messages
in these routines affect NetView automation. For example, if a message is deleted
by DSIEX02A, Tivoli NetView for z/OS does not call automation for that message.
If a message is assigned to SYSOP or LOG as the primary receiver, Tivoli NetView
for z/OS does not call automation for that message. Because NetView automation
does not occur in the preceding instances, the DISPLAY keyword in the NetView
automation member has no effect.

If the MVS message processing facility is used to suppress a message with
AUTO=YES coded and this message is used to drive a command list, when the
command list is driven and a WTO is issued, the WTO is also suppressed. For
REXX, you must change the setting of the MCSFLAG variable for the WTO to be
displayed. For command list, you must change the setting of the &MCSFLAG
control variable for the WTO to be displayed. Refer to the PARSEL2R command in
the NetView online help for an example of how to change a function or control
variable.

If automating a message that was marked non-displayable using a NetView
Message Revision table or the MVS message processing facility, then a message
you create using the WTO will, by default, inherit that non-displayable
characteristic. You can control this behavior using the MCSFLAG variable. For
example, code MCSFLAG = '00000000'.

You can discover whether a message has been subject to Message Revision Table
(MRT) action by using the MRT edit order (see help for PIPE EDIT). When
automating a message subject to the MRT, a message you issue using the WTO
command is not submitted to the MRT. However, you can control this behavior
using the MRT edit order as an output order.

Advanced Topics

94 Programming: REXX and the NetView Command List Language

If a multiline write-to-operator (MLWTO) message is used to drive a command list
and a WTO is issued from the command list, whether the WTO is displayed
depends on the setting of the MLWTO line type variable. If the setting of WTO is a
single-line message, change the setting to a blank.

The REXX MLWTO line type variable is LINETYPE.

The NetView command list language MLWTO line type variable is &LINETYPE.

Advanced Topics

Chapter 5. Automation Resource Management 95

96 Programming: REXX and the NetView Command List Language

Appendix A. Writing Simple Command Lists in the NetView
Command List Language

This chapter explains the basics of writing command lists for the Tivoli NetView
for z/OS program using the NetView command list language. This chapter also
describes how variables, assignment statements, and built-in functions fit together
and how to combine them in command lists.

What the NetView Command List Language Includes
The NetView command list language consists of six types of statements:
v Command
v Comment
v Control
v Assignment
v Label
v Null

Within command list statements, you can use the following variables and
functions:
v Parameter variables
v Control variables
v User variables
v Global variables
v Built-in functions

All except global variables are described in detail in later sections of this chapter.
Global variables and descriptions of passing parameter values are described in
Appendix C, “NetView Command List Language Global Variables,” on page 147.

Use the NetView command list language to write application code to perform
repetitive or alternate processing (loop or if-then structures). These features are
implemented with the following control statements:
v &IF
v &GOTO
v &EXIT
v &WAIT

Control statements are described in Appendix B, “NetView Command List
Language Branching,” on page 129.

Note: Command lists can interrupt the processing of other command lists. This is
done using the CMDDEF statement in CNMCMD.

Coding Conventions for NetView Command List Language Statements
Like any other language, the NetView command list language requires that you
follow syntax rules. The following coding conventions for Tivoli NetView for z/OS
are divided into sections describing the conventions for:
v General coding
v Continuing a statement
v Double-byte character sets

© Copyright IBM Corp. 1997, 2011 97

v Suppression characters

Conventions for General Coding
Use the following coding conventions when writing command lists in the NetView
command list language:
v Code a CLIST statement as the first line of your command list; the CLIST

statement is optional. Code CLIST statements in the following way:
– Optionally, code a label. The label must begin in column 1. You cannot branch

to this label; the Tivoli NetView for z/OS program ignores the label.
label CLIST

– Code the word CLIST beginning in column 2 or later. The word CLIST must
be preceded by at least one blank.

v Do not code the name of the command list on the first line unless accompanied
by the word CLIST.

v Leave column 72 blank for all statements.
v Do not use columns 73-80. They are reserved for optional sequence numbers.
v Code at least one blank after a label (if one exists) or before a keyword.
v Code at least one blank between a control statement and the first operand.
v Separate operands with one or more blanks, or a single comma with no blanks.
v Code any number of leading or trailing blanks on your statements.
v Use lowercase letters only as comments or part of a message sent to the

operator. In all other cases, use uppercase for alphabetic characters A-Z.
v Code statements so that the maximum length is 32 000 characters after variable

substitution.

Note: To familiarize yourself with how variable substitution works, see
“Variable Substitution Order” on page 101.

v Code comment lines with an asterisk (*) as the first non-blank character of the
command list line. Place the comment after the asterisk. Comment lines cannot
be coded on the first line of a command list.

v Code the command list so that it ends by processing the last command list
statement, or by reaching an &EXIT statement. An operator entering RESET also
ends the command list.

Conventions for Continuing a Statement
Use a plus sign (+) or a hyphen (-) as a continuation character to continue a
statement that is too long to fit on one line. Code the continuation character as the
last nonblank character before column 72 on the line to be continued.

Note: Do not code a comment between the beginning and end of a continued
statement.

v The plus sign causes the text of the continuation line to begin where the plus
sign was placed without any of the blanks leading up to the first nonblank
character on the continued line.
The plus sign causes these lines:
&WRITE THIS STATEMENT IS CODED +
AS +
THREE LINES

to become this single statement:
THIS STATEMENT IS CODED AS THREE LINES

NetView Command List Language Command Lists

98 Programming: REXX and the NetView Command List Language

v The hyphen causes Tivoli NetView for z/OS to keep all the blanks at the end of
the line with the hyphen (up to but not including column 72) and then fill the
line to its end with characters from the beginning of the continuation line. The
hyphen is replaced by a blank. When filling a line with characters from the
beginning of the continuation line, Tivoli NetView for z/OS does not split a
word across lines of an output screen. The last character used for filling in from
the continuation line must be a blank or the last character on the line.
For example, if you coded the following &WRITE statement to be displayed on
an 80-character-wide terminal:
&WRITE STATEMENT CONTINUED WITH THE HYPHEN TO KEEP -
BLANKS

All the blanks from the P in KEEP to the B in BLANKS are kept. The first line writes
64 characters to the output screen (43 characters of text plus 21 blanks from the
end of the text to column 72). The output screen has 68 columns to be used for
display (80 minus the 12-character prefix), so the hyphen causes the first four
characters of the second line to be placed at the end of the first line. In the
example, this is two blanks and the letters BL. However, because the Tivoli
NetView for z/OS program does not split a word across lines of the output
screen, the following message is displayed:
STATEMENT CONTINUED WITH THE HYPHEN TO KEEP
BLANKS

Conventions for Double-Byte Character Set Text
In a double-byte character set (DBCS), each symbol is represented by a 2-byte code
rather than a 1-byte code.
v Use A - Z, 0 - 9, @, $, and # characters to code Tivoli NetView for z/OS

commands and command lists used as commands. The command list name
must begin with a nonnumeric character.

v DBCS data input is not supported.
v Enclose all DBCS strings within shift-out (X'0E') and shift-in (X'0F') control

characters. Be sure that each DBCS string has an even number of bytes. (If you
are using an editor and terminal that supports double-byte characters, this is
done automatically.)

v You can code label names, variable names, and variable values in DBCS
characters. Restrict variable names and label names to a length of 11 bytes. These
include shift-out (X'0E') and shift-in (X'0F') control characters.

v When DBCS labels and variables are displayed on a DBCS terminal, the shift-out
and shift-in control characters are displayed as blanks.

v DBCS text can be split across multiple lines, using an EBCDIC plus sign (+) or
hyphen (-) as a continuation character. To split a string, end the string with a
shift-in (X'0F') control character followed by the continuation character. Start the
next line with a shift-out (X'0E') control character to resume the string.

v When writing DBCS text in a &BEGWRITE statement, the SUB option is
required.

v Comments can contain DBCS strings enclosed by shift-out (X'0E') and shift-in
(X'0F') control characters.

v &WRITE, &CONCAT, and &SUBSTR are enabled for DBCS.

Conventions for Suppression Characters
The following rules apply when coding suppression characters:
v The first nonblank character before a command is the suppression character.
v When you browse or list a file, you can see every line, even suppressed lines.

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 99

v In general, do not use suppression characters preceding a NetView CLIST
language label. The suppression character prevents you from branching to the
label unless the command list line containing that label has already been
processed.

In Figure 34, the control variable &SUPPCHAR is replaced with the character
defined as a suppression character. The last line of the command list in the
example is suppressed.

When issuing a command that returns its status in the return code, you can
suppress synchronous output from the command by coding the suppression
character twice. For example, if you use the following code in a command list, no
synchronous output from the command list is displayed to the operator:
&DOUBLESUPP = &CONCAT &SUPPCHAR &SUPPCHAR
&DOUBLESUPP SET PF24 IMMED RETRIEVE

Use the double suppression character when sufficient status is provided by the
return code and to enhance performance on commands that produce line mode
messages synchronously. Using the double suppression character does not affect
output that is scheduled by a command (for example, D NET,APPLS), nor does it
consistently reduce output from a long-running command (for example, NLDM).

Labels
Labels identify command list statements for control of flow, for internal
documentation, or to indicate the target statement for a transfer of control.
Transferring control is explained in Appendix B, “NetView Command List
Language Branching,” on page 129.

You can code labels on any command list statement except a comment statement.
You can code labels on commands, control statements, assignment statements, and
null statements. If Tivoli NetView for z/OS cannot find the label, processing stops,
and an error message is issued.

A label must be the first nonblank word on a command list line. A label consists of
an EBCDIC hyphen (-) followed by 1 to 11 characters. A - Z, 0 - 9, #, @, and $ are
valid characters. You do not have to code a command list statement after a label. If
you do, however, start the command list statement after the label, leaving at least
one blank between the label and a keyword.

You can also code other labels. All labels must be unique within a command list. If
you have two identical labels in one command list, Tivoli NetView for z/OS ends
the command list. You can also code labels as internal comments to show where
different parts of your command list start. For example, you can use labels to
highlight certain processing routines.

The following examples are labeled command list statements:

&CONTROL CMD
* COMMAND LIST UPDATED 2/5/95 BY OPERATOR CARL
START DOMAIN=&1
&WRITE ENTER GO WHEN MESSAGE DSI809I ARRIVES FROM &1
&PAUSE
&SUPPCHAR ROUTE &1,OPER1,123456

Figure 34. Example of Using Suppression Characters

NetView Command List Language Command Lists

100 Programming: REXX and the NetView Command List Language

-MYLABEL VARY NET,INACT,ID=LU1234
-$PROC2 &LEN = &LENGTH &1
-SETUP &USER = 55
-ALLALONE

Note: Labels are used with &BEGWRITE to show where a message stops.
Variables are not allowed in labels, but you can code a variable as the label
name with the &BEGWRITE, &GOTO, or &WAIT statements. These
statements for transfer of control are described in Appendix B, “NetView
Command List Language Branching,” on page 129.

Variables
Use variables to accept from an operator, or define for yourself, different values for
the statements within a command list. With the following variables, you can write
a command list that operates correctly in many different situations:
v Parameter
v Control
v User
v Global

This section describes how to use parameter, control, and user variables. This
section also describes how to use the NetView PARSEL2R command to parse
variables in a command list. See Appendix C, “NetView Command List Language
Global Variables,” on page 147 for a description of global variables.

Code the variable as the first nonblank word in the command list.

A variable consists of an EBCDIC ampersand (&) followed by 1 - 11 characters. A -
Z, 0 - 9, #, @, and $ are valid characters.

Variable Substitution Order
Variable substitution is performed when the Tivoli NetView for z/OS program
scans each statement from right to left and substitutes values for each variable in
the following way:
1. Each element is scanned from right to left for an ampersand (&).

v If found, the ampersand and the rest of the element to the right are
substituted with the value of that variable.

v If no value exists, the variable becomes null.
v If the first character to the right of the ampersand is a number, the variable is

assumed to be a parameter variable. The Tivoli NetView for z/OS program
then scans to the right and takes any following numbers as part of the
parameter variable. When a blank or a letter is found, the search stops. If a
special character (non-alphanumeric) is found, the variable name is
delimited.
For example, &21A is taken as &21 and is replaced by the value of &21.
Therefore, &21A becomes valueA. For another example, if an element
contains &A=&XYZ, the value of &XYZ if substituted, and then &A is
replaced with the value substituted for &XYZ.

Note: The value of X'50' (ampersand in the EBCDIC character set) is ignored
within double-byte character sets. If you want to use an ampersand,
end the string using a shift-in (X'0F') control character and enter the
variable. To resume the string, begin the string using a shift-out (X'0E')
control character.

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 101

2. The scan resumes at the next character to the left, and the search for an
ampersand continues. If found, the ampersand and the entire syntactical
element to the right, including the previous substitution, are taken as the name
of a variable and are replaced by the variable value.

Note: The value substituted is not scanned for an ampersand.
If the element is the target of an assignment statement, the scan stops on the
second character to preserve the variable name that is to be assigned a value.
For example, the statements in the following example set the value of user
variable &A1 to 2.
&B = 1
&A&B = 2

Variable substitution is not done on the following items:

Control keywords
For more information, see “&CONTROL Statement” on page 110.

&PAUSE statement
The variables are assigned values when you enter a GO command. For
more information, see “&PAUSE Control Statement” on page 114.

&THEN clause on an &IF statement
If the &IF clause is true, the &THEN clause is made into a statement and
processed as if it is coded separately. For more information, see “&IF
Control Statement” on page 129.

Any statements in an &BEGWRITE NOSUB series of messages
For more information, see “&BEGWRITE Control Statement” on page 113.

Built-in functions
For more information, see “NetView Built-in Functions” on page 117.

Parameter Variables
A parameter variable is a positional variable that is defined at the time a command
list is run. Specify parameter variables by entering them as operands following the
name of the command list that you are running. Parameter variables have the
following characteristics:
v Identified within the command list by a numbered position, for example, &1
v Entered following the command list name at run time
v Delimited by commas, apostrophes, or blanks

When you code your command list with parameter variables, use the following
guidelines:
v You can use up to 31 parameter variables in a single command list.
v You can use the same parameter variables more than once in a command list.
v The value of a parameter variable can be 238 characters long.
v Parameter variables can contain either numeric or character values.
v When used in an arithmetic expression (for example, addition or subtraction), a

parameter variable can have a numeric value between -2147483647 and
2147483647. When used in a non-arithmetic expression (for example, assignment
statements, &IF statements, &CONCAT, or &SUBSTR statements), a parameter
variable can have a value up to 238 digits long, including the sign.

Note: When Tivoli NetView for z/OS receives a message coded in an &WAIT
statement, some control variables are set (for example, &MSGORIGIN,

NetView Command List Language Command Lists

102 Programming: REXX and the NetView Command List Language

&MSGID, &MSGCNT, and &MSGSTR) and the values of the parameter
variables (&1 – &31) are changed to reflect the information in the received
message.

See “Control Variables” on page 106 for information about these variables.
LINKPD sets the same control and parameter variables. See “LINKPD Results” on
page 157 for more information about the LINKPD command.

Passing Parameter Variable Information to a Command List
When activating a command list that uses parameter variables, the operator enters
the command list name followed by a value for each parameter variable in the
command list. The following example shows the format for an operator passing up
to 31 parameter variables to a command list:
cmdlistname _____,_____,_____,. . .,_____

&1 &2 &3 &31

The first value after the command list name replaces &1 in the command list, the
next value replaces &2, and so on. For example, the second parameter variable in a
command list is coded &2 at the place where you want the value of that
parameter.

Assume that you wrote a command list named RESC to start resource LU100 as
shown in the following example.
RESC CLIST
&CONTROL ERR
VARY NET,ACT,ID=LU100

If you want the command list to use parameter variables, you can change it to
activate or deactivate any resource. The following example shows how the
command list looks with parameter variables:
RESC CLIST
&CONTROL ERR
VARY NET,&1,ID=&2;

The operator can then start resource LU100 by entering RESC ACT,LU100.

When the command list runs, &1 and &2 are replaced with the following
positional parameters:
v &1 with ACT
v &2 with LU100.

The command list takes the values for &1 and &2 from the entered operands in the
order in which the operands are entered after the command list name.

Note: The operator who uses the command list must be told how many parameter
variables to supply and what values to provide.

If a command list is activated by a message, each word of the message becomes a
separate parameter variable. This is explained in more detail in Chapter 5,
“Automation Resource Management,” on page 91.

Using Parameter Variables in a Command List
No set order is required for placing the parameter variables in the command list.
The following example shows that you can use &2 before &1.

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 103

V NET,&2,ID=&1

&1 is given the first value the operator enters, and &2 is given the second value.

If a command list statement has two or more parameter variables, the rightmost
variable is changed first; the scan then continues right to left and the next variable
is replaced. You can use this method to change the meaning of some of your
parameter variables. If you must test how many parameters an operator entered or
what parameter values were entered, use the control variables &PARMCNT and
&PARMSTR. They are described in “Control Variables” on page 106.

Passing Parameter Variables to a Nested Command List
You can code parameter variables on the command list statement that activates the
nested command list. These parameter variables follow the same basic rules as
other parameter variables. In addition, you can pass either actual values or other
variables as parameter variables. If you pass other variables, make sure that these
variables are known to the next activated command list.

The following examples show passing parameters.

Command list CALLER contains a line of code such as:
CALLEE LINES,TERMS,CDRMS

Command list CALLEE uses the following variables:

&1 LINES

&2 TERMS

&3 CDRMS

Command list MAJOR is activated by entering MAJOR ALPHA,BETA and contains
the following statements:

Command list MINOR uses the following variables:

&1 55

&2 ALPHA

&3 BETA

Command list MINOR takes the value of &A (55) as its first parameter, the value
of the first parameter of MAJOR (ALPHA) as its second parameter, and the value
of the second parameter of MAJOR (BETA) as its third parameter.

If you must pass a nested command list a variable containing a quoted string,
enclose the variable in single quotation marks on the nested command list call. In
the following example, CLIST1 calls CLIST2:
CLIST1 CLIST
&STR = &1
CLIST2 ’&STR’
&EXIT

The parameter variable on the nested command list call must be surrounded by
quotation marks.

&A = 55
MINOR &A,&1,&2

NetView Command List Language Command Lists

104 Programming: REXX and the NetView Command List Language

Using Quoted Strings or Special Characters in Parameter
Variables

If you need to use a blank, apostrophe ('), or comma (,) as part of a value, you
must make the value a special character string by using single quotation marks. If
you want a text string to be taken as the value for one parameter, it must also be
made a special character string.

A NetView command list language quoted string is any text that meets one of the
following requirements:
v Text preceded by a delimiter and a single quotation mark, followed by either a

single quotation mark and a delimiter or a single quotation mark that is the
rightmost nonblank character.

v Text preceded by a single quotation mark that is the leftmost nonblank character,
followed by a single quotation mark and a delimiter.

v Text preceded by a single quotation mark that is the leftmost nonblank character,
followed by a single quotation mark that is the rightmost nonblank character.

Suppose you activate a command list name RESC by entering the following
command:
RESC ACT,’LU200,LOGMODE=S3270’

The parameter variables in the RESC command list contain the following values:
&1 = ACT
&2 = LU200,LOGMODE=S3270

Suppose you activated the RESC command list by entering this command:
RESC ACT,LU200,LOGMODE=S3270

The parameter variables in this case contain these values:
&1 = ACT
&2 = LU200
&3 = LOGMODE=S3270

Null Parameter Values
Use two commas (,,) to give a parameter variable a null value when it is followed
by other non-null parameters. After the last non-null parameter, all remaining
parameter variables up to &31 are automatically given null values. Null
parameters are useful when a value is not required. For example, assume that you
wrote a command list called CONN that contained the following statement:
BGNSESS FLSCN,APPLID=&1,SRCLU=&2,LOGMODE=&3,INT=&4,D=&5

If you do not want to specify all the values, you can enter the following command:
CONN TSO,TAF01F00,,,PF12

In this example, &1 is TSO, &2 is TAF01F00, &3 and &4 are null, and &5 is PF12.
The extra commas between TAF01F00 and PF12 represent positional place holders
for &3 and &4, and tells the command list that they are null. If you use only one
comma, the command list takes PF12 as &3 and incorrectly uses PF12 as the
LOGMODE.

Test for null parameter variables in your command list and provide default values
to avoid possible syntax errors.

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 105

Control Variables
The following sections describe the control variables as used in NetView command
list language.

Control variables are set by based on system information. To use a control variable,
place the variable name in the command list at the location where you want the
information to be accessed. When the command list runs, the correct values are
assigned to each control variable. Use the LISTVAR command to view the values
of some of the control variables.

For more information about control variables used with the SPCS commands
LINKDATA and LINKTEST, see “LINKDATA and LINKTEST Results” on page 156.

Note: A command list can create a user variable that has already been defined as a
control statement, control variable, or built-in function. However, if such a
user variable is created, you cannot use the provided control statement,
control variable, or built-in function in that command list anymore.

User Variables
User variables are variables you create and set within the command list. You can
set user variables with an assignment statement or an &PAUSE control statement.

Assignment statements are explained in “Assignment Statements” on page 108.

The &PAUSE control statement halts the command list so that the operator can
enter data, and picks up the value of the user variable from the operator when the
command list continues. &PAUSE is described in “&PAUSE Control Statement” on
page 114.

When you create user variables, observe the following rules:
v The first character must be an ampersand (&).
v The first character following the ampersand must be a letter or a symbol, not a

number. Otherwise, it is treated as a parameter variable.
v The ampersand must be followed by 1 to 11 characters. A - Z, 0 - 9, #, @, and $

are valid characters.
v The value of the user variable can be 255 characters long. The maximum number

of double-byte characters between the shift-out (X'0E') and shift-in (X'0F') control
characters is 126.

v A user variable can have a numeric value that is 255 digits long, including the
sign. However, if the value of the user variable is obtained using an arithmetic
expression (for example, addition or subtraction), or if the user variable is used
in an arithmetic expression, the user variable can have a numeric value between
-2147483647 and 2147483647. The only characters you can use in a numeric value
are 0-9. The numeric value can be immediately preceded by a character
indicating whether the value is positive (+) or negative (-).

Note: A command list can create a user variable that has already been defined as a
control statement, control variable, or built-in function. However, you cannot
use the provided control statement, control variable, or built-in function
anymore in the command list.

Table 17 on page 107 shows some examples of user variable names.

NetView Command List Language Command Lists

106 Programming: REXX and the NetView Command List Language

Table 17. User Variable Names

Valid Non-valid Reason

&A &2A Is read as &2, a parameter variable

&USERNAME &INVALIDUSERNAME Too long

&@23456 &A% % is not a valid character

The following example shows how to manipulate user variables in assignment
statements to set parameters and to communicate with the operator.
&PAUSE VARS &ONE &TWO
&SUM = &ONE + &TWO
CLEAR
&WRITE >>> THE SUM OF &ONE + &TWO IS --->&SUM

Hexadecimal Notation
The NetView command list language provides a hexadecimal notation capability to
process hexadecimal data. You can use hexadecimal notation anywhere you can
use a command list variable, except as the receiver in an assignment statement.

The following syntax describes the hexadecimal notation for the NetView
command list language:

where:

n Is an even or odd number of hexadecimal digits (0-9 or A-F in uppercase) with
no embedded blanks. If n is an odd number of digits, then the number is
prefixed with a zero (for example, X'2C6' is converted to X'02C6'). The
maximum length of n is 255 hexadecimal digits.

The following examples show the use of hexadecimal notation:
&A = X'3B9' &IF &A = X'3B9' &THEN....

Comments
It can be helpful to code comments in a command list. Command lists with
comments are easier to maintain and expand than command lists without
comments.

You can use comments to show the following information:
v When the command list was created and updated
v Who wrote the command list
v The function of the command list
v What input and output is expected
v Whether the command list depends on other programs or on other command

lists.

To write a comment, code an asterisk (*) as the first nonblank character of the
command list line. Be sure that you do not use a string of hyphens to separate
sections of the command list.

�� X'n' ��

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 107

Null Statements
A null statement contains all blanks or a label followed by all blanks. A null
statement with a label can be the target of flow control (conditional processing)
statements or &BEGWRITE statements. See “Labels” on page 100 for details about
using labels.

You can use a null statement to help format a message to the operator or to break
up a long command list so that it is easier to read and update. If a null statement
is part of a message written with an &BEGWRITE statement, it is sent to the
operator as a blank line. If a null statement is used to break up the command list,
the statement is ignored when the command list is run.

Assignment Statements
Assignment statements give values to variables and do arithmetic operations
within a command list. An assignment statement has the following syntax:

A blank must be before and after the equal sign.

When the command list runs, the value of the user variable is set to the value of
the expression. For example, the assignment statement &A = 5 sets the &A to 5.
The assignment statement &B = &1 sets the &B to the value of &1, and &1 keeps
its value.

An expression is one of the following items:

Constant
A constant consists of alphanumeric characters that are not replaced by
other values. The values are fixed. For example, if you code the following
assignment statement:
&VAR = 5

the value 5 is assigned to user variable &VAR.

If you want to use a constant that contains a blank, comma, apostrophe, or
hyphen, use single quotation marks. For example:
&NAME = ’JOHN B. DOE’

The constant cannot be longer than 255 characters. If it is a number, the
constant must be between -2147483647 and 2147483647. The only characters
you can have in a numeric value are 0-9. The numeric value can be
immediately preceded by a character indicating whether the value is
positive (+) or negative (-).

Variable
A variable can be a parameter variable, control variable, user variable, or
global variable.

The following assignment statement:
&PARMVAR = &4

assignment

�� &variable = expression ��

Figure 35. Assignment Statement

NetView Command List Language Command Lists

108 Programming: REXX and the NetView Command List Language

assigns the value of parameter variable &4 to user variable &PARMVAR.

To assign the value of control variable &OPID to user variable &USERVAR,
code the following statement:
&USERVAR = &OPID

Note: Using a control statement as a variable is not valid, even if the
control statement is enclosed in single quotation marks. For
example, the following assignment statements are not valid:
&A = &IF
&A = ’&WAIT ERROR’

Arithmetic operation
The addition and subtraction operations are allowed in an assignment
statement. The format is two numbers separated by a plus (+) or minus (−)
sign. You can also use a variable that is to be set to a number. The only
characters you can use in a numeric value are 0-9. The numeric value can
be immediately preceded by a character indicating whether the value is
positive (+) or negative (−).

The plus or minus sign must be separated from the numbers on each side
by at least one blank unless it indicates a positive or negative number (−2,
−4). For example, both 4 − 2 and 4 − −2 are correct, but 4 −2 does not
work.

The result of the arithmetic operation must be between −2147483647 and
2147483647. The following assignment statement shows how you can use a
control variable in an arithmetic operation:
&SUM = 38 − &PARMCNT

The value of control variable &PARMCNT is subtracted from 38, and the
resulting value is assigned to variable &SUM.

In arithmetic expressions with leading zeros, the leading zeros are not
shown in the result. For example, assume &A is 01 and you code the
following statement:
&C = &A + 1

The value of &C becomes 2, not 02.

Note: To avoid an error condition in an arithmetic operation, code a zero
before a potential null variable.

Built-in function
You can use a built-in function in an assignment statement. The result of
the operation is placed in the user variable. See “NetView Built-in
Functions” on page 117 for a detailed description.

The following examples show how to code built-in functions in assignment
statements:
&STR2 = &SUBSTR &STRING 2 1
&STR1 = &SUBSTR &STRING 1 1
&NEWSTR = &CONCAT &STR5 &STR4
&NEWSTR = &CONCAT &NEWSTR &STR3

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 109

Control Statements
Control statements are unique command list statements that control the way the
Tivoli NetView for z/OS acts on other statements in the command list. You can use
the control statements in this chapter either for straight-line coding or with the
statements described in Appendix B, “NetView Command List Language
Branching,” on page 129 for conditional processing.

You can use control statements to change the sequential order of processing. Using
command list control statements, you can take the following actions:
v Send messages to the operator from the command list.
v Control the order in which commands are run.
v Ask the operator to enter information needed to continue the command list.
v Wait for a solicited message to arrive before continuing the command list.

Each command list control statement begins with the control symbol in the form
&word. Only one control statement can be coded on a line, except when using &IF.

Reading the descriptions of the control statements provides a general idea of the
capability of these basic statements. Read the sections that follow for details
concerning each control statement.

The control statements follow:

&BEGWRITE
Writes a message or series of messages to the operator.

&CONTROL
Indicates the command list statements that are shown on the operator screen
while the command list is running.

&PAUSE
Halts the command list until the operator enters information needed to
continue the command list.

&WRITE
Writes a message to the designated operator.

&CONTROL Statement
The &CONTROL statement lets you indicate which command list statements are
displayed at the operator terminal while the command list is running. The
indicated command list statements are displayed after all substitutions have been
made and before the command list statements run. You can use the display of the
command list statements from &CONTROL ALL or &CONTROL CMD to help
debug your command list.

Set &CONTROL at the beginning of the command list. You can change the
&CONTROL setting within the command list as many times as necessary.
&CONTROL is in effect from that point in the command list until the next
&CONTROL statement is reached. For example, if you just added a new section of
code to a command list, you can display the entire new section of code but view
only the errors for the existing sections of code. Code this control statement by
typing &CONTROL followed by a blank and an operand. The &CONTROL control
statement has the following syntax:

NetView Command List Language Command Lists

110 Programming: REXX and the NetView Command List Language

where:

ALL
The ALL control statement displays all command list statements at the
operator terminal. Each statement is displayed just before it is processed.
&CONTROL ALL is a good choice when you first write the command list and
want to test it. After your command list is tested, the &CONTROL CMD
control statement or the &CONTROL ERR control statement is a better choice.
When processing for this command list is complete, the following message is
displayed:
DSI013I COMMAND LIST clistname COMPLETE

If you code the &CONTROL control statement without operands, or if you do
not code the &CONTROL control statement, the default control statement is
&CONTROL ALL.

CMD
Displays all commands at the operator terminal. Each command is displayed
just before it runs. The other command list statements, such as comments,
control statements, and other command list language statement, are not
displayed unless they contain an error. When processing for this command list
is complete, the DSI013I COMMAND LIST clistname COMPLETE message is
displayed.

ERR
Displays only statements that contain errors and commands that have nonzero
return codes. If &CONTROL ERR is in effect at the end of a command list, the
DSI013I message is not displayed.

Writing to the Operator
The &WRITE and &BEGWRITE statements send messages to the operator terminal.
The &WRITE statement sends a one-line message, and the &BEGWRITE statement
sends multiline messages. These statements are used to give the operator
information, such as what the command list is doing.

The messages are sent to the operator regardless of the &CONTROL setting. If you
code a command on an &WRITE statement, the text is sent to the operator as a
message, but it is not run as a command list command.

Do not confuse the use of &WRITE and &BEGWRITE with the use of command
list comments. Comments are for the person writing the command list and are not
sent to the operator, unless &CONTROL ALL is set. The &WRITE statement and
the &BEGWRITE statement send messages to the operator.

If you are sending more than one message line or displaying a table that takes up
the whole screen, you might want to use the NetView VIEW command instead of
using the &WRITE statement and the &BEGWRITE statement

&CONTROL

��
ALL

&CONTROL
CMD
ERR

��

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 111

&WRITE Control Statement
The &WRITE statement sends one line of text to the operator. Tivoli NetView for
z/OS performs variable substitution on the message text before sending the
message to the operator. If you do not want substitution performed on the message
text, use &BEGWRITE. If you do not include message text, a blank line is sent to
the operator. The &WRITE statement has the following syntax:

If you want to include blanks in front of the first character of the line, code a
nonblank character after &WRITE.

In the following line:
&WRITE . THIS LINE WILL START IN COLUMN 8

the period causes the line to print like this:
. THIS LINE WILL START IN COLUMN 8

Otherwise, the line shifts left until the first nonblank character is in column 1.

The following line has no period:
&WRITE THIS LINE WILL SHIFT TO COLUMN 1

so it prints like this:
THIS LINE WILL SHIFT TO COLUMN 1

The following example shows a command list called PATH that uses the &WRITE
control statement and a VTAM command.
PATH CLIST
&CONTROL CMD
* THIS COMMAND LIST DISPLAYS INFO ON VTAM SWITCHED PATHS
&WRITE *** STATUS OF VTAM SWITCHED PATHS FOR &1 ***
D NET,PATHS,ID=&1

Activating this command list by entering PATH HD3790N1 causes Figure 36 to be
displayed.

Notice that the &1 in the &WRITE statement is replaced by the value HD3790N1
before it is sent to the operator. Because &CONTROL CMD was coded, the
command is also shown. The rest of the display is the response to the VTAM
command.

&WRITE

�� &WRITE message_text ��

*** STATUS OF VTAM SWITCHED PATHS FOR HD3790N1 ***
D NET,PATHS,ID=HD3790N1
IST097I DISPLAY ACCEPTED
IST148I DIAL OUT PATH INFORMATION FOR PHYSICAL UNIT HD3790N1
IST149I LINE GRP TELEPHONE NUMBER OR LINE NAME PID GID CNT
IST168I EGROUP40 4094 001 001 005 AVA
AUT
IST168I EGROUP50 4094 002 002 001 AVA
MAN
IST314I END

Figure 36. Result of PATH Example Command List

NetView Command List Language Command Lists

112 Programming: REXX and the NetView Command List Language

Figure 37 shows several &WRITE statements, which send one-line messages to the
operator.

&BEGWRITE Control Statement
You can use &BEGWRITE to write a series of lines to the operator terminal. You
can also control whether variables are replaced before sending the messages.

Code the &BEGWRITE statement on a line by itself, one line above the first
operator message you want to send. You can also specify a label on &BEGWRITE.
The label tells the command list where the messages end and command list
processing continues. See “Labels” on page 100 for more information about labels.

You can indicate that you want variables replaced by their actual values before the
messages are sent to the operator. If you do not indicate a choice, variables are not
replaced.

The &BEGWRITE statement has the following syntax:

where:

-label
Indicates the line that follows the text to be displayed to the operator. If you
code a label in the statement, this label must be on a statement following the
end of the message text lines in the command list. The command list lines
between &BEGWRITE and the statement with the label are sent to the
operator. The command list statement with the label is not sent to the operator;
it is processed as the next command list statement. If the label cannot be
found, the rest of the command list statements are sent to the operator as
comments and the command list is ended. If &BEGWRITE has no label, only
the first command list statement after &BEGWRITE is sent to the operator.

You can code a variable for your label on &BEGWRITE. Replace the variable
with a valid value.

NOSUB
Writes the messages to the operator exactly as they are typed, with no variable
substitution. In other words, &1 is sent as &1, not as the value of &1. Use this
operand to write about the command list variables in your messages. NOSUB
does not remove blanks. It displays the text exactly as it is entered. If you code
&BEGWRITE without an operand, NOSUB is assumed.

CLEAR
&WRITE >>> THE SUM OF &ONE + &TWO IS --->&SUM

&WRITE THE MIRROR IMAGE IS: &NEWSTR

&WRITE TOTAL CHARACTERS ENTERED: &LEN

&WRITE *** END OF SAMPLE CLIST ***

Figure 37. Sending One-line Messages to the Operator

&BEGWRITE

��
NOSUB

&BEGWRITE
SUB −label

��

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 113

SUB
Causes Tivoli NetView for z/OS to carry out substitution on the message text
before sending the messages to the operator. See “Variable Substitution Order”
on page 101 for information about how the variable substitution is managed.

If blanks precede the first character on a message line, the line is shifted left
until the first non-blank character is in column 1. If you want the blanks sent
to the operator screen, code a nonblank character in column 1. If you are using
&BEGWRITE to write a message containing double-byte character set (DBCS)
characters, you must use the SUB option. These coding rules are the same as
those for &WRITE.

Figure 38 is an example of a &BEGWRITE statement with variable substitution.

In some cases, you might not want variable substitution. In the following example,
the &BEGWRITE statement shows the operator how to use the ENDIT command
list:
&CONTROL ERR
&BEGWRITE NOSUB -OVER
TO END FULL SCREEN SESSIONS,
TYPE "ENDIT &1,&2,&3"
REPLACE &1,&2,&3 WITH
THE APPLID NAMES OF THE
FLSCN SESSIONS TO BE ENDED
-OVER

The ENDIT command list is called by entering ENDIT. Figure 39 shows the
messages that the operator sees when ENDIT is used.

Notice that &1, &2, and &3 are not replaced by their values when the messages are
sent to the operator.

&PAUSE Control Statement
Using the &PAUSE control statement along with other commands, you can code
command lists that ask the operator questions and pick up the entered responses.
Use the &BEGWRITE and &WRITE control statements to send instructions to the
operator. For example, you can code the command list to instruct the operator to
enter the NetView GO command followed by a value or values for a user variable.
Then code the &PAUSE statement to temporarily halt the command list. The

&BEGWRITE SUB -ENDTEXT
.
>>> HELLO &OP.
>>> YOU CAN INITIATE CROSS-DOMAIN SESSIONS WITH &ID.
.
. NOW FOR SOME CHARACTER MANIPULATION
. ENTER ’GO’ FOLLOWED BY A FIVE CHARACTER STRING.
. THE CLIST WILL PRINT OUT THE MIRROR IMAGE TO YOU.
.
-ENDTEXT

Figure 38. &BEGWRITE with Variable Substitution

TO END FULL SCREEN SESSIONS,
TYPE "ENDIT &1,&2,&3"
REPLACE &1,&2,&3 WITH
THE APPLID NAMES OF THE
FLSCN SESSIONS TO BE ENDED

Figure 39. Result of ENDIT Example Command List

NetView Command List Language Command Lists

114 Programming: REXX and the NetView Command List Language

command list pauses until the operator enters the GO command to continue
processing, or the RESET command to end the command list. You can code the
&PAUSE command to enable the command list to pick up the operands following
the GO commands and take them as user variables. See “User Variables” on page
106 for more information.

Notes:

1. Using &PAUSE in an automation task command list or a command list that
runs under the PPT is not valid.

2. The VIEW command obtains operator input without requiring the use of the
GO command.

The &PAUSE statement has the following syntax:

where:

NOINPUT
Pauses until the operator enters the GO or RESET command. Operands cannot
be specified with the GO command. If the operator enters operands, an error
message is returned. NOINPUT is the default.

STRING variable
Pauses until the operator enters the GO command with or without a string, or
the RESET command. A previous &WRITE or &BEGWRITE statement notifies
the operator to enter operands with the GO command. The entire string of
operands is taken as one user variable. The variable can then be used in the
command lists.

VARS variable
Pauses until the operator enters the GO command with or without the correct
number of operands, or the RESET command. A previous &WRITE or
&BEGWRITE statement notifies the operator to enter operands with the GO
command. Each operand is taken as a user variable coded on the &PAUSE
VARS statement. These variables can then be used in the command list.

When the command list interprets an &PAUSE control statement, the letter P is
displayed in the upper right corner of the panel to alert the operator that the
command list is in pause state. Pause state means that the command list has halted
and is waiting for input from the terminal.

Note: If a command list in pause state was called by an NNT session, the P
indicator is not displayed on the OST panel.

Using NetView Commands with &PAUSE
The operator can enter the NetView commands GO, RESET, STACK, and
UNSTACK during a pause.

&PAUSE

��

�

NOINPUT
&PAUSE

VARS variable
STRING variable

��

NetView Command List Language Command Lists

Appendix A. Writing Simple Command Lists 115

STACK and UNSTACK are used to suspend and then resume command list
processing during an &PAUSE. After the STACK is issued, the operator can enter
any network command.

Note: While an &PAUSE is suspended with the STACK command, the P is
removed from the upper right corner of the panel. The P is displayed again
after UNSTACK is issued. After UNSTACK is issued, the operator enters
GO, with or without operands, to continue the command list, or enters the
RESET command to end the command list. RESET also ends any nested
command lists.

The operands on the GO command are positional. This means that the first
operand becomes the first user variable, the second operand becomes the second
user variable, and so on. Operands are separated by either a blank or a comma. If
you want to include a blank or a comma as part of one variable, use either
&PAUSE STRING or put the operand between single quotation marks.

Code a user variable for each expected operand. If the operator enters more
operands on the GO command than expected by the command list, the extra
operands are ignored. If the operator enters fewer operands than expected, the
remaining variables are set to null. The operator can also skip over one operand by
coding two commas in a row.

Precede the pauses for operator input with messages that supply the information
to enter. Use the &WRITE or &BEGWRITE statements to send this information.

Note: The operator can call your command list from any NetView component. If
you expect the command list to run from components other than the
command facility, use NCCF in the command lists to present the operator
with the command facility panel and command panel input area. (Do this
before issuing any messages.) If the command list is running in the
command facility, the NCCF command has no effect. Refer to the online
help for more information about NetView commands.

An Example Using &PAUSE
The following example contains a portion of a command list that illustrates how to
request information from an operator:
&BEGWRITE SUB -ENDTEXT
. ENTER ’GO’ FOLLOWED BY YOUR LAST NAME,
. FIRST NAME, AND MIDDLE INITIAL.
-ENDTEXT
* GET THE INPUT FROM THE USER
&PAUSE VARS &LAST &FIRST &MI

The example writes a message to the operator prompting for the last name, first
name, and middle initial of the operator. The command list pauses until the
operator enters a GO or RESET command. To continue processing the current
command list, the operator enters the GO command followed by the string
required by the command list.

If the operator enters the following command:
GO SMITH JOHN A

the value of &LAST becomes SMITH, the value of &FIRST becomes JOHN, and the
value of &MI becomes A. These variables can then be used by other statements in
the command list.

NetView Command List Language Command Lists

116 Programming: REXX and the NetView Command List Language

NetView Built-in Functions
Built-in functions perform predefined operations. They are used as expressions
either in an assignment statement or in an &IF control statement. (See “&IF
Control Statement” on page 129 for information about the &IF control statement.)
In an assignment statement, the value of the user variable is set to the result of the
operation of the built-in function. Two of the NetView built-in functions, &HIER
and &MSUSEG, have REXX-format functions, HIER() and MSUSEG(), for use in
NetView REXX-only command lists.

Do not confuse built-in functions with variables of the same name. (All NetView
command list language variables are described in Chapter 4, “REXX Instructions
for NetView REXX Command Lists and Data REXX Files,” on page 39.) Although
they look similar, they are not the same. Except for the functions HIER() and
MSUSEG(), both built-in functions and NetView command list language variables
start with an ampersand (&). The following list describes the difference:
v A variable is replaced by its value when the command list runs. The variable is

just a placeholder for the value.
v A built-in function is never replaced by a value. A built-in function is an action

indicator rather than a placeholder.

These are the built-in functions that you can use:
v &BITAND
v &BITOR
v &BITXOR
v &CONCAT
v &HIER
v &LENGTH
v &MSUSEG
v &NCCFID
v &NCCFSTAT
v &SUBSTR

The examples in this section use built-in functions in assignment statements.
Examples with built-in functions in the &IF control statement are in “&IF Control
Statement” on page 129.

In an &IF control statement, the result of the built-in function is used as one or
both of the compared expressions. For example, you might use the &LENGTH
built-in function to compare the lengths of two variables.

&BITAND
The &BITAND function returns a string composed of the two input strings
logically ANDed together, bit by bit. The length of the result is the length of the
longer of the two strings. If the AND operation ends when the shorter of the two
strings is exhausted, the unprocessed portion of the longer string is appended to
the partial result. If the value of both strings is null, the result is a null string.

The &BITAND function has the following syntax:

Built-In Functions

Appendix A. Writing Simple Command Lists 117

where:

string1
Can be either a constant or a command list variable.

string2
Can be either a constant or a command list variable.

The following two examples show the &BITAND operation:

&BITAND X’73’ X’27’ results in X’23’

&BITAND X’13’ X’5555’ results in X’1155’

Usage Notes:

1. If string2 is null, the result is string1 unchanged.
2. If you specify more than two strings, message DSI186I is issued and the

command list ends. This is consistent with the equivalent REXX function.
3. If you do not specify string1, message DSI187I is issued and the command list

ends. This is consistent with the equivalent REXX function.

&BITOR
The &BITOR function returns a string composed of the two input strings logically
ORed together, bit by bit. The length of the result is the length of the longer of the
two strings. If the OR operation ends when the shorter of the two strings is
exhausted, the unprocessed portion of the longer string is appended to the partial
result. If the value of both strings is null, the result is a null string.

The &BITOR function has the following syntax:

where:

string1
Can be either a constant or a command list variable.

string2
Can be either a constant or a command list variable.

The following two examples show the &BITOR operation:

&BITOR X’15’ X’24’ results in X’35’

&BITOR X’15’ X’2456’ results in X’3556’

Usage Notes:

1. If string2 is null, the result is string1 unchanged.

&BITAND

�� &BITAND string1
string2

��

&BITOR

�� &BITOR string1
string2

��

Built-In Functions

118 Programming: REXX and the NetView Command List Language

2. If you specify more than one string, message DSI186I is issued and the
command list ends. This is consistent with the equivalent REXX function.

3. If you do not specify string1, message DSI187I is issued and the command list
ends. This is consistent with the equivalent REXX function.

&BITXOR
The &BITXOR function returns a string composed of the two input strings logically
exclusive ORed together, bit by bit. The length of the result is the length of the
longer of the two strings. If the XOR operation ends when the shorter of the two
strings is exhausted, the unprocessed portion of the longer string is appended to
the partial result. If the value of both strings is null, the result is a null string.

The &BITXOR function has the following syntax:

where:

string1
Can be either a constant or a command list variable.

string2
Can be either a constant or a command list variable.

The following two examples show the &BITXOR operation:

&BITXOR X’12’ X’22’ results in X’30’

&BITXOR X’1211’ X’22’ results in X’3011’

Usage Notes:

1. If string2 is null, the result is string1 unchanged.
2. If you specify more than one string, message DSI186I is issued and the

command list ends. This is consistent with the equivalent REXX function.
3. If you do not specify string1, message DSI187I is issued and the command list

ends. This is consistent with the equivalent REXX function.

&CONCAT
The &CONCAT function concatenates the values of two variables, two constants,
or a variable and a constant to form a new value. The &CONCAT built-in function
has the following syntax:

Ensure that when the two items are joined, the resulting value does not exceed the
maximum of 255 characters; higher values are truncated. If the value of both items
being joined is null, the result is null.

&BITXOR

�� &BITXOR string1
string2

��

&CONCAT

�� &CONCAT variable variable
constant constant

��

Built-In Functions

Appendix A. Writing Simple Command Lists 119

For example, suppose you had the following statement:

After processing, the user variables are set in the following way:
&PREFIX SN/
&ID 5497
&SERIAL SN/5497

Note: When &CONCAT is used to concatenate two double-byte character set
(DBCS) strings, it removes adjacent shift-in (SI) and shift-out (SO) characters.

&HIER
The &HIER function provides user access to the NetView hardware monitor
hierarchy data associated with an MSU.

&HIER has the following syntax:

where:
n Specifies the index number (1 - 5) of a specific name/type pair.

Notes:

1. &HIER without n returns a resource hierarchy slightly different from that
found in BNJ146I messages. The name/type pairs look like:
aaaaaaaa1111bbbbbbbb2222....eeeeeeee5555

The letters represent the resource name and numbers represent the resource
type.
The hardware monitor defines from one to five name/type pairs. Each name is
eight characters long and each type is four characters. The names and types are
padded with blanks if necessary.

2. &HIER with n returns the name/type pair, such as aaaaaaaa1111 that
corresponds to n. If no name/type pair corresponds to n, then a null value is
returned.

3. &HIER returns null under the following conditions:
v If the command list is not run by the automation table
v If the automation table was not driven by an MSU
v If the MSU does not have a hardware monitor resource hierarchy

4. You can test whether a resource is present in a resource hierarchy by using the
example NetView command list language parsing template shown in Figure 40
on page 121.

5. If a complex link exists in a resource hierarchy, resource levels that are not
displayed in the information returned by the &HIER function might exist. You
must use a system schematic to determine the complete hierarchy configuration
when a complex link is present.

&PREFIX = SN/
&ID = 5497
&SERIAL = &CONCAT &PREFIX &ID

HIER

�� &HIER
n

��

Built-In Functions

120 Programming: REXX and the NetView Command List Language

*
* Set up variables for search
*
&RESNAME = AAAA
&RESLN = &LENGTH &RESNAME
&SOURCE = &HIER
&SOURCLN = &LENGTH &SOURCE
*
* Check for existence of Hierarchy
*
&IF &SOURCLN = 0 &THEN -

&GOTO -NOTFOUND
*
* Parse out desired resource name with PARSEL2R
*

PARSEL2R SOURCE FIRSTSEG /&RESNAME/ LASTSEG
*
* If the last segment is non null, we found the resource name
* imbedded in the hierarchy.
*
&IF &LASTSEG = ’’ &THEN -

&GOTO -CKLAST
&GOTO -FOUNDMSG
*
* Check last segment of the hierarchy for desired resource name.
* (If the desired resource name is the last entry in the hierarchy,
* PARSEL2R will not detect it. We need to make a special check for
* the last entry.)
*
-CKLAST
*
* Trim any trailing blanks
*
-TRIMBLANK
&LASTCHAR = &SUBSTR &SOURCE &SOURCLN 1
&IF &LASTCHAR ¬= ’ ’ &THEN -

&GOTO -OUTTRIM
&SOURCLN = &SOURCLN - 1
&IF &SOURCLN > 0 &THEN -

&GOTO -TRIMBLANK
-OUTTRIM
*

Figure 40. Example of a &HIER Parsing Template (Part 1 of 2)

Built-In Functions

Appendix A. Writing Simple Command Lists 121

&LENGTH
The &LENGTH function returns the length of a variable or a constant. &LENGTH
has the following syntax:

The length of the variable value or constant is returned. If the variable is null or
the constant is a null string, the value returned is 0.

The following example shows how to use &LENGTH. Suppose you called
command list SAMP by entering SAMP LU2525. Assume the name of the hardcopy
printer (&HCOPY) control variable is HC55.

After processing, the variables are set in the following way:
&HCOPY HC55
&HCLENGTH

4
&1 LU25257
&RESLEN 6

User variable &HCLENGTH is set to the length of the hardcopy device name. The
hardcopy device is HC55. HC55 has four characters, so &HCLENGTH becomes 4.
&RESLEN becomes the length of the first parameter variable. The first parameter
variable is LU2525, so &RESLEN becomes 6.

&IF &SOURCLN < &RESLN &THEN -
&GOTO -NOTFOUND

&INDEX = &SOURCLN - &RESLN
&INDEX = &INDEX + 1
&LASTENT = &SUBSTR &SOURCE &INDEX &RESLN
&IF &LASTENT = &RESNAME &THEN -

&GOTO -FOUNDMSG
&GOTO -NOTFOUND
*
* Issue found message
*
-FOUNDMSG
&WRITE THE RESOURCE &RESNAME EXISTS IN THE HIERARCHY
&GOTO -LAST
*
* Issue not found message
*
-NOTFOUND
&WRITE THE RESOURCE &RESNAME DOES NOT EXIST IN THE HIERARCHY
*
* Exit
*
-LAST
&EXIT

Figure 40. Example of a &HIER Parsing Template (Part 2 of 2)

&LENGTH

�� &LENGTH variable
constant

��

SAMP CLIST
&HCLENGTH = &LENGTH &HCOPY
&RESLEN = &LENGTH &1

Built-In Functions

122 Programming: REXX and the NetView Command List Language

&MSUSEG
The &MSUSEG function provides the parsing capability needed to extract
information from a management services unit (MSU) or other similarly designed
pieces of data. Use this function in a command list that is called by the NetView
automation table or an LU6.2 application.

The &MSUSEG function has the following syntax:

where:

byte
The byte position into the lowest ID specified in id, counting from 1. Position 1
is the first length byte in the header of the lowest ID. The header is composed
of one or two length bytes followed by the 1- or 2-byte ID. This entry is
optional. The default is 1.

H Is inserted if the first ID is to be obtained from the next higher level
multiple-domain support message unit (MDS-MU) as opposed to the
NMVT/control point management services unit (CP-MSU) level. You can code
the H in uppercase or lowercase. You can place H inside or outside of the
single quotation marks when quotation marks are coded.

id Is the 2- or 4-character representation of 1- or 2-byte hexadecimal ID of GDS,
major vector (MV), subvector, subfield, or sub-subfield. The hexadecimal
characters (0 - 9, A - F, a - f) can be mixed case. The first ID is required;
additional IDs are optional.

length
Is the number of bytes in decimal to be returned from the lowest ID specified
in id and starting at the byte position. This entry is optional. The default is
equal to the remainder of the lowest id specified, and starting at the byte
position.

occ
The occurrence number, counting from one (1). You can use an asterisk (*) to
specify the first occurrence found. This entry is optional at every level. The
default is 1.

. The period establishes a hierarchy of IDs. Thus, the vector ID specified on the
right side of the period is contained within the vector that is specified on the
left side.

You can use blanks as delimiters between operands, but blanks do not act as place
holders. For example, if you code a variable for the byte and the value of the
variable is null and you used a blank as a delimiter, the length is considered to be
the byte operand.

&MSUSEG

�� �

.
(1)

&MSUSEG id
H (occ) 1

,
byte ,length

��

Built-In Functions

Appendix A. Writing Simple Command Lists 123

If the location is not found, or if the command list containing the &MSUSEG
function was not processed by an automation table statement because of an MSU,
or if the function was not driven by an MSU, then the value of the &MSUSEG
function is null.

If you do not specify a byte position, the data returned includes the 1- or 2-byte
length followed by the 1-or 2-byte ID of the lowest ID specified in id.

If the byte position is beyond the end of the location, a null value is returned.

If the specified length is longer than what remains at the location specified,
whatever remains at the location is returned.

For more information about the automation table, refer to the IBM Tivoli NetView
for z/OS Automation Guide. For more information about vector definitions, refer to
the SNA library. For more LU6.2 and MSU information, refer to the IBM Tivoli
NetView for z/OS Application Programmer's Guide.

&NCCFID
The &NCCFID function returns the NetView domain identifier of a domain with
which you can establish a cross-domain session. The domains with which you can
establish cross-domain sessions are defined by the DOMAINS statement of your
operator profile. However, if your profile specifies AUTH CTL=GLOBAL, you can
establish cross-domain sessions with the domains specified by the RRD statements
in the CNMSTUSR or CxxSTGEN that is included in the CNMSTYLE member. If
you do not specify DOMAINS or CTL=GLOBAL in the operator profile, you
receive an error message when using this function.

For more information about the domains and RRD statements, refer to the IBM
Tivoli NetView for z/OS Administration Reference.

NCCFID has the following syntax:

where:

number
Is either a number or a variable that becomes a number. The largest number
permitted is the value of &NCCFCNT, the control variable that shows the total
number of cross-domain sessions this operator can start.

The command list can use &NCCFID to automatically start or stop a cross-domain
session.

The following example shows how to use &NCCFID:
&DOM1 = &NCCFID 1
&DOM2 = &NCCFID 2
&DOM3 = &NCCFID 3
START DOMAIN=&DOM1
START DOMAIN=&DOM2
START DOMAIN=&DOM3

&NCCFID

�� &NCCFID number ��

Built-In Functions

124 Programming: REXX and the NetView Command List Language

Assume that your operator profile defines three domains with which you can
establish cross-domain sessions:
1 ALPHA
2 BETA
3 GAMMA

After processing, the user variables are set in the following way:
&DOM1 ALPHA
&DOM2 BETA
&DOM3 GAMMA

The three domains are then started with the START command.

In this example, the operator must know that three domains can be started. You
can also use the &IF control statement to test &NCCFCNT to find the number of
domains and start them.

&NCCFSTAT
The &NCCFSTAT function returns a value indicating whether you have an active
cross-domain session with the specified domain. &NCCFSTAT has the following
syntax:

where:

domain
Is either a domain name or a variable that becomes a domain name.

The function call is replaced by the characters ACT if the operator has an active
cross-domain session with the domain. The function call is replaced by the
characters INACT if the operator does not have an active cross-domain session
with the domain.

For example, you can write a command list to check the status of a domain and
start that domain if it is not active. Assume you activated the STARTEM command
list in the following example by entering STARTEM NCCFA.

After processing, the variables are set in the following way:
&1 NCCFA
&STATUS ACT|INACT

The parameter variable &1 is set to NCCFA, and the status of domain NCCFA is
checked. If you have an active cross-domain session with NCCFA, &STATUS is set
to ACT. If not, &STATUS is set to INACT. The &IF statement tests whether
&STATUS is set to ACT or INACT (for more information, see “&IF Control
Statement” on page 129).

&NCCFSTAT

�� &NCCFSTAT domain ��

STARTEM CLIST
&CONTROL ERR
&STATUS = &NCCFSTAT &1
&IF &STATUS = INACT &THEN START DOMAIN=&1
&IF &STATUS = ACT &THEN &WRITE DOMAIN &1 IS ALREADY ACTIVE

Built-In Functions

Appendix A. Writing Simple Command Lists 125

If NCCFA is inactive, the command list starts it. If NCCFA is active, you receive
the following message:
DOMAIN NCCFA IS ALREADY ACTIVE

&SUBSTR
The &SUBSTR function returns the specified portion of an input variable by
parsing the variable, starting at position start for length characters. &SUBSTR has
the following syntax:

where:

length
The number of characters to parse, beginning with the specified start position.
If no length is specified, the parsing is from the start to the end of the variable.

start
Is the starting position of the parsing operation within the variable.

variable
Is the variable to be parsed.

For example, suppose you have the following statements:

After processing, the user variables are set in the following way:
&HOLD ACF/VTAM
&FIRST ACF
&SECOND VTAM
&THIRD TAM

The first line of the previous example sets the value of variable &HOLD to
ACF/VTAM. In the next line, &SUBSTR starts at the first character of &HOLD (the
letter A) and moves three characters to the right (to the character F). The letters
ACF become the value of the variable &FIRST. In the next line, &SUBSTR starts at
the fifth character of &HOLD (the letter V) and goes for a length of four (to the
character M). The letters VTAM are put into variable &SECOND. In the last line,
&SUBSTR starts at the sixth character of &HOLD (the character T) but does not
specify a length. &THIRD is therefore TAM, the value of &HOLD from the letter T
through the end of the variable (M). The starting positions are determined as
shown:

1 2 3 4 5 6 7 8

A C F / V T A M

Note: The first starting position is 1, the second is 2, and so on. Zero is not a valid
position. Because the largest variable value is 255 characters, it is not valid
to have a starting point greater than 255.

&SUBSTR

�� &SUBSTR variable start
length

��

&HOLD = ACF/VTAM
&FIRST = &SUBSTR &HOLD 1 3
&SECOND = &SUBSTR &HOLD 5 4
&THIRD = &SUBSTR &HOLD 6

Built-In Functions

126 Programming: REXX and the NetView Command List Language

You do not have to specify a length. If the length is not specified, the remainder of
the string to the right beginning with the starting position becomes the substring.
Substrings are never padded with blanks. If you specify a length that is too long,
no length is assumed and the entire string beginning at the starting position is
used. If the length is 0, or the starting position is beyond the variable length, the
result of &SUBSTR is null.

Figure 41 shows how you can use a substring of the &APPLID control variable to
determine the name of the domain running the command list:

When using double-byte characters along with Roman characters (A-Z, a-z), the
&SUBSTR function adjusts the variable in the following way:

Start byte = shift-out character
No adjustment

Start byte = shift-in character
Replace with blank

Start byte = first half of double-byte
Replace with blank and shift-out character

Start byte = second half of double-byte
Replace with shift-out character

Last byte = shift-out character
Replace with blank

Last byte = shift-in character
No adjustment

Last byte = first half of double-byte
Replace with shift-in character

Last byte = second half of double-byte
Replace with shift-in character and blank.

The following example shows the &SUBSTR statement used on a double-byte
character and Latin character string:
&DBCS = ’AB<D1D2D3>EFG’

where:
v A, B, E, F, G are Latin characters.
v < (X'0E') represents the shift-out control character.
v > (X'0F') is the shift-in control character.
v D1, D2, D3 are double-byte characters.

Using this value, &SUBSTR works in the following way:

GETDOMID CLIST
&CONTROL ERR
* DETERMINE THE LENGTH OF THE APPL ID
&LENAPPL = &LENGTH &APPLID
* SUBTRACT 3 TO GET THE LENGTH OF THE DOMAIN ID
&LENAPPL = &LENAPPL - 3
* START AT COLUMN 1 OF NEW LENAPPL FOR LENGTH OF DOMAIN ID
* THE VALUE OF &DOMAIN WILL BE THE DOMAIN ID
&DOMAIN = &SUBSTR &APPLID 1 &LENAPPL
* &DOMAIN NOW CONTAINS THE DOMAIN ID

Figure 41. Using &APPLID to Determine the Domain Name

Built-In Functions

Appendix A. Writing Simple Command Lists 127

&FIRST= &SUBSTR &DBCS 1 3
= ’AB<’ (interim string)
= ’AB ’ (recovery string)

&SECOND = &SUBSTR &DBCS 3 5
= ’<D1D2’ (interim string)
= ’<D1> ’ (recovery string)

&THIRD = &SUBSTR &DBCS 4 5
= ’D1D2D’ (interim string)
= ’ <D2D’ (interim string)
= ’ <D2>’ (recovery string)

Note: The DBCS delimiters are 1 byte long; the DBCS codes are 2 bytes long.

Built-In Functions

128 Programming: REXX and the NetView Command List Language

Appendix B. NetView Command List Language Branching

This chapter describes the conditional and unconditional branching statements in
the NetView command list language.
v The &IF statement causes a conditional branch based on logical or arithmetical

comparisons. The result of a test or comparison in an &IF statement determines
the alternative to perform. Conditional processing statements give you the
flexibility to code if-then and loop structures.

v The &GOTO statement causes unconditional branching.
v The &EXIT statement lets you code logical exit points within a command list.
v The &WAIT statement suspends processing and waits for the completion of an

event.

&IF Control Statement
The &IF control statement tests a condition and performs processing based on the
results of the test. The condition consists of two expressions and a logical or
arithmetical operator.

If the condition is true, the &THEN clause is processed. If the condition is false,
processing continues at the statement following the &IF control statement. The &IF
control statement has the following syntax:

where:

= or EQ
Equal

expression_1
Is any expression that can be used in an assignment statement. It can be a
constant, a variable, an arithmetic operation, or a built-in function. For more
information, see “Assignment Statements” on page 108.

&IF&THEN

�� &IF expression_1 = expression_2 &THEN statement
EQ
¬=
NE
<
LT
>
GT
<=
LE
>=
GE
¬>
NG
¬<
NL

��

© Copyright IBM Corp. 1997, 2011 129

expression_2
Is the second term of comparison. It follows the same rules as expression_1.

> or GT
Greater than

>= or GE
Greater than or equal

< or LT
Less than

<= or LE
Less than or equal

¬= or NE
Not equal

¬> or NG
Not greater than

¬< or NL
Not less than

Note: You can use either the symbol code or the 2-character letter code. Both
have the same meaning.

&THEN
Separates the comparison from the command list statement that is processed if
the condition is true. You must code &THEN in every &IF statement.

Note: Coding the ampersand (&) with THEN identifies the word as part of the
control statement.

statement
Is the command list statement that is processed if the comparison is true,
otherwise it is ignored. The statement can be any NetView command list
language statement.

Variables coded in the comparison expressions are replaced by their values before
the comparison is checked. You can use two single quotation marks with no space
('') to test whether a variable is null. For example, the comparison &1 = '' is true
when &1 is null.

The following example shows comparisons:
5 = &A
&1 = ’
2 + 2 NE &ANSWER
&PARMCNT LE 5

If a variable used in an arithmetic expression can be equal to null, then use the
following syntax:
7 > 3 + 0&1

In this example, the zero (0)&1 is evaluated as zero (0) because &1 is null.
Therefore, the expression 3 + 0 is compared to 7. If &1 is equal to 9, the expression
3 + 09 is compared to 7.

The following five examples use the &IF control statement:

NetView Command List Language Branching

130 Programming: REXX and the NetView Command List Language

&IF &APPLID = NCCFA001 &THEN &USERVAR = 10

&IF &NCCFID = NCCFA &THEN &GOTO -PROC2

&IF &1 = LU200 &THEN VARY NET,ACT,ID=&1

&IF &SUBSTR &DATE 1 5 = ’01/01’ &THEN &WRITE HAPPY HOLIDAY

&IF &A = X'41' &THEN &GOTO -PROC1

&GOTO Control Statement
The &GOTO statement unconditionally transfers control to another part of the
command list. &GOTO lets you rerun statements or jump ahead to a statement of
the command list. A statement label identifies the target or destination statement.
When you use both &IF and &GOTO, you can test for various conditions and go
to different parts of the command list, depending on the results. The &GOTO
control statement has the following syntax:

where:

-label
Identifies the target statement in this command list where processing
continues.

When the NetView program interprets the &GOTO statement, it searches the
command list for a statement starting with this same label. The NetView program
transfers control to that statement and continues the command list processing. The
statement identified by the label can be before or after the &GOTO statement.

You can code a variable for your label as long as the variable is replaced by a
value before the NetView program processes the &GOTO statement. See “Labels”
on page 100 for more information about labels.

&EXIT Control Statement
When the command list reaches the &EXIT control statement, the command list
processing ends.

You can use &EXIT with &IF to check the command list and exit if an error occurs.
You can use &EXIT with &GOTO to control the flow of the command list. The
&EXIT control statement has the following syntax:

where:

&GOTO

�� &GOTO -label ��

&EXIT

�� &EXIT
number

��

NetView Command List Language Branching

Appendix B. NetView Command List Language Branching 131

number
Is an error return code. It can be equal to -1, 0, or any positive number up to
2147483647. To debug potential problems in nested command lists, code a
return code on &EXIT.

The return code you set on the &EXIT control statement is placed in the
&RETCODE control variable. The calling command list can test &RETCODE and
act based on the return code. See “Command List Information” on page 44 for
more information about &RETCODE.

You can define meanings for the positive numbers. If you code a nonzero return
code on the &EXIT statement, and if &CONTROL ERR is in effect, the command
list command that generated the nonzero return code is echoed on the panel.

When a command list returns a -1, that command list, and all command lists in the
nested chain, end. If you do not code a return code on &EXIT, or if the command
list ends when the last line is processed and no &EXIT statement exists, a zero
return code is set.

Figure 42 shows an example command list named STOPTAF that uses the
ENDSESS command to stop all terminal access facility sessions. The command list
checks for errors. To start the command list, enter STOPTAF or STOPTAF ALL. If
you forget what the command list does or forget what to enter, use STOPTAF ? to
get help.

If you enter STOPTAF or STOPTAF ALL, only the results of the two ENDSESS
commands are displayed.

If you enter STOPTAF FLSCN, the following message is displayed:
YOU ENTERED: STOPTAF FLSCN WHICH IS NOT CORRECT
ENTER: STOPTAF TO STOP ALL TERMINAL ACCESS FACILITY SESSIONS

If you enter STOPTAF ?, the following message is displayed:
ENTER: STOPTAF TO STOP ALL TERMINAL ACCESS FACILITY SESSIONS

STOPTAF CLIST
&CONTROL ERR
* IF USER ENTERS STOPTAF ?, GO TO HELP SECTION
&IF &1 EQ ? &THEN &GOTO -HELP
* IF NO PARAMETERS, GO TO COMMAND
&IF &1 EQ '' &THEN &GOTO -CMD
* IF PARAMETER IS ALL, GO TO COMMAND. ELSE PRINT ERROR MSG
&IF &1 NE ALL &THEN &GOTO -ERROR
-CMD
ENDSESS OPCTL,ALL
ENDSESS FLSCN,ALL
&EXIT
-ERROR
&WRITE YOU ENTERED: STOPTAF &PARMSTR WHICH IS NOT CORRECT
-HELP
&BEGWRITE -END
ENTER: STOPTAF TO STOP ALL TERMINAL ACCESS FACILITY SESSIONS
-END
&EXIT 4

Figure 42. Example of a CLIST to Stop TAF Sessions

NetView Command List Language Branching

132 Programming: REXX and the NetView Command List Language

&WAIT Control Statement
Sometimes you want a command list to wait for a specific event or message. With
the &WAIT control statement, you define what event causes the command list to
resume processing. The command list can wait for any message with a 1- to
10-character message identifier.

Notes:

1. You cannot use &WAIT when operating under the primary POI task (PPT), or
when using common operations services (COS) commands. See “Primary POI
Task Restrictions” on page 12 for more information using &WAIT under the
PPT. For additional information about using &WAIT with common operations
services commands, see Appendix D, “Common Operations Services
Commands,” on page 155.

2. NetView pipelines, called with the PIPE command, provide both extended
function and reduced complexity for the automation of message handling. The
PIPE command is an alternative to the &WAIT control statement. For
information about NetView pipelines, refer to the IBM Tivoli NetView for
z/OS Programming: Pipes book.

If you use &WAIT in an automation task command list, be sure to specify a
reasonable timeout value. For instructions about coding a time-out event, see “The
Event=-Label Pair” on page 135.

If the trapped message satisfies the wait condition, processing of the waiting
command procedure resumes. If you do not suppress the message, it continues
with the message flow. If you suppress the message, however, the NetView
program marks it for deletion. In this case, automation-table processing does not
occur and the NetView program does not display or log the message.

&WAIT performs the following actions in a command list:
v It causes the NetView program to monitor the operator station task (OST) for

specific messages and takes action if the message arrives. For example, the
command list issues a VTAM command to activate a resource. When VTAM
sends the message saying the resource is active, &WAIT initiates a specific action
based on the successful activation of the resource.

v It initiates a specific action if a message does not arrive in a specified period. For
example, for your installation, you might want to display resources if the
activation message does not arrive within 5 minutes.

Therefore, you can use &WAIT in the following applications:
v The command list starts a session with an application program, such as IMS/VS,

or another NetView domain. The &WAIT causes the NetView program to
monitor the OST for messages indicating the session is started. This satisfies the
&WAIT condition. When the &WAIT condition is fulfilled, the command list
resumes processing and sends the logon and other information.

v The command list issues requests for status information from VTAM, and then
processes or reformats this information before sending it to the NetView
operator.

&WAIT and &PAUSE work differently. With &PAUSE, the command list does not
continue until the operator enters the GO command. Operands on the GO
command are used in the command list. However, because &WAIT causes the
command list to wait for a specific event or events, GO is used to resume the
command list only if the event never occurs. When a command list is in a wait

NetView Command List Language Branching

Appendix B. NetView Command List Language Branching 133

state, the NetView program ignores operands on the GO command. RESET,
STACK, and UNSTACK work the same way for &WAIT and &PAUSE.

Coding an &WAIT Control Statement
You can code an &WAIT statement in several ways. This section describes the basic
format. “Customizing the &WAIT Statement” on page 141 describes ways to
customize &WAIT.

When the command list begins processing a &WAIT control statement, NetView
displays the letter W in the upper right corner of the panel if the panel is refreshed
because a message is received or the ENTER key is pressed. This W notifies the
operator that a command list process is in a wait state. Wait state means that the
command list has halted its processing and is waiting for a specific message or
group of messages. When the specific message arrives, the control variables and
the parameter variables are set to their current values. The &WAIT control
statement has the following syntax:

where:

'command'
Is any command or command list that you can issue from the NetView
program. This command is optional. It is usually the command from which the
command list is waiting for messages. For example, if you want the command
list to wait for a successful session startup, the entire BGNSESS command is
coded between single quotation marks. Be sure to code command list
continuation characters before the event=-label pairs. The command is run as
soon as it is reached in the command list.

You can code one of the NetView timer commands, AT, EVERY, or AFTER, in
the &WAIT statement. If the scheduled command is a command list, it cannot
run until either the current command list is complete or the STACK command
is entered.

event=-label
Is an event=-label pair. You can code as many of these pairs as you want on an
&WAIT statement, up to the limit of 255 characters. The event is usually a
message for which the command list is waiting. The event can be a trigger that
ends the wait state before the message arrives. The &WAIT statement causes
the NetView program to scan all messages sent to the operator. If a message
matches one of the events coded, the command list goes to the line with the
specified label and continues processing from the labeled statement. For more
information about the types of events that can satisfy an &WAIT, see “The
Event=-Label Pair” on page 135.

When the NetView program receives the message it is waiting for, the message is
displayed on the operator terminal, as are all NetView messages. However, in this
case, the message type is W unless the message satisfying the &WAIT originated

&WAIT

�� �&WAIT event=−label
'command'

��

NetView Command List Language Branching

134 Programming: REXX and the NetView Command List Language

from a command list, in which case the message type remains C. If you do not
want the operator to see this message, see “Customizing the &WAIT Statement” on
page 141.

The only messages checked are those that are intended for the operator screen. If
you code the DSIEX02A exit routine (output to the operator), the &WAIT control
statement might not set the message for matching. For example, if the DSIEX02A
exit routine deletes the message, the &WAIT control statement does not get the
message so a match is not made. Because the operator does not receive the
message, neither does the waiting command list. Therefore, wait only for messages
that are displayed on the NetView console.

When coding the &WAIT command control statement, it is important to code an
event=-label pair for the DSI210I message and the *NN event. The DSI210I message
is returned when the command found in the command list is not authorized for
this operator, and the *NN event prevents waiting indefinitely for operator
intervention. The statements following labels need to notify the operator of the
error and exit the command list.

The W that signifies wait state, if present, remains in the upper right corner of the
panel while this initial &WAIT command is processed. The W indicates that
NetView is still waiting for messages. If the operator enters GO before this
command or command list completes processing, the GO is rejected with the
DSI016I NOT IN PAUSE OR WAIT STATUS message. When the command or command
list is complete, the GO is accepted. RESET ends a command list that is in a wait
state. If you enter the STACK command, the W is no longer displayed in the upper
right corner of the panel.

You can code several event=-label pairs, but the first message or other condition
that matches one of the events stops the command list from waiting for more
messages. You can change this if you want to process several messages with one
&WAIT statement. See “Customizing the &WAIT Statement” on page 141.

The Event=-Label Pair
The event=-label pair on the &WAIT statement lets you pass control to a statement
with a label when one of four types of events occurs. The label is a standard label
as described in “Labels” on page 100. The label coded on the &WAIT statement
can be a variable, but do not use parameter variables.

You can pass control to the label on an &WAIT statement by specifying an
event=-label pair. The following events can be used:
v token
v *ERROR
v *nn
v *ENDWAIT

The following list describes the previously mentioned events:

token This event occurs when the NetView program receives a message matching
token. The token variable can be 1 - 10 characters that identify the first
token of the message or messages for which the command list is waiting.
Optionally, you can identify the domain of a message for which the
command list is waiting. If a domain identifier is specified, it precedes the
token and is separated from the token by a period (domainid.token). You can
also use an asterisk (*) to indicate you are specifying a partial domain
identifier or token. If you do not specify a domain identifier, the message
for which the command list is waiting can be from any domain.

NetView Command List Language Branching

Appendix B. NetView Command List Language Branching 135

The following examples show some of the ways you can specify the
messages for which you want the command list to wait:

domainid.token
The event occurs when the NetView program receives any message
whose domain identifier matches the 1–5 character domainid and
whose first token matches token.

dom*.token
The event occurs when the NetView program receives any message
whose domain identifier matches the partial domain identifier
specified by dom* and whose first token matches token. For
example, NCCF*.DSI463I means the event occurs when a DSI463I
message is received from any domain with an identifier that starts
with NCCF (such as NCCFA or NCCFB).

*.token The event occurs when the NetView program receives any message
whose first token matches token. The message can be from any
domain.

token The event occurs when the NetView program receives any message
whose first token matches token. The message can be from any
domain.

tok* The event occurs when the NetView program receives any message
whose first token matches the partial token specified by tok*. For
example, DSI* means that the event occurs when the NetView
program receives any message whose first token begins with DSI
(such as DSI463I or DSI386I).

* The event occurs when the NetView program receives any message
or other output. For example, if you code &CONTROL ALL in the
command list, every line of the command list is echoed on the
panel. These echoes satisfy the * condition, and depending on the
code in the command list, can cause a loop or other unwanted
results. Therefore, use the *=-label condition with caution.

If you specify a token that contains a special character such as a comma,
period, asterisk, or most other non-numeric and non-alphabetic characters,
use the DOMAIN.TOKEN format. The NetView program does not accept
single quotation marks ('), commas (,), or blanks when you specify a token
because these characters are reserved as NetView default delimiters. If the
token contains the ampersand (&) then &CONCAT must be used to
concatenate the ampersand with the rest of the token.

Figure 43 on page 136 shows examples of coding tokens that contain
special characters:

Multiline messages such as multiline write-to-operators (MLWTOs) are
treated as one message. Therefore, only the message identifier of the first
message in a multiline message is available to the &WAIT, and the &WAIT
statement can be satisfied only by that message identifier. Use GETMSIZE,
GETMTYPE, GETMLINE, GETMPRES, and GETMTFLG to access the other
lines of a multiline message. Refer to these commands in the NetView

&WAIT DOMAIN1.*HASP=-MSG1
&WAIT DOMAIN1.=HASP=-MSG1
&X = &CONCAT & HASP
&WAIT DOMAIN1.&X=-MSG1

Figure 43. Examples of Coding Tokens with Special Characters

NetView Command List Language Branching

136 Programming: REXX and the NetView Command List Language

online help for more information about multiline messages and an example
of using &WAIT with multiline messages.

Notes:

1. When using a token event, messages not related to the command issued
by the &WAIT statement can be matched to the event and, depending
on the options on the &WAIT statement, can be suppressed. However,
use caution when coding * or *.* with SUPPRESS when specifying a
domain identifier or token. If the command list is suspended and the
SUPPRESS option is in effect on the &WAIT statement, any messages
the task receives are suppressed before the command list is resumed.

2. Because NetView-NetView tasks (NNTs), PPT, OSTs, and autotasks do
not process any commands or messages queued to the low priority
queue of a task that is running any command (assembler command or
HLL, REXX or NetView command list language command procedure),
only messages that are queued to the high or normal priority queue of
a waiting task are checked for matches to satisfy a wait condition.

3. Usually, messages queued to tasks through assign...copy= processing
can satisfy an outstanding &WAIT. However, a message is not sent to
the waiting task through assign...copy= processing if the message
contains a message automation table entry specifying DISPLAY(N). The
assign...copy= processing requires a displayed message, but
DISPLAY(N) specifies no display, which prevents that processing. The
message is not passed on; therefore, it cannot satisfy the &WAIT
condition.
For more information about message flow, refer to the IBM Tivoli
NetView for z/OS Automation Guide book.

*ERROR
This event occurs when the command specified on the &WAIT statement
returns a nonzero return code. If you do not code *ERROR, the NetView
program continues to wait for the messages associated with this command
even if the command ends with an error. If the NetView program is
waiting for a message that says the command was successful, the operators
running this command list are delayed until someone issues GO or RESET.
If *ERROR is satisfied, the message control variables are set in the
following way:
&MSGID *ERROR
&MSGORIGIN Name of domain where the command list

is running
&MSGSTR Null
&MSGCNT 0

Note: Messages associated with the command can be received before the
command returns a nonzero return code. If such a message is coded
on an event=-label pair, control is passed to the first statement whose
event has occurred.

For example, if you code the name of the &WAIT command on a
MSGID=-label pair, and you also code an *ERROR=-label pair, the NetView
program honors the MSGID=-label pair first because that event occurs first.

*nn This event occurs after nn seconds. If no other event occurs, the &WAIT
ends and control passes to the labeled statement. You can code a value 1 -
32767 seconds (9 hours, 6 minutes, 7 seconds). If you do not code *nn and
none of the events of the &WAIT are satisfied, &WAIT continues until the
operator enters a GO or RESET command.

NetView Command List Language Branching

Appendix B. NetView Command List Language Branching 137

*ENDWAIT
This event occurs when the operator or a command list issues a GO
command. If you do not code *ENDWAIT=-label, the GO command
continues processing with the statement following the &WAIT command.

Error Conditions
If an error condition occurs, the NetView program must be able to go to another
part of the command list and take appropriate action. Consider the types of errors
you can have and plan to handle them by coding *ERROR, *nn, and *ENDWAIT
events.

Coding Message=-Label Pairs
The order in which you code MSGID=-label pairs is important. The NetView
program scans the pairs in the order you code them, from left to right.

For example, assume that you code the following statement:

When the NetView program receives IST123I, it goes to the label -ALL, not
-SPECIAL. Code IST123I before IST*.

You can code as many events as required on one &WAIT control statement up to
255 characters. Remember to use continuation characters if the event pairs take up
more than one line. Code the message and domain identifiers in the order that you
want them processed. The NetView program scans the list from left to right until a
match is found.

Ending an &WAIT
An &WAIT statement can end in one of the following ways:
v The operator enters the GO command. Processing continues with the next

statement, unless *ENDWAIT is specified on the &WAIT statement. If
*ENDWAIT is specified, processing continues with the statement marked by the
label.

v The operator enters the RESET command. The command list and all of its nested
command lists end.

v Coding *ERROR on the &WAIT statement. If the command specified on the
&WAIT statement ends with an error, the command list continues processing at
the statement marked with the label. If you do not code *ERROR in this
situation, the &WAIT does not end until the operator enters GO or RESET.

v Coding *nn on the &WAIT statement. The command list continues processing at
the statement specified by the label if another event does not occur within nn
seconds.

v Receipt of a message matching an event=-label pair. The command list continues
processing with the statement marked with the label.

Using NetView Commands with &WAIT
When a command list written in the NetView command list language is in a pause
or wait state, operator commands that are entered can be deferred. Whether the
commands are deferred is based on the NetView DEFAULTS, OVERRIDE, and
CMD commands.

The GO, STACK, UNSTACK, and RESET commands affect the processing of
command lists in a wait state in the following ways:

&WAIT IST*=-ALL,IST123I=-SPECIAL

NetView Command List Language Branching

138 Programming: REXX and the NetView Command List Language

GO Ends the wait.

If *ENDWAIT is coded, processing continues with the labeled statement.

STACK
Suspends command list processing and causes any commands that are
deferred to be processed. You can enter any command or command list for
normal processing while a command list is suspended. The &WAIT is not
suspended, and events are still matched as they occur. The command list
using &WAIT does not process messages as they occur, but, instead, after
the command list is given control again. The W does not remain in the
upper right corner of the NetView panel. The GO command is rejected
until the command list resumes processing.

UNSTACK
Resumes command list processing. The &WAIT resumes processing events
that were matched while the command list was suspended.

RESET
Ends a command list that is in a wait state, and all command lists related
to it by nesting.

Note: When processing MLWTO messages received in response to an &WAIT
control statement, use the GETMLINE, GETMSIZE, and GETMTYPE
commands. For more information about these commands, and the GO,
STACK, UNSTACK, and RESET commands, refer to the NetView online
help.

Control and Parameter Variables Used with &WAIT
The NetView program sets the values of the control variables. The following
variables are based on the receipt of a message coded on an &WAIT control
statement:

&ACTIONDL
&ACTIONMG
&AREAID
&ATTNID (VSE only)
&AUTOTOKE
&DESC
&HDRMTYPE
&IFRAUGMT
&IFRAUIND
&IFRAUIN3
&IFRAUI3X
&IFRAUSB2
&IFRAUSC2
&IFRAUSDR
&IFRAUSRB
&IFRAUSRC
&IFRAUTA1
&IFRAUWF1
&JOBNAME
&JOBNUM

&KEY
&LINETYPE
&MCSFLAG
&MSGASID
&MSGAUTH
&MSGCATTR
&MSGCMISC
&MSGCMLVL
&MSGCMSGT
&MSGCNT
&MSGCOJBN
&MSGCPROD
&MSGCSPLX
&MSGCSYID
&MSGDOMFL
&MSGGBGPA
&MSGGDATE
&MSGGFGPA
&MSGGMFLG
&MSGGMID
&MSGGSEQ

&MSGGSYID
&MSGGTIME
&MSGID
&MSGORIGN
&MSGSRCNM
&MSGSTR
&MSGTOKEN
&MSGTSTMP
&MSGTYP
&MVSRTAIN()
&NVDELID
&PARTID (VSE only)
&PRTY
&REPLYID
&ROUTCDE
&SESSID
&SMSGID
&SYSCONID
&SYSID
&1–&31

The NetView program changes the values of the &1–&31 parameter variables to
reflect the text of the message. Each parameter variable is set to a token of the
message. Tokens are delimited by commas, apostrophes, or blanks. &1 is set to the

NetView Command List Language Branching

Appendix B. NetView Command List Language Branching 139

first token following the message identifier (the token used by the &MSGID control
variable). &2 is set to the next token to the right of &1, and so on up to a
maximum of 31 variables.

For more information, see “Message Processing Information Functions” on page 52.

The following example shows how the variables are set when the message DSI008I
SPAN1 NOT ACTIVE from domain DOM01 is intercepted by an &WAIT statement:
&MSGORIGIN DOM01
&MSGID DSI008I
&MSGSTR SPAN1 NOT ACTIVE
&MSGCNT 3
&1 SPAN1
&2 NOT
&3 ACTIVE
&4–&31 NULL

Notes:

1. If the NetView program receives a multiline message, the control variables and
parameter variables are set according to the first nonblank line of the message.
Refer to the GETM commands in the NetView online help for information
about multiline messages.

2. If &1–&31 are given values when the command list runs, save the parameter
variables in user variables before calling the &WAIT control statement. This
procedure lets you use the original values after &WAIT changes them.

3. After issuing an &WAIT control statement, save the values of the control
variables in user variables before issuing another &WAIT control statement.
This procedure lets you use the values after another &WAIT changes them.

4. If you are using &WAIT CONTWAIT, be careful when using the control
variable &MSGID before the &WAIT has ended. If &MSGID is the first
character string on an &WRITE or &BEGWRITE, the output might be
suppressed or cause the command list to loop. If the &WAIT SUPPRESS option
is in effect, an &WRITE or &BEGWRITE with &MSGID as the first character
string of the text matches the MSGID=-label operand of the active &WAIT.
Therefore, the text of the &WRITE or &BEGWRITE is not sent to the operator
screen. If an &WAIT CONTINUE statement is encountered after a
MSGID=-label is matched, and no other statement ends the command list or the
&WAIT, the command list loops.

Using &WAIT in Nested Command Lists
The command in the &WAIT statement can be a command list. The nested
command list can contain an &WAIT statement, too. Note the following
considerations when using &WAIT with nested command lists:
v Messages that arrive for the waiting command lists are queued until the nested

command list is finished processing.
v If you specify the same message number on &WAIT statements in both the

waiting and nested command lists, the message satisfies the &WAIT in the
nested command list.
If the nested command list ends before the message satisfies the &WAIT, the
message is queued for the waiting command list. Without the ending of the
&WAIT or the waiting command list, the message queue continues to grow and
the NetView program can run out of storage.

NetView Command List Language Branching

140 Programming: REXX and the NetView Command List Language

Customizing the &WAIT Statement
The previous sections described the simplest form of the &WAIT command, in
which the first message received that satisfies the wait is displayed on the
operator's terminal and causes the command list to continue processing.

This section describes how to customize the &WAIT statement for more flexibility.

To customize your &WAIT statements, use the following syntax.

where:

DISPLAY
Indicates that the message the command list is waiting for is to be displayed at
the operator's terminal upon arrival to the NetView program. DISPLAY is the
default value.

SUPPRESS
Indicates that any messages that satisfy a &WAIT statement are not displayed,
logged, or automated.

CONTWAIT
Indicates that the next &WAIT event=-label statement encountered waits for
additional events until the wait is ended. CONTWAIT enables one &WAIT
statement to process more than one event. This operand is useful when you
want to retrieve more than one message from a single command, such as a
LIST command.

ENDWAIT
Sets up processing for the next event=-label pair to be processed. ENDWAIT is
the default value, and indicates that the wait ends after the first event that
satisfies the &WAIT. Although the ENDWAIT specification does not end a wait
already in process, operators can still use the GO command to end the wait.
The RESET command, which ends a wait, also ends the command list.

CONTINUE
Directs the command list to continue waiting for the next event that satisfies
the original &WAIT statement. CONTINUE is used only when &WAIT
CONTWAIT is specified prior to the &WAIT event=-label. If you want the wait
to continue after event processing is finished, code &WAIT CONTINUE. It is
similar to branching back into the &WAIT statement.

Notes:

1. If neither DISPLAY nor SUPPRESS is specified, then either ENDWAIT or
CONTWAIT must be specified.

&WAIT

��
DISPLAY ENDWAIT

&WAIT
SUPPRESS CONTWAIT

��

or

&WAIT

�� &WAIT CONTINUE ��

NetView Command List Language Branching

Appendix B. NetView Command List Language Branching 141

2. DISPLAY is the default only if ENDWAIT or CONTWAIT is specified and
SUPPRESS is not specified. See Table 18 for valid option combinations.

3. The DISPLAY and SUPPRESS options can be changed at any point in a
command list. After messages are suppressed, you must code another &WAIT
statement with the DISPLAY operand to begin displaying messages again.

4. &WAIT SUPPRESS overrides DISPLAY because the command list has been
given the message and does not issue an echo.

5. When SUPPRESS is in effect, you do not know whether messages are received.
Therefore, all of the messages might not be processed when an operator issues
a GO or RESET command to end an &WAIT.

6. If neither ENDWAIT nor CONTWAIT is specified, then either DISPLAY or
SUPPRESS must be specified.

7. ENDWAIT is the default only if DISPLAY or SUPPRESS is specified and
CONTWAIT is not specified. See Table 18 on page 142 for valid option
combinations.

8. The ENDWAIT and CONTWAIT options can be changed at any point in a
command list. After CONTWAIT starts, you must code another &WAIT
statement with the ENDWAIT operand to return to the default value.

Table 18. &WAIT Customization Options Matrix.
S = Specified operand
v = Default called

DISPLAY SUPPRESS ENDWAIT CONTWAIT

S S

S S

S S

S S

v S

v S

S v

S v

Note: At least one option must be specified. Defaults are not called if no option is
specified.

The operands of this format are optional and can be coded in any order. However,
they cannot be coded on the &WAIT event=-label statement. The &WAIT statement
does not put the command list into a wait state. Instead, it indicates how the
command list processes the next &WAIT event=-label control statement.

If you update this statement using SUPPRESS, CONTWAIT, or CONTINUE, the
new settings remain in effect for the rest of the &WAIT statements in the command
list, including an &WAIT currently in process. To reinstate the initial settings, you
must code another &WAIT statement with the appropriate operands. If you
activate a nested command list, the default settings are in effect for that command
list unless an &WAIT statement is coded for the nested command list.

NetView Command List Language Branching

142 Programming: REXX and the NetView Command List Language

Ending &WAIT If CONTWAIT Is in Effect
“Ending an &WAIT” on page 138 describes ways to end a wait when a command
list is waiting for only one event. When the command list is waiting to match more
than one event, you can end the wait in one of the following ways:
v By entering the GO command at the terminal.

If an &WAIT CONTINUE was the last &WAIT statement encountered,
processing continues with the next command list statement following the
&WAIT CONTINUE statement. If the *ENDWAIT event is coded, processing
continues at the label statement. If no event=-label match occurred, processing
continues with the line following the &WAIT statement.

v By coding the GO command in the command list statement that follows an
&WAIT ENDWAIT statement.
If the *ENDWAIT event is coded, processing continues at the label statement. If
no event=-label match occurred, processing continues with the line following the
GO command.

v By coding *ERROR as the event on the &WAIT statement.
If the command specified on the &WAIT statement ends with an error, the
command list continues processing at the statement specified with a label. The
&WAIT does not end unless an error occurs. However, if an error occurs in the
command list and you do not have *ERROR coded, the wait might not end
without intervention.

v By coding *nn on the &WAIT statement.
The command list continues processing at the statement specified with a label if
the event does not occur within nn seconds.

v By coding *ENDWAIT on the &WAIT statement.
The command list continues processing at the statement specified with the label
when the operator enters the GO command.

v By coding &EXIT following a label.
The command list ends.

v By entering the RESET command.
The command list, including the command list that initiated it, ends.

Because &WAIT CONTWAIT queues NetView messages, also code &WAIT
CONTINUE to receive these queued messages. If you code &WAIT CONTWAIT
with SUPPRESS and end the wait, you might lose some messages.

Suggestions for Coding &WAIT
For the best performance, use the &WAIT [ENDWAIT|CONTWAIT] options in the
following way:
1. Set up options for the &WAIT event=-label statement by coding &WAIT with

CONTWAIT, SUPPRESS, or their defaults.
2. Enter an &WAIT state by using an &WAIT event=-label statement.

v If you specify &WAIT ENDWAIT before the &WAIT event=-label statement, or
if &WAIT ENDWAIT is in effect by default, the first matched event ends the
wait, and command list processing continues. See “Ending an &WAIT” on
page 138.

v If you specify &WAIT CONTWAIT, the receipt of the first event does not end
the &WAIT unless this event is specified as shown in “Ending &WAIT If
CONTWAIT Is in Effect” on page 143. The command list goes to the label
specified for the event and continues processing.

NetView Command List Language Branching

Appendix B. NetView Command List Language Branching 143

To complete this section of the command list, take one of the following
actions:
– Continue the wait by coding &WAIT CONTINUE.
– Specify that the next event is the last event of this wait by coding &WAIT

ENDWAIT and then &WAIT CONTINUE.
– End the wait by coding the &WAIT ENDWAIT statement and GO

command in the command list.
– End the command list by coding &EXIT.

Sample Using &WAIT
Figure 44 shows the use of &WAIT to wait for one message. The command list is
named ACTONE, and it issues a VTAM command to activate a logical unit. The
command list traps the messages responding to the activate command, reformats
the messages, and writes them to the operator screen.

The ACTONE command list waits for one of the following messages:
IST093I modename ACTIVE
IST105I modename NODE NOW INACTIVE

Activate the command list by entering ACTONE and operand NODE1. The
operand is the name of the logical unit to be activated. This operand supplies the

&CONTROL ERR
* ACTONE COMMAND LIST
* THIS COMMAND LIST ISSUES A VTAM "V NET,ACT" COMMAND, TRAPS ITS
* MESSAGES AND REFORMATS THEM.
* *
*
* IF THERE IS NO INPUT PARAMETER, ASK FOR ONE
&IF &1 = '' &THEN &GOTO -BADIN
* SAVE THE INPUT PARAMETER
&LU = &1
* END THE WAIT WITH THE FIRST MESSAGE AND DO NOT DISPLAY THE
* INPUT MESSAGE ON THE SCREEN
&WAIT ENDWAIT SUPPRESS
* ISSUE WAIT WITH THE COMMAND
&WAIT ’V NET,ACT,ID=&LU’,IST093I=-REFORM,*ERROR=-FAIL,+

IST105I=-FAIL,*ENDWAIT=-GOIN
-REFORM
* REFORMAT MESSAGE IST093I (SUCCESSFUL) AND WRITE TO THE SCREEN
* &1 IN THE FOLLOWING LINE IS NOT THE ORIGINAL &1
&ACTIV = &1
&WRITE VTAM MESSAGE IST093I WAS RECEIVED
-REFORM
&WRITE &ACTIV IS NOW ACTIVE
&GOTO -ENDALL
-FAIL
* REFORMAT MESSAGE IST105I (UNSUCCESSFUL) AND WRITE TO THE SCREEN
&WRITE &LU COULD NOT BE ACTIVATED
&GOTO -ENDALL
-GOIN
* IF "GO" ISSUED, INDICATE THAT MESSAGES HAVE NOT BEEN RECEIVED
&WRITE "GO" INPUT COMMAND LIST ACTONE -- &LU IS NOT ACTIVE NOW
&GOTO -ENDALL
-BADIN
&WRITE RE-CALL COMMAND LIST ACTONE WITH PARAMETER OF LU TO BE ACTIVATED
-ENDALL
&WRITE COMMAND LIST ACTONE COMPLETE
&EXIT

Figure 44. Command List Issuing &WAIT for One Message

NetView Command List Language Branching

144 Programming: REXX and the NetView Command List Language

value for parameter variable &1. Receipt of a message indicating success (IST093I)
or failure (IST105I) causes the wait to end because ENDWAIT was specified.
Processing continues at the specified label (-REFORM for IST093I, -FAIL for
IST105I). The awaited messages are not displayed because SUPPRESS was
specified, but any other messages are displayed.

Upon successful activation of NODE1, the message text shown in Figure 45 is
displayed on the operator terminal:

ACTONE NODE1
IST097I VARY ACCEPTED
VTAM MESSAGE IST093I WAS RECEIVED
NODE1 IS NOW ACTIVE
COMMAND LIST ACTONE COMPLETE

Figure 45. ACTONE NODE1 Message Text

NetView Command List Language Branching

Appendix B. NetView Command List Language Branching 145

146 Programming: REXX and the NetView Command List Language

Appendix C. NetView Command List Language Global
Variables

This chapter describes the use of global variables in the NetView command list
language. Global variables enable values to be defined, referenced, and updated by
different operators. Values are passed to a command list for updates, and the
updated values can then be referenced by other command lists. For example,
command list CLISTA can assign a value to a task global variable, &VAR1, and
then activate its nested command list, CLISTB. The nested command list, CLISTB,
can check the value assigned to &VAR1 by CLISTA, update the value, and return
control to CLISTA. The original command list, CLISTA, now has access to the
value assigned to &VAR1 by CLISTB.

The two types of global variables are task and common.

Task global variables can be defined, referenced, and updated by any command list
running under a particular task. Task global variables can be referenced only by
command lists running under the task in which the variable was defined.

Common global variables enable definition of user variables that can be referenced
by command lists running under any NetView task that supports command list
processing.

The NetView program provides two methods to access global variables:
v You can use &TGLOBAL, &CGLOBAL, and GLOBALV DEF to provide direct

reference to global variables.
v You can use the GLOBALV GET and PUT commands to copy and replace global

variable values.

Refer to the NetView online help for more information about the GLOBALV
command.

Notes:

1. Use caution when mixing &TGLOBAL, &CGLOBAL, or GLOBALV DEF with
the GLOBALV GET or PUT command. Using both methods to access global
variables of the same name within a single NetView command list language
command list is not recommended.
A direct set affects how subsequent copying and replacing are performed.
GLOBALV GETs and PUTs copy the value from one dictionary to the other.
&TGLOBAL and &CGLOBAL and GLOBALV DEFT or DEFC let you reference
the global variable and set it directly from that statement forward in the
command list. While each command provides function, use only one or the
other within a single NetView command list.

2. When you create global variables, the variable can be 1 - 11 characters in
length. A - Z, 0 - 9, #, @, and $ are valid characters.

3. The value of the global variable can be 255 characters long. The maximum
number of double-byte characters between the shift-out (X'0E') and shift-in
(X'0F') control characters is 126.

4. You can give global variables a numeric value between -2147483647 and
2147483647. Numeric values outside these limits are treated as character strings.

© Copyright IBM Corp. 1997, 2011 147

Using &TGLOBAL and &CGLOBAL
You can specify more than one global variable using the &TGLOBAL and
&CGLOBAL control statements. The variable names must be delimited by a
comma or blank.

On the definition statement, do not code an & with the global variable name
except where you want variable substitution performed. Substitution occurs for
any variable with an ampersand (&). Whenever you use the global variables
(except when defining them), you must append an & to the variable name, just as
you do for user variables.

You need two &s when referencing a global variable indirectly. See “Using
Parameter Variables in a Command List” on page 103 and “Variable Substitution
Order” on page 101 for more information about indirect referencing of variables.

&TGLOBAL
A task global variable can be referenced only by command lists that run under the
same task.

Use the &TGLOBAL control statement to define any variable as a task global
variable. The syntax of the &TGLOBAL control statement follows:

This statement defines the listed variables as task global variables. The value of
any variable defined by this statement is whatever was most recently assigned to it
by another command list running under the same task. If no value was assigned,
the value is undefined or null, and any attempt to retrieve the value causes a null
value to be returned. If you do not use the &TGLOBAL statement in each
command list before a variable is referenced, that variable defaults to a local user
variable.

The following example shows using the &TGLOBAL control statement:

The first line consists of a local user variable set to the value JOHN. The second
line defines two task global variables in the following way:
v ABC becomes task global variable &ABC. The value of &ABC is null because a

value was not defined.
v The value of &JOHN is null because a value has not been defined. This is an

example of indirect referencing of variables.

See “Extent of Variables When Using &TGLOBAL and &CGLOBAL” on page 151
for information about the interaction of task global variables with user variables
and common global variables.

&TGLOBAL

�� �&TGLOBAL variable ��

&NAME = JOHN
&TGLOBAL ABC,&NAME

NetView Command List Language Global Variables

148 Programming: REXX and the NetView Command List Language

If you specify more than one variable name on the &TGLOBAL statement, the
variable names must be delimited by commas or blanks.

Note the following suggestions for using task global variables:
v The PROFILE IC can set task global variables to indicate a message suppression

level or message compression that is different for different types of operators.
Command lists driven by various messages can test these variables to determine
what information that a particular operator needs.

v Any command list can set up and initialize any number of parameters for
another command list running under the same operator task. This improves
nested command list communication because task global variables can return
information from a nested command list.

&CGLOBAL
Use the &CGLOBAL control statement to define any variable as a common global
variable. The syntax of the &CGLOBAL control statement follows:

This statement defines the listed variables as common global variables. The value
of any variable defined by this statement is whatever was most recently assigned
to it by any other command list. If no value was assigned, the value is undefined
or null, and any attempt to retrieve the value causes a null value to be returned. If
you do not use the &CGLOBAL statement in each command list before a variable
is referenced, that variable defaults to a local user variable.

An example using the &CGLOBAL control statement follows:

The first line consists of a local user variable set to the value JOHN. The second
line defines two common global variables:
v ABC becomes common global variable &ABC. The value of &ABC is null

because a value is not defined.
v &NAME becomes common global variable &JOHN. Because &NAME has a

value of JOHN, the &NAME on this line gets substituted as JOHN. This defines
the common global variable &JOHN. The value of &JOHN is null because a
value is not defined.

If you have more than one command list running under different tasks accessing
the same global variable, the last value that the variable is set to is the value that is
set by any command list changing the variable. For example, a command list
accesses a common global variable and then before that command list updates the
variable, another command list running under a different task accesses the
variable. If both command lists update the variable, the variable assumes the value
given to it by the command list that updates it last.

To prevent a common global variable from being updated by different command
lists at the same time, you can have all command lists that update the variable run

&CGLOBAL

�� �&CGLOBAL variable ��

&NAME = JOHN
&CGLOBAL ABC,&NAME

NetView Command List Language Global Variables

Appendix C. NetView Command List Language Global Variables 149

under the same task. See “Extent of Variables When Using &TGLOBAL and
&CGLOBAL” on page 151 for information about the interaction of common global
variables with user variables and task global variables.

If you specify more than one variable name on the &CGLOBAL statement, the
variable names must be delimited by commas or blanks.

You can use the command lists UPDCGLOB and SETCGLOB command lists
supplied with the NetView product to update and set common global variables.
Refer to the NetView online help for information.

You can use common global variables to maintain accurate information about the
network regardless of operators logging on and off.

You can use common global variables to keep cumulative information from
unsolicited access method messages. For example, you can use notification of a
failing resource to recover the resource. With a global variable, you can maintain a
count of the number of retries to prevent a loop.

Updating Task Global Variables Using &TGLOBAL
The following two examples show command lists. The first command list, CLIST1,
calls the nested command list UPDT1. The CLIST1 and UPDT1 command lists
show how to define, reference, and update a task global variable.

CLIST1 in Figure 46 defines a task global variable, SYSVAR1. The value of the task
global variable SYSVAR1 returns a null value until a value is assigned using the
assignment statement, &SYSVAR1 = 5. CLIST1 activates a nested command list
named UPDT1.

* THIS STATEMENT DEFINES SYSVAR1 AS A TASK GLOBAL VARIABLE.
&TGLOBAL SYSVAR1

* THIS ASSIGNMENT STATEMENT GIVES THE TASK GLOBAL
* VARIABLE, "SYSVAR1", A VALUE OF 5.

&SYSVAR1 = 5
* THIS STATEMENT CALLS A NESTED COMMAND LIST NAMED UPDT1.
* SYSVAR1 IS A PARAMETER THAT IS PASSED TO COMMAND LIST UPDT1.

UPDT1 SYSVAR1
* THIS STATEMENT WILL WRITE VALUE OF SYSVAR1.

&WRITE SYSVAR1 = &SYSVAR1
&EXIT

Figure 46. CLIST1 Command List to Define, Update, and Reference Task Global Variables

NetView Command List Language Global Variables

150 Programming: REXX and the NetView Command List Language

UPDT1 in Figure 47 on page 151 redefines the value stored in task global variable
&1. Task global variable &1 gets its original value from SYSVAR1, which was the
first (and only) variable passed to UPDT1 when it was called by CLIST1. Because
the NetView program scans variables from right to left, the &1 part of &&1 is
evaluated first, and the value of &1 is equal to the value of SYSVAR1. The value of
the task global variable is referenced as &SYSVAR1. The initial value of &SYSVAR1
is 5, and then &SYSVAR1 is incremented by 1 using the &&1 = &&1 + 1 statement.
(&SYSVAR1 = &SYSVAR1 + 1 after it is evaluated by the NetView program.)

The updated value is available as a task global variable &SYSVAR1 in CLIST1. The
&WRITE SYSVAR1 = &SYSVAR1 statement displays the updated value of the
&SYSVAR1 task global variable.

Extent of Variables When Using &TGLOBAL and &CGLOBAL
If you define a global variable with the same name as a local variable, the value of
the local variable is lost. The global variable does not receive the value of the local
variable. The value of the global variable is null until a value is assigned.

If a command list defines a common global variable after the task global variable is
defined and has the same name as a task global variable, the value of the task
global variable remains unchanged. However, this command list can no longer
access the value of the task global variable unless you redefine the variable using
&TGLOBAL.

If a command list defines a task global variable after the common global variable is
defined with the same name as a common global variable, the value of the
common global variable remains unchanged. However, this command list can no
longer access the value of the common global variable unless you redefine the
variable using &CGLOBAL.

GLOBVAR1, Figure 48 on page 152, illustrates the extent of user variables, task
global variables, and common global variables within individual command lists
and command lists running under different tasks. This command list gives you
examples of the following variable manipulations:
v Assigning values to user variables
v Defining task global variables
v Defining common global variables
v Setting values for common global variables

* THIS STATEMENT DEFINES &1 AS A TASK GLOBAL VARIABLE.
* &1 IS SET TO THE VALUE OF THE POSITIONAL PARAMETER
* SYSVAR1, WHICH ON THE FIRST PASS IN THIS CASE IS 5.

&TGLOBAL &1
* THIS STATEMENT TESTS FOR A NULL VALUE AND INITIALIZES
* THE TASK GLOBAL VARIABLE PASSED AS &1 TO A VALUE OF
* 0 IF THE VALUE RETURNED WAS NULL.
* THE TASK GLOBAL VARIABLE PASSED AS &1 IS REFERENCED
* AS &&1. THE VALUE OF &&1 IS EQUAL TO THE VALUE OF SYSVAR1,
* WHICH WAS PASSED TO COMMAND LIST UPDATE FROM CLIST1.

&IF &&1 EQ '' &THEN &&1 = 0
* THIS STATEMENT UPDATES THE TASK GLOBAL VARIABLE, &&1,
* BY AN INCREMENT OF 1.
* THIS UPDATED VALUE OF &&1 PASSED BACK TO CLIST1
* AS TASK VARIABLE &SYSVAR1.

&&1 = &&1 + 1
&EXIT

Figure 47. UPDT1 Command List to Update Task Global Variables

NetView Command List Language Global Variables

Appendix C. NetView Command List Language Global Variables 151

v Changing common global to task global variables.

The following example shows a command list containing global variables. In the
example, the values of the variables are shown in parentheses.

&CONTROL ERR
*** CLIST NAME: GLOBVAR1
*** ASSIGN VALUES TO SEVERAL USER VARIABLES AND PRINT THEIR VALUES
**

&OPER = OPER1
&VTLV = VT33
&DOM1 = CNM01002
CLEAR
&BEGWRITE SUB -ENDLOCAL

FROM GLOBVAR1: AFTER LOCAL VARIABLES ASSIGNED
VARIABLE VARIABLE VARIABLE

TYPE NAME VALUE
======== ======== ========

LOCAL OPER &OPER (OPER1)
LOCAL VTLV &VTLV (VT33)
LOCAL DOM1 &DOM1 (CNM01002)

-ENDLOCAL
*
*** DEFINE TASK GLOBAL VARIABLES

&TGLOBAL OPER VTLV CNT
&BEGWRITE SUB -ENDTG1

FROM GLOBVAR1: AFTER TGLOBAL VARIABLES DEFINED
VARIABLE VARIABLE VARIABLE

TYPE NAME VALUE
======== ======== ========

LOCAL DOM1 &DOM1 (CNM01002)
TASK OPER &OPER (NULL)
TASK VTLV &VTLV (NULL)
TASK CNT &CNT (NULL)

NOTE THAT THE VALUES ASSIGNED TO OPER AND VTLV
HAVE BEEN LOST AS THEY ARE NO LONGER LOCAL
VARIABLES AND THE TASK GLOBAL VARIABLES HAVE NOT
BEEN ASSIGNED YET.

-ENDTG1

Figure 48. GLOBVAR1 Example Showing Extent of Global Variables (Part 1 of 3)

NetView Command List Language Global Variables

152 Programming: REXX and the NetView Command List Language

*
*** ASSIGN VALUES TO THE TASK GLOBAL VARIABLES
**

&OPER = OPER2
&VTLV = VT33
&CNT = 3
&BEGWRITE SUB -ENDTG2

FROM GLOBVAR1: AFTER VALUES ASSIGNED TO TGLOBAL VARIABLES
VARIABLE VARIABLE VARIABLE

TYPE NAME VALUE
======== ======== ========

LOCAL DOM1 &DOM1 (CNM01002)
TASK OPER &OPER (OPER2)
TASK VTLV &VTLV (VT33)
TASK CNT &CNT (3)

-ENDTG2
*
*** DEFINE COMMON GLOBAL VARIABLES

&CGLOBAL OPER VTLV VAL
&BEGWRITE SUB -ENDTG3

FROM GLOBVAR1: AFTER CGLOBAL VARIABLES DEFINED
VARIABLE VARIABLE VARIABLE

TYPE NAME VALUE
======== ======== ========

LOCAL DOM1 &DOM1 (CNM01002)
TASK CNT &CNT (3)
COMMON OPER &OPER (NULL)
COMMON VTLV &VTLV (NULL)
COMMON VAL &VAL (NULL)

NOTE THAT THE VALUES ASSIGNED TO TASK GLOBAL
VARIABLES OPER AND VTLV HAVE BEEN REPLACED BY
COMMON GLOBAL VARIABLES OPER AND VTLV. THESE ARE
NULL AS NO VALUE HAS BEEN ASSIGNED TO THEM YET.

-ENDTG3

Figure 48. GLOBVAR1 Example Showing Extent of Global Variables (Part 2 of 3)

NetView Command List Language Global Variables

Appendix C. NetView Command List Language Global Variables 153

GLOBALV Command
The GLOBALV command is used to define, put, and get global variables in
NetView command list language command lists. The GLOBALV command also
saves global variables in a VSAM database. You can restore saved global variables
if the NetView program is stopped and restarted, or erase (purge) saved global
variables from external storage. Global variables enable multiple command
procedures, regardless of their language, to share a common set of values.

Refer to the NetView online help for more information about the GLOBALV
command.

*
*** ASSIGN VALUES TO COMMON GLOBAL VARIABLES
**

&OPER = OPER3
&VTLV = VT32
&VAL = HEX
&BEGWRITE SUB -ENDTG4

FROM GLOBVAR1: AFTER CGLOBAL VARIABLES ASSIGNED
VARIABLE VARIABLE VARIABLE

TYPE NAME VALUE
======== ======== ========

LOCAL DOM1 &DOM1 (CNM01002)
TASK CNT &CNT (3)
COMMON OPER &OPER (OPER3)
COMMON VTLV &VTLV (VT32)
COMMON VAL &VAL (HEX)

-ENDTG3
*** CHANGE ONE COMMON GLOBAL VARIABLE BACK TO A TASK GLOBAL VARIABLE
**

&TGLOBAL OPER
&BEGWRITE SUB -ENDTG5

FROM GLOBVAR1: AFTER FINAL TGLOBAL STATEMENT
VARIABLE VARIABLE VARIABLE

TYPE NAME VALUE
======== ======== ========

LOCAL DOM1 &DOM1 (CNM01002)
TASK CNT &CNT (3)
TASK OPER &OPER (OPER2)
COMMON VTLV &VTLV (VT32)
COMMON VAL &VAL (HEX)

NOTE THAT THE OPER NOW HAS THE VALUE OF THE TASK
GLOBAL VARIABLE OPER AGAIN AS THE MOST RECENT
DECLARATION STATEMENT DEFINED IT AS TASK GLOBAL.

-ENDTG5

Figure 48. GLOBVAR1 Example Showing Extent of Global Variables (Part 3 of 3)

NetView Command List Language Global Variables

154 Programming: REXX and the NetView Command List Language

Appendix D. Common Operations Services Commands

This chapter describes how to use the common operations services (COS)
commands.

Common Operations Services
The common operations services is a set of commands that supports and enhances
NetView control of common operations, for example, NetView/PC. A COS
application manages nonsystem network architecture devices, such as front-end
line switches and multiplexers. You can send commands to the COS application to
do problem determination for these devices.

For detailed information about the vector formats used by COS, refer to
NetView/PC: Application Programming.

Four NetView COS commands are used with NetView/PC for problem
determination:

LINKTEST
Requests that the COS test a given link or link segment

LINKDATA
Requests that the COS return device data for a given link or link segment

LINKPD
Requests problem determination analysis from the COS on a given link or
link segment

RUNCMD
Sends COS application commands to the COS applications from the
NetView program

Refer to the NetView online help for the syntax of the LINKTEST, LINKDATA,
LINKPD, and RUNCMD commands.

The COS commands are long-running commands that suspend the command list
when they are processed. The command list resumes when the COS command is
complete. While the command list is suspended, no other commands waiting on
the low-priority queue of the task running the command list are processed until
the command list completes. This ensures that commands on the low-priority
queue can be processed in order.

You cannot use the NetView command list language &WAIT control statement or
the REXX TRAP and WAIT functions with the COS commands. Use automation
table-driven command lists to trap messages generated from the COS commands,
except for:
v LINKPD messages

– DSI533I
– DSI534I
– DSI535I
– DSI536I
– DSI582I

© Copyright IBM Corp. 1997, 2011 155

These five messages are set to values you can use in the form of control and
parameter variables. See “LINKPD Results” on page 157 for more information
about LINKPD results.

v Responses to RUNCMD with the CLISTVAR keyword. The CLISTVAR keyword
causes the responses to be stored in variables. See “RUNCMD Results” on page
158 for more information about RUNCMD results.

Common Operations Services Return Codes
After the command is completed, the RC for command lists written in REXX, or
&RETCODE for command lists written in the NetView command list language,
contains one of the following values:

Code Description

0 The command succeeded.

4 The command failed, CLISTVAR was specified with RUNCMD but no
response was returned, or the task is not authorized to issue the command.

16 The command was canceled by the CANCMD.

24 Some command list data was truncated.

28 The COS application returned more than 132 responses for the RUNCMD
with the CLISTVAR keyword.

32 The COS application did not respond within the amount of time specified
by the COS command timeout value in the NetView constants module.

LINKDATA and LINKTEST Results
You can use LINKDATA and LINKTEST in command lists to manage COS, for
example, NetView/PC. Refer to the NetView online help for the formats of these
commands.

Use the variable name without the ampersand for REXX command lists and the
variable name with the ampersand for NetView command list language command
lists.

Note: The path number is 01 for LINKTEST and LINKDATA.

LINKDATA and LINKTEST Variables
You can use the following LINKDATA and LINKTEST variable names in command
lists:

DSIPATHCNT or &DSIPATHCNT
Specifies the number of paths returned. It is always 01 for LINK
commands. The path count is the origin of the value of pp in the following
variable names.

DSIppRC or &DSIppRC
Specifies the number of resources for path pp. The resource count is the
origin of the value of rr in the following variable names.

DSIpprrEC or &DSIpprrEC
Specifies the number of entries for resource rr on path pp. The entry count
is the origin of the value of ee in the following variable names.

DSIpprrRN or &DSIpprrRN
Specifies the name of the resource rr on path pp.

Advanced Topics

156 Programming: REXX and the NetView Command List Language

DSIpprrRT or &DSIpprrRT
Specifies the type of the resource rr on path pp.

DSIpprreeDN or &DSIpprreeDN
Specifies the name of the data item ee for resource rr on path pp.

DSIpprreeDT or &DSIpprreeDT
Specifies the type of data item ee for resource rr on path pp. The following
values are possible:
v BIT STRING
v CHARACTER
v DECIMAL
v HEXADECIMAL

DSIpprreeDV or &DSIpprreeDV
Specifies the value of data item ee for resource rr on path pp.

The italicized letters in the variable names are replaced with the following values:
pp Path number (01)
rr Resource number (01-99)
ee Entry number (01-99)

LINKTEST Additional Variables
In addition, LINKTEST uses the following variables:

DSIREQUEST or &DSIREQUEST
Specifies the number of tests requested.

DSIACTUAL or &DSIACTUAL
Specifies the actual number of tests processed.

DSITESTTYPE or &DSITESTTYPE
Indicates the type of test data reported. The following values are possible:
v BACKGROUND
v REQUESTED

DSIRESULT or &DSIRESULT
Indication of the overall results of the test processing. The following values
are possible:
v PASSED
v FAILED
v INDETERMINATE

LINKPD Results
Results from the LINKPD command are returned in messages that you can use in
a command list to automate the recovery of resources controlled by a COS, for
example, NetView/PC.

LINK results can be accessed by the MSGCNT(), MSGID(), MSGORIGN(),
MSGSTR(), MSGTYP(), and MSGVAR(1) through MSGVAR(31) functions.

For more information about the REXX functions MSGORIGN(), MSGID(),
MSGCNT(), MSGSTR(), and MSGTYP(), see “Message Processing Information
Functions” on page 52. For more information about MSGVAR(1) through
MSGVAR(31), see “Functions Set by MSGREAD” on page 37.

LINKPD results can be accessed by the &MSGCNT, &MSGID, &MSGORIGIN,
&MSGSTR, &MSGTYP control variables, and the parameter variables &1-&31.

Advanced Topics

Appendix D. Common Operations Services Commands 157

For more information about the NetView command list language control variables
&MSGCNT, &MSGID, &MSGORIGIN, &MSGSTR, and &MSGTYP see “Message
Processing Information Functions” on page 52. For more information about
parameter variables used in command lists written in the NetView command list
language, see “Parameter Variables” on page 102.

RUNCMD Results
If you use RUNCMD without the CLISTVAR keyword, responses from the COS
application that performed the RUNCMD are sent to the network operator
terminal, and a return code is set. See “Common Operations Services Return
Codes” on page 156 for a description of the return codes.

In REXX, the return code is returned in the RC variable.

In NetView command list language, the return code is returned in the &RETCODE
variable.

If you use RUNCMD with the CLISTVAR keyword, the command has the
following results:
v A return code is set (RC or &RETCODE); see “Common Operations Services

Return Codes” on page 156 for a description of the return codes.
v If the command completes with a return code of 0, 24, or 28, the following

variables are set.

Note: Use the variable name without the ampersand for REXX command lists.
Use the variable name with the ampersand for NetView command list
language command lists.

DSIRUNCNT or &DSIRUNCNT
Contains the number of responses returned from the COS application.
The variable has a value in the range 001–998.

DSIRUNxxx or &DSIRUNxxx
Contains the different responses from the COS application. The
responses are numbered 001–998.

Note: The responses from the COS must be character data and cannot
be longer than 255 characters.

If you use RUNCMD with CLISTVAR=YES in a PIPE command, you receive
message BNH074I. This occurs even if the PIPE command is issued from a
NetView command list. You must use CLISTVAR=NO (the default) in the PIPE
command.

Using RUNCMD in a Pipeline
An alternative to using CLISTVAR=YES is to run your RUNCMDs in a pipeline.
Using pipelines has the following advantages:
v You can run multiple calls of RUNCMD in parallel.
v You have direct control over the timeout value.
v You can filter the data in the pipeline before setting any variables.
v You can choose the names of variables. REXX-style stem names can be used.

For example, if you used the following segment of REXX code to set up commands
for service points:

Advanced Topics

158 Programming: REXX and the NetView Command List Language

RCMD.1 = ’RUNCMD SP=NT000001,APPL=APPLNAME,QUERY ABC’
RCMD.2 = ’RUNCMD SP=NT000002,APPL=APPLNAME,QUERY ABC’
RCMD.3 = ’RUNCMD SP=NT000003,APPL=APPLNAME,QUERY ABC’...
RCMD.100 = ’RUNCMD SP=NT000100,APPL=APPLNAME,QUERY ABC’
RCMD.0 = 100

You can then use the following command to issue all 100 commands as fast as the
requests can be scheduled, without waiting for results. The NetView program then
waits up to 120 seconds (between messages) for results and places the messages in
stem RESULT.

’PIPE STEM RCMD. | NETVIEW | CORRWAIT 120 | STEM RESULT.’

Notice that this command does not wait 120 seconds after the last result (assuming
all 100 commands have completed). The NetView program counts the commands
processed and notes when the last response to each command has arrived. The
results in stem RESULT. are not necessarily in the same order as the commands in
stem RCMD. because some service points respond faster than others. The number of
lines stored in RESULT. is found in RESULT.0.

For more information about using NetView pipelines, refer to IBM Tivoli NetView
for z/OS Programming: Pipes.

Advanced Topics

Appendix D. Common Operations Services Commands 159

160 Programming: REXX and the NetView Command List Language

Appendix E. Comparison of REXX and NetView Command List
Language

This appendix provides a brief comparison between REXX and the NetView
command list language.

Comparison of REXX Instructions and NetView Command List
Language Control Statements

Table 19 shows each control statement used in the NetView command list language
and provides the equivalent REXX instruction. The table is in alphabetic order
based on the name of the NetView command list language control statement.

The last column of the table indicates whether the corresponding REXX instruction
is a standard instruction provided by REXX or an instruction provided by the
NetView program.

Instructions provided by the NetView program can be used only with the Tivoli
NetView for z/OS program. These instructions are not supported by the REXX
interpreter and cannot be used in REXX execs run in a non-NetView environment.

Table 19. Comparison of REXX Instructions and NetView Command List Language Control
Statements

REXX Instruction
Described
on

NetView Control
Statement

Described
on

REXX Instruction
Provided By

None N/A &BEGWRITE 113 N/A

CGLOBAL(name) 52 &CGLOBAL 149 NetView

TRACE 32 &CONTROL 110 REXX

EXIT 131 &EXIT 131 REXX

SIGNAL 33 &GOTO 131 REXX

IF 129 &IF 129 REXX

PARSE EXTERNAL 26 &PAUSE 114 REXX

PARSE PULL 26 &PAUSE 114 REXX

TGLOBAL(name) 52 &TGLOBAL 148 NetView

TRAP * &WAIT 133 NetView

WAIT * &WAIT 133 NetView

MSGREAD * &WAIT 133 NetView

FLUSHQ * &WAIT 133 NetView

SAY 27 &WRITE 112 REXX

* See the IBM Tivoli NetView for z/OS Command Reference Volume 2 (O-Z).

© Copyright IBM Corp. 1997, 2011 161

Comparison of REXX Functions and NetView Command List Language
Control Variables and Functions

Table 20 shows the various control variables and functions used in the NetView
command list language and the equivalent REXX functions.

If the function is provided by the NetView program, it can be used only with the
NetView program and is not supported by SAA REXX.

Table 20. Comparison of REXX Functions and NetView Command List Language Control
Variables and Functions

REXX
Function or Variable

Described
on

NetView
Control Variable

REXX Function
Provided By

ACTIONDL() 53 &ACTIONDL NetView

ACTIONMG() 53 &ACTIONMG NetView

APPLID() 83 &APPLID NetView

AREAID() 53 &AREAID NetView

ASID() 83 &ASID NetView

ATTENDED() 83 &ATTENDED NetView

ATTNID() 53 &ATTNID NetView

AUTCONID() 83 &AUTCONID NetView

AUTHCHK(...) 44 None NetView

AUTHCHKX(...) 46 None NetView

AUTOTASK() 83 &AUTOTASK NetView

AUTOTOKE() 53 &AUTOTOKE NetView

BITAND(...) 117 &BITAND REXX

BITOR(...) 118 &BITOR REXX

BITXOR(...) 119 &BITXOR REXX

CGI() 83 None NetView

CGLOBAL(name) 52, 149 &CGLOBAL NetView

CMDNAME() 48 None NetView

CODE2TXT(...) 40 None NetView

|| 119 &CONCAT REXX

CURCONID() 84 &CURCONID NetView

CURSYS() 84 &CURSYS NetView

DATE() 88 &DATE REXX

DESC() 53 &DESC NetView

DISC() 84 &DISC NetView

DISTAUTO() 84 &DISTAUTO NetView

DOMAIN() 84 &DOMAIN NetView

DOMAIN('x') 84 None NetView

ECVTPSEQ() 84 &ECVTPSEQ NetView

ENVDATA('x') 84 None NetView

EVENT() 54 None NetView

REXX/NetView Command List Language Comparison

162 Programming: REXX and the NetView Command List Language

Table 20. Comparison of REXX Functions and NetView Command List Language Control
Variables and Functions (continued)

REXX
Function or Variable

Described
on

NetView
Control Variable

REXX Function
Provided By

FNDMBR(...) 50 None NetView

HCOPY() 87 &HCOPY NetView

HDRMTYPE() 54 &HDRMTYPE NetView

HIER(n) 68, 120 &HIER NetView

HMASPRID() 68 None NetView

HMBLKACT() 69 None NetView

HMCPLINK() 69 None NetView

HMEPNAU() 70 None NetView

HMEPNET() 70 None NetView

HMEPNETV() 71 None NetView

HMEVTYPE() 71 None NetView

HMFWDED() 72 None NetView

HMFWDSNA() 72 None NetView

HMGENCAU() 73 None NetView

HMONMSU() 73 None NetView

HMORIGIN() 74 None NetView

HMSECREC() 74 None NetView

HMSPECAU() 75 None NetView

HMUSRDAT() 76 None NetView

IFRAUGMT() 54 &IFRAUGMT NetView

IFRAUIND() 54 &IFRAUIND NetView

IFRAUIN3() 55 &IFRAUIN3 NetView

IFRAUI3X() 55 &IFRAUI3X NetView

IFRAUSDR() 55 &IFRAUSDR NetView

IFRAUSRB() 55 &IFRAUSRB NetView

IFRAUSB2() 55 &IFRAUSB2 NetView

IFRAUSRC() 55 &IFRAUSRC NetView

IFRAUSC2() 55 &IFRAUSC2 NetView

IFRAUTA1() 56 &IFRAUTA1 NetView

IFRAUWF1() 56 &IFRAUWF1 NetView

JOBNAME() 56 &JOBNAME NetView

JOBNUM() 56 &JOBNUM NetView

KEY() 56 &KEY NetView

LENGTH(...) 122 &LENGTH REXX

LINETYPE() 57 &LINETYPE NetView

LU() 88 &LU NetView

MCSFLAG() 57 &MCSFLAG NetView

MSGASID() 57 &MSGASID NetView

REXX/NetView Command List Language Comparison

Appendix E. Comparison of REXX and NetView Command List Language 163

Table 20. Comparison of REXX Functions and NetView Command List Language Control
Variables and Functions (continued)

REXX
Function or Variable

Described
on

NetView
Control Variable

REXX Function
Provided By

MSGAUTH() 57 &MSGAUTH NetView

MSGCATTR() 57 &MSGCATTR NetView

MSGCMISC() 57 &MSGCMISC NetView

MSGCMLVL() 58 &MSGCMLVL NetView

MSGCMSGT() 58 &MSGCMSGT NetView

MSGCNT() 58 &MSGCNT NetView

MSGCOJBN() 58 &MSGCOJBN NetView

MSGCPROD() 58 &MSGCPROD NetView

MSGCSPLX() 58 &MSGCSPLX NetView

MSGCSYID() 58 &MSGCSYID NetView

MSGDOMFL() 59 &MSGDOMFL NetView

MSGGBGPA() 59 &MSGGBGPA NetView

MSGGDATE() 59 &MSGGDATE NetView

MSGGFGPA() 59 &MSGGFGPA NetView

MSGGMFLG() 59 &MSGGMFLG NetView

MSGGMID() 60 &MSGGMID NetView

MSGGSEQ() 60 &MSGGSEQ NetView

MSGGSYID() 60 &MSGGSYID NetView

MSGGTIME() 60 &MSGGTIME NetView

MSGID() 60 &MSGID NetView

MSGITEM() 60 None NetView

MSGORIGN() 61 &MSGORIGIN NetView

MSGSRCNM() 61 &MSGSRCNM NetView

MSGSTR() 62 &MSGSTR NetView

MSGTOKEN() 62 &MSGTOKEN NetView

MSGTSTMP() 62 &MSGTSTMP NetView

MSGTYP() 63 &MSGTYP NetView

MSGVAR() 63 None NetView

MSGVAR(number) 63 &1 - &31 NetView

MSUSEG(...) 76, 123 &MSUSEG NetView

MVSLEVEL() 84 &MVSLEVEL NetView

NVCNT() 49 &NCCFCNT NetView

NVDELID() 63 &NVDELID NetView

NVID(n) 50 &NCCFID NetView

NVSTAT(name) 50 &NCCFSTAT NetView

NETID() 84 &NETID NetView

NETVIEW() 85 &NETVIEW NetView

NETVIEW('x') 85 None NetView

REXX/NetView Command List Language Comparison

164 Programming: REXX and the NetView Command List Language

Table 20. Comparison of REXX Functions and NetView Command List Language Control
Variables and Functions (continued)

REXX
Function or Variable

Described
on

NetView
Control Variable

REXX Function
Provided By

OPID() 82 &OPID NetView

OPID('x') 82 None NetView

OPSYSTEM() 85 &OPSYSTEM NetView

PANEL() 85 None NetView

PARMCNT() 48 &PARMCNT NetView

ARG(1) 48 &PARMSTR REXX

PARTID() 85 &PARTID NetView

PRTY() 63 &PRTY NetView

REPLYID() 63 &REPLYID NetView

RC 49 &RETCODE REXX

ROUTCDE() 64 &ROUTCDE NetView

RXDEFENV() 87 &RXDEFENV NetView

RXDEFSTR() 87 &RXDEFSTR NetView

RXNUMENV() 87 &RXNUMENV NetView

RXOVRENV() 87 &RXOVRENV NetView

RXOVRSTR() 87 &RXOVRSTR NetView

SESSID() 64 &SESSID NetView

SMSGID() 64 &SMSGID NetView

STCKGMT() 85 &STCKGMT NetView

SUBSTR(...) 126 &SUBSTR REXX

SUBSYM(...) 42 None NetView

SUPPCHAR() 85 &SUPPCHAR NetView

SYSCONID() 64 &SYSCONID NetView

SYSID() 64 &SYSID NetView

SYSPLEX() 85 &SYSPLEX NetView

TASK() 85 &TASK NetView

TGLOBAL(name) 52, 148 &TGLOBAL NetView

TIME() 88 &TIME REXX

TOWER(...) 86 None NetView

TRAP() 86 None NetView

TYPE() 86 None NetView

VTAM() 86 &VTAM NetView

VTCOMPID() 86 &VTCOMPID NetView

WEEKDAYN() 87 &WEEKDAYN NetView

WTO.REPLY 64 &WTOREPLY NetView

REXX/NetView Command List Language Comparison

Appendix E. Comparison of REXX and NetView Command List Language 165

Commands Used in Command Lists
These NetView commands that are described in theIBM Tivoli NetView for
z/OS Command Reference Volume 1 (A-N) and the IBM Tivoli NetView for
z/OS Command Reference Volume 2 (O-Z) are for use in command lists. Except for
the FLUSHQ, MSGREAD, TRAP, and WAIT commands, you can use these
commands in command lists written in REXX or in the NetView command list
language.
v DOM
v FLUSHQ
v GETMPRES
v GETMSIZE
v GETMTFLG
v GETMTYPE
v GLOBALV
v MSGREAD
v MSGROUTE
v PARSEL2R
v SDOMAIN (with QUIET option)
v TRAP
v WAIT
v WTO
v WTOR

Note: The FLUSHQ, MSGREAD, TRAP, and WAIT commands can be used only in
REXX command lists.

When using the commands in a REXX command list, enclose in single quotation
marks the parts of the command on which you do not want variable substitution
to take place.

Command List Commands

166 Programming: REXX and the NetView Command List Language

Appendix F. Command List Examples Index

This appendix contains reference tables for the REXX and NetView command list
examples contained in this book. Entries in the tables are listed in alphabetic order.

The tables show the name of the command list example, a brief description of its
function, and where to find the example in this book.

REXX Command List Examples
Table 21 lists the REXX command list examples shown in this book.

Table 21. REXX Command List Examples Reference

Command List
Example Description Location

ACTAPPLS This command list displays active applications. Figure 49 on
page 169

ACTLU This command list activates a VTAM node. Figure 50 on
page 171

CHKOPNUM This command list shows how basic REXX functions and NetView-specific
functions can be used in command lists. CHKOPNUM illustrates the use of such
things as the REXX PARSE instruction, and the NetView MSGTRAP, WAIT,
MSGREAD, and GLOBALV commands.

Figure 51 on
page 172

CHKRSTAT This command list shows how more complex REXX functions and
NetView-specific functions can be used in command lists. CHKRSTAT illustrates
the use of the REXX INTERPRET instruction, and the NetView WAIT and
GETMLINE commands.

Figure 52 on
page 174

CNMS1101 This command list is an example of PPI communication and of full screen
automation.

“CNMS1101”
on page 175

CNME1080 This is an example of updating a common global variable re-entrantly. “CNME1080”
on page 187

CNMESRVAR This is an example of updating a single Revision Variable. “CNMSRVAR
Example” on
page 188

CNMSRVMC This is an example of Command Revision's NETVONLY action. “CNMSRVMC
Example” on
page 191

DSPRSTAT This command list can be used by an operator station task (OST) operator to
display the results of several runs of the CHKRSTAT command list for a specific
resource. Use DSPRSTAT as an aid when you must determine how often a
resource is active, based on the intervals in which it was checked by the
CHKRSTAT command list.

Figure 57 on
page 194

GETCG The GETCG command list gets the value of a common global variable and
displays it to the requesting task.

Figure 58 on
page 195

GREETING This command list shows an example of waiting and trapping using the DATE
command.

Figure 59 on
page 195

LISTVAR Refer to the NetView online help for a functional description of this command
list.

Figure 60 on
page 196

PRINT This command list prints members of a data set to a system print file. Figure 61 on
page 198

© Copyright IBM Corp. 1997, 2011 167

Table 21. REXX Command List Examples Reference (continued)

Command List
Example Description Location

TYPE This command list displays members of a data set one line at a time at the
terminal of the user who issued it.

Figure 62 on
page 199

TYPEIT This command list displays members of a data set one line at a time at the
terminal of the user who issued it.

Figure 63 on
page 200

NetView Command List Language Examples
Table 22 lists the NetView command list language command list examples shown
in this book.

Table 22. NetView Command List Examples Reference

Command List
Example Description Location

ACTONE This command list issues a VTAM command to activate a logical unit (LU). The
ACTONE command list shows the use of &WAIT to wait for one message.

Figure 44 on
page 144

CLIST1 The CLIST1 command list contains the nested command list UPDT1. CLIST1 and
UPDT1 show how to define, reference, and update a task global variable.

Figure 46 on
page 150

GLOBVAR1 The GLOBVAR1 command list illustrates the scope of user variables, task global
variables, and common global variables within individual command lists.

Figure 48 on
page 152

PATH This command list uses the &WRITE control statement and a VTAM command. “&WRITE
Control
Statement” on
page 112

UPDT1 The CLIST1 command list contains the nested command list UPDT1. CLIST1 and
UPDT1 show how to define, reference, and update a task global variable.

Figure 47 on
page 151

REXX Examples Index

168 Programming: REXX and the NetView Command List Language

Appendix G. Examples of REXX Command Lists for NetView

This section contains examples of REXX command lists written for the NetView
program. These examples show how you can use the instructions and functions
provided by NetView and the standard REXX instructions and functions together
in REXX command lists running in a NetView environment.

ACTAPPLS Example

/* ***/
/* */
/* ACTAPPLS - REXX VERSION */
/* */
/* DISPLAY ONLY THE ACTIVE APPLS */
/* */
/* ***/
TRACE E
SAY ’ACTIVE APPLICATIONS:’ /* Write the header */
SAY ’====================’
’TRAP SUPPRESS MESSAGES IST350I IST097I’ /* Wait on the display */
’D NET,APPLS’
’WAIT 60 SECONDS FOR MESSAGES’
DO WHILE EVENT() = ’M’

SELECT /* SELECT on all events */
WHEN EVENT() = ’M’ THEN

DO
’MSGREAD’
SELECT /* SELECT on message */

WHEN MSGID()=’IST350I’ THEN
CALL FIRST

OTHERWISE
CALL ALLELSE

END /* END - SELECT */
’WAIT CONTINUE’

END /* EVENT() = M do loop */
OTHERWISE

DO
’TRAP NO MESSAGES’
’FLUSHQ’

END
END /* END - SELECT */

END /* END - DO WHILE */

/* */
/* ALL NON-INFORMATIONAL MESSAGES GO HERE */
/* */
ALLELSE:
RETURN
/* */
/* THE MULTILINE WTO WITH THE APPL INFORMATION COMES HERE */
/* */

Figure 49. ACTAPPLS Example (Part 1 of 2)

© Copyright IBM Corp. 1997, 2011 169

FIRST:
’GETMSIZE NUMLINES’ /* Determine the number of lines */
I = 0 /* Initialize line number counter*/
TOTALACT = 0 /* Initialize total active appls */
DO WHILE NUMLINES ¬= I /* DO for all lines */

NUMACT = 0 /* Number of active appls found
on this line */

I = I + 1 /* Bump the line counter */
’GETMLINE LINE’ VALUE(I) /* How many lines in the MLWTO? */

/* PARSE OUT THE LINE, A1 A2 A3 ARE APPL NAMES, S1 S2 S3 ARE STATUS */
PARSE VAR LINE MSG A.1 S.1 A.2 S.2 A.3 S.3 .

DO CURR = 1 TO 3
IF S.CURR ¬= ’’ THEN /* Do we have a status? */

DO
IF S.CURR = ’ACTIV’ THEN /* Is the current APPL active? */

NUMACT = NUMACT + 1 /* Bump the number active count */
ELSE

DO
S.CURR = ’’ /* APPL not active, so blank out */
A.CURR = ’

END
END

ELSE
A.CURR = ’’ /* Not an APPL */

END /* END - DO CURR */
IF NUMACT ¬= 0 & (A.1 ¬= ’’ | A.2 ¬= ’’ | A.3 ¬= ’’) THEN

SAY STRIP(A.1 A.2 A.3,’L’)
TOTALACT = TOTALACT + NUMACT /* Bump the total active counter */

END /* END - DO WHILE */

SAY ’ ’ /* Blank line */
SAY ’NUMBER OF APPLICATIONS ACTIVE: ’TOTALACT
EXIT

Figure 49. ACTAPPLS Example (Part 2 of 2)

REXX Command Lists

170 Programming: REXX and the NetView Command List Language

ACTLU Example

CHKOPNUM Example
Figure 51 on page 172 is an example of a command list that uses the PARSE
instruction.

/* ACTLU COMMAND LIST - REXX VERSION */
/* FUNCTION : TO ACTIVATE A VTAM NODE. */
/* INPUT : 1 PARAMETER, THE NAME OF THE NODE. */
/**/
IF MSGVAR(1) = ’’ THEN /* NO FIRST PARAMETER ? */

DO /* THEN ISSUE REQUEST */
SAY ’PLEASE ENTER "GO NODENAME"’,/* REQUEST NODENAME FROM USER */

’OR "GO STOP" TO CONTINUE’ /* OR, ALLOW USER TO STOP CLIST */
PARSE PULL NODE /* NODE = NODENAME OR STOP */

END /* THEN ISSUE REQUEST */
ELSE /* FIRST PARAMETER EXISTS */

NODE = MSGVAR(1) /* ASSUME IT IS A NODE NAME */
/* IF NODE=’STOP’ CLIST ENDS */

IF NODE¬=’STOP’ THEN /* DID USER CHOOSE TO STOP ? */
DO /* PROCESS NODENAME */

’TRAP AND SUPPRESS ONLY MESSAGES IST* ’ /* TRAP ALL VTAM MSGS */
’V NET,ACT,ID=’NODE /* ISSUE VTAM ACTIVATE FOR NODE */
IF RC=0 THEN /* VALID NODE NAME ? */

DO /* YES, RETURN CODE = 0 */
’WAIT 30 SECONDS FOR MESSAGES’ /* WAIT FOR 30 SECONDS */
IF EVENT()=’M’ THEN /* OUT OF WAIT - IS THERE A MSG? */

DO /* PROCESS TRAPPED MESSAGE */
’MSGREAD’ /* READ IN 1ST MESSAGE */
DO WHILE (RC=0) /* IF RC¬=0 THEN NO MORE MSGS */

SELECT /* DETERMINE WHICH MESSAGE HIT */
WHEN (MSGID() = ’IST061I’) /* NODE NOT FOUND */

THEN SAY ’==> LU UNKNOWN ’, /* INFORM USER */
’TO YOUR VTAM <==’

WHEN (MSGID() = ’IST093I’) /* NODE NOW ACTIVE */
THEN SAY ’==> TERMINAL ’, /* INFORM USER */

MSGVAR(1)’ NOW ’,
MSGVAR(2) ’<==’

OTHERWISE /* IGNORE THE VTAM MESSAGE */
’WAIT CONTINUE’ /* CONTINUE WAITING */

END /* OF SELECT FOR IST061I/IST093I */
’MSGREAD’ /* READ IN THE NEXT MESSAGE */

END /* DO WHILE RC=0, LOOP BACK */
END /* PROCESS TRAPPED MESSAGE DO */

/* OUT OF DO WHILE, CHECK FOR
ERROR OR TIME-OUT EVENTS */

SELECT /* CHECK RESULT OF THE WAIT */
WHEN (EVENT()=’E’) THEN /* ERROR ENCOUNTERED ? */

SAY ’ERROR PROCESSING ’, /* INFORM USER */
’ACTIVATE COMMAND’

WHEN (EVENT()=’T’) THEN /* WAIT TIME-OUT ENCOUNTERED? */
SAY ’NO RESPONSE TO ’, /* INFORM USER */

’ACTLU CLIST FOR ’NODE
OTHERWISE /* NO-OP */

END /* OF SELECT FOR ERROR/TIME-OUT */
END /* IF RC=0 (VALID NODENAME) */

END /* IF NODE¬=’STOP’ PROCESSING */
EXIT

Figure 50. ACTLU Example

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 171

/**/
/* */
/* THE FOLLOWING REXX COMMAND LIST IS A FAIRLY SIMPLE EXAMPLE */
/* OF HOW SOME OF THE BASIC REXX FUNCTIONS AND NETVIEW-SPECIFIC */
/* FUNCTIONS CAN BE USED IN A COMMAND LIST. IT ILLUSTRATES THE USAGE*/
/* OF SUCH THINGS AS THE REXX ’PARSE’ INSTRUCTION, AND THE NETVIEW */
/* SUPPLIED ’MSGTRAP’, ’WAIT’, ’MSGREAD’, AND ’GLOBALV’ COMMANDS. */
/* */
/**/
/* */
/* COMMAND LIST NAME: CHKOPNUM */
/* */
/* THIS COMMAND LIST CAN BE USED PERIODICALLY TO CHECK THE */
/* NUMBER OF OPERATORS CURRENTLY LOGGED ON, AND WILL KEEP THE */
/* INFORMATION IN COMMON GLOBAL VARIABLES. THE INFORMATION */
/* COLLECTED CAN LATER BE RETRIEVED BY USING THE ’DISPLAY’ */
/* OPTION. */
/* */
/* INPUT: */
/* ’’ - WILL CHECK THE NUMBER OF OPERATORS LOGGED ON */
/* AND UPDATE APPROPRIATE COMMON GLOBAL VARIABLES */
/* ’DISPLAY’ - WILL ANALYZE THE VALUE IN THE COMMON GLOBAL */
/* VARIABLES AND DISPLAY THE RESULTS */
/* ANY OTHER */
/* INPUT - WILL DEFAULT TO ’’ */
/* */
/* USAGE EXAMPLE: */
/* 1. EXECUTE THE FOLLOWING TO CAUSE THE NUMBER OF */
/* OPERATORS TO BE CHECKED AT A CERTAIN TIME (COULD BE */
/* ANY TIME PERIOD); */
/* -> ’AT 08:00:00,CHKOPNUM’ */
/* 2. AT ANY TIME, EXECUTE THE FOLLOWING COMMAND TO DISPLAY */
/* THE RESULTS OF THE PREVIOUS EXECUTIONS: */
/* -> ’CHKOPNUM DISPLAY’ */
/* RESULTS WILL BE DISPLAYED ON YOUR TERMINAL */
/* */
/* CHANGE CODE DATE DESCRIPTION */
/* ----------- -------- -- */
/* */
/**/

Figure 51. CHKOPNUM Example (Part 1 of 2)

REXX Command Lists

172 Programming: REXX and the NetView Command List Language

CHKRSTAT Example
Figure 52 on page 174 is an example of a command list that uses the INTERPRET
instruction.

SIGNAL ON ERROR
PARSE ARG OPTION
’GLOBALV GETC CHKOPTIMES, CHKOPNUM, CHKOPMAX’
IF OPTION = ’DISPLAY’ THEN DO;

IF CHKOPTIMES = ’’ THEN
SAY ’NUMBER OF OPERATORS HAS NEVER BEEN CHECKED’

ELSE DO;
SAY ’NUMBER OF OPERATORS HAS BEEN CHECKED ’CHKOPTIMES’ TIMES’
SAY ’AVERAGE NUMBER OF OPERATORS LOGGED ON

IS: ’CHKOPNUM/CHKOPTIMES
SAY ’MAXIMUM NUMBER OF OPERATORS LOGGED ON IS: ’CHKOPMAX
END;
EXIT 0;

END;
CUROPNUM = 0
’TRAP AND SUPPRESS MESSAGES OPERATOR:,END’
’LIST STATUS=OPS’
DO UNTIL MSGID()=’END’

’WAIT FOR MESSAGES’
’MSGREAD’
IF MSGID() = ’OPERATOR:’ THEN CUROPNUM = CUROPNUM +1
ELSE NOP

END
IF CHKOPTIMES = ’’ THEN CHKOPTIMES = 1
ELSE CHKOPTIMES = CHKOPTIMES + 1
IF CHKOPNUM = ’’ THEN CHKOPNUM = CUROPNUM
ELSE CHKOPNUM = CHKOPNUM + CUROPNUM
IF CHKOPMAX = ’’ THEN CHKOPMAX = CUROPNUM
ELSE IF CHKOPMAX < CUROPNUM THEN CHKOPMAX = CUROPNUM
’GLOBALV PUTC CHKOPTIMES, CHKOPNUM, CHKOPMAX’

EXIT 0;
ERROR: SAY ’ERROR OCCURRED. RETURN CODE = ’ RC
EXIT -1;

Figure 51. CHKOPNUM Example (Part 2 of 2)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 173

/**/
/* */
/* THE FOLLOWING REXX COMMAND LIST IS MORE COMPLEX THAN CHKOPNUM. */
/* IT ILLUSTRATES USAGE OF SUCH THINGS AS THE REXX ’INTERPRET’ */
/* INSTRUCTION, AND THE NETVIEW ’WAIT’ (FOR MESSAGES AND TIME), */
/* AND THE ’GETMLINE’ COMMAND (FOR MULTILINE MESSAGES) */
/* */
/**/
/* */
/* COMMAND LIST NAME: CHKRSTAT */
/* */
/* THIS COMMAND LIST CHECKS WHETHER A SPECIFIED RESOURCE */
/* IS ACTIVE, AND INCREMENTS A COMMON GLOBAL VARIABLE THAT */
/* REFLECTS THE NUMBER OF TIMES IT WAS IN THAT STATE. THIS */
/* COMMAND LIST SHOULD BE SCHEDULED TO RUN UNDER AN AUTOTASK */
/* AT REGULAR INTERVALS. */
/* */
/* INPUT PARAMETERS: */
/* RESNAME - NAME OF RESOURCE TO CHECK STATUS OF */
/* */
/* CHANGE CODE DATE DESCRIPTION */
/* ----------- -------- -- */
/* */
/**/
SIGNAL ON ERROR /* SIGNAL IF ERROR OCCURS */
PARSE UPPER ARG RESNAME /* GET INPUT, IF ANY */

/* IF NO RESOURCE NAME GIVEN, DISPLAY ERROR MESSAGE AND EXIT */
IF RESNAME = ’’ THEN DO;

SAY ’RESOURCE NAME MUST BE PROVIDED’
EXIT 99
END

/* SET UP TRAP FOR POSSIBLE RESPONSES TO ’D NET,ID=’ COMMAND, ISSUE */
/* COMMAND, AND WAIT FOR MESSAGE TO ARRIVE */
’TRAP AND SUPPRESS MESSAGES IST097I IST075I IST453I’
’D NET,ID=’RESNAME
’WAIT 60 SECONDS FOR MESSAGES’

/* IF MESSAGE DID NOT ARRIVE, THEN GIVE ERROR MESSAGE AND EXIT */
IF EVENT() ¬= ’M’ THEN DO

SAY ’ NO RESPONSE FROM VTAM - RESOURCE COUNT NOT UPDATED ’
EXIT 99
END

/* READ MESSAGE. IF IT IS IST097I, ISSUE WAIT AGAIN, AND THE NEXT */
/* MESSAGE READ SHOULD BE IST075I, WHICH HAS THE STATUS INFO */

Figure 52. CHKRSTAT Example (Part 1 of 2)

REXX Command Lists

174 Programming: REXX and the NetView Command List Language

CNMS1101
Figure 53 on page 176 is an example of PPI communication and of full screen
automation.

’MSGREAD’
IF MSGID() = ’IST097I’ THEN DO;

’WAIT CONTINUE’
’MSGREAD’
/* IF THE MESSAGE IS NOT IST075I, DO NOTHING, AND THE STATUS WILL */
/* DEFAULT TO INACTIVE. IF IT IS IST075I, GET THE 2ND LINE OF THE */
/* MULTI-LINE MESSAGE AND GET THE CURRENT STATE FROM THAT LINE */
IF MSGID() = ’IST075I’ THEN DO
’GETMLINE STATLINE ’ 2
/* IF STRING CONTAINS IST486I THEN PARSE OUT RESOURCE STATUS */
IF INDEX(STATLINE,’IST486I’) >0 THEN

PARSE VALUE STATLINE WITH MSGTXT1 ’STATUS=’ RESSTATE .
END

END

/* IF THE CURRENT STATE IS ACTIVE OR ACTIVE W/SESSION, THEN GET */
/* INCREMENT AND UPDATE THE COMMON GLOBAL VARIABLE WITH THE NAME */
/* ’RESOURCE NAME’ CONCATENATED WITH ’@A’. NOTE THAT SINCE THE */
/* GLOBALV COMMAND REQUIRES THE VARIABLE NAME, A VARIABLE HAS */
/* TO BE SET TO THE VARIABLE NAME, SINCE IT IS DYNAMICALLY */
/* CONSTRUCTED. THE REXX INTERPRET INSTRUCTION MUST ALSO BE USED */
/* TO PERFORM OPERATIONS ON THE DYNAMICALLY CONSTRUCTED VARIABLE */
IF RESSTATE = ’ACTIV’ | RESSTATE = ’ACT/S’ THEN DO

VARNAME = RESNAME\’@A’
’GLOBALV GETC ’VARNAME
INTERPRET ’ACT# =’VARNAME
IF DATATYPE(ACT#) ¬= ’NUM’ THEN

ACT# = 1 /* IF NONNUMERIC */
ELSE

ACT# = ACT# + 1
INTERPRET VARNAME’=ACT#’
’GLOBALV PUTC ’VARNAME

END
/* IF THE CURRENT STATE IS NOT ACTIVE OR ACTIVE W/SESSION, THEN GET */
/* INCREMENT AND UPDATE THE COMMON GLOBAL VARIABLE WITH THE NAME */
/* ’RESOURCE NAME’ CONCATENATED WITH ’@NA’. NOTE THAT SINCE THE */
/* GLOBALV COMMAND REQUIRES THE VARIABLE NAME, A VARIABLE HAS */
/* TO BE SET TO THE VARIABLE NAME, SINCE IT IS DYNAMICALLY */
/* CONSTRUCTED. THE REXX INTERPRET INSTRUCTION MUST ALSO BE USED */
/* TO PERFORM OPERATIONS ON THE DYNAMICALLY CONSTRUCTED VARIABLE */
ELSE DO

VARNAME = RESNAME\’@NA’
’GLOBALV GETC ’VARNAME
INTERPRET ’NACT# =’VARNAME
IF DATATYPE(NACT#) ¬= ’NUM’ THEN

NACT# = 1 /* IF NONNUMERIC */
ELSE

NACT# = NACT# + 1
INTERPRET VARNAME’=NACT#’
’GLOBALV PUTC ’VARNAME

END
EXIT 0;
ERROR: SAY ’ERROR OCCURRED. RETURN CODE IS ’ RC
EXIT -1; /* END COMMAND LIST FOR ERROR */

Figure 52. CHKRSTAT Example (Part 2 of 2)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 175

/**/
/* Licensed Materials - Property of IBM */
/* 5697-ENV (C) Copyright IBM Corp. 1997, 2007 */
/* All rights reserved. */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/* NAME(PIPESAMP) SAMPLE(CNMS1101) RELATED-TO(PIPE) */
/* ---*/
/* ---------------- The Purpose of this Sample ------------------ */
/* This is a compilation of "examples" given in the Customization: */
/* Pipelines book and elsewhere, related to NetView Pipelines. The */
/* sample is intended only to save you the effort of typing in */
/* examples in order to try them. */
/* */
/* You can run these example directly from CNMS1101, if desired, by */
/* doing this: */
/* 1 Copy CNMS1100 into the concatenation under DSICLD */
/* 2 Invoke it with one or more numbers to indicate the example(s) */
/* you wish to run. */
/* */
/**/
SIGNAL ON HALT
sep = ’08’X; endc = ’09’X; delim = ’0A’X

/* It is often helpful to use non-printable characters for the */
/* various delimters in our pipeline specifications. This */
/* reduces the chance that some character in the data will */
/* cause a conflict. */

/* Examples included are... */
ex.1 = "A LIST ’’ with a twist."
ex.2 = "Retrieve Alert History."
ex.3 = "MAPCL ’automated’ display."
ex.4 = "D A,L with columnar data separated."
ex.5 = "NetView tasks output remapped."
ex.6 = "Picking thru the data with PICK."
ex.7 = "PPI ’responder’ - use with ’requestor’..."
ex.8 = "PPI ’requestor’ - use with ’responder’ above."
ex.9 = " Preceding two functions can work together when run on"
ex.10 = " different NetViews running in the same host. "
ex.11 = "Allocate a new sequential file and write to it. "
ex.12 = "Interrupt and terminate a previous instance of CNMS1101. "
ex.13 = "Format and send an alert to NPDA."
ex.14 = "Display dynamically updated VIEW of RESOURCE data."
ex.15 = "Display persistant VIEW of RESOURCE data, auto update."
ex.0 = 15
>>---------------------*/

Figure 53. CNMS1101 Example (Part 1 of 11)

REXX Command Lists

176 Programming: REXX and the NetView Command List Language

arg functions
IF functions = ’’ THEN
DO;
address netvasis,
’PIPE (NAME FUNLIST END \)’,
’| STEM EX.’,
’| CM: NLOC 1.1 / /’,
’| COUNT EACHLINE’,
’| COLOR WHITE’,
’| EDIT LINECOUNT 1 1.* NEXTWORD’,
’| T: FANINANY’,
’| A: COLLECT’,
’| CONSOLE ONLY’,
’\ LITERAL /Functions supported are.../’,
’| COLOR PINK’,
’| A:’,
’\ CM:’,
’| COLOR BLUE’,
’| T:’
END;
ELSE
DO
parse var functions step funcArgs
SELECT

WHEN (¬datatype(step,’W’)) THEN
say ’Function codes must be numeric’

WHEN (step=1) THEN CALL PATLIST funcArgs
WHEN (step=2) THEN CALL ShowALH funcArgs
WHEN (step=3) THEN CALL MAPCL funcArgs
WHEN (step=4) THEN CALL DALspread funcArgs
WHEN (step=5) THEN CALL TasksOut funcArgs
WHEN (step=6) THEN CALL PickData funcArgs
WHEN (step=7) THEN CALL Responder funcArgs
WHEN (step=8) THEN CALL Requestor funcArgs
WHEN (step=9) THEN CALL NewFile funcArgs
WHEN (step=10) THEN CALL EndMe funcArgs
WHEN (step=11) THEN CALL MakeAlert funcArgs
WHEN (step=12) THEN CALL resDyn funcArgs
WHEN (step=13) THEN CALL presDyn funcArgs
OTHERWISE

say ’Function number’ step ’out of range.’
END
END
EXIT

Figure 53. CNMS1101 Example (Part 2 of 11)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 177

/*---------------------<<< red white and blue >
/* This one is not found in the book. See if you can predict what it */
/* does before you run it... */
PATLIST:

’PIPE (NAME PATLIST END \)’,
’| NETV LIST ’’’’’, /* what a way to type LIST ’’! */
’| COLLECT MAX 3’, /* make three line groups ... */
’|A: SEPARATE SEQUENCE’, /* separate to many output streams */
’| COLOR RED’,
’|B: FANINANY’, /* bringing the stream back together */
’| CONS ONLY’,

, /* ------------------ end of simple pipeline 1 -------- */
’\A:’, /* secondary output of separate... */
’| COLOR WHITE’,
’|B:’, /* and send it back upstream */

, /* ------------------ end of simple pipeline 2 -------- */
’\A:’, /* tertiary output of separate... */
’| COLOR BLUE’,
’|B:’ /* and sent it upstream, too */

RETURN 0

ShowALH: PROCEDURE /*----- Retrieve Alert History -----*/
’ATTACH NPDA’ /* Output, including messages will be */

/* saved for future VET call */
’PIPE (NAME AHIST1 END +)’, /* Start a pipe */

’| VET NEXT ROWS’, /* give update when it arrives, as image*/
’| CORRWAIT MOE 60’, /* Wait 60 sec for first NPDA screen */
’| NLOCATE 1.7 /BNH150I/’, /* I KNOW what first screen looks like */
’| CONSOLE’, /* show badness */
’| A: LOCATE 1.7 /DWO369I/’, /* Separate timeout message (MOE) */
’| VAR timeout’, /* save timeout message */
’+ A:’, /* other message? */
’| VAR npdamsg’ /* ...save first for test */

If symbol(’timeout’) = ’VAR’ THEN /* timeout? */
Signal TIMEOUT /* handle unexpected error */

If symbol(’npdamsg’) = ’VAR’ THEN /* some NPDA error */
RETURN 20 /* messages from NPDA already shown */

/*----------------- Down to business -----------------------*/
/* Type a ’ALH’ (Alerts History) in the command area and push enter. */
’VET /ALH/’ /* Sending the ’ALH’ and an enter key. */
/* Unlike the example in the book, the following saves the alert history */
/* data in a SAFE, so that it can be COLLECTed before being shown. */

Figure 53. CNMS1101 Example (Part 3 of 11)

REXX Command Lists

178 Programming: REXX and the NetView Command List Language

Do UNTIL(thispage = lastpage | RC¬=0)
’PIPE (NAME AHISTLP END =)’, /* start a big pipe */

’| VET NEXT ROWS’, /* give update when it arrives, as image*/
’| CORRWAIT MOE 60’, /* Wait 60 sec for rnd trip to DST... */
’| SC: LOCATE 1.7 /BNH150I/’,/* expected screen with data.. */
’| SEPARATE’, /* handle lines individually... */
’| PG: DROP 4’, /* drop header area... */
’| DROP LAST 1’, /* command line */
’| MSG: DROP LAST 3’, /* message area, hopefully blank */
’| STRIP TRAILING’, /* shorten line ending in blank, so we */
’| LOCATE 1 //’, /* can toss out blank lines */
’| SAFE CNMS1101 APPEND’, /* save data for report to user */
’| TAKE 1’, /* AND use ONE new data line to trigger */
’| NETV VET /FORWARD/’, /* ...new data, then go to next screen */
’= MSG:’, /* Immed message area from NPDA */
’| LOCATE 2.3 /BNJ/’, /* any error message in immed area */
’| CONSOLE’, /* REPORT it, too. */
’| VAR npdamsg’, /* save for test */
’= SC:’, /* message instead ?? This is bad. */
’| A: LOCATE 1.7 /DWO369/’, /* Separate timeout message (MOE) */
’| VAR timeout’, /* save timeout message */
’= A:’, /* other message ? ?? This is bad. */
’| CONSOLE’, /* show badness */
’| VAR npdamsg’, /* ...save first for test */
’= PG:’, /* get header area */
’| DROP 2’, /* drop BNH150 and NPDA head-date line */
’| VAR pagedata’ /* ...save pagedata for test */

If symbol(’timeout’) = ’VAR’ THEN /* timeout? is possible? */
Signal TIMEOUT /* handle unexpected error */

Parse var pagedata . ’PAGE’ thispage . lastpage /* parse out page nos. */
End /* */
’VET /END/’

’PIPE SAFE CNMS1101|COLLECT|CONS’
’PIPE VET |CORRWAIT 10|HOLE’
’DETACH’ /* In the context of CNMS1101, automatic DETACH is not approp. */
RETURN 0

Figure 53. CNMS1101 Example (Part 4 of 11)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 179

MAPCL: PROCEDURE /* Change the display of MAPCL... */
/* --- */
/* Originally designed to run from automation of CNM429I, output of the */
/* MAPCL command, this version will invoke MAPCL. If you desire to run */
/* this code from the automation of CNM429, chaage the "NETV MAPCL" to */
/* "SAFE *" The purpose is to insert "Y" or "N" into the DP */
/* (drop pending) column according to whether the column is blank. */
/* Message attributes are preserved. */

/*------------<<< The color is just for fun. >>>------------*/

’PIPE (NAME CNM429 END >)’,
’| NETVIEW MAPCL’, /* from automation, use "SAFE *" */
’| TOP: SEPARATE DATA’, /* Send three label lines to "TOP" */
’| BOTM: TOSTR NOINCL 1.8 /--------/’, /* Send totals lines to "BOTM" */
’| COLOR GREEN’,
’| PLN: LOCATE 61.2 / /’, /* blank here means ’not pending’ */
’| EDIT 1.* 1 /N/ 62’, /* copy all, then insert "N" */
’| ALL: FANINANY’,
’| COLLECT’,
’| CONSOLE ONLY’,
, /*================= end of main pipeline */
’> TOP:’,
’| COLOR WHITE’,
’| ALL:’,
, /*================= end of label processing */
’> BOTM:’,
’| COLOR BLUE’,
’| ALL:’,
, /*================= end of totals line procsng */
’> PLN:’,
’| EDIT 1.* 1’, /* Copy over all of the input text */

’/Y/ 62’, /* Insert "Y" where asterisk was */
’| ALL:’ /* and send it back upstream */
RETURN 0

DALspread: /* Output of D A,L is spread out */
/* There are three (?) groups of lines: */
/* 1. Control and label lines, we preserve these -- check out */
/* the function "SEPATATE DATA". */
/* 2. Job status data lines. These have TWO jobs per line; we’d */
/* like to see ONE job per line. Here we use CHOP to split */
/* then apart; could be done with EDIT, too. */
/* 3. TSO user status lines. Not differentiated from type 2, they */
/* get a bit mangled. More should be done... */

Figure 53. CNMS1101 Example (Part 5 of 11)

REXX Command Lists

180 Programming: REXX and the NetView Command List Language

’PIPE (NAME DAL END \)’, /* */
’| CORRCMD MVS D A,L’, /* corrcmd adds then needed wait */
’|A: SEPARATE DATA’, /* short non-data lines to "white" below */
’|C: CHOP 35’, /* throw "out" data after column 35 */
’| COLOR BLUE’, /* left part of data becomes blue */
’|Z: FANINANY’, /* parts of data coming back. Try FANIN */
’|LABELS: COLLECT’, /* reassemble into MLWTO */
’| CONS ONLY’, /* */

, /* ------------- end of simple pipeline 1 ---------- */
’\C:’, /* One, last right half may have nothing. */
’| STRIP TRAILING’, /* This combo strips it, tests for any- */
’| LOCATE 1 //’, /* thing left? ...so we don’t get a blank */
’| COLOR TUR’, /* line. */
’|Z:’, /* */

, /* ------------- end of simple pipeline 2 ---------- */
’\ A:’, /* ctl & labels come here from SEP DATA */
’| COLOR WHITE’, /* then we color them and send them back */
’| LABELS:’ /* collect above */
RETURN 0

TasksOut: /* Reformat LIST STATUS=TASKS */
/* A demonstration of how to add multiple label lines to a multi- */
/* line message. We also refomat the tabular data to remove */
/* extraneous verbiage. The output lines of LIST STATUS=TASKS */
/* look like this: (scale added below) */

/* TYPE: PPT TASKID: NTV7EPPT RESOURCE: NTV7EPPT STATUS: ACTIVE */
/* |...+....1....+....2....+....3....+....4....+....5....+....6.... */

address NETVASIS,
’PIPE (NAME TASKLIST END \)’,/* */
’| NETV LIST STATUS=TASKS’, /* issuing the synchronous command */
’| DROP LAST 1’, /* throw out "END OF ..." */
’| COLOR GREEN’, /* nice color for the data lines */
’| EDIT WORD 2 1’, /* getting "type" value; it’s first */

’19.8 8’, /* at char 19, taskid begins; put in col 8*/
’38.8 19’, /* at char 38, find resource; move to 19 */
’55.* 35’, /* at char 55, find status; move to col 35*/

’| LABS: COLLECT’, /* everything gets collected here */
’|CONS ONLY’,
, /* ------------- end of simple pipeline 1 ---------- */
, /* It’s a little weird, but the stuff below here */
, /* is absorbed by COLLECT before the data lines */
, /* we worked on above. */
’\ FAN: FANIN’, /* stuff from below brought together here,*/
’| LABS:’, /* IN ORDER, and then sent upstream */
, /* ---------- end of VERY simple pipeline 2 -------- */
’\ LIT !Status of NetView Tasks!’, /* first label line is */
’| COLOR YEL’, /* made yellow and passed up */
’| FAN:’, /* to FANIN’s first input! */
"\ LIT !Task Task’s Taskname or Current!", /* second label */
’| COLOR PINK’, /* is pink and goes to FANIN’s*/
’| FAN:’, /* second output, etc. */
"\ LIT !type ID Resource Status!",
’| COLOR PINK’,
’| FAN:’

/* Notice how the colored label lines remain fixed to the top */
/* both on the NCCF screen and in WINDOW. */

RETURN RC

Figure 53. CNMS1101 Example (Part 6 of 11)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 181

PickData: PROCEDURE /* use PICK to segregate the data */

’PIPE (NAME LOWUSERX)’,
’| NETVIEW MAPCL’, /* obtain display of all REXX in storage */
’| SEPARATE’, /* handle lines individually */
’| DROP 3’, /* header lines */
’| DROP LAST 2’, /* trailer line and totals */
’| PICK 14.5 < / 6/’, /* compare 5 chars from data with "6" */
’| CONSOLE ONLY’ /* display result */

/* Luckily, blanks are "less than" number in EBCIDC order. So the */
/* comparison works when the number in the data line is more than */
/* one digit long. */
RETURN 0

Responder: PROCEDURE EXPOSE step

/* PPI "responder": This program waits (forever) for a request. */
/* When a request is received, new lines are added to the begining */
/* and end, color is added and the result sent back. "Responder" */
/* is designed to be used with the "requestor", below. */
/* */
/* "Forever", in this context, means "never timeout". The wait can */
/* end in several ways, including having an operator issue RESET or */
/* a remote operator issue STOP FORCE. This sample provides for */
/* an option to end this wait by command. Since PPI is being used */
/* as a receiver, commands queued at low priority or by automation */
/* will be executed promptly, despite the "WAIT *". The "end me" */
/* option uses UNIQUE to end a previous instance of CNMS1101. */
/* */

address NETVASIS,
’PIPE (NAME PPIW1101 END ;)’,
’|A: PPI PPIS1101’, /* PPI as receiver, RC -> A: */
’| WAIT *’, /* wait "forever" */
’| COUNT EACHMSG’, /* counting requests */
’| COLOR RED REV’, /* */
’| EDIT "TC" LINETYPE /Your’’s is request/ 1’,

’MSGCOUNT NW’,
’WL’, /* build "stuff" onto his */
’"TL" LINETYPE’, /* request to make our */
’/label line / 1’, /* response */
’WL’,
’1.* 1’,

’| EDIT COPY * /last line/ NW’, /* more "stuff" */
’| COLLECT MAX 1’, /* fixup line types, ?? */
’|B: PPI (NV) *’, /* rtrn answer to sender, NV */
’| EDIT /Response sent to/ 1 ’, /* report what we did */

’IFRAUSDR NW’,

Figure 53. CNMS1101 Example (Part 7 of 11)

REXX Command Lists

182 Programming: REXX and the NetView Command List Language

’| CONS’,
’; A:’,
’| NLOCATE 1.11 /+0000000000/’,
’| COLOR WHI’,
’| EDIT /Error code from receive:/ 1’,

’1.* NW’,
’| CONS’,
’;B:’,
’| NLOCATE 1.11 /+0000000000/’,
’| COLOR YEL’,
’| EDIT /Error code from send:/ 1’,

’1.* NW’,
’| CONS’,
’; LIT /CNMS1101 7 ready to respond to requests./’,
’| CONS’

RETURN 0

Requestor: PROCEDURE /* Send a request to ’responder’ coded */
/* above. */

address NETVASIS,
’PIPE (NAME PPIQ1101 END ;)’,
’| A: PPI PPIS1101 /req command from’ opid() ’ at’ domain() ’/’,
’| WAIT 52’,
’| CONS’,
’; A:’,
’| NLOCATE 1.11 /+0000000000/’,
’| COLOR PIN’,
’| EDIT /Error code from request:/ 1’,

’1.* NW’,
’| CONS’

RETURN 0

NewFile: PROCEDURE /* Allocate a new file and write to it. */

fiName = "’USER1.SEQTEST’"
"ALLOC DATASET("fiName") FILE(OUTFILE)",

"RECFM(V) CATALOG NEW",
"BLKSIZE(260) LRECL(256) DSORG(PS) VOLUME(yourname)"

IF rc <> 0 THEN
SAY ’ALLOCATE ERROR CODE = ’rc

ELSE DO
’FREE FI(OUTFILE)’
"PIPE (END ;) LIT /data line/ | > "fiName" | CONS ONLY"

END

RETURN 0

EndMe: PROCEDURE
’UNIQUE’

RETURN 0

Figure 53. CNMS1101 Example (Part 8 of 11)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 183

MakeAlert: PROCEDURE /* Make an alert and send it to NPDA. */

altxt = ’41038D0000000000’X /* NMVT header */
altxt = altxt||’005E0000’X /* Major vector len & key */
altxt = altxt||’0B92000001330104059737’X /* Add subvectors... */
altxt = altxt||’1010000D110E0A0040F2F3F4F5F6F7F8’X
altxt = altxt||’2A95120117111712171317141715171617171718’X
altxt = altxt||’16811014101510161017101810191020102110221023’X
altxt = altxt||’1103030109C7C5D5C14BF34040C3D6D4C3’X
altxt = altxt||’04931001’X
’pipe (end ;) var altxt|a:ppi *alert|hole;a:|cons’
RETURN 0
/* -------------- Dynamic Resource Display (option 12) -------------- */
/* A demonstration of using VIEW and TRAP to dynamically update a */
/* full screen display. We use the SPILL option of pipe’s KEEP */
/* (new for V5) to create a message after the specified refresh */
/* interval. This message is TRAPped, causing VIEW to return */
/* control to this procedure WITHOUT removing the displayed panel. */
/* The ’RESUME’, below is a REINVOCATION of the original VIEW!!! */
/* */
/* Note that the first call to "fillVars" passes an extra little */
/* bit of pipe to the subroutine. The purpose is to get the first */
/* word of the second data line (STC name) for the panel. */
/* */
/* -- */
resdyn:

interval = 10 /* refresh at 10 second intervals */
privMsgID = ’CNMRESDYN’ /* special purpose "msgid" for trapping */
getSTC = ’% STC:|DROP 1|TAKE 1|EDIT W1|VAR JBN’
Call fillVars getSTC /* set local variables with data from RESOURCE */
’TRAP AND SUPPRESS MESSAGES’ privMsgID /* TRAP our special message */
’PIPE VAR privMsgID | KEEP RESDYN’ interval ’SPILL’ /* make msg later */
’VIEW RESDYN CNMSRESP EXTEND’
DO WHILE (rc = 2) /* RC indicates "message trapped"? */

’MSGREAD’ /* just getting msg off trap queue */
CALL fillVars
’PIPE VAR privMsgID | KEEP RESDYN’ interval ’SPILL’ /* make msg later */
’RESUME’ /* Invoke VIEW, previously suspended */
/* NOTE: RC, at this point, is RC from VIEW, which was resumed. */

END
’pipe hole | keep resdyn’ /* empty safe created above */

return
/* ----------- Obtain data for RESDYN display (option 12) ----------- */
/* Notice that the stem variable "out." is in our local variable */
/* dictionary. VIEW could always read these value; new for V5R1, */
/* we will have an opportunity to update them while VIEW is active. */
/* --- */

Figure 53. CNMS1101 Example (Part 9 of 11)

REXX Command Lists

184 Programming: REXX and the NetView Command List Language

fillVars:
ARG xtraStg /* use extra first time only */
’PIPE (NAME RESDYN END %)’,
’| NETVIEW RESOURCE’,
’| SEPARATE DATA’, /* No use for DSI386I title line */
’| STC: FANOUT’, /* MAYBE need extra copies */
’| EDIT SKIPTO /=/ 2.* STRIPL 1 ’,
’| COLOR WHITE’,
’| $STEM OUT.’,
xtraStg
TM = date() time()
$TM = ’CB HR’

return

/* -------------- Dynamic Resource Display (option 13) -------------- ::
This is superficially like the previous like the previous sample
(excuse our lack of imagination), but shows useful (and, we think,
EASIER) ways of getting asynchronous information to update a VIEW
panel.

We continue to use RESOURCE, making it asynchronous by running it at
a VOST (hence the ATTACH) and making it repeat by using the time-out
code from a PIPE WAIT to redrive the command found in the secondary
stream. See definition of TimdResc below -- this command could be
used from the NCCF command line, if desired, but use ACTION=DISPLAY
with your ATTACH in that case.

The output of TimdResc is captured by the PERSIST and delivered to
our trap queue. The presence of a message there makes VIEW give
control back to this REXX so that the message can be processed
(RC=2 from VIEW for this).

We use the "termination text" option on PERSIST - TRAP to determine
when we must exit; VIEW always sets EVENT() to M when it returns for
a message. We will get the tText when the PERSIST ends either from
time-out or because of STOP PERSIST, STOP VOST, etc.

Notice that this sample does not pre-populate the VIEW variables
with values as in resdyn (12) above. Instead, a LITERAL value in
the TimdResc command causes a message to be returned to us promptly.
The first instance of VIEW initializes, then returns control here
and we populate the values from the first "asynchronous" response.

Figure 53. CNMS1101 Example (Part 10 of 11)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 185

:: -------------- Dynamic Resource Display (option 13) -------------- */
presDyn:

address netvasis /* don’t fold tText in pipe below */
interval = 10 /* refresh at 10 second intervals */
TimdResc =, /* create the async command */
"PIPE (NAME TimdResc END % STAGESEP &)",
"& A: WAIT" interval, /* time-out with R-code every 10 secs */
"& HOLE", /* just here to burn primary stream */
"% A:", /* time-out code (msg) comes here */
"& LITERAL /first msg/", /* hurry! need a msg quickly */
"& NETV RESOURCE", /* issue RES cmd each time a msg comes */
"& CONSOLE"

tText = "---End---" /* text of LAST message from trapping */
suppchar() ||, /* do not echo attached cmd */
"PIPE (NAME AttTiRs)",
"| NETV ATTACH (MONO,ACTION=CORR)", /* correlate msgs from cmd */

TimdResc, /* command to make data every 10 secs */
"| PERSIST 1440 TRAP" tText /* No wait->ALL msgs to the trap queue */

’VIEW RESDYN CNMSRESP EXTEND’
DO WHILE (rc = 2) /* RC indicates "message trapped"? */

’MSGREAD’ /* get one msg off trap queue -> current */
SELECT;

WHEN msgID()=’DSI386I’ THEN /* this is expected,... */
do;
CALL preFillVars /* Update local variables from msg data */
’RESUME’ /* Invoke VIEW, previously suspended */
end;
WHEN msgID() = tText THEN /* persist ended... t/o or stop’d */

RC = 0 /* to exit loop */
OTHERWISE /* Unexpected msg. what failed? */

’PIPE SAFE * | LIT /pResDyn ends.../|LOGTO *’ /* also set RC */
END;
/* NOTE: RC, after RESUME, is RC from VIEW, which was resumed. */

END

return
/* ----------- Obtain data for pRESDYN display (option 13) ---------- */
/* Notice that the stem variable "out." is in our local variable */
/* dictionary. VIEW could always read these values; new for V5R1, */
/* we will have an opportunity to update them while VIEW is active. */
/* --- */
preFillVars:

’PIPE (NAME PRESDYN END %)’,
’| SAFE *’,
’| SEPARATE DATA’, /* No use for DSI386I title line */
’| STC: FANOUT’, /* MAYBE need extra copies */
’| EDIT SKIPTO /=/ 2.* STRIPL 1 ’,
’| COLOR WHITE’,
’| $STEM OUT.’
TM = date() time()
$TM = ’CB HR’

return
HALT:
IF symbol(’step’) = ’VAR’ THEN

say ’CNMS1101 function’ step ’ends.’
’pipe hole | keep resdyn’ /* empty safe created by resdyn (12) */
EXIT -5

Figure 53. CNMS1101 Example (Part 11 of 11)

REXX Command Lists

186 Programming: REXX and the NetView Command List Language

CNME1080
Figure 54 is an example of updating a common global variable re-entrantly.

/*REXX*---*/
/* Licensed Materials - Property of IBM */
/* 5697-ENV © Copyright IBM Corp. 2009 */
/* All rights reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/*--*/
/* ----------->
Sample NETVONLY action command. This command gets control as a result
of a Command Revision action: NETVONLY=CNMSRVMC

It is designed to respond to a pseduo-command "V NetView,LOGON" issued
from a regular MVS console. Or to a START command for a special
procedure that should not be run during normal working hours.

To see what triggers this command, read sample CNMSCRT1.
Customers can code any number of different REXX procedures to be
invoked by the NETVONLY action. This sample is only a model.

Use any REXX function here, but the message based functions that return
meaningful data are only sysconid() and sysid(). Use the recedata()
function to obtain information about the origin of the command.

<---------- */
ADDRESS NETVASIS
/* important! prevent abuse by checking for proper environment */
callerASID = RECEDATA() /* Obtain ASID of cmd issuer */
IF callerASID = 0 THEN /* no RECE data? Then call must */

SIGNAL BadEnvr /* not be from NETVONLY action. */

/* The "command" that triggered NETVONLY is our arg... */
fullCmd = arg(1)
parse arg verb Parm1 ’,’ theRest
/* We handle two verbs: ’S’ or ’START’ and ’V’ or ’VARY’. Consider

writting two procedures for simplicity.
Both verbs come here ONLY when other conditions in the revision
table are satisfied. See CNMSCRT1. */

SELECT
WHEN (LEFT(verb,1) = ’S’) THEN /* It was a START cmd */

CALL startTooBig
WHEN (LEFT(verb,1) = ’V’) THEN /* VARY cmd with NetView arg */

CALL getNVassoc
OTHERWISE /* Should Not Occur unless CNMSCRT1 changed. */
do;

msg = ’RECE command CNMSRVMC driven by system command "’ ||,
arg(1) || ’". Please review CRT.’

’pipe VAR msg | ROUTE AUTRCVR’
/* We purposely do not REISSUE here. Operator will get CNM017E */

end;
END

exit 0

Figure 54. CNME1080 Example (Part 1 of 2)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 187

CNMSRVAR Example
Figure 55 on page 189 is an example of updating a single Revision variable.

/* Ask the operator to confirm. Wait for response to the WTOR.
Note: Waiting for the response here DOES NOT block other

NETVONLY actions from proceeding.
Note: if confirmed, this procedure issues the exact same command

that caused this NETVONLY action. This will not start a loop
and the reissued command will appear to have originated in the
same environment as the original command (username &
console).

---------- */
startTooBig:

WTO.TEXT = ’TLH916W Procedure’ PARM1 ’is intensive.’,
’Answer "Y" to continue’
’WTOR’
IF WTO.REPLY = ’Y’ THEN

’REISSUE MVS’ fullCmd
ELSE
do;
WTO.TEXT = ’TLH917I start’ PARM1 ’canceled.’
’WTO’
’REISSUE SUPPRESS’
end;

RETURN /* from startTooBig */
getNVassoc:

username = RECEDATA(’U’)
SELECT
WHEN (username = ’*BYPASS*’) THEN
’WTO TLH006E Please logon to your system console’
WHEN (sysconid() = ’INSTREAM’ | sysconid() = ’INTERNAL’) THEN
’WTO TLH026E Console’ sysconid() ’cannot associate with NetView.’
OTHERWISE
do
’AUTOTASK OPID=’ || username || ’CONSOLE=’ || sysconid()
IF rc = 0 THEN
’MSG’ username ’association with NetView,’ domain()’, successful.’
ELSE
’WTO TLH662E Association with NetView failed:’ RC

end
END
’REISSUE SUPPRESS’

RETURN /* from getNVassoc */
BadEnvr:

’MESSAGE DSI290 CNMSRVMC’ opid()
exit 12

Figure 54. CNME1080 Example (Part 2 of 2)

REXX Command Lists

188 Programming: REXX and the NetView Command List Language

/***/
/* Licensed Materials - Property of IBM */
/* 5697-ENV © Copyright IBM Corp. 2009 */
/* All rights reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/***/
/* --->

This sample shows how to manipulate the "revision variable" table
that exists in the NetView SSI and is loaded or queried using the
SETRVAR command. This sample, invoked as a command, will accept a
value of one variable. If the variable currently has a value, the
new value will be substituted, without altering the other, existing
variables. If the variable is new, it will be added.

Remember that a null value (zero length) is the same (for revision
variables) as not defined. Therefore this sample can be used to
delete one variable.

Syntax: CNMSRVAR varname /new value/
Where

varname is any alphanumeric string, 1 to 12 characters
/new value/ is a delimited string, 0 to 16 characters (use any

delimiter, not only slash). Alternatively, user
may specify the new value as hex string, for example
CNMSRVAR myvar ’94A840A58193A485’X

Remember - only the variable named is affected. Other variables
are not changed.
<--- */

SIGNAL ON FAILURE /* Report any serious error */
SIGNAL ON NOVALUE /* Report serious error */
SIGNAL ON HALT /* Report reset condition */
ADDRESS NETVASIS

parse arg varname other /* */
IF varname = ’’ THEN /* varname required; value may be null */

SIGNAL NOARG
/* The PARSE VAR below extracts a value from a delimited string OR

from the ’ ’X sequence that identifies hex */

Figure 55. CNMSRVAR Example (Part 1 of 3)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 189

IF other = ’’ THEN /* no value? */
parse value ’ ’ WITH wantHex theValue /* nulls for delete action */

ELSE /* value is delim string or hex */
do;
other = strip(other,’L’) /* for easier parsing */
parse var other delim +1 theValue (delim) wantHex theRest

IF delim = ’7D’X & translate(wantHex) = ’X’ THEN /* hex! */
wantHex = ’’ /* absorb only valid value for this */

ELSE /* SETRVAR reads only hex from current message, so.. */
theValue = c2x(theValue) /* we submit hex only to SETRAVAR */

end;
IF wantHex <> ’’ THEN /* not "X", so... what? */

SIGNAL BADKEY

/* --->
*/
We will feed the SETRVAR command the results of a SETRVAR QUERY. If

that message is not altered then it simply reloads the table with the
same values. (SETRVAR ignores label lines on input.) However, this
pipe will alter the message by deleting the line with our input
variable name and then inserting a new one with the new value.
When called for "current message," SETRVAR reads only the hex part
of each line and it expects that hex to begin in position 33, as it
does in the output of SETRVAR QUERY.
<--- */

varname = translate(varname) /* upper case to match msg */
NewLine = left(varname,32) || theValue /* mimic line of setrvar qry*/

’PIPE (NAME CNMSRVAR END &)’,
’| NETV SETRVAR QUERY’,
’| WAIT 10’,
’| NLOCATE 1.S /DSI231I/’, /* no table? we don’t care */
’| x: LOCATE 1.S /BNH332I/’, /* only other valid response */
’| SEPARATE’,
’| NLOCATE 1.S /’left(varname,12)’/’, /* 12 = max name length */
’| in: FANIN’, /* remainging lines, plus one new */
’| collect’, /* important: drive SETRVAR only once */
’| NETV SETRVAR *’, /* load table from current message */
’| WAIT 10’, /* even here,it’s asynchronous */
’| CONSOLE’, /* show any error message */
’& VAR NewLine’, /* read in substitute line */
’| in:’, /* and pass up to FANIN */
’& x:’, /* other msg? SSI down? rtr down? */
’| CONSOLE’, /* show error */
’| PIPEND 28’ /* end pipe with error */

Figure 55. CNMSRVAR Example (Part 2 of 3)

REXX Command Lists

190 Programming: REXX and the NetView Command List Language

CNMSRVMC Example
Figure 56 on page 192 is an example of the Command Revision NETVONLY action.

/* The next bit is optional. Let operator know that it all worked. */
IF RC = 0 THEN /* pipe & commands work? */
’SETRVAR QUERY’ /* reassure oper */

/*
Sample output from SETRVAR QUERY.
Deleting a data line and substituting another causes the revision
variable table to be loaded with one variable different.
SETRVAR sets new values from the hex portion of the line.

BNH332I For NETV there are 2 revision variables.
BNH325I Table loaded by TOM at 09/09/08 19:00:33
MYFIRST Lovely thing! D396A58593A840A3888995875A
SOLEMVAR keep Trucking? 9285859740E399A483928995876F
| |
1 33

*/
exit RC

noARG: /* TEXT OPERAND MISSING OR INVALID */
’MESSAGE DSI004I’
EXIT 8

BADKEY:
’MESSAGE DSI486I’ wantHex

FAILURE:
’MESSAGE CNM996E’ cmdname()
EXIT sigl

NOVALUE:
’MESSAGE BNH355E’ sigl ’CNMSRVAR 4’ cmdname() CONDITION(D)
EXIT 4
HALT: /* */
EXIT -5 /*

Figure 55. CNMSRVAR Example (Part 3 of 3)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 191

/*REXX*---*/
/* Licensed Materials - Property of IBM */
/* 5697-ENV © Copyright IBM Corp. 2009 */
/* All rights reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/*--*/
/* ----------->
Sample NETVONLY action command. This command gets control as a result
of a Command Revision action: NETVONLY=CNMSRVMC

It is designed to respond to a pseduo-command "V NetView,LOGON" issued
from a regular MVS console. Or to a START command for a special
procedure that should not be run during normal working hours.

To see what triggers this command, read sample CNMSCRT1.
Customers can code any number of different REXX procedures to be
invoked by the NETVONLY action. This sample is only a model.

Use any REXX function here, but the message based functions that return
meaningful data are only sysconid() and sysid(). Use the recedata()
function to obtain information about the origin of the command.

<---------- */
ADDRESS NETVASIS
/* important! prevent abuse by checking for proper environment */
callerASID = RECEDATA() /* Obtain ASID of cmd issuer */
IF callerASID = 0 THEN /* no RECE data? Then call must */

SIGNAL BadEnvr /* not be from NETVONLY action. */

/* The "command" that triggered NETVONLY is our arg... */
fullCmd = arg(1)
parse arg verb Parm1 ’,’ theRest
/* We handle two verbs: ’S’ or ’START’ and ’V’ or ’VARY’. Consider

writting two procedures for simplicity.
Both verbs come here ONLY when other conditions in the revision
table are satisfied. See CNMSCRT1. */

SELECT
WHEN (LEFT(verb,1) = ’S’) THEN /* It was a START cmd */

CALL startTooBig
WHEN (LEFT(verb,1) = ’V’) THEN /* VARY cmd with NetView arg */

CALL getNVassoc
OTHERWISE /* Should Not Occur unless CNMSCRT1 changed. */
do;

msg = ’RECE command CNMSRVMC driven by system command "’ ||,
arg(1) || ’". Please review CRT.’

’pipe VAR msg | ROUTE AUTRCVR’
/* We purposely do not REISSUE here. Operator will get CNM017E */

end;
END

exit 0

Figure 56. CNMSRVMC Example (Part 1 of 3)

REXX Command Lists

192 Programming: REXX and the NetView Command List Language

DSPRSTAT Example
Figure 57 on page 194 is an example of a command list that uses the same type of
function as Figure 52 on page 174.

/* Ask the operator to confirm. Wait for response to the WTOR.
Note: Waiting for the response here DOES NOT block other

NETVONLY actions from proceeding.
Note: if confirmed, this procedure issues the exact same command

that caused this NETVONLY action. This will not start a loop
and the reissued command will appear to have originated in the
same environment as the original command (username &
console).

---------- */
startTooBig:

WTO.TEXT = ’TLH916W Procedure’ PARM1 ’is intensive.’,
’Answer "Y" to continue’
’WTOR’
IF WTO.REPLY = ’Y’ THEN

’REISSUE MVS’ fullCmd
ELSE
do;
WTO.TEXT = ’TLH917I start’ PARM1 ’canceled.’
’WTO’
’REISSUE SUPPRESS’
end;

RETURN /* from startTooBig */

Figure 56. CNMSRVMC Example (Part 2 of 3)

getNVassoc:
username = RECEDATA(’U’)
SELECT
WHEN (username = ’*BYPASS*’) THEN
’WTO TLH006E Please logon to your system console’
WHEN (sysconid() = ’INSTREAM’ | sysconid() = ’INTERNAL’) THEN
’WTO TLH026E Console’ sysconid() ’cannot associate with NetView.’
OTHERWISE
do
’AUTOTASK OPID=’ || username || ’CONSOLE=’ || sysconid()
IF rc = 0 THEN
’MSG’ username ’association with NetView,’ domain()’, successful.’
ELSE
’WTO TLH662E Association with NetView failed:’ RC

end
END
’REISSUE SUPPRESS’

RETURN /* from getNVassoc */
BadEnvr:

’MESSAGE DSI290 CNMSRVMC’ opid()
exit 12

Figure 56. CNMSRVMC Example (Part 3 of 3)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 193

GETCG Example

/**/
/* */
/* THE FOLLOWING REXX COMMAND LIST GOES ALONG WITH THE PREVIOUS */
/* EXAMPLE (CHKRSTAT), AND SHOWS MANY OF THE SAME TYPE OF FUNCTIONS */
/* AS THE PREVIOUS EXAMPLE. */
/* */
/* THIS COMMAND LIST COULD BE USED BY ANY OST OPERATOR TO DISPLAY */
/* THE RESULTS OF SEVERAL EXECUTIONS OF THE CHKRSTAT COMMAND LIST */
/* FOR A SPECIFIC RESOURCE. IT COULD BE USED AS AN AID IN */
/* DETERMINING HOW OFTEN A RESOURCE IS ACTIVE, BASED ON THE INTERVALS*/
/* IN WHICH IT WAS CHECKED BY THE CHKRSTAT COMMAND LIST */
/* */
/**/
/* */
/* COMMAND LIST NAME: DSPRSTAT */
/* */
/* THIS COMMAND LIST CAN BE USED TO DISPLAY HOW OFTEN A RESOURCE */
/* WAS ACTIVE VS. NOT ACTIVE, AS RECORDED BY THE CHKRSTAT COMMAND */
/* LIST */
/* */
/* INPUT PARAMETERS: NONE */
/* */
/* CHANGE CODE DATE DESCRIPTION */
/* ----------- -------- -- */
/* */
/**/
PARSE UPPER ARG RESNAME /* GET INPUT, IF ANY */

/* IF NO RESOURCE NAME GIVEN, DISPLAY ERROR MESSAGE AND EXIT */
IF RESNAME = ’’ THEN DO;

SAY ’RESOURCE NAME MUST BE PROVIDED’
EXIT 99
END
VARNAMEA = RESNAME\’@A’ /* SET THE VAR NAME ACT */
VARNAMENA = RESNAME\’@NA’ /* SET THE VAR NAME NACT */
’GLOBALV GETC ’VARNAMEA /* GET THE ACTIVE INFO */
’GLOBALV GETC ’VARNAMENA /* GET THE INACTIVE INFO */
INTERPRET ’RACT = ’VARNAMEA /* PUT ACTIVE # IN VAR */
INTERPRET ’RINACT = ’VARNAMENA /* PUT INACTIVE # IN VAR */

/* DISPLAY THE STATISTICS FOF THE RESOURCE SPECIFIED */
IF RACT = ’’ & RINACT = ’’ THEN

SAY ’NO STATISTICS HAVE BEEN COLLECTED FOR RESOURCE: ’RESNAME

/* DISPLAY THE STATISTICS FOR THE RESOURCE SPECIFIED */
ELSE DO

IF DATATYPE(RACT) ¬= ’NUM’ THEN RACT = 0 /* IF NOT NUMERIC */
IF DATATYPE(RINACT) ¬= ’NUM’ THEN RINACT = 0 /* IF NOT NUMERIC*/
SAY ’RESOURCE ’RESNAME’ STATISTICS:’
SAY ’ NUMBER OF TIMES RESOURCE WAS ACTIVE : ’RACT
SAY ’ NUMBER OF TIMES RESOURCE WAS INACTIVE: ’RINACT
PERCENTACT = RACT/(RACT+RINACT)*100\’%’ /* DETERMINE PERCENT */
SAY ’ PERCENTAGE OF TIMES RESOURCE WAS ACTIVE: ’PERCENTACT

END
EXIT 0

Figure 57. DSPRSTAT Example

REXX Command Lists

194 Programming: REXX and the NetView Command List Language

GREETING Example

LISTVAR Example

/**/
/* GETCG COMMAND LIST - REXX VERSION */
/* */
/* GETCG COMMAND LIST GETS THE VALUE OF A COMMON GLOBAL */
/* VARIABLE AND DISPLAYS IT TO THE REQUESTING TASK */
/**/
TRACE E
’GLOBALV GETC’ MSGVAR(1)
’MESSAGE 309I GETCG COMMON GLOBAL VARIABLE’ MSGVAR(1) ,

’HAS VALUE ’ VALUE(MSGVAR(1))
EXIT

Figure 58. GETCG Example

/**/
/* */
/* GREETING - SHOW SIMPLE EXAMPLE OF WAITING AND TRAPPING */
/* USING THE DATE COMMAND */
/* */
/* NOTE: WHEN DATE IS ENTERED, THE FOLLOWING IS RETURNED: */
/* */
/* CNM359I DATE : TIME = HH:MM DATE = MM/DD/YY */
/**/
’TRAP AND SUPPRESS ONLY MESSAGES CNM359I ’ /* TRAP DATE MESSAGE */
’DATE’ /* ISSUE COMMAND */
’WAIT 10 SECONDS FOR MESSAGES’ /* WAIT FOR ANSWER */
SELECT /* RESULT IS BACK, PROCESS IT... */

WHEN (EVENT()=’M’) THEN /* DID WE GET A MESSAGE? */
DO /* YES... */

’MSGREAD’ /* ... READ IT IN */
HOUR=SUBSTR(MSGVAR(5),1,2) /* ... PARSE OUT THE HOUR */
SELECT /* GIVE APPROPRIATE GREETING... */

WHEN (HOUR<12) THEN /* ...BEFORE NOON? */
SAY ’GOOD MORNING’

WHEN (HOUR<18) THEN /* ...BEFORE SIX? */
SAY ’GOOD AFTERNOON’

OTHERWISE /* ...MUST BE NIGHT */
SAY ’GOOD EVENING’

END /* OF SELECT */
END /* OF DO */

WHEN (EVENT()=’E’) THEN /* DID WE GET AN ERROR? */
SAY ’ERROR OCCURRED WAITING FOR DATE COMMAND RESPONSE’

WHEN (EVENT()=’T’) THEN /* DID WE GET A TIME-OUT? */
SAY ’NO MESSAGE RETURNED FROM DATE COMMAND’

OTHERWISE
END /* OF SELECT */
EXIT

Figure 59. GREETING Example

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 195

/* Use NetView HELP for more information about this clist.
**
* Licensed Materials - Property of IBM *
* 5697-ENV © Copyright IBM Corp. 1997, 2007 *
* All rights reserved. *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
**
* *
* NAME(LISTVAR) SAMPLE(CNME1006) RELATED-TO() *
* *
* CNME1006 Change Activity: *
* ID=Reference,Ver,Date,Developer: Description *
* -- *
* *
***/

IF arg(1) ¬= ’’ THEN SIGNAL ERROR
address NETVASIS
mySys = left(opsystem(),3) /* get e.g. "MVS" *

call say353 ’OPSYSTEM’ opsystem()
SELECT;

WHEN (mySys = ’VSE’) THEN
call say353 ’CURPART’ curpart() /* Partition ID */

WHEN (mySys = ’MVS’) THEN
DO;
call say353 ’MVSLEVEL’ mvsLevel() /* MVS level */
call say353 ’ECVTPSEQ’ ecvtpseq() /* ECVTPSEQ value*/
call say353 ’CURSYS’ curSys() /* System name */
END;

WHEN (mySys = ’VM/’) THEN
NOP

OTHERWISE
’MESSAGE DWO053I’

END;
call say353 ’VTAMLVL’ vtam() /* VTAM version */
call say353 ’VTCOMPID’ vtcompid()
call say353 ’NetView’ NETVIEW(’T’)
call say353 ’NETID’ netid()
call say353 ’DOMAIN’ domain()
call say353 ’APPLID’ applid()
call say353 ’OPID’ opid()
call say353 ’LU’ lu()
call say353 ’TASK’ task()
call say353 ’NCCFCNT’ nvcnt()
call say353 ’HCOPY’ hcopy()
/* call say353 ’TYPE’ type() there is only one type */
call say353 ’IPV6ENV’ ipv6env()

Figure 60. LISTVAR example (Part 1 of 2)

REXX Command Lists

196 Programming: REXX and the NetView Command List Language

PRINT Example
Figure 61 on page 198 is an example of a command list used for printing a data
set.

towerList = tower(’*’)
’PIPE var towerList | edit word 1.*|var TowerList’
CALL say353 ’TOWERS’ towerList

/* Display MVS console name (or ID) if in use. */
IF mysys = ’MVS’ THEN
do
call say353 ’CURCONID’ curconid()
IF autotask() THEN

call say353 ’AUTCONID’ autconid()
end

IF VTAM() = ’’ THEN
’MESSAGE CNM386I LISTVAR’

EXIT 0

/*------------------<<< Format a CNM353 Message >>>------------------*/
/* Format a MESSAGE CNM353 with extra spaces to make the values */
/* line up in the same column. Using 30, at present; it could */
/* get bigger if longer named values are needed. */
/* */
/*------------------<<< Format a CNM353 Message >>>------------------*/
SAY353:

parse arg name value
’MESSAGE CNM353 LISTVAR’ "’"left(name,8)"’" "’"value"’"
return
/*
CNM353I LISTVAR : OPSYSTEM = MVS/ESA

***/
ERROR:
’MESSAGE CNM306E,LISTVAR,’ arg(1)
exit 4

Figure 60. LISTVAR example (Part 2 of 2)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 197

/**/
/* PRINT COMMAND LIST */
/* ------------------ */
/* */
/* FUNCTION: THIS COMMAND LIST PRINTS MEMBERS OF A DATA SET TO A */
/* SYSTEM PRINT FILE. */
/* */
/* INPUT PARMS: DATASETNAME = FULLY QUALIFIED DATA SET NAME */
/* (INCLUDING MEMBER NAME) TO DISPLAY AT THE TERMINAL. */
/* */
/* OUTPUT: A SYSTEM PRINT FILE. */
/**/
SIGNAL ON ERROR /* SIGNAL IF ERROR OCCURS*/
ARG DATASETNAME /* PARSE CLIST INPUT */
IF DATASETNAME=’’ | PARMCNT() > 1 THEN /* NO CLIST INPUT ? */

DO /* NAME NOT SPECIFIED */
SAY ’INCORRECT SYNTAX USED.’ /* ISSUE ERROR MSG */
SAY ’CORRECT SYNTAX IS : ’ /* ISSUE HELP MSG */
SAY ’ PRINT DATASET.NAME(MEMBER) ’ /* ISSUE HELP MSG */
RC=24 /* SET RETURN CODE */

END /* NAME NOT SPECIFIED */
ELSE /* CORRECT NAME/SYNTAX */

DO /* NAME WAS SPECIFIED */
’TRAP DISPLAY ONLY MESSAGES *’ /* TRAP/SUPPRESS MSGS */
’ALLOCATE SYSOUT(A) FREE RECFM(FB) ’, /* ALLOC/CONNECT SYSTEM */

’LRECL(80) BLKSIZE(4000)’ /* ... PRINTER FOR USAGE */
’WAIT FOR MESSAGES’ /* WAIT FOR RESULTS */
’MSGREAD’ /* READ A MESSAGE IN */
IF (MSGID()¬=’CNM272I’) THEN /* IS MSG CNM272I ? */

DO /* ¬ CNM272I MSG */
SAY MSGID() MSGSTR() /* DISPLAY MESSAGE */

END /* ¬ CNM272I MSG */
ELSE /* MSG IS CNM272I */

DO /* PROCESS 1ST CNM272I */
DDNAMEO = MSGVAR(1) /* SAVE OUTPUT DDNAME */
’TRAP AND DISPLAY ONLY MESSAGES *’ /* TRAP/SUPPRESS MSGS */
’ALLOCATE DA(’DATASETNAME’) SHR FREE’/* ALLOC/CONNECT FILE */
’WAIT FOR MESSAGES’ /* WAIT FOR MESSAGES */
’MSGREAD’ /* READ A MESSAGE IN */
’TRAP NO MESSAGES’ /* DISABLE TRAP MSGS */
IF (MSGID()¬=’CNM272I’) THEN /* IS MSG CNM272I ? */

DO /* ¬ CNM272I MSG*/
SAY MSGID() MSGSTR() /* DISPLAY MESSAGE */

END /* ¬ CNM272I MSG*/
ELSE /* MSG IS CNM272I */

DO /* PROCESS 2ND CNM272I */
DDNAMEI = MSGVAR(1) /* SAVE INPUT DDNAME */
ADDRESS MVS ’EXECIO 1 DISKR ’DDNAMEI /* READ 1ST LINE */
DO WHILE RC=0 /* WHILE RC = 0 */

ADDRESS MVS ’EXECIO 1 DISKW ’DDNAMEO /* WRITE LINE OUT */
ADDRESS MVS ’EXECIO 1 DISKR ’DDNAMEI /* READ NEXT LINE */

END /* WHILE RC = 0 */
/* PUT OUT COMPLETE MSG */

’MESSAGE 309I PRINT CLIST IS NOW FINISHED’
END /* PROCESS 2ND CNM272I */

END /* PROCESS 1ST CNM272I */
END /* NAME WAS SPECIFIED */

RETURN /* RETURN TO CALLER/EXIT */
ERROR: SAY ’ERROR OCCURRED. RETURN CODE IS ’ RC
EXIT -1; /* END COMMAND LIST FOR ERROR*/

Figure 61. PRINT Example

REXX Command Lists

198 Programming: REXX and the NetView Command List Language

TYPE Example
Figure 62 is an example of a command list used to display the members of a data
set.

TYPEIT Example
Figure 63 on page 200 is an example of a command list that does essentially the
same thing as the example in Figure 62, but closes the data set in case of error.

/**/
/* TYPE COMMAND LIST */
/* ----------------- */
/* */
/* FUNCTION: THIS COMMAND LIST DISPLAYS MEMBERS OF A DATA SET AT THE */
/* (INVOKING) USER’S NETVIEW TERMINAL ONE LINE AT A TIME. */
/* */
/* INPUT PARMS: DATASETNAME = FULLY QUALIFIED DATA SET NAME */
/* (INCLUDING MEMBER NAME) TO DISPLAY AT THE TERMINAL. */
/* */
/* OUTPUT: LINE = EACH LINE WITHIN THE MEMBER SPECIFIED BY THE USER. */
/**/
SIGNAL ON ERROR /* SIGNAL IF ERROR OCCURS*/
ARG DATASETNAME /* PARSE CLIST INPUT */
IF DATASETNAME=’’ | PARMCNT() > 1 THEN /* NO CLIST INPUT ? */

DO /* NAME NOT SPECIFIED */
SAY ’INCORRECT SYNTAX USED.’ /* ISSUE ERROR MSG */
SAY ’CORRECT SYNTAX IS : ’ /* ISSUE HELP MSG */
SAY ’ TYPE DATASET.NAME(MEMBER) ’ /* ISSUE HELP MSG */
RC=24 /* SET RETURN CODE */

END /* NAME NOT SPECIFIED */
ELSE /* CORRECT NAME/SYNTAX */

DO /* NAME WAS SPECIFIED */
’TRAP AND SUPPRESS ONLY MESSAGES *’ /* TRAP/SUPPRESS MSGS */
’ALLOCATE DA(’DATASETNAME’) SHR FREE’ /* ALLOC/CONNECT FILE */
’WAIT FOR MESSAGES’ /* WAIT FOR MESSAGES */
’MSGREAD’ /* READ A MESSAGE IN */
’TRAP NO MESSAGES’ /* DISABLE TRAP MSGS */
IF (MSGID()¬=’CNM272I’) THEN /* IS MSG CNM272I ? */

DO /* ¬ CNM272I MSG */
SAY MSGID() MSGSTR() /* DISPLAY MESSAGE */

END /* ¬ CNM272I MSG */
ELSE /* MSG IS CNM272I */

DO /* PROCESS CNM272I MSG */
DDNAME = MSGVAR(1) /* SAVE DYNAMIC DDNAME */
ADDRESS MVS ’EXECIO 1 DISKR ’DDNAME /* PUT 1ST LINE ON STACK */
DO WHILE RC=0 /* WHILE RC = 0 */

PULL RECORD /* PULL LINE FROM STACK */
SAY SUBSTR(RECORD,1,68) /* DISPLAY LINE TO USER */

/* PUT NEXT LINE ON STACK*/
ADDRESS MVS ’EXECIO 1 DISKR ’DDNAME

END /* WHILE RC = 0 */
/* PUT OUT COMPLETE MSG */

’MESSAGE 309I TYPE CLIST IS NOW FINISHED’
END /* PROCESS CNM272I MSG */

END /* NAME WAS SPECIFIED */
RETURN /* RETURN TO CALLER/EXIT */
ERROR: SAY ’ERROR OCCURRED. RETURN CODE IS ’ RC
EXIT -1; /* END COMMAND LIST FOR ERROR*/

Figure 62. TYPE Example

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 199

/**/
/* TYPE COMMAND LIST */
/* ----------------- */
/* */
/* FUNCTION: THIS COMMAND LIST DISPLAYS MEMBERS OF A DATA SET AT THE */
/* (INVOKING) USER’S NETVIEW TERMINAL ONE LINE AT A TIME. */
/* */
/* INPUT PARMS: DATASETNAME = FULLY QUALIFIED DATA SET NAME */
/* (INCLUDING MEMBER NAME) TO DISPLAY AT THE TERMINAL. */
/* */
/* OUTPUT: LINE = EACH LINE WITHIN THE MEMBER SPECIFIED BY THE USER. */
/**/
signal on error
rc = 0
parse arg datasetname ’(’ member ’)’ extra
if datasetname = ’’ | parmcnt() > 1 | member = ’’ | extra ¬= ’’ then

do
say ’Incorrect syntax used.’
say ’Correct syntax is : ’
say ’ TYPE dataset.name(member) ’
rc = 24

end
else

do
’trap and suppress only messages CNM272I’
signal on halt
’allocate da(’datasetname’(’member’)) shr’
’wait 5 seconds for messages’
’msgread’
if msgid() = ’CNM272I’ then

do
ddname = msgvar(1)
if fndmbr(ddname,member) ¬= 0 then

do
say ’Member’ member ’does not exist.’
rc = 4

end
else

do
address mvs ’execio * diskr’ ddname ’(finis’
do while queued() ¬= 0

pull record
say substr(record,1,68)

end
signal off halt
’free file(’ddname’)’
’trap no messages’
’message 309I ’’TYPEIT’’,’’clist is now finished.’’’

end
end

end
return rc
halt:
’free file(’ddname’)’
’trap no messages’
return -5
error: say ’Error occurred. Return code is’ rc
return -1

Figure 63. TYPEIT Example

REXX Command Lists

200 Programming: REXX and the NetView Command List Language

UPDCGLOB Example
Figure 64 is an example of updating a common global variable reentrantly.

/*REXX*---*/
/* Licensed Materials - Property of IBM */
/* 5697-ENV © Copyright IBM Corp. 2009 */
/* All rights reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/*--*/
/* ----------->
Sample NETVONLY action command. This command gets control as a result
of a Command Revision action: NETVONLY=CNMSRVMC

It is designed to respond to a pseduo-command "V NetView,LOGON" issued
from a regular MVS console. Or to a START command for a special
procedure that should not be run during normal working hours.

To see what triggers this command, read sample CNMSCRT1.
Customers can code any number of different REXX procedures to be
invoked by the NETVONLY action. This sample is only a model.

Use any REXX function here, but the message based functions that return
meaningful data are only sysconid() and sysid(). Use the recedata()
function to obtain information about the origin of the command.

<---------- */
ADDRESS NETVASIS
/* important! prevent abuse by checking for proper environment */
callerASID = RECEDATA() /* Obtain ASID of cmd issuer */
IF callerASID = 0 THEN /* no RECE data? Then call must */

SIGNAL BadEnvr /* not be from NETVONLY action. */

/* The "command" that triggered NETVONLY is our arg... */
fullCmd = arg(1)
parse arg verb Parm1 ’,’ theRest
/* We handle two verbs: ’S’ or ’START’ and ’V’ or ’VARY’. Consider

writting two procedures for simplicity.
Both verbs come here ONLY when other conditions in the revision
table are satisfied. See CNMSCRT1. */

SELECT
WHEN (LEFT(verb,1) = ’S’) THEN /* It was a START cmd */

CALL startTooBig
WHEN (LEFT(verb,1) = ’V’) THEN /* VARY cmd with NetView arg */

CALL getNVassoc
OTHERWISE /* Should Not Occur unless CNMSCRT1 changed. */
do;

msg = ’RECE command CNMSRVMC driven by system command "’ ||,
arg(1) || ’". Please review CRT.’

’pipe VAR msg | ROUTE AUTRCVR’
/* We purposely do not REISSUE here. Operator will get CNM017E */

end;
END

Figure 64. UPDCGLOB Example (Part 1 of 2)

REXX Command Lists

Appendix G. Examples of REXX Command Lists for NetView 201

exit 0
/* Ask the operator to confirm. Wait for response to the WTOR.

Note: Waiting for the response here DOES NOT block other
NETVONLY actions from proceeding.

Note: if confirmed, this procedure issues the exact same command
that caused this NETVONLY action. This will not start a loop
and the reissued command will appear to have originated in the
same environment as the original command (username &
console).

---------- */
startTooBig:

WTO.TEXT = ’TLH916W Procedure’ PARM1 ’is intensive.’,
’Answer "Y" to continue’
’WTOR’
IF WTO.REPLY = ’Y’ THEN

’REISSUE MVS’ fullCmd
ELSE
do;
WTO.TEXT = ’TLH917I start’ PARM1 ’canceled.’
’WTO’
’REISSUE SUPPRESS’
end;

RETURN /* from startTooBig */
getNVassoc:

username = RECEDATA(’U’)
SELECT
WHEN (username = ’*BYPASS*’) THEN
’WTO TLH006E Please logon to your system console’
WHEN (sysconid() = ’INSTREAM’ | sysconid() = ’INTERNAL’) THEN
’WTO TLH026E Console’ sysconid() ’cannot associate with NetView.’
OTHERWISE
do
’AUTOTASK OPID=’ || username || ’CONSOLE=’ || sysconid()
IF rc = 0 THEN
’MSG’ username ’association with NetView,’ domain()’, successful.’
ELSE
’WTO TLH662E Association with NetView failed:’ RC

end
END
’REISSUE SUPPRESS’

RETURN /* from getNVassoc */
BadEnvr:

’MESSAGE DSI290 CNMSRVMC’ opid()
exit 12

Figure 64. UPDCGLOB Example (Part 2 of 2)

202 Programming: REXX and the NetView Command List Language

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1997, 2011 203

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM‘s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

204 Programming: REXX and the NetView Command List Language

Programming Interfaces
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of Tivoli NetView for z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml .

Adobe is a trademark of Adobe Systems Incorporated in the United States, and/or
other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 205

http://www.ibm.com/legal/copytrade.shtml

206 Programming: REXX and the NetView Command List Language

Index

Special characters
/*%DATA directive 22
/*%LOGIC directive 23
%INCLUDE 18
&1 - &31 parameter variables 140
&ACTIONDL control variable 53
&ACTIONMG control variable 53
&APPLID control variable 83
&AREAID control variable 53
&ASID control variable 83
&ATTENDED control variable 83
&ATTNID control variable 53
&AUTCONID control variable 83
&AUTOTASK control variable 83
&AUTOTOKE control variable 53
&BEGWRITE control statement 113
&BITAND built-in function 117
&BITOR built-in function 118
&BITXOR built-in function 119
&CGLOBAL control statement 149
&CONCAT built-in function 119
&CONTROL control statement 110
&CURCONID control variable 84
&CURSYS control variable 84
&DATE control variable 88
&DESC control variable 53
&DISTAUTO control variable 84
&DOMAIN control variable 84
&EXIT control statement 131
&GOTO control statement 131
&HCOPY control variable 87
&HDRMTYPE control variable 54
&IF control statement 129
&IFRAUGMT control variable 54
&IFRAUI3X control variable 55
&IFRAUIN3 control variable 55
&IFRAUIND control variable 54
&IFRAUSB2 control variable 55
&IFRAUSC2 control variable 55
&IFRAUSDR control variable 55
&IFRAUSRB control variable 55
&IFRAUSRC control variable 55
&IFRAUTA1 control variable 56
&IFRAUWF1 control variable 56
&JOBNAME control variable 56
&JOBNUM control variable 56
&KEY control variable 56
&LENGTH built-in function 122
&LINETYPE control variable 57
&LU control variable 88
&MCSFLAG control variable 57
&MSGASID control variable 57
&MSGAUTH control variable 57
&MSGCATTR control variable 57
&MSGCMISC control variable 57
&MSGCMLVL control variable 58
&MSGCMSGT control variable 58
&MSGCNT control variable 58
&MSGCOJBN control variable 58
&MSGCPROD control variable 58
&MSGCSPLX control variable 58

&MSGCSYID control variable 58
&MSGDOMFL control variable 59
&MSGGBGPA control variable 59
&MSGGDATE control variable 59
&MSGGFGPA control variable 59
&MSGGMFLG control variable 59
&MSGGMID control variable 60
&MSGGSEQ control variable 60
&MSGGSYID control variable 60
&MSGGTIME control variable 60
&MSGID control variable 60
&MSGITEM control variable 60
&MSGORIGIN control variable 61
&MSGSRCNM control variable 61
&MSGSTR control variable 62
&MSGTOKEN control variable 62
&MSGTSTMP control variable 62
&MSGTYP control variable 63
&MSUSEG built-in function 123
&MVSLEVEL control variable 84
&MVSRTAIN variable 63
&NCCFCNT control variable 49
&NCCFID built-in function 50, 124
&NCCFSTAT built-in function 50, 125
&NETVIEW control variable 85
&NVDELID control variable 63
&OPID control variable 82
&OPSYSTEM control variable 85
&PARMCNT control variable 48
&PARMSTR control variable 48
&PARTID control variable 85
&PAUSE control statement 114
&PRTY control variable 63
&REPLYID control variable 63
&RETCODE control variable 49
&RXDEFENV control variable 87
&RXDEFSTR control variable 87
&RXNUMENV control variable 87
&RXOVRENV control variable 87
&RXOVRSTR control variable 87
&SESSID control variable 64
&SMSGID control variable 64
&STCKGMT control variable 85
&SUBSTR built-in function 126
&SUPPCHAR control variable 85
&SYSCONID control variable 64
&SYSID control variable 64
&SYSPLEX control variable 85
&TASK control variable 85
&TGLOBAL control statement 148
&THEN clause, &IF control statement 130
&TIME control variable 88
&VTAM control variable 86
&VTCOMPID control variable 86
&WAIT control statement 133
&WEEKDAYN control variable 87
&WRITE control statement 112
&WTOREPLY control variable 64

© Copyright IBM Corp. 1997, 2011 207

A
accessibility xiii
ACTAPPLS example

REXX 169
ACTIONDL

NetView command list language control variable 53
REXX function 53

ACTIONMG
NetView command list language control variable 53
REXX function 53

activating command lists 2
ACTLU example

REXX 171
ADDRESS instruction 28
AFTER command, scheduling command lists 7
ALL, &CONTROL operand 111
ALLOCATE, Tivoli NetView for z/OS command 30
allocating data sets, Tivoli NetView for z/OS 30
APPLID

NetView command list language control variable 83
REXX function 83

AREAID
NetView command list language control variable 53
REXX function 53
WTO command 53

arithmetic operations, assignment statements 109
ASID

NetView command list language control variable 83
REXX function 83

Assembler command processors, nesting REXX command
lists 31

assignment
clauses, REXX 17
statements, NetView command list language 108

AT command, scheduling command lists 7
ATTENDED

NetView command list language control variable 83
REXX function 83

ATTNID
NetView command list language control variable 53
REXX function 53

AUTBYPAS
REXX function 44

AUTCONID
NetView command list language control variable 83
REXX function 83

AUTHCHK
REXX function 44

AUTHCHKX
REXX function 46

AUTODROP command, REXX 5
Automation

looping 93
automation task 13
automation, message 91
AUTOTASK

NetView command list language control variable 83
OST restrictions 13
REXX function 83

AUTOTBL command 91
AUTOTOKE

NetView command list language control variable 53
REXX function 53

AUTOWRAP setting 12

B
BEGWRITE control statement 113
blanks stripping 88
books

see publications ix
built-in function

NetView command list language
assignment statement 109

built-in function, &HIER 120
built-in functions

NetView command list language
&BITAND 117
&BITOR 118
&BITXOR 119
&CONCAT 119
&HIER 120
&LENGTH 122
&MSUSEG 123
&NCCFID 50, 124
&NCCFSTAT 50, 125
&SUBSTR 126
definition 117

REXX 17

C
C command procedures, nesting REXX command lists 31
CALL instruction, using 27
calling another command list 8
CGI

REXX function 83
CGLOBAL

control statement 149
REXX function 52

CHKOPNUM, example command list 171
CHKRSTAT, example command list 173
CHRON command, scheduling command lists 7
clauses, REXX 17
CLEAR command 113
CLOSING

REXX function 83
CMD

&CONTROL operand 111
command 11

CMDNAME
REXX function 48

CMDSYN statement 2
CNME1080, example command list 187
CNMS1101, example command list 175
CNMSRVAR, example command list 188
CNMSRVMC, example command list 191
code points, translating 40
coding conventions

NetView command list language
continuation statements 98
double-byte character text 99
suppression character conventions 99
syntax 97

REXX
coding non-REXX commands, REXX command list 24
record size 23
suppressing display, non-REXX command 26
syntax 23

command
processing information

REXX functions 65

208 Programming: REXX and the NetView Command List Language

command list information
NetView command list language control variables 44
REXX functions 44

command list language, NetView 1
command lists

activating 2
commands used in 166
compiling command lists 17
creating 2
creating data sets, MVS 3
definition 1
display, controlling during processing 13
loading, main storage 4
long-running commands, using 10
message driven 91
naming 3
nested 8
network commands, using 10
Network Control Program, activating 2
overview 1
restrictions under PPT 12
routing messages 91
running 6
startup, examples 2
system commands, using 10
updating 2
using 1

Command Revision Table 65
commands

AFTER 7
ALLOCATE 30
AT 7
AUTODROP 5
AUTOTBL 91
CHRON 7
CMD 11
common operations services

LINKDATA 156
LINKPD 157
LINKTEST 156
RUNCMD 158

DEFAULTS 7
EVERY 7
EXECIO 29
FREE 30
full-screen 12
GO 138
hardware monitor, using command lists 10
MSGROUTE 91
network 10
operator

AFTER 7
AT 7
CHRON 7
EVERY 7
running command lists 7

OVERRIDE 7
RESET 138
RETURN 10
session monitor, using command lists 10
STACK 138
status monitor, using command lists 10
system 10
TRACE END (TE) 33
TRACE START (TS) 32
UNSTACK 138
VIEW 12

commands (continued)
VTAM 10

comments
NetView command list language 107
REXX 17

common global variables
NetView command list language 149

common operations services (COS) commands 155
comparing NetView command list language, REXX 161
CONCAT built-in function 119
constants, assignment statements 108
continuation statements 98
CONTINUE, &WAIT operand 141
CONTROL control statement 110
control statements, NetView command list language

&BEGWRITE 113
&CGLOBAL 149
&CONTROL 110
&EXIT 131
&GOTO 131
&IF 129
&PAUSE 114
&TGLOBAL 148
&WAIT 133
&WRITE 112
comparison, REXX instructions 161
definition 110

control variables, NetView command list language
&1 – &31 140
&ACTIONDL 53
&ACTIONMG 53
&APPLID 83
&AREAID 53
&ASID 83
&ATTENDED 83
&ATTNID 53
&AUTCONID 83
&AUTOTASK 83
&AUTOTOKE 53
&CURCONID 84
&CURSYS 84
&DATE 88
&DESC 53
&DISTAUTO 84
&DOMAIN 84
&HCOPY 87
&HDRMTYPE 54
&IFRAUGMT 54
&IFRAUI3X 55
&IFRAUIN3 55
&IFRAUIND 54
&IFRAUSB2 55
&IFRAUSC2 55
&IFRAUSDR 55
&IFRAUSRB 55
&IFRAUSRC 55
&IFRAUTA1 56
&IFRAUWF1 56
&JOBNAME 56
&JOBNUM 56
&KEY 56
&LINETYPE 57
&LU 88
&MCSFLAG 57
&MSGASID 57
&MSGAUTH 57
&MSGCATTR 57

Index 209

control variables, NetView command list language (continued)
&MSGCMISC 57
&MSGCMLVL 58
&MSGCMSGT 58
&MSGCNT 58
&MSGCOJBN 58
&MSGCPROD 58
&MSGCSPLX 58
&MSGCSYID 58
&MSGDOMFL 59
&MSGGBGPA 59
&MSGGDATE 59
&MSGGFGPA 59
&MSGGMFLG 59
&MSGGMID 60
&MSGGSEQ 60
&MSGGSYID 60
&MSGGTIME 60
&MSGID 60
&MSGORIGIN 61
&MSGSRCNM 61
&MSGSTR 62
&MSGTOKEN 62
&MSGTSTMP 62
&MSGTYP 63
&MVSLEVEL 84
&MVSRTAIN 63
&NCCFCNT 49
&NETID 84
&NETVIEW 85
&NVDELID 63
&OPID 82
&OPSYSTEM 85
&PARMCNT 48
&PARMSTR 48
&PARTID 85
&PRTY 63
&REPLYID 63
&RETCODE 49
&RXDEFENV 87
&RXDEFSTR 87
&RXNUMENV 87
&RXOVRENV 87
&RXOVRSTR 87
&SESSID 64
&SMSGID 64
&STCKGMT 85
&SUPPCHAR 85
&SYSCONID 64
&SYSID 64
&SYSPLEX 85
&TASK 85
&TIME 88
&VTAM 86
&VTCOMPID 86
&WAIT, using 139
&WEEKDAYN 87
&WTOREPLY 64
comparing REXX functions 162
definition 106
JOBNAME 84
MSGITEM(n) 60

CONTWAIT, &WAIT operand 141
conventions

typeface xv
COS return codes 156
creating command lists 2

CURCONID
NetView command list language control variable 84
REXX function 84

CURSYS
NetView command list language control variable 84
REXX function 84

D
DATA (%DATA) directive 22
Data REXX 18

/*%DATA directive 22
/*%LOGIC directive 23
host command environment 29
processing 22

data set information functions 50
data set, information functions 50
data set, MVS 3
DATE control variable 88
DBCS 99
deallocating data sets, Tivoli NetView for z/OS 30
DEFAULTS command 7
DESC

NetView command list language control variable 53
REXX function 53
WTO, WTOR commands 53

directory names, notation xv
DISC

REXX function 84
DISPLAY

&WAIT operand 141
display, controlling 13
displaying panels 12
DISTAUTO

NetView command list language control variable 84
REXX function 84

DOMAIN
NetView command list language control variable 84
REXX function 84

domain information, REXX functions 49
double-byte character set characters (DBCS)

&CONCAT, using 119
&SUBSTR, using 127
coding conventions, NetView command list language 99
PPT, command list 13

DOUBLESUPP character 100
DROPCL 5
DSPRSTAT, example command list 193

E
ECVTPSEQ

REXX function 84
editing facilities, updating command lists 2
education

see Tivoli technical training xiv
ENDWAIT, &WAIT operand 138, 141
ENVDATA

REXX function 84
environment addressed by REXX, changing 28
environment variables, notation xv
ERR, &CONTROL operand 111
ERROR, &WAIT operand 137
errors, handling

NetView command list language 138
REXX 33

210 Programming: REXX and the NetView Command List Language

EVENT
REXX function 54

event=-label pairs, &WAIT control statement 134, 138
EVERY command, scheduling command lists 7
examples

ACTAPPLS
REXX 169

ACTLU
REXX 171

command list using
&WAIT 144

command lists
reference, define, update task global variables 150

GETCG
REXX 194

GLOBVAR1 154
GREETING

REXX 195
LISTVAR

REXX 195
MSUSEG 81
NPDABA 82
REXX command lists, NetView

CHKOPNUM 171
CHKRSTAT 173
CNME1080 187
CNMS1101 175
CNMSRVAR 188
CNMSRVMC 191
DSPRSTAT 193
PRINT 197
TYPE 199
TYPEIT 199
UPDCGLOB 201

startup command lists 2
EXECIO command, REXX command list 29
EXIT control statement 131
expressions

NetView command list language 108
REXX 17

F
FNDMBR, REXX function 50
FREE, Tivoli NetView for z/OS command 30
full-screen commands, using 12
function packages, REXX, writing 28
functions

built-in
NetView command list language 117
REXX 17

REXX
ACTIONDL() 53
ACTIONMG() 53
APPLID() 83
AREAID() 53
ASID() 83
ATTENDED() 83
ATTNID() 53
AUTBYPAS 44
AUTCONID() 83
AUTHCHK() 44
AUTHCHKX() 46
AUTOTASK() 83
AUTOTOKE() 53
CGI() 83
CGLOBAL() 52

functions (continued)
REXX (continued)

CLOSING() 83
CMDNAME() 48
CODE2TXT() 40
comparison, NetView command list language control

variables 162
CURCONID() 84
CURSYS() 84
DESC() 53
DISC() 84
DISTAUTO() 84
DOMAIN() 84
ECVTPSEQ() 84
ENVDATA() 84
EVENT() 54
FNDMBR() 50
getpw() 82
HCOPY() 87
HDRMTYPE() 54
HIER(n) 68
HMEPNAU 70
HMEPNET 70
HMEPNETV 71
HMFWDSNA 72
IFRAUGMT() 54
IFRAUI3X() 55
IFRAUIN3() 55
IFRAUIND() 54
IFRAUSB2() 55
IFRAUSC2() 55
IFRAUSDR() 55
IFRAUSRB() 55
IFRAUSRC() 55
IFRAUTA1() 56
IFRAUWF1() 56
IPV6ENV() 48
IPXLATE() 43
JOBNAME 84
JOBNAME() 56
JOBNUM() 56
KEY() 56
LINESIZE() 28
LINETYPE() 57
LU() 88
MCSFLAG() 57
MSGASID() 57
MSGAUTH() 57
MSGCATTR() 57
MSGCMISC() 57
MSGCMLVL() 58
MSGCMSGT() 58
MSGCNT() 58
MSGCOJBN() 58
MSGCPROD() 58
MSGCSPLX() 58
MSGCSYID() 58
MSGDOMFL() 59
MSGGBGPA() 59
MSGGDATE() 59
MSGGFGPA() 59
MSGGMFLG() 59
MSGGMID() 60
MSGGSEQ() 60
MSGGSYID() 60
MSGGTIME() 60
MSGID() 60

Index 211

functions (continued)
REXX (continued)

MSGITEM(n) 60
MSGORIGN() 61
MSGREAD 37
MSGSRCNM() 61
MSGSTR() 62
MSGTOKEN() 62
MSGTSTMP() 62
MSGTYP() 63
MSGVAR(n) 63
MSUSEG() 76
MVSLEVEL 84
MVSRTAIN() 63
NETID() 84
NETVIEW() 85
NPDABA() 76
NVCNT() 49
NVDELID() 63
NVID(n) 50
NVMASTER() 50
NVSTAT() 50
OPID() 82
OPSYSTEM() 85
PANEL() 85
PARMCNT() 48
PARTID() 85
PRTY() 63
recedata() 65
REPLYID() 63
restrictions 28
ROUTCDE() 64
RXDEFENV() 87
RXDEFSTR() 87
RXNUMENV() 87
RXOVRENV() 87
RXOVRSTR() 87
SESSID() 64
SMSGID() 64
STCKGMT() 85
STORAGE() 28
SUBSYM() 42
SUPPCHAR() 85
SYSCONID() 64, 65
SYSID() 64, 65
SYSPLEX() 85
TASK() 85
TGLOBAL() 52
TOWER() 86
TRAP 86
TYPE() 86
VTAM() 86
VTCOMPID() 86
WEEKDAYN() 87
WTOREPLY 64

functions, data set information 50

G
GETCG example

REXX 194
getpw

REXX function 82
global variable information functions 52
global variables

common
NetView command list language 149

global variables (continued)
task

NetView command list language 148
GLOBALV

instruction
NetView command list language 154

GLOBVAR1 example 154
GO command 138
GOTO control statement 131
GREETING example

REXX 195

H
hardware monitor commands, using 10
HCOPY

NetView command list language control variable 87
REXX function 87

HDRMTYPE
NetView command list language control variable 54
REXX function 54

hexadecimal notation (NetView command list language) 107
HIER function

NetView command list language 120
REXX 68

HMEPNAU function 70
HMEPNET function 70
HMEPNETV function 71
HMFWDSNA function 72

I
IF control statement 129
IFRAUGMT

NetView command list language control variable 54
REXX function 54

IFRAUI3X
NetView command list language control variable 55
REXX function 55

IFRAUIN3
NetView command list language control variable 55
REXX function 55

IFRAUIND
NetView command list language control variable 54
REXX function 54

IFRAUSB2
NetView command list language control variable 55
REXX function 55

IFRAUSC2
NetView command list language control variable 55
REXX function 55

IFRAUSDR
NetView command list language control variable 55
REXX function 55

IFRAUSRB
NetView command list language control variable 55
REXX function 55

IFRAUSRC
NetView command list language control variable 55
REXX function 55

IFRAUTA1
NetView command list language control variable 56
REXX function 56

IFRAUWF1
NetView command list language control variable 56
REXX function 56

212 Programming: REXX and the NetView Command List Language

information function, MSU 67
initialization, running command lists 6
instructions, REXX

ADDRESS 28
CALL 27
comparison, NetView command list language control

statements 161
definition 17
PARSE 26
restrictions 26
SAY 24, 27
SIGNAL 33
TRACE END 32
TRACE START 32

IP address processing 43
IPV6ENV

REXX function 48

J
JOBNAME

NetView command list language control variable 56
REXX function 56, 84

JOBNAME control variable 84
JOBNUM

NetView command list language control variable 56
REXX function 56

K
KEY

NetView command list language control variable 56
REXX function 56

L
labels

NetView command list language 100
REXX 17

LENGTH built-in function 122
LINESIZE function 28
LINETYPE

NetView command list language control variable 57
REXX function 57

LINKDATA command 156
LINKPD command 157
LINKTEST command 156
LISTVAR example

REXX 195
LOADCL 5
loading command lists, storage 4
LOGIC (%LOGIC) directive 23
logon, operator, automatically running command lists 6
long-running commands 10

queuing 11
LookAt message retrieval tool xii
looping 93
LU

NetView command list language control variable 88
REXX function 88

M
management services unit (MSU) functions

&HIER 120

management services unit (MSU) functions (continued)
&MSUSEG 123
HIER() 68
MSUSEG() 76
NetView command list language 117, 120, 123
NPDABA() 76
REXX 120, 123

management services units information function 67
manuals

see publications ix
MAPCL 5
MCSFLAG

NetView command list language control variable 57
REXX function 57

MEMSTORE 4
MEMSTOUT 4
message

=-label pairs, coding 134, 138
automating responses 91
multiline, working 136
processing information

REXX functions 52
routing, command list 91
sending, operators 111
waiting, command lists

NetView command list language 141
message automation

command lists
defining 91
running 7
testing 92

implementing 91
message retrieval tool, LookAt xii
midnight 88
MSGASID

NetView command list language control variable 57
REXX function 57

MSGAUTH
NetView command list language control variable 57
REXX function 57

MSGCATTR
NetView command list language control variable 57
REXX function 57

MSGCMISC
NetView command list language control variable 57
REXX function 57

MSGCMLVL
NetView command list language control variable 58
REXX function 58

MSGCMSGT
NetView command list language control variable 58
REXX function 58

MSGCNT
NetView command list language control statement 58, 60
REXX function 58

MSGCOJBN
NetView command list language control variable 58
REXX function 58

MSGCPROD
NetView command list language control variable 58
REXX function 58

MSGCSPLX
NetView command list language control variable 58
REXX function 58

MSGCSYID
NetView command list language control variable 58
REXX function 58

Index 213

MSGDOMFL
NetView command list language control variable 59
REXX function 59

MSGGBGPA
NetView command list language control variable 59
REXX function 59

MSGGDATE
NetView command list language control variable 59
REXX function 59

MSGGFGPA
NetView command list language control variable 59
REXX function 59

MSGGMFLG
NetView command list language control variable 59
REXX function 59

MSGGMID
NetView command list language control variable 60
REXX function 60

MSGGSEQ
NetView command list language control variable 60
REXX function 60

MSGGSYID
NetView command list language control variable 60
REXX function 60

MSGGTIME
NetView command list language control variable 60
REXX function 60

MSGID
REXX function 60

MSGITEM, NetView command list language control
variable 60

MSGITEM, REXX function 60
MSGORIGIN, NetView command list language control

variable 61
MSGORIGN, REXX function 61
MSGREAD

setting functions 37
MSGROUTE command 91
MSGSRCNM

NetView command list language control variable 61
REXX function 61

MSGSTR
NetView command list language control variable 62
REXX function 62

MSGTOKEN
NetView command list language control variable 62
REXX function 62

MSGTSTMP
NetView command list language control variable 62
REXX function 62

MSGTYP
NetView command list language control variable 63
REXX function 63

MSGVAR, REXX function 63
MSU (management services unit) functions

NetView command list language (built-in functions) 117
REXX 120

MSU information function 67
MSUSEG function 76, 123

REXX usage examples 79
multiline messages, using 136
MVS

command 10
creating data sets 3

MVSLEVEL
NetView command list language control variable 84
REXX function 84

MVSRTAIN
NetView command list language control variable 63
REXX function 63

N
NCCFCNT NetView command list language control

variable 49
NCCFID

built-in function 50, 124
NCCFSTAT built-in function 50, 125
nested command lists

definition 8
NetView command list language, using &WAIT 140
REXX

Assembler, C, PL/I command procedures 31
using MSGREAD 37
using TRAP 36
using WAIT 36

testing 8
NETID

REXX function 84
NETVIEW

NetView command list language control variable 85
REXX function 85

NetView command list language
coding conventions 97
comments 107
comparison, REXX 161
features 97
functions, built-in 109
labels 100
null statements 108
variables 101

NetView commands
using &PAUSE 115
using &WAIT 138

network commands, using 10
network control program, activating, command lists 2
NOINPUT, &PAUSE operand 115
NOSUB, &BEGWRITE operand 113
notation

environment variables xv
path names xv
typeface xv

NPDABA function 76
REXX usage examples 81

null statements 108
nulls stripping 88
NVCNT function 49
NVDELID

NetView command list language control variable 63
REXX function 63

NVID function 50
NVMASTER function 50
NVSTAT function 50

O
online publications

accessing xiii
operands

ALL, &CONTROL control statement 111
CMD, &CONTROL control statement 111
CONTINUE, &WAIT control statement 141
CONTWAIT, &WAIT control statement 141

214 Programming: REXX and the NetView Command List Language

operands (continued)
DISPLAY

&WAIT control statement 141
ENDWAIT, &WAIT control statement 138, 141
ERR, &CONTROL control statement 111
ERROR, &WAIT control statement 137
NOINPUT, &PAUSE control statement 115
NOSUB, &BEGWRITE control statement 113
STRING, &PAUSE control statement 115
SUB, &BEGWRITE control statement 114
SUPPCHAR 85
SUPPRESS

&WAIT control statement 141
VARS, &PAUSE control statement 115

operator
command, running command lists 7
information

NetView command list language control variables 82
REXX functions 82

input, REXX command list 26
logon, command list 6
sending messages 111

OPID
NetView command list language control variable 82
REXX function 82

OPSYSTEM
NetView command list language control variable 85
REXX function 85

OST, autotask, restrictions 13
OVERRIDE command 7

P
PANEL

REXX function 85
panels, displaying 12
parameter variables, NetView command list language

&WAIT, using 139
characteristics 102
nested command lists, using 104
null 105
passing, command list 103
quoted strings, using 105
special characters, using 105

PARMCNT
NetView command list language control variable 48
REXX function 48

PARMSTR control variable 48
PARSE instruction 26
parsing

REXX command lists 32
PARTID

NetView command list language control variable 85
REXX function 85

path names, notation xv
PAUSE control statement, using NetView commands 114, 115
pausing, REXX command list 26
PL/I command procedures, nesting REXX commands 31
PPT restrictions 12
PRINT, example command list 197
PROFILE statement 6
PRTY

NetView command list language control variable 63
REXX function 63

publications
accessing online xiii
NetView for z/OS ix

publications (continued)
ordering xiii

Q
queuing long-running commands 11
quotation marks, REXX command lists or Data REXX files 24

R
RECEDATA()

REXX function 65
record size

NetView command list language 98
REXX 23

REPLYID
NetView command list language control variable 63
REXX function 63

RESET command 138
Restructured Extended Executor (REXX) language

command lists
coding non-REXX commands 26
compiling 17
environment functions 87
environment, changing 28
errors, recovering 33
examples 169
EXECIO command, using 29
nesting assembler, C, PL/I command procedures 31
operator input, pausing 26
parsing 32
restrictions 26
SAY instruction, using 24
suppressing non-REXX commands 26
tracing 32
TSO/E environments 30

command lists and data REXX files
SAY instruction, using 27

command lists and Data REXX files
coding conventions 23
return codes 33

command lists or Data REXX files
CALL instruction, using 27
LINESIZE function, using 28
record size 23
restrictions 28
STORAGE function, using 28
trailing blanks 24

comparison, NetView command list language 161
function packages, writing 28
introduction 17

RETCODE control variable 49
return codes

COS 156
NetView command list language 49
REXX 33

RETURN command, REXX restrictions 10
ROUTCDE

NetView command list language control variable 64
REXX function 64

RUNCMD command 158
running command lists

another command list 8
NetView is started 6
NetView receives messages 7
operator command 7

Index 215

running command lists (continued)
operator logon 6
specified time 7
user-written command procedure 10

RXDEFENV
NetView command list language control variable 87
REXX function 87

RXDEFSTR
NetView command list language control variable 87
REXX function 87

RXNUMENV
NetView command list language control variable 87
REXX function 87

RXOVRENV
NetView command list language control variable 87
REXX function 87

RXOVRSTR
NetView command list language control variable 87
REXX function 87

S
SAY instruction, using 24, 27
scope checking

variables, NetView command list language 151
SECURITY

controlling access, command lists 4
running command lists when NetView is started 6
using network commands in command lists 10

SESSID
NetView command list language control variable 64
REXX function 64

session
information

NetView command list language control variables 83
REXX functions 83

monitor commands, command list 10
TAF example 2

SIGNAL instruction 33
SMSGID

NetView command list language control variable 64
REXX function 64

STACK command 138
status monitor commands, command list 10
STCKGMT

NetView command list language control variable 85
REXX function 85

STORAGE function 28
STRING, &PAUSE operand 115
stripping, nulls and blanks 88
SUB, &BEGWRITE operand 114
SUBSTR built-in function 126
SUBSYM, REXX function 42
SUPPCHAR 85, 99
SUPPCHAR control variable 85
SUPPRESS

&WAIT operand 141
suppressing

messages 92
non-REXX commands, REXX command lists 26

suppression characters 99
SYSCONID

NetView command list language control variable 64
REXX function 64, 65

SYSID
NetView command list language control variable 64
REXX function 64, 65

SYSPLEX
NetView command list language control variable 85
REXX function 85

system commands, using 10

T
TAF

session example 2
TASK

NetView command list language control variable 85
REXX function 85

task global variables
command list examples, reference, define, update 150
NetView command list language 148

TE command 33
terminal information

NetView command list language control variables 87
REXX functions 87

TGLOBAL
control statement 148
REXX function 52

THEN clause, &IF control statement 130
TIME control variable 88
time intervals, running command lists 7
Tivoli

training, technical xiv
user groups xiv

Tivoli Software Information Center xiii
tokens, message

NetView command list language 135
TOWER

REXX function 86
TRACE END command 33
TRACE START command 32
tracing, REXX command lists 32
training, Tivoli technical xiv
translating code points 40
translation functions

code-to-text function (CODE2TXT) 40
translation tables, code-to-text 40
TRAP

REXX command list 36
REXX function 86

TS command 32
TSO/E environment 30
TSO/E EXECIO command 29
TYPE

REXX function 86
TYPE, command list example 199
typeface conventions xv
TYPEIT, command list example 199

U
UNSTACK command 138
UPDCGLOB, command list example 201
user groups

NetView, on Yahoo xv
Tivoli xiv

user variables 106
user-written command procedure, activating command

lists 10

216 Programming: REXX and the NetView Command List Language

V
variables

command list information
NetView command list language 44
REXX 44

operator information
NetView command list language 82
REXX 82

session information
NetView command list language 83
REXX 83

substitution order 101
terminal information

REXX 87
user 106

variables, notation for xv
VARS, &PAUSE operand 115
VIEW command 12
VTAM

commands 10
NetView command list language control variable 86
REXX function 86

VTCOMPID
NetView command list language control variable 86
REXX function 86

W
WAIT

NetView command list language control statement
coding suggestions 143
control and parameter variables 139
customizing 141
ending 138, 143
general 133
nested command lists, using 140
NetView commands, using 138
sample using 144

REXX instruction
nested REXX command lists, using 36

WEEKDAYN
NetView command list language control variable 87
REXX function 87

WRITE control statement 112
WTOREPLY 64

Y
Yahoo user group, NetView xv

Index 217

218 Programming: REXX and the NetView Command List Language

����

Product Number: 5697-NV6

Printed in USA

SC27-2861-01

	Contents
	Figures
	About this publication
	Intended audience
	Publications
	IBM Tivoli NetView for z/OS library
	Related publications
	Accessing terminology online
	Using NetView for z/OS online help
	Using LookAt to look up message explanations
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Tivoli user groups
	Downloads
	Support information
	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths
	Syntax diagrams

	Chapter 1. Getting Started
	The Benefits of Using Command Lists
	Examples of Common Startup Command Lists
	Examples of Activating a Network Control Program

	Creating Command Lists
	Controlling Access to Command Lists
	Loading Command Lists into Storage
	Running Command Lists
	Running Command Lists When NetView Is Started
	Running Command Lists When Logging On
	Running Command Lists after Receiving a Message or MSU
	Running Command Lists from a Terminal
	Running Command Lists at a Specified Time or Time Interval
	Running Command Lists from Another Command List
	Passing Information from One Command List to Another
	Error Handling

	Running Command Lists from a User-Written Command Processor

	Using Network Commands in Command Lists
	Using System Commands in Command Lists
	Using Long-Running Commands in Command Lists
	Queuing Long-Running Commands

	Using Tivoli NetView for z/OS Pipelines
	Using the VIEW Command
	Using Full-Screen Commands
	Primary POI Task Restrictions
	AUTOTASK OST Restrictions

	Controlling Command List Output
	Working with Messages

	Chapter 2. REXX Language Overview
	Introduction to the REXX Language
	Compiling and Running REXX Command Lists
	Using %INCLUDE with Interpreted REXX
	Using Data REXX
	Processing Data REXX Files
	Additional Information
	Data REXX Directives
	/*%DATA
	/*%LOGIC

	Coding Conventions for REXX Command Lists and Data REXX Files
	Record Size
	Using Quotation Marks
	Suppressing Display of Non-REXX Commands

	Tivoli NetView for z/OS Restrictions on REXX Instructions
	Pausing for Operator Input
	Using the SAY Instruction
	Using the CALL Instruction

	NetView Restrictions on REXX Functions
	Writing REXX Function Packages
	Changing the Environment Addressed by REXX Command Lists
	Data REXX Host Command Environment
	Using the EXECIO Command
	Using MVS and VTAM Commands
	Using the NetView ALLOCATE and FREE Commands
	Using REXX Command Lists
	Nesting REXX Command Lists from Assembler, C, or PL/I
	Parsing in REXX Command Lists
	Tracing REXX Command Lists
	Return Codes in REXX Command Lists
	Recovering from Errors in REXX Command Lists

	Chapter 3. REXX Instructions for Command Lists Run in a NetView Environment
	Using TRAP in Nested REXX Command Lists
	Using WAIT in Nested Command Lists
	Using MSGREAD in Nested Command Lists
	Functions Set by MSGREAD

	Chapter 4. REXX Instructions for NetView REXX Command Lists and Data REXX Files
	Translation Functions
	IP Address Processing
	Command List Information
	Cross-Domain Information Functions
	Data Set Information Functions
	Global Variable Information Functions
	Message Processing Information Functions
	Message Processing Information
	ROUTCDE Examples

	Command Processing Information Functions
	REXX Management Services Unit Information Functions
	Hardware Monitor (HMxxxxxx) Examples
	HMASPRID
	HMBLKACT
	HMCPLINK
	HMEPNAU, HMEPNET, and HMFWDSNA
	HMEPNETV
	HMEVTYPE
	HMFWDED
	HMGENCAU
	HMONMSU
	HMORIGIN
	HMSECREC
	HMSPECAU
	HMUSRDAT

	MSUSEG Syntax and Examples
	Syntax
	Examples

	Probable Cause Syntax and Examples
	Syntax
	Examples

	Operator Information Functions
	Session Information Functions
	REXX Environment Information Functions
	Terminal Information Functions
	Time and Date Variables
	Nulls and Blanks Stripping

	Chapter 5. Automation Resource Management
	Defining NetView Automation Table Command Lists
	Routing Messages from Automation-Table-Driven Command Lists
	Implementing NetView Automation
	Suppressing Messages
	Determining the Environment for a Command List
	Testing Automation Command Lists
	Verifying Proper Operation of Automation Command Lists
	Verifying NetView Automation Table Entries
	Keeping a Record of Automation Command Lists Processed
	Testing Automation Command List Processing

	Looping and Automation
	Considering Operator Interaction
	Common Automation Problems

	Appendix A. Writing Simple Command Lists in the NetView Command List Language
	What the NetView Command List Language Includes
	Coding Conventions for NetView Command List Language Statements
	Conventions for General Coding
	Conventions for Continuing a Statement
	Conventions for Double-Byte Character Set Text
	Conventions for Suppression Characters

	Labels
	Variables
	Variable Substitution Order
	Parameter Variables
	Passing Parameter Variable Information to a Command List
	Using Parameter Variables in a Command List
	Passing Parameter Variables to a Nested Command List
	Using Quoted Strings or Special Characters in Parameter Variables
	Null Parameter Values
	Control Variables
	User Variables

	Hexadecimal Notation
	Comments
	Null Statements
	Assignment Statements
	Control Statements
	&CONTROL Statement
	Writing to the Operator
	&WRITE Control Statement
	&BEGWRITE Control Statement
	&PAUSE Control Statement

	Using NetView Commands with &PAUSE
	An Example Using &PAUSE

	NetView Built-in Functions
	&BITAND
	&BITOR
	&BITXOR
	&CONCAT
	&HIER
	&LENGTH
	&MSUSEG
	&NCCFID
	&NCCFSTAT
	&SUBSTR

	Appendix B. NetView Command List Language Branching
	&IF Control Statement
	&GOTO Control Statement
	&EXIT Control Statement
	&WAIT Control Statement
	Coding an &WAIT Control Statement
	The Event=-Label Pair
	Error Conditions
	Coding Message=-Label Pairs

	Ending an &WAIT
	Using NetView Commands with &WAIT
	Control and Parameter Variables Used with &WAIT
	Using &WAIT in Nested Command Lists
	Customizing the &WAIT Statement
	Ending &WAIT If CONTWAIT Is in Effect
	Suggestions for Coding &WAIT
	Sample Using &WAIT

	Appendix C. NetView Command List Language Global Variables
	Using &TGLOBAL and &CGLOBAL
	&TGLOBAL
	&CGLOBAL

	Updating Task Global Variables Using &TGLOBAL
	Extent of Variables When Using &TGLOBAL and &CGLOBAL
	GLOBALV Command

	Appendix D. Common Operations Services Commands
	Common Operations Services
	Common Operations Services Return Codes
	LINKDATA and LINKTEST Results
	LINKDATA and LINKTEST Variables
	LINKTEST Additional Variables

	LINKPD Results
	RUNCMD Results
	Using RUNCMD in a Pipeline

	Appendix E. Comparison of REXX and NetView Command List Language
	Comparison of REXX Instructions and NetView Command List Language Control Statements
	Comparison of REXX Functions and NetView Command List Language Control Variables and Functions
	Commands Used in Command Lists

	Appendix F. Command List Examples Index
	REXX Command List Examples
	NetView Command List Language Examples

	Appendix G. Examples of REXX Command Lists for NetView
	ACTAPPLS Example
	ACTLU Example
	CHKOPNUM Example
	CHKRSTAT Example
	CNMS1101
	CNME1080
	CNMSRVAR Example
	CNMSRVMC Example
	DSPRSTAT Example
	GETCG Example
	GREETING Example
	LISTVAR Example
	PRINT Example
	TYPE Example
	TYPEIT Example
	UPDCGLOB Example

	Notices
	Programming Interfaces
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

