
uni-REXX
Reference Manual

525 Capital Drive
Lake Zurich, Illinois 60047

Voice: (800) 228-0255
FAX: (847) 540-5629

Email: tech@wrkgrp.com
WWW: http://www.wrkgrp.com/

ii uni-REXX Reference Manual

Preface

This manual describes the features of the uni-REXX® soft-
ware product, through release 3.00. uni-REXX is a UNIX
implementation of the REXX language, as defined by M. F.
Cowlishaw in The REXX Language, A Practical Approach
to Programming (Second Edition, 1990) and ANSI stan-
dard X3.274:1996, Programming Language Rexx. The
Workstation Group is an active participant in the work of
ANSI Committee X3J18.

This manual also refers to uni-XEDIT® and uni-SPF™.
uni-XEDIT is a UNIX full screen text editing program pat-
terned after IBM’s VM/CMS System Product Editor.
uni-SPF is a panel driven productivity tool for the UNIX
environment patterned after IBM’s ISPF Program Product.
Both are available from The Workstation Group.

Reproduction of this manual without the written consent of
The Workstation Group is strictly prohibited.

UNIX is a trademark licensed in the United States and
other countries through X-Open Company, Ltd.

IBM is a trademark of International Business Machines
Corporation.

© Copyright 1992-2002, The Workstation Group, Ltd.
All Rights Reserved.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 or subparagraphs (c) (1) and (2) of Commercial Computer
Software – Restricted Rights at 48 CFR 52.227-19, as applicable. Contractor/Manufacturer is The
Workstation Group Ltd., 1900 North Roselle Road Suite 408, Schaumburg, Illinois 60195.

Document Number: RXV2-9

Preface iii

iv uni-REXX Reference Manual

TABLE OF CONTENTS

Preface...iii

Chapter 1: Introduction...1

Documentation Conventions ..2

Chapter 2: Language Features..5

Clauses ...5
Symbols..8
Expressions...10
Functions ..13
Special Variables..14
Condition Traps..14
Input/Output ...15
Parsing..17
Language Extensions..18

Chapter 3: Operation ...21

Program Names ..21
Program Execution...22
The rxx Command..24
The uni-REXX Compiler ...27
The rxc Command..28
External Functions and Subroutines...33
External Data Queue ..33
Host Command Execution ...34

Chapter 4: Instructions..37

ADDRESS..39

Table of Contents v

ARG ...44
CALL ...46
DO ..53
DROP ...59
EXIT...61
IF ..63
INTERPRET ..66
ITERATE ...67
LEAVE...68
NOP..69
NUMERIC ...70
OPTIONS...73
PARSE ...74
PROCEDURE ..85
PULL..89
PUSH..91
QUEUE ..92
RETURN..93
SAY..95
SELECT ...96
SIGNAL ...99
TRACE...103
UPPER ...110

Chapter 5: Built-In Functions ...111

ABBREV..114
ABS ..115
ADDRESS..115
ARG ...117
BITAND ..118
BITOR..119
BITXOR...120
B2X ..121
CENTER ..122
CHANGESTR..123
CHARIN...124
CHAROUT...126
CHARS...128
CHDIR ...129
COMPARE...130
CONDITION..131
COUNTSTR...133
COPIES ..133

vi uni-REXX Reference Manual

CUSERID...134
C2D ..135
C2X ..135
DATATYPE...136
DATE ...138
DELSTR...142
DELWORD..143
DIGITS...144
D2C ..145
D2X ..146
ERRORTEXT ..146
FIND...147
FORM...149
FORMAT ...150
FUZZ..154
GETCWD...155
GETENV..156
INDEX ...157
INSERT..158
JUSTIFY ..159
LASTPOS...159
LEFT ..160
LENGTH..162
LINEIN...163
LINEOUT...165
LINES...167
LOWER..168
MAX...169
MIN ..170
OVERLAY...170
POPEN ...172
POS...173
PUTENV ..174
QUALIFY ..175
QUEUED ...176
RANDOM ..177
REVERSE ..178
RIGHT..178
SIGN...179
SOURCELINE ...180
SPACE ...181
STREAM..183
STRIP ...185
SUBSTR...186

Table of Contents vii

SUBWORD..187
SYMBOL ...188
TIME ..190
TRACE...193
TRANSLATE...194
TRUNC ..196
UPPER ...197
USERID ...197
VALUE ..198
VERIFY ...200
WORD..202
WORDINDEX ...203
WORDLENGTH...204
WORDPOS ..205
WORDS ...206
XRANGE ...206
X2B ..207
X2C ..208
X2D ..209

Chapter 6: uni-REXX Extensions...211

uni-REXX Specific Functions..211
RXFUNCADD...212
RXFUNCDROP ...212
RXFUNCQUERY ...212
RXXCOMMANDSPAWN ..213
RXXCOMMANDKILL...213
RXXCOMMANDWAIT..213
RXXOSENDOFLINESTRING ...214
RXXOSENVIRONMENTSEPARATOR..214
RXXOSPATHSEPARATOR...214
RXXSLEEP..214
RXXFUNCTIONPACKAGELOAD ..215
RXXCOMMANDPACKAGELOAD..218
UNIX-Specific Functions...222
_ACCEPT...225
_BIND ..227
_CLOSEDIR ..229
_CLOSESOCKET..229
_CONNECT...230
_ERRNO ..232
_EXIT...233
_FD_CLR...233

viii uni-REXX Reference Manual

_FD_ISSET ..234
_FD_SET..234
_FD_ZERO ..234
_FORK ...234
_GETEUID...235
_GETHOSTBYADDR...236
_GETHOSTBYNAME ..236
_GETHOSTID ...238
_GETHOSTNAME ..238
_GETPEERNAME...239
_GETPID..240
_GETPPID ...241
_GETSERVBYNAME...241
_GETSOCKNAME..242
_GETSOCKOPT..243
_GETUID...244
_IOCTL ..245
_KILL...246
_LISTEN ..247
_OPENDIR...248
_READDIR ..249
_RECV ...249
_REGEX...251
_SELECT ...252
_SEND ...253
_SETSID ..254
_SETSOCKOPT...255
_SLEEP ..257
_SOCKET ..257
_STAT..258
_SYS_ERRLIST...260
_SYSTEMDIR ...260
_TRUNCATE...261
_UMASK ...261
_WAIT ...262
_WAITPID...263
Client/Server Sample Application ...265
Operating System Facilities ...274
DESBUF...275
DROPBUF ...276
EXECIO ...277
GLOBALV...284
MAKEBUF ..289
RXQUEUE...290

Table of Contents ix

SENTRIES ...290

Chapter 7: Application Programming Interfaces291

IRXEXCOM...293
IRXEXEC...297
IRXEXITS..300
IRXJCL ..305
IRXSTK ...308
IRXSTOP ...312
IRXSUBCM...315
Building Embedded Applications ..319
External Function Packages...323
Control Blocks...335
ARGLIST...335
CPCKDIR...335
EVALBLOCK..336
EXECBLK ...336
EXITBLK...337
FPCKDIR...339
INSTBLK...341
IRXSUBCT ..343
SHVBLOCK ..344
STMT ...347
Interprocess Communication with uni-REXX ...348

Appendix A: Message Summary...353

Appendix B: Common Pitfalls in uni-REXX Programs ..365

Appendix C: Bibliography...371

Appendix D: System Limitations ..375

Appendix E: uni-REXX Environment Variables ...377

x uni-REXX Reference Manual

Chapter 1: Introduction

uni-REXX from The Workstation Group is a UNIX im-
plementation of the REXX programming language. It
provides an alternative to shell programming and other
languages such as awk or perl for command procedures,
rapid prototyping, or more complex application develop-
ment. It may also be embedded as a macro language
within applications written in compiled languages such
as C. It is the macro language for uni-XEDIT Extended
and the language for development of customized dialogs
in uni-SPF Extended, both from The Workstation
Group.

Unlike shell, awk, or perl programs, applications written
in the REXX language are highly portable across a wide
variety of platforms from mainframes to UNIX to OS/2.
Thus, REXX is the language of choice for applications
that must function simultaneously in a network of di-
verse platforms. Further, uni-REXX facilitates migra-
tion of existing applications from the mainframe or
OS/2 to UNIX-based workstations.

uni-REXX implements all the features described in the
standard reference document for the language, The
REXX Language, A Practical Approach to Pro-
gramming by M. F. Cowlishaw (Second Edition,
Prentice Hall, 1990). With the exception of minor mes-
sages, uni-REXX also implements all the functionality
included in ANSI standard X3.274:1996, Programming
Language Rexx.

Chapter 1: Introduction 1

In addition, uni-REXX includes extensions to the language
that are specific to UNIX operating systems and that allow
programs to effectively interact with and manipulate their
external environment. It also includes a set of application
program interfaces that permit development of embedded
applications.

Documentation
Conventions

The following conventions are used throughout this docu-
ment to facilitate syntax descriptions.

Uppercase

Uppercase letters indicate keywords or function names that
must be typed exactly as shown. You may type the key-
word or function name in any case, regardless of the docu-
mentation convention used.

Lowercase

Lowercase letters indicate variable information that you
supply. A single character (usually n) represents a number
that you specify. Other variable data is represented by a
descriptive name such as string, expression, or pad. Vari-
able data is also italicized to facilitate references to it
within descriptive text.

Optional Operands

Instructions or functions may have optional keywords or
operands. These are shown within brackets in the syntax
diagram. The syntax diagram for the LINEIN built-in
function illustrates optional operands:

LINEIN([name] [, [lineno] [, count]])

When an instruction keyword may have more than one
value, the options are stacked within brackets as in the
TRACE instruction:

2 uni-REXX Reference Manual

TRACE [option]
[[VALUE] expression]

You actually type only one of the choices – for
example, TRACE E.

Required Operands

Required operands are shown without brackets as in the
INTERPRET instruction:

INTERPRET expression

When a required operand may have more than one
value, the options are stacked in the same manner as
for optional operands. As with optional operands, you
type only one of the choices. The syntax diagram for
the NUMERIC instruction illustrates a combination of
required and optional operands that may have more than
one value:

NUMERIC DIGITS [expr1]
FORM [SCIENTIFIC]

[ENGINEERING]
[[VALUE] expr2]

FUZZ [expr3]

Repeating Operands

An ellipsis (...) in a syntax diagram indicates that an
operand may be repeated zero or more times. This is
illustrated by the MAX built-in function:

MAX(number [, number] ...)

where you may specify a list of numbers for which the
maximum value is to be determined. Do not include
the ellipsis when typing your function call.

Chapter 1: Introduction 3

Delimiters

The following special characters are token delimiters
when used outside literal strings:

comma ,

semicolon ;

colon :

parentheses ()

These characters must be used exactly as shown in the
syntax diagrams.

Literal strings are delimited by either single or double
quotes. Hexadecimal strings are delimited by single or
double quotes followed immediately by the character
“x”. Binary strings are delimited by single or double
quotes followed immediately by the character “b”.

4 uni-REXX Reference Manual

Chapter 2: Language Features

uni-REXX is implemented according to the language
definition contained in The REXX Language, A
Practical Approach to Programming, by M. F.
Cowlishaw (Second Edition, Prentice Hall, 1990) and
ANSI standard X3.274:1996, Programming Language
Rexx. The elements of the language are described i de-
tail in these documents. This chapter summarizes the
language structure for those not already familiar with it.

Clauses The basic element of the REXX language is the clause.
A clause is composed of one or more tokens preceded
or followed by zero or more blanks and optionally ter-
minated by a semicolon. Tokens in a clause may be
any of the following

• literal string
• hexadecimal string
• binary string
• symbol
• operator
• special character

Note that wherever blanks are specified in the REXX

language, other whitespace characters may appear.
These are specified in the ANSI standard, and include
the ASCII space character, the carriage return, form
feed, new line, horizontal tab, and vertical tab charac-
ters.

Chapter 2: Language Features 5

A literal string is a sequence that may include any char-
acter and that is enclosed in single or double quotes. A lit-
eral string that includes no characters is known as a null
string. Examples of literal strings include

‘Hello world!’
“What’s in a name?”
‘’

A hexadecimal string is a series of hexadecimal digits
grouped in pairs, enclosed in quotes, and followed immedi-
ately by the character “x” (upper or lower case). The
pairs of hexadecimal digits may be optionally separated by
one or more blanks. Examples of hexadecimal strings in-
clude

‘c1c3’x
“abcdef”X
‘61 62 63’x
“”x

A binary string is a series of binary digits grouped in
fours, enclosed in quotes, and followed immediately by the
character “b” (upper or lower case). The groups of binary
digits may be optionally separated by one or more blanks.
Examples of binary strings include

‘0001’b
‘10011001’B
“1111 0000"b
‘’b

A symbol is any group of alphanumeric characters. Sym-
bols may also include the characters “.”, “!”, “?”, “@”,
and “_”. If a symbol begins with a digit, it may also in-
clude the letter “e” (upper or lower case) followed option-
ally by a plus or minus sign (“+” or “-”) and one or more
digits, in which case it may be a number in exponential
notation. A symbol may be a constant, a keyword, or a
variable, depending upon the context in which it is used.
Additional details are provided in the section entitled
“Symbols”. Examples of symbols include

abc

6 uni-REXX Reference Manual

data.1
new_data
17
31416E-4

An operator is a character used to indicate operations
in expressions. The complete list of operators sup-
ported in uni-REXX is included in the section entitled
“Expressions”. Examples of operator characters include

+
-
>
=

Special characters include both the operator characters
and the characters “.”, “;”, “:”, “(”, and “)”. Special
characters function as token delimiters.

A REXX clause may be any of the following types:

• instruction
• label
• null clause

An instruction describes an action to be performed by
the interpreter. Instructions may be any of the following

• assignment
an instruction of the form symbol = expression,
which assigns a value to a variable

• keyword
an instruction that begins with a keyword that
identifies the operation to be performed;
examples of instruction keywords include
PARSE, DO, CALL, and RETURN

• command
an instruction comprised simply of an expres-
sion, which is evaluated and passed to an exter-
nal environment for processing

Chapter 2: Language Features 7

A label is a clause composed of a single symbol followed by
a colon. Labels identify the target of CALL or SIGNAL
instructions or the beginning of an internal function.

A null clause is any clause comprised only of blanks or
comments.

A comment is any sequence of characters preceded by “/*”
and followed by “*/”. Comments may appear anywhere in
the program and may be nested.

A clause in a REXX program may span more than one line.
Continuation is indicated by a comma. The comma is re-
placed by a blank when the lines are concatenated during
program execution. For example, the program fragment

list_of_months = Jan Feb Mar Apr May Jun Jul, Aug
Sep Oct Nov Dec
say list_of_months

produces the following output:

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Symbols A symbol in REXX is any group of characters A-Z, a-z,
0-9, “.’, ”!", “?”, “@”, or “_”. The meaning of a symbol
is derived from its context. A symbol may be any of the
following types:

• constant symbol
begins with a digit and may include the letter “e”
followed optionally by a plus or minus sign and
one or more digits; the value of a constant symbol
may not be changed; examples include

10
3.1416
15e-3
4x

8 uni-REXX Reference Manual

• simple symbol
does not begin with a digit and does not contain
any embedded periods; its default value is the
symbol translated to uppercase; a simple symbol
may be used as a variable and may be assigned
a value; examples include

list
file1
Date

• compound symbol
does not begin with a digit, contains at least one
embedded period, and may not end with a
period; the name begins with a stem (see de-
scription of stem symbols, next in this section)
followed by a period followed by a tail; the tail
may be a constant symbol, a simple symbol, or
null; before a compound symbol is used, the val-
ues of any simple symbols in the tail are substi-
tuted, creating the derived name of the com-
pound symbol; the default value of a compound
symbol is one of the following:

the value assigned to the stem
the symbol name translated to uppercase if no

value has been assigned to the stem

Examples include

data.1 = 5
say data.1

output is “5"; the tail is a constant symbol
so this compound symbol does not have a
derived name

x = 3
data.3 = 7
say data.x

output is “7"; the value of the simple sym-
bol ”x" is substituted to produce the derived
name “data.3", which has been assigned the
value ”7"

Chapter 2: Language Features 9

• stem
does not begin with a digit and contains only one
period, which must be the last character; may be
assigned a value, which effectively assigns that
value to all compound symbols which begin with
this stem; stems may represent a collection (or ar-
ray) of variables; examples of stems and their use
include

list. /* a stem whose value is “LIST.” */

list. = animals
list.3 = ‘cows’
say list.1 list.new list.3

output is “ANIMALS ANIMALS cows” since
only the compound symbol list.3 has been as-
signed a value different from the value as-
signed to the stem

Expressions A REXX clause may contain one or more expressions. An
expression consists of one or more terms and zero or more
operators designating operations to be performed on the
terms.

The terms in an expression may be any of the following:

• literal string
• symbol
• function call
• sub-expression

Literal strings are treated as constants.

Symbols are translated to uppercase and may be treated as
constants or as variables. Symbols that do not begin with
a digit may be the name of a variable, in which case the
value of that variable is used in the expression.

10 uni-REXX Reference Manual

Function calls are of the form

function_name([expression] [, [expression]] ...)

where function_name may be a symbol or a string.

A sub-expression is any expression enclosed in
parentheses.

Operators may be grouped into four categories:

• arithmetic
• comparative
• concatenation
• logical

Arithmetic operators are used to perform operations on
numbers. uni-REXX supports the following arithmetic
operators:

+ addition

- subtraction

* multiplication

/ division

% integer division (returns integer portion of result)

// remainder (not modulo - may be negative)

** exponentiation (raise to a whole number power)

Comparative operators compare two terms and return
the value `1’ if the result is true or the value `0’ if the
result is false. There are two types of comparative op-
erators: normal and strict. Two terms must be abso-
lutely identical to be strictly equal – that is, there must
be the same number of leading or trailing blanks in
both terms, no padding is performed before the compar-
ison is made, and the comparison is based on the inter-
nal character representation of the platform where the
program is executed. For strict less than and greater
than comparisons, the collating sequence of the internal
character representation is used. Thus, these results

Chapter 2: Language Features 11

may be platform-dependent. Further, for strict compari-
sons, if string1 is shorter than string2 and is also a lead-
ing substring of string2, string1 is considered strictly less
than string2.

uni-REXX supports the following comparative operators:

Normal comparison

= equal

^=, \=, <>, >< not equal

> greater than

< less than

>=, ^<, \< greater than or equal (not less than)

<=, ^>, \> less than or equal (not greater than)

Strict comparison

== strictly equal (identical)

^==, \== strictly not equal

>> strictly greater than

<< strictly less than

>>=, ^<<, \<< strictly greater than or equal

<<=, ^>>, \>> strictly less than or equal

Concatenation operators combine two strings to form a
single string. Concatenation may be indicated in any of
the following ways:

|| concatenate with no intervening blanks

blank concatenate with one blank between strings

abuttal concatenate with no intervening blanks

It is important to remember that concatenation is implied
when two adjacent terms are not separated by some other
operator.

12 uni-REXX Reference Manual

Logical operators take one or two logical values as
their operand(s) and return a logical result – 1 or 0.
uni-REXX supports the following logical operators:

& and; returns 1 if both terms are true

| or; returns 1 if either term is true

&& exclusive or; returns 1 if either (but not
both) term is true

\ or ^ not; 1 becomes 0 or 0 becomes 1

Functions A function is a program or subroutine that accepts zero
or more arguments and returns a single value. A func-
tion call in REXX is an expression of the form

function_name([expression] [, [expression]] ...)

A function call may be used in any expression when-
ever any other term would be valid. The argument ex-
pressions may also be function calls. There may not be
intervening blanks between the function_name and the
opening parenthesis. The presence of such blanks
would cause the expression to be interpreted as two un-
related symbols or expressions. REXX supports three
types of functions

• built-in
• internal
• external

Built-in functions are part of the language and are al-
ways available. These functions are documented in
Chapter 5, Built-in Functions.

Internal functions are routines contained within the
program and identified by a label. Internal functions
are always available to the program that includes them.
An internal function must return control to the main
program.

Chapter 2: Language Features 13

External functions are stand-alone routines that may be
called by a REXX program. They may be written in REXX

or in any language which supports the application program
interfaces defined in Chapter 7. External functions are
available to any program. In the case of external func-
tions written in REXX, uni-REXX locates the function
through use of the environment variable REXXPATH.
This is discussed in detail in Chapter 3, Operation.

Special
Variables

There are three special variables whose values may be set
automatically during execution of a REXX program:

RC
set to the return code from a command

RESULT
set to the value returned by a called subroutine; if no
value is specified on the RETURN statement in the
subroutine, RESULT is dropped

SIGL
set to the line number of the last instruction that
caused a jump to a label; this could result from a
CALL or SIGNAL instruction, an internal function
call, or a trapped condition

Condition
Traps

While the flow of execution in a program is normally con-
trolled by the instructions in the program, REXX recognizes
certain conditions that may alter the flow. Condition traps
may be set in a program so that execution flow is automat-
ically altered whenever one of these conditions is encoun-
tered. The CALL and SIGNAL instructions allow you to
enable or disable condition traps and to specify the action
to be taken if a condition is raised when the trap is en-
abled. The conditions that may be trapped are

14 uni-REXX Reference Manual

ERROR
indicates an error condition during execution of a
command or that the specified host command envi-
ronment was not found

FAILURE
indicates that execution of a command failed or
that the specified host command environment was
not found

HALT
indicates detection of an external interrupt or ter-
mination signal

LOSTDIGITS
indicates that a numeric result has been rounded to
fit within the current setting of NUMERIC DIGITS

NOTREADY
indicates an error or end of file detected during an
I/O operation

NOVALUE
indicates that a symbol referenced in an expression
or in a PARSE, PROCEDURE, or DROP instruc-
tion has not been assigned a value

SYNTAX
indicates a syntax error during program execution

Input/Output Input and output operations in uni-REXX are imple-
mented according to the I/O model defined by
Cowlishaw in The REXX Language (Second Edition)
and the ANSI standard X3.274:1996. This includes
both character input and output streams and the external
data queue. The following instructions and built-in
functions for performing I/O are included in uni-REXX:

ADDRESS

Chapter 2: Language Features 15

keywords of the address instruction support redirec-
tion of command input or output

CHARIN
read characters from an input stream

CHAROUT
write characters to an output stream; optionally, if the
output stream is a file and no output string is speci-
fied, perform a close operation on the file

CHARS
return the number of characters remaining in an in-
put stream

LINEIN
read one line from an input stream

LINEOUT
write one line to an output stream; optionally, if the
output stream is a file and no output string is speci-
fied, perform a close operation on the file

LINES
return the number of lines remaining in the input
stream

PARSE LINEIN
read one line from the default input stream

PARSE PULL
read one line from the external data queue or, if the
queue is empty, from the default input stream

PULL
same as PARSE PULL except that the data is auto-
matically converted to uppercase

PUSH
write one line to the top of the external data queue

16 uni-REXX Reference Manual

QUEUE
write one line to the end of the external data queue

QUEUED
return the number of lines remaining on the exter-
nal data queue

SAY
write one line to the default output stream

STREAM
return a string describing the state of the specified
input or output stream or perform operations on the
stream

Under UNIX, transient I/O streams include STDIN,
STDOUT, and pipes, including named pipes. Persistent
I/O streams are disk files. The default input stream is
STDIN. The default output stream is STDOUT. Using
uni-REXX I/O functions with pipes allows you to write
filter programs for use with other commands or
programs.

uni-REXX is packaged with an EXECIO program that
provides an alternative to the REXX I/O model. Use of
EXECIO is described in detail in Chapter 6, uni-REXX
Extensions.

Parsing One of the strengths of the REXX language is its exten-
sive and flexible string manipulation capability. Besides
the built-in functions that perform string operations,
REXX includes the PARSE instruction which provides a
generalized and powerful mechanism for assigning por-
tions of a string to variables.

The general form of the PARSE instruction is

PARSE [UPPER] keyword [expression] template

Chapter 2: Language Features 17

template is defined by the programmer and describes the
way in which the string is to be separated and assigned to
variables.

A detailed syntax diagram and description of the PARSE
instruction may be found in Chapter 4, Instructions,
which also includes extensive examples of the power and
flexibility of PARSE.

Language
Extensions

A number of types of language extensions are implemented
in uni-REXX:

• built-in functions that allow a program to manage its
environment. These include

CHDIR change the current working directory for
this process

CUSERID return the userid of the current process;
this is the same as the USERID built-in
function but is included for the conve-
nience of those accustomed to writing C
programs in UNIX

GETCWD return the full path of the current working
directory for this process

GETENV return the current definition of the speci-
fied environment variable

POPEN redirect host command output to the exter-
nal data queue

PUTENV define the specified environment variable
for this process; this definition does not
persist after the uni-REXX program’s pro-
cess terminates

Detailed descriptions of these functions may be found in
Chapter 5, Built-In Functions.

• External commands that are part of the operating sys-
tem in other environments where REXX is imple-
mented. These include:

EXECIO perform file input and output

18 uni-REXX Reference Manual

GLOBALV define and manage global variables

MAKEBUF define a new buffer in the program
stack

DROPBUF clear the program stack buffer cre-
ated most recently or clear a specific
program stack buffer and all buffers
created subsequently

DESBUF clear all program stack buffers

RXQUEUE pipe output to the program stack

SENTRIES does something about entries in pro-
gram stack

Detailed descriptions of these commands may be found
in Chapter 6, uni-REXX Extensions.

• uni-REXX specific, to implement system functions
in an operating system independent manner:

RXFUNCADD register a dynamically loaded
function

RXFUNCDROP deregister a function

RXFUNCQUERY determine whether a function is reg-
istered

RXXCOMMANDSPAWN start an external command
process

RXXCOMMANDKILL kill a spawned process

RXXCOMMANDWAIT wait for process completion

RXXCOMMANDPACKAGELOAD
dynamically load commands

RXXFUNCTIONPACKAGELOAD
dynamically load functions

RXXOSENDOFLINESTRING
return end of line characters

RXXOSENVIRONMENTSEPARATOR
return environment separator

Chapter 2: Language Features 19

RXXOSPATHSEPARATOR
return file path separator

RXXSLEEP sleep the program for nn sec-
onds

Detailed descriptions of these functions may be found in
Chapter 6, uni-REXX Extensions.

• implementations of UNIX-specific functions normally
available only in the C library. These include

Detailed descriptions of these functions may be found in
Chapter 6, uni-REXX Extensions.

20 uni-REXX Reference Manual

_accept
_bind
_closedir
_closesocket
_connect
_errno
_exit
_fd_clr
_fd_isset
_fd_set
_fd_zero
_fork
_geteuid
_gethostbyaddr
_gethostbyname
_gethostid *
_gethostname
_getpeername
_getpid
_getppid
_getservbyname
_getsockname

_getsockopt
_getuid
_ioctl
_kill
_listen
_opendir
_readdir
_recv
_regex
_select
_send
_setsid *
_setsockopt
_sleep
_socket
_stat
_systemdir
_sys_errlist
_truncate
_umask
_wait
_waitpid *

* not available in all UNIX implementations

Chapter 3: Operation

This chapter presents details on the execution of
uni-REXX programs. It also covers such implementa-
tion-specific topics as access to external functions and
subroutines and host command execution.

uni-REXX provides both an interpreter (rxx) and a com-
piler (rxc). The interpreter executes uni-REXX pro-
grams. The compiler allows you to

• create an intermediate pseudo-code version of a
program

• regenerate the interpreter to include user-written
functions

The uni-REXX Developer’s Kit further includes

• a compiler option to create platform-specific bina-
ries from uni-REXX source programs

• a redistribution license under which you may freely
redistribute such binaries as well as any of the
UNIX extension commands (EXECIO,
GLOBALV, MAKEBUF, DROPBUF, DESBUF,
RXQUEUE, SENTRIES) required by those
programs.

Program
Names

A uni-REXX program may have any filename that is
supported by your platform’s operating system.

Chapter 3: Operation 21

Many users may find it helpful to use the extension “.rex”
to identify uni-REXX programs. This is not required. It
is, however, convenient if you plan to compile your pro-
grams, as “.rex” is the default extension used by
uni-REXX. You may change the default extension using
the environment variable REXXSUFFIXSOURCE,
described later in this chapter.

Program
Execution

Two methods of program execution are available:

• explicit
• implicit

Explicit execution is supported by all UNIX implemen-
tations. With this method, you invoke the interpreter as
a UNIX command and specify the name of the program
to be run. The interpreter executable is found either
through the $PATH environment variable, or by typing
the fully-qualified pathname to the program. uni-REXX
is executed under control of a License Manager, which
requires that a component file named twgfiles be lo-
cated in the same directory as the interpreter binary.
Typing

rxx filename

invokes uni-REXX to execute the program filename.

uni-REXX locates filename by searching first in the cur-
rent working directory, then in directories specified in
the environment variable REXXPATH

A uni-REXX program to be explicitly executed must
have read permission for all authorized users. Use the
UNIX chmod command to set read permission for au-
thorized users.

chmod +r filename

sets read permission on filename for owner, group, and
other. Other variations of chmod allow you to limit
this authorization.

22 uni-REXX Reference Manual

Implicit execution (also known as interpreter files) al-
lows you to run a uni-REXX program as if it were an op-
erating system command.

There are two requirements for implicit execution of
programs under UNIX:

• The first line of the program must be an implicit
execution string.

• The program file must have execute permission for
all authorized users.

An implicit execution string identifies to the UNIX
shell the processor to be used for this program. It must
begin with the two characters “#!”. These characters are
followed by the full path name of the processor to be
used. If you have installed uni-REXX in /usr/local/rexx,
the implicit execution string for your program would be

#!/usr/local/rexx/rxx

Some UNIX implementations place one or more of the
following limitations on implicit execution strings:

• string may not exceed 32 characters, including the
and ! Characters

• string may not contain embedded blanks

Use the UNIX chmod command to set execution permis-
sion for authorized users.

chmod +x filename

sets execution permission on filename for owner, group,
and other. Other variations of chmod allow you to
limit this authorization.

The following uni-REXX program, named “sayhi”, is
written for implicit execution:

#!/usr/local/bin/rxx
/* My greeting program */
say ‘Hi there - welcome to uni-REXX’

Chapter 3: Operation 23

To run this program, you need only type
sayhi

With implicit execution, the UNIX shell uses the normal
search methods for locating any command to find the
program to be run. Specifically, it searches the directo-
ries specified in the environment variable PATH. If the
current working directory (specified as “.”) is not in-
cluded in PATH, the shell will not find your program
even if it is in your current directory. In addition, some
UNIX versions may require that the uni-REXX execut-
able (rxx) be found in the PATH.

The rxx
Command

The rxx command invokes the uni-REXX interpreter. It
is normally used for explicit execution of programs but
has two additional options.

rxx filename[.extension]
rxx -c `string‘
rxx -v

The syntax shown assumes that rxx is installed in a di-
rectory that is included in your PATH environment vari-
able. You may also invoke the interpreter by typing its
full path name as in

/usr/local/bin/rxx filename[.extension]

The first form (rxx filename[.extension]) executes a
uni-REXX program. filename specifies the name of the
program to be run. extension is optional. For programs
whose filenames have an extension, “rex” is the default.

The environment variable REXXSUFFIXSOURCE con-
trols the default extension for program names. If this
environment variable is unset, the default extension is
“rex”. To modify this behavior, set
REXXSUFFIXSOURCE to the desired filename exten-
sion. In this case, uni-REXX runs only a program with

24 uni-REXX Reference Manual

the specified extension, regardless of the presence of
programs with other extensions (including “.rex”).

rxx uses the following search order to locate the pro-
gram to execute

• current working directory
• directories specified in the environment variable

REXXPATH

If only filename is specified on the rxx command, the
program to be executed is chosen according to the fol-
lowing order of priority.

• filename (with no extension)
• filename.rex (if REXXSUFFIXSOURCE is unset)
• filename.extension, where extension is specified by

the current setting of REXXSUFFIXSOURCE

Specifying filename.extension on the rxx command
always executes the program with the filename and
extension specified regardless of the setting of
REXXSUFFIXSOURCE.

The second form (rxx -c `string‘) allows you to specify
a string to be interpreted. string may be any legal
REXX clause or a combination of clauses separated by
semi-colons. string must be enclosed in quotes. This
feature allows you to invoke uni-REXX for limited pur-
poses without saving the statements in a disk file. It
may be used from the system prompt, in another
uni-REXX program, or in a shell script.

The third form (rxx -v) displays the version number of
your currently installed interpreter.

Chapter 3: Operation 25

Examples:

rxx hello

execute the program named “hello”

rxx doit.rex

execute the program named “doit.rex”

rxx inventory.report

execute the program named “inventory.report”

rxx -c “say hello world”

execute the string enclosed in quotes; output of this
command to the terminal screen is

HELLO WORLD

rxx -c “do i=1 to 3; say i; end”

execute uni-REXX DO loop enclosed inquotes;
output of this command to the terminal screen is

1
2
3

rxx -v

display the version number of the currently in-
stalled interpreter; the output of this command to
your terminal screen is

uni-REXX (R) The Workstation Group. Version 2.97
Open-REXX (TM) Copyright (C) iX Corporation 1989-1999.
All rights reserved.

The return code from the rxx command will be the error
message number (see Appendix A) if the interpreter en-
countered a syntax or runtime error in the program.
Otherwise, the value of the expression on the EXIT or
RETURN instruction supplied by the program is re-
turned. If no value was supplied, zero is returned. To
avoid confusion with interpreter detected errors, we sug-
gest that the user program return values between
200-254.

26 uni-REXX Reference Manual

The uni-REXX
Compiler

The uni-REXX compiler serves three distinct purposes:

• creation of an intermediate code version of a
source program

• regeneration of the interpreter to include user-
written functions

• for the uni-REXX Developer’s Kit, generation of a
platform-specific binary

Intermediate Code Generation. The uni-REXX com-
piler is not a true compiler in that it does not generate
machine language code. It does, however, generate an
intermediate pseudo-code that, for some types of pro-
grams, provides improved execution speed and memory
utilization. Programs that include extensive do loops,
subroutines, or function calls will not realize any per-
formance benefits from compilation. However, large
programs that are essentially end-to-end code may bene-
fit from compilation. The degree of performance im-
provement is dependent on the size of the source
program.

Intermediate code also provides source code security.
The pseudo-code version of the program is not “human
readable” and therefore cannot be modified by end us-
ers.

The compiler performs a syntax check on the entire pro-
gram as part of compilation. Thus, users will not en-
counter syntax errors when executing the compiled
program. If any program error is encountered, rxc gen-
erate a return code of the error message number (see
Appendix A).

uni-REXX marks compiled programs for implicit execu-
tion. The compiler automatically places an implicit ex-
ecution string as the first line in the output file and sets
execute permission for user, group, and other. If your
operating system does not support implicit execution,
you must use the rxx command to run a compiled
program.

Chapter 3: Operation 27

An intermediate code version of a uni-REXX program
requires access to the interpreter at run time. A
uni-REXX license is therefore required for execution of
a program “compiled” in this manner.

Regeneration of uni-REXX. One of the strengths of
the REXX language is that it is extensible through the
addition of user-written functions. Chapter 7, Applica-
tion Programming Interfaces provides details on writ-
ing such functions and using the compiler to rebuild the
interpreter to include them.

Creation of a Platform-Specific Binary. The
uni-REXX Developer’s Kit includes the option of the
compiler that allows you to create a platform-specific
binary from your source program. Such a binary com-
bines the interpreter and the uni-REXX program into a
single executable that does not require access to an ex-
ternal interpreter at run time. Such binaries are there-
fore significantly larger than either a source or interme-
diate code version of the program. They are, however,
freely distributable and may be executed by users who
have not licensed uni-REXX. In addition, a license for
the Developer’s Kit conveys the right to redistribute the
UNIX extension commands (EXECIO, GLOBALV,
MAKEBUF, DROPBUF, DESBUF, RXQUEUE,
SENTRIES) with any program that uses these
commands.

The compiler performs a syntax check on the entire pro-
gram as part of compilation. Thus, users should not en-
counter syntax errors when running the binary.

The rxc
Command

The rxc command invokes the uni-REXX compiler.

rxc filename[.extension]
rxc -G objfile [-Llibpath] [-llibname] [-o intname]

28 uni-REXX Reference Manual

The syntax shown assumes that rxc is installed in a di-
rectory that is included in your PATH environment vari-
able. You may also invoke the compiler by typing its
full path name as in

/usr/local/bin/rxc filename[.extension]

The first form generates an intermediate code version of
a uni-REXX program. filename is the name of the
source program to be compiled. Source programs must
have an extension. The output of rxc is a file named
filename without the extension. If .extension is omit-
ted, the default is “.rex”.

The environment variable REXXSUFFIXSOURCE con-
trols the default extension for program names. If this
environment variable is unset, the default extension is
“rex”. To modify this behavior, set
REXXSUFFIXSOURCE to the desired filename exten-
sion. In this case, rxc compiles only programs with the
specified extension, regardless of the presence of pro-
grams with other extensions (including “.rex”).

rxc automatically places an implicit execution string at
the beginning of the output file. For this reason, you
must have access to the interpreter at compile time.
Normally, rxx and rxc are installed in the same direc-
tory, making this access automatic. If rxc cannot locate
the interpreter, the message

Error 102 in filename.ext: Cannot find rxx for
implicit execution

appears.

The compiler automatically sets execute permissions on
the output file for owner, group, and others.

The second form of the rxc command rebuilds the inter-
preter to include user-written functions. Chapter 7,
Application Programming Interfaces gives details of
this syntax and its use.

Chapter 3: Operation 29

If you have licensed the uni-REXX Developer’s Kit, there
is a third form of the rxc command available to generate
an executable binary.

rxc -m filename[.extension]

filename is the name of the uni-REXX source program
to be compiled. Source programs must have an exten-
sion. The output of rxc is a file named filename with-
out the extension. If .extension is omitted, the default
is “.rex” or the extension specified by the
REXXSUFFIXSOURCE environment variable as de-
scribed previously. The compiler automatically sets ex-
ecute permissions on the output file for owner, group,
and others.

When generating a binary, the uni-REXX compiler must
have access to all of the following resources on your
system:

• space to create temporary files
• C compiler and loader
• uni-REXX libraries

Access to these resources may be controlled by the set-
ting of appropriate environment variables. Defaults and
options are shown in the table on the following page.
Appendix E, uni-REXX Environment Variables in-
cludes additional details.

Resource Default Environment Variable

Temp space /tmp REXXTEMP
set this environment variable
to the directory in which you
want temporary files to be
placed

C compiler cc REXXMODULECC
if you do not use the command
“cc” to access your C compiler,
set this environment variable to
the correct command

30 uni-REXX Reference Manual

C compiler flags platform- REXXMODULECFLAGS
specific set this environment variable

to the proper compilation flags
for your C compiler

Loader flags platform- REXXMODULELDFLAGS
Specific set this environment variable to

the proper “ld” flags for your
loader; at minimum, these must
include the math library and the
socket library; additional libraries
may be required on some platforms

uni-REXX libraries none – REXXLIB
site-specific set this environment variable

to the directory containing
librx.a and librxi.a; typically,
this is the same directory
where uni-REXX is installed

Resulting module stripped
REXXMODULELDSYMBOLS

if this environment is unset,
the resulting module is auto-
matically stripped of all
symbol tables; set this variable
to any value to suppress stripping
of the module

Note that no default is provided for the location of the
uni-REXX libraries since this may be highly site-
specific. Therefore you must set REXXLIB before
attempting to generate a binary. If rxc cannot locate
the archive library, the message

Error 105 in filename.ext: Environment vari-
able REXXLIB not set

appears.

To set environment variables, select the appropriate
command(s) from the following table, which uses
REXXLIB as an illustration. The examples assume that
librx.a is located in /usr/local/rexx.

Chapter 3: Operation 31

Shell Command(s)

C setenv REXXLIB /usr/local/rexx

Bourne REXXLIB=/usr/local/rexx
export REXXLIB

Korn REXXLIB=/usr/local/rexx
export REXXLIB

Examples:

rxc doit.rex

create an intermediate code version of the program
named “doit.rex”; output is named “doit”

rxc doit

same as previous example; rxc uses the default ex-
tension “.rex” if no extension is supplied

rxc report1.prog

create an intermediate code version of the program
named “report1.prog”; output is named “report1"

rxc -G myfuncs.o

regenerate the interpreter (rxx) to include the
user-written functions in the object file
“myfuncs.o”

rxc -G myfuncs.o -o fred

regenerate the interpreter to include the functions
in the object file “myfuncs.o”; name the new inter-
preter “fred”

rxc -m doit

create an executable binary of the program
“doit.rex”; output is named “doit”; this option is
valid only with a license for the Developer’s Kit

32 uni-REXX Reference Manual

External
Functions and
Subroutines

uni-REXX supports the use of functions or subroutines
that are external to the program being executed. The
following search order is used to locate external func-
tions and subroutines:

• current working directory
• directories specified in the environment variable

REXXPATH

If your program includes an external function or subrou-
tine call for which the file is not found in one of these
locations, the message

Error 43 on line n in filename: Routine not found

appears.

External Data
Queue

Unlike other environments in which the REXX language
is implemented (notably VM/CMS), UNIX does not
have the concept of a persistent stack. Thus the exter-
nal data queue in uni-REXX is implemented as an inter-
nal facility and is referred to as the “uni-REXX pro-
gram stack” or the “program stack” throughout this
manual.

Programs executed under UNIX run in separate pro-
cesses. uni-REXX implements special interprocess com-
munication capabilities to permit sharing of the program
stack between uni-REXX programs. This facility cannot
be used to communicate with applications, commands,
or programs that are not written in uni-REXX.

The environment variable REXXSTACKSHARED is
used to control this feature. If this environment vari-
able is set, stack sharing is enabled. The default is to
not share the stack. To enable sharing of the program
stack, set this variable to any value.

There are three options for capturing the output of
UNIX commands or non-uni-REXX programs onto the
stack for use by your REXX program:

Chapter 3: Operation 33

• the POPEN function, which automatically places
STDOUT from the command or program onto the
stack

• the RXQUEUE extension command; pipe the output
from a command or program to RXQUEUE and
that output is placed on the stack; this is especially
useful when addressing other than the default host
command environment

• the ADDRESS instruction, using keywords to redi-
rect command input, output, or error to the stack

uni-REXX also includes UNIX-specific extensions that
implement interprocess communications. This facility
provides an alternative method of communication be-
tween programs. You may create stand-alone applica-
tions that implement interprocess communications with
uni-REXX programs. Chapter 7, Application Pro-
gramming Interfaces, provides details on the use of
interprocess communications, including examples of pro-
grams that use the facility.

Host
Command
Execution

There are a number of alternatives for executing host
commands in uni-REXX. The choice depends on the
command to be executed and whether or not you need
access to output from the command for further process-
ing. You may execute a host command in one of the
following ways:

• directly, by including the command as a clause in
the program. The command may or may not be
enclosed in quotes. Use quotes to insure that it is
treated as a host command if there is any risk that
a program variable may have the same name as the
host command or any of its operands. Quotes may
also be necessary to insure the case-sensitivity of
the host command. In this case, command output
is directed to STDOUT. You must redirect
STDOUT to a file if the output is required for later
use.

34 uni-REXX Reference Manual

• by use of the ADDRESS instruction. ADDRESS
allows you to specify the name of the host com-
mand environment that is to process the command.
The default host command environment is UNIX.
Commands addressed to UNIX are processed by the
Bourne shell. Additional host command environ-
ments are supported for the special purposes
indicated

csh for commands that are only avail-
able in the C shell or for command
syntax specific to the C shell

ksh for commands that are only avail-
able in the Korn shell or for com-
mand syntax specific to the Korn
shell

sh for commands that are only avail-
able in the Bourne shell or for com-
mand syntax specific to the Bourne
shell; this is identical to the default
UNIX command environment

command for commands that have operands
which might normally be expanded
by the shell, such as “*”; no shell is
used; the command is executed di-
rectly; because no shell is invoked,
piping (|), redirection(>, >>, or <),
filename expansion (*, ?, [], etc.),
and backgrounding (&) are
unavailable (for compatibility with
VM/CMS programs, cms is a syn-
onym for command)

Command output is directed to STDOUT. You
may redirect STDOUT to a file if the output is
required for later use.

Keywords of the ADDRESS instruction also pro-
vide for redirection of command input, output, or
error streams to the uni-REXX program stack, a
stem in the current program, or a file.

Chapter 3: Operation 35

• by using the POPEN built-in function. POPEN re-
directs command output to the uni-REXX program
stack where it is available to the program through
PULL or PARSE PULL.

36 uni-REXX Reference Manual

Chapter 4: Instructions

A REXX instruction is one or more clauses that may
either

• control the program flow
• manipulate data
• affect the external environment

An instruction is identified by a keyword and is recog-
nized only when the following conditions are met

• the keyword is the first token in the clause
• the second token does not begin with “=” (which

implies assignment) or “:” (which indicates a label)

Instruction keywords are reserved when used in the con-
text just described. Certain sub-keywords (such as
WHILE or WHEN) are reserved within the context of
particular instructions (such as DO or SELECT). Al-
though instruction keywords and sub-keywords are not
reserved outside this context, it is good programming
practice not to use them as labels or as variables.

Instruction keywords and sub-keywords are not case-
dependent. Further, adjacent blanks have no effect
other than to separate the keyword from surrounding
tokens.

Chapter 4: Instructions 37

The following instructions are provided in uni-REXX:

38 uni-REXX Reference Manual

ADDRESS
ARG
CALL
DO
DROP
EXIT
IF
INTERPRET
ITERATE
LEAVE
NOP
NUMERIC

OPTIONS
PARSE
PROCEDURE
PULL
PUSH
QUEUE
RETURN
SAY
SELECT
SIGNAL
TRACE
UPPER

ADDRESS The ADDRESS instruction specifies the external envi-
ronment for the execution of host commands. It also
supports redirection of input, output, and error streams
associated with the command.

ADDRESS [environment [expr1] [WITH redirect]]
[[VALUE] expr2]

environment is the name of the host command environ-
ment for subsequent host commands.

expr1 is the host command to be executed. This may
be a literal string or an expression that evaluates to a
host command. When expr1 is specified, ADDRESS
sends a single command to the specified environment.
If expr1 is omitted, ADDRESS causes a permanent
change to the default host command environment.

When a new host command environment is specified,
this becomes the primary host command environment.
uni-REXX retains the previous environment name and
any associated I/O redirection as the alternate environ-
ment. Repeated execution of ADDRESS without
operands then has the effect of a toggle between the
primary and alternate environments.

ADDRESS [VALUE] expr2 is equivalent to
ADDRESS environment. expr2 is an expression that
evaluates to the name of a host command environment.
If expr2 does not begin with a symbol or a literal string
(that is, if it starts with a special character), you may
omit the sub-keyword VALUE.

redirect represents the keyword syntax that supports I/O
redirection. This syntax is as follows:

Chapter 4: Instructions 39

INPUT PULL
STEM stem_name
STREAM file
NORMAL

OUTPUT [REPLACE] PUSH
[APPEND] QUEUE

STEM stem_name
STREAM file
NORMAL

ERROR [REPLACE] PUSH
[APPEND] QUEUE

STEM stem_name
STREAM file
NORMAL

INPUT specifies redirection of standard input for the
command. OUTPUT specifies redirection of standard
output. ERROR specifies redirection of standard error.
These keywords may be used individually or in any
combination. When used in combination, the instruction
has the form

address UNIX cmd with input ikey output okey error ekey

where cmd is the command to be executed and ikey,
okey, and ekey are additional keywords for input, out-
put, and error, respectively.

REPLACE indicates that command standard output or
standard error should replace existing data in the target
specified. This is the default. APPEND indicates that
command standard output or standard error should be
appended to existing data in the target specified.

The remaining keywords indicate the source (for input)
or target (for output and error) of I/O redirection.

PULL causes command input to be taken from the
uni-REXX program stack. PUSH and QUEUE redirect

40 uni-REXX Reference Manual

command output or error to the uni-REXX program
stack in the same manner as the PUSH and QUEUE in-
structions. These keywords are uni-REXX extensions to
the ANSI standard and should not be used if portability
to other platforms is a consideration.

STEM specifies that the source of command input or
the target of output or error is a stem in the current
program.

stem_name is the name of the stem to be used. It must
be specified in the form stem., the trailing “.” being re-
quired to distinguish it from an ordinary variable.

For INPUT, you must set stem_name.0 to the number
of elements in the stem. stem_name.1 through
stem_name.n contain the data to be redirected. For
OUTPUT or ERROR, stem_name.0 is set automatically
to the number of elements created in the stem.
stem_name.1 through stem_name.n contain the data re-
turned from the command.

STREAM specifies that the source of command input
or the target of output or error is a file stream. file
specifies the name of the file. It is recommended that
file be enclosed in quotes (UNIX filenames are case
sensitive and may also contain characters that would
cause them to appear to uni-REXX as an expression).

NORMAL resets the source of command input or the
target of output or error back to the terminal. When
NORMAL is specified, it must be the only keyword fol-
lowing INPUT, OUTPUT, or ERROR.

Normally, the default host command environment is
UNIX, though this may not be the case for applications
that embed uni-REXX as a macro language. The fol-
lowing additional host command environments are auto-
matically supported:

Chapter 4: Instructions 41

sh
the UNIX Bourne shell; used for commands that
are available only in the Bourne shell or for com-
mand syntax specific to the Bourne shell; this is
the default shell used by the default host command
environment (UNIX).

csh
the UNIX C shell; used for commands that are
available only in the C shell or for command syn-
tax specific to the C shell.

ksh
the UNIX Korn shell; used for commands that are
available only in the Korn shell or for command
syntax specific to the Korn shell.

command
a special host command environment that bypasses
normal shell expansions; used for commands with
operands that would normally be expanded by the
shell, such as “*”; no shell is used; the command
is executed directly; because no shell is invoked,
piping (|), redirection (>, >>, <, etc.), filename ex-
pansions (using *, ?, [], etc.), and backgrounding
(&) are unavailable. For compatibility with VM,
cms is is accepted as a synonym for command.

Applications that embed uni-REXX as a macro language
may define additional host command environments
and/or set a different default. This is accomplished
through the IRXSUBCM application programming inter-
face described in Chapter 7, Application Programming
Interfaces.

The current setting of ADDRESS is accessible through
the ADDRESS built-in function, described in detail in
Chapter 5, Built-In Functions.

In the UNIX environment, any host command sent to
the default host command environment or to one of the

42 uni-REXX Reference Manual

automatically recognized environments spawns a new
process to execute the command. When the command
completes, the spawned process terminates. If the com-
mand changes an attribute that is unique for each pro-
cess (such as current working directory), the change is
associated only with the spawned process and has no ef-
fect on the process in which uni-REXX is running.

Examples:

/*
* the following program fragment captures the
* output of the UNIX “ls -l” command in a
* file for later use
*/
address UNIX ‘ls -l’ with output stream ‘files’

/*
* the following program fragment executes a
* C shell command to capture the session
* command history in a file for later use
*/
cmd_list = ‘/tmp/cmd.history’
address csh ‘history >’ cmd_list

/*
* the following program fragment alternates
* between two host command environments to
* execute commands that are specific to those
* environments
*/
cmd_list = ‘/tmp/cmd.history’
home_file_list = ‘/tmp/home.list’
here_file_list = ‘/tmp/here.list’
sales_file_list = ‘/tmp/sales.list’
address UNIX
‘ls -l >’ here_file_list
address csh
/*
* in the following line, ~ is C-shell short-
* hand for $HOME
*/
‘ls -l ~/reports >’ home_file_list
address /* resets environment name to UNIX */
‘ls -l > /home/sales/reports’
address /* resets environment name to CSH */
‘history >’ cmd_list

Chapter 4: Instructions 43

ARG The ARG instruction retrieves the argument string(s) of
a program or an internal routine and puts them into
variables.

ARG [template]

The ARG instruction is simply a short form of

PARSE UPPER ARG [template]

Thus, characters in the argument string(s) are translated
to uppercase and then parsed into variables according to
normal parsing rules (refer to the PARSE instruction in
this chapter for details). Use PARSE ARG to preserve
the case of the argument string(s).

template is the parsing template that defines how the ar-
gument string(s) are assigned to variables. For details
on parsing templates, refer to the PARSE instruction in
this chapter. If template is omitted, the ARG instruc-
tion has no effect.

As with the PARSE instruction, ARG may be used re-
peatedly with different templates to separate the argu-
ment string(s) in different ways.

The argument string(s) and information about the argu-
ment string(s) are also accessible from the ARG built-in
function, described in Chapter 5, Built-In Functions.

Examples:

/*
* the following program, named “bday”, accepts
* a single argument for use in an output string
*/
arg who
say ‘Happy birthday,’ who’!’
/*
* if the user types “bday Susan”
* the output is “Happy birthday, SUSAN!”
* if the user types “bday Jean Luc”
* the output is “Happy birthday, JEAN LUC!”
*/

44 uni-REXX Reference Manual

/*
* the following program fragment accepts a
* maximum of 2 arguments for processing;
* the third and subsequent arguments are
* discarded
*/
arg order_number part_number .
if order_number = ‘’ then

call display_order_list
if part_number = ‘’ then

call display_parts_list

/*
* the following program fragment illustrates
* repeated use of ARG to separate the argu-
* ment strings in different ways
*/
today = date(s)
say today
call breakup today
exit
breakup:
arg thisdate
arg year +4 month +2 day
arg +2 yr +2 +1 mo +1 +1 dy
say thisdate
say year month day
say yr mo dy
return
/*
* the output is
* 19940303
* 19940303
* 1994 03 03
* 94 3 3
*/

Chapter 4: Instructions 45

CALL The CALL instruction invokes a routine or controls the
trapping of certain conditions.

CALL name [expr] [, [expr]] ...
ON condition [NAME trapname]
OFF condition

name is the subroutine to be invoked. It may refer to
any of the following types of routines, using the search
order shown below:

Internal routine
any subroutine or function contained within the
current program and identified by a label

Built-in function
one of the uni-REXX built-in functions described
in Chapter 5, Built-In Functions or one of the
UNIX-specific functions described in Chapter 6,
uni-REXX Extensions

External routine
an external program written in REXX or a function
written in a language other than REXX that has been
added to the uni-REXX interpreter or that is part
of an application that embeds uni-REXX as a
macro language

name must be either a symbol or a literal string. If it
is a literal string, it may refer only to a built-in func-
tion or an external routine since the search for internal
routines is bypassed.

If the routine returns a value, it is assigned to the spe-
cial variable RESULT. If the routine does not return a
value, RESULT is dropped.

expr is any valid REXX expression. The expression(s)
are evaluated from left to right with the results passed
to name as the calling argument(s).

46 uni-REXX Reference Manual

If name is an internal routine, all variables are avail-
able to both the subroutine and the caller. Use the
PROCEDURE instruction, described in this chapter, to
protect variables in the caller from undesired or unex-
pected modification. The EXPOSE option of the
PROCEDURE instruction allows you to make selected
variables from the caller available to the subroutine.

If name is an internal routine, the special variable SIGL
is set to the line number of the CALL instruction when
control is passed to the subroutine. If the routine uses
the PROCEDURE instruction, you must EXPOSE SIGL
if the line number of the CALL instruction is to be
available for debugging purposes while in the
subroutine.

An internal routine may call other internal routines or
external routines. Eventually, a subroutine must exit or
return control to its caller using a RETURN instruction.

If name is an external routine, you must use PROCE-
DURE EXPOSE to make variables from the caller avail-
able to the subroutine.

The following state information is saved across calls to
internal subroutines and restored when control is re-
turned to the caller:

Status of DO loops and other structures
executing a SIGNAL in the subroutine does not de-
activate DO loops in the caller

ADDRESS settings
both the primary and alternate ADDRESS of the
caller are unaffected by ADDRESS commands in
the subroutine

CONDITION traps
use of CALL or SIGNAL ON or OFF in the sub-
routine does not change the settings in the caller

Chapter 4: Instructions 47

CONDITION information
this is the information accessed by the
CONDITION built-in function

NUMERIC settings
settings of precision, format, or fuzz factor in the
subroutine do not affect the caller

TRACE settings
all TRACE settings, including the interactive
TRACE state, are restored when control is returned
to the caller

Elapsed time clocks
the subroutine may inherit an elapsed time clock
from the caller and may reset it during execution
without affecting the caller’s clock; thus, an
elapsed time clock started by the subroutine is not
available to the caller

CALL ON condition [NAME trapname]
OFF condition

The ON and OFF sub-keywords of CALL control the
trapping of certain conditions. ON enables a condition
trap. OFF disables a condition trap. Using CALL in
this manner is similar to the use of SIGNAL.

condition is the name of the condition to be detected.
If a condition trap is enabled, when that condition oc-
curs, control is passed to one of the following:

• if NAME trapname is specified, to the label speci-
fied by trapname

• if NAME trapname is not specified, to the label
that matches condition

Both condition and trapname are single symbols which
are taken as constants.

48 uni-REXX Reference Manual

The following conditions may be controlled using the
CALL instruction:

ERROR
indicates an error condition during execution of a
command or that the specified host command envi-
ronment was not found

FAILURE
indicates that execution of a command failed or
that the specified host command environment was
not found

HALT
indicates detection of an external interrupt or ter-
mination signal

NOTREADY
indicates an error or end of file detected during an
I/O operation

Using CALL to control condition traps differs from us-
ing SIGNAL in the following ways:

• CALL cannot be used with the LOSTDIGITS,
NOVALUE and SYNTAX conditions

• state information is preserved across the CALL so
the trap routine may return to the caller, which
may resume execution; with SIGNAL, program exe-
cution terminates when the trap routine completes

Chapter 4: Instructions 49

Examples:

/*
* the following program fragment illustrates
* calling an internal subroutine which
* returns a value
*/
if date(‘w’) = ‘Friday’ then call week_report
if result = 0 then say ‘Report Generated’
else say ‘Error’ result ‘from report program’

exit
week_report:
status = 0
: /* some processing, during which status */
: /* gets a non-zero value if something */
: /* goes wrong */

return status

/*
* the following program fragment illustrates
* nested calls of internal and external
* routines
*/
parse arg first second .
call sub1 first
call sub2 second
exit
sub1:
arg what_to_do
:
:

call sub3
if result > 0 then call extern1
return
sub2:
parse arg a ‘*’ b .
:
:

return b
sub3:
:
:

return

50 uni-REXX Reference Manual

/*
* the following program fragment uses CALL to
* control condition traps
*/
call on error
call on halt name interrupt
address csh ‘holycow’
:

i = 1
do 100000

i = i + 5
say i
end

exit
error:
say ‘Error condition detected at line’ sigl
return
interrupt:
say ‘Ctl-C detected; exiting at your request’
exit
/*
* because the C shell does not have a command
* named “holycow” (and assuming there is no
* program in your $PATH named “holycow”),
* this program detects the ERROR condition,
* displays the message, and resumes execution
* following the ADDRESS instruction; if the
* user decides to press Ctl-C (an interrupt
* signal) during the long DO loop, the HALT
* condition is detected, messages are
* printed, and the program terminates
*/

/*
* this fragment reads a file, displays
* A message when end of file detected.
*/
call on notready
n = 0

do forever
line = linein()
n = n + 1
end

notready:
say ‘End of file after record:’ n
exit

Chapter 4: Instructions 51

/*
* this program illustrates the use of CALL and
* SIGNAL together to implement a multi-way
* call; the program might be named “doit”
*/
parse arg what .
say ‘starting in main’
who_to_call = ‘aaa’
call multi who_to_call, what
say ‘back in main’
exit
multi: procedure
say ‘now entering multi’
if arg(2) = ‘’ then signal value arg(1)

else do
say ‘still in multi, arg is’ arg(2)
return
end

say ‘better not see this line’
return
aaa:
say ‘now in aaa’
return
/*
* if the program is executed by typing
* “doit”, then the output is
* starting in main
* now entering multi
* now in aaa
* back in main
*
* if the program is executed by typing
* “doit go”, then the output is
* starting in main
* now entering multi
* still in multi, arg is go
* back in main
*/

52 uni-REXX Reference Manual

DO The DO instruction is used to group instructions to-
gether. Such an instruction group may be executed zero
or more times depending on a conditional value and/or
a repetitor.

DO [repetitor] [conditional]
[instr_list]
END [symbol]

A DO instruction group consists of the DO instruction
followed by one or more instruction clauses followed by
the keyword END. The END keyword must begin a
new clause. instr_list represents the instruction
clause(s) included in the group. Any uni-REXX
instruction may appear in the group, including the
DO instruction.

repetitor and conditional may be used separately or in
combination to control the number of times an instruc-
tion group is executed.

repetitor may be any of the following:

exprn
name = exprn [TO exprn] [BY exprn] [FOR exprn]
FOREVER

exprn is any expression that evaluates to a number. It
is rounded before use according to the current setting of
NUMERIC DIGITS. When used alone or with the FOR
keyword, exprn must evaluate to a non-negative whole
number.

name is a control variable. It may be any valid sym-
bol. name is assigned an initial value at the beginning
of the loop and is stepped BY a specified increment
TO a maximum value or FOR a designated number of
iterations. The value of the control variable may be al-
tered within the loop, but this is not normally consid-
ered to be good programming practice. Also, if the

Chapter 4: Instructions 53

control value is a compound symbol such as “I.J”, alter-
ing “J” within the loop changes the control variable and
may have an unexpected and undesirable effect on the
result. Again, this is not normally considered to be
good programming practice.

TO, BY, and FOR may be used in any combination and
in any order. They are evaluated in the order in which
they appear in the DO instruction clause. The default
value for “BY exprn” is 1. The expressions associated
with TO, BY, and FOR are evaluated only once – when
the DO instruction is first executed. The TO condition
and the FOR count are checked at the beginning of each
iteration of the loop. If the TO condition is already
satisfied at the start of the first iteration, the instruction
group is never executed.

The TO, BY, and FOR keywords are reserved within
the context of a DO instruction. This means that they
cannot be used in any of the expressions that appear in
conjunction with the specification of a control variable.

The FOREVER keyword indicates that the instruction
group should be repeated until some instruction is exe-
cuted that deactivates the loop.

conditional may be any of the following:

WHILE exprl
UNTIL exprl

exprl is any expression that evaluates to 0 or 1. exprl
is evaluated for each pass through the loop using the
current values for all variables. The instruction group
is repeated WHILE exprl evaluates to 1 or UNTIL exprl
evaluates to 1. A WHILE condition is evaluated at the
beginning of the loop. Thus, if the condition is already
satisfied at the start of the first iteration, the instruction
group is never executed. An UNTIL condition is evalu-
ated at the end of the loop but before the control value,
if any, is incremented.

54 uni-REXX Reference Manual

The WHILE and UNTIL keywords are reserved within
the context of a DO instruction. This means that they
cannot be used in any of the expressions.

Execution of a DO loop may also be modified by the
execution of a LEAVE or ITERATE instruction.

Examples:

/*
* the following program fragment illustrates
* the simplest form of DO loop; if the user
* types “Q”, the program prints a message and
* exits; otherwise, processing proceeds
*/
say ‘Enter menu selection or Q to quit’
pull reply
if reply = ‘Q’ then do

say ‘Exiting at your request’
exit
end
else call do_selection reply

/*
* the following program fragment illustrates
* a simple repetitive DO loop
*/
say ‘Enter number of rows to process’
pull reply
if datatype(reply, ‘W’) then do reply

line = linein(‘datafile’)
call mangle_it line
end

Chapter 4: Instructions 55

/*
* the following program fragment illustrates
* a simple controlled repetitive DO loop; the
* instruction group is repeated until the con-
* trol variable “i” is equal to the value of
* “march.0", which was automatically set to
* the number of lines read by execio; since
* the BY keyword is not present, “i” is incre-
* mented by 1 each time through the loop
*/
msd = ‘/home/sales/march_sales_data’
total = 0
address command
‘execio * diskr’ msd ‘(stem march.’
do i = 1 to march.0

total = total + word(march.i, 7)
end

say ‘Total March sales: $’ total

/*
* the following program fragment illustrates
* a controlled repetitive do loop in which the
* number of iterations is determined by either
* the value of the control variable or the
* number of iterations performed; this example
* estimates sales projections for the current
* month by totalling all sales records or the
* first 10 records, whichever is fewest, since
* sales typically average 10 per week
*/
msd = ‘/home/sales/april_sales_data’
total = 0
address command
‘execio * diskr’ msd ‘(stem april.’
do i = 1 to april.0 for 10

total = total + word(april.i, 7)
end

guess = total * 4
say ‘Sales projection for this month: $’ guess
/*
* if there are fewer than 10 records in the
* file, the value of “i” becomes equal to the
* value of “april.0" before 10 iterations and
* this condition terminates the loop; if there
* are more than 10 records in the file, the
* loop terminates after the 10th iteration,
* regardless of the value of “i”
*/

56 uni-REXX Reference Manual

/*
* the following program fragment is a varia-
* tion of the previous example; it makes an
* annual sales forecast based on data for all
* months or for the most recent 6 months,
* whichever is fewer; note the use of a
* negative increment with BY to work backward
* through the data
*/
msd = ‘/home/sales/annual_sales_data’
total = 0
address command
‘execio * diskr’ msd ‘(stem annual.’
do i = annual.0 to 1 by -1 for 6

total = total + word(annual.i, 7)
end

if annual.0 > 6 then guess = total * 2
else guess = total * (12/annual.0)

say ‘Annual sales projection: $’ guess

/*
* the following program fragment illustrates
* the use of the WHILE conditional to force
* continued prompting for user input until
* something valid is entered; it also illus-
* trates the use of DO loops within DO loops
*/
list = ‘REXX C FORTRAN LISP PL/I’
thislang = ‘’
do while thislang = ‘’

say ‘What language for this program?’
pull thislang
if wordpos(thislang, list) = 0 then do

say ‘’
say ‘Invalid selecton:’ thislang
say ‘Must be one of the following:’ list
thislang = ‘’
say ‘’
end

end

Chapter 4: Instructions 57

/*
* the following program fragment illustrates
* the use of DO FOREVER; it repeatedly
* displays a menu for the user to select
* processing options until the user chooses
* the “QUIT” option
*/
do forever

‘clear’
say ‘’
say ‘ 1 Enter sales data’
say ‘ 2 Consolidate by region’
say ‘ 3 Consolidate by product line’
say ‘ 4 Conslidate by salesman’
say ‘ 5 Statistical analyses’
say ‘ 6 Monthly report’
say ‘ Q Quit’
say ‘’
say ‘Select processing option’
pull option
if option = ‘Q’ then leave
interpret ‘call process.’option
end

exit

/*
* the following program illustrates nested
* DO loops; it finds all primes between 1 and
* “n”, where “n” is the calling argument; if
* “n” is not specified, the default is 5000;
* the calls to TIME(‘e’) make this program
* suitable for use as a benchmark
*/
call time ‘e’
arg n
if n = ‘’ then n = 5000
/* calcalate all non-primes in the range and
* mark non-primes in an array */
do i = 2 to n%2

do j = 2 to n%i
k = i * j
a.k = 0
end

end
/* look through the array and display all the
* primes found */
do i = 1 to n

if a.i \= 0 then say i
end

say time(‘e’)

58 uni-REXX Reference Manual

DROP The DROP instruction restores one or more variables to
their uninitialized state.

DROP varlist

varlist specifies the variables to be dropped. varlist is
one or more symbols separated by blanks. The symbols
must be valid variable names. If a symbol is enclosed
in parentheses, it is a variable reference; and its value
is treated as a subsidiary variable list. The subsidiary
list may not include a variable reference – that is, it
must be a list of symbols, representing valid variables,
separated by blanks. varlist may include the same vari-
able more than once. It may also contain variables that
have never been assigned a value.

Variables are dropped from left to right, with variables
in subsidiary lists dropped as soon as the variable refer-
ence is found. If a subroutine drops a variable that has
been exposed from the caller, then the caller’s variable
is dropped. If a variable in varlist is a stem, then all
variables that begin with that stem are dropped.

Examples:

x = 10
drop x
say x
/* the output is “X” */

x.a = ‘cow’
x.b = ‘pig’
drop x.
say x.b
/* the output is “X.B” */

list = ‘a b x.’
a = 10; b = 12; c = 14
y. = ‘unknown animal’; y.12 = ‘pony’
drop (list) c
say y.b
/* the output is “unknown animal” */

Chapter 4: Instructions 59

/*
* the following program fragment illustrates
* the relationship between the value
* returned by the SYMBOL function and DROPped
* variables
*/
x = 100
say symbol(‘x’)
drop x
say symbol(‘x’)
/*
* the output is
* VAR
* LIT
*/

/*
* the following program fragment illustrates
* using DROP and SYMBOL together instead of
* setting a flag to test for successful
* processing
*/
drop testvar
do i = 1 to lines(‘in_file’)

line = linein(‘in_file’)
if word(line, 5) \= ‘temp’ then

testvar = word(line, 5)
end

if symbol(‘testvar’) \= ‘LIT’ then
say ‘Good data’

else say ‘All temps’

60 uni-REXX Reference Manual

EXIT The EXIT instruction is used to unconditionally leave a
program. As an option, it may also return a result to
the caller.

EXIT [expression]

expression is any valid uni-REXX expression. Its value
is returned to the caller as a character string. If the
program is exiting to the UNIX shell, expression must
have a numeric value in the range of 0-255.

When the EXIT instruction is executed, the program
terminates immediately. If an external subroutine is ex-
ecuting, EXIT and RETURN have the same effect of re-
turning control to the caller.

It is not absolutely necessary to include an EXIT in-
struction at the end of your program. EXIT is implied
when there are no more instructions to execute. If,
however, a program contains internal routines, it is im-
portant to include an EXIT instruction at the end of the
“main” program. In the absence of such an EXIT, the
program would “fall through” into the first internal
routine.

Examples:

say ‘Hello world’
exit
/*
* this is identical to the one-line program
* say ‘Hello world’
*/

/*
* the following program fragment illustrates
* returning a value on the exit instruction
*/
exitrc = 0
do i = 1 to 3

interpret ‘call report.’i
if result \= 0 then exitrc = 4
end

exit exitrc

Chapter 4: Instructions 61

/*
* the following program fragment illustrates
* the use of exit to terminate a program when
* an unexpected condition occurs; it generates
* a report which can only be run on the last
* day of the month, so if the user is running
* this program on any other day, it terminates
* automatically; it also illustrates the use
* of exit to terminate the “main” program to
* avoid “falling through” into the first
* internal routine
*/
months = ‘January February March April May’,
‘June July August September October’,
‘November December’

days=’31 leap() 31 30 31 30 31 31 30 31 30 31’
this_month = wordpos(date(‘m’), months)
if left(date(), 2) \= word(days, this_month)

then exit
call setup
call do_report
exit
leap:
/*
* function to calculate number of days in
* February
*/
:
:

return howmany

62 uni-REXX Reference Manual

IF The IF instruction is used to conditionally execute an
instruction or an instruction group or to select between
alternative instructions or instruction groups.

IF expression [;] THEN [;] instruction
[ELSE [;] instruction]

expression must evaluate to 0 or 1.

instruction may be an assignment, a command, or an
instruction, including IF and SELECT constructs and
DO groups.

Optional semicolons in the syntax diagram indicate that
the following component may appear on the same line
as the preceding component (with or without the pres-
ence of a semicolon) or may appear on a new line in
the program without changing the behavior of the IF
instruction.

The keyword THEN followed by an instruction is re-
quired whenever the IF instruction is used. If the value
of expression is 1, then the instruction following THEN
is executed. If instruction is DO, then an instruction
group is executed. If the value of expression is 0, then
instruction is bypassed. It is not necessary for the key-
word THEN to begin a new clause.

The keyword ELSE indicates alternative processing to
occur when the value of expression is 0. The keyword
ELSE must begin a new clause in the program. If it
appears on the same line as the THEN instruction, a
semicolon must be present to terminate the THEN
instruction.

Use the NOP instruction to indicate that nothing is to
be executed following a THEN or ELSE. A null clause
is not an instruction in REXX, so putting an extra semi-
colon after the THEN or ELSE results in Error 14, In-
complete DO/SELECT/IF or Error 8, Unexpected THEN
or ELSE.

Chapter 4: Instructions 63

Examples:

rc = linein(‘data.file’)
if rc \= 0 then say ‘Error reading data.file’
/*
* the simplest form of IF
*/

/*
* the following program fragment still uses
* the simplest form of IF but uses a function
* which evaluates to 0 or 1 as the conditional
* expression
*/
val = ‘abc’
if datatype(val, ‘l’) then

upper_val = translate(val)

/*
* the following program illustrates
* alternative processing using ELSE
*/
say ‘Enter menu selection (1, 2, or 3)’
pull answer
if datatype(answer, ‘W’) then call mysub

else call error1

/*
* the following program fragment extends the
* previous example to illustrate use of a more
* complex conditional expression
*/
say ‘Enter menu selection (1-8)’
pull answer
if \datatype(answer, ‘w’) | answer < 1 | ,

answer > 8 then call error1
else call mysub

64 uni-REXX Reference Manual

/*
* the following program fragment illustrates
* execution of a DO loop within an IF
* instruction
*/
list = ‘REXX C FORTRAN LISP PL/I’
say ‘What language for this program?’
pull thislang
if wordpos(thislang, list) = 0 then do

say ‘’
say ‘Invalid selecton:’ thislang
say ‘Must be one of the following:’ list
end

/*
* the following program fragment illustrates
* the use of nested IF instructions; this
* program would be run under uni-SPF
*/
stab = ‘SDATA.tbl’
spanel = ‘sales.data.pnl’
say ‘Enter directory name for your sales data’
parse pull dir
if chdir(dir) = 0 then
if stream(stab,’c’,’query exists’)\=’’ then do

address ispexec
‘tbdispl’ stab ‘panel(‘spanel’)’ ,

‘cursor(zcmd)’
:
:

end
else say ‘Table not found’
else say ‘Change directory failed’

/*
* the following program fragment illustrates
* the use of NOP in nested IF instructions;
* file exists & is writable?; if not, is di-
* rectory writable?; runs under uni-SPF
*/
parse arg directory file
if cf(directory"/"file)

then if \cf(directory"/"file, “fw”)
then do

‘setmsg msg(rxxb02)’; return 4
end

else nop
else if \cf(directory, “dw”)

then do
‘setmsg msg(rxkb03)’; return 4

end

Chapter 4: Instructions 65

INTERPRET The INTERPRET instruction executes dynamically cre-
ated instructions.

INTERPRET expression

expression is any valid expression that evaluates to one
or more REXX instructions. It is executed just as if it
were a line inserted into the program.

For instructions such as DO, IF, or SELECT,
expression must include the complete instruction con-
struct. If expression evaluates to a DO instruction
which includes a LEAVE or ITERATE instruction, the
complete DO-END construct must still be present.

Label clauses are not permitted in the expression to be
interpreted.

Examples:

say ‘Enter region for this report’
pull reply
do_prog = ‘call report.’reply
interpret do_prog
/*
* if the user enters “East”, the variable
* “do_prog” evaluates to “call report.east”;
* the INTERPRET instruction executes the
* CALL instruction
*/

/*
* the following program fragment illustrates
* a similar use of INTERPRET without the
* intermediate variable; it calls a different
* subroutine for each day of the week
*/
today = date(‘w’)
interpret ‘call report_’today

66 uni-REXX Reference Manual

ITERATE The ITERATE instruction modifies the flow of control
within a repetitive DO loop.

ITERATE [name]

When an ITERATE instruction is encountered, process-
ing of the DO instruction list stops and control is re-
turned to the DO clause in the same manner as if the
END keyword had been encountered.

name is the name of the control variable for the loop to
be iterated. name must refer to the control variable for
a currently active loop. Except for case, name must
exactly match the symbol specifying the control variable
on the DO instruction. Substitution for compound vari-
ables does not occur in this case. If name is omitted,
then the innermost active loop is iterated.

If more than one active loop uses the same control vari-
able, then the innermost loop is iterated. All active
loops inside the loop selected for iteration are
terminated.

Examples:

/*
* the following program fragment outputs all
* the odd numbers between 1 and 10
*/
do i = 1 to 10

if i//2 = 0 then iterate
say i
end

/*
* the output is
* 1
* 3
* 5
* 7
* 9
*/

Chapter 4: Instructions 67

LEAVE The LEAVE instruction causes an immediate exit from
one or more repetitive DO loops.

LEAVE [name]

Execution of the DO instruction list terminates and con-
trol passes to the instruction immediately following the
END keyword as if the END had been encountered and
termination conditions had been satisfied normally. If
there is a control variable for the loop, it retains the
value it had at the time the LEAVE instruction was
executed.

name is the name of the control variable for the loop to
be terminated. name must refer to the control variable
for a currently active loop. Except for case, name must
exactly match the symbol specifying the control variable
on the DO instruction. Substitution for compound vari-
ables does not occur in this case. Control passes to the
instruction immediately following the END keyword
which matches the selected DO. If name is omitted, the
innermost active loop is terminated.

If more than one active loop uses the same control vari-
able, then the innermost loop is terminated. All active
loops inside the loop selected for termination are also
terminated.

Examples:

/*
* the following program fragment illustrates
* the use of LEAVE to end a DO FOREVER loop
*/
do forever

say ‘ 1 Enter sales data’
say ‘ 2 Consolidate by region’
say ‘ 3 Consolidate by product line’
say ‘ Q Quit’
say ‘Select processing option’
pull option
if option = ‘Q’ then leave
interpret ‘call process.’option
end

68 uni-REXX Reference Manual

NOP The NOP instruction is a dummy instruction.

NOP

Because the NOP instruction has no effect, it is useful
within IF or SELECT instructions.

Examples:

/*
* the following program fragment uses NOP in
* a SELECT instruction where an OTHERWISE
* clause is required, but no OTHERWISE
* processing is desired
*/
parse arg startup_option rest
select

when startup_option = 1 then
call lookup rest

when startup_option = 2 then
call gen_report rest

when startup_option = 3 then
call newdata rest

otherwise nop
end

Chapter 4: Instructions 69

NUMERIC The NUMERIC instruction controls the precision and
format of numbers used in arithmetic operations.

NUMERIC DIGITS [expr1]
FORM [SCIENTIFIC]

[ENGINEERING]
[[VALUE] expr2]

FUZZ [expr3]

DIGITS controls the precision for arithmetic operations
and for the evaluation of arithmetic functions.

expr1 specifies the number of significant digits in the
result of arithmetic operations or functions. expr1 must
evaluate to a positive whole number that is greater than
the current setting of NUMERIC FUZZ. If necessary, it
is rounded according to the current setting of NU-
MERIC DIGITS before it is used. If expr1 is omitted,
the default value is 9. The current upper limit is 1000.

It should be noted that small values of NUMERIC
DIGITS may produce unexpected or undesirable results
in some cases since the setting affects all computations.
For example, the execution of a DO loop may be al-
tered by unexpected rounding of the repetitor expression
or the value of a control variable.

The current setting of NUMERIC DIGITS is accessible
using the DIGITS built-in function described in Chapter
5, Built-In Functions.

FORM
controls the format used for exponential notation.
The format must be one of the following:

SCIENTIFIC
only one, non-zero digit appears before the decimal
point

70 uni-REXX Reference Manual

ENGINEERING
the exponent (power of ten) is always expressed as
a multiple of three; the number of digits before the
decimal point is adjusted as necessary to meet this
criterion

The NUMERIC FORM setting may also be specified by
evaluating an expression that follows the sub-keyword
VALUE. expr2 must evaluate to either “SCIENTIFIC”
or “ENGINEERING”. The VALUE sub-keyword may
be omitted if expr2 does not begin with a literal string
or a symbol.

The current setting of NUMERIC FORM is accessible
using the FORM built-in function described in Chapter
5, Built-In Functions.

FUZZ controls the number of digits, at full precision,
that are ignored for numeric comparisons.

expr3 specifies the number of digits to ignore. expr3
must evaluate to a non-negative whole number that is
less than the current setting of NUMERIC DIGITS. If
necessary, it is rounded according to the current setting
of NUMERIC DIGITS before it is used. If expr3 is
omitted, the default value is 0.

NUMERIC FUZZ effectively reduces the precision used
for numeric comparisons to the value

NUMERIC DIGITS - NUMERIC FUZZ

The current setting of NUMERIC FUZZ is accessible
using the FUZZ built-in function described in Chapter
5, Built-In Functions.

Chapter 4: Instructions 71

Examples:

/*
* the following program fragment illustrates
* the results of various settings of
* NUMERIC DIGITS
*/
x = 123456789
do i = digits() by -2 for 3

numeric digits i
say ‘Digits:’ digits() ‘ - ‘ format(x)
end

/*
* the output is
* Digits: 9 - 123456789
* Digits: 7 - 1.234568E+8
* Digits: 5 - 1.2346E+8 */

/*
* the following program fragment illustrates
* the effect of NUMERIC FORM ENGINEERING on
* the output of the previous example
*/
numeric form engineering
x = 123456789
do i = digits() by -2 for 3

numeric digits i
say ‘Digits:’ digits() ‘ - ‘ format(x)
end

/*
* the output is
* Digits: 9 - 123456789
* Digits: 7 - 123.4568E+6
* Digits: 5 - 123.46E+6 */

/*
* the following program fragment illustrates
* the effect of NUMERIC FUZZ
*/
numeric digits 6
x = 123456; y = 123455; z = 123451
if x = y then say ‘True’; else say ‘False’
numeric fuzz 1
if x = y then say ‘True’; else say ‘False’
if x = z then say ‘True’; else say ‘False’
/*
* the output is
* False
* True
* False */

72 uni-REXX Reference Manual

OPTIONS The OPTIONS instruction passes special requests to the
language processor. At the present time, this instruc-
tion is ignored in uni-REXX.

Chapter 4: Instructions 73

PARSE The PARSE instruction assigns data to variables accord-
ing to the REXX parsing rules and the specified template.

PARSE [UPPER] ARG [template]
LINEIN
PULL
SOURCE
VALUE [expr] WITH
VAR name
VERSION

template is a list of symbols separated by blanks and/or
patterns. The symbols are the names of variables to
which data is assigned. If template is omitted, vari-
ables are not set but data is prepared for parsing in one
of the following ways:

• for LINEIN or PULL
a line is removed from a character stream or the
uni-REXX program stack

• for VALUE
expr is evaluated

• for VAR
if the variable does not have a value, the
NOVALUE condition is raised

A detailed discussion of parsing templates is included in
this section.

ARG indicates that the data to be parsed is the argu-
ment string(s) passed to the program, subroutine, or
function.

LINEIN indicates that the data to be parsed is the next
line from the default character input stream. PARSE
LINEIN is simply a short form of

PARSE VALUE LINEIN() WITH [template]

74 uni-REXX Reference Manual

In UNIX, the default character input stream is STDIN,
which may be the terminal or a pipe. If no data is
available on the default character input stream, the pro-
gram pauses for input.

PULL indicates that the data to be parsed is one of the
following:

• if data is available on the uni-REXX program
stack, the next string on the stack is parsed

• if no data is available on the program stack, data
is taken from the default character input stream
(STDIN); if no data is available on the default
character input stream, the program pauses for in-
put

SOURCE indicates that the data to be parsed is a spe-
cial string that defines the source of the program being
executed. The SOURCE string is fixed and contains the
following tokens

• system where the program is running
for uni-REXX, this is UNIX

• how the program was invoked
this is either COMMAND, FUNCTION, or
SUBROUTINE

• the full pathname of the program
• the name of the program without the path
• the default host command environment

normally this is UNIX but it may be different in
applications that embed uni-REXX as a macro
language

VALUE indicates that the data to be parsed is the re-
sult of evaluating expr. The keyword WITH is required
to indicate the end of expr. WITH is therefore reserved
in this context and may not be included in expr.

VAR indicates that the data to be parsed is the value of
the variable specifed by name. name must be a symbol
that is a valid variable name in the current program.

Chapter 4: Instructions 75

The variable is not changed unless it also appears in the
template.

VERSION indicates that the data to be parsed is a spe-
cial string describing this version of uni-REXX. The
VERSION string is fixed and contains the following
tokens:

• language name
the first four characters are “REXX” with the
remainder of the token being implementation-
dependent; for uni-REXX, this token is
“REXX:uni-REXX:2.00"

• language level
this indicates the degree of compliance with the
language level definitions in The REXX Lan-
guage by Cowlishaw; language level 4.00 indi-
cates full compliance with the second edition
(1990) of this reference

• release date (three tokens)
the release date of this implementation in the
same format as the default for the DATE built-in
function (dd Mmm yyyy)

Parsing Templates

A parsing template is a symbolic pattern by which a
string is broken up (parsed) and assigned to variables.
A string may be split by words (delimited by blanks),
by matching specific string patterns, or by explicit nu-
meric position. Portions of the string may also be
skipped or discarded. The template may include any
combination of

• symbols
the variable names to which the data is assigned

• patterns
character string for which a match is sought

76 uni-REXX Reference Manual

• positional patterns
absolute or relative column numbers within the
string

• placeholder symbols
the “.”, indicating that data is to be discarded

Parsing by words

The simplest form of parsing template is comprised
only of symbols. The string is separated into words
with one word assigned to each variable. One possible
exception is the last variable in the template, which
may be assigned more than one word if the number of
symbols in the template does not exactly match the
number of words in the string.

Examples:

string = ‘Hello world’
parse var string first second
/*
* first == ‘Hello’
* second == ‘world’
*/

string = ‘Once upon a time in the west’
parse var string first second rest
/*
* first == ‘Once’
* second == ‘upon’
* rest == ‘a time in the west’
*/

string = ‘Long ago and far away ‘
parse var string first second rest
/*
* first == ‘Long’
* second == ‘ago’
* rest = ‘ and far away ‘

Note that leading and trailing blanks are removed from
all tokens except the last. For the last token, one

Chapter 4: Instructions 77

leading blank (the delimiter) is removed but all other
leading and trailing blanks are retained.

Parsing by patterns

Another method of parsing involves matching a pattern
string. This can be useful in parsing strings that con-
tain delimiters other than blanks between words. The
pattern is specified in the template as a literal string or
as a variable that is set to a literal string. If the pat-
tern is specified as a variable, the variable name must
be enclosed in parentheses in the template to distinguish
it from the symbols to which data is to be assigned.
The string to be parsed is separated so that all charac-
ters preceding the pattern are placed into a variable.

Examples:

string = ‘red, green, blue’
parse var string color1 ‘,’ color2 ‘,’ color3
/*
* color1 == ‘red’
* color2 == ‘ green’
* color3 == ‘ blue’
*/

string = ‘time and time again’
parse upper var string a ‘and’ b
/*
* a == ‘TIME’
* b == ‘ TIME AGAIN’
*/

parse arg x ‘,’ y
/*
* if the argument string passed to this
* program is “4,3", then
* x == ‘4’
* y == ‘3’
*/

78 uni-REXX Reference Manual

delim = ‘or’
string = ‘You or me or them?’
parse var string a (delim) b (delim) c
/*
* a == ‘You’
* b == ‘ me’
* c == ‘ them?’
*/

/*
* the following program fragment extends the
* idea of using a variable name as the pattern
* to show how to parse a series of strings
* that may include different delimiters
*/
str.0 = 3
str.1 = ‘Numbers : 1414 : 2753 : 1816’
str.2 = ‘Names - Tom - Dick - Harry’
str.3 = ‘Cars # Ford # BMW # Toyota’
do i = 1 to str.0

parse var str.i what x rest
parse var rest a (x) b (x) c
say what’:’ a b c
end

/*
* the output is
* Numbers: 1414 2753 1816
* Names: Tom Dick Harry
* Cars: Ford BMW Toyota
*/

Note that when pattern matching is used, only the pat-
tern itself is discarded. If there are any blanks follow-
ing the pattern, they become leading blanks on the next
token.

Parsing by position

When parsing by position, the template includes column
numbers where the next token begins. These may be
absolute or relative column numbers. Using relative
column numbers permits re-positioning of the starting
point for the next token and even allows you to re-parse
in a different manner data which has already been as-
signed to variables.

Chapter 4: Instructions 79

The value of a positional pattern is specified in the
template as a whole number or as a variable that is set
to a whole number. If the positional pattern is speci-
fied as a variable, the variable name must be enclosed
in parentheses in the template to distinguish it from the
symbols to which data is to be assigned.

A positional pattern that is not preceded by a sign or
that is preceded by an equal sign (=) is an absolute po-
sitional pattern. A positional pattern that is preceded
by a plus or minus sign is a relative positional pattern.

When an absolute positional pattern appears in the tem-
plate, the preceding variable receives all data up to but
not including that absolute position. The next variable
receives data beginning at the specified absolute
position.

When a relative positional pattern appears in the tem-
plate, the starting position for the next assignment is
calculated by adding or subtracting the specified value
from the last matched position.

Examples:

x = 1234567890
parse var x 5 y
/*
* move to the 5th column and assign the rest
* of the string to variable “y”
* y = ‘567890’
*/

x = 1234567890
parse var x y 3 +4 z
/*
* assign to “y” data up to column 3, then move
* forward 4 columns and assign the rest of the
* string to “z”
* y = ‘12’
* z = ‘7890’
*/

80 uni-REXX Reference Manual

x = ‘abcdefghijklmnop’
parse var x a 4 b +5 +1 c
/*
* assign to “a” data up to column 4; assign to
* “b” data in the next 5 columns; move forward
* one column; assign the rest of the string to
* “c”
* a == ‘abc’
* b == ‘defgh’
* c == ‘jklmnop’
*/

x = abcdefgh
parse var x a 4 -2 b 1 c +4
/*
* assign to “a” data up to column 4; move back
* 2 columns; assign the rest of the string to
* “b”; move to column 1; assign the next four
* columns to “c”
* a == ‘ABC’
* b == ‘BCDEFGH’
* c == ‘ABCD’
*/

s.0 = 3
s.1 = ‘A:1414:2753:1816’
s.2 = ‘B-Tom-Dick-Harry’
s.3 = ‘C#Ford#BMW#Toyota’
do i = 1 to s.0

parse var s.i what 2 x +1 a (x) b (x) c
say what’:’ a b c
end

/*
* the output is
* A: 1414 2753 1816
* B: Tom Dick Harry
* C: Ford BMW Toyota
*/

x = 1234567890
parse var x 3 a +0 b +3 +1 c
/*
* move to column 3; assign the rest of the
* string to “a” but don’t move the parsing
* position; assign the next three characters
* to “b”; move forward 1 column; assign the
* rest of the string to “c”
* a == ‘34567890’
* b == ‘345’
* c == ‘7890’
*/

Chapter 4: Instructions 81

Note the use of “+0" as a relative positional pattern to
assign data without moving the start point for the next
assignment.

Parsing with placeholders

Parsing templates may also include placeholder symbols.
The placeholder symbol is the period (“.”). If a period
is encountered in a template, data that would normally
be assigned to a variable at that point is discarded.

Examples:

x = ‘How are you’
parse var x a . b
say a b ‘be?’
/*
* the output is “How you be?”
*/

x = ‘one potato two potato three potato four’
parse var x a . b . c . rest
say a b c rest
/*
* the output is “one two three four”
*/

file = ‘/home/salesmgr/ytd_commissions’
do while lines(file) \= 0

parse value linein(file) with month . amount
end

/*
* the second word on each line of the file is
* discarded - presumably this is data that is
* irrelevant to the current processing
*/

82 uni-REXX Reference Manual

Putting it all together

Parsing templates may include any combination of the
elements discussed above. This makes PARSE an ex-
tremely powerful and flexible tool for manipulating
data. The following example illustrates several uses of
PARSE.

Examples:

/*
* the following program generates the name
* of a directory where a TWG product is
* stored; normally, input is provided as a
* calling argument; if the calling argument is
* omitted, the program looks first at the
* environment variable VER; if this is not
* set, it prompts the user; the user is re-
* prompted until valid input is received; for
* user convenience, any abbreviation or case
* is accepted; the product can be called as a
* subroutine because it exits with the name
* that it constructed; PARSE is used exten-
* sively throughout
*/
parse arg prod .
prodlist = ‘ XEDIT REXX SPF’
thisprod = ‘’
fromver = 0
firstpass = 1

do while thisprod = ‘’ /* for re-prompting */
if prod = ‘’ then do /* if no calling arg */

/* don’t check VER if re-prompting */
if firstpass then ver = getenv(‘VER’)
else ver = ‘’

if ver \= ‘’ then do /* if VER set */
/* value of VER is a directory path */

parse var ver ‘/’ first ‘/’ second ‘/’ .
if first = ‘prod’ then do /*if rite dir*/
prod = substr(second, 4)
fromver = 1 /* got something valid */
end

end
if \fromver then do /*didn’t get from VER*/
say ‘’
say ‘Product?’ /* so prompt user */
parse pull prod
end

end

Chapter 4: Instructions 83

/*
* uppercase what we have and drop a blank in
* front of it so it can be used in a pattern
* matching PARSE; thus any valid abbrevia-
* tion preceded by a blank will match with
* prodlist; parse template uses positional
* parameter to remove the blank if a match is
* found; if no match, thisprod will be null,
* triggering the re-prompt
*/
blprod = ‘ ‘upper(prod)
parse var prodlist (blprod) +1 thisprod .
if thisprod = ‘’ then do
say ‘’
say ‘Invalid product selection:’ prod
say ‘Product must be one of the following:’
say ‘ ‘ lower(prodlist)
say ‘’
prod = ‘’ /* reset for next pass */
firstpass = 0 /*no longer first time thru*/
end

end
product_dir = ‘uni’thisprod
exit product_dir

84 uni-REXX Reference Manual

PROCEDURE The PROCEDURE instruction is used in an internal or
external routine to protect the caller’s variables from
modification during execution of the routine. It also
has the effect of insuring that the subroutine’s variables
are in their uninitialized state each time the routine is
called. PROCEDURE may not be used in the main
program. PROCEDURE EXPOSE in external routines is
a uni-REXX extension to the ANSI standard and should
not be used if portability to other platforms is a consid-
eration.

PROCEDURE [EXPOSE varlist]

It is not necessary for an internal routine to include a
PROCEDURE instruction. If it does not, then all the
variables of the caller are visible to and may be modi-
fied by the subroutine. Using PROCEDURE protects
the caller’s variables from modification by the
subroutine.

If present, the PROCEDURE instruction must be the
first instruction following the label. All variables used
in the subroutine are then local to that routine. When a
RETURN instruction is executed, all these local vari-
ables are dropped and the caller’s variables are restored.

The EXPOSE sub-keyword allows you to selectively
expose variables from the caller’s environment for
manipu-lation by the subroutine. In an external routine,
you must use PROCEDURE EXPOSE to make any of
the caller’s variables available to the subroutine.

varlist is the list of variables to be exposed. varlist is
one or more symbols separated by blanks. The symbols
must be valid variable names. If a symbol is enclosed
in parentheses, it is a variable reference; and its value
is treated as a subsidiary variable list. The subsidiary
list may not include a variable reference – that is, it
must be a list of symbols, representing valid variables,
separated by blanks. varlist may include the same vari-

Chapter 4: Instructions 85

able more than once. It may also contain variables that
have never been assigned a value.

Variables are exposed from left to right. When a vari-
able reference is encountered, the variable itself is ex-
posed first, with variables in subsidiary lists exposed as
soon as the variable reference is found. If a variable in
varlist is a stem, then all variables that begin with that
stem are exposed.

Consideration should be given to the order in which
variables are exposed. If a variable is to be used to ex-
pose a compound variable, then it must be exposed be-
fore the compound variable.

Examples:

/* the following program fragment illustrates
* the effect of not using PROCEDURE in an
* internal subroutine */
x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
say y
return
/*
* the output is
* 20
* 20
*/

/* the following program fragment illustrates
* the effect of PROCEDURE alone */
x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure
say y
return
/*
* the output is
* Y
* 20
*/

86 uni-REXX Reference Manual

/*
* the following program fragments illustrate
* the effect of EXPOSing a variable and how
* modifications to the variable affect its
* value on return to the caller
*/

x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure expose y
say y
return
/*
* the output is
* 20
* 20
*/

x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure expose y
say y
drop y
return
/*
* the output is
* 20
* Y
*/

x = 10; y = 20; z = 30
call blotz
say y
exit
blotz: procedure expose y
say y
y = x
return
/*
* the output is
* 20
* X (the variable “x” was not exposed so
* “y” was assigned the value of the
* uninitialized symbol “x”)
*/

Chapter 4: Instructions 87

/*
* the following program fragment illustrates
* the use of variable references and the
* exposure of compound variables
*/
a = 1; b = 2; c = 3
x = 10; y = 20; z = 30
p. = ‘unknown value’
p.1 = 100; p.2 = 200; p.3 = 300
blotz_list = ‘a b c’
call blotz
say p.b
exit
blotz:
procedure expose (blotz_list) p.b
say p.b
b = 4
return
/*
* the output is
* 200
* unknown value
*/

88 uni-REXX Reference Manual

PULL The PULL instruction reads a line from the uni-REXX
program stack. If the program stack is empty, PULL
reads from the default character input stream (STDIN).

PULL [template]

The PULL instruction is simply a short form of

PARSE UPPER PULL [template]

The data read is translated to uppercase and then parsed
into variables according to normal parsing rules (refer
to the PARSE instruction in this chapter for details).
Use PARSE PULL to preserve the case of the data.

template is the parsing template that defines how the
data is assigned to variables. For details on parsing
templates, refer to the PARSE instruction in this chap-
ter. If template is omitted, the data read by PULL is
simply discarded. This is functionally equivalent to us-
ing “PULL .”, where the template is comprised solely
of the placeholder symbol.

The number of lines currently available in the program
stack is accessible with the QUEUED built-in function
described in Chapter 5, Built-In Functions.

Examples:

/*
* the following program fragment processes
* all data currently available on the
* uni-REXX program stack
*/
do j = 1 while queued() > 0

pull order.j . amount.j .
end

Chapter 4: Instructions 89

/*
* the following program fragment assumes that
* no data is on the program stack and that
* pull will read from STDIN, normally the
* terminal
*/
say ‘Type a menu option or “Q” to quit’
pull reply
if reply = ‘Q’ then exit
/*
* the test is valid regardless of the case in
* which the user types “q” since PULL converts
* to uppercase
*/

90 uni-REXX Reference Manual

PUSH The PUSH instruction places a string at the top of the
uni-REXX program stack. Data is stacked in LIFO
(last-in-first-out) order.

PUSH [expression]

expression is evaluated and the result placed on the
program stack. If expression is omitted, a null string is
placed on the stack.

Use the QUEUE instruction, described in this chapter,
to place data at the bottom of the program stack.

The number of lines currently available in the program
stack is accessible with the QUEUED built-in function
described in Chapter 5, Built-In Functions.

Examples:

and = ‘not’
shove = ‘nice’
push and shove
/*
* places “not nice” at the top of the program
* stack
*/

/*
* the following program fragment illustrates
* the use of PUSH to place something on the
* stack for use by a subroutine
*/
parse arg input
push input
if datatype(input, ‘num’) then call numeric

else call char
:

exit
numeric: procedure
parse pull value
:

return
char: procedure
parse pull string
:

return

Chapter 4: Instructions 91

QUEUE The QUEUE instruction places a string at the bottom of
the uni-REXX program stack. Data is stacked in FIFO
(first-in-first-out) order.

QUEUE [expression]

expression is evaluated and the result placed on the
program stack. If expression is omitted, a null string is
placed on the stack.

Use the PUSH instruction, described in this chapter, to
place data at the top of the program stack.

The number of lines currently available in the program
stack is accessible with the QUEUED built-in function
described in Chapter 5, Built-In Functions.

Examples:

for = ‘how much’
entry = ‘longer?’
queue for entry
/* places “how much longer?” at the bottom of
* the program stack */

/*
* the following program fragment illustrates
* use of the stack to remove a block of lines
* from a file in place - no intermediate file
*/
pull start_line block_size
do start_line - 1

queue linein(‘data.file’)
end

do block_size
tossit = linein(‘data.file’)
end

do until lines(‘data.file’) = 0
queue linein(‘data.file’)
end

pull first
call lineout ‘data.file’, first, 1
do queued()

pull next
call lineout ‘data.file’, next
end

call lineout ‘data.file’

92 uni-REXX Reference Manual

RETURN The RETURN instruction is used to return control from
a REXX program or internal routine to its caller. It may
also, optionally, return a value.

RETURN [expression]

expression is the value to be returned to the caller.
expression may evaluate to any character string, includ-
ing the null string.

If the program is external, the effect of RETURN is
identical to that of the EXIT instruction.

If the program was invoked by the CALL instruction, it
is being executed as a subroutine. In this case, the re-
turn value is optional. When control returns to the
caller, the special variable RESULT is set to the value
of expression. If expression is omitted, the special
variable RESULT is dropped.

If the program was invoked as a function, it must re-
turn a value. This value (the result of the function) is
used in the original expression at the point where the
function was invoked.

Examples:

/*
* the following program fragment illustrates
* the simplest use of RETURN in an internal
* routine invoked as a subroutine
*/
say ‘Please select a processing option (1-8)’
pull reply
interpret ‘call option.’reply
:
:

exit
option.1:
procedure expose (list1)
:
:

return
option.2:
:
:

Chapter 4: Instructions 93

/*
* the following program fragment illustrates
* returning a value from a subroutine
*/
say ‘Please select a processing option (1-8)’
pull reply
if reply \= ‘Q’ then do

interpret ‘call option.’reply
if result \= 0 then signal disaster
end

exit
option.1:
procedure expose (list1)
status = 0
: /* If something goes wrong in here, an */
: /* appropriate message is displayed & */
: /* status is set to a non-zero value */

return status
:
:

disaster:
say ‘Unrecoverable error in option:’ reply
say ‘Processing terminated’
exit

/*
* the following program fragment illustrates
* the use of RETURN in an internal routine
* invoked as a function
*/
months = ‘January February March April May’,
‘June July August September October’,
‘November December’

days=’31 leap() 31 30 31 30 31 31 30 31 30 31’
:
:

exit
leap:
/*
* function to calculate number of days in
* February
*/
:
:

return howmany

94 uni-REXX Reference Manual

SAY The SAY instruction writes a line to the default charac-
ter output stream.

SAY [expression]

expression is evaluated and the result is written to the
default output stream. If expression is omitted, the re-
sult is a null string.

In UNIX, the default character output stream is
STDOUT and is normally the terminal unless STDOUT
has been redirected.

The SAY instruction is equivalent to

CALL LINEOUT , [expression]

In the case of SAY, however, the special variable
RESULT is not set.

Examples:

say ‘Hello world’
/*
* writes the string ‘Hello world’ to STDOUT,
* normally the terminal
*/

say ‘Enter amount of sale’
pull amount
say ‘Commission is:’ amount * .06
/*
* the output is 6% of the sale amount entered
*/

retcode = linein(‘data.file’)
if retcode \= 0 then

say ‘Error reading “data.file”’
/*
* if the read operation failes, the message
* is displayed
*/

Chapter 4: Instructions 95

SELECT The SELECT instruction is used to conditionally exe-
cute one of several alternative instructions.

SELECT
whenlist
[OTHERWISE [;] [instr_list]]
END

A SELECT instruction consists of the SELECT instruc-
tion followed by one or more WHEN clauses, optionally
followed by an OTHERWISE clause, and terminated by
the keyword END. The END keyword must begin a
new clause.

whenlist defines the conditions under which each alter-
native is selected. whenlist is made up of one or more
constructs of the form

WHEN expression [;] THEN [;] instruction

expression must evaluate to 0 or 1.

instruction may be an assignment, a command, or an
instruction, including the DO, IF, or SELECT instruc-
tion.

Optional semicolons in the syntax diagrams indicate that
the following component may appear on the same line
as the preceding component (with or without the pres-
ence of a semicolon) or may appear on a new line in
the program without changing the behavior of the SE-
LECT instruction.

The keyword THEN followed by an instruction is re-
quired whenever the WHEN keyword is used. If the
value of expression is 1, then the instruction following
THEN is executed. If instruction is DO, then an in-
struction group is executed. If the value of expression
is 0, then instruction is bypassed and the next WHEN
expression is evaluated. It is not necessary for the key-
word THEN to begin a new clause.

96 uni-REXX Reference Manual

The keyword OTHERWISE indicates alternative process-
ing to occur when none of the WHEN expressions eval-
uates to 1. instr_list is one or more instructions to be
executed if the OTHERWISE path is chosen. If
instr_list is omitted, this is equivalent to using the NOP
instruction.

If you are certain that one of the WHEN alternatives
will be executed, the OTHERWISE clause may be omit-
ted; however, this is generally not considered good pro-
gramming practice. If none of the WHEN expressions
evaluates to 1, absence of an OTHERWISE clause re-
sults in Error 7, WHEN or OTHERWISE expected. If
present, the keyword OTHERWISE must begin a new
clause in the program.

Use the NOP instruction to indicate that nothing is to
be executed following a THEN or OTHERWISE. A
null clause is not an instruction in REXX, so putting an
extra semicolon after the THEN results in an error.

Examples:

/*
* the following program fragment illustrates
* the use of SELECT to choose among alterna-
* tive processing options
*/
parse arg startup_option rest
select

when startup_option = 1 then
call lookup rest

when startup_option = 2 then
call gen_report rest

when startup_option = 3 then
call newdata rest

otherwise call edit
end

Chapter 4: Instructions 97

/*
* the following program fragment uses SELECT
* to set processing parameters; this program
* would be run under uni-SPF
*/
arg region
select

when region = ‘EAST’ then do
rtable = ‘EREG.tbl’
ctable = ‘/home/smith/COMM.tbl’
end

when region = ‘WEST’ then do
rtable = ‘WREG.tbl’
ctable = ‘/home/jones/COMM.tbl’
end

otherwise do
rtable = ‘CORPSALES.tbl’
ctable = ‘/home/vpsales/CORPCOMM.tbl’
end

end
address ispexec ‘vput (rtable ctable) shared’
address ispexec ‘select cmd(do_commissions)’

/*
* the following program fragment illustrates
* the use of NOP with SELECT; if a line begins
* with a comment character (#) followed by a
* space, no action is taken
*/
do while lines(‘parms.file’) \= 0

dowhat = word(linein(‘parms.file’), 1)
select

when dowhat = ‘Monthly’ then call report
when dowhat = ‘#’ then nop
when dowhat = ‘Weekly’ then call add_data
otherwise interpret ‘call’ dowhat
end

end

98 uni-REXX Reference Manual

SIGNAL The SIGNAL instruction causes an abnormal change in
the flow of control or controls the trapping of certain
conditions.

SIGNAL label
[VALUE] expression
ON condition [NAME trapname]
OFF condition

label is the label name to which control is passed. It
must be a symbol (which is treated literally) or a literal
string. label must be a valid label name in the current
program.

As an alternative, the label name may be derived from
the expression following the keyword VALUE.
expression must evaluate to a valid label name in the
current program. The keyword VALUE may be omitted
if expression does not begin with a symbol or a literal
string.

When control passes to the specified label, all active
DO, IF, SELECT, and INTERPRET instructions are im-
mediately terminated and cannot be reactivated. The
line number of the SIGNAL instruction is assigned to
the special variable SIGL.

SIGNAL ON condition [NAME trapname]
OFF condition

The ON and OFF sub-keywords of SIGNAL control the
trapping of certain conditions. ON enables a condition
trap. OFF disables a condition trap. Using SIGNAL in
this manner is similar to the use of CALL except that
control is not returned to the program executing the
SIGNAL.

condition is the name of the condition to be detected.
If a condition trap is enabled, when that condition oc-
curs, control is passed to one of the following:

Chapter 4: Instructions 99

• if NAME trapname is specified, to the label speci-
fied by trapname

• if NAME trapname is not specified, to the label
that matches condition

Both condition and trapname are single symbols which
are taken as constants.

The following conditions may be controlled using the
SIGNAL instruction:

ERROR
indicates an error condition during execution of a
command or that the specified host command envi-
ronment was not found

FAILURE
indicates that execution of a command failed or
that the specified host command environment was
not found

HALT
indicates detection of an external interrupt or ter-
mination signal

LOSTDIGITS
indicates that a numeric result has been rounded to
fit within the current setting of NUMERIC DIGITS

NOTREADY
indicates an error or end of file detected during an
I/O operation

NOVALUE
indicates that a symbol referenced in an expression
or in a PARSE, PROCEDURE, or DROP instruc-
tion has not been assigned a value

SYNTAX
indicates a syntax error during program execution

100 uni-REXX Reference Manual

Using SIGNAL to control condition traps differs from
using CALL in the following ways:

• all conditions can be trapped with SIGNAL; CALL
cannot be used with the LOSTDIGITS, NOVALUE
and SYNTAX conditions

• SIGNAL does not return control to the program
that executed the SIGNAL; with CALL, state infor-
mation is preserved across the CALL so the trap
routine may return to the caller, which may resume
execution.

Examples:

/*
* this fragment reads a file, displays
* A message when end of file detected.
*/
signal on notready
n = 0

do forever
line = linein()
n = n + 1
end

notready:
say ‘End of file after record:’ n
exit

Chapter 4: Instructions 101

/*
* the following program fragment illustrates
* the use of SIGNAL to set up traps for all
* conditions
*/
signal on error
signal on failure
signal on halt name interrupt
signal on notready
signal on novalue name uhoh
say ‘Enter host command environment’
parse pull hce
say ‘Enter command to run’
parse pull cmd
say ‘Enter filename to read’
parse pull file
line = linein(file)
address hce ‘more /home/’userid()’/.login’
“’”cmd"’"
i = 1
do 100000

i = i + 5
say i
end

a = b
exit
error:
say ‘Error detected at line’ sigl; exit
failure:
say condition(‘c’) ‘detected at line’ sigl;exit
interrupt:
say ‘Ctl-C detected’; exit
notready:
say ‘File’ file ‘not found’; exit
uhoh:
say ‘Oops, no value in line’ sigl; exit
/*
* - if the user names a non-existent host en-
* vironment, the failure exit is taken
* - if the execution of the user’s command
* failed in any way, the error exit is taken
* - if the user names a file that doesn’t
* exist or for which read permission has not
* been granted, the notready exit is taken
* - if the user presses CTL-C during the long
* do loop, the halt exit is taken
* - if the program ever gets to the line that
* reads a = b, the novalue exit is taken
*/

102 uni-REXX Reference Manual

TRACE The TRACE instruction traces execution flow in a pro-
gram and is used primarily for debugging.

TRACE [option]
[VALUE] expression

option specifies the level of tracing to occur. Alterna-
tively, the level may be taken from the value of
expression. The keyword VALUE may be omitted if
expression does not begin with a symbol or a literal
string. If no trace level is specified or if option or
expression evaluate to a null string, the default is “N”.

option (or the value of expression) may be one of the
following:

A (All)
trace all clauses before execution

C (Commands)
trace all commands before execution; if the com-
mand results in error or failure, show the return
code as well

E (Error)
trace (after execution) any command that results in
error; show the return code as well

F (Failure)
trace (after execution) any command that results in
failure; show the return code as well; this is identi-
cal to TRACE N

I (Intermediates)
trace all clauses before execution; show intermedi-
ate results of expressions as well as substituted
names; show final results of expressions; show val-
ues assigned as the result of ARG, PARSE, or
PULL instructions

Chapter 4: Instructions 103

L (Labels)
trace only labels; this is particularly useful for ob-
serving the flow to and from internal routines

N (Normal)
trace only commands that result in failure; show
the return code as well; this is the default trace
level

O (Off)
nothing is traced; interactive tracing is disabled

R (Results)
trace all clauses before execution; show the final
results of expressions; show values assigned as the
result of ARG, PARSE, or PULL instructions

Any trace level may be prefixed by a question mark (?)
to enable interactive tracing. When interactive tracing
is enabled, uni-REXX pauses for input after each trace
output. During interactive tracing, TRACE instructions
in the program are ignored. Interactive tracing may be
disabled by use of the “?” prefix in a TRACE command
pause. Typing TRACE O when tracing has paused also
turns off interactive tracing.

During interactive tracing, you may type any valid REXX

instruction. Pressing Enter causes the execution of the
next instruction in the program.

The trace level may also be specified as a whole num-
ber. If it is positive, then that number of interactive
traces are skipped before the next pause. If it is nega-
tive, then that number of all traces (including interac-
tive traces) are skipped before the next pause.

Trace output is automatically formatted according to its
logical depth of nesting within the program. If
TRACE R or TRACE I is specified, results are enclosed
in double quotes so that leading and trailing blanks can

104 uni-REXX Reference Manual

be easily identified. The first clause traced on any line
is preceded by its line number.

All trace output lines have a three-character prefix to
indicate the type of data. The following prefixes are
used for all trace settings:

- source of the clause (the data that is actu-
ally in the program)

+++ trace message; this could include error or
failure return codes, prompts at interactive
trace startup, a syntax error during interac-
tive trace, or a traceback from a syntax er-
ror during execution

>>> result of an expression, the value assigned
to a variable during parsing, or the return
value from a subroutine or function call

>.> value assigned to a placeholder during
parsing

The following additional prefixes are used when
TRACE I is in effect:

>V> contents of a variable

>L> literal (constant symbol, uninitialized vari-
able, or literal string)

>F> result of a function call

>P> result of a prefix operation

>O> result of an operation on two terms

>C> compound variable; traced after substitu-
tion and before use

Chapter 4: Instructions 105

Examples:

/*
* the following program fragment includes
* various kinds of REXX clauses; output
* is shown from specifying each of the
* trace options as a calling argument; the
* program is named “traceit”
*/
#!/usr/local/bin/rxx
trace value arg(1)
file = ‘/home/’userid()’/infile’
line = linein(file)
x = word(line, 1)
if datatype(x) = ‘NUM’ then do

y = x + 456 / 100
say y
end

call subr
if result >= 4 then address UNIX ‘pwd’
exit
subr:
say now in subroutine
return 4

OUTPUT FROM: traceit a

3 *-* file = ‘/home/’userid()’/infile’
4 *-* line = linein(file)
5 *-* x = word(line, 1)
6 *-* if datatype(x) = ‘NUM’
6 *-* then
6 *-* do
7 *-* y = x + 456 / 100
8 *-* say y
9 *-* end
111238.56
10 *-* call subr
13 *-* subr:
14 *-* say now in subroutine
NOW IN SUBROUTINE
15 *-* return 4
11 *-* if result >= 4
11 *-* then
11 *-* address UNIX ‘pwd’

>>> “pwd”
/home/user1
12 *-* exit

106 uni-REXX Reference Manual

OUTPUT FROM: traceit c

111238.56
NOW IN SUBROUTINE

>>> “pwd”
/home/user1

OUTPUT FROM: traceit e

(No errors occurred)

111238.56
NOW IN SUBROUTINE
/home/user1

OUTPUT FROM: traceit f

(No failure occurred)

111238.56
NOW IN SUBROUTINE
/home/user1

OUTPUT FROM: traceit l

111238.56
13 *-* subr:
NOW IN SUBROUTINE
/home/user1

OUTPUT FROM: traceit n

(No failure occurred)

111238.56
NOW IN SUBROUTINE
/home/user1

OUTPUT FROM: traceit o

111238.56
NOW IN SUBROUTINE
/home/user1

Chapter 4: Instructions 107

OUTPUT FROM: traceit i

3 *-* file = ‘/home/’userid()’/infile’
>L> “/home/”
>F> “u1"
>O> “/home/user1"
>L> “/infile”
>O> “/home/u1/infile”
>>> “/home/u1/infile

4 *-* line = linein(file)
>V> “/home/u1/infile”
>F> “111234 John Doe”
>>> “111234 John Doe”

5 *-* x = word(line, 1)
>V> “111234 John Doe”
>L> “1"
>F> “111234"
>>> “111234"

6 *-* if datatype(x) = ‘NUM’
>V> “111234"
>F> “NUM”
>L> “NUM”
>O> “1"
>>> “1"

6 *-* then
6 *-* do
7 *-* y = x + 456 / 100
>V> “111234"
>L> “456"
>L> “100"
>O> “4.56"
>O> “111238.56"
>>> “111238.56"

8 *-* say y
>V> “111238.56"
>>> “111238.56"

111238.56
9 *-* end
10 *-* call subr
13 *-* subr:
14 *-* say now in subroutine

>L> “NOW”
>L> “IN”
>O> “NOW IN”
>L> “SUBROUTINE”
>O> “NOW IN SUBROUTINE”
>>> “NOW IN SUBROUTINE”

NOW IN SUBROUTINE
15 *-* return 4

>L> “4"
>>> “4"

108 uni-REXX Reference Manual

11 *-* if result >= 4
>V> “4"
>L> “4"
>O> “1"
>>> “1"

11 *-* then
11 *-* address UNIX ‘pwd’

>L> “UNIX”
>L> “pwd”
>>> “pwd”
>>> “pwd”

/home/u1
12 *-* exit

OUTPUT FROM: traceit r

3 *-* file = ‘/home/’userid()’/infile’
>>> “/home/u1/infile”

4 *-* line = linein(file)
>>> “111234 John Doe”

5 *-* x = word(line, 1)
>>> “111234"

6 *-* if datatype(x) = ‘NUM’
>>> “1"

6 *-* then
6 *-* do
7 *-* y = x + 456 / 100
>>> “111238.56"

8 *-* say y
>>> “111238.56"

111238.56
9 *-* end
10 *-* call subr
13 *-* subr:
14 *-* say now in subroutine

>>> “NOW IN SUBROUTINE”
NOW IN SUBROUTINE
14 *-* return 4

>>> “4"
11 *-* if result >= 4

>>> “1"
11 *-* then
11 *-* address UNIX ‘pwd’

>>> “pwd”
/home/u1
12 *-* exit

Chapter 4: Instructions 109

UPPER The UPPER instruction converts one or more variables
to uppercase.

UPPER var_list

var_list is the list of variables to be converted to upper-
case. var_list must be a list of symbols separated by
blanks. Variable references (symbols enclosed in paren-
theses) are not permitted.

UPPER converts lower-case characters only. Uppercase
characters or numbers in a string are unchanged.

Examples:

a = ‘Hello world’
upper a
say a
/* the output is “HELLO WORLD” */

a = ‘c3po’
b = ‘r2d2’
upper a b
say a ‘and’ b
/* the output is “C3PO and R2D2" */

110 uni-REXX Reference Manual

Chapter 5: Built-In Functions

uni-REXX includes a powerful set of built-in functions
that may be called by any program. Typically, a func-
tion is invoked as a term in an expression. The general
form of a function call is

function_name([expression] [, [expression]] ...)

A function returns a single result that is substituted in
the expression just as the value of a variable is used.
A function call may be used in any expression
wher-ever any other term would be valid. The argu-
ment expressions may also be function calls. There
may not be intervening blanks between the func-
tion_name and the opening parenthesis. The presence
of such blanks would cause the expression to be inter-
preted as two unrelated symbols or expressions.

You may also invoke a function using the CALL in-
struction. In this case, the proper syntax is

CALL function_name [expression] [, [expression]] ...

If you CALL a built-in function, the value that it re-
turns is assigned to the special variable RESULT.

In addition to the built-in functions defined in The
REXX Language and ANSI X3.274:1996, uni-REXX in-
cludes functions that provide compatibility with various

Chapter 5: Built-In Functions 111

IBM implementations and functions to interface with the
UNIX environment.

The following built-in functions are
available in uni-REXX:

112 uni-REXX Reference Manual

ABBREV
ABS
ADDRESS
ARG

BITAND
BITOR
BITXOR
B2X

CENTER
CHANGESTR
CHARIN
CHAROUT
CHARS
CHDIR *
COMPARE
CONDITION
COPIES
COUNTSTR
CUSERID *
C2D
C2X

DATATYPE
DATE
DELSTR
DELWORD
DIGITS
D2C
D2X

ERRORTEXT

* functions to interface with the UNIX environment

** functions provided for compatibility with IBM
implementations

RANDOM
REVERSE
RIGHT

SIGN
SOURCELINE
SPACE
STREAM
STRIP
SUBSTR
SUBWORD
SYMBOL

TIME
TRACE
TRANSLATE
TRUNC

UPPER *
USERID **

VALUE
VERIFY

WORD
WORDINDEX
WORDLENGTH
WORDPOS
WORDS

XRANGE
X2B
X2C
X2D

FIND **
FORM
FORMAT
FUZZ

GETCWD *
GETENV *

INDEX **
INSERT

JUSTIFY **

LASTPOS
LEFT
LENGTH
LINEIN
LINEOUT
LINES
LOWER *

MAX
MIN

OVERLAY

POPEN *
POS
PUTENV *

QUALIFY
QUEUED

The following general rules should be observed when in-
voking built-in functions unless otherwise noted in the de-
scription of a particular function:

• The parentheses in a function call are required,
even when no arguments are specified. The open-
ing parenthesis must immediately follow the func-
tion name with no intervening blanks. This is
required to distinguish a function call from a refer-
ence to a simple symbol or an instruction keyword.

• Any argument identified as a string may be speci-
fied as a null string.

• Any argument identified as a number is rounded, if
necessary, according to the current setting of
NUMERIC DIGITS before it is used in the
function.

• Any argument identified as a length must be speci-
fied as a non-negative integer.

• Any argument identified as a pad must be exactly
one character in length.

• Optional arguments may be omitted from the right
with or without providing the preceding comma.

• Any function name or function argument may be
specified in upper-, lower-, or mixed case.

• For functions with arguments that must be one of a
specified set of characters, those arguments should
be enclosed in quotes. Without the quotes, the ar-
gument is an uninitialized symbol. So long as the
symbol remains uninitialized, the function behaves
as expected since the value of the uninitialized
symbol is the symbol in uppercase. If, however,
an assignment statement sets the value of that sym-
bol to something else, the function results in
Error 40, Incorrect call to routine.

Chapter 5: Built-In Functions 113

ABBREV The ABBREV function determines if one string is a
valid abbreviation of a longer string. It returns 1 if the
abbreviation is valid and 0 if the abbreviation is invalid.

ABBREV(information, info [, length])

information is the unabbreviated string.

info is the abbreviated string. When info is the null
string, it matches any value of information so long as
length is omitted or specified as 0.

length specifies the minimum length of info. If length
is omitted, the default is the length of info.

If info is exactly equal to the leading characters of
information and if the length of info is greater than or
equal to length, then the abbreviation is valid and the
function returns 1. If either of these conditions is not
met, the abbreviation is invalid and the function
returns 0.

Examples:

valid = abbrev(‘month’, ‘mo’) /* valid = 1 */

valid = abbrev (‘month’,’mo’,2) /* valid = 1 */

valid = abbrev(‘month’, ‘mo’, 3) /* valid = 0 */

valid = abbrev(‘month’, m)
/* valid = 0; the value of the symbol “m”, when
* not specifically assigned a value, is “M” */

valid = abbrev(‘month’,’’)
/* valid = 1; the null string matches any value
* of information */

month = ‘January’
mo = ‘Jan’
if abbrev(month, mo) then say ‘valid’
else say ‘invalid’

/* output of this program fragment is ‘valid’ */

114 uni-REXX Reference Manual

ABS The ABS function returns the absolute value of a
number.

ABS(number)

number is any valid number. The result is formatted
according to the current NUMERIC settings.

Examples:

value = abs(-98.6) /* value = 98.6 */

numeric digits 4
number = abs(-123456.7890)
say number
/*
* the output of this program fragment is
* 1.235E+5
*/

ADDRESS The ADDRESS function returns the name of the current
host command environment or the current settings for
command input/output redirection.

ADDRESS([option])

option controls the information returned by the function.
If option is omitted, ADDRESS returns the current host
command environment.

option may be any of the following:

N (Normal)
the current host command environment; this is the
same as the default when option is omitted

I (Input)
the current settings for command input redirection

O (Output)
the current settings for command output redirection

Chapter 5: Built-In Functions 115

E (Error)
the current settings for command error redirection

For option I, O, or E, the function returns a string of
two or three blank delimited words. Word 1 identifies
the type of I/O redirection. Word 2 indicates the target
of the redirection. Word 3 is null unless the redirection
target is “STEM” or “STREAM”, in which case it is the
name of the stem or stream.

Option Values

I Word 1 INPUT

Word 2 default: NORMAL
may also be PULL, STEM, or STREAM

Word 3 default: null
may be name of STEM or STREAM

O, E Word 1 default: REPLACE
output replaces previous output
may also be APPEND
output appended to previous output

Word 2 default: NORMAL
may also be PUSH, QUEUE, STEM, or
STREAM

Word 3 default: null
may be name of STEM or STREAM

The default host command environment is “UNIX”.
Other host command environments may be specified
using the ADDRESS instruction.

The default value for I/O redirection is “NORMAL”.
Other values correspond to the redirection keywords of
the ADDRESS instruction, which is used to control
command I/O redirection.

116 uni-REXX Reference Manual

Examples:

env = address() /* env = UNIX */

/*
* the following program fragment sets the
* default host command environment to “csh”
* before executing a C shell command
*/
address csh
‘history > cmd_list’
say address()
/* the output is “CSH” */

/*
* the following program fragment redirects
* command output and later tests the status
* of output redirection
*/
address csh with output stem cmdout.
:
:
if word(address(‘o’), 2) \= ‘NORMAL’ then

say address(‘o’)
/*
* the output is “REPLACE STEM CMDOUT.”
*/

ARG The ARG function returns the argument string or infor-
mation about the argument string.

ARG([n [, option]])

With no arguments, ARG returns the number of argu-
ments passed to the program or internal subroutine.

n indicates the argument number to be returned and
must be a positive integer. When only n is specified,
ARG returns the nth argument string.

option is used only in conjunction with n. When both
arguments are specified, ARG tests for the existence of
the nth argument string. option may be either of the
following:

Chapter 5: Built-In Functions 117

E exists; if the nth argument exists, ARG returns
1; otherwise, it returns 0

O omitted; if the nth argument is omitted, ARG
returns 1; otherwise, it returns 0

Examples:

call subr /* no arguments specified */
:

subr:
arglist = arg() /* arglist = 0 */
arg1 = arg(1) /* arg1 = ‘’ */
arg1_exist = arg(1,’e’)
/*
* arg1_exist = 0; first argument does not exist
*/

call subr a,,b
:

subr:
arglist = arg() /* arglist = 3 */
arg1 = arg(1) /* arg1 = “A” */
arg2_omitted = arg(2,’o’)
/*
* arg2_omitted = 1; second argument is omitted
*/

BITAND The BITAND function returns the results of a logical
AND of two strings.

BITAND(string1 [, [string2] [, pad]])

string1 and string2 are the two strings on which the
AND operation is performed. If the strings are of un-
equal length, the length of the result is that of the lon-
ger of the two strings. If string2 is omitted, the default
is the null string.

pad is a character specified to pad the shorter string if
string1 and string2 are of unequal length. Pad charac-
ters are added on the right of the shorter string before
the AND is performed. If pad is omitted, the AND ter-

118 uni-REXX Reference Manual

minates at the end of the shorter string, and the remain-
ing portion of the longer string is appended to the
result.

Examples:

anded = bitand(‘52’x, ‘43’x) /* anded = ‘42’x*/

anded = bitand(‘52’x, ‘4343’x)
/* anded = ‘4243’x */

BITOR The BITOR function returns the logical inclusive OR of
two strings.

BITOR(string1 [, [string2] [, pad]])

string1 and string2 are the two strings on which the
OR operation is performed. If the strings are of un-
equal length, the length of the result is that of the lon-
ger of the two strings. If string2 is omitted, the de-
fault is the null string.

pad is a character specified to pad the shorter string if
string1 and string2 are of unequal length. Pad charac-
ters are added on the right of the shorter string before
the OR is performed. If pad is omitted, the OR termi-
nates at the end of the shorter string, and the remaining
portion of the longer string is appended to the result.

Examples:

ord = bitor(‘52’x, ‘43’x’) /* ord = ‘53’x’ */

ord = bitor(‘52x’, ‘4343’x) /* ord = ‘5343’x */

Chapter 5: Built-In Functions 119

BITXOR The BITXOR function returns the logical exclusive OR
of two strings.

BITXOR(string1 [, [string2] [, pad]])

string1 and string2 are the two strings on which the OR
operation is performed. If the strings are of unequal
length, the length of the result is that of the longer of
the two strings. If string2 is omitted, the default is the
null string.

pad is a character specified to pad the shorter string if
string1 and string2 are of unequal length. Pad charac-
ters are added on the right of the shorter string before
the OR is performed. If pad is omitted, the OR termi-
nates at the end of the shorter string, and the remaining
portion of the longer string is appended to the result.

Examples:

xord = bitxor(‘52’x, ‘43’x) /* xord = ‘11’x */

xord = bitxor(‘52’x, ‘4343’x)
/* xord = ‘1143’x */

120 uni-REXX Reference Manual

B2X The B2X function converts a binary string to a hexadec-
imal string.

B2X(string)

string is the character representation of the binary data
to be converted. It may be of any length and may con-
tain embedded blanks at four-digit boundaries. If string
does not contain an even multiple of four digits, zeros
are added on the left to make an even multiple. string
is not a binary string – it is not specified in the form
`1010’b.

The value returned is a character representation of the
equivalent hexadecimal string. It does not contain em-
bedded blanks.

The results of B2X() may be used as the input for the
functions X2D() or X2C() to convert binary strings into
other representations.

Examples:

hexval = b2x(‘0110 0001’) /* hexval = ‘61’ */

charval = x2c(b2x(‘01100001’))
/* charval = ‘a’ */

Chapter 5: Built-In Functions 121

CENTER The CENTER function centers a string within a speci-
fied number of character positions. The alternative
spelling CENTRE is also supported.

CENTER(string, length [, pad])

CENTRE(string, length [, pad])

string is the character string to be centered.

length specifies the total number of character positions
within which string is to be centered. If string is lon-
ger than length, it is truncated at both ends as neces-
sary to fit within the length specified.

pad is the character that occupies character positions at
either end of string. If pad is omitted, the default is
blank.

If an odd number of characters must be truncated or
padded, the excess is added or dropped on the right
side of string.

Examples:

greeting = center(‘Hello!’,10)
/* greeting = “ Hello! ” */

news = center(‘Headline’, 12, ‘*’)
/* news = “**Headline**” */

quote = ‘To be or not to be?’
line_length = 18
sayit = center(quote, line_length)
say sayit
/*
* output from this program fragment is
* “To be or not to be”
*/

122 uni-REXX Reference Manual

CHANGESTR The CHANGESTR function changes all occurrences of
one substring to another within an input string.

CHANGESTR(from_stingr, input_string, to_string)

from_string is the substring to be changed. If
from_string is the null string, input_string is un-
changed.

to_string is the replacement substring.

input_string is the string within which the changes are
to be made. If input_string is the null string,
CHANGESTR returns the null string regardless of the
value of from_string or to_string.

Examples:

/*
* change all occurrences of “which” to “that”
* in input_string
*/
s="This is the cat which lived in the house",
“which Jack built”

say changestr(‘which’, s, ‘that’)
/*
* output is:
*
* This is the cat that lived in the house that
* Jack built
*/

/*
* change all the occurrences of ‘a’ in the
* input string to blank; this could be done
* using the literal strings, but this
* example illustrates the use of other string
* types and expressions as arguments for
* changestr()
*/
b = ‘0010 0000’b
say changestr(‘61’x, copies(‘ab’, 5), b)
/*
* output is “ b b b b b”
*/

Chapter 5: Built-In Functions 123

CHARIN The CHARIN function returns a string of characters
from a character input stream.

CHARIN([name] [, [start] [, length]])

name is the name of the character input stream. This
may a persistent stream such as a disk file or a tran-
sient stream such as STDIN or a pipe (including a
named pipe). If name is omitted, the default is STDIN.

start specifies an explicit read position. It must be a
positive integer and must be within the bounds of the
input stream specified. If start is omitted, the default
is the current read position. start may not be specified
for a transient input stream.

length specifies the number of characters to be read. If
length is omitted, the default is 1. If length is speci-
fied as 0, then the function resets the read position to
the value of start and returns a null string. If there are
fewer characters in the stream than length, the program
may wait for additional characters to become available.
If it is not possible for additional characters to become
available, the function returns fewer than the specified
number of characters and raises the NOTREADY condi-
tion. The built-in function STREAM may be used to
determine the state of a character stream.

When reading disk files, use CHARIN to read less than
a full line or files in which the lines do not have nor-
mal line-end terminators. For files that have normal
line-end terminators, you may wish to use the built-in
function LINEIN to read an entire line.

When the input stream is a disk file, use of an I/O
function such as CHARIN may leave the file in an open
state. Thus, it may be necessary to close the file using
CHAROUT, LINEOUT, or STREAM before performing
subsequent read or write operations to the file.

124 uni-REXX Reference Manual

Examples:

emp_number = charin(‘personnel.file’,,5)
/*
* returns 5 characters from the current read
* position and assigns that value to the
* variable “emp_number”
*/

/*
* the following program fragment displays a
* prompt to the user; it then pauses until
* data is available on STDIN (in this case,
* characters typed at the keyboard); CHARIN
* returns a single character and assigns that
* value to the variable “num”; a host command
* then prints a file
*/
say ‘Enter report number’
num = charin()
address UNIX ‘lpr report.’num

/*
* this one line program is named “doit”;
* if you execute it by typing
* “echo ‘abcdefg’ | rxx doit”
* at the UNIX system prompt, the output is
* “abcde”
* if you execute it by typing
* “cat data.file | rxx doit”
* at the UNIX system prompt, the output is
* the first 5 characters in the disk file
* “data.file”
*/
say charin(,,5)

Chapter 5: Built-In Functions 125

CHAROUT The CHAROUT function writes a string to a character
output stream and returns the number of characters re-
maining in string after the write has been performed.

CHAROUT([name] [, [string] [, start]])

name is the name of the character output stream. This
may a persistent stream such as a disk file or a tran-
sient stream such as STDOUT or a pipe (including a
named pipe). If name is omitted, the default is
STDOUT.

string is the character string to be written. If name is
a persistent stream (usually a disk file), then string may
be omitted. In this case, one of the following actions is
taken:

• if start is specified, CHAROUT resets the write
position to the start value; the function returns 0

• if start is also omitted, CHAROUT closes the
output stream; the function returns 0

start specifies an explicit write position. It must be a
positive integer and must be within the bounds of the
output stream specified. If start is omitted, the default
is the current write position. start may not be specified
for a transient output stream.

The program waits until the write operation is complete.
If it is not possible to write all the characters to the
output stream, the function returns the number of char-
acters not written and raises the NOTREADY condi-
tion.

When the output stream is a disk file, use of an I/O
function such as CHAROUT may leave the file in an
open state. Thus, it may be necessary to close the file
using CHAROUT, LINEOUT, or STREAM before per-
forming subsequent read or write operations to the file.

126 uni-REXX Reference Manual

Examples:

/*
* the following program fragment writes the
* string specified by the variable
* “emp_number” to the file “personnel.file”;
* rc is normally 0
*/
emp_number = ‘DEV003’
rc = charout(‘personnel.file’, emp_number)

/*
* the following program fragment writes the
* string specified by the variable
* “emp_number” to the file “personnel.file”
* beginning at the 75th character position;
* note use of “CALL” to invoke the function
*/
emp_number = ‘DEV003’
call charout ‘personnel.file’, emp_number, 75

out_rc = charout(, ‘Hello world’)
/*
* writes “Hello world” to STDOUT, usually the
* ternimal; out_rc is normally 0
*/

call charout ,’Hello world’||’0a’x
/*
* writes the string “Hello world” followed by
* a new-line character to STDOUT, usually
* the terminal; this produces the same output
* as say ‘Hello world’
*/

Chapter 5: Built-In Functions 127

CHARS The CHARS function returns the number of characters
remaining in a character input stream.

CHARS([name])

name is the name of the character input stream. This
may a persistent stream such as a disk file or a tran-
sient stream such as STDIN or a pipe (including a
named pipe). If name is omitted, the default is STDIN.

When the input stream is a transient stream, CHARS re-
turns 1 if there is any data available in the stream. It
returns 0 if there is no data available in the stream.

When the input stream is a disk file, use of an I/O
function such as CHARS may leave the file in an open
state. Thus, it may be necessary to close the file using
CHAROUT, LINEOUT, or STREAM before performing
subsequent read or write operations to the file.

Examples:

count = chars(‘myfile’)
/*
* count is set to the number of characters in
* the disk file named “myfile”
*/

/*
* the following program fragment tests for the
* existence of a file; if the file exists (the
* value of the CHARS function is greater than
* zero), the file is deleted before proceeding
*/
if chars(‘myfile’) > 0 then

address UNIX ‘rm myfile’

128 uni-REXX Reference Manual

CHDIR The CHDIR function changes the current working direc-
tory for the process in which the uni-REXX program is
running.

CHDIR([directory])

directory specifies the path to which the current work-
ing directory is to be set. directory may be any valid
directory path on your system. If directory is omitted,
the default is the path specified by the HOME environ-
ment variable.

CHDIR returns 0 if the current working directory is
successfully changed. Otherwise it returns non-zero.

To effect a directory change for operations within the
current program, you must use CHDIR. If you use the
host command `cd’, that command is executed in a dif-
ferent process from your uni-REXX program and has no
effect on the current working directory for the program.

Examples:

In the following examples, current directory was
/home/user1 when program was started

olddir = getcwd()
cd_rc = chdir(‘/home/user2’)
newdir = getcwd()
say olddir
say newdir
/* the output is
* /home/user1
* /home/user2
*/

olddir = getcwd()
address UNIX ‘cd /home/user2’
newdir = getcwd()
say olddir
say newdir
/* the output is
* /home/user1
* /home user1
*/

Chapter 5: Built-In Functions 129

COMPARE The COMPARE function determines if two strings are
identical.

COMPARE(string1, string2 [, pad])

string1 and string2 are the two strings to be compared.
If the strings are of unequal length, the shorter string is
padded before the comparison is performed.

pad specifies the character to be appended to the
shorter of the two strings. If pad is omitted, the de-
fault is blank.

The COMPARE function returns 0 if the strings are
identical. If the strings are not identical, the function
returns the number of the first character position at
which a discrepancy was detected.

Examples:

comp_rc = compare(‘a’, ‘a ‘)
/*
* comp_rc is 0; the first string is padded
* with blanks to make it equal in length to
* the second string; this also makes it
* identical to the second string
*/

comp_rc = compare(q, ‘q’)
/*
* comp_rc is 1; the first argument (the symbol
* q) has the value “Q” since it has not been
* assigned a value; “Q” and “q” are not
* identical
*/

a = ‘alpha’
b = ‘alphabet’
c = compare(a, b)
/*
* c is 6; pad is omitted so the value of a is
* padded with blanks, making the string effec-
* tively “alpha ”; the first discrepancy is
* in position 6, where “a” has a blank and “b”
* has a “b”
*/

130 uni-REXX Reference Manual

CONDITION The CONDITION function returns information about the
current trapped condition.

CONDITION([option])

option specifies the type of information to be returned.
If option is specified, it must be one of the following:

C (condition name)
the name of the current trapped condition

D (description)
the descriptive string associated with the current
trapped condition; if no descriptive string is avail-
able, this option returns a null string

I (instruction)
the instruction executed when the condition was
trapped; this is either ‘CALL’ or ‘SIGNAL’

S (state)
the state of the current trapped condition; this is
‘ON’, ‘OFF’, or ‘DELAY’

option may be any string beginning with one of the
characters shown above. If option is omitted, the de-
fault value is “I”.

The descriptive strings for each condition are as fol-
lows:

ERROR and FAILURE
the string that was passed to the external environ-
ment and that resulted in the condition being raised

HALT
any string associated with the halt request by the
external environment; this may be a null string

LOSTDIGITS

Chapter 5: Built-In Functions 131

the literal string `NUM’, which triggered the
LOSTDIGITS condition

NOVALUE
the derived name of the variable referenced which
raised the condition

NOTREADY
the name of the stream being accessed when the
condition was raised; if this is a default stream,
then a null string is returned

SYNTAX
any string associated with the error by the inter-
preter; this may be a null string

Examples:

/*
* the following program fragment illustrates
* the use of the CONDITION function to
* implement a “generic” condition trap
*/
signal on novalue name trapit
signal on syntax name trapit
signal on notready name trapit
signal on halt name trapit
signal on error name trapit
signal on failure name trapit
:
:

exit
trapit:
say condition(‘c’) ‘raised at line:’ sigl
select

when condition(‘c’) = ‘NOVALUE’ then
str = ‘Bad variable is:’

when condition(‘c’) = ‘ERROR’ then
str = ‘Bad command is:’

when condition(‘c’) = ‘FAILURE’ then
str = ‘Bad command is:’

otherwise
str = ‘Condition string (may be null):’

end
say ‘’
say str condition(‘d’)
exit

132 uni-REXX Reference Manual

COUNTSTR The COUNTSTR function returns the number of occur-
rences of a specified substring within a string.

COUNSTR(string1, string2)

string1 is the substring to be counted.

string2 is the input string to be searched.

COUNTSTR returns 0 if either string1 or string2 is the
null string.

Examples:

x = countstr(‘o’, ‘To be or not to be’)
/*
* x = 4
*/

COPIES The COPIES function returns a string composed of a
specific number of concatenated copies of an original
string.

COPIES(string, n)

string is the original string to be copied.

n specifies the number of copies of string to concate-
nate. n must be a positive number or zero.

Examples:

newstring = copies(‘ho’,3)
/* newstring is ‘hohoho’ */

str = ‘616263’x
newstring = copies(str, 2)
say newstring
/*
* output from this program fragment is
* “abcabc”
*/

Chapter 5: Built-In Functions 133

do i = 0 to 3
say copies(‘ho’, i)
end

/* output from this program fragment is
*
* ho
* hoho
* hohoho
* The first line of output is a null string
* since n is 0
*/

/*
* the following program fragment uses COPIES
* to provide leading zeroes so that each
* number is exactly 6 characters long
*/
num.0 = 37
:
:

do i = 1 to num.0
num.i = copies(‘0’,6-length(num.i))||num.i
end

CUSERID The CUSERID function returns the UNIX userid. It is
identical to the USERID built-in function.

CUSERID()

Examples:

say cuserid()
/*
* displays the userid of the individual
* running the program
*/

/*
* the following program fragment changes the
* current working directory to the user’s
* home directory and displays a directory
* list
*/
cd_rc = chdir(‘/home/’cuserid())
‘ls’

134 uni-REXX Reference Manual

C2D The C2D function converts a character string to the dec-
imal value of its ASCII representation.

C2D(string [, n])

string is the character string to be converted.

If n is specified, then string is interpreted as a signed
number. If the leftmost bit is zero then the number is
positive. Otherwise, the number is a twos-complement
negative number. If n is 0, the function returns 0. If
n is omitted, the return value is positive.

Examples:

decval = c2d(‘abc’) /* decval = ‘979899’ */

hexval = d2x(c2d(‘abc’)) /* hexval = ‘616263’*/

C2X The C2X function converts a character string to its hex-
adecimal representation.

C2X(string)

string is the string to be converted. The function re-
turns the character representation of its hexadecimal
value. If string is the null string, then C2X returns the
null string.

C2X may be used in conjunction with X2B to convert
character strings to their binary representation.

Examples:

hexval = c2x(‘a’) /* hexval = ‘61’ */

hexval = c2x(‘61’x) /* hexval = ‘61’ */

bval = x2b(c2x(‘a’)) /* bval = ‘01100001’ */

Chapter 5: Built-In Functions 135

DATATYPE The DATATYPE function tests the data type of a string.
It may be used to determine the data type or to deter-
mine if the data is of the desired type.

DATATYPE(string [, type])

string is the string for which the data type is to be
tested. type, if specified, is one of the valid data types.

If type is omitted, the function returns the data type of
the string as follows:

• `NUM’ if string is a number that can be added to
zero without error

• `CHAR’ if string does not meet the criteria for
`NUM’

If type is specified, it must be one of the valid data
types from the list below. The function returns 1 if
string matches the specified type; otherwise, it returns
0.

A (alphanumeric)
string contains only the characters “a-z”, “A-Z”, or
“0-9"

B (binary)
string contains only binary digits (0 and 1), possi-
bly with embedded blanks between groups of four
digits

L (lowercase)
string contains only the characters “a-z”

M (mixed case)
string contains only the characters “a-z” or “A-Z”

N (number)
string is a number; DATATYPE without the type
argument would return `NUM’

136 uni-REXX Reference Manual

S (symbol)
string contains only those characters that are valid
in a uni-REXX symbol

U (uppercase)
string contains only the characters “A-Z”

W (whole number)
string is a valid whole number under the current
setting of NUMERIC DIGITS

X (hexadecimal)
string contains only valid hexadecimal digits
(“a-f”, “A-F”, or “0-9"), possibly with embedded
blanks, or string is the null string

Examples:

type = datatype(‘abc’) /* type = ‘CHAR’ */

val = 10
type = datatype(val) /* type = ‘NUM’ */

string = ‘April 15’
type = datatype(string, ‘A’) /* type = 1 */

/*
* the following program fragment tests the
* data type of a variable to determine if it
* is composed entirely of lowercase charac-
* ters; if so, the string is converted to
* uppercase
*/
val = ‘abc’
if datatype(val,’L’) = 1 then

upper_val = translate(val)

Chapter 5: Built-In Functions 137

/*
* the following program fragment prompts for
* user input and then verifies that the user
* typed a valid whole number; the DATATYPE
* function is used as a logical symbol since
* its value will be either 0 or 1; if the user
* input is a whole number, DATATYPE returns
* 1 (true)
*/
say ‘Enter menu selection (1, 2, or 3)’
pull answer
if datatype(answer, ‘W’) then call mysub

else call error1

/*
* the following program fragment extends the
* previous example to validate not only the
* type of user input but also that it is
* within the valid range
*/
say ‘Enter menu selection (1-8)’
pull answer
if \datatype(answer, ‘w’) | answer < 1 | ,

answer > 8 then call error1

DATE The DATE function returns the current date or converts
dates from one format to another.

DATE([out_option [, date_string, in_option]])

out_option specifies the format in which the date is re-
turned. If out_option is omitted, the format returned is

dd Mmm yyyy

where

dd is the current day of the month, without
leading zeroes

Mmm is the first three characters of the English
name of the current month

yyyy is the four-digit representation of the cur-
rent year

138 uni-REXX Reference Manual

If out_option is specified, it must be one of the valid
date formats from the following list:

B (base)
the number of complete days since the base date of
1 January 0001. Complete days include the base
date but do not include the current day. The date
format returned is ddddd.

C (century)
the number of days in the current century. The
count of days includes 1 January of the century
year (such as 1900) and the current day. The date
format returned is ddddd.

D (days)
the number of days in the current year. The count
includes the current day. The date format returned
is ddd.

E (European)
the current date in the standard European format of
dd/mm/yy.

J (Julian)
the current date in the format yyddd. yy is the
last two digits of the current year. ddd is the
number of days, including today, in the current
year.

M (month)
the full English name of the current month, begin-
ning with a capital letter.

N (normal)
the current date in the format dd Mmm yyyy.
This is the same format as the default returned
when option is omitted.

O (ordered)
the current date in the format yy/mm/dd.

Chapter 5: Built-In Functions 139

S (standard)
the current date in the format yyyymmdd.

U (USA)
the current date in the standard United States for-
mat of mm/dd/yy.

W (weekday)
the full English name for the current day of the
week, beginning with a capital letter.

The second and third arguments of DATE provide sup-
port for converting dates from one format. Date format
conversion permits arithmetic operations to be per-
formed on dates of any format.

date_string is the date to be converted. It may be a lit-
eral string, a variable reference, or an expression that
evaluates to a date. It must be in one of the date for-
mats described above.

in_option specifies the format of date_string and must
be one of the date format options described above ex-
cept Weekday or Month.

Examples:

today = date()
/* today = ‘4 Jul 1994’, for example */

thisdate = date(‘U’)
/* thisdate = ‘07/04/94’, for example */

sdate = date(‘s’)
/*
* sdate = ‘19940704’, for example; dates in
* this format are suitable for sorting and
* other ordering operations
*/

140 uni-REXX Reference Manual

/*
* the following program fragment converts a
* date in “normal” US format to a format
* suitable for sorting
*/
newdate = date(‘s’, ‘04 Jul 1996’, ‘n’)
/* nesdate is “19960704" */

/*
* the following program adds 90 days to the
* current date
*/
today = date()
plus90=date(‘u’, date(‘b’, today, ‘n’)+90, ‘b’)
/*
* if today is 04/30/96, plus90 is “07/29/96"
*/

/*
* the following program fragment runs a
* quarterly report only if the current month
* is one of those included in the list of
* reporting months
*/
report_months = ‘March June September December’
if wordpos(date(‘M’), report_months) \= 0 then

call quarterly_report
else say ‘Not a reporting month’

/*
* the following program fragment calls a
* different subroutine for each day of the
* week; when run on Monday, it calls
* “report_Monday” and so forth
*/
today = date(‘w’)
interpret ‘call report_’today

Chapter 5: Built-In Functions 141

/*
* the following program fragment is a slight-
* ly different approach to the previous
* example; in this case, however, the subrou-
* tines do not have names that can easily be
* related to any date format; this example
* takes advantage of the fact that
* date(‘b’)//7 returns a numeric value for the
* day of the week (Monday = 0)
*/
sub.0 = ‘start_week’
sub.1 = ‘two_days’
sub.2 = ‘hump_day’
sub.4 = ‘four_days’
sub.5 = ‘tgif’
sub.6 = ‘weekend’
sub.7 = ‘weekend’
daynum = date(‘b’)//7
interpret ‘call’ sub.daynum

Note that the literal strings in the INTERPRET
statements (“call”, etc.) are enclosed in
quotes.

DELSTR The DELSTR function deletes one or more characters
within a string.

DELSTR(string, n [, length])

string is the string from which characters are to be
deleted.

n specifies the character position within string where
deletion begins. n must be a positive number. If n is
greater than the length of string, then string remains
unchanged.

length specifies the number of characters to be deleted.
length must be non-negative. If length is omitted, all
remaining characters in the string, beginning at position
n, are deleted.

142 uni-REXX Reference Manual

Examples:

str = delstr(‘string’, 4) /* str = ‘str’ */

airborne = ‘paratroops’
infantry = delstr(airborne, 1, 4)
/* infantry = ‘troops’ */

/*
* the following program fragment reads lines
* of an input file of addresses, parses for
* the zip code, and puts all zip codes into
* the five-digit form rather than the “zip
* plus four" form; any zip codes longer than
* 5 digits (as in 60018-6300) have the 6th
* and all subsequent characters deleted; any
* zip codes in the five-digit form remain
* unchanged
*/
do i = 1 to lines(‘addrfile’)
parse value linein(‘addrfile’) with +95 zip .
5digit_zip.i = delstr(zip, 6)
end

DELWORD The DELWORD function deletes one or more
blank-delimited words in a string.

DELWORD(string, n [, length])

string is the string from which words are to be deleted.

n specifies the number of the first word to be deleted.
n must be a positive number. If n is greater than the
number of words in string, then string remains
unchanged.

length specifies the number of words to be deleted.
length must be non-negative. If length is omitted, all
remaining words in the string, beginning with word n,
are deleted.

Chapter 5: Built-In Functions 143

Any blanks preceding the first word deleted are not re-
moved. Any blanks following the last word deleted are
removed.

Examples:

s = delword(‘how now brown cow’, 2)
/* s = ‘how’ */

s = delword(‘hi there world’, 2, 1)
/* s = hi world’ */

parse var var1 first . . rest
newvar = first rest
newvar2 = delword(var1, 2, 2)
/*
* When var1=’Raining cats and dogs’,
* then both newvar and newvar2 have the value
* ‘Raining dogs’
*
* When var1=’Raining cats and dogs’, then
* newvar=’Raining dogs’ but
* newvar2=’Raining dogs’
*/

DIGITS The DIGITS function returns the current setting of
NUMERIC DIGITS.

DIGITS()

The description of the NUMERIC instruction in
Chapter 4, Instructions contains information on using
NUMERIC DIGITS to control the precision of arithme-
tic operations and the evaluation of arithmetic functions.

Examples:

x = digits()
/*
* x = 9 if the default for NUMERIC DIGITS is
* in effect
*/

144 uni-REXX Reference Manual

/*
* the following program fragment tests the
* current setting of NUMERIC DIGITS and
* resets it if necessary before evaluating
* the FORMAT function; if precision is not
* tested and reset, the FORMAT function would
* raise Error 40, Incorrect call to routine;
* by testing and, if necessary, resetting
* NUMERIC DIGITS, the FORMAT function can be
* evaluated and x = ‘-1.2E+2’ (assuming the
* default setting of NUMERIC FORM)
*/
if digits() > 2 then numeric digits 2
x = format(-123,3)

D2C The D2C function converts the decimal representation of
a number to its character representation.

D2C(whole-number [, n])

whole-number is the decimal representation of the num-
ber to be converted. It must be a whole number – that
is, it must be a number that can be represented entirely
in digits within the current setting of NUMERIC
DIGITS. If n is omitted, whole-number must be
non-negative.

n is the length of the result in characters. It must be
non-negative. If n is specified, the result is
sign-extended to the specified length. If the result will
not fit in n characters, it is truncated on the left.

Examples:

charval = d2c(97) /* charval = ‘a’ */

charval = d2c(979899) /* charval = ‘abc’ */

Chapter 5: Built-In Functions 145

D2X The D2X function converts the decimal representation
of a number to its hexadecimal representation.

D2X(whole-number [, n])

whole-number is the decimal representation of the num-
ber to be converted. It must be a whole number – that
is, it must be a number that can be represented entirely
in digits within the current setting of NUMERIC
DIGITS. If n is omitted, whole-number must be
non-negative.

n is the length of the result in characters. It must be
non-negative. If n is specified, the result is sign-
extended to the specified length. If the result will not
fit in n characters, it is truncated on the left.

Examples:

hexval = d2x(97) /* hexval = ‘61’ */

bval = x2b(d2x(97)) /* bval = ‘01100001’ */

ERRORTEXT The ERRORTEXT function returns the message text as-
sociated with the specified uni-REXX error number.

ERRORTEXT(n)

n is a number in the range 0-99. If n is not a currently
defined uni-REXX error, then ERRORTEXT returns a
null string. If n is not within the valid range, then
ERRORTEXT results in Error 40, Incorrect call to rou-
tine.

Examples:

msg = errortext(11)
/* msg = ‘Control stack full’ */

146 uni-REXX Reference Manual

/*
* the following program fragment illustrates
* the use of the special variable RC to
* retrieve the appropriate message text when
* a processing error occurs; when the SYNTAX
* condition is raised, the value of RC is the
* number of the error that raised the
* condition
*/
signal on syntax
a = 10
b = max(a, x)
say b
syntax:
say errortext(rc)
say ‘detected at line’ sigl
exit
/*
* the output is
* Bad arithmetic conversion
* detected at line 3
*
* Note: The processing error occurs because
* the variable x, used in the MAX function,
* is uninitialized and therefore has the
* value ‘X’. Arguments of MAX must be
* numeric.
*/

FIND The FIND function searches a string of blank-delimited
words for the first occurrence of another string of
blank-delimited words.

FIND(string1, string2)

string1 is the string to be searched. string2 is the
search string.

FIND returns the number of the first word in string1
where a match is found. If no match is found, FIND
returns 0.

For purposes of comparison, multiple blanks between
words in either string1 or string2 are treated as a single
blank.

Chapter 5: Built-In Functions 147

FIND is included in uni-REXX for compatibility with
the VM and TSO/E implementations of REXX. It may not
be available in other implementations and is not in-
cluded in the standard language definition. Use
WORDPOS to insure portability of an application across
all implementations of REXX.

Examples:

x = find(“How now brown cow”, “brown cow”)
/* x = 3 */

y = find(“Once upon a time”, “a time”)
/* y = 3 */

/*
* the following program fragment uses FIND to
* verify user response to a prompt; if the
* answer provided by the user does not match
* one of the words in the list, FIND returns 0
*/
list = ‘REXX C FORTRAN LISP PL/I’
say ‘What language for this program?’
pull lang
if find(list, lang) = 0 then

say ‘Language not available’

148 uni-REXX Reference Manual

FORM The FORM function returns the current setting of
NUMERIC FORM.

FORM()

The description of the NUMERIC instruction in
Chapter 4, Instructions contains information on using
NUMERIC FORM to control the form of exponential
notation used in the results of arithmetic operations and
the evaluation of arithmetic functions.

Examples:

expform = form()
/*
* expform = ‘SCIENTIFIC’ if the default
* setting of NUMERIC FORM is in effect
*/

/*
* the following program fragment insures that
* NUMERIC FORM is set correctly for this
* application before proceeding with other
* operations
*/
if form() \= ‘ENGINEERING’ then

numeric form engineering

Chapter 5: Built-In Functions 149

FORMAT The FORMAT function rounds and formats a number.

FORMAT(num [,[before] [,[after] [,[expp] [, expt]]]])

FORMAT first rounds the number using the standard
REXX rules that would be applied if the operation
“number + 0" were performed. It then formats the
number. By default, the number is formatted according
to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The last two arguments of
FORMAT allow you to override these defaults.

num is the number to be formatted. If no additional
arguments are specified, FORMAT simply rounds the
number.

before is the number of places to the left of the deci-
mal point (the integer portion) of the result. before
must be a positive integer. If before is omitted, the
number of places to the left of the decimal point is ex-
actly the number contained in the result. If before is
greater than the number of places to the left of the dec-
imal in the result, the result is padded on the left with
blanks. If before is less than the number of places to
the left of the decimal in the result, Error 40 results.

after is the number of places to the right of the decimal
point (the decimal portion) of the result. after may be
a positive integer or zero. If after is omitted, the num-
ber of places to the right of the decimal point is exactly
the number contained in the result. If after is greater
than the number of decimal places in the result, the re-
sult is padded with zeros. If after is less than the num-
ber of decimal places in the result, the result is rounded
to fit. If after is specified as 0, then num is rounded
to the nearest integer.

expp and expt are used to override the current settings
of NUMERIC DIGITS and NUMERIC FORM in the re-
sult of FORMAT.

150 uni-REXX Reference Manual

expp specifies the number of digits to be used in the
exponent portion of the result. expp must be a positive
integer or zero. If expp is greater than the number of
digits required for the exponent, it is padded on the left
with zeros. If expp is less than the number of digits
required for the exponent, Error 40 results. If expp is
specified as 0, no exponent is supplied in the result,
and zeros are added as necessary to express the result
without exponential notation. If expp is non-zero and
the exponent of the result is zero, then the result is
padded on the right with expp+2 blanks.

expt is the trigger point for exponential notation. expt
must be a positive integer or zero. If the number of
places to the left of the decimal point in the result is
greater than expt, the result is expressed exponentially.
If the number of places to the right of the decimal in
the result is greater than 2*expt, the result is expressed
exponentially. If expt is specified as 0, the result is al-
ways expressed exponentially unless the exponent of the
result is 0.

Examples:

x = format(12,5) /* x = ‘ 12’ */

/*
* the following program fragment outputs a
* right-justified column of numbers
*/
numlist = ‘10 456 2 1034’
do i = 1 to words(numlist)

say format(word(numlist,i),4)
end

/*
* the output is
* 10
* 456
* 2
* 1034
*/

Chapter 5: Built-In Functions 151

/*
* the following program fragment outputs a
* decimal-aligned column of numbers with
* exactly two decimal places in each number
*/
numlist = ‘10.567 456 .2 1034.6 45.25’
do i=1 to words(numlist)

say format(word,numlist,i),4,2)
end

/*
* the output is
* 10.57
* 456.00
* 0.20
* 1034.60
* 45.25
*/

/*
* the following program fragment illustrates
* the effect of the exponent trigger point on
* the formatted results
*/
numlist = ‘10 120 10.123 9.12345 123.12345’
do i = 1 to words(numlist)

say format(word(numlist,i),,,,2)
end

/*
* the output is
* 10
* 1.2E+2
* 10.123
* 9.12345
* 1.2312345E+2
*/

152 uni-REXX Reference Manual

/*
* the following program fragment illustrates
* use of the exponent trigger point to over-
* ride the current setting of NUMERIC DIGITS
*/
numeric digits 3
numlist = ‘10 100 1000 10000 100000’
do i = 1 to words(numlist)

say format(word(numlist,i))
end

say ‘’
do j = 1 to words(numlist)

say format(word(numlist,j),,,,5)
end

/*
* the output is:
* 10
* 100
* 1.00E+3
* 1.00E+4
* 1.00E+5
*
* 10
* 100
* 1000
* 10000
* 1.00E+5
*/

/*
* the following program fragment illustrates
* use of the expp argument of format()
*/
numeric digits 3
list = 0 1 2 3
num = 12345
do i = 1 to words(list)

say format(num,,,word(list,i))
end

/*
* the output is
* 12300
* 1.23E+4
* 1.23E+04
* 1.23E+004
*/

Chapter 5: Built-In Functions 153

FUZZ The FUZZ function returns the current setting of
NUMERIC FUZZ.

FUZZ()

The description of the NUMERIC instruction in
Chapter 4, Instructions contains information on using
NUMERIC FUZZ to control how many digits are ig-
nored in a numeric comparison

Examples:

expfuzz = fuzz()
/*
* expfuzz = 0 if the default setting of
* NUMERIC FUZZ is in effect
*/

154 uni-REXX Reference Manual

GETCWD The GETCWD function returns the full path name of
the current working directory.

GETCWD()

Using GETCWD is identical to executing a `pwd’ host
command. It is more convenient setting the value of a
variable to the current working directory.

Examples:

dir = getcwd()
/*
* if current directory is /home/user1, then
dir = ‘/home/user1’

*/

/*
* the following program fragment is identical
* to the previous example but requires extra
* processing
*/
call popen(‘pwd’)
parse pull dir

/*
* the following program fragment creates an
* output file name within the current working
* directory
*/
dir = getcwd()
outfile = dir’/output_file’

Chapter 5: Built-In Functions 155

GETENV The GETENV function returns the current setting of an
environment variable.

GETENV(string)

string is the name of the environment variable for
which the current setting is to be returned. If the envi-
ronment variable specified by string is not set,
GETENV returns a null string.

It is recommended that the string argument be enclosed
in quotes. Without the quotes, string is an uninitialized
symbol. So long as the symbol remains uninitialized,
GETENV behaves as expected since the value of the
uninitialized symbol is the symbol in uppercase. If,
however, an assignment statement sets the value of that
symbol to something else, the GETENV function would
attempt to determine the setting of the environent vari-
able specified by the value assigned to string.

GETENV is identical to using the VALUE function with
the first argument specified as the name of the environ-
ment variable and the third argument specified as `EN-
VIRONMENT’. Because VALUE is defined in the
ANSI standard, it is more portable than GETENV.

Examples:

home = getenv(‘HOME’)
/* home = the current value of $HOME; this is
* the same value that would result from typing
* the UNIX command echo $HOME */

/*
* the following program fragment alters the
* REXXPATH environment variable used for
* locating external uni-REXX programs called
* by this program
*/
util_dir = ‘/home/’userid()’/utilities’
old_path = getenv(‘REXXPATH’)
new_path = util_dir’:’old_path
call putenv ‘REXXPATH=’new_path

156 uni-REXX Reference Manual

INDEX The INDEX function searches a string for the first oc-
currence of another string.

INDEX(string1, string2 [, start])

string1 is the string to be searched. string2 is the
search string.

INDEX returns the position of the first character in
string1 where a match is found. If no match is found,
INDEX returns 0.

start is the character position in string1 where the
search begins. start must be a positive integer. If start
is greater than the length of string1, INDEX re-
turns 0.

INDEX is included in uni-REXX for compatibility with
the VM and TSO/E implementations of REXX. It may
not be available in other implementations and is not in-
cluded in the standard language definition. Use POS to
insure portability of an application across all implemen-
tations of REXX.

Examples:

where = index(‘abcdef’, ‘c’) /* where = 3 */

where = index(‘abrakadabra’, ‘a’, 5)
/* where = 6 */

/*
* the following program fragment uses INDEX to
* verify user response to a prompt; if the
* answer provided by the user does not match
* one of the characters in the list, INDEX
* returns 0
*/
options = abcxyz
say ‘Select a processing option’
pull which_option
if index(options, which_option) = 0 then

call bad_option
else call got_it_right

Chapter 5: Built-In Functions 157

INSERT The INSERT function inserts one string into another
string.

INSERT(string1, string2 [, [n] [, [length] [, pad]]])

string1 is the string to be inserted into string2.

n is the character position in string2 after which inser-
tion begins. n must be a non-negative number. If n is
specified as 0, string1 is inserted before the first char-
acter of string2. If n is omitted, the default value is 0.

length is the number of characters to be inserted.
length must be a non-negative number. If string1 is
shorter than length, it is padded on the right to the
value of length before insertion. If n is greater than
the length of string2, string1 is also padded on the left
before insertion. If length is 0, none of the characters
in string1 are inserted. If length is omitted, the default
is the length of string1.

pad is the character used to pad string1 before inser-
tion. If pad is omitted, the default pad character is a
blank.

Examples:

/*
* this program fragment illustrates various
* combinations of the arguments to INSERT
*/
ins = ‘scotty ‘
string = ‘beam me up now’
say insert(ins, string)
say insert(ins, string, length(string)+1)
say insert(ins, string, 11)
say insert(ins, string, 20)
say insert(ins, string, 20, 0, ‘!’)
/*
* the output is:
* scotty beam me up now
* beam me up now scotty
* beam me up scotty now
* beam me up now scotty
* beam me up now!!!!!!

158 uni-REXX Reference Manual

*/

JUSTIFY The JUSTIFY function adds pad characters between
words in a string of blank-delimited words to justify
both margins.

JUSTIFY(string, length [, pad])

string is the string of blank-delimited words. length is
the length of the string returned by the function.

pad is the character used to pad string. If pad is omit-
ted, the default pad character is a blank.

JUSTIFY is included in uni-REXX for compatibility
with the VM and TSO/E implementations of REXX. It
may not be available in other implementations and is
not included in the standard language definition. Use
POS to insure portability of an application across all
implementations of REXX.

Examples:

str = ‘To be or not to be’
outstr = justify(str, 25)
/* outstr = ‘To be or not to be’ */

LASTPOS The LASTPOS function finds the last occurrence of one
string within another string.

LASTPOS(string1, string2 [, start])

string1 is the search string. string2 is the string to be
searched.

It returns the character position of the last occurrence
of string1 in string2. If string1 is not found in
string2, then LASTPOS returns 0.

The function scans backward from the end of string2.
start is the character position within string2 where the

Chapter 5: Built-In Functions 159

backward search begins. start must be a positive inte-
ger. If start is greater than the length of string2, it de-
faults to the length of string2. If start is omitted, the
default is the length of string2.

Examples:

x = lastpos(‘a’, ‘abrakadabra’) /* x = 11 */

x = lastpos(‘a’, ‘abrakadabra’, 7) /* x = 6 */

/*
* in the following program fragment, LASTPOS
* returns 0 if there is only one entry in
* product_list (no blanks in the list) or non-
* zero if there is more than one entry in the
* list
*/
product_list = ‘uni-REXX uni-XEDIT uni-SPF’
if lastpos(‘ ‘, product_list) = 0 then

say ‘Only one TWG product installed’
else say ‘Several TWG products installed’

/*
* the output is
* “Several TWG products installed”
*/

LEFT The LEFT function returns the left-most characters in a
string.

LEFT(string, n [, pad])

string is the original string.

n is the number of characters to be returned. n must
be non-negative. If n is zero, the LEFT function re-
turns a null string. If n is greater than the length of
string, the value returned by LEFT is padded on the
right to the length of n.

pad is the character used to pad the result. If pad is
omitted, the default is a blank character.

160 uni-REXX Reference Manual

Examples:

x = left(‘abcdefg’, 3) /* x = ‘abc’ */

alphabet = left(‘abc’, 26)
/* alphabet = ‘abc ‘ */

alphabet = left(‘abc’, 6, ‘.’)
/* alphabet = ‘abc...’ */

/*
* the following program fragment processes an
* input file by selecting data only from
* those lines that do not begin with a
* comment character (‘#’)
*/
input = ‘/home/user1/mydata’
j = 1
do lines(input)

line = linein(input)
if left(line, 1) \= ‘#’ then do

parse var line num.j descr.j .
j = j + 1
end

end

/*
* the following program fragment uses the
* LEFT and RIGHT functions to format output
* data
*/
line.1 = ‘Jan East 1500 West 975 Total $ 2475’
line.2 = ‘Feb East 24660 West 975 Total $34635’
line.3 = ‘Mar East 800 West 8500 Total $ 9300’
:
:

do i = 1 to 12
say left(line.i, 3) right(line.i, 6)
end

/*
* the output is
* Jan $ 2475
* Feb $34635
* Mar $ 9300
* :
* :
*/

Chapter 5: Built-In Functions 161

LENGTH The LENGTH function determines the number of char-
acters in a string.

LENGTH(string)

string is the string for which the length is to be
determined.

Examples:

x = length(‘Hello’) /* x = 5 */

/*
* the following program fragment validates
* user input based on the number of characters
* in that input
*/
say ‘Enter part number’
pull reply
if length(reply) \= 4 then do

say ‘Invalid part number:’ reply
say ‘Part numbers have exactly 4 digits’
end

162 uni-REXX Reference Manual

LINEIN The LINEIN function reads a line from a character in-
put stream. It may also be used to set the read position
in a persistent input stream. Use LINEIN for input
streams that have normal line-end terminators (usually
CR/LF).

LINEIN([name] [, [line] [, count]])

name is the name of the character input stream. This
may a persistent stream such as a disk file or a tran-
sient stream such as STDIN or a pipe (including a
named pipe). If name is omitted, the default is STDIN.

line specifies an explicit read position in a persistent
input stream such as a disk file. It must be a positive
integer and must be within the bounds of the input
stream specified. If line is omitted, the default is the
current read position. line may not be specified for a
transient input stream.

count specifies the number of lines to be read. count
must be 0 or 1. If count is omitted, the default is 1.
If count is specified as 0, then the read position is set
to the beginning of line, and the function returns a null
string.

If a complete line is not available in the stream, the
program may wait until the line is complete. If it is
not possible for a line to be completed, the function re-
turns all available characters and raises the
NOTREADY condition. The built-in function STREAM
may be used to determine the state of a character
stream.

Use LINEIN to read complete lines that have normal
line-end terminators. Use CHARIN to read less than a
complete line or to read lines that do not have normal
line-end terminators.

Use of an I/O function such as LINEIN may leave a
persistent output stream in an open state. Thus, it may
be necessary to close it using LINEOUT, CHAROUT,

Chapter 5: Built-In Functions 163

or STREAM before performing subsequent read or write
operations.

Examples:

emp_record = linein(‘personnel.file’)
/*
* reads one line from the current read
* position and assigns that value to the
* variable “emp_record”
*/

/*
* the following program fragment displays a
* prompt to the user; it then pauses until
* data is available on STDIN (in this case,
* characters typed at the keyboard); LINEIN
* returns everything that was typed at the
* keyboard before Enter was pressed and
* assigns that value to the variable “num”;
* a host command then prints a file
*/
say ‘Enter report number’
num = linein()
address UNIX ‘lpr report.’num

/*
* the following program fragment processes
* all lines in an input file, one line at a
* time
*/
infile = ‘/home/user1/report’
do i = 1 while lines(infile) > 0

line.i = linein(infile)
end

/*
* this is identical to using execio as
* illustrated in the following program
* fragment
*/
infile = ‘/home/user1/report’
address command
‘execio * diskr’ infile ‘(stem line.’

164 uni-REXX Reference Manual

LINEOUT The LINEOUT function writes a line to a character out-
put stream and returns the number of lines remaining in
the stream after the write has been attempted.

LINEOUT([name] [, [string] [, line]])

name is the name of the character output stream. This
may a persistent stream such as a disk file or a tran-
sient stream such as STDOUT or a pipe (including a
named pipe). If name is omitted, the default is
STDOUT.

string is the character string to be written. If name is
a persistent stream, then string may be omitted. In this
case, one of the following actions is taken:

• if line is specified, LINEOUT resets the write posi-
tion to the start value; the function returns 0

• if line is omitted, LINEOUT closes the output
stream; the function returns 0

line specifies an explicit write position. It must be a
positive integer and must be within the bounds of the
output stream specified. If line is omitted, the default
is the current write position. line may not be specified
for a transient output stream.

The program waits until the write operation is complete.
If it is not possible to write the line to the output
stream, the function returns 1 (the number of lines not
written) and raises the NOTREADY condition.

Use of an I/O function such as LINEOUT may leave a
persistent output stream in an open state. Thus, it may
be necessary to close it using LINEOUT, CHAROUT,
or STREAM before performing subsequent read or write
operations.

Chapter 5: Built-In Functions 165

Examples:

/*
* the following program fragment writes the
* string specified by the variable
* “emp_data” to the file “personnel.file”;
* rc is normally 0
*/
emp_data = ‘DEV003 Smith Joe Software Engineer’
rc = lineout(‘personnel.file’, emp_data)
if rc \= 0 then

say ‘Error in writing to personnel file’

out_rc = lineout(, ‘Hello world’)
/*
* writes “Hello world” to STDOUT, usually the
* ternimal; out_rc is normally 0
*/

/*
* the following program fragment writes the
* lines specified by the compound variables
* “emp.<n>” to the file “personnel.file”;
* after the last line is written, it closes
* the file; note the use of “CALL” to invoke
* the function
*/
outfile = ‘/home/admin/personnel.data’
emp.0 = 57
emp.1 = ‘DEV003 Smith Joe Software Engineer’
emp.2 = ‘DEV004 Jones Anne AI Specialist’
:
:

do i = 1 to emp.0
call lineout outfile, emp.i
end

call lineout outfile

/*
* the do loop in the preceding example is
* identical to using execio as illustrated
* below
*/
address command
‘execio * diskw’ outfile ‘(finis stem emp.’

166 uni-REXX Reference Manual

LINES The LINES function returns the number of complete
lines remaining in a character input stream.

LINES([name])

name is the name of the character input stream. This
may a persistent stream such as a disk file or a tran-
sient stream such as STDIN or a pipe (including a
named pipe). If name is omitted, the default is STDIN.

When the input stream is a transient stream, LINES re-
turns 1 if there is any data available in the stream. It
returns 0 if there is no data available in the stream.

When the input stream is a disk file, use of an I/O
function such as LINES may leave the file in an open
state. Thus, it may be necessary to close the file using
LINEOUT, CHAROUT, or STREAM before performing
subsequent read or write operations to the file.

Examples:

count = lines(‘myfile’)
/*
* count is set to the number of lines in the
* disk file named “myfile”
*/

/*
* the following program fragment tests for the
* existence of a file; if the file exists (the
* value of the LINES function is greater than
* zero), the file is deleted before proceeding
*/
if lines(‘myfile’) > 0 then

address UNIX ‘rm myfile’

Chapter 5: Built-In Functions 167

/*
* the following program named “anydata” gives
* different results depending on whether or
* not data is waiting
*/
if lines() then say ‘Data available’

else say ‘No data’
/*
* When you run this program by typing
* anydata
* the output is
* “No data”
*
* When you run this program by typing
* echo ‘Hello world’ | anydata
* the output is
* “Data available”
*/

LOWER The LOWER function converts characters in a string to
lower case.

LOWER(string)

string is the string of characters to be converted.
string may be upper-, lower-, or mixed case.

Examples:

low = lower(‘ABCD’) /* low = ‘abcd’ */

/*
* the following program fragment converts
* user input to lower case before validating
* the input
*/
say ‘Enter authorization’
parse pull reply
if wordpos(lower(reply), auth_list) \= 0 then

call run_prog
else say ‘Sorry, not authorized’

168 uni-REXX Reference Manual

/*
* the following program is functionally
* equivalent to the previous example but
* insures that “reply” is taken from the
* terminal (STDIN) rather than from data that
* might be on the program stack
*/
say ‘Enter authorization’
reply = lower(linein())
if wordpos(reply, auth_list) \= 0 then

call run_prog
else say ‘Sorry, not authorized’

MAX The MAX function returns the largest number in a list
of numbers.

MAX(number [, number] ...)

number is any valid number.

Examples:

x = max(10, 12, 9) /* x = 12 */

/*
* the following program fragment illustrates
* using MAX to default to the highest index
* for a compound variable
*/
order_file = ‘/home/sales/commissions_earned’
address command
‘execio * diskr’ order_file ‘(stem comms.’
say ‘Enter commission percent’
pull number
tail = max(number, comms.0)
say comms.tail
/*
* if the user enters a number <= the number
* of lines read in from the file, the out-
* put is the value of that line number; if the
* user enters a number greater than the number
* of lines in the file, the output is the
* contents of the last line in the file
*/

Chapter 5: Built-In Functions 169

MIN The MIN function returns the smallest number in a list
of numbers.

MIN(number [, number] ...)

number is any valid number.

Examples:

x = min(10, 12, 9) /* x = 9 */

/*
* the following program fragment uses MIN to
* get the length of the shortest word in a
* string
*/
list = ‘the a an’
shortest = length(word(list, 1))
do while list \= ‘’

parse var list next list
shortest = min(shortest, length(next))
end

say shortest
/*
* the output is “1"
*/

OVERLAY The OVERLAY function overlays one string with char-
acters from another string.

OVERLAY(string1, string2 [, [n] [, [length] [, pad]]]

string1 is the overlay string. string2 is the original
string in which characters are to be replaced by charac-
ters from string1.

n is the character position in string2 where the overlay
begins. n must be a positive integer. If n is greater
than the length of string2, string1 is padded on the left
before the overlay is performed. If n is omitted, the
default value is 1.

170 uni-REXX Reference Manual

length is the number of characters to overlay. length
must be non-negative. If length is greater than the
number of characters in string1, string1 is padded on
the right before the overlay is performed. If length is
less than the number of characters in string1, string1 is
truncated from the right before the overlay is per-
formed. If length is omitted, the default value is the
length of string1.

pad is the character to be used for padding string1. If
pad is omitted, the default is a blank character.

Examples:

str = overlay(‘old’, ‘new data’)
/* str = ‘old data’ */

str = overlay(‘old’, ‘Some new data’, 6)
/* str = ‘Some old data’ */

str = overlay(‘change’, ‘New data’, 12, 8, ‘*’)
/* str = ‘New data***change**’ */

/*
* the following program fragment takes a
* template reply message and uses OVERLAY
* to replace a placeholder string with the
* current date before mailing the message
*/
parse arg inquirer
auto_reply = ‘/home/tech/auto_reply_letter’
mail_msg = ‘/home/tech/msg’
d = “Insert today’s date here”
ld = length(d)
do lines(auto_reply)
line = linein(auto_reply)
if wordpos(d, line) \= 0 then
line = overlay(date(), line, pos(d, line), ld)
call lineout mail_msg, line
end
call lineout mail_msg /*be sure file is closed*/
‘mail -s “Auto Reply”’ inquirer ‘<‘ mail_msg
‘rm’ mail_msg

Chapter 5: Built-In Functions 171

POPEN The POPEN function executes a host command and
places the results on the uni-REXX program stack. It
returns the completion code of the host command.

POPEN(command [, option])

command is any host command that is valid in the
Bourne shell.

option indicates whether command output should be
placed on the stack in FIFO or LIFO order. `P’ speci-
fies LIFO order; `Q’ specifies FIFO order. If option is
omitted, the default value is `Q’.

POPEN redirects STDOUT to the program stack. Use it

• to capture the output of a host command for subse-
quent processing

• to execute any host command that may write to
STDOUT when you do not wish that output to ap-
pear on the terminal screen

Examples:

state = popen(‘test -f myfile’)
/*
* invokes the UNIX test command to check for
* existence of a file; if the file exists,
* test sets a completion code of 0 and there-
* fore state = 0; if the file does not exist,
* test sets a completion code of 1 and there-
* fore state = 1
*/

172 uni-REXX Reference Manual

/*
* the following program fragment processes
* all files in the current directory with a
* date/time stamp matching the current month
*/
x = 5
rc = popen(‘ls -l’)
if rc \= 0 then call error1
do queued()

parse pull nextfile
if word(nextfile, x) = left(date(m),3) then

call prog2
end

/*
* Note that the output of “ls” is system-
* dependent; this example is for SunOS; change
* value of “x” for other systems as needed
*/

POS The POS function searches a string for the first occur-
rence of another string.

POS(string1, string2 [, start])

string1 is the search string. string2 is the string to be
searched.

POS returns the position of the first character in string2
where a match is found. If no match is found, POS re-
turns 0.

start is the character position in string2 where the
search begins. start must be a positive integer. If start
is greater than the length of string2, POSreturns 0.

Examples:

where = pos(‘c’, ‘abcdef’) /* where = 3 */

where = pos(‘a’, ‘abrakadabra’, 5)
/* where = 6 */

Chapter 5: Built-In Functions 173

/*
* the following program fragment uses POS to
* verify user response to a prompt; if the
* answer provided by the user does not match
* one of the characters in the list, POS
* returns 0
*/
options = abcxyz
say ‘Select a processing option’
pull which_option
if pos(which_option, options) = 0 then

call bad_option
else call value which_option

PUTENV The PUTENV function sets the value of an environment
variable.

PUTENV(string)

string is a Bourne shell command to set the value of an
environment variable. The command is of the form

VARIABLE=value

Blanks are not permitted around the equal sign.

Use PUTENV to set or modify the value of an environ-
ment variable used by the process in which the
uni-REXX program is running. Environment variables
set by PUTENV are not retained after the uni-REXX
program terminates.

PUTENV is equivalent to using the VALUE function
with the first argument specified as the environment
variable, the second argument specified as its new
value, and the third argument specified as
‘ENVIRONMENT’. Because VALUE is defined in the
ANSI standard, it is more portable than PUTENV.

174 uni-REXX Reference Manual

Examples:

rc = putenv(‘PATH=/tmp:/usr/bin:/home/user1’)
/*
* sets the PATH environment variable; if
* PUTENV executes successfully, the value of
* rc is 0; if an error occurs, the value of
* rc is non-zero
*/

/*
* the following program fragment checks the
* current setting of REXXPATH to be sure that
* it includes all directories needed for
* finding external programs and modifies it
* if necessary
*/
needed = ‘/usr/local/bin/rexx’
current_path = getenv(‘REXXPATH’)
if pos(needed, current_path) = 0 then

call putenv ‘REXXPATH=’needed’:’current_path

QUALIFY The QUALIFY function creates a fully qualified name
for a filename by prepending the current working
directory.

QUALIFY([filename])

filename is the name of a file for which a fully quali-
fied name is to be created. A fully qualified name is in
the form of a full directory path specification that in-
cludes the filename.

If filename is omitted, the function returns the full path
specification for the current working directory.

Examples:

fqn = qualify(‘InputFile’)
/*
* if the current directory is ‘/home/user1’,
* then fqn = ‘/home/user1/InputFile’
*/

Chapter 5: Built-In Functions 175

CurrentDir = qualify()
/*
* CurrentDir is possibly ‘/usr/local/bin’
*/

QUEUED The QUEUED function returns the number of lines re-
maining on the uni-REXX program stack.

QUEUED()

Examples:

/*
* the following program processes every line
* remaining on the uni-REXX program stack,
* based on some pre-determined criterion
*/
do queued()
pull nextone
if word(nextone, 3) > checkit then call bigger
else call smaller

end

/*
* the following program fragment searches for
* the occurrence of a string, specified as a
* calling argument, in all C programs in the
* current directory
*/
parse arg search_string
call popen ‘grep -i’ search_string ‘ *.c’
if queued() = 0 then

say ‘Search string’ search_string ‘not found’

176 uni-REXX Reference Manual

RANDOM The RANDOM function returns a quasi-random,
non-negative whole number.

RANDOM([min] [, [max] [, seed]])

RANDOM(max)

If no arguments are specified, RANDOM returns a
value between 0 and 999. The function arguments al-
low some control over the random number generated.

min and max define the inclusive range from which the
random number is generated. min is the lower value of
the range. min must be non-negative. If min is omit-
ted, the default is 0. max is the upper value of the
range. max must be non-negative. If max is omitted,
the default is 999.

The magnitude of the range specified may not exceed
100000. Specifically, the following must be true:

max - min <= 100000

If only one argument is specified, it is assumed to be
max. The range is then 0 through the value of max.

seed is an initial seed value that may be used to create
a repeatable series of results. seed must be a whole
number. If seed is omitted, the default is an arbitrary
value, which may be time-dependent.

Examples:

x = random() /* possibly, x = 983 */

x = random(9) /* possibly, x = 2 */

/*
* the following program fragment generates a
* random number for use as the extension on a
* temporary file required by the program
*/
ext = random()
tmpfile = ‘/tmp/thisprog.’ext

Chapter 5: Built-In Functions 177

REVERSE The REVERSE function reverses the characters in a
string.

REVERSE(string)

string is the original string in which the characters are
to be reversed.

Examples:

str = reverse(‘string’) /* str = ‘gnirts’ */

time = reverse(‘noon ‘) /* time = ‘ noon’ */

RIGHT The RIGHT function returns the right-most characters in
a string.

RIGHT(string, n [, pad])

string is the original string.

n is the number of characters to be returned. n must
be non-negative. If n is zero, the RIGHT function re-
turns a null string. If n is greater than the length of
string, the value returned by RIGHT is padded on the
left to the length of n.

pad is the character used to pad the result. If pad is
omitted, the default is a blank character.

Examples:

x = right(‘abcdefg’, 3) /* x = ‘efg’ */

alphabet = right(‘xyz’, 26)
/* alphabet = ‘ xyz’ */

178 uni-REXX Reference Manual

alphabet = right(‘xyz’, 6, ‘.’)
/* alphabet = ‘...xyz’ */

/*
* the following program fragment removes
* 6-character sequence numbers from the
* beginning of each line of a file
*/
input = ‘/home/user1/mydata’
output = ‘/home/user1/data_nonum’
do lines(input)

line = linein(input)
line = right(line, length(line)-6)
call lineout output, line
end

call lineout output

/*
* the following program fragment uses the
* LEFT and RIGHT functions to format output
* data
*/
line.1 = ‘Jan East 1500 West 975 Total $ 2475’
line.2 = ‘Feb East 24660 West 975 Total $34635’
line.3 = ‘Mar East 800 West 8500 Total $ 9300’
:
:

do i = 1 to 12
say left(line.i, 3) right(line.i, 6)
end

/*
* the output is
* Jan $ 2475
* Feb $34635
* Mar $ 9300
* :
* :
*/

SIGN The SIGN function returns a value that indicates the
sign of a number.

SIGN(number)

number is the number for which the sign is to be deter-
mined. If number is negative, then SIGN returns -1. If

Chapter 5: Built-In Functions 179

number is zero, then SIGN returns 0. If number is
positive, then SIGN returns 1.

Examples:

x = sign(10) /* x = 1 */

/*
* the following program fragment raises 2 to
* the power chosen by the user; it does not
* permit negative or zero exponents
*/
say ‘Enter exponent’
pull power
if sign(power) > 0 then say 2**power
else say power ‘invalid here’

SOURCELINE The SOURCELINE function returns either the number of
lines in the current program or the contents of the spec-
ified line.

SOURCELINE([n])

n is a line number within the range of the current pro-
gram. n must be positive and may not exceed the line
number of the last line in the program. When n is
specified, SOURCELINE returns the contents of the nth
line in the program. If n is omitted, SOURCELINE re-
turns the line number of the last line in the program.

If no source lines are available (as in the case of a
compiled program), SOURCELINE returns 0.

Examples:

prog_length = sourceline()
/*
* if the current program contains 50 lines,
* then prog_length = 50
*/

180 uni-REXX Reference Manual

/*
* the following program fragment illustrates
* the use of SOURCELINE to identify errors
* occurring during program execution
*/
call on error name uhoh
parse arg program_name
address UNIX program_name
:
:

exit
uhoh:
parse value sourceline(sigl) with ‘UNIX’ failed
say ‘Host command failed’
interpret ‘say’ failed “’not found in $PATH’”
return

SPACE The SPACE function reformats a string of blank-
delimited words such that the specified number of pad
characters appears between each word.

SPACE(string [, [n] [, pad]])

string is the string of blank-delimited words to be
formatted.

n is the number of pad characters to appear between
each word in the result. n must be non-negative. If n
is specified as zero, all blanks in string are removed.
If n is omitted, the default value is 1.

pad is the character used between each word in the re-
sult. If pad is omitted, the default pad character is a
blank.

Leading and trailing blanks in string are always re-
moved from the result of SPACE.

Examples:

x = space(‘Good morning’)
/* x = ‘Good morning’ */

Chapter 5: Built-In Functions 181

/*
* the following program fragment creates a
* header line for a report
*/
str = date time userid status
header = space(str, 6, ‘-’)
/*
* the header line looks like
*
* DATE———TIME———USERID———STATUS
*
*/

/*
* the following program uses SPACE in con-
* junction with TRANSLATE to remove characters
* from a string
*/
string = ‘work group’
/*
* translate all blanks to “o” and all “o” or
* “u” to blank
*/
string = translate(string, ‘o’, ‘ ou’)
/* remove all blank spaces */
string = space(string, 0)
/*
* translate all blanks to “o” and all “o” to
* blank
*/
string = translate(string, ‘o’, ‘ o’)
/* remove any remaining blank spaces */
string = space(string, 0)
say string
/*
* the output is
*
* wrkgrp
*/

182 uni-REXX Reference Manual

STREAM The STREAM function is used to determine the state of
or to perform an operation on a stream and return the
result. Result strings should match those in OS/2 Rexx.

STREAM(name [, operation [, strmcmd]])

name is the name of the stream of interest.

operation is the operation to be performed on the
stream. If operation is specified, it must be one of the
following:

C (command)
the command to execute on this stream, as speci-
fied by the strmcmd argument

D (description)
a descriptive string associated with the current
state of the stream; the descriptive strings are
available only when the state of the stream is
`READY:’; strmcmd must not be specified

S (state)
the current state of the specified stream; strmcmd
must not be specified; the value returned is one of
the following:

ERROR
an erroneous operation has been attempted on the
stream

NOTREADY
normal input or output operations would raise the
NOTREADY condition

READY
the stream is ready for normal input or output
operations

UNKNOWN
the state of the stream cannot be determined

Chapter 5: Built-In Functions 183

operation may be any string beginning with one of the
characters shown above. If operation is omitted, the
default value is “S”.

strmcmd is a command to be executed on the stream.
strmcmd must be enclosed in quotes and must be one of
the following:

open
open the stream for input or output operations; re-
turns “READY:”

close
close the stream for input or output operations; re-
turns “READY”

delete
remove the file; the function returns a null string

query exists
test for existence of the stream; the function re-
turns the name of the stream, if it exists; otherwise
it returns a null string

query size
determine the number of characters in the file; the
function returns size in number of characters

query datetime [d[t]]
retrieve the date/time stamp of the file with op-
tional formatting; by default the function returns the
information in the form mm-dd-yy hh:mm:ss; d is
one of the date() function formats “bcejnosu”; t is
one of the time() function formats “cln”; d and t
are optional, but d must be specified if t is.

seek offset
position the file for the next input or output opera-
tion; offset must be a positive integer preceded by
one of the following characters; returns offset

= offset is from the beginning of the file
< offset is from the end of the file
+ offset is forward from the current position
- offset is backward from the current position

184 uni-REXX Reference Manual

Examples:

/*
* the following program fragment illustrates
* the use of the STREAM function
*/
strm = ‘/home/user1/sales.data’
state = stream(strm, ‘c’, ‘query exists’)
if state \= ‘’ then
if stream(strm, ‘c’, ‘open’) \= ‘READY:’ then

say ‘error opening file’ strm
else
address command ‘execio * diskr’ strm

STRIP The STRIP function removes leading, trailing, or both
leading and trailing characters from a string.

STRIP(string [, [option] [, char]])

string is the string from which characters are to be
removed.

option specifies whether leading, trailing, or both lead-
ing and trailing characters are to be removed. option
may be any string beginning with the character `L’, `T’,
or `B’, in any case. If the first character of option is
`L’, only leading characters are removed. If the first
character of option is `T’, only trailing characters are
removed. If the first character of option is `B’, both
leading and trailing characters are removed. If option
begins with any other character, Error 40 results. If
option is omitted, the default is `B’.

char is the character to be removed from string. If
specified, char may be only one character. If char is
omitted, the default is a blank.

Examples:

x = strip(‘ Gypsy Rose ‘)
/* x = ‘Gypsy Rose’ */

Chapter 5: Built-In Functions 185

x = strip(‘000123’, ‘l’) /* x = ‘123’ */

x = strip(‘In retrospect....’, ‘Trail’, ‘.’)
/* x = ‘In retrospect’ */

/*
* the following program fragment removes lead-
* ing & trailing blanks from a value used
* as the tail in referencing a compound symbol
*/
pfile = ‘/u/reports/parms’
do lines(pfile)
parse value linein(pfile) with arg1 arg2 prog
prog = strip(upper(prog))
interpret ‘call subr.’prog arg1’,’ arg2
end

SUBSTR The SUBSTR function returns a sub-string of a string.

SUBSTR(string, n [, [length] [, pad]])

string is the string from which the sub-string is to be
extracted.

n is the character position within string where the
sub-string begins. n must be positive. If n is greater
than the length of string, then only pad characters or
the null string are returned.

length is the length of the sub-string to be returned.
length must be non-negative. If length is greater than
the number of characters from n to the end of string,
then the result is padded on the right. If length is
specified as 0, then the null string is returned. If
length is omitted, the result includes all characters from
n to the end of string. If n is greater than the length of
the string and length is omitted, then the null string is
returned.

pad is the pad character to be used. If pad is omitted,
the default is a blank character.

186 uni-REXX Reference Manual

Examples:

x = substr(‘uni-REXX’, 5) /* x = ‘REXX’ */

herbs = ‘parsley sage rosemary thyme’
herb2 = substr(herbs, 9, 4)
/* herb2 = ‘sage’ */

today = substr(date(‘u’), 4, 2)
/* today = ‘18’ on the 18th day of any month */

/*
* the following program fragment extracts a
* substring from a series of numbers and pads
* the short ones with zeroes
*/
numlist = ‘14 144 4114 41’
do i = 1 to words(numlist)

x = substr(word(numlist, i), 2, 3, 0)
say x
end

/*
* the output is
*
* 400
* 440
* 114
* 100
*/

SUBWORD The SUBWORD function returns a sub-string from a
string of blank-delimited words.

SUBWORD(string, n [, length])

string is the string from which the sub-string is to be
extracted.

n is the number of the word within string where the
sub-string begins. n must be positive. If n is greater
than the number of words in string, then the null string
is returned.

length is the number of words to be returned. length
must be non-negative. If length is specified as 0, then

Chapter 5: Built-In Functions 187

the null string is returned. If length is omitted, the re-
sult includes all remaining words in string.

The result does not include leading or trailing blanks.
All blanks between words are preserved in the result.

Examples:

n = subword(‘over the rainbow’, 3)
/* n = ‘rainbow’ */

days = ‘Mon Tue Wed Thur Fri Sat Sun’
weekend = subword(days, 6)
/* weekend = ‘Sat Sun’ */

SYMBOL The SYMBOL function returns the status of a symbol.

SYMBOL(name)

name specifies the symbol name for which status is to
be determined. name is, itself, a symbol – that is, nor-
mal conversion to uppercase and substitution of as-
signed values occurs before the SYMBOL function is
evaluated. It is therefore recommended that name be
enclosed in quotes to prevent substitution and ensure
that the status returned is for the symbol intended.

SYMBOL returns one of the following :

BAD indicates that name is not a valid REXX

symbol

VAR indicates that name is a variable (a symbol
to which a value has been assigned)

LIT indicates that name is a literal; this could
be either a constant symbol or a symbol to
which no value has yet been assigned

188 uni-REXX Reference Manual

Examples:

/*
* the following program fragment illustrates
* the various results from the SYMBOL function
*/
a = 14
b = 3
c. = 0
c.3 = ‘hello’
say symbol(a)
say symbol(‘a’)
say symbol(‘c.1’)
say symbol(‘c.b’)
say symbol(‘d’)
say symbol(‘%’)
/*
* the output is
* LIT /* after substitution, is symbol(14) */
* VAR /* no substitution */
* VAR
* VAR
* LIT /* no value yet assigned */
* BAD /* “%” not permitted as symbol name */
*/

/*
* the following program fragment illustrates
* using SYMBOL instead of setting a flag to
* test for successful processing
*/
drop testvar
do i = 1 to lines(‘in_file’)

line = linein(‘in_file’)
if word(line, 5) \= ‘temp’ then

testvar = word(line, 5)
end

if symbol(‘testvar’) \= ‘LIT’ then
say ‘Good data’

else say ‘All temps’

Chapter 5: Built-In Functions 189

TIME The TIME function returns the current time of day or
converts times from one format to another.

TIME([out_option [, time_string, in_option]])

out_option specifies the format in which the time is re-
turned. If out_option is omitted, the format returned is

hh:mm:ss

where

hh hours; value is from 00 through 23, with
leading zeroes

mm minutes; value is from 00 through 59, with
leading zeroes

ss seconds; value is from 00 through 59, with
leading zeroes; fractional seconds are ig-
nored (that is, no rounding occurs)

If out_option is specified, it must be one of the valid
time formats from the list below.

C (civil)
the time in civil format - hh:mmxx. The value of
hh (hours) is between 1 and 12, without leading
zeros. The value of mm (minutes) reflects the cur-
rent minute. The value of xx is either “am” or
“pm”, to indicate the midnight-to-noon or
noon-to-midnight period, respectively.

E (elapsed)
the number of seconds since the elapsed time clock
was started or reset. The format issssss, without
leading zeros or blanks. The first execution of
TIME(`E’) starts the elapsed time clock and returns
a value of 0.

190 uni-REXX Reference Manual

H (hours)
the number of complete hours since midnight. The
format is hh, without leading zeros or blanks. In
the case of the period from midnight to 1:00, the
value returned is 0.

L (long)
extended time. The format is
hh:mm:ss.uuuuuu. Hours, minutes, and seconds
conform to the rules for the Normal format.
uuuuuu represents fractional seconds, given in
microseconds. Fractional seconds are not available
in some UNIX implementations. In these cases,
TIME(`L’) returns the same value as TIME(`N’).

M (minutes)
the number of complete minutes since midnight.
The format is mmmm, without leading zeros or
blanks. In the case of the period from 12:00 mid-
night to 12:01 a.m., the value returned is 0.

N (normal)
the time of day using the 24-hour clock. The for-
mat is hh:mm:ss. The value of hh is from 00
through 23, with leading zeros. The value of mm
and of ss is from 00 through 59, with leading ze-
ros. Fractional seconds are ignored. This is the
default result of TIME when no option is specified.

O (offset)
the time offset from GMT in microseconds. This
can be used to determine the timezone where the
program is being executed.

R (reset)
the number of seconds since the elapsed time clock
was started or reset. The format is sssss, with-
out leading zeros or blanks. In addition to return-
ing elasped time, TIME(`R’) resets the elapsed
time clock.

Chapter 5: Built-In Functions 191

S (seconds)
the number of complete seconds since midnight.
The format is sssss, without leading zeros or
blanks. In the case of the period from 12:00 mid-
night to 12:00:01, the value returned is 0.

The second and third arguments of TIME provide sup-
port for converting times from one format. Time for-
mat conversion permits arithmetic operations to be per-
formed on times of any format.

time_string is the time to be converted. It may be a
literal string, a variable reference, or an expression that
evaluates to a time. It must be in one of the time for-
mats described above.

in_option specifies the format of time_string and must
be one of the time format options described above ex-
cept Elapsed or Reset.

Examples:

now = time()
/* now = ‘10:30:15’, for example */

cnow = time(‘c’)
/* cnow = ‘10:30am’, for example */

/*
* the following program fragment measures
* the elapsed time required to run specified
* programs
*/
do forever

say ‘Enter program name or “Q”’
parse pull prog
if upper(prog) = ‘Q’ then leave
call time(‘r’)
address UNIX prog
prog_time = time(‘e’)
say ‘Time to run’ prog’:’ prog_time
end

exit

now = time(‘c’, ‘17:17:00’, ‘n’)

192 uni-REXX Reference Manual

/* now = ‘5:17pm’ */

plus45 = time(‘c’, time(‘m’) + 45, ‘m’)
/*
* if it’s currently 4:40pm, plus45 = ‘5:25pm’
*/

TRACE The TRACE function returns the current setting of
TRACE. It may also be used to change the TRACE
setting.

TRACE([option])

If option is omitted, the function simply returns the cur-
rent TRACE setting. The description of the TRACE in-
struction in Chapter 4, Instructions provides details on
the possible settings.

option is one of the valid TRACE settings as described
in Chapter 4, Instructions. Valid trace settings are A,
C, E, F, I, L, N, O, R. option may also include the “?”
prefix.

Using the TRACE function to change the setting differs
from use of the TRACE instruction in the following
ways:

• the function alters the trace action even if interac-
tive tracing is in effect

• the setting specified by the function may not be a
number

Examples:

setting = trace()
/* setting = ‘N’, for example */

/*
* the following program fragment uses the
* TRACE function both to capture the initial
* TRACE setting and to change the setting
* prior to calling a subroutine; after the
* subroutine returns, the TRACE instruction

Chapter 5: Built-In Functions 193

* restores the TRACE setting to its original
* value
*/
set1 = trace(‘o’)
call subr
trace value set1

TRANSLATE The TRANSLATE function translates the characters in a
string according to the specified translation tables.

TRANSLATE(string [, [out_tbl] [, [in_tbl] [, pad]]])

string is the string to be translated.

out_tbl is the set of characters used in the result string.

in_tbl is the set of characters from the original string
that are to be translated in the result.

There is a one-to-one correspondence between charac-
ters in the two tables. Thus, the first character in the
input table is translated to the first character in the out-
put table and so forth. If out_tbl contains more charac-
ters than in_tbl, out_tbl is truncated to the same length
as in_tbl. If out_tbl contains fewer characters than
in_tbl, out_tbl is padded to the same length as in_tbl.

If out_tbl is omitted, the default is the null string. If
in_tbl is omitted, the default is the range of characters
from `00’x to `ff’x, inclusive. If both out_tbl and
in_tbl are omitted, string is translated to uppercase. If
in_tbl contains duplicate characters, the first occurrence
of a character is used to determine the output.

pad is the character used to pad out_tbl, if necessary.
If pad is omitted, the default is a blank.

Examples:

upper_str = translate(‘Hello’)
/*
* upper_str = ‘HELLO’ ; this is a fully
* portable equivalent to the uni-REXX UPPER
* function, which may not be available in

194 uni-REXX Reference Manual

* other REXX implementations
*/

Chapter 5: Built-In Functions 195

/*
* the following program fragment converts
* a string to lowercase; this is a fully
* portable equivalent to the uni-REXX LOWER
* function, which may not be available in
* other REXX implementations
*/
parse arg string
uppers = ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’
lowers = ‘abcdefghijklmnopqrstuvwxyz’
lstring = translate(string, lowers, uppers)

intab = ‘abcdefgh’
pattern = ‘ef/gh/abcd’
reorder = translate(pattern, ‘19940704’, intab)
/* reorder = ‘07/04/1994’ */

TRUNC The TRUNC function returns the integer portion of a
number and, optionally, a specified number of decimal
places.

TRUNC(number [, n])

number is the numeric value to be truncated.

n is the number of decimal positions in the result.
n must be non-negative. If n is omitted, the default
value is 0.

The result of TRUNC is never expressed in exponential
notation.

Examples:

x = trunc(3.1416) /* x = 3 */

y = trunc(3.1416, 2) /* y = 3.14 */

z = trunc(3.14, 3) /* z = 3.140 */

196 uni-REXX Reference Manual

UPPER The UPPER function converts characters in a string to
uppercase.

UPPER(string)

string is the string of characters to be converted.
string may be upper-, lower-, or mixed case.

Examples:

up = upper(‘abcd’) /* up = ‘ABCD’ */

up = upper (‘Hello world’)
/* up = ‘HELLO WORLD’ */

/*
* the following program fragment insures that
* user input is in uppercase for validation
* while also insuring that “reply” is taken
* from the terminal (STDIN) rather than from
* data that might be on the program stack
*/
say ‘Enter authorization’
reply = upper(linein())
if wordpos(reply, auth_list) \= 0 then

call run_prog
else say ‘Sorry, not authorized’

USERID The USERID function returns the UNIX userid. It is
identical to the CUSERID built-in function.

USERID()

Examples:

say userid()
/*
* displays the userid of the individual
* running the program
*/

Chapter 5: Built-In Functions 197

/*
* the following program fragment changes the
* current working directory to the user’s
* home directory and displays a directory
* list
*/
cd_rc = chdir(‘/home/’userid())
‘ls’

VALUE The VALUE function returns the value of a symbol and,
optionally, assigns a new value to that symbol.

VALUE(name [, [new_value] [, pool]])

name specifies the symbol name for which status is to
be determined. name is, itself, a symbol – that is, nor-
mal conversion to uppercase and substitution of as-
signed values occurs before the SYMBOL function is
evaluated. It is therefore recommended that name be
enclosed in quotes to prevent substitution and ensure
that the status returned is for the symbol intended.

new_value is the new value to be assigned to name.
When VALUE is called with second argument specified,
the function returns the original value of name prior to
the assignment of the new value. Subsequent calls to
VALUE return the new value.

pool identifies the external variable pool to be
searched for name. The names of external variable
pools are implementation-specific. uni-REXX supports
`ENVIRONMENT’ to identify UNIX environment
variables. For purposes of application portability,
uni-REXX recognizes `OS2ENVIRONMENT’ and
`DOSENVIRONMENT’ as aliases for
`ENVIRONMENT’.

Examples:

x = 10
say value(‘x’)
/* the output is “10" */

198 uni-REXX Reference Manual

x = 10
y = ‘x’
say value(y)
/* the output is “10" */

x = 10
say value(x)
/*
* this example results in Error 31, Name
* starts with number or “.”, because the value
* of “x” (10) is substituted before the VALUE
* function is evaluated
*/

x = qqq
qqq = 10
y.10 = ‘hello’
y.x = ‘goodbye’
say value(‘y.x’)
say value(y.x)
say value(‘y.’||x)
/*
* the output is
* goodbye
* GOODBYE
* hello */

/*
* get the current setting of the REXXPATH
* environment variable - possibly
* ‘/usr/local/bin:/home/user1/funcs’
*/
rpath = value(‘REXXPATH’, , ‘ENVIRONMENT’)

/*
* add the current working directory to the
* setting of the REXXPATH environment variable;
* the first argument is ‘REXXPATH’; the second
* argument (new value) is an expression com-
* posed of the value function to retrieve the
* current setting concatenated with the literal
* string ‘:’ concatenated with the qualify
* function to retrieve the current working
* directory; the third argument is the pool
* name ‘ENVIRONMENT’); the comma at the end of
* each line in this example is for continuation
*/
nrp=value(‘REXXPATH’,,

value(‘REXXPATH, , ‘ENVIRONMENT’)’:’,
qualify(), ‘ENVIRONMENT’)

Chapter 5: Built-In Functions 199

VERIFY The VERIFY function verifies whether or not a string is
composed only of characters in a specified character
list.

VERIFY(string, char_list [, [option] [, start]])

string is the string to be verified.

char_list is the list of acceptable characters.

With no additional arguments, the function returns the
character position in string of the first character that is
not present in char_list. If all characters in string are
present in char_list, the function returns 0. If string is
the null string, the function also returns 0.

option controls whether the function verifies the pres-
ence or absence of characters in char_list. option may
be one of the following:

Match the function returns the position of the first
character in string that is present in
char_list

Nomatch the function returns the position of the first
character in string that is not present in
char_list

option may be any string beginning with the character
`M’ or `N’, in any case. If option is omitted, the de-
fault is Nomatch.

start is the character position in string where the verifi-
cation begins. start must be a positive integer. If start
is greater than the length of string, the function returns
0. If start is omitted, the default value is 1.

Examples:

x = verify(‘abc’, ‘abcdefg’) /* x = 0 */

200 uni-REXX Reference Manual

x = verify(abc, ‘abcdefg’)
/*
* x = 1; the value of the symbol abc is “ABC”,
* and none of these characters is in “abcdefg”
*/

/*
* the following program fragment verifies that
* all date values in a file contain only num-
* bers or slash before processing the file
*/
infile = ‘/home/shipping/orders’
bad_data = 0
OK_chars = ‘1234567890/’
do lines(infile)

parse value linein(infile) with order_date .
bad_data = verify(order_date, OK_chars)
end

call lineout infile
if bad_data > 0 then do

say ‘Some orders have invalid dates’
say ‘These must be corrected to proceed’
exit
end
else call run_orders

/*
* the following program fragment verifies that
* employee numbers include a valid department
* designator in position >=6 before proceeding
*/
infile = ‘/home/admin/personnel’
bad_data = 0
dept_letters = ‘RDAFL’
do lines(infile)

parse value linein(infile) with empno .
if verify(empno, dept_letters, ‘M’, 6) = 0

then bad_data = 1
end

call lineout infile
if bad_data then do

say ‘Found some invalid employee numbers’
exit
end
else call do_payroll

Chapter 5: Built-In Functions 201

WORD The WORD function returns a single word from a string
of blank-delimited words.

WORD(string, n)

string is the string of blank-delimited words.

n is the number of the word to be returned. n must be
a positive integer. If n is greater than the number of
words in string, the function returns a null string.

Examples:

x = word(‘Happy New Year’, 2) /* x = ‘New’ */

/*
* the following program fragment determines
* the compiler to use based on user input
*/
say ‘Enter language, program name, and userid’
pull reply /* gets user input in uppercase */
select
when word(reply, 1) = ‘REXX’ then comp = ‘rxc’
when word(reply, 1) = ‘C’ then comp = ‘cc’
otherwise comp = ‘unknown’
end

202 uni-REXX Reference Manual

WORDINDEX The WORDINDEX function returns the character posi-
tion of the start of a specified word in a string of
blank-delimited words.

WORDINDEX(string, n)

string is the string of blank-delimited words.

n is the number of the word to be returned. n must be
a positive integer. If n is greater than the number of
words in string, the function returns 0.

Examples:

x = wordindex(‘Happy New Year’, 2) /* x = 7 */

/*
* the following program fragment uses
* WORDINDEX to set the right position for
* parsing lines of data that are not
* consistently formatted
*/
output = ‘’
line.0 = 3
line.1 = ‘Benjamin Franklin’
line.2 = ‘George Washington’
line.3 = ‘Abe Lincoln’
do i = 1 to lines.0

x = wordindex(line.i, 2) - 1
parse var line.i +(x) last_name
output = output last_name
end

say strip(output)
/*
* the output is “Franklin Washington Lincoln”
*/

Chapter 5: Built-In Functions 203

WORDLENGTH The WORDLENGTH function returns the length of a
specified word in a string of blank-delimited words.

WORDLENGTH(string, n)

string is the string of blank-delimited words.

n is the number of the word for which the length is to
be returned. n must be a positive integer. If n is
greater than the number of words in string, the function
returns 0.

Examples:

x = wordlength(‘Happy New Year’, 2) /* x = 3 */

/*
* the following program fragment uses
* WORDLENGTH to set the right position for
* verifying part numbers
*/
part.0 = 3
part.1 = ‘Mouse 1046’
part.2 = ‘Keyboard 90772’
part.3 = ‘Monitor 806’
do i = 1 to part.0

x = wordlength(part.i, 1) + 2
if verify(part.i, ‘1234567890’, , x) \= 0

then say ‘Bad part number for:’ line.i
end

204 uni-REXX Reference Manual

WORDPOS The WORDPOS function searches a string of blank-
delimited words for the first occurrence of another
string of blank delimited words.

WORDPOS(string1, string2 [, start])

string1 is the search string. string2 is the string to be
searched. Multiple blanks between words in both
string1 and string2 are treated as single blanks for
comparison purposes.

The function returns the word number of the first word
in string2 that matches string1. If string1 is not found
in string2, the function returns 0.

start is the number of the word in string2 where the
search begins. start must be a positive integer. If start
is omitted, the default value is 1.

Examples:

z = wordpos(‘time’, ‘time and time again’)
/* z = 1 */

z = wordpos(time, ‘Time flies’) /* z = 0 */

a = ‘the best of times’
b = ‘It was the best of times’
c = wordpos(a, b) /* c = 3 */

a = ‘the best of times, the worst of times’
b = ‘times’
say wordpos(b, a, 5)
/* the output is “8" */

/*
* the following program fragment uses
* WORDPOS to verify user input
*/
prod_list = ‘uni-REXX uni-XEDIT uni-SPF’
say ‘Name a TWG product’
parse pull answer
if wordpos(answer, proc_list) = 0 then

say “Sorry, that product’s not from TWG”

Chapter 5: Built-In Functions 205

WORDS The WORDS function returns the number of words in a
string of blank-delimited words.

WORDS(string)

string is the string of blank-delimited words.

Examples:

x = words(‘Hip, hip, hooray’) /* x = 3 */

/*
* the following program fragment processes a
* file, discarding all blank lines
*/
file = ‘/home/acctg/report.list’
do lines(file)

line = linein(file)
if words(line) \= 0 then call reports line
end

XRANGE The XRANGE function returns a string of all the valid
character encodings within a range.

XRANGE([start] [, end])

start is the beginning of the range. If start is omitted,
the default value is `00’x.

end is the end of the range. If end is omitted, the de-
fault is `ff’x.

If start is greater than end, then the result will automat-
ically wrap from `ff’x to `00’x.

Examples:

x = xrange(‘m’, ‘r’) /* x = ‘mnopqr’ */

206 uni-REXX Reference Manual

y = xrange(‘fa’x, ‘04’x)
say y
/*
* the output is the character representation
* of the hexadecimal string
* ‘fafbfcfdfeff01020304’x
*/

a = x2c(b2x(‘01100011’))
b = d2c(112)
say xrange(a, b)
/*
* the output is
* cdefghijklmnop
*/

X2B The X2B function converts a string of hexadecimal
characters to a string of binary characters.

X2B(string)

string is a string of hexadecimal characters. It is not a
hexadecimal string – that is, it is not represented in the
form `nnnn‘x.

You may use X2B in combination with other conversion
functions to convert various formats to their equivalent
binary value.

Examples:

x = x2b(‘63’) /* x = ‘01100011’ */

y = x2b(c2x(‘a’)) /* y = ‘01100001’ */

Chapter 5: Built-In Functions 207

X2C The X2C function converts a string of hexadecimal
characters to character format.

X2C(string)

string is a string of hexadecimal characters. It is not a
hexadecimal string – that is, it is not represented in the
form `nnnn‘x. string may contain embedded blanks,
which are ignored, between pairs of characters. If the
length of string is not an even multiple of 2, it is auto-
matically padded with a leading zero before the conver-
sion is performed. If string is null, the function returns
a null string.

Examples:

x = x2c(‘616263’) /* x = ‘abc’ */

say x2c(‘f’)
/*
* the output is the character representation
* of ‘0f’x
*/

z = x2c(d2x(‘112’)) /* z = ‘p’ */

208 uni-REXX Reference Manual

X2D The X2D function converts a string of hexadecimal
characters to its decimal equivalent.

X2D(string [, n])

string is a string of hexadecimal characters. It is not a
hexadecimal string – that is, it is not represented in the
form `nnnn‘x. string may contain embedded blanks,
which are ignored, between pairs of characters. If
string is null, the function returns 0.

n indicates that the string represents a signed number
expressed in n characters. If necessary, string is pad-
ded on the left with zeroes or truncated on the left so
that the length of string is n characters. If n is speci-
fied, the left-most bit determines the sign; if it is zero,
the number is positive; otherwise it is a negative num-
ber in twos complement form. If n is 0, the function
returns 0.

The value returned by X2D is expressed as a whole
number. If it cannot be expressed as a whole number
within the current setting of NUMERIC DIGITS, Error
40, Incorrect call to routine, results.

Examples:

x = x2d(‘76’) /* x = ‘112’) */

y = x2d(b2x(‘01100011’)) /* y = 99 */

z = x2d(b2x(‘01100001’),1) /* z = 1 */

q = x2d(‘f063’, 4) /* q = -3997 */

Chapter 5: Built-In Functions 209

210 uni-REXX Reference Manual

Chapter 6: uni-REXX Extensions

A number of types of language extensions are imple-
mented in uni-REXX:

• built-in functions that allow a program to manage
its environment

• uni-REXX specific functions, to implement system
functions in an operating system independent
manner

• implementations of UNIX-specific functions nor-
mally available only in the C library

• facilities that are available as part of the operating
system in other environments where the REXX lan-
guage is implemented

The first type of built-in functions are documented in
Chapter 5, Built-In Functions. The other types of ex-
tensions are documented in this chapter.

uni-REXX
Specific
Functions

These functions are either specific to uni-REXX, or
were drawn from the OS/2 implementation of the REXX
language. They are intended to implement operating sys-
tem level functionality, in an operating system inde-
pendent manner. The dynamic definition and loading of
user-written commands and functions is supported here.
In addition, creation and control of external command
processes, and other functions to assist in writing
cross-platform rexx programs are defined.

Chapter 6: uni-REXX Extensions 211

RXFUNCADD RXFUNCADD registers a dynamically loaded function name,
making it available to REXX programs. RXFUNCADD returns
0 if the function was registered successfully, 1 if not.

RXFUNCADD(name, module, procedure)

name is the name of the function to be registered.

module is the name of the library where the registered
function may be found. The library name extension (.a,
..so, or .sl) should be omitted from the function argu-
ment. The library must be found in the concatenation
defined by the REXXLOADPATH environment variable.

procedure for compatibility with OS/2 REXX, a dupli-
cate of name.

RXFUNCDROP RXFUNCDROP deregisters a function name, previously
added via RXFUNCADD. The function will no longer
be available to REXX programs. RXFUNCDROP returns
0 if the function was deregistered successfully, 1 if not.

RXFUNCDROP(name)

name is the name of the function to be deregistered.

RXFUNCQUERY RXFUNCQUERY determines whether a function name is
registered. It returns a value of 0 if the function is
available, a value of 1 if it is not.

RXFUNCQUERY(name)

name is the function name which is to be checked.

212 uni-REXX Reference Manual

RXXCOMMANDSPAWN
start an external command process

RXXCOMMANDSPAWN(command)

command is a literal value which represents a command
to be passed to the default external command environ-
ment for execution.

Under UNIX systems, the return value is the process id
of the process created by this command. This process id
may be used by the functions RXXCOMMANDKILL
and RXXCOMMANDWAIT as appropriate.

Returns:

the pid of the process spawned.

RXXCOMMANDKILL
kill a spawned process

RXXCOMMANDKILL(pid)

pid is the process id of the process to be terminated.
The pid may be saved from the RXXCOMMANDSPAWN
function, if the process was created by that function.

RXXCOMMANDWAIT
wait for process completion

RXXCOMMANDWAIT(pid)

pid is the process id of the process to wait on.

Chapter 6: uni-REXX Extensions 213

RXXOSENDOFLINESTRING
return end of line characters

RXXOSENDOFLINESTRING()

For UNIX systems, this will return a carriage return/line
feed sequence.

RXXOSENVIRONMENTSEPARATOR
return environment separator

RXXOSENVIRONMENTSEPARATOR()

RXXOSPATHSEPARATOR
return file path separator

RXXOSPATHSEPARATOR()

RXXSLEEP Sleep the program for a number of seconds

RXXSLEEP(number)

number is the decimal number of seconds to sleep.

214 uni-REXX Reference Manual

RXXFUNCTIONPACKAGELOAD

The RXXFUNCTIONPACKAGELOAD function is used
to load external native binary function packages from
shared libraries (usually written in C) and make them
available within uni-REXX.

RXXFUNCTIONPACKAGELOAD(module [,package])

module is the file name of the shared library function
package to load. The file’s suffix (ie .so) is optional.
If not specified, uni-REXX will append the correct suf-
fix type for the current platform. Since the suffix for
shared library modules varies among different UNIX
platforms, it’s recommended that the suffix not be spec-
ified to enhance portability (see below).

package is the name of the function package table. If
not specified the default is “irxpackt.” In the C mod-
ule, this function package table points to one or more
function packages which in turn point to the functions
themselves.

Returns:

0 if successful, non-0 otherwise.

Example:

if 0 /= rxxfunctionpackageload(“funcpackage”,,
“FunctionPackageTable”) then

do
say “Error — could not load function package.”
exit 1

end
call function1 /* call the loaded function */

Chapter 6: uni-REXX Extensions 215

Comments:

Loaded function packages are available globally. They
are accessible to any subroutine. They are also remain
available across API invocations of uni-REXX with
irxexec(), irxjcl() and RexxStart().

The environment variable REXXLOADPATH should be
used to point to the paths where the shared library func-
tion packages(s) reside. Various platforms have there
own environment variable used to locate shared libraries
(LD_LIBRARY_PATH etc), but it is recommended that
you use REXXLOADPATH since it is platform inde-
pendent.

Unfortunately, the steps required to build a shared li-
brary differ from platform to platform. Here are a few
suggestions, but be sure to consult your system docu-
mentation since the exact option flags used are known
to change between releases.

#
For Solaris shared libraries are ‘.so’ files:
#
cc -KPIC -c funcpackage.c
ld -o funcpackage.so -G funcpackage.o

#
For AIX shared libraries are ‘.a’ files:
#
cc -c funcpackage.c
ld -bM:SRE -bnoentry -bE:funcpackage.exp
funcpackage.o -o funcpackage.a

#
For HP-UX shared libraries are ‘.sl’ files:
#
cc +z -c funcpackage.c
ld -b -bnoentry funcpackage.o -o funcpackage.sl

In the native C code, the function package table is de-
clared as FPCKDIR *[], while the function packages are
declared as FPCKDIR[]. The functions themselves ac-
cept an ARGLIST and an EVALBLOCK as parameters.
For example here are two function packages pointed to
by a function package table:

216 uni-REXX Reference Manual

/*
* FunctionPackageTable +—> FunctionPackage1 +—> Function1
* | |
* | +—> Function2
* | |
* | +—> Function3
* |
* |
* +—> FunctionPackage2 +—> FunctionA
* |
* +—> FunctionB
* |
* +—> FunctionC
*/
static int Function1(ARGLIST *arglist,

EVALBLOCK *evalblock)
{
...
/* function body */
...
}
...
/* Function2, Function3, FunctionA, FunctionB,
FunctionC */
...
FPCKDIR FunctionPackage1[] =
{
Function1,
Function2,
Function3
NULL
};

FPCKDIR FunctionPackage2[] =
{
FunctionA,
FunctionB,
FunctionC
NULL
};

FPCKDIR *FunctionPackageTable[] =
{
FunctionPackage1,
FunctionPackage2
NULL
};

/* end of code */

Under AIX, the package name must be exported from
the shared library.

Chapter 6: uni-REXX Extensions 217

RXXCOMMANDPACKAGELOAD

The function RXXCOMMANDPACKAGELOAD is used
to load external native binary command packages from
shared libraries (usually written in C) and make them
available within uni-REXX.

RXXCOMMANDPACKAGELOAD(module [,package])

module is the file name of the shared library command
package to load. The file’s suffix (ie .so) is optional.
If not specified, uni-REXX will append the correct suf-
fix type for the current platform. Since the suffix for
shared library modules varies among different UNIX
platforms, it’s recommended that the suffix not be spec-
ified to enhance portability (see below).

package is the name of the command package. If not
specified the default is “irxpackt.” In the C module,
this command package points to the commands them-
selves.

Returns:

0 if successful, non-0 otherwise.

Example:

if 0 <> rxxcommandpackageload(“cmdpackage”, ,

“CommandPackageTable”) then
do
say “Error — could not load command package.”
exit 1
end

address command “command1" /* run the loaded
command */

218 uni-REXX Reference Manual

Comments:

Unlike normal commands that are executed from the
command shell or through the “ADDRESS UNIX ...” in-
struction, command packages can only be executed from
the uni-REXX “ADDRESS COMMAND ..." instruction.

Commands loaded from command packages execute
more quickly than normal commands since they are not
run in a separate process or shell. In fact, command
packages were first incorporated into uni-REXX to pro-
vide faster EXECIO and GLOBALV commands.

Loaded command packages are available globally. They
are accessible to any subroutine. They are also remain
available across API invocations of uni-REXX with
irxexec(), irxjcl() and RexxStart().

The environment variable REXXLOADPATH should be
used to point to the paths where the shared library com-
mand packages(s) reside. Various platforms have there
own environment variable used to locate shared libraries
(LD_LIBRARY_PATH etc), but we recommend that you
use REXXLOADPATH since it is platform independent.

Unfortunately, the steps required to build a shared li-
brary differ from platform to platform. Here are a few
suggestions, but be sure to consult your system docu-
mentation since the exact option flags used are known
to change between releases.

#
For Solaris shared libraries are ‘.so’ files:
#
cc -KPIC -c cmdpackage.c
ld -o cmdpackage.so -G cmdpackage.o
#
For AIX shared libraries are ‘.a’ files:
#
cc -c cmdpackage.c
ld -bM:SRE -bnoentry -bE:cmdpackage.exp
cmdpackage.o -o cmdpackage.a
#
For HP-UX shared libraries are ‘.sl’ files:
#
cc +z -c cmdpackage.c
ld -b -bnoentry cmdpackage.o -o cmdpackage.sl

Chapter 6: uni-REXX Extensions 219

In the native C code, the command package is declared
as CPCKDIR[]. The commands themselves accept an
int and a char** as parameters (just like a main pro-
gram). For examplehere’s a command package:

/*
* CommandPackage +—> Command1
* |
* +—> Command2
* |
* +—> Command3
*/

static int Command1(int argc,
char **argv)

{

...

/* command body */

...

}

...

/* Command2, Command3 */

...

CPCKDIR CommandPackage[] =
{
Command1,
Command2,
Command3
NULL
};

/* end of code */

As noted above, the commands have the same calling
sequence as a “main()” program. This makes convert-
ing standalone commands into command packages easy.

220 uni-REXX Reference Manual

Note that commands in command packages don’t have
their static variables re-initialized between invocations.
It’s necessary to perform all required initializations in
executable code and not in declaration initializers. For
example:

static int x = 0; /* Is not initialized */
/* on each entry. */

static int x; /* Initializer not needed */
...
x = 0; /* Initialize at start-up */

Under AIX, the package name must be exported from
the shared library.

Chapter 6: uni-REXX Extensions 221

UNIX-Specific
Functions

The UNIX-specific functions of uni-REXX provide a
rich set of facilities for interaction with the operating
system environment, both on a local host and across a
network. They include functions for

• process management
• configuration management
• file and directory management
• system error processing
• regular expression processing
• interprocess communication

All UNIX-specific function names begin with the under-
score character (_). Like the built-in functions, the syn-
tax diagrams show the function name in uppercase;
however, the name may appear in a program in any
case.

The following table lists the UNIX-specific functions by
category. Subsequent sections document the functions
in alphabetical order.

Process Management

_EXIT
_FORK
_GETPID
_GETPPID
_KILL
_SETSID *

_SLEEP
_WAIT
_WAITPID *

Configuration Management

_GETEUID
_GETHOSTBYADDR
_GETHOSTBYNAME
_GETHOSTID *

222 uni-REXX Reference Manual

*
Not available in all UNIX implementations

_GETHOSTNAME
_GETSERVBYNAME
_GETUID
_SYSTEMDIR

File and Directory Management

_CLOSEDIR
_IOCTL
_OPENDIR
_READDIR
_STAT
_TRUNCATE
_UMASK

System Error Processing

_ERRNO
_SYS_ERRLIST

Regular Expression Processing

_REGEX

Interprocess Communications

_ACCEPT
_BIND
_CLOSESOCKET
_CONNECT
_FD_CLR
_FD_ISSET
_FD_SET
_FD_ZERO
_GETHOSTBYADDR
_GETHOSTBYNAME
_GETHOSTNAME
_GETPEERNAME
_GETSERVBYNAME
_GETSOCKNAME
_GETSOCKOPT
_LISTEN

Chapter 6: uni-REXX Extensions 223

_RECV
_SELECT
_SEND
_SETSOCKOPT
_SOCKET

The documentation of these functions makes reference
to both Internet domain and UNIX domain sockets.
Some UNIX implementations do not support UNIX do-
main sockets. Refer to your operating system man page
for “socket” to determine which domain types are sup-
ported on your system.

Unless noted otherwise, these functions return a nega-
tive value and set the appropriate system error number
when an error occurs. The system error number and its
associated text can be retrieved with the _ERRNO and
_SYS_ERRLIST functions, respectively.

224 uni-REXX Reference Manual

_ACCEPT The _ACCEPT function accepts a connection on a
socket. It provides the same service as the accept(2)
system call.

_ACCEPT(sockhandle, [sockaddr] [, addrlen]])

sockhandle is the handle of a socket that has been cre-
ated with the _SOCKET function, has been bound to an
address with the _BIND function, and is listening for
connections by means of the _LISTEN function.

sockaddr is a stem that receives address information
about the current connection when _ACCEPT is exe-
cuted. When the function returns, one or more of the
following compound variables is set:

sockaddr.SA_FAMILY
the type of socket; it is one of the following:

“AF_INET” if the connection is from an
Internet domain socket

“AF_UNIX” if the connection is from a
UNIX domain socket

sockaddr.SIN_ADDR
the binary Internet address of the socket; set only
if sockaddr.SA_FAMILY is “AF_INET”

sockaddr.SIN_PORT
the numeric Internet port; set only if
sockaddr.SA_FAMILY is “AF_INET”

sockaddr.SUN_PATH
the path name of the socket; set only if
sockaddr.SA_FAMILY is “AF_UNIX”; on some
UNIX implementations, this value may not be set

If sockaddr is omitted, the information returned by
_ACCEPT is discarded.

Chapter 6: uni-REXX Extensions 225

addrlen is the name of a variable that receives the
length of the socket address. If addrlen is omitted, the
value is discarded.

_ACCEPT extracts the first pending connection from the
queue. It creates a new socket with the same properties
as sockhandle and assigns a new file descriptor to that
socket. This new socket is used to read and write data
from the connecting socket; it does not accept new con-
nections. The socket identified by sockhandle con-
tinues to accept connections and create new sockets for
each new connection.

The function is typically invoked as

var = _accept(sockhandle)

var contains the file descriptor associated with the
newly created socket.

Examples:

/*
* the following program fragment illustrates
* the use of the _accept function; for simpli-
* city of illustration, it does not include
* the error checking that would normally be
* present in a robust program
*/
s1 = _socket(‘AF_INET’, ‘SOCK_STREAM’)
net.sa_family = ‘AF_INET’
net.sin_port = 11111
bindrc = _bind(s1, ‘net.’)
listenrc = _listen(s1)
do forever
/*
* accept the next pending connection; the new
* socket created for read/write purposes is
* “s2"
*/
s2 = _accept(s1)
:
:
closerc = _closesocket(s2)
end

crc = _closesocket(s1)

226 uni-REXX Reference Manual

_BIND The _BIND function binds a name to a socket. It pro-
vides the same service as the bind(2) system call.

_BIND(sockhandle, sockaddr)

sockhandle is the handle of a socket that has been cre-
ated with the _SOCKET function.

sockaddr is the name of a stem used for socket address
data. The following compound variables should be set
as indicated before the _BIND function is invoked:

sockaddr.SA_FAMILY
the type of socket; it may be a literal string or an
expression that evaluates to a literal string; the
only permitted values are

“AF_INET” if the socket is an Internet
domain socket

“AF_UNIX” if the socket is a UNIX domain
socket

This value may be specified in any case. It must
match the first argument used in the _SOCKET
function call that created this socket.

sockaddr.SIN_ADDR
the binary Internet address; this variable must be
set for Internet domain sockets; it must be a valid
Internet address or “INADDR_ANY” ; typically, it
is the value returned by the _GETHOSTBYNAME
function in the variable hostentry.H_ADDR

sockaddr.SIN_PORT
the numeric Internet port; this variable must be set
for Internet domain sockets; it may be a literal
string or an expression that evaluates to a valid
port number, such as the value returned by the
_GETSERVBYNAME function in the variable
serverentry.S_PORT

Chapter 6: uni-REXX Extensions 227

sockaddr.SUN_PATH
the path name of the socket; this variable must be
set for UNIX domain sockets; it may be a literal
string or an expression that evaluates to a valid
path name

Examples:

/*
* the following program fragment illustrates
* the use of the _bind function; for simpli-
* city of illustration, it does not include
* all of the error checking that would normal-
* ly be present in a robust program nor does
* it include the processing that normally
* follows a bind
*/
domain = ‘AF_INET’
s1 = _socket(domain, ‘SOCK_STREAM’)
net.sa_family = domain
net.sin_port = 11111
bindrc = _bind(s1, ‘net.’)
if bindrc < 0 then call error1

228 uni-REXX Reference Manual

_CLOSEDIR The _CLOSEDIR function closes an open directory
descriptor. It provides the same service as the
closedir(3) library function.

_CLOSEDIR(dirhandle)

dirhandle is the handle returned by a previous call to
_OPENDIR.

Examples:

/*
* the following program fragment illustrates
* the use of _opendir, _readdir, and _closedir
* to obtain directory information; it prints
* the first 5 directory entries
*/
dir = _opendir(‘/home/user1’)
if dir \= 0 then do 5

line = _readdir(dir)
say line
end

call _closedir dir

_CLOSESOCKET
The _CLOSESOCKET function deletes a socket
descriptor.

_CLOSESOCKET(sockhandle)

sockhandle is the handle of a socket that has been cre-
ated with the _SOCKET function or the _ACCEPT
function.

Chapter 6: uni-REXX Extensions 229

Examples:

/*
* the following program fragment illustrates
* the use of the _closesocket function; for
* simplicity of illustration, it does not
* include the error checking that would
* normally be present in a robust program
*/
s1 = _socket(‘AF_INET’, ‘SOCK_STREAM’)
net.sa_family = ‘AF_INET’
net.sin_port = 11111
bindrc = _bind(s1, ‘net.’)
listenrc = _listen(s1)
do forever
/*
* accept the next pending connection; the new
* socket created for read/write purposes is
* “s2"
*/
s2 = _accept(s1)
:
:
closerc = _closesocket(s2)
end

crc = _closesocket(s1)

_CONNECT The _CONNECT function initiates a connection on a
socket. It provides the same service as the connect(2)
system call.

_CONNECT(sockhandle, sockaddr)

sockhandle is the name of a socket that has been cre-
ated with the _SOCKET function.

sockaddr is the name of a stem used for socket address
data for the socket to which you wish to connect. The
following compound variables should be set as indicated
before the _CONNECT function is invoked:

230 uni-REXX Reference Manual

sockaddr.SA_FAMILY
the type of socket; it may be a literal string or an
expression that evaluates to a literal string; the
only permitted values are

“AF_INET” if the socket is an Internet
domain socket

“AF_UNIX” if the socket is a UNIX domain
socket

This value may be specified in any case. It must
match the first argument used in the _SOCKET
function call that created this socket.

sockaddr.SIN_ADDR
the binary Internet address; this variable must be
set for Internet domain sockets; it must be a valid
Internet address or “INADDR_ANY” ; typically, it
is the value returned by _GETHOSTBYNAME
function in the variable hostentry.H_ADDR

sockaddr.SIN_PORT
the numeric Internet port; this variable must be set
for Internet domain sockets; it may be a literal
string or an expression that evaluates to a valid
port number, such as the value returned by
_GETSERVBYNAME function in the variable
serverentry.S_PORT

sockaddr.SUN_PATH
the path name of the socket; this variable must be
set for UNIX domain sockets; it may be a literal
string or an expression that evaluates to a valid
path name

Chapter 6: uni-REXX Extensions 231

Examples:

/*
* the following program fragment illustrates
* the use of the _connect function; for
* simplicity of illustration, it does not
* include all of the error checking that
* would normally be present in a robust
* program
*/
net.sa_family = domain
net.sin_port = 11111
net.sin_addr = ‘INADDR_ANY’
socket1 = _socket(“AF_INET”, “SOCK_STREAM”)
crc = _connect(socket1, ‘net.’)

_ERRNO The _ERRNO function returns the UNIX error number
from the last invocation of a UNIX-specific function. It
is equivalent to the _errno external system variable.

_ERRNO()

The value returned by _ERRNO can be used as an in-
dex into the table of system error messages to retrieve
the text associated with this error number.

Examples:

s1 = _socket(‘AF_INET’, ‘SOCK_STREAM’)
if s1 < 0 then
say ‘Error’ _errno()’:’ _sys_errlist(_errno())

/*
* if the socket creation fails, the system
* error number and its associated message is
* displayed
*/

232 uni-REXX Reference Manual

_EXIT The _EXIT function causes the current process to termi-
nate with the specified status code. It provides the
same service as the exit(2) system call.

_EXIT(status)

status is the value to be returned from the process that
is being terminated.

Examples:

/* the following program fragment illustrates
* using _exit in an error trapping routine to
* terminate the entire process if an error
* occurs
*/
frc = _fork()
if frc < 0 then call error1 ‘fork’
s1 = _socket(‘AF_INET’, ‘SOCK_STREAM’)
if s1 < 0 then call error1 ‘socket’
:
:

exit
error1:
say arg(1) ‘error’ _errno()’:’
say _sys_errlist(_errno())
call _exit(4)

_FD_CLR The _FD_CLR function returns a _SELECT mask with
the handle’s bit turned off.

_FD_CLR(handle, mask)

handle is the file handle used with this mask.

mask is the mask to be modified. It must have been
previously created using the _FD_ZERO function.

Chapter 6: uni-REXX Extensions 233

_FD_ISSET The _FD_ISSET function determines whether the han-
dle’s bit is turned on in a specified _SELECT mask.

_FD_ISSET(handle, mask)

handle is the file handle used with this mask.

mask is the mask to be tested. It must have been pre-
viously created using the _FD_ZERO function and may
have been modified using either the _FD_CLR or
_FD_SET function.

_FD_SET The _FD_SET function returns a mask with the handle’s
bit turned on.

_FD_SET(handle, mask)

handle is the file handle used with this mask.

mask is the mask to be modified. It must have been
previously created using the _FD_ZERO function.

_FD_ZERO The _FD_ZERO function creates an empty or zero-filled
mask for use with the _SELECT function.

_FD_ZERO()

_FORK The _FORK function creates a new process. It provides
the same service as the fork(2) system call.

_FORK()

The new process (child) is identical to the calling pro-
cess (parent) with the following exceptions:

• the child process has a unique process id
• the child process has a unique parent process id

(the process id of the calling process)

234 uni-REXX Reference Manual

• the child process has its own copy of the parent’s
descriptors

Examples:

/*
* the following program fragment illustrates
* the use of _fork to spawn a new process
*/
frc = _fork()
if frc < 0 then call error1
if frc \= 0 then do

say ‘Child process started: PID =’ frc
exit
end

_GETEUID The _GETEUID function returns the effective userid of
the current process. It provides the same service as the
geteuid(2) system call.

_GETEUID()

The effective userid may not be the userid under which
the user who started the process logged in. If the user
has executed an “su” command, the effective userid re-
sults from execution of that “su” command. The user’s
real userid remains the login id. Use the _GETUID
function to retrieve the real userid.

The function returns the user’s numerical id. On some
systems, this is the value of the third field in the
/etc/passwd file.

Examples:

say _geteuid()
/* for a user logged in as “user1" whose
* numeric id is “1010", if no UNIX
* commands are executed before running this
* program, the output is “1010"; if user1
* first types “su root” and gives the proper
* password so that he is now effectively
* superuser, the output is “0"
*/

Chapter 6: uni-REXX Extensions 235

_GETHOSTBYADDR
The _GETHOSTBYADDR function retrieves information
about the specified host. It provides the same service as
the gethostbyaddr(3) network function.

_GETHOSTBYADDR(hostaddr, type, hostentry)

hostaddr is the binary host address string.

type is either AF_INET or AF_UNIX.

hostentry is a stem that receives the data from the net-
work host database. When the function returns, the fol-
lowing compound variables are set

hostentry.H_NAME
the official name of the host

hostentry.H_ALIASES
a list of aliases for this host name

hostentry.H_ADDRTYPE
the type of address being returned

hostentry.H_LENGTH
the length, in bytes, of the address

hostentry.H_ADDR
the address of the host

_GETHOSTBYNAME
The _GETHOSTBYNAME function retrieves information
about the specified host. It provides the same service as
the gethostbyname(3) network function.

_GETHOSTBYNAME(name, hostentry)

name is the hostname for which the host entry informa-
tion is sought. name may be a literal string or an ex-
pression that evaluates to a valid hostname on the
network.

236 uni-REXX Reference Manual

hostentry is a stem that receives the data from the net-
work host database. When the function returns, the fol-
lowing compound variables are set

hostentry.H_NAME
the official name of the host

hostentry.H_ALIASES
a list of aliases for this host name

hostentry.H_ADDRTYPE
the type of address being returned; this is always
“AF_INET”

hostentry.H_LENGTH
the length, in bytes, of the address

hostentry.H_ADDR
the address of the host

The _GETHOSTBYNAME function may be used to ob-
tain address information required by the _CONNECT
function.

Examples:

/*
* the following program fragment illustrates
* the use of _gethostbyname to retrieve
* data in preparation for invoking a _connect
* function
*/
call _gethostbyname(‘pluto’, ‘chost.’)
net.sa_family = chost.h_addrtype
net.sin_addr = chost.h_addr
net.sin_port = 11111
s = _socket(‘AF_INET’, ‘SOCK_STREAM’)
crc = _connect(s, ‘net.’)

Chapter 6: uni-REXX Extensions 237

/*
* the following program fragment modifies the
* previous example to run on the current host;
* it uses the _gethostname function to
* retrieve the name of the current host
*/
call _gethostbyname(_gethostname(), ‘chost.’)
net.sa_family = chost.h_addrtype
net.sin_addr = chost.h_addr
net.sin_port = 11111
s = _socket(‘AF_INET’, ‘SOCK_STREAM’)
crc = _connect(s, ‘net.’)

_GETHOSTID The _GETHOSTID function retrieves a unique identifier
for the current host. It provides the same service as the
gethostid(2) system call.

_GETHOSTID()

The function returns a 32-bit identifier for the current
host in a binary string. This identifier should be unique
for each host.

Some UNIX implementations do not support
gethostid(2). On these systems, the _GETHOSTID
function is unavailable. Check your operating system
man pages to determine if it is supported on your sys-
tem.

Examples:

say d2x(_gethostid())
/*
* the output is, possibly, “57123379"
*/

_GETHOSTNAME
The _GETHOSTNAME function retrieves the name of the
current host. It provides the same service as the
gethostname(2) system call.

_GETHOSTNAME()

238 uni-REXX Reference Manual

Examples:

say _gethostname()
/*
* if this program is executed on a host named
* ‘pluto’, the output is “pluto”
*/

/*
* the following program fragment illustrates
* the use of _gethostbyname to retrieve
* data in preparation for invoking a _connect
* function; since this program will be run on
* the current host, _gethostname is used to
* provide the host name in the _gethostbyname
* call
*/
call _gethostbyname(_gethostname(), ‘chost.’)
net.sa_family = chost.h_addrtype
net.sin_addr = chost.h_addr
net.sin_port = 11111
s = _socket(‘AF_INET’, ‘SOCK_STREAM’)
crc = _connect(s, ‘net.’)

_GETPEERNAME
The _GETPEERNAME function returns the name of the
peer connected to a specified socket. It provides the same
services as the getpeername(2) system call.

_GETPEERNAME(sockhandle, sockaddr)

sockhandle is the handle of a socket that has been cre-
ated with the _SOCKET function.

sockaddr is a stem that receives address information
about the current connection when _GETPEERNAME is
executed. (This is the same information returned in the
sockaddr stem on a call to _ACCEPT.) When the
function returns, one or more of the following com-
pound variables is set:

Chapter 6: uni-REXX Extensions 239

sockaddr.SA_FAMILY
the type of socket; it is one of the following:

“AF_INET” if the connection is from an
Internet domain socket

“AF_UNIX” if the connection is from a
UNIX domain socket

sockaddr.SIN_ADDR
the binary Internet address of the socket; set only
if sockaddr.SA_FAMILY is “AF_INET”

sockaddr.SIN_PORT
the numeric Internet port; set only if
sockaddr.SA_FAMILY is “AF_INET”

sockaddr.SUN_PATH
the path name of the socket; set only if
sockaddr.SA_FAMILY is “AF_UNIX”; on some
UNIX implementations, this value may not be set

_GETPID The _GETPID function returns the process id for the
current process. It provides the same service as the
getpid(2) system call.

_GETPID()

Examples:

say _getpid()
/* the output is, possibly, ‘11914’ */

/*
* the following program fragment retrieves the
* process id to create a unique filename for
* a temporary file used by the program
*/
temp_file = ‘/tmp/mprog.’_getpid()
do i = 1 to list.0

call lineout temp_file, list.i
end

call lineout temp_file

240 uni-REXX Reference Manual

_GETPPID The _GETPPID function returns the process id of the
current process’s parent. It provides the same service
as the getppid(2) system call.

_GETPPID()

Examples:

say _getppid()
/* the output is, possibly, ‘10853’ */

/*
* the following program fragment retrieves the
* parent process id to create a unique file-
* name for a temporary file used by the
* program
*/
temp_file = ‘/tmp/mprog.’_getppid()
do i = 1 to list.0

call lineout temp_file, list.i
end

call lineout temp_file

_GETSERVBYNAME
The _GETSERVBYNAME function returns information
about the specified network service. It provides the same
service as the getservbyname(3) network function.

_GETSERVBYNAME(name, proto, serventry)

name is the network service for which data is to be re-
trieved. name must be a valid service name found in
the network services database, /etc/services. name may
be a literal string or an expression that evaluates to a
valid service name.

proto is the name of the protocol for this network
service.

serventry is a stem that receives the data from the net-
work services database. When the function returns, the
following compound variables are set:

Chapter 6: uni-REXX Extensions 241

serventry.S_NAME
the official name of the service

serventry.S_ALIASES
a list of aliases for this service name

serventry.S_PORT
the port number at which the service resides

serventry.S_PROTO
the protocol to use when contacting the service

Examples:

/*
* the following program fragment illustrates
* the use of _getservbyname to get the port
* number for a service to which you wish to
* connect
*/
call _getservbyname(‘myserv’, ‘tcp’, ‘cserv.’)
net.sa_family = chost.h_addrtype
net.sin_addr = chost.h_addr
net.sin_port = cserv.s_port
socket = _socket(‘AF_INET’, ‘SOCK_STREAM’)
connect_rc = _connect(socket, ‘net.’)

_GETSOCKNAME
The _GETSOCKNAME function returns the name of the
specified socket. It provides the same service as the
getsockname(2) system call.

_GETSOCKNAME(sockhandle, sockaddr)

sockhandle is the handle of a socket that has been cre-
ated with the _SOCKET function.

sockaddr is a stem that receives address information
about the current connection when _GETSOCKNAME is
executed. (This is the same information returned in the
sockaddr stem on a call to _ACCEPT.) When the

242 uni-REXX Reference Manual

function returns, one or more of the following com-
pound variables is set:

sockaddr.SA_FAMILY
the type of socket; it is one of the following:

“AF_INET” if the connection is from an
Internet domain socket

“AF_UNIX” if the connection is from a
UNIX domain socket

sockaddr.SIN_ADDR
the binary Internet address of the socket; set only
if sockaddr.SA_FAMILY is “AF_INET”

sockaddr.SIN_PORT
the numeric Internet port; set only if
sockaddr.SA_FAMILY is “AF_INET”

sockaddr.SUN_PATH
the path name of the socket; set only if
sockaddr.SA_FAMILY is “AF_UNIX”; on some
UNIX implementations, this value may not be set

_GETSOCKOPT
The _GETSOCKOPT function is used to determine the
current options set for a specified socket. It provides the
same service as the getsockopt(2) system call.

_GETSOCKOPT(sockhandle, level, option, opt_value)

sockhandle is the handle of a socket that has been cre-
ated with the _SOCKET function.

level is the level of the option to be queried. Cur-
rently, only SOL_SOCKET is supported.

option is the name of the socket option for which the
current setting is to be returned. It may be any of the
following:

Chapter 6: uni-REXX Extensions 243

SO_ACCEPTCONN SO_RCVLOWAT

SO_BROADCAST SO_RCVTIMEO

SO_DEBUG SO_REUSEADDR

SO_DONTROUTE SO_SNDBUF

SO_ERROR SO_SNDLOWAT

SO_KEEPALIVE SO_SNDTIMEO

SO_LINGER SO_TYPE

SO_OOBINLINE SO_USELOOPBACK

SO_RCVBUF

opt_value is the name of a variable that receives the
current option setting. If option is specified as
“SO_LINGER”, then opt_value must be a stem and the
element returned is either opt_value.L_ONOFF or
opt_value.L_LINGER. For all other options, the value
returned is 1 if the option is enabled or 0 if the option
is disabled.

_GETUID The _GETUID function returns the real userid of the
current process. It provides the same service as the
getuid(2) system call.

_GETUID()

The real userid is the userid under which the user who
started the process logged in, regardless of any “su”
command(s) that may have been executed. Use the
_GETEUID function to retrieve the effective userid.

The function returns the user’s numerical id. On some
systems, this is the value of the third field in the
/etc/passwd file.

244 uni-REXX Reference Manual

Examples:

say _getuid()
/*
* for a user logged in as “user1" whose
* numeric id is “1010"
*/

_IOCTL The _IOCTL function performs one of a set of special
functions on the specified file descriptor. It provides
the same service as the ioctl(2) system call.

_IOCTL(file_handle, request, argument)

file_handle is the handle or file descriptor on which the
operation is to be performed

request is the special function to be performed. It may
be any one of the following:

FIOCLEX

FIONBIO

FIONCLEX

argument is a numeric argument for the request.

Chapter 6: uni-REXX Extensions 245

_KILL The _KILL function terminates a process. It provides
the same service as the kill(2) system call.

_KILL(pid, signal)

pid is the process id of the process to be terminated.
pid must be a positive whole number and must be the
process id of a currently executing process.

signal is the signal to be sent. signal must be a posi-
tive whole number that is a valid signal on the system
where it is executed.

Unless the real or effective userid of the process exe-
cuting _KILL is superuser, the real or effective userid
of the process executing _KILL must be the same as the
real or effective userid of the process to be terminated.
The _GETUID and _GETEUID functions, respectively,
provide access to the real and effective userids.

Examples:

/*
* the following program, named “clobber”,
* kills all processes in the argument list
*/
parse arg who_to_kill
do while who_to_kill \= ‘’
parse var who_to_kill next who_to_kill
if \datatype(next, ‘W’) then call error1 next
kill_rc = _kill(next, 9)
if kill_rc < 0 then call error2 next
end

exit
error1:
parse arg proc_id
say ‘Invalid process id:’ proc_id
return
error2:
parse arg proc_id
say ‘Error killing process:’ proc_id
say ‘System error:’ _errno()
say _sys_errlist(_errno())
say ‘’
say ‘Process not killed’
return

246 uni-REXX Reference Manual

_LISTEN The _LISTEN function listens for connections on a
socket. It provides the same service as the listen(2)
system call.

_LISTEN(sockhandle, [limit])

sockhandle is the handle of a socket that has been cre-
ated with the _SOCKET function and has been bound to
an address with the _BIND function. The _LISTEN
function is used only with sockets of type
SOCK_STREAM.

limit specifies the maximum number of pending connec-
tions that this socket will accept. limit must be a posi-
tive whole number. If a connection request would
cause the number of pending connections to exceed the
value specified by limit, the client program attempting
the connection receives an error return from the
_CONNECT function. If limit is omitted, the default
value is 5.

Examples:

/*
* the following program fragment illustrates
* the use of the _listen function; for simpli-
* city of illustration, it does not include
* the error checking that would normally be
* present in a robust program
*/
domain = ‘AF_INET’
server = ‘myservice’
call _getservbyname(server, ‘sdata.’)
a = _socket(domain, ‘SOCK_STREAM’)
net.sa_family = domain
net.sin_port = sdata.s_port
brc = _bind(a, ‘net.’)
lrc = _listen(a)

Chapter 6: uni-REXX Extensions 247

_OPENDIR The _OPENDIR function opens a directory. It provides
the same service as the opendir(3) library function.

_OPENDIR(directory_name)

directory_name is the name of the directory to be
opened. It may be a single directory name if the direc-
tory is a sub-directory of the current working directory;
or it may be a full directory path name. It may also be
specified as “.” to refer to the current working direc-
tory. Since a shell is not invoked to process this func-
tion, directory_name may not include references to en-
vironment variables (such as $HOME) or shell-specific
shorthand (such as “~”) as these notations are expanded
only by a shell. If directory_name does not exist, is
not a directory, or does not have read permission for
the real or effective userid of the process executing the
_OPENDIR, the function returns 0.

The function is typically invoked as

var = _opendir(directory_name)

var contains the file descriptor associated with the
opened directory.

Examples:

/*
* the following program fragment illustrates
* the use of _opendir, _readdir, and _closedir
* to obtain directory information; it prints
* the first 5 directory entries
*/
dir = _opendir(‘/home/user1’)
if dir \= 0 then do 5

line = _readdir(dir)
say line
end

call _closedir dir

248 uni-REXX Reference Manual

_READDIR The _READDIR function reads the next directory entry.
It provides the same service as the readdir(3) library
function.

_READDIR(dirhandle)

dirhandle is the handle returned by a previous call to
_OPENDIR.

If a read error occurs or if there are no more directory
entries, _OPENDIR returns a null string.

Examples:

/*
* the following program fragment illustrates
* the use of _opendir, _readdir, and _closedir
* to obtain directory information; it prints
* the first 5 directory entries
*/
dir = _opendir(‘/home/user1’)
if dir \= 0 then do 5

line = _readdir(dir)
say line
end

call _closedir dir

_RECV The _RECV function receives a message from a socket.
It provides the same services as the recv(2) system call.

_RECV(sockhandle, buffer, length [, flagnames])

sockhandle is the handle of a socket that has been cre-
ated as a result of the_SOCKET or the _ACCEPT
function.

buffer is the name of a variable that will contain the
message when the function is executed.

length specifies the amount of data to be read. length
must be a positive whole number.

Chapter 6: uni-REXX Extensions 249

flagnames specify alternative behavior of the _RECV
function. flagnames may be a literal string or an ex-
pression which evaluates to one of the following:

MSG_OOB
read “out-of-band” data rather than the normal
“in-band” data

MSG_PEEK
preview the data; the data is read but is not re-
moved from the socket; a subsequent call to
_RECV without the “MSG_PEEK” flag reads the
same message again

If flagnames is omitted, _RECV reads length data from
the socket.

If the socket is blocking, then if no data is available on
the socket, _RECV waits for a message to arrive. If
the socket is non-blocking, then if no data is available,
_RECV returns a value less than 0.

Examples:

/*
* the following program fragment illustrates
* two ways to use _recv; the first call simply
* previews the first 4 bytes of data, which
* contain the length of the message; the
* second call actually reads all the data
*/
recvbuf: procedure
parse arg socket
/*
* get the first 4 bytes of data (which tell
* us how long the data is) into the variable
* “len”; do not remove data from the socket
*/
recvrc = _recv(socket, ‘len’, 4, ‘MSG_PEEK’)
/*
* get “len” bytes of data from the socket and
* store it in the variable ‘buf’; this call
* actually removes “len” bytes from the
* socket
*/
recvrc = _recv(socket, ‘buf’, len)

250 uni-REXX Reference Manual

_REGEX The _REGEX function compares a regular expression
pattern to a string.

_REGEX(pattern, string)

pattern is the regular expression to be matched. string
is the string to be compared to the regular expression.

_REGEX returns 1 if the pattern matches the string and
0 if there is no match.

Examples:

/* the following program compares a file
pattern to all directory entries to find
all file names that match the pattern; it
searches for all files of the form
“???.rex” - 3-character filename with the
“.rex” extension */

file = ‘???.rex’
filerg = file2reg(file) /* convert to reg exp */
dir = _opendir(‘.’) /* open directory */
do while entry \= ‘’ /* for each dir entry */

entry = _readdir(dir)
if _regex(filerg, entry) then

say entry
end

call _closedir(dir) /* close directory */
exit
/* convert filename to regular expression */
file2reg: procedure
parse arg pattern
if pattern \= ‘’ then do
reg = ‘^’
do index = 1 to length(pattern)
char = substr(pattern, index, 1)
select
when char == ‘.’ then reg = reg || ‘\.’
when char == ‘?’ then reg = reg || ‘.’
when char == ‘*’ then reg = reg || ‘.*’
when char == ‘!’ & lchar == ‘[‘ then
reg = reg || ‘^’

otherwise reg = reg || char
end

lchar = char
end index
else
reg = ‘^.*$’

return reg

Chapter 6: uni-REXX Extensions 251

_SELECT The _SELECT function determines if an I/O stream is
ready for reading or writing or is in an exception state.
It provides the same service as the select(2) system call.

_SELECT(width, r_mask, w_mask, e_mask, timeout)

width is the maximum number of bits in the I/O
descriptor selection masks.

r_mask is the name of a variable containing the read
selection mask. This mask must have been previously
created using the _FD_ZERO function and modified
with _FD_CLEAR or _FD_SET.

w_mask is the name of a variable containing the write
selection maks. This maks must have been previously
created using the _FD_ZERO function and modified
with _FD_CLEAR or _FD_SET.

e_mask is the name of a variable containing the excep-
tion selection mask. This mask must have been previ-
ously created using the _FD_ZERO function and modi-
fied with _FD_CLEAR or _FD_SET.

timeout is the name of a stem that specifies the timeout
value to wait for this _SELECT to complete. You may
specify the timeout value using one of the following
elements:

timeout.TV_SEC
timeout value in seconds

timeout.TV_USEC
timeout value in milliseconds; this may not be reli-
able on some platforms

252 uni-REXX Reference Manual

_SEND The _SEND function sends a message to a socket. It
provides the same service as the send(2) system call.

_SEND(sockhandle, buffer [, [length] [, flagnames]])

sockhandle is the handle of a socket that has been cre-
ated as a result of the _ACCEPT function.

buffer is the name of a variable that contains the mes-
sage to be sent.

length specifies the amount of data to send. length
must be a positive whole number that is less than or
equal to the length of buffer. If length is omitted, the
default is the length of buffer.

flagnames specify alternative behavior of the _SEND
function. flagnames may be a literal string or an ex-
pression which evaluates to one of the following:

MSG_OOB
send “out-of-band” data rather than the normal
“in-band” data; only Internet domain sockets of
type SOCK_STREAM support “out-of-band” data

MSG_DONTROUTE
normally used only for diagnostic purposes

If no space is available on the socket for the message,
_SEND normally blocks unless the socket has specifi-
cally been placed in non-blocking mode. If the mes-
sage cannot be sent, a system error is set.

Chapter 6: uni-REXX Extensions 253

Examples:

/*
* the following program fragment illustrates
* use of the _SEND function
*/
parse arg socket
msg = ‘Hello world’
call _send socket, msg, length(msg)

/*
* the following program fragment sends a
* length-prefixed message so that the _RECV
* function can look at the first 4 bytes of
* the message to determine how much data to
* read
*/
parse arg socket
msg = ‘Hello world’
/*
* pad length of message on right with zeros
* to be exactly 4 characters long
*/
length = right(length(msg), 4, 0)
packet = length||msg
call _send socket, msg

_SETSID The _SETSID function makes the current process the
group leader of a new process group. It provides the
same service as the setsid(2) system call.

_SETSID()

The new process group has no controlling terminal.
This is useful when starting a daemon to avoid having
the daemon affected by the job control and other pro-
cess relationships of the shell that started it.

Some UNIX implementations do not support setsid(2).
On these systems, the _SETSID function is unavailable.
Check your operating system man pages to determine if
it is supported on your system.

254 uni-REXX Reference Manual

_SETSOCKOPT The _SETSOCKOPT function is used to set options for
a specified socket. It provides the same service as the
setsockopt(2) system call.

_SETSOCKOPT(sockhandle, level, option, opt_value)

sockhandle is the handle of a socket that has been cre-
ated with the _SOCKET function.

level is the level of the option to be queried. Cur-
rently, only SOL_SOCKET is supported.

option is the name of the socket option for which the
current setting is to be returned. It may be any of the
following:

SO_ACCEPTCONN SO_RCVLOWAT

SO_BROADCAST SO_RCVTIMEO

SO_DEBUG SO_REUSEADDR

SO_DONTROUTE SO_SNDBUF

SO_ERROR SO_SNDLOWAT

SO_KEEPALIVE SO_SNDTIMEO

SO_LINGER SO_TYPE

SO_OOBINLINE SO_USELOOPBACK

SO_RCVBUF

opt_value is the name of a variable that receives the
current option setting. If option is specified as
“SO_LINGER”, then opt_value must be a stem and the
two elements to be set are opt_value.L_ONOFF and
opt_value.L_LINGER. For all other options, the value

Chapter 6: uni-REXX Extensions 255

set should be 1 to enable the option or 0 to disable the
option.

256 uni-REXX Reference Manual

_SLEEP The _SLEEP function suspends execution of a program
for a specified interval. It provides the same service as
the sleep(3) library function.

_SLEEP(time)

time is the number of seconds that the program remains
suspended. time must be a positive whole number.

Examples:

call _sleep 5
/*
* causes the program to pause for 5 seconds
* before the next instruction is executed
*/

_SOCKET The _SOCKET function creates a socket – a point for
communication between processes. It provides the same
service as the socket(2) system call.

_SOCKET(family, type, [protocol])

family specifies communications domain for this socket.
family may be a literal string or an expression that
evaluates to a literal string. The only permitted values
are

• “AF_INET” to create an Internet domain socket
• “AF_UNIX” to create a UNIX domain socket

type specifies the type of socket. type may be a literal
string or an expression that evaluates to a literal string.
The only permitted values are:

SOCK_STREAM
SOCK_DGRM

protocol specifies the communication protocol to be
used. Since there is normally only one protocol defined

Chapter 6: uni-REXX Extensions 257

for each socket type, protocol is normally specified as
0. If protocol is omitted, the default value is 0.

The function is typically invoked as

var = _socket(family, type)

var contains the file descriptor associated with the
newly created socket.

Examples:

/*
* the following code fragment illustrates
* creation of a socket
*/
mysocket = _socket(‘AF_INET’, ‘SOCK_STREAM’)
if mysocket < 0 then
say ‘Error:’ errno() ‘-’ _sys_errlist(_errno())

_STAT The _STAT function retrieves status information about a
file. It provides the same service as the stat(2) system
call.

_STAT(file_name, stataddr)

file_name is the name of the file for which status infor-
mation is requested. It may be a simple file name or a
full path to the file. The _STAT function can access
the file regardless of its permissions; however, all direc-
tories in the path to the file must exist and must have
read and execute permission for the process in which
the uni-REXX program is running.

stataddr is a stem that receives information about the
file when _STAT is executed. When the function re-
turns, the following compound variables are set:

stataddr.ST_DEV device number

stataddr.ST_INO inode number

stataddr.ST_MODE numeric file mode

258 uni-REXX Reference Manual

stataddr.ST_NLINK number of lines

stataddr.ST_UID numeric userid of the owner

stataddr.ST_GID numeric group id of the
owner

stataddr.ST_RDEV device number

stataddr.ST_SIZE file size in bytes

stataddr.ST_ATIME last access time, in seconds
since 1 Jan 1970

stataddr.ST_MTIME last modification time, in
seconds since 1 Jan 1970

stataddr.ST_CTIME creation time, in seconds
since 1 Jan 1970

Examples:

/*
* the following program fragment uses _stat
* to determine the last access time of all
* files in a directory and removes those older
* than the specified expiration date; the
* get_expir_time function, not shown, would
* calculate the expiration date in seconds
* since 1/1/70
*/
dir = ‘/home/user1’
call popen(‘ls -1’ dir)
exp_date = get_expir_time()
do queued()

pull file
rc = _stat(file, ‘st.’)
if st._atime < exp_date then ‘rm’ file
end

Chapter 6: uni-REXX Extensions 259

_SYS_ERRLIST The _SYS_ERRLIST function provides access to the text
of system error messages.

_SYS_ERRLIST(error_number)

error_number is the system error number for which the
message text is to be retrieved. error_number must be
a positive whole number.

The _ERRNO function provides access to the system er-
ror message number set when any function call returns
an error.

Examples:

/*
* the following program fragment illustrates
* a subroutine that might be used to process
* system errors
*/
error1:
parse arg caller
say ‘A system error was detected in:’ caller
say ‘System error number:’ _errno()
say _sys_errlist(_errno())
return

_SYSTEMDIR The _SYSTEMDIR function returns the “system direc-
tory”. For UNIX, this is always “/”.

_SYSTEMDIR()

260 uni-REXX Reference Manual

_TRUNCATE The _TRUNCATE function sets a file to a specified
length. It provides the same service as the truncate(2)
system call.

_TRUNCATE(file, size)

file is name of the file to be truncated. file may be a
simple file name, if the file is in the current directory,
or a full path name.

size is the size to which the file is to be set. size must
be a non-negative whole number. If size is less than
the current size of file, file is truncated to the new size
and data is lost. If size is greater than the current size
of the file, additional null characters are added to the
file to create the desired size.

Examples:

/*
* the following program is named “truncit”;
* the file to be truncated contains the single
* line “Good morning to you” ; the output
* from “ls -l” on this file shows a size of
* 20
*/
call _truncate ‘myfile’, 12
/*
* after the program is run, the file contains
* the single line “Good morning” ; the
* output from “ls -l” shows a size of 12
*/

_UMASK The _UMASK function sets the file creation mode
mask. This affects the permissions that are assigned to
newly created files. The function provides the same
service as the umask(2) system call.

_UMASK([mask])

mask is the mask to be used to alter the permissions for
new files created by this program. mask must be a

Chapter 6: uni-REXX Extensions 261

valid mask number. The man page for the umask com-
mand contains details on the setting and use of masks.
If mask is omitted, the function returns the current
UMASK setting.

Examples:

call _umask(020)
call lineout ‘newfile’, ‘hello’
call lineout ‘newfile’
/*
* on a system where new files are normally
* created with -rw-rw-r— permission, the
* program causes new files to be created with
* -rw-r—rw- permission
*/

_WAIT The _WAIT function waits for a process to terminate.
It provides the same service as the wait(2) system call.

_WAIT([status])

status is the name of a variable to receive the status
code returned by the _WAIT function. If status is
omitted, the code is discarded.

_WAIT returns the process id of the process that
terminated.

Examples:

/* the following program fragment illustrates
* the use of wait to suspend the parent
* process until the child process terminates
*/
pid = _fork() /* create child process */
/*
* if this is the child process, sleep for 1
* second and then exit; typically, the child
* process would do some useful work and then
* exit
*/
if pid = 0 then do

call _sleep 1
end

262 uni-REXX Reference Manual

/*
* if this is the parent, wait for the child to
* complete
*/
wid = _wait()
/*
* when we get a termination signal, be sure it
* is for the child
*/
do while wid \= pid

say wid d2x(wid)
wid = _wait()
end

_WAITPID The _WAITPID function waits for a specified process to
terminate. It provides the same service as the
waitpid(2) system call. The _WAITPID function may
not be available on all UNIX implementations.

_WAITPID(pid [, status] [, options])

pid is the process id of the process that must terminate
before execution of the program can continue. pid must
be the process id of a process that is a current child of
the one executing the _WAITPID function.

status is the name of a variable to receive the status
code from the _WAITPID function. If status is omit-
ted, the code is discarded.

option specifies the action to be taken by _WAITPID.
It must be one of the following:

WNOHANG the process does not actually
wait but only returns a status
code if it is already complete

WUNTRACED the function returns the sta-
tus of any child processes
that are stopped

If option is omitted, the function waits normally.

Chapter 6: uni-REXX Extensions 263

Some UNIX implementations do not support waitpid(2).
On these systems, the _WAITPID function is unavail-
able. Check your operating system man pages to deter-
mine if it is supported on your system.

Examples:

/*
* the following program fragment creates a
* child process & waits for it to complete
*/
pid = _fork()
if pid = 0 then do

: /* do some useful work */
end

wid = _waitpid()

264 uni-REXX Reference Manual

Client/Server
Sample Appli-
cation

This sample application illustrates the use of some of
the UNIX-specific functions in a client/server applica-
tion to provide information about available modems on
the system to any user who requests it. The modem
server (mods) runs on a host named `zeus’. At startup,
it reads a modem configuration file to determine what
modems have been installed on various network nodes
and some configuration information about each modem.
A client program (modc), which can be run on any
workstation in the network, sends modem requests to
the server and gets back the hostname and modem ini-
tialization string for the first free modem that satisfies
the request. For simplicity of illustration, this example
does not attempt to connect the user to a modem – it
merely reports back the information required for the
user to do this manually.

The programs that comprise this sample application are
included in the uni-REXX Sample Library, which is on
the product distribution media.

The Modem Configuration File

The modem configuration file contains a list of all mo-
dems installed on the network. Each line of the file is
in the following format:

modem_speed hostname device_name init_str

where

modem_speed the maximum baud rate of this
modem

hostname the hostname of the workstation to
which the modem is attached

device_name the UNIX device name by which the
modem is addressed

init_str the modem initialization string

Chapter 6: uni-REXX Extensions 265

Sample lines from the file look like

19200 athena /dev/cua0 +++ato
2400 artemis /dev/ttyd0 +++ato
9600 poseidon /dev/cua0 None
14400 apollo /dev/cua0 \e129++

The client program sends requests to the server in the
one of the following forms:

GET speed
FREE hostname device_name

The client program is executed by typing

modc request

where request is one of the message forms shown
above.

Sending and Receiving Messages

Since both the client and the server need to send and
receive messages, these processes are written as sepa-
rate functions that each can call. The send function
creates a length-prefixed packet of data. The receive
function expects the data in this format and checks the
length of the message before actually reading it from
the socket.

The message send function (sendbuf) and the message
receive function (recvbuf) are shown on the following
pages.

266 uni-REXX Reference Manual

/*
* sendbuf - send a length-prefixed packet
*
* This routine builds a message packet in the form
*
* ———————————————————-
* | length | message |
* ———————————————————-
*
* where “length” is always exactly 4 bytes.
*
*
* The recipient (recvbuf) can then read the first 4 bytes to
* determine the length of the message waiting on the socket
* stream.
*
*
*/
sendbuf: procedure
parse arg socket, buffer

/*
* Get buffer length, make it 4 characters long, padded with
* zeros
*/
bufferlength = right(length(buffer), 4, ‘0’)

/*
* Get length of whole packet (buffer plus length field), make
* it 4 characters, padded with zeros
*/
bufferlength = right(bufferlength+length(bufferlength), 4, ‘0’)

/*
* Concatenate length and buffer into a message packet
*/
packet = bufferlength||buffer

/*
* Send the message packet
*/
call _send socket, packet,,""
if sendrc < 0 then call error ‘send’
return

Chapter 6: uni-REXX Extensions 267

/*
* recvbuf - recv a length-prefixed packet
*
* This routine receives a message packet in the form
*
* ———————————————————-
* | length | message |
* ———————————————————-
*
* where “length” is always exactly 4 bytes.
*
*
* It uses the “MSG_PEEK” flag of _recv to obtain the length
* field, placing it in the specified variable. “MSG_PEEK”
* allows you to retrieve information from the message without
* removing it from the stream. The routine then invokes
* _recv again, using the length variable to specify how much
* data to read from the socket stream
*
*
*/
recvbuf: procedure
parse arg socket

/*
* Peek at the message to get its length - put that value in the
* variable bufferlength
*/
recvrc = _recv(socket, “bufferlength”, 4, “MSG_PEEK”)
if recvrc < 0 then call error “recv”

/*
* Actually receive the full message packet, including its
* length prefix
*/
recvrc = _recv(socket, “buffer”, bufferlength, “”)
if recvrc < 0 then call error “recv”

/*
* Remove the length previx from the message and return only the
* message
*/
message = substr(buffer,5)
return message

268 uni-REXX Reference Manual

The Server

The modem server (mods) can be run on any host in
the network. In this example, it is assumed that the
server is running on a host named `zeus’. The client
program will send its requests to `zeus’ for processing.

The modem server program is shown below.

#!/usr/local/bin/rxx
/*
* mods - modem allocation server
*
* Program runs as a daemon on the designated host. Accepts
* requests from clients across the network for allocation of
* modems. Uses modem configuration file to determine which
* modem satisfies the particular specifications requested.
*
* At this time, the modem server does not actually connect the
* requestor to the modem - it simply returns the device name
* and hostname of an available modem that satisfies the cur-
* rent request.
*
*/

/*
* Fork process to continue running as a daemon & exit parent
* process
*/

forkrc = _fork()
if forkrc < 0 then call error ‘fork’
if forkrc \= 0 then do

say ‘Modem server daemon started: PID =’ forkrc
exit
end

/*
* Process modem configuration file to get all modems into the
* modem. stem
*/
modem_list = ‘./modem.list’
modem. = ‘’
address command ‘execio * diskr’ modem_list ‘(stem modem.’

/*
* Open a socket
*/
sock1 = _socket(‘AF_INET’, ‘SOCK_STREAM’)
if sock1 < 0 then call error ‘socket’

Chapter 6: uni-REXX Extensions 269

/*
* Socket address structure
*/
net.sa_family = ‘AF_INET’
net.sin_port = 11111

/*
* Bind socket to port
*/
bindrc = _bind(sock1, ‘net.’)
if bindrc < 0 then call error ‘bind’

/*
* Listen for connections from clients
*/
listenrc = _listen(sock1)
if listenrc < 0 then call error ‘listen’

/*
* Main communications/processing loop
*/

do forever

/* Accept client connections */

sock2 = _accept(sock1)
if sock2 < 0 then call error ‘accept’

/* Use the recvbuf runction to receive length-prefixed message
* packet */

request = recvbuf(sock2)
request = lower(request) /* this app needs msg in lowercase */
parse var request get_free rest
select
when get_free = ‘get’ then do /*For a “get” request, see*/
parse var rest req_baud rest /*what kind of modem needed*/
got_one = 0 /* & go through all not busy */
do i = 1 to modem.0 /* until you find one */
parse var modem.i max_baud hostname device init_str busy
if req_baud <= max_baud then

if busy = ‘’ then do
reply = hostname device init_str
modem.i = modem.i ‘busy’
got_one = 1
end

if got_one then leave
end

if \got_one then
reply = ‘No’ req_baud ‘modem available at this time’

270 uni-REXX Reference Manual

end
when get_free = ‘free’ then do /*For a “free” request, see*/
parse var rest free_host free_dev rest /*which host/dev*/
freed = 0 /* & go through until found. */
do i = 1 to modem.0 /* If marked busy, free it. */

parse var modem.i max_baud hostname device init_str busy
if hostname = free_host then

if device = free_dev then
if busy = ‘busy’ then do

modem.i = max_baud hostname device init_str
reply = ‘Modem free request processed’
freed = 1
end

if freed then leave
end

if \freed then
reply = free_host free_dev ‘not allocated - not freed’

end
otherwise /*Reqs not starting with get or free are invalid */
reply = get_free ‘invalid; must begin with “get” or “free”’

end

/*
* Call sendbuf to create a length-prefixed message packet and
* send the reply back to the client
*/
call sendbuf sock2, reply

/*
* Close client connection
*/
closerc = _closesocket(sock2)
if closerc < 0 then call error ‘close’
end /* end of do forever loop */

/*
* Close accepting connection
*/
closerc = _closesocket(sock1)
if closerc < 0 then call error ‘close’
exit

error:
/*
* Print function that failed, error number, and system error
* text. Then call system exit function to really exit this
* process
*/
say arg(1) ‘error’ _errno()’:’ _sys_errlist(_errno())

call _exit(1)

Chapter 6: uni-REXX Extensions 271

The Client

The client program (modc) can be run on any host in
the network. In this example, it is assumed that the
server is running on a host named `zeus’. The client
program will send its requests to `zeus’ for processing.

The client program is shown below.

#!/usr/local/bin/rxx
/*
* modc - modem request client
*
* Program requests modem allocation from modserver (modem
* allocation server) running on the network.
*
*/

arg request

/*
* Get host configuration
*/
call _gethostbyname(‘zeus’, ‘chost.’)

/*
* Socket address structure
*/
net.sa_family = chost.h_addrtype
net.sin_addr = chost.h_addr
net.sin_port = 11111
net.sin_addr = ‘INADDR_ANY’

/*
* Create the socket
*/
socket = _socket(‘AF_INET’, ‘SOCK_STREAM’)
if socket < 0 then call error ‘socket’

/*
* Connect to the server
*/
connectrc = _connect(socket, ‘net.’)
if connectrc < 0 then call error ‘connect’

/*
* Send the request to the server
*/
call sendbuf socket, request

272 uni-REXX Reference Manual

/*
* Get reply back from server
*/
reply = recvbuf(socket)

say ‘Reply from modem allocation server’
say ‘’
say reply

/*
* Close the connection
*/
closerc = _closesocket(socket)
if closerc < 0 then call error ‘close’

exit

error:
/*
* Print function that failed, error number, and system error
* text. Then call system exit function to really exit this
* process.
*/
say arg(1) ‘error’ _errno()’:’ _sys_errlist(_errno())
call _exit(1)

Chapter 6: uni-REXX Extensions 273

Operating
System
Facilities

For convenience in porting applications among a variety
of platforms, uni-REXX includes certain facilities that
are provided as part of the operating system in other en-
vironments where the REXX language is implemented.
These include

EXECIO
alternative method of performing file I/O

GLOBALV
management of global variables

MAKEBUF, DROPBUF, DESBUF
management of buffers within the program stack

RXQUEUE
pipe command or program output to the program
stack

SENTRIES
return the number of entries in the program stack

While these facilities make it easier to move applica-
tions between mainframe environments and uni-REXX,
they are not fully portable because they are not present
on all platforms where REXX is implemented.

These facilities are implemented as external commands
and not as part of the uni-REXX interpreter. They are
delivered as separate modules on the uni-REXX distri-
bution media. The uni-REXX Developer’s Kit includes
a redistribution license for these modules. If you have
licensed the Developer’s Kit and your program uses any
of these external commands, you may distribute the nec-
essary binaries along with your program.

Like the uni-REXX instructions, the syntax diagrams for
these facilities show the command name in uppercase.
The name may appear in a program in upper- or lower-
case but not in mixed case.

274 uni-REXX Reference Manual

DESBUF The DESBUF command clears from the program stack
all buffers created by the MAKEBUF command.

DESBUF

Examples:

/*
* the following program fragments illustrate
* the effect of using DESBUF
*/
push zero
‘makebuf’
push ‘one’
‘makebuf’
push ‘two’
‘makebuf’
push ‘three’
pull next
say next
pull next
say next
/*
* the output is
* THREE
* TWO
*/

push zero
‘makebuf’
push ‘one’
‘makebuf’
push ‘two’
‘makebuf’
push ‘three’
pull next
say next
‘desbuf’
pull next
say next
/*
* the output is
* THREE
* ZERO
*/

Chapter 6: uni-REXX Extensions 275

DROPBUF The DROPBUF command clears from the program
stack one or more specific buffers created with the
MAKEBUF command.

DROPBUF [n]

n is the buffer number of the first buffer to drop.
DROPBUF drops buffer n and all buffers created after
it. If n is omitted, the default value is the buffer num-
ber of the last buffer created.

DROPBUF sets one of the following return codes if an
error occurs:

1 n is not a valid number

2 the specified buffer does not exist

Examples:

/*
* the following program fragment illustrates
* dropping the buffer created most recently
*/
push ‘zero’
‘makebuf’
push ‘one’
‘makebuf’
push ‘two’
‘dropbuf’
pull next
say next
/* the output is “ONE” */

/*
* the following program fragment illustrates
* dropping buffer 2; any buffers created after
* buffer 2 are automatically dropped, also
*/
push ‘zero’
‘makebuf’; push ‘one’
‘makebuf’; push ‘two’
‘makebuf’; push ‘three’
‘dropbuf 2’
pull next
say next
/* the output is “ONE” */

276 uni-REXX Reference Manual

EXECIO The EXECIO command reads or writes lines from a
disk file to the program stack or to one or more pro-
gram variables.

EXECIO n DISKR file [lnum] ([FINIs] op-
tions

DISKW

n is the number of lines to read or write. n must be a
non-negative whole number. If n is 0, then no lines are
processed. If n is 0 and the FINIs keyword is speci-
fied, then the only action taken is to close the file.

If n is specified as “*”, all available lines are pro-
cessed. For a read operation (DISKR) all lines in the
file are read. For a write operation (DISKW) all lines
on the program stack or in the specified stem are writ-
ten to the file. Specifying n as “*” in conjunction with
the VAR option (discussed below) is not permitted
since only one line is processed when VAR is used.

DISKR and DISKW specify the type of I/O operation
to be performed. DISKR indicates that lines are to be
read from a file. DISKW indicates that lines are to be
written to a file. One of these keywords must be
specified.

file is the name of the disk file for this I/O operation.
file may be any valid UNIX file name. It will probably
be necessary to modify the filename specification for
applications being migrated to or from other environ-
ments. For ease of portability, consider using a vari-
able to store the name of the file.

lnum is supported only for DISKR. It is the position
in the file where the first read operation occurs. lnum
must be a non-negative whole number. If lnum is spec-
ified as 0, read begins at the first line of the file. If
lnum is omitted, the default value is 0.

Chapter 6: uni-REXX Extensions 277

The keyword FINIs controls the state in which the file is
left after an I/O operation is performed. If FINIs is speci-
fied, the file is closed after the I/O occurs. If FINIs is
omitted, the file may be left in an open state and it may be
necessary to close it with EXECIO before subsequent I/O
is performed.

options may be one or more of the following:

FInd /string/
finds the first line that contains string beginning in
the first character position and writes the following
to the program stack:

the contents of the line

the line number where string was found; for DISKR,
both the absolute and relative line numbers are reported

the range of characters searched may be limited
with the Zone option described below

LOcate /string/
finds the first line that contains string in any posi-
tion and writes the following to the program stack

the contents of the line

the line number where string was found; for DISKR,
both the absolute and relative line numbers are reported

the range of characters searched may be limited
with the Zone option described below

Avoid /string/
finds the first line that does not contain string in
any position and writes he following to the pro-
gram stack:

the contents of the line

the line number; for DISKR, both the absolute and rela-
tive line numbers are reported

the range of characters searched may be limited
with the Zone option described below

278 uni-REXX Reference Manual

Zone c1 c2
used to restrict the range of the input line that is
searched by the FInd, LOcate, or Avoid options; if
Zone is not specified, these operations search the
entire line; c1 and c2 indicate the beginning and
ending character positions, respectively, for the
search; c1 and c2 must be positive whole numbers,
except that c2 may be specified as “*” to indicate
the last column of the line

LIFO
FIFO

these keywords specify the order in which lines are
written to the program stack; only one may be
specified on an EXECIO command; if this option is
omitted, FIFO (first-in-first-out) is the default ex-
cept when a search option (FInd, LOcate, or
Avoid) is specified; in this case, LIFO
(last-in-first-out) is the default because line num-
bers are placed on the stack also; this option is not
valid with the VAR or STEM options since it af-
fects only the program stack

SKip
valid only with DISKR; lines read with SKip in ef-
fect are not written to the program stack

Margins c1 c2
restricts the portion of a line from the stack or a
variable that is to be processed; if Margins is not
specified, the entire line is processed; c1 and c2
indicate the beginning and ending character posi-
tions, respectively, of the data to be processed; c1
and c2 must be positive whole numbers, except
that c2 may be specified as “*” to indicate the last
column of the line

Chapter 6: uni-REXX Extensions 279

STRIP
specifies that trailing blanks are to be removed
from all lines read or written

NOTYPE
this option has no effect in uni-REXX; it is pro-
vided for portability purposes only

STEm stem.
for DISKR, specifies that lines read from a file are
to be placed in compound variables beginning with
the stem stem.; the variable stem.0 is automatically
set to the number of lines read; the variables
stem.1 through stem.n contain the lines from the
file

for DISKW, specifies that lines written to a file
are to be taken from compound variables beginning
with the stem stem.; the indices of stem. must be
numeric and sequential; EXECIO automatically
writes to the output file the contents of variables
stem.1 through stem.n, stopping at the first occur-
rence of a gap in the indices or a non-numeric
index

VAR var
for DISKR, specifies that a line read from the file
is to be placed in the variable var; for DISKW,
specifies that the line to be written is taken from
the variable var; if VAR is specified, n must be 1;
in addition, if VAR is specified, the search options
(FInd, LOcate, Avoid) and the FIFO and LIFO
keywords are not permitted

Because a number of the operands used with EXECIO
may be specified as “*”, it is recommended EXECIO
commands be addressed to the “command” host com-
mand environment. This precludes attempts by the shell
to expand the special characters, which could have un-
desirable results. You may, if you prefer, specify the
shell escape character (\) before the asterisk, but this is

280 uni-REXX Reference Manual

not portable to other enviroments and may be confusing
to someone reading the program if they are not familiar
with UNIX shell processing.

EXECIO sets the following return codes:

0 successful completion

1 truncated

2 end of file encountered before the specified
number of lines were read

3 number of lines to process was reached before
a successful pattern match occurred

24 bad parameter list; the specified file does not
exist or a keyword or option is misspelled

41 insufficient memory to run EXECIO

100 an I/O error occurred

2008 the name following STEM or VAR is an invalid
stem or variable name

Examples:

/*
* the following program fragment reads all
* lines in a disk file and places them on
* the program stack
*/
address command
‘execio * diskr data.file’

/*
* the following program fragment is similar
* to the previous example but places the
* lines read into the stem “lines.” and closes
* the file when the read is complete
*/
address command
‘execio * diskr data.file (finis stem lines.’

Chapter 6: uni-REXX Extensions 281

/*
* the following program fragment is similar to
* the previous example but reads only 4 lines
* beginning at line 10; in this example,
* “lines.0" will have the value 4
*/
address command
‘execio 4 diskr data.file 3 (finis stem lines.’

/*
* the following program fragment writes to a
* file all lines currently on the program
* stack, stripping trailing blanks; it closes
* the file when the write is complete
*/
address command
‘execio * diskw out_file (finis strip’

/*
* the following program fragment writes one
* line to an output file; the data is taken
* from the variable abc
*/
abc = ‘Hello world’
address command ‘execio 1 diskw ofile (var abc’

/*
* the following program fragment illustrates
* the use of execio in a portable program
*/
parse source sys .
select

when sys = ‘UNIX’ then fn = ‘june.data’
when sys = ‘CMS’ then fn = ‘JUNE DATA A’
when sys = ‘TSO’ then fn = ‘SALE.DATA(JUNE)’
otherwise do

say ‘Please enter filename’
parse pull fn
end

end
address command
‘execio * diskr’ fn ‘(finis stem sales.’

282 uni-REXX Reference Manual

/*
* the following program fragment illustrates
* using the LOcate search option to read
* the desired line from a file
*/
string = ‘June’
address command
‘execio * diskr sales.data (lo /’string’/’
parse pull .
parse pull . . june_commissions_paid .

/*
* the following program fragment is similar to
* the previous example but restricts the
* search to columns 10-25 of each line and
* limits the lines read to lines 8-12 of the
* file
str = ‘January’
fn = ‘sales.data’
address command
‘execio 4 diskr’ fn ‘8 (lo /’str’/ zone 10 25’

/*
* the following program fragment reads every
* line in the file *except* those for the
* “East” region; data is stored in the stem
* “noteast.”
*/
str = ‘East’
fn = ‘sales.data’
address command
‘execio * diskr’ fn ‘(a /’str’/ stem noteast.’

Chapter 6: uni-REXX Extensions 283

GLOBALV The GLOBALV command provides a method for sharing
variables among uni-REXX programs and for retaining
variable values either temporarily or permanently for
subsequent use.

GLOBALV allows you to store variables

• temporarily
• for the current session (session globalv)
• permanently (lasting globalv)

Variables that are related or used together may be asso-
ciated in groups. This provides for more efficient re-
trieval and selective use. Group names are specified by
the user. The default group name is “unnamed”.

The first use of GLOBALV creates a directory named
.GLOBALV in the user’s $HOME directory. Within
this directory are files that correspond to each of the
variable groups that have been defined. You may ac-
cess another user’s global variables by including their
$HOME directory in your $PATH.

284 uni-REXX Reference Manual

GLOBALV INIT
SELECT group

SELECT group SET
value_list

SETS
SETP

SETL var value
SETLS
SETSL
SETLP
SETPL

PUT var_list
PUTS
PUTP

GET [var_list]

LIST [var_list]

STACK [var_list

PURGE

GRPLIST

GRPSTACK

INIT initializes global variables. GLOBALV sets vari-
ables from the values stored. It sets variables from the
lasting, session, and initialization files, in that order. If
a variable name appears more than once in any of these
files, the subsequent values override previous defini-
tions so that the last value encountered is the value
used.

Chapter 6: uni-REXX Extensions 285

SELECT specifies the name of the variable group to be
used.

group is the name of the group to be accessed. group
must be a literal string of 8 characters or fewer. Any
characters are permitted in a group name. However, if
the group name includes special characters, it is recom-
mended that the GLOBALV command be addressed to
the “command” host command environment to bypass
any shell expansions that might occur.

If only group follows the SELECT keyword, this has
the effect of setting the variable group for all subse-
quent GLOBALV commands.

SET, SETS, and SETP set the value of one or more
variables for temporary, session, or lasting GLOBALV,
respectively. Each of these keywords assigns a value to
a variable and stores that variable with the group speci-
fied in the preceding SELECT.

value_list is a series of blank-delimited words in the
form

var [value] [var [value]] ...

var may be any valid REXX variable name. value is the
value to be assigned to var. value must be a constant
or a literal string and may not contain any embedded
blanks. If var is already defined, its value is replaced
by the one specified in the current command.

SETL, SETLS, SETSL, SETLP, and SETPL set the
value of a single variable. Each of these keywords as-
signs a value to a variable and stores that variable in
the group specified in the preceding SELECT. SETL
affects temporary GLOBALV; SETLS and SETSL affect
session GLOBALV; and SETLP and SETPL affect last-
ing GLOBALV.

var may be any valid REXX variable name. value is the
value to be assigned to var. value must be a constant

286 uni-REXX Reference Manual

or a literal string. In this case, however, value may
contain embedded blanks since only one variable may
be set using these keywords.

PUT, PUTS, and PUTP assigns one or more variables
for temporary, session, or lasting GLOBALV, respec-
tively. The value stored for each variable is its current
value at the time the GLOBALV command is executed.

var_list is a blank-delimited list of one or more valid
REXX variable names.

GET retrieves one or more variables from global stor-
age. var_list is a blank-delimited list of one or more
valid REXX variable names.

LIST lists the variable name and its current values for
one or more variables in the group specified. var_list
is a blank-delimited list of one or more valid REXX vari-
able names. If var_list is omitted, LIST lists all vari-
ables in the specified group.

The format of the variable listing is

SELECTED TABLE IS: group
var1=value
var2=value

:
:

If a PURGE has been executed on the specified group
name prior to the LIST, only the first line shown above
appears in the output.

STACK places the value of one or more variables on
the uni-REXX program stack. Values are stacked in
LIFO (last-in-first-out) order. Use the PULL or PARSE
PULL instruction, described in Chapter 4, Instructions,
to retrieve values from the program stack. The number
of elements currently on the stack is accessible with the

Chapter 6: uni-REXX Extensions 287

QUEUED built-in function described in Chapter 5,
Built-In Functions.

var_list is a blank-delimited list of one or more valid
REXX variable names. If var_list is omitted, STACK
has no effect.

PURGE removes all variables in the selected group
from global storage. If no group has been selected,
PURGE removes all variables in all groups.

GRPLIST displays a list of all existing group names.

GRPSTACK places the names of all existing groups on
the uni-REXX program stack. A null line is written to
the stack to indicate the end of the group names.

Examples:

/*
* the following program fragments illustrate
* the results of some GLOBALV commands
*/
#!/usr/local/bin/rxx
‘globalv init’
‘globalv select commvars’ /* default group */
base_comm = 0.06
accel_level = 10000
accel_incr = 0.01
max_comm = 0.20
‘globalv putp base_comm accel_level accel_incr’
‘globalv putp max_comm’
‘run_commissions’ /* run commissions program */
:
:

exit

#!/usr/local/bin/rxx
thismo = date(‘m’)
‘globalv select commvars’
‘globalv get base_comm accel_level accel_incr’
‘globalv get max_comm’
‘globalv select thismo’
‘globalv get east west north south foreign’
: /* perform calculations */
:

288 uni-REXX Reference Manual

MAKEBUF The MAKEBUF command creates a new buffer within
the uni-REXX program stack.

MAKEBUF

The return code from MAKEBUF is the number of the
buffer just created. This value can be used with
DROPBUF to clear one or more buffers when their con-
tents are no longer needed.

All data PUSHed or QUEUEd onto the stack after a
MAKEBUF command is associated with this buffer until
a subsequent MAKEBUF, DROPBUF, or DESBUF com-
mand is executed.

Use DROPBUF to remove the contents of one or more
specific buffers from the stack. Use DESBUF to clear
all buffers from the stack.

Examples:

/*
* the following program fragments illustrate
* the use of MAKEBUF, DROPBUF, and DESBUF
*/
push zero
‘makebuf’; push ‘one’
‘makebuf’; push ‘two’
‘makebuf’; push ‘three’
‘makebuf’; push ‘four’
‘makebuf’; push ‘five’
pull next; say next
pull next; say next
‘dropbuf 3’
pull next; say next
‘desbuf’
pull next; say next
/*
* the output is
* FIVE
* FOUR
* TWO
* ZERO
*/

Chapter 6: uni-REXX Extensions 289

RXQUEUE RXQUEUE redirects output to the uni-REXX program
stack. It may be used as a command or as a filter.

RXQUEUE

When used as a command, RXQUEUE accepts input
from the default character input stream (usually the key-
board) and places it on the program stack. Use CTL-D
to terminate keyboard input mode and return control to
the uni-REXX program.

When used as a filter, RXQUEUE redirects STDOUT
from a command or program to the uni-REXX program
stack. The syntax for this use is

cmd_or_prog ‘| rxqueue’

cmd_or_prog is the name of the command or program
(including its calling arguments) for which output is to
be placed on the stack.

SENTRIES The SENTRIES command determines the number of en-
tries in the uni-REXX program stack.

SENTRIES

The return code from SENTRIES is the number of items
on the stack excluding any data currently pending in the
STDIO stream.

290 uni-REXX Reference Manual

Chapter 7: Application Programming
Interfaces

The uni-REXX application programming interfaces
(APIs) provide mechanisms to

• embed uni-REXX as a macro language within a
larger application

• extend the capabilities of the uni-REXX interpreter
by adding external function packages written in a
compiled language

This chapter documents the APIs and provides examples
of their use. Most of the examples illustrate using two
or more APIs in combination. All of the examples are
included in uni-REXX Sample Library, which is deliv-
ered on the product distribution media.

The uni-REXX APIs are modelled after the IBM imple-
mentations under TSO/E. The following APIs are
supported:

IRXJCL
execute a uni-REXX program (simple interface)

IRXEXEC
execute a uni-REXX program (complete interface)

IRXSUBCM
manage host command environments

Chapter 7: Application Programming Interfaces 291

IRXEXCOM
access to uni-REXX program variables

IRXSTK
access the uni-REXX program stack

IRXEXITS
specify user-supplied exits

IRXSTOP
terminate the uni-REXX program

The APIs are function calls that can be included in a
C language program. They use a number of control
blocks (structures) which are defined in the header file
irx.h, supplied on the distribution media. The header
file irx.h must be included in any programs that use
these APIs. Definitions and use of each of these con-
trol blocks are included at the end of this chapter.

The section entitled “Building an Embedded Applica-
tion” in this chapter provides instructions on building
an executable module of a C program that uses the
uni-REXX APIs.

For portability between UNIX and OS/2, uni-REXX also
includes support for OS/2-style APIs. These function
substantially as they do in the OS/2 environment and
further documentation is not provided here. An exam-
ple of their use is included in the uni-REXX Sample
Library in the file func.tar.Z.

292 uni-REXX Reference Manual

IRXEXCOM The IRXEXCOM interface provides access to
uni-REXX program variables. It uses the shared vari-
able block structure (SHVBLOCK) for communication
between the uni-REXX program and the compiled lan-
guage program.

The function declaration for IRXEXCOM in irx.h is:

int ORXXCDecl ORXXLoadDS irxexcom(SHVBLOCK *);

The following declarations are required:

SHVBLOCK varname;

varname may be any variable name of your choosing.

Before setting values in the shared variable block, you
must initialize to 0 the memory locations to be used for
the shared variable block. Use memset as in

(void) memset(&varname, 0, sizeof(SHVBLOCK));

varname is the name of your shared variable block.

The syntax for invoking the function in a C language
application is:

irxexcom(&varname)

varname is the name of your shared variable block.

Multiple requests to IRXEXCOM may be made by
chaining multiple instances of SHVBLOCK using the
SHVNEXT field. In this case, the value returned by
IRXEXCOM is set by ORing together the values re-
turned by each separate request.

Return codes that may be set by IRXEXCOM are the
following (the corresponding value of shvret is shown
in parentheses):

Chapter 7: Application Programming Interfaces 293

-1 an internal error occurred; contact The
Workstation Group

0 successful completion (SHVCLEAN)

1 a new variable was accessed (SHVNEWV)

2 last variable from SHVNEXTV (SHVLVAR)

4 variable truncated (SHVTRUNC); in this case,
shvvall contains the length required, before
truncation

8 bad variable name (SHVBADN)

16 value too long (obsolete in uni-REXX V2.00
and later releases) (SHVBADV)

20 no uni-REXX program active

128 bad function passed in shvcode (SHVBADV)

Since IRXEXCOM may often be used to set the value
of a uni-REXX program variable that did not previously
exist, it may be most useful to check return codes by
invoking the function as

if (irxexcom(&varname) <= SHVNEWV)

294 uni-REXX Reference Manual

Examples:

The IRXEXCOM interface might typically be used in an
initialization or termination exit, to set variables for use
by the uni-REXX program or to retrieve values set by
it. This example illustrates the setting of variables in
an initialization exit. The first program is “excom.c”.

#include <stdio.h>
#include <string.h>
#include “irx.h”
/*forward reference */
static void rxinit();

int main(argc, argv)
int argc;
char **argv;
{ int rc = 0;
/* declare an EXITBLK structure */

EXITBLK myexit;
(void) &argc;
(void) &argv;

/* set up the EXITBLK */
myexit.initialization = rxinit;

/* setup the exits */
irxexits(&myexit);

/* execute the uni-REXX program */
rc = irxjcl(“excom.rex”);
if (rc != 0)
printf(“Return code from irxjcl=%d\n”, rc);
}

static void rxinit()
{

int rc = 0;
/* declare variables for REXX */

static char v1[10];
static char v2[10];

/* declare a shared variable block */
SHVBLOCK rxvar;

/* initialize variables for REXX */
strcpy(v1, “this is v1");
strcpy(v2, “this is v2");

/* clear memory of shared variable block */
(void) memset(&rxvar, 0, sizeof(SHVBLOCK));

/* data into shared variable block */
rxvar.shvcode = shvstore;
rxvar.shvnama = “v1";
rxvar.shvnaml = (int) strlen(rxvar.shvnama);
rxvar.shvvala = v1;

Chapter 7: Application Programming Interfaces 295

rxvar.shvvall = (int) strlen(rxvar.shvvala);
/* set this variable for uni-REXX */

rc = irxexcom(&rxvar);
if (rc > SHVNEWV)
printf(“irxexcom error, rc=%d\n”, rc);

/* do it again for the next variable */
memset(&rxvar, 0, sizeof(SHVBLOCK))
rxvar.shvcode = shvstore;
rxvar.shvnama = “v2";
rxvar.shvnaml = (int) strlen(rxvar.shvnama);
rxvar.shvvala = v2;
rxvar.shvvall = (int) strlen(rxvar.shvvala);
rc = irxexcom(&rxvar);
if (rc > SHVNEWV)
printf(“irxexcom error, rc=%d\n”, rc);

}

The following program is “excom.rex”.

/*
* excom.rex - demonstrate IRXEXCOM in an
* initialization exit
*/
say ‘Now in the program excom.rex’
say ‘v1 is: ‘ v1
say ‘v2 is: ‘ v2

When you build and execute this application, the output
is:

Now in the program excom.rex
v1 is: this is v1
v2 is: this is v2

296 uni-REXX Reference Manual

IRXEXEC The IRXEXEC interface provides a method for calling a
uni-REXX program and facilities for passing calling ar-
guments, accessing data returned by the program, or ex-
ecuting an in-storage block of REXX code.

The function declaration for IRXEXEC in irx.h is:

int ORXXCDecl ORXXLoadDS irxexec(EXECBLK *,
ARGLIST *, int, INSTBLK *, char **,
EVALBLOCK *, char *);

One or more of the following declarations may be
required:

ARGLIST argvar;
EXECBLK exvar;
EVALBLOCK valvar;
INSTBLK stvar;

argvar, exvar, valvar, and stvar may be any variable
names of your choosing. It is not necessary to declare
a structure that is to be specified as NULL on the
IRXEXEC call.

Before setting values in any of these control blocks,
you must initialize to 0 the memory locations to be
used for the block. Use memset as in

(void) memset(&varname, 0, sizeof(TYPE);

varname is the name of your control block (argvar,
exvar, valvar, or stvar). TYPE is the structure type,
such as ARGLIST or EXECBLK.

The syntax for invoking the function in a C language
application is:

irxexec(&exvar, argvar, flag, &stvar, envptr, valvar,
usrptr)

Chapter 7: Application Programming Interfaces 297

exvar is the name of the structure containing informa-
tion about the uni-REXX program to be executed
(EXECBLK). This block must always be defined if the
program to be executed. If IRXEXEC is used to execute
an in-storage block of REXX code, then the fields
dsnptr and pathptr within the EXECBLK should be set
to NULL.

argvar is the name of the structure containing the argu-
ment list. If no arguments are to be passed to the pro-
gram, this may be specified as NULL.

flag indicates how the program to be executed is to be
processed. It should be specified as one of the
following:

0
program is a command

REXXCOMMAND
program is a command

REXXFUNCTION
program is a function; in this case the program
must return a value

REXXSUBROUTINE
program is a subroutine

REXXSTICKY
program is sticky – that is, it should remain in
memory after execution is complete

The flag values may be specified in upper- or lower-
case but not in mixed case.

stvar is the name of the structure containing an in-
storage block of REXX code. If the program to be exe-
cuted is a disk file, the pointer to the in-storage block
should be specified as NULL.

envptr is a pointer to the environment area or NULL.
This field is not usually specified.

298 uni-REXX Reference Manual

valvar is the name of the structure in which the data re-
turned from the uni-REXX program is stored. This
must always be specified.

usrptr is a user pointer or NULL. It is included for
compatibility with TSO/E and should normally be speci-
fied as NULL.

Return codes that may be set by IRXEXEC are:

0 successful execution

20 program not executed; this may result if the
uni-REXX program file is not found

Examples:

This example illustrates the use of IRXEXEC to invoke
a uni-REXX program (“myexec.rex”) as a subroutine,
passing it two arguments and printing the data returned.
#include <stdio.h>
#include <string.h>
#include “irx.h”

int main()
{

int rc = 0;
EXECBLK execit;
ARGLIST ag[3];
int fl = REXXFUNCTION;
EVALBLOCK *values;
char evaldata[100];

/* initialize the execution block */
(void) strcpy(execit.subcom, “rex”);
execit.dsnptr = “myexec.rex”;
execit.pathptr = NULL;

/* initialize the argument list */
memset(ag, 0, sizeof(ARGLIST));
ag[0].argstring_ptr = “arg1";
ag[0].argstring_length = strlen(ag[0].argstring_ptr);
ag[1].argstring_ptr = “arg2";
ag[1].argstring_length = strlen(ag[1].argstring_ptr);
ag[2].argstring_ptr = NULL;

/* initialize the evaluation block */
memset(evaldata, 0, sizeof(evaldata));
values = (EVALBLOCK *) evaldata;
values->evsize = sizeof(evaldata);

/* invoke the program */
rc = irxexec(&execit, ag, fl, NULL, NULL, values, NULL);

Chapter 7: Application Programming Interfaces 299

if (rc != 0)
{

printf(“irxexec error, rc = %d\n”, rc);
return rc;

}
else

/* display the returned value */
printf(“Value back from REXX = \”%.*s\"\n",

values->evlen, values->evdata);
}

The following program is “myexec.rex”:

parse arg one, two
say ‘First arg is: ‘ one
say ‘Second arg is:’ two
say ‘’
return_value = ‘Hello world’
return return_value

When you build and execute this application, the output
is:

First art is: arg1
Second arg is: arg2

Value back from REXX = “Hello world”

IRXEXITS The IRXEXITS interface provides a facility for
user-written exits to intercept certain uni-REXX opera-
tions before they are executed. The exit routine deter-
mines whether to perform its own processing or to let
uni-REXX continue as if no exit were taken.

The function declaration for IRXEXITS in irx.h is

void ORXXCDecl ORXXLoadDS irxexits(EXITBLK *);

The following declarations are required:

EXITBLK varname;

300 uni-REXX Reference Manual

varname is the name of your exit block.

The syntax for invoking the function in a C language
application is:

irxexits(&varname)

varname is the name of your exit block.

The following types of exits are supported:

initialization
exit is entered before any instructions in the
uni-REXX program are executed

termination
exit is entered after the last instruction in the
uni-REXX program has been executed

command
exit is entered when the uni-REXX program en-
counters a host command

termin
exit is entered when the uni-REXX program en-
counters an instruction that pauses for terminal in-
put; such instructions include PULL or PARSE
PULL when there is no data on the program stack,
PARSE LINEIN, and calls to CHARIN or LINEIN
using the default input stream

termout
exit is entered when the uni-REXX program en-
counters an instruction that performs output to the
terminal; such instructions include SAY, calls to
CHAROUT or LINEOUT using the default input
stream or specifying “stderr:” as the output stream,
and TRACE; the exit is also entered prior to output
of a uni-REXX diagnostic or error message

Only the initialization and termination exits do not set a
return code for use by the uni-REXX program. For all
the other exits, a return code of 0 indicates that the exit
handled the processing and that uni-REXX should not

Chapter 7: Application Programming Interfaces 301

execute the instruction that triggered the exit. Any
non-zero return code indicates that, regardless of any
processing performed by the exit, uni-REXX should ex-
ecute the instruction that triggered the exit.

Examples:

This example illustrates the use of the terminal input
and output exits. Other examples in this chapter also
include illustrations of user-written exits. Refer to the
examples for IRXEXCOM for an initialization exit and
the examples for IRXSTOP for a command exit.

For termin, the exit handles PULL, PARSE PULL
PARSE LINEIN, and CHARIN() invocations but permits
uni-REXX to handle LINEIN() invocations. For
termout, the exit handles LINEOUT invocations by pre-
fixing a message identifier to the output string; it per-
mits uni-REXX to handle all other output operations.

This program is named “termex.c”.
#include <stdio.h>
#include <string.h>
#include “irx.h”
static int trapin(); /* terminal input exit */
static int trapout(); /* terminal output exit */

int main(argc, argv)
int argc;
char **argv;
{

EXITBLK termexits;
int rc = 0;
(void) &argc;
(void) &argv;

/* set up exit block */
(void) memset(&termexits, 0, sizeof(EXITBLK));
termexits.termin = trapin;
termexits.termout = trapout;
irxexits(&termexits);

/* invoke the uni-REXX program */
rc = irxjcl(“termex.rex”);
if (rc != 0)

printf(“demoexit() REXX rc = %d\n”, rc);
}

static int trapin(type, len, str)
int type;
int *len;
char *str;
{

302 uni-REXX Reference Manual

(void) &str;
(void) strncpy(str, “Data from exit”, *len);
*len = strlen(str);
printf(“In the input exit\n”);
if (type == IOLINEIN) /* if instr is LINEIN */
{

printf(“Press enter to continue\n”);
return 1; /* tells REXX to handle instr */

}
else /*for all other terminal input instrs */
return 0; /* tell REXX we took care of it */

}

static int trapout(type, length, string)
int type;
int *length;
char *string;
{

if (type == IOLINEOUT) /* if instr is LINEOUT */
{
printf(“Output exit prefixing lineout strings\n”);
printf(“EXITMSG: %.*s\n”, length, string);
return 0; /* tells REXX we took care of it */

}
else /* for all other terminal output intrs */

return 1; /* tell REXX to handle it */
}

The following program is named “termex.rex”.

say ‘Now entering “termex.rex”’
say ‘About to invoke linein()’
x = linein()
call lineout ,’Back from exit’
say ‘Input string:’ x
say ‘About to invoke pull’
pull y
say ‘Input string:’ y
say ‘About to invoke charin()’
x = charin(,,14)
call lineout ,’Back from exit’
say ‘Input string:’ x

Chapter 7: Application Programming Interfaces 303

When you build and execute this application, the output
is:

Now entering “termex.rex”
About to invoke linein()
In the input exit
Press enter to continue

Output exit prefixing lineout strings
EXITMSG: Back from exit
Input string:
About to invoke pull
In the input exit
Input string: DATA FROM EXIT
About to invoke charin()
In the input exit
Output exit prefixing lineout strings
EXITMSG: Back from exit
Input string: Data from exit

304 uni-REXX Reference Manual

IRXJCL The IRXJCL interface provides a simple method for
calling a uni-REXX program. It does not require the
use of any control blocks.

The function declaration for IRXJCL in irx.h is

int ORXXCDecl ORXXLoadDS irxjcl(char *);

There are no required declarations.

The syntax for invoking the function in a C language
application is:

irxjcl(program)

program is the name of the uni-REXX program to be
executed, optionally followed by a space and calling ar-
guments for the program. It must be specified as a
null-terminated string. program may either be a literal
string enclosed in double quotes or the name of a C
language variable that has been set to a null-terminated
string.

Because only a single parameter may be passed to
IRXJCL, program must also include any calling argu-
ments required by the uni-REXX program.

Return codes that may be set by IRXJCL are

0 successful completion

20 an unspecified error occured

The returned value may also be set by specifying a
value on the RETURN or EXIT instruction in the
uni-REXX program.

Chapter 7: Application Programming Interfaces 305

Examples:

The first example illustrates the simplest use of
IRXJCL. It simply calls a uni-REXX program and tests
the return code. This program might be named
“jcltest.c”.

#include <stdio.h>
#include <string.h>
#include “irx.h”

main()
{
int rc = 0;
rc = irxjcl(“jcltest.rex”);
if (rc != 0)
printf(“IRXJCL error. rc = %d\n”, rc);

}

The uni-REXX program “jcltest.rex” might look like the
following:

say ‘Hello world’
say ‘I was called by the jcltest application’

When you build and execute this application, the output
is:

Hello world
I was called by the jcltest application

A slightly more complex example of “jcltest.c” might
include calling arguments.

#include <stdio.h>
#include <string.h>
#include “irx.h

main()
{
int rc = 0;
rc = irxjcl(“argtest.rex abc xyz”);
if (rc != 0)
printf(“IRXJCL error. rc = %d\n”, rc);

}

306 uni-REXX Reference Manual

The uni-REXX program “argtest.rex” might look like
the following:

parse arg first second
say ‘First arg is’ first
say ‘Second arg is’ second

When you build and execute this application, the output
is:

First arg is abc
Second arg is xyz

An alternative to hard-coding the program argument is
to use a variable as in the following example of
“jcltest.c”:

#include <stdio.h>
#include <string.h>
#include “irx.h”

main()
{
int rc = 0;
char args[9];
char prog[20];
strcpy(args, “ abc xyz”;
strcpy(prog, “argtest.rex”);
strcat(prog, args);
rc = irxjcl(prog);
if (rc != 0)
printf(“IRXJCL error. rc = %d\n”, rc);

}

This application uses the same uni-REXX program as in
the previous example. When you build and execute the
application, the output is also identical to the previous
example.

Chapter 7: Application Programming Interfaces 307

IRXSTK The IRXSTK interface provides an application with ac-
cess to the uni-REXX program stack. It allows you to
place data on the stack, retrieve data from the stack, or
query the size of the stack.

The function declaration for IRXSTK in irx.h is:

int ORXXLoadDS irxstk(char *, char *, int, int *);

There are no required control block declarations.

The syntax for invoking the function in a C language
application is:

irxstk(op, data, data_len, qvar)

op is the stack operation to be performed. It must be
specified as a null-terminated string and must be one of
the following, which correspond to uni-REXX instruc-
tions and built-in functions:

pull retrieve a line from the stack

push place a new line at the top of the stack

queue place a new line at the bottom of the stack

queued request the number of lines currently on the
stack

data is the name of the variable that contains the data.
If op is “push” or “queue”, data contains the value to
be placed on the stack. If op is “pull”, the value of
data is set to the line retrieved from the stack. If op is
“queued”, this argument should be specified as
“NULL”.

data_len is the length of the data. If op is “queued”,
this argument is ignored and should be specified as 0.

308 uni-REXX Reference Manual

qvar is the address of the variable in which the number
of lines currently on the stack is stored.

Examples:

The example shown here illustrates manipulation of the
uni-REXX program stack from within a special host
command environment. The following program is
named “stackem.c”.

#include <stdio.h>
#include <string.h>
#include “irx.h”

/* required forward reference */
int doit();

static char *stkdinfo="Put on stack by C prg";

int main(argc, argv)
int argc;
char **argv;
{
int rc = 0;

/*Set up host command environment: staktst */
IRXSUBCT staktst;
(void) strcpy(staktst.name, “staktst”);
staktst.routine = doit;
rc = irxsubcm(“add”, &staktst);
if (rc != 0)
{
printf(“irxsubcm add error, rc = %d\n”, rc);
exit(rc);
}

/* Run the uni-REXX program */
rc = irxjcl(“testit.rex”);
if (rc != 0)
{
printf(“irxjcl error, rc = %d\n”, rc);
exit(rc);
}

/* Remove staktst host command environment */
rc = irxsubcm(“delete”, &staktst);
if (rc != 0)
{

printf(“irxsubcm delete error, rc = %d\n”, rc);
exit(rc);

Chapter 7: Application Programming Interfaces 309

}
return rc;
}

/* uni-REXX host command interface: */
/* routine executed whenever the REXX program*/
/* executes “address staktst” */

int doit(sr);
char *sr;
{
int rc = 0;
int sz;
char stk[100];

/* Anything on the stack? */
rc = irxstk(“queued”, NULL, 0, &sz);
if (rc != 0)
{
printf(“irxstk queued error, rc=%d\n”, rc);
exit(rc);
}

else
{
printf(“Elements on stack = %d\n”, sz);

/* Retrieve a value from the stack */
rc = irxstk(“pull”, stk, sizeof(stk), &sz);
if (rc != 0)
{
printf(“irxstk pull error, rc=%d\n”, rc);
exit(rc);
}

else
printf(“Data from stack: \”%s\"\n", stk);

}

/* Put data on stack for uni-REXX to read */
strcpy(stk, stkdinfo);
rc = irxstk(“push”, stk, strlen(stk), &sz);
if (rc != 0)
{
printf(“irxstk push error, rc=%d\n”, rc);
exit(rc);
}

}

310 uni-REXX Reference Manual

The following uni-REXX program is named “testit.rex”:

say ‘’
say ‘Now entering “testit.rex” program’
say ‘’
x = “Placed here by REXX program”
say ‘Data to stack is:’
say ‘ ‘ x
push x
say ‘’
say ‘Next command is “address staktst go”’
say ‘’
say ‘Back from host command environment’
say ‘Is there anything on the stack?’
say ‘’
say ‘QUEUED() is:’ queued()
pull whatigot
say ‘’
say ‘Data from C program is:
say ‘ ‘ whatigot

When you build and execute this application, the output
is:

Now entering “testit.rex” program

Data to stack is:
Placed here by REXX program

Next command is “address staktst go”
Elements on stack = 1
Data from stack = “Placed here by REXX program”

Back from host command environment
Is there anything on the stack?

QUEUED() is: 1

Data from C program is:
PUT ON STACK BY C PRG

Chapter 7: Application Programming Interfaces 311

IRXSTOP The IRXSTOP interface stops the currently executing
uni-REXX program. The program stops when execution
of the current clause is complete.

The function declaration for IRXSTOP in irx.h is:

int ORXXLoadDS irxstop(void);

There are no required control block declarations.

The syntax for invoking the function in a C language
application is:

irxstop()

Return codes that may be set by IRXSTOP are

0 successful termination of the program

20 no program active

Examples:

The example that follows illustrates the use of
IRXSTOP in a command exit. For each host command
executed in the uni-REXX program, the exit examines
the command string. If it is “quit”, the exit executes
IRXSTOP to terminate the uni-REXX program. If the
command string is not “quit”, the exit sets the proper
return code to insure that the command is processed by
the host command environment. The following program
is named “stopit.c”.

312 uni-REXX Reference Manual

#include <stdio.h>
#include <string.h>
#include “irx.h”
/* forward references */
static int cmd();
static int doit();

int main()
{
/* declarations for control blocks */
EXITBLK cmdexit;
IRXSUBCT test;
int rc = 0;

/* set up exit block; enable exit routines */
memset(&cmdexit, 0, sizeof(EXITBLK));
cmdexit.command = cmd;
irxexits(&cmdexit);

/* set up host command environment */
(void) strcpy(test.name, “test”);
test.routine = doit;
if ((rc = irxsubcm(“add”, &test)) != 0)
{
printf(“irxsubcm error, rc = %d\n”, rc);
return rc;

}

/* invoke the uni-REXX program */
if ((rc = irxjcl(“quitit.rex”)) != 0)
{
printf(“irxjcl error, rc = %d\n”, rc);
return rc;

}

/* delete the host command environment */
if ((rc = irxsubcm(“delete”, &test)) != 0)
{
printf(“irxsubcm error, rc = %d\n”, rc);
return rc;

}
}

/*
* the command exit routine
*/
static int cmd(host_env, string, rc)
char *host_env;
char *string;
int *rc;
{
if (strcmp(string, “quit”) == 0)

Chapter 7: Application Programming Interfaces 313

{
irxstop();
return;

}
else
{
printf(“Command exit - string not quit\n”);
*rc = 1;
return;
}

}

/*
* the host command processing routine
*/
static int doit(sr)
char *sr;
{
int rc = 0;
printf(“Command string is: %s\n”, sr);
return;

}

The following program is “quitit.rex”.

say ‘Now beginning “quitit.rex”’
say ‘Sending “hello” to test’
address test ‘hello’
say ‘Back from host environment’
say ‘Sending “quit” to test’
address test ‘quit’
say ‘If this line prints, irxstop failed’

When you build and execute this application, the output
is:

Now beginning “quitit.rex”
Sending “hello” to test
Command exit - string not quit
Command string is: hello
Back from host environment
Sending “quit” to test

314 uni-REXX Reference Manual

IRXSUBCM The IRXSUBCM interface is used to manage host com-
mand environments for uni-REXX programs.

The function declaration for IRXSUBCM in irx.h is:

int ORXXLoadDS irxsubcm(char *, IRXSUBCT *);

The following declarations are required:

IRXSUBCT varname;

varname may be any variable name of your choosing.

The syntax for invoking the function in a C language
application is:

irxsubcm(function, &varname)

function is the function to perform. It must be specified
as a null-terminated string and must be one of the
following:

add add a new host command environment

delete delete an existing host command environment

update update an existing host command environment

varname is the name of your host command block.

Return codes that may be set by IRXSUBCM are

0 function successful

20 an error occurred, such as an invalid function
request

28 host command environment not found

Chapter 7: Application Programming Interfaces 315

Examples:

The example which follows illustrates creating, modify-
ing, and deleting a host command environment. It also
illustrates the effects of the modification on subsequent
executions of the uni-REXX program. The following
program is named “subcom.c”.

#include <stdio.h>
#include <string.h>
#include “irx.h”

/* forward references */
static int cmd();
static int doit();

int main()
{
/* declare host command environment block */
IRXSUBCT test;
int rc = 0;

/* set up host command environment */
(void) strcpy(test.name, “test”);
test.routine = doit;
rc = irxsubcm(“add”, &test)
if (rc != 0)
{
printf(“irxsubcm error, rc = %d\n”, rc);
return rc’

}

/* execute the uni-REXX program */
rc = irxjcl(“hostcmd.rex CALL1")
if (rc != 0)
{
printf(“irxjcl error, rc = %d\n”, rc);
return rc;

}

/* change the host command environment */
test.routine = cmd;
rc = irxsubcm(“update”, &test);
if (rc != 0)
{
printf(“irxsubcm error, rc = %d\n”, rc);
return rc;

}

316 uni-REXX Reference Manual

/* execute the uni-REXX program again */
rc = irxjcl(“hostcmd.rex CALL2")
if (rc != 0)
{
printf(“irxjcl error, rc = %d\n”, rc);
return rc;

}

/* remove the host command environment */
rc = irxsubcm(“delete”, &test);
if (rc != 0)
{
printf(“irxsubcm error, rc = %d\n”, rc);
return rc;

}
}

static int doit(sr)
char *sr;
{
int rc = 0;
printf(“Message from C routine ‘doit’\n”);
printf(“Command string is: %s\n”, sr);
return;

}

static int cmd(sr)
char *sr;
{
int rc = 0;
printf(“Message from C routine ‘cmd’\n”);
printf(“Command string is: %s\n”, sr);
return;

}

The following program is “hostcmd.rex”.

parse arg parm
say ‘Called with’ parm
say ‘’
say ‘Now executing host command’
address test parm
say ‘’
say ‘Back from host command’

Chapter 7: Application Programming Interfaces 317

When you build and execute this application, the output
is:

Called with CALL1

Now executing host command
Message from C routine ‘doit’
Command string is: CALL1

Back from host command
Called with CALL2

Now executing host command
Message from C routine ‘cmd’
Command string is: CALL2

Back from host command

318 uni-REXX Reference Manual

Building
Embedded
Applications

The UNIX make facility provides the capabilities
needed to build applications that embed uni-REXX as a
macro language. This section describes the require-
ments for building the application and some example
make files.

Building the application is a two step process involving

• compiling the C language program
• generating an executable binary

The UNIX “cc” command (or its equivalent) can be
used for both steps because “cc” automatically invokes
the “ld” (load) command to create a binary unless ex-
plicitly instructed to do otherwise.

Typically, the command name “cc” is used to invoke
the C compiler. At some sites this may be an alias for
or a symbolic link to a differently named compiler mod-
ule. Some sites may prefer to use a different compiler
(such as “gcc” – GNU C) and choose to invoke it di-
rectly by the name under which it is installed.

The “cc” command is most often located in /usr/bin; or
a symbolic link in /usr/bin points to the actual location.
Since /usr/bin is typically in each user’s PATH, access
to the command is automatic. If this is not the case, it
may be necessary to add the location of the compiler to
your PATH environment variable before attempting to
build your application.

If you are having difficulty accessing the C compiler at
your site, contact your system administrator for
assistance.

The load phase requires access to one or more libraries
to resolve function calls and system calls that appear in
your program. The C and system libraries are typically
found in a location known to the compiler and are auto-
matically searched. On some systems, it may be neces-
sary to set a special environment variable to access the
right version of these libraries. As an example, Sun’s
SUNWspro compiler does not use the libraries in

Chapter 7: Application Programming Interfaces 319

/usr/lib and requires that the environment variable
LD_LIBRARY_PATH point to the correct libraries for
successful loading. If you are having difficulty success-
fully creating an executable binary, contact your system
administrator for assistance in finding the correct
libraries.

In addition to these system facilities, building an em-
bedded application requires access to the following
files, delivered on the uni-REXX distribution media:

irx.h the uni-REXX header file that con-
tains the API function and control
block declarations

irxproto.h additional header file used internally

librx.a the uni-REXX archive library that
contains the interpreter object code

Be sure that you are using these files from the same
version of uni-REXX. A mismatch between the version
levels of irx.h and librx.a will cause unpredictable and
undesirable results. A call to ORXXVersionCheck() in
your C program will generate an error if a mismatch
exists.

If you have only a single source program, a single “cc”
command can be used to compile your program and
generate a binary executable. Such a “cc” command
would look something like
cc -I/usr/local/rexx app.c -L/usr/local/rexx -lrx -lm -o app

The components of this command are

320 uni-REXX Reference Manual

cc the command to invoke the compiler; it
automatically invokes the “ld” com-
mand because the “-c” flag is not
present

-I/usr/local/rexx specifies the directory to search for the
irx.h header file – /usr/local/rexx in
this example, but this may differ at
your site

app.c the name of the source program to use
as input to this entire process

-L/usr/local/rexx specifies the directory to search for the
librx.a archive library – /usr/local/rexx
in this example, but this may differ at
your site

-lrx instructs the loader to search the file
“librx.a” to resolve external references

-lm instructs the loader to search the file
“libm.a” to resolve external references;
this is the math library and is required
for uni-REXX

-o app specifies the name to be assigned to the
executable binary that is created; if this
flag and a name are not specified, the
default name is “a.out”

It is also possible to use environment variables to refer-
ence the locations for the header and library files. If
you set the environment variable REXXLIB to include
the directory in which librx.a and irx.h are found, the
“cc” command on the preceding page could be modified
to read
cc -I$(REXXLIB) myapp.c -L$(REXXLIB) -lrx -lm -o myapp

For ease of maintenance, it is probably preferable to
create a makefile that can be executed whenever you
need to rebuild the application. A makefile to automate
the example illustrated above would look like:

Chapter 7: Application Programming Interfaces 321

REXXLIB=/usr/local/rexx
myapp: myapp.c $(REXXLIB)
cc -I$(REXXLIB) myapp.c -L$(REXXLIB) -lrx -lm -o myapp

The first character on the line that contains the “cc”
command must be a tab character. The lines in this
file do the following:

line 1 set the environment variable REXXLIB
to specify the location of irx.h and
librx.a

line 2 specify the target of this make process;
also specify the dependencies for the
make

line 3 compile the source and generate the ex-
ecutable binary

If the name of this file is “makefile” or “Makefile”, you
execute it simply by typing the command “make”. You
may give it a more descriptive name, if you prefer,
such as “mkmyapp”. In this case, execute it by typing

make -f mkmyapp

If your application requires more than one source file,
the make facility is the best approach for managing the
build. In the example make file that follows, three
source programs are required:
REXXLIB=/usr/local/rexx
myapp: app1.o app2.o app3.o $(REXXLIB)
cc -L$(REXXLIB) -lrx -lm -o myapp app1.o app2.o app3.o

.c.o:
cc -c -I$(REXXLIB) $*.c

As in the previous example, the first character on each
line that contains the “cc” command must be a tab
character.

Your source program may require additional include
files and access to other libraries. It may also require
additional compiler or loader flags. Refer to your sys-
tem man pages for “cc” and “ld” to determine what ad-

322 uni-REXX Reference Manual

ditional flags may be necessary. Your system adminis-
trator may also be an excellent resource for researching
these topics.

Input files to “make” can also be far more sophisticated
and complex, depending on the requirements of your ap-
plication. Refer to your system man pages for “make”
or to other topical references for guidance in creating
your make files.

External
Function
Packages

uni-REXX supports the use of external function pack-
ages. Such functions are often written in C, but may
also be written in any language that may be called from
C and that supports the control block structures required
by uni-REXX. This section gives details for writing ex-
ternal function packages in C.

You may use an external function package in one of
two ways:

• as part of an embedded application, where
uni-REXX programs are executed from a C lan-
guage application using one of the APIs described
earlier in this chapter

• within a stand-alone uni-REXX program

For embedded applications, the function package is
linked directly into the application. For stand-alone
uni-REXX programs, the -G option of the rxc command
permits you to generate a version of the interpreter that
includes the function package. The control blocks and
variables required are identical for either type of
application.

Control Blocks

The use of external function packages involves control
blocks that use the following types:

FPCKDIR
the function package directory. You must provide
directory entries for each function in the package.

Chapter 7: Application Programming Interfaces 323

ARGLIST
the function argument list. uni-REXX uses an ar-
ray of this type to pass arguments to the function.
This array is the first argument for each function
in the package.

EVALBLOCK
values returned by the program. uni-REXX uses
this structure to retrieve returned values from each
function. It is the first argument of each function
in the package.

Writing a Function Package

Each function in the package should be defined as in
the example below for a function named “loc1".

#ifdef __STDC__
void loc1(ARGLIST *ag, EVALBLOCK *ev)
#else
void loc1(ag, ev)
ARGLIST *ag;
EVALBLOCK *ev;
#endif
{

:
function code
:

}

The examples used in this document use the
#ifdef/#else/#endif syntax to illustrate coding alterna-
tives between ANSI-compliant C compilers and
non-ANSI-compliant compilers. The ANSI-compliant
syntax is shown first (following #ifdef __STDC__) with
the older syntax shown as the #else alternative. You
need use only one of these options; and most compilers
will process the older syntax correctly.

The function code may retrieve and process function ar-
guments. As an example, the following code prints, for
each argument:

324 uni-REXX Reference Manual

from loc1: argstring_ptr = arg-n

where arg-n is the function argument.

while (ag->argstring_ptr != NULL)
{
printf(“from loc1: argstrng_ptr = %.s\n”,
ag->argstring_length, ag->argstring_ptr);
++ag;

}

The function code may also set a return value for use
by uni-REXX. This may be a simple numeric return
code or any appropriate return value. In a simple ex-
ample, the function named “loc1" returns its name as
the return value using the following code:

strncpy(ev->evdata, “loc1", ev->evsize -1);
ev->evlen = strlen(ev->evdata);

Thus, if the uni-REXX program contains the simple
statement

call loc1 hello

the value of the special variable RESULT is “loc1".

Alternatively, if the program contains the statement

say loc1(anything)

the output of the uni-REXX “say” statement is “loc1".

By combining all these elements, you have a simple
function named “loc1" which

• receives one or more arguments from the function
• prints the string `from loc1: argstring_ptr = arg-n’

for each argument
• sets the return value “loc1" for use by the

uni-REXX program

The combined code looks like the following:

Chapter 7: Application Programming Interfaces 325

#ifdef __STDC__
void loc1(ARGLIST *ag, EVALBLOCK *ev)
#else
void loc1(ag, ev)
ARGLIST *ag;
EVALBLOCK *ev;
#endif
{
while (ag->argstring_ptr != NULL)
{
printf(“from loc1: argstring_ptr = %.s\n”,
ag->argstring_length, ag->argstring_ptr);
++ag;

}
strncpy(ev->evdata, “loc1", ev->evsize -1);
ev->evlen = strlen(ev->evdata);

}

To complete the function package, you must add an en-
try for loc1 in a function package directory. For conve-
nience, use the existing directory named irxfloc. This
definition looks like

FPCKDIR irxfloc[] =
{
{“loc1", loc1},
{NULL, NULL}

};

To avoid problems with forward references, you may
want to place this definition after the function code.

You must also include appropriate headers at the begin-
ning of the package. For this example, you need only

<stdio.h> for input/output processing

<string.h> for the strncpy function

“irx.h” for uni-REXX compatibility

326 uni-REXX Reference Manual

Your complete function package should therefore look
like:

#include <stdio.h>
#include <string.h>
#include “irx.h”
#ifdef __STDC__
void loc1(ARGLIST *ag, EVALBLOCK *ev)
#else
void loc1(ag, ev)
ARGLIST *ag;
EVALBLOCK *ev;
#endif
{
while (ag->argstring_ptr != NULL)
{
printf(“from loc1: argstring_ptr = %.s\n”,
ag->argstring_length, ag->argstring_ptr);
++ag;

}
strncpy(ev->evdata, “loc1", ev->evsize -1);
ev->evlen = strlen(ev->evdata);

}
FPCKDIR irxfloc[] =
{
{“loc1", loc1},
{NULL, NULL}

};

You may place your function package directory defini-
tion at the beginning of the package, but this requires
that you first define each function, then define the func-
tion package directory, and finally include the execut-
able code for each function. The result would look
something like the following:

Chapter 7: Application Programming Interfaces 327

#include <stdio.h>
#include <string.h>
#include “irx.h”
#ifdef __STDC__
void loc1(ARGLIST *ag, EVALBLOCK *ev)
#else
void loc1();
#endif
FPCKDIR irxfloc[] =
{
{“loc1", loc1},
{NULL, NULL}

};
#ifdef __STDC__
void loc1(ARGLIST *ag, EVALBLOCK *ev)
#endif
void loc1(ag, ev)
ARGLIST *ag;
EVALBLOCK *ev;
#endif
{
while (ag->argstring_ptr != NULL)
{
printf(“from loc1: argstring_ptr = %.s\n”,
ag->argstring_length, ag->argstring_ptr);
++ag;

}
strncpy(ev->evdata, “loc1", ev->evsize -1);
ev->evlen = strlen(ev->evdata);

}

Typically, an external function package will contain a
number of functions for use by uni-REXX programs. In
such cases, the function package code includes a defini-
tion of each function, and there is an entry in one of
the function package directories (irxfloc, irxuser, or
your own directory name) for each function in the
package.

Execution Options

The next step depends on whether this function package
is to be part of an embedded application or if it is to
be used in stand-alone uni-REXX programs.

Embedded Applications. In an embedded application,
the function package would normally be part of a larger
application that includes other processing. Such an ap-

328 uni-REXX Reference Manual

plication would already contain code for one of the
uni-REXX APIs to invoke a uni-REXX program from
within the C program.

The simplest case uses IRXJCL to invoke the
uni-REXX program. The code necessary to call the
program “demofunc.rex” from the sample function pack-
age is as follows:

main()
{
int rc = irxjcl(“demofunc.rex”);
printf(“demofunc() rc = %d\n”, rc);

}

Add it to the end of the example function package as
shown below.

#include <stdio.h>
#include <string.h>
#include “irx.h”
#ifdef __STDC__
void loc1(ARGLIST *ag, EVALBLOCK *ev)
#else
void loc1(ag, ev)
ARGLIST *ag;
EVALBLOCK *ev;
#endif
{
while (ag->argstring_ptr != NULL)
{
printf(“from loc1: argstring_ptr = %.s\n”,
ag->argstring_length, ag->argstring_ptr);
++ag;

}
strncpy(ev->evdata, “loc1", ev->evsize -1);
ev->evlen = strlen(ev->evdata);

}
FPCKDIR irxfloc[] =
{
{“loc1", loc1},
{NULL, NULL}

};
main()
{
int rc = irxjcl(“demofunc.rex”);
printf(“demofunc() rc = %d\n”, rc);

}

Chapter 7: Application Programming Interfaces 329

You then build the application as described in the sec-
tion “Building Embedded Applications” in this chapter.

Stand-alone uni-REXX Programs. If you want to use
your function package in stand-alone uni-REXX pro-
grams, you must create a new version of the uni-REXX
interpreter that includes your function package. Several
options of the rxc command are provided for this
purpose:

-G required to generate a new interpreter

-L used optionally to specify the location of
object libraries

-l used optionally to specify the name of
user-supplied object libraries

-o to specify the name for the new interpreter;
if omitted, the default name “rxx” is used

The -L, -l, and -o options function like their cc(1)
counterparts.

Generation of a new interpreter requires access to the
uni-REXX library librx.a. This access is provided
through the environment variable REXXLIB, which
must point to the directory where librx.a resides.

The steps to generate a new interpreter are the
following:

1. Compile your function package (“fpack” for this ex-
ample), using appropriate cc options including -c and
-o to create fpack.o.

330 uni-REXX Reference Manual

2. Set the environment variable REXXLIB to point to
the directory containing librx.a. If librx.a is located
in /usr/local/bin, you would type

C Shell: setenv REXXLIB /usr/local/rexx

Bourne Shell: REXXLIB = /usr/local/rexx
export REXXLIB

Korn Shell: REXXLIB = /usr/local/rexx
export REXXLIB

3. Generate a new interpreter using rxc. For the simple
example here, it is sufficient to type

rxc -G fpack.o

This produces a new version of “rxx” that contains
the functions in fpack. If you wish to have a sepa-
rate version of the interpreter for use with these
functions, use

rxc -G fpack.o -o frxx

You would then use frxx to run any uni-REXX
program that uses the functions defined in fpack.

In this case, you do NOT include the API code in your
function package code.

Examples:

An example of a function package for use in an embed-
ded application follows. The application (“xmpl.c”) de-
fines two functions (“loc1" and ”loc2") that are defined
as part of the “irxfloc” package. This application uses
the API IRXJCL to invoke the uni-REXX program
“xmpl.rex”. Listings of “xmpl.c” and “xmpl.rex” appear
below along with sample output. This example is in-
cluded in the uni-REXX Sample Library provided on
the distribution media.

The listing which follows is “xmpl.c”.

Chapter 7: Application Programming Interfaces 331

#include <stdio.h>
#include <string.h>
#include “irx.h”
#ifdef __STDC__
void loc1(ARGLIST *ag, EVALBLOCK *ev)
#else
void loc1(ag, ev)
ARGLIST *ag;
EVALBLOCK *ev;
#endif
{
while (ag-argstring_ptr != NULL)
{

printf(“from loc1: argstring_ptr = \”%.*s\"\n",
ag->argstring_length, ag->argstring_ptr);
++ag;

}
strncpy(ev->evdata, “loc1", ev->evsize - 1);
ev->evlen = strlen(ev->evdata);

}
#ifdef __STDC__
void loc2(ARGLIST *ag, EVALBLOCK *ev)
#else
void loc2(ag, ev)
ARGLIST *ag;
EVALBLOCK *ev;
#endif
{
while (ag->argstring_ptr != NULL)
{

printf(“from loc2: argstring_ptr = \”%.*s\"\n",
ag->argstring_length, ag->argstring_ptr);
++ag;

}
strncpy(ev->evdata, “loc2", ev->evsize - 1);
ev->evlen = strlen(ev->evdata);

}
FPCKDIR irxfloc[] =
{
{“loc1", loc1},
{“loc2", loc2},
{NULL, NULL}

};
main()
{
int rc = irxjcl(“xmpl.rex”);
printf(“xmpl() rc = %d\n”, rc);

}

332 uni-REXX Reference Manual

The listing which follows is “xmpl.rex”.

say loc1(hello)
say loc1(hello,goodbye)
say loc2(wrkgrp)
call loc2 1,2,3
say result
call loc1 test
if result \= ‘loc1’ then say ‘loc1 call failed’

else say ‘loc1 call successful’

This is the uni-REXX program that is executed through
the IRXJCL API in “xmpl.c”.

Build the example application, naming the executable
binary “xmpl”. To run the example program, type

xmpl

The output should look like the following:

from loc1: argstring_ptr = “HELLO”
loc1
from loc1: argstring_ptr = “HELLO”
from loc1: argstring_ptr = “GOODBYE”
loc1
from loc2: argstring_ptr = “WRKGRP”
loc2
from loc2: argstring_ptr = “1"
from loc2: argstring_ptr = “2"
from loc2: argstring_ptr = “3"
loc2
from loc1: argstring_ptr = “TEST”
loc1 call successful
xmpl() rc = 0

The lines that begin with “from” result from the printf
statements in the functions “loc1" and ”loc2". The
lines that begin with the function name result from the
“say” statements in “xmpl.rex”. The last line of output
is from the printf statement following the execution of
IRXJCL in “xmpl.c”.

Chapter 7: Application Programming Interfaces 333

If you wish to use “xmpl.rex” as a stand-alone uni-REXX
program, you must modify “xmpl.c” and generate a spe-
cial version of the interpreter that contains your function
package.

1. Remove the last five lines (beginning with “main()”)
from xmpl.c.

2. Recompile xmpl.c using

cc xmpl.c -c -o xmpl.o

3. Set the environment variable REXXLIB to the loca-
tion where the file “librx.a” resides. This is nor-
mally where uni-REXX is installed.

4. Generate the special version of the interpreter using

rxc -G xmpl.o -o myrxx

To run “xmpl.rex” using your specially generated inter-
preter, type

myrxx xmpl.rex

The output from this execution is identical to that
shown above except that the last line (the result of the
IRXJCL execution) is not included.

334 uni-REXX Reference Manual

Control Blocks The remaining sections of this chapter discuss the con-
trol blocks used by the APIs. Previous sections have
made reference to the use of these control blocks. De-
tailed documentation is provided here.

ARGLIST ARGLIST is the structure used by uni-REXX to pass
argument strings. ARGLIST contains the following
fields:

argstring_ptr a pointer to the location where the ar-
gument string is stored

argstring_length the length of the argument string

The final element in the array of ARGLIST structures
has argstring_ptr set to NULL and argstring_length set
to zero.

The definition for ARGLIST in irx.h is

typedef struct arglist
{
char *argstring_ptr;
int argstring_length;

}
ARGLIST;

CPCKDIR CPCKDIR is the structure that is used to create a direc-
tory of all command packages available in uni-REXX.

The definition of CPCKDIR in irx.h is:

typedef struct
{
const char *cmdname;
int (*cmdaddr)(int argc,

char **argv);
}
CPCKDIR;

Chapter 7: Application Programming Interfaces 335

EVALBLOCK EVALBLOCK is the structure used by uni-REXX to
store values returned by the uni-REXX program.
EVALBLOCK contains the following fields:

evsize the maximum size of the return value

evlen the length of the value actually re-
turned

evdata the location of the returned data; this
field is declared as a one-byte character
array but is actually an array of
evsize length; for external functions,
the size of evdata is generally limited
to about 250 characters, though this
limitation may vary among different
platforms

The definition for EVALBLOCK in irx.h is

typedef struct evalblock
{
int evsize;
int evlen;
char evdata[1];

}
EVALBLOCK;

EXECBLK EXECBLK is the structure used by uni-REXX to de-
scribe the program name, program location, and default
host command environment for IRXEXEC.
EXECBLK contains the following fields:

subcom the name of the default host command,
specified as a null-terminated string

dsnptr a pointer to the location that contains
the uni-REXX program file name

pathptr a pointer to the location that contains
the name of the environment variable
which identifies the search path for
uni-REXX programs

336 uni-REXX Reference Manual

If pathptr is NULL, a default path is created by concat-
enating the default host command environment name
with the string “PATH”. Thus, if the default host com-
mand environment name is “TPSYS” and pathptr is
NULL, the pathname that will be used to locate
uni-REXX programs is “TPSYSPATH”.

The definition for EXECBLK in irx.h is

typedef struct execblk
{
char *dsnptr;
char *pathptr;
char subcom[ORXXSubComMaxLength + 1];

}
EXECBLK;

EXITBLK EXITBLK is the structure used by uni-REXX to contain
the exit addresses that are passed to the interpreter.
Each exit address should point to a routine of the cor-
rect type for that exit. This routine is then called by
uni-REXX at the point of execution which corresponds
to the exit.

The definition of EXITBLK in irx.h is
typedef struct exitblk
{

int (ORXXCDecl ORXXLoadDS * termout)(int, int, char *);
int (ORXXCDecl ORXXLoadDS * termin)(int, int *, char *);
int (ORXXCDecl ORXXLoadDS * command)(char *, char *, int *);
void (ORXXCDecl ORXXLoadDS * termination)(int, int);
void (ORXXCDecl ORXXLoadDS * initialization)(void)

: /* defines for terminal I/O types */
: /* and termination types */

}
EXITBLK;

A typical exit block definition would look something
like

EXITBLK myexits:
:
:

myexits.initilization = init;
myexits.command = cmd;
myexits.termination = atend;
irxexits(&myexits);

Chapter 7: Application Programming Interfaces 337

The parameters for each exit routine are as follows:

termout
I/O type – from the list below; this is passed to
the exit and is determined by the I/O instruction
that triggered the exit

output buffer length – passed to the exit

output buffer – passed to the exit

termin
I/O type – from the list below; this is passed to
the exit and is determined by the I/O instruction
that triggered the exit

pointer to the input buffer length – the buffer
length is passed to the exit; the exit should re-
turn the length of the data this it returns

input buffer – passed to the exit

I/O types

IOCHARIN set by charin() from STDIN

IOCHAROUT set by charout() to STDOUT

IODIAGNOSTIC set by a diagnostic message

IOERROR set by an error message

IOLINEIN set by LINEIN() from STDIN

IOLINEOUT set by LINEOUT() to STDOUT

IOPARSE set by PARSE PULL from terminal
or PARSE LINEIN

IOPULL set by PULL from terminal

IOSAY set by SAY

IOTRACE set by trace output or inter-
active trace input

IOCHARERR set by CHAROUT(“stderr:”)

IOLINEERR set by LINEOUT(“stderr:”)

338 uni-REXX Reference Manual

command
host command environment name – passed to the
exit

command buffer – passed to the exit

pointer to command return code – set by the exit

termination
termination reason

return code – set by the exit; must be one of the
following:

TERMNORMAL normal termination

TERMERROR an error occurred

TERMHALT halt condition is raised

initialization
none

FPCKDIR FPCKDIR is a structure used to create function directo-
ries for each function package available to uni-REXX.
FPCKDIR contains the following fields:

funcname the name by which this function is ref-
erenced in a uni-REXX program

funcaddr the name of the C routine that performs
the processing

The definition for FPCKDIR in irx.h is

typedef struct
{
char *funcname;
int (*funcaddr)(ARGLIST *arglist,

EVALBLOCK *evalblock);
}
FPCKDIR;

Chapter 7: Application Programming Interfaces 339

There are two default function directories:

irxfloc

irxfuser

Each directory is actually an array of arbitrary length
that contains any number of funcname/funcaddr pairs.
The last entry in the array must have both funcname
and funcaddr set to NULL to indicate the end of the
array. A typical function directory definition should
look something like

FPCKDIR irxfloc[] =
{
{“loc1", loc1},
{“loc2", loctwo},
{NULL, NULL}

};

This defines two functions, loc1 and loc2. Note the re-
quired quotation marks around the character variable
funcname. Note also that it is not necessary to use the
same name for funcname and funcaddr. Further, you
may define aliases by using more than one name for the
same function.

The two default function directories are defined in irx.h
by

FPCKDIR *irxpackt[] =
{
irxfuser,
irxfloc,
NULL

};

irxpackt is an array of pointers to structures of type
FPCKDIR and is a global variable in uni-REXX. If
irxpackt is defined in your function package code, that
definition overrides the uni-REXX default. You may
therefore add your own function package directories by
including a definition of irxpackt in your function pack-

340 uni-REXX Reference Manual

age code. As an example, to add a directory named
“myfp”, include the following definition in your code:

FPCKDIR *irxpackt[] =
{
irxfuser,
irxfloc,
myfp,
NULL

};

Note that irxpackt is also an array of arbitrary length
and that the last element must be NULL to indicate the
end of the array.

There are no requirements that you use a specific direc-
tory name for a specific purpose. You may include the
functions in your function package in either of the two
default directories or in a new directory that you have
added. You may use the different directory names to
logically organize the functions in your application, or
you may include all your functions in a single direc-
tory.

INSTBLK INSTBLK is the structure used by uni-REXX to de-
scribe a uni-REXX program that is currently in memory.
It contains the following fields:

address a pointer to an array of structures of
type STMT; the STMT structure de-
scribes a line of a uni-REXX program
and is described in detail in this chap-
ter

usedlen the length of the STMT array in bytes

dsname a pointer location that contains the
name of the uni-REXX program; this is
used by the PARSE SOURCE
instruction

Chapter 7: Application Programming Interfaces 341

The definition of INSTBLK in irx.h is

typedef struct instblk
{
STMT *address;
int usedlen;
char *dsname;

}
INSTBLK;

342 uni-REXX Reference Manual

IRXSUBCT IRXSUBCT is the structure used by uni-REXX to pass
information about the host command environment to
IRXSUBCM. It contains the following fields:

name the name of the host command environ-
ment, specified as a null-terminated
string

routine the address of the routine that pro-
cesses host commands; the host com-
mand is passed to the routine as a
null-terminated string

The definition of IRXSUBCT in irx.h is

typedef struct irxsubct
{
int (ORXXDecl ORXXLoadDS * routine)(char *)
char name[ORXXSubComMaxLength + 1]

}
IRXSUBCT;

A typical host command environment definition would
look something like this

IRXSUBCT tpsys;
:
:

(void) strcpy(tpsys.name, “tpsys”);
tpsys.routine = tape_sys;
:
:

int tape_sys(nm)
char *nm;
:
:

Chapter 7: Application Programming Interfaces 343

SHVBLOCK SHVBLOCK is the structure used to share variables be-
tween an application that embeds uni-REXX as a macro
language and the uni-REXX program(s) that it executes.
It contains the following fields:

shvnext a pointer to the next shared variable
block; this field should be specified as
NULL if there are no more shared vari-
able blocks

shvuser the length of the variable name for the
variable returned by the shvnextv
function

shvcode the shared variable function to be per-
formed; this must be specified as a
null-terminated string and must be one
of the function names in the following
list; the function may be specified in
upper- or lowercase but not in mixed
case

SHVSTORE
store the value of the specified variable; no
symbolic substitution for compound variable
tails is performed

SHVFETCH
fetch the value of the specified variable; no
symbolic substitution for compound variable
tails is performed

SHVDROPV
drop the specified variable

SHVSYSET
store the value of the specified variable; per-
form symbolic substitution on compound vari-
able tails

SHVSYFET
fetch the value of the specified variable; per-
form symbolic substitution on compuond vari-
able tails

344 uni-REXX Reference Manual

SHVSYDRO
drop the specified variable; perform symbolic
substitution on compound variable tails

SHVNEXTV
fetch the value of the next variable

SHVPRIV
fetch private information

shvret the return code flag set by the shared
variable function; it will be one of the
following; when testing the value of
shvret, the return flag may be specified
in upper- or lowercase, but not in
mixed case

SHVCLEAN
function completed successfully

SHVNEWV
the specified variable did not exist

SHVLVAR
the shvnextv function retrieved the last avail-
able variable

SHVTRUNC
truncation occurred during a fetch function

SHVBADN
the specified variable name is invalid

SHVBADV
the value of the specified variable is too long

SHVBADV
the function code specified is invalid

shvbufl the length of the fetch value buffer

Chapter 7: Application Programming Interfaces 345

shvnama the address of the variable name

shvnaml the length of the variable name

shvvala the address of the value buffer

shvvall the length of the value

The definition of SHVBLOCK in irx.h is

typedef struct shvblock
{
struct shvblock *shvnext;
int shvuser;
char shvcode;
char shvret;
int shvbufl;
char *shvnama;
int shvnaml
char *shvvala;
int shvvall;
: /* defines for function codes and */
: /* return codes */

}
SHVBLOCK;

A typical shared variable block definition would look
something like

SHVBLOCK rxvar;
:
:

(void) memset(&rxvar, 0, sizeof(SHVBLOCK))
rxvar.shvcode = shvstore;
rxvar.shvnama = “v2";
rxvar.shvnaml = (int) strlen(rxvar.shvnama);
rxvar.shvvala = v2;
rxvar.shvvall = (int) strlen(rxvar.shvvala);

rc = irxexcom(&rxvar);

346 uni-REXX Reference Manual

STMT STMT is the structure used by uni-REXX to contain
lines of the uni-REXX program currently in memory. It
contains the following fields:

stmt a pointer to a string containing a line
from the program currently in memory

stmtlen the length of the line pointed to by stmt

The definition of STMT in irx.h is

typedef struct
{
char *stmt;
int stmtlen;

}
STMT;

Chapter 7: Application Programming Interfaces 347

Interprocess
Communica-
tion with
uni-REXX

You may wish to create your own stand-alone C lan-
guage programs that communicate directly with
uni-REXX. The uni-REXX archive library librxi.a is
provided for this purpose.

The type of communication between your stand-alone
application and uni-REXX is selected from the
application programming interfaces described earlier
in this chapter. For example, if you wish to use the
uni-REXX program stack to share data, use the IRXSTK
API in your stand-alone program. Your application
must include the uni-REXX header file “irx.h”.

The only difference in creating such a stand-alone pro-
gram and building an embedded application is the inclu-
sion of the librxi.a library in the library search path. A
simple “cc” command to build a stand-alone program
that communicates with uni-REXX is
cc -I$(REXXLIB) app.c -L$(REXXLIB) -lrxi -lrx -lm -o app

This assumes, of course, that you have set the environ-
ment variable REXXLIB to point to the location of
irx.h, librx.a, and librxi.a on your system. The library
librxi.a must be searched before librx.a. The order of
the “-l” flags on the “cc” command is critical.

Refer to the section entitled “Building Embedded Appli-
cations” earlier in this chapter for a detailed discussion
of compiling and building C language applications.

Examples:

The following program, named “rxqueue.c”, is an exam-
ple of a stand-alone application that communicates with
uni-REXX through the program stack.

348 uni-REXX Reference Manual

/*
** Copyright(C) iX Corporation 1993-1994.
** All rights reserved.
**
** Module =
**
** rxqueue.c
**
** Abstract =
**
** This is the rxqueue routine. It’s a demonstra-
** tion of how inter-process APIs work (just like
** the ones that are linked into an application, only
** slower due to IPC overhead).
**
** This program works like the OS/2 rxqueue command.
** It copies it’s
** standard input to Open-REXX’s stack. This is
** useful for capturing output of a command.
** For example:
**
** “ls | rxqueue”
**
** would place the ls command’s output in the
** uni-REXX stack.
**
** History =
**
** 20-Apr-92 nfnm 0.00 added this comment
**
** Possible future enhancements =
**
** Demostrate other APIs, such as irxexcom()
** updating variables.
**
*/
/*
* buffer size increments
*/

#define RXQUBFSZ 100
/*
* includes
*/

#include <stdio.h>
#include “irx.h”
/*
** Routine =
**
** main
**
** Abstract =
**
** main() for rxqueue
**
** Parameters =
**
** 1) argc
** 2) argv
**
** Returns =
**
** void
**
** Possible future enhancements =

Chapter 7: Application Programming Interfaces 349

**
*/

#ifdef ORXXPrototype
int ORXXCDecl main(int argc, char **argv)
#else
int ORXXCDecl main(argc, argv)
int argc;
char **argv;
#endif
{
/*
* input character
*/
int ch;

/*
* return code
*/
int rqrc = 0;

/*
* input buffer size and length remaining
*/
unsigned srsz = RXQUBFSZ, srle = srsz;

/*
* input buffer and input buffer pointer
*/
char *sr, *srpt;

/*
* create the buffer
*/
if ((sr = malloc(srsz)) == NULL)
{
(void) printf(“rxqueue - out of memory, rc = 20\n”);
rqrc = 20;

}
srpt = sr;

/*
* there shouldn’t be any arguments
*/
if (argc != 0)
{

/*
* read characters until EOF
*/

do
{

/*
* if the character is newline or EOF, send the line
* to the REXX queue
*/

if ((ch=getchar())==’\n’ || (ch==EOF && (srpt - sr)!=0))
{

/*
* if adding to the queue fails, exit with the
* irxstk rc
*/

if ((rqrc = irxstk(“QUEUE”,
sr,
srpt - sr,
NULL)) != 0)

{
(void) printf(“rxqueue - irxstk failed,

rc = %d\n", rqrc);
break;

350 uni-REXX Reference Manual

}
/*
* reset the buffer pointer and remaining size
*/

else
{

srpt = sr;
srle = srsz;

}
}

/*
* if it’s a normal character ...
*/

else
{

/*
* if there isn’t room in the buffer ...
*/

if (srle == 0)
{

/*
* new buffer
*/

char *nwsr;
/*
* new buffer size
*/

unsigned nwsz;
/*
* if creating the new buffer fails, exit rc = 20
*/

if ((nwsr=malloc(nwsz=srsz+(srle=RXQUBFSZ)))==NULL)
{

(void) printf(“rxqueue-out of memory, rc=20\n”);
rqrc = 20;
break;

}
/*
* copy the old buffer into the new buffer
*/

(void) memcpy(nwsr,
sr,
srsz);

/*
* free the old buffer
*/

free(sr);
/*
* set the new buffer pointers
*/

srpt = (sr = nwsr) + srsz;
/*
* set the new buffer size
*/

srsz = nwsz;
}

/*
* put the character in the buffer
*/

—srle;
*srpt++ = (char) ch;

}
}
while (ch != EOF);

Chapter 7: Application Programming Interfaces 351

}
else

(void) printf(“too many arguements to RXQUEUE\n”);
/*
* free the buffer
*/
free(sr);

/*
* return with the rxqueue return code
*/
return rqrc;

}

352 uni-REXX Reference Manual

Appendix A: Message Summary

This appendix lists all the messages that may be gener-
ated by uni-REXX. Each message is followed by a
brief description of its meaning.

3 Program is unreadable
uni-REXX was unable to locate the program you
are trying to execute. A file by this name does
not exist in the current working directory or in
any directory specified by the environment vari-
able REXXPATH.

4 Program interrupted
The system interrupted execution of the program
at the user’s request. If interrupts are not
trapped by CALL or SIGNAL ON HALT,
uni-REXX immediately terminates execution
when an interrupt occurs.

5 Machine resources exhausted
The uni-REXX program was not able to obtain
the system resources required to continue execu-
tion of this program. This may indicate insuffi-
cient memory, swap space, or other system
resources.

6 Unmatched /* or quote
A comment or literal string was started but not
completed. Comments require a matching /* */
pair. Literal strings require matching single or

Appendix A: Message Summary 353

double quotes. Since comments may span multi-
ple lines, the absence of a closing “*/” may be
reported at the end of the program rather than on
the line where the opening “/*” appears. Un-
matched quotes may be reported at the end of
the line on which the opening quote appears.

7 WHEN or OTHERWISE expected
A SELECT construct must include at least one
WHEN clause and possibly an OTHERWISE
clause. If no WHEN clause is encountered or if
any other instruction is found, this error occurs.
This may occur if the OTHERWISE clause has
been omitted and none of the WHEN conditions
is satisfied. It may also occur if a list of in-
structions follows a WHEN without the neces-
sary DO and END.

8 Unexpected THEN or ELSE
A THEN or an ELSE was encountered in the
program for which a matching IF or WHEN is
not found. This may occur if the instruction fol-
lowing THEN is DO and its matching END is
omitted.

9 Unexpected WHEN or OTHERWISE
A WHEN or OTHERWISE keyword was encoun-
tered outside the scope of a SELECT construct.
This may occur if a required WHEN or OTHER-
WISE is inadvertently enclosed in a DO-END
construct (often the result of a missing END
somewhere else). It may also occur if an at-
tempt is made to branch to the WHEN or OTH-
ERWISE clause using SIGNAL.

10 Unexpected or unmatched END
An END was encountered in the program for
which a matching DO or SELECT is not found.
This may occur if the END is badly located so
that it does not match the DO or SELECT for
which it was intended. It may also occur in the

354 uni-REXX Reference Manual

case of heavily nested DOs when too many
ENDs are provided. Including the name of the
DO loop control variable on the corresponding
END clause is a good technique for avoiding
and/or identifying this type of error.

This error may also occur if END immediately
follows THEN or ELSE.

Still another possible cause of this error is an at-
tempt to branch into a DO loop using SIGNAL.
In this case, the DO instruction will never have
been executed and the END will be unexpected.

11 Control stack full
An implementation-specific limit on levels of
nesting of control structures has been exceeded.
This may occur with deeply nested DO-END or
IF-THEN-ELSE constructs. It may also occur if
an INTERPRET instruction is looping or if a re-
cursive subroutine or internal function does not
terminate correctly, resulting in an infinite loop.

12 Clause too long
An implementation-specific limit on the length
of a clause has been exceeded.

13 Invalid character in program
A character appears in the program, outside of a
literal string, that is not a blank or one of the
following characters:

A-Z, a-z, 0-9
@@ # . ? ! _ $ & * () - + = ^ \
‘ “ ; : , % / < > |

This may occur if the program contains accented
or other national-language-specific characters not
specifically permitted by the implementation.

Appendix A: Message Summary 355

14 Incomplete DO/IF/SELECT
At the end of the program, the language proces-
sor has detected a DO or SELECT instruction
without a matching END or an IF instruction
that is not followed by a THEN clause. Includ-
ing the name of the control variable on the cor-
responding END clause is a good technique for
avoiding and/or identifying this type of error.

15 Invalid hexadecimal constant
Hexadecimal constants may contain only the dig-
its 0-9 and the letters a-f and A-F. They may
not have leading or trailing blanks, and embed-
ded blanks may ocur only at byte boundaries
(between pairs of hexadecimal digits).

Binary strings may contain only the digits 0 and
1. They may not have leading or trailing blanks,
and embedded blanks may occur only between
groups of four binary digits.

This error may occur if the character “x” or “b”
immediately follows a literal string – that is, if
abuttal concatenation is used to append an “x” or
“b” to the end of a literal string. In this case, it
is necessary to use the concatenation operator to
distinguish concatenation from an attempt to
specify a hexadecimal or binary string.

16 Label not found
A SIGNAL instruction has been executed or a
trapped condition has been raised, and the speci-
fied label is not found in the program. For
trapped conditions, if the SIGNAL ON instruc-
tion does not include the NAME keyword, a la-
bel matching the name of the condition must
exist.

356 uni-REXX Reference Manual

17 Unexpected procedure
A PROCEDURE instruction was encountered that
was not the first instruction after a CALL or
function invocation. If present, the PRO-
CEDURE instruction must be the first instruction
executed after a subroutine is CALLed or a func-
tion is invoked. This error may occur if a pro-
gram “falls through” into an internal routine that
includes a PROCEDURE instruction.

18 THEN expected
All IF and WHEN clauses must be followed by a
THEN clause. Another clause was encountered
at the point where a THEN was expected to be.

19 String or symbol expected
The first token following a CALL or SIGNAL
instruction must be a literal string or a symbol.
The string or symbol was omitted or something
else, such as an operator, was found.

20 Symbol expected
In an instruction where a symbol is required, the
symbol was omitted or some other token was
found.

21 Invalid data on end of clause
A keyword or instruction which has no operand
(such as SELECT or NOP) was followed by
something other than a comment.

22 Invalid character string
A literal string contains one or more characters
that are not supported in this implementation.

24 Invalid TRACE request
The first character of the option specified on the
TRACE instruction does not match one of the
valid TRACE settings. Refer to Chapter 4, In-
structions for a list of valid TRACE settings.

Appendix A: Message Summary 357

25 Invalid sub-keyword found
A unexpected token was in the position where an
instruction expected a specific keyword. This
may occur if the token following NUMERIC is
not DIGITS, FORM, or FUZZ. It may also oc-
cur with CALL or SIGNAL ON <condition> if
the token following <condition> is not NAME.

26 Invalid whole number
One of the following did not evaluate to a whole
number or its value is greater than the imple-
mentation limit:

• the repetitor in a DO instruction

• the FOR expression in a DO instruction

• values specified for DIGITS or FUZZ in a
NUMERIC instruction

• a positional pattern in a parsing template

• a number used as a trace setting in the
TRACE instruction

• the exponent (right hand operator) of the
power operator (**)

This error also occurs when the result of an inte-
ger divide (%) is not a whole number or when
the specific value is not permitted in the context
where it appears (such as a negative value for a
DO repetitor).

27 Invalid DO syntax
A syntax error was found in the DO instruction.
This may occur when a keyword such as TO ap-
pears without a control variable or when such a
keyword appears more than once.

28 Invalid LEAVE or ITERATE
A LEAVE or ITERATE instruction was encoun-
tered unexpectedly during execution. Either no
loop is active or the control variable name speci-
fied on the instruction does not match that of
any active loop. This may occur when attempt-

358 uni-REXX Reference Manual

ing to use SIGNAL to branch into or within a
loop.

29 Environment name too long
The host command environment specified on the
ADDRESS instruction is longer than permitted
by the operating system.

30 Name or string too long
The length of the name or string was greater
than the implementation maximum.

31 Name starts with number or “.”
To avoid confusion with numeric constants, a
value cannot be assigned to a variable whose
name begins with a number or a period.

33 Invalid expression result
The result of an expression is invalid in the con-
text where it occurs. This may occur if the
value for NUMERIC FUZZ is greater than that
for NUMERIC DIGITS.

34 Logical value not 0 or 1
Any term operated on by a logical operator (^ \
| & &&) must evaluate to 0 or 1. Likewise, the
expression in an IF, WHEN, DO WHILE, or UN-
TIL clause must evaluate to 0 or 1.

35 Invalid expression
There is an error in the syntax of an expression.
This may be due to the absence or misplacement
of an operator, the placement of two operators
adjacent to each other, or the absence of an ex-
pression where one was expected. This may oc-
cur when an operator character is present in
what is intended to be a literal string but the
string is not enclosed in quotes.

Appendix A: Message Summary 359

36 Unmatched “(” in expression
There are more left parentheses than right paren-
theses in an expression.

37 Unmatched “,” or “)” in expression
Either a comma was found outside of a function
call, or there are too many right parentheses in
an expression.

38 Invalid template or pattern
One of the following errors has been detected:

• a special character (such as “*”) which is
not allowed was found in a parsing tem-
plate

• the syntax of a variable pattern is incorrect;
this may occur if no symbol follows a left
parenthesis or if one of the parentheses is
missing

• the WITH is missing in a PARSE VALUE
instruction.

39 Evaluation stack overflow
An expression is too complex to be evaluated
within implementation-specific limits.

40 Incorrect call to routine
Arguments passed to a routine are of the wrong
type, or the number of arguments passed to the
routine exceeded an implementation-specific
maximum. This may also occur if the routine is
not compatible with the uni-REXX language.

41 Bad arithmetic conversion
One of the terms in an arithmetic expression is
not a valid number or its exponent exceeds the
implementation-specific limit.

42 Arithmetic overflow/underflow
The result of an arithmetic operation requires an
exponent outside the range supported by the im-

360 uni-REXX Reference Manual

plementation. This may occur in an attempt to
divide by zero.

43 Routine not found
A subroutine that has been CALLed or a func-
tion that has been invoked cannot be found. It
is neither an internal or external routine nor the
name of a built-in function. This may occur as
the result of a typographical error or the pres-
ence of a literal string or symbol immediately
adjacent to a left parenthesis.

44 Function did not return data
An external function was invoked but it did not
return a value for use within the expression. All
functions must return a value.

45 No data specified on function RETURN
A routine was called as a function, but the
RETURN instruction did not specify a value to
be returned. All functions must return a value.

46 Invalid variable reference
The syntax of a variable reference is incorrect.
The right parenthesis which should immediately
follow the variable name is missing.

48 Failure in system service
An operating system service called by
uni-REXX resulted in an error. Execution of the
program therefore terminated.

49 Interpretation error
A uni-REXX internal error occurred during exe-
cution of the program. Please contact The
Workstation Group for assistance.

100 I/O Error with intermediate object code file
An I/O error has occurred when trying to exe-
cute a program created by the rxc command.
The intermediate code version may have been

Appendix A: Message Summary 361

corrupted in some way. Regenerate the interme-
diate code version from the source program.

101 Only one input file may be specified
It is not valid to specify more than one program
name on the rxx or rxc command.

102 Cannot find rxx for implicit execution
The rxc command requires access to the rxx bi-
nary to build the proper implicit execution string
in its output file. This error occurs when rxc
and rxx are not in the same directory and when
rxx cannot be found using the PATH environ-
ment variable. It is good practice to install rxx
and rxc in the same directory.

103 Invalid command switch
The command switch specified with the rxx or
rxc command is not supported. The only valid
command switches are

for rxx -c, -v
for rxc -m, -G, -L, -l, -o

104 Program intermediate code version error -
recompile program
The version of the uni-REXX interpreter (rxx)
that you are currently using does not match the
version of the compiler (rxc) used to create the
intermediate code version of your program. Be-
cause of the possibility of changes to internal
data structures in uni-REXX, it is necessary that
the version of the interpreter used with interme-
diate code at run time match the version of the
compiler used to generate the intermediate code.
Recompile your source program with the version
of rxc that you now have installed.

105 Environment variable REXXLIB not set
When you use rxc -m to create a executable bi-
nary of a uni-REXX program or rxc -G to re-
build the interpreter, the compiler must have ac-

362 uni-REXX Reference Manual

cess to the uni-REXX archive library, librx.a.
The environment variable REXXLIB must spec-
ify the directory where librx.a is located.
REXXLIB is not defined.

106 Cannot find REXX library
When you use rxc -m to create a binary execut-
able of a uni-REXX program or rxc -G to re-
build the interpreter, the compiler must have ac-
cess to the uni-REXX archive library, librx.a.
The environment variable REXXLIB is set, but
the compiler cannot find librx.a in that location.

107 Output file would overwrite input file
When you use rxc or rxc -m to compile a source
program, the source must have a different name
from the output. Typically, the source program
has some extension to the filename, such as
“.rex”. The compiler creates an output file of
the same name as the source file but without the
extension. This error occurs if you attempt to
compile a source program that does not have an
extension to the filename.

Appendix A: Message Summary 363

364 uni-REXX Reference Manual

Appendix B: Common Pitfalls in uni-REXX
Programs

This appendix offers assistance in avoiding common
pitfalls in uni-REXX programs. The more common
programming mistakes are identified, and the correct
uni-REXX usage is shown. If you are new to the REXX

language, you may want to review these hints in prepa-
ration for writing your uni-REXX programs.

Invoking a Built-in Function Like an Instruction

When a built-in function call as the only clause on a
line, as in

LINEOUT(‘myfile’, ‘new data’)

the function returns a value. This value is then passed
to the external environment where it is interpreted as a
command. This results in an “Invalid command” mes-
sage from the operating system. To avoid this, use
CALL to invoke the function, as in

CALL LINEOUT ‘myfile’, ‘new data’

or use the built-in function as the expression on the
right hand side of an assignment clause, as in

x = LINEOUT(‘myfile’, ‘new data’)

Appendix B: Common Pitfalls in uni-REXX Programs 365

Failure to Use Commas with CALL and PARSE ARG

When you CALL a routine or function, the arguments
of the CALLed routine must be separated by commas:

CALL SUB X, Y

passes two arguments to the routine SUB. But,

CALL SUB X Y

passes one argument to SUB. This argument is the re-
sult of concatenating X with Y.

Commas must also be used between arguments in the
template of a PARSE ARG instruction.

PARSE ARG a1, a2

assigns all of the first argument to a1 and all of the
second argument to a2.

PARSE ARG a1 a2

assigns the first word of the first argument to a1 and
the rest of the first argument to a2.

Note that any arguments supplied on the program invo-
cation command line are treated as one string by
PARSE ARG or ARG.

Incorrect Use of Continuation

The statement:

x = min(1, 2, 3,
4, 5)

will fail with Error 41, Bad arithmetic conversion, be-
cause the comma after the 3 in the first line is treated
as a continuation character, resulting in a function invo-
cation that looks like

x = min(1, 2, 3 4, 5)

The arguments to the MIN built-in function must be
separated by commas. The correct way to write such a

366 uni-REXX Reference Manual

continued clause is to provide an additional comma for
continuation on the first line as in

x = min(1, 2, 3,,
4, 5)

Incorrect CALL Syntax

The correct syntax for calling a routine with arguments
is

CALL SUB X, Y

If you use the CALL instruction, it is not proper to en-
close the arguments in parentheses. Enclose the argu-
ments in parentheses when you invoke a routine as a
function, as in:

x = SUB(X,Y)

Conversion of UNIX Commands or Filenames to Uppercase

REXX automatically converts to uppercase the value of
an unassigned symbol. To preserve case sensitivity,
you must enclose the case-sensitive string in quotes.
Since UNIX commands are generally entered in lower-
case, be sure to enclose UNIX commands in your
uni-REXX programs in quotes.

Also, UNIX filenames are case-sensitive. A file named
“ABC” is different from a file named “abc” or “Abc”.
When you use filenames as arguments of functions or
operands of instructions, you must use quotes if you in-
tend to reference other than an uppercase filename. For
example:

var = LINEOUT(acctfile, ‘accounting data’)

causes output to be written to the file “ACCTFILE”,
which is different from the file “acctfile”.

Appendix B: Common Pitfalls in uni-REXX Programs 367

Using “cd” Instead of CHDIR()

To change directories, use the uni-REXX function
CHDIR instead of the UNIX command “cd”. When
uni-REXX executes UNIX commands, it spawns a new
process for execution of the command and releases that
process on command completion. Since the current di-
rectory is a separate attribute for each process, a “cd”
command affects only the spawned process. The cur-
rent working directory for the uni-REXX program’s pro-
cess is unchanged.

Failure to Enclose Command Arguments Within Quotes

Consider the example of attempting to set the
REXXPATH environment variable within the UNIX
environment:

dir = ‘/home/user1’
putenv(REXXPATH=dir)

The function argument includes an operator and is
therefore treated as an expression that must be evalu-
ated before it is used in the function. The expression is
treated as a logical comparison and returns the value 0
(FALSE). The result is passed to the PUTENV func-
tion; but since 0 is not a valid command to set an envi-
ronment variable, PUTENV appears to have no effect.
The correct way to write the sample above is

dir = /home/user1
rc = putenv(‘REXXPATH=’dir)

Similar pitfalls exist in the use of host commands that
include strings which might be interpreted as operators.
In uni-XEDIT macros, for example, the EXTRACT com-
mand requires the use of the “/” character as in

extract /curline

368 uni-REXX Reference Manual

If this command is not enclosed in quotes, uni-REXX
sees the clause as an attempt to divide the value of the
symbol “extract” by the value of the symbol “curline”.
Since such variables would not normally be initialized
to a numeric value in an editor macro, execution of the
clause results in Error 41, Bad arithmetic conversion.
If the clause is enclosed in quotes, it is treated by
uni-REXX as a literal string and is automatically passed
to the host command environment (in this case, XEDIT)
for execution.

Failure to Close a File

Any I/O operation to a file (CHARIN, CHAROUT,
CHARS, LINEIN, LINEOUT, LINES, or EXECIO) may
leave the file in an open state. It may therefore be nec-
essary to close the file with CHAROUT, LINEOUT,
STREAM, or EXECIO (FINIs before subsequent at-
tempts to read from or write to the file.

“Incorrect” Procedure Syntax

Both The REXX Language and ANSI standard
X3.274:1996 state that the PROCEDURE instruction, if
present, must be the first instruction executed after sub-
routine initialization. The REXX Language explicitly
states that this instruction “must be the first instruction
following the label”.

Some implementations of REXX allow what appears to be
an incorrect internal procedure syntax to operate prop-
erly. The following example using INTERPRET to ac-
cess a stem works on the mainframe but does not work
in uni-REXX

label:
arg stem .
interpret ‘procedure expose’ stem’.’

Appendix B: Common Pitfalls in uni-REXX Programs 369

The following example does the same thing and works
both in uni-REXX and on the mainframe:

label:
interpret ‘procedure expose’ arg(1)’.’

Note that both of these examples imply that the
INTERPRET instruction is really not an instruction be-
tween the label and the PROCEDURE instruction. The
supposition is that the INTERPRET instruction is not
actually executed but that only its operand(s) are.

370 uni-REXX Reference Manual

Appendix C: Bibliography

This appendix contains a listing of additional reference
books on the REXX language. It is not intended to be
complete but merely to offer suggestions for additional
reading.

The REXX Language, A Practical Approach to Pro-
gramming, M. F. Cowlishaw, Prentice Hall, Second Edi-
tion, 1990.

Modern Programming using REXX, Bob O’Hara and
Dave Gomberg, Prentice Hall, 1985, 1988. (Now avail-
able from REXXPress, REXXPress@wcf.com)

REXX in the TSO Environment, Gabriel F. Gargiulo,
QED Information Systems, Inc., Revised Edition, 1993.

Practical Usage of REXX, Anthony Rudd, Ellis
Horwood Limited, 1990.

Using ARexx on the Amiga, Chris Zamara and Nick
Sullivan, Abacus, 1991.

Amiga Programmers Guide to AREXX, Eric Giguere,
Commodore-Amiga, Inc., 1991.

REXX Handbook, edited by Gabe Goldberg and Phil
Smith, McGraw-Hill, Inc., 1991.

Appendix C: Bibliography 371

The AREXX Cookbook, Merrill Callaway, Whitestone,
1992.

Programming in REXX, Charles Daney, McGraw-Hill,
Inc., 1992.

REXX Tools and Techniques, Barry K. Nirmal, QED
Publishing Group, 1993.

REXX: Advanced Techniques for Programmers, Peter
Kiesel, McGraw-Hill, Inc., 1993.

OS/2 2.1 REXX Handbook - Basics, Applications, and
Tips, Hallett German, Van Nostrand Reinhold, 1993.

Application Development Using OS/2 REXX, Anthony
Rudd, Wiley-QED, 1994.

Mastering OS/2 REXX, Gabriel F. Gargiulo,
Wiley-QED, 1994.

Teach Yourself REXX in 21 Days, William F. Schindler
& Esther Schindler, SAMS, 1994.

Writing OS/2 REXX Programs, Ronny Richardson,
McGraw-Hill, 1994

REXX Procedursprak—hur du programmerar din PC
med OS/2, Bengt Kynning, Studentlitteratur (Sweden),
1994.

The REXX Cookbook, Merrill Callaway, Whitestone,
1995.

Object REXX by Example, Gwen L. Veneskey, Will
Trosky, and John J. Urbaniak, Ph.D., Aviar, Inc., 1996.

372 uni-REXX Reference Manual

Programming Language Rexx, Document Number
X3.274:1996, American National Standards Institute,
1996.

The following papers, published in technical journals,
also provide reference material on the REXX language.

The Design of the REXX Language, M. F. Cowlishaw,
IBM Systems Journal, Vol. 23, No. 4, 1984.

REXX on TSO/E, G. E. Hoernes, IBM Systems Jour-
nal, Vol. 28, No. 2, 1989.

Partial Compilation of REXX, R. Y. Pinter, P.
Vortman, and Z. Weiss, IBM Systems Journal, Vol.
30, No. 3, 1991.

The programming language standards scene, ten years
on, Paper 20: Rexx, Brian Marks, Computer Stan-
dards & Interfaces 16, 1994 (Elsevier).

The Early History of REXX, Mike Cowlishaw, IEEE
Annals of the History of Computing (ISSN
1058-6180) Vol. 16, No. 4, Winter 1994.

In addition to these references, published proceedings of
the annual REXX Symposium are available from Stanford
Linear Accelerator Center.

Appendix C: Bibliography 373

374 uni-REXX Reference Manual

Appendix D: System Limitations

There are very few implementation-specific limitations
in uni-REXX. Those that exist are documented in this
appendix.

Maximum length of a string
1 billion characters

Maximum length of a symbol or variable name
1 billion characters

Maximum number of variables in a program
60 thousand

Maximum setting of NUMERIC DIGITS
1000

Maximum length of a host command environment name
16 characters

In general, all internal maximums are equivalent to
1 billion bytes. It is therefore likely that your system
memory will be exceeded before you approach these
limits.

Appendix D: System Limitations 375

376 uni-REXX Reference Manual

Appendix E: uni-REXX Environment Variables

This appendix lists all of the environment variables used
by uni-REXX. Each variable is documented in context in
the regular chapters of this manual.

The commands used to set an environment variable are
shell-specific. Choose the appropriate commands from the
table below:

Shell Command

C setenv var-name value

Bourne or Korn var-name=value
export var-name

REXXCOMMANDNOTQUOTED
For backward compatibility with early versions of
uni-REXX, setting this variable to “1” causes com-
mands sent to an external command environment to
execute as if they were not enclosed by quotes.

REXXENVPREFIX
the prefix used for all other uni-REXX environment
variables

Default: REXX

Set this environment variable to change the initial
characters in the names of all other uni-REXX envi-
ronment variables to something other than `REXX’.

Appendix E: uni-REXX Environment Variables 377

The setting of REXXENVPREFIX and its use in
the names of other environment variables is case
sensitive. This environment variable would most
likely be used by an application that embeds
uni-REXX as a scripting language to easily identify
configuration settings for scripts within that appli-
cation.

Examples:
REXXENVPREFIX set to “ABC”

uni-REXX searches the path specified by the
environment variable “ABCPATH” to lo-
cate external programs

REXXENVPREFIX set to “Inv_Prog_”

uni-REXX searches the path specified by the
environment variable “Inv_Prog_PATH” to
locate external programs

REXXEXECIOCASELESS
For backward compatibility, if set to ‘1’ the Locate
and Avoid options to EXECIO will no longer honor
case in text strings.

REXXEXTERNALUPPERCASEFILENAME
If set to ‘1’, external filenames are searched for as
uppercase names, rather than lowercase, for sys-
tems with case-sensitive filenames.

REXXIOPERSISTENTNAMEDFIFOS
when defined as ‘1’, allows a REXX program act-
ing as a server on a FIFO to accept input from
multiple clients without getting an EOF indication,
and raising the NOTREADY condition.

REXXLIB
when using rxc -m or rxc -G, the location of the
uni-REXX libraries and header files (librx.a,
librxi.a, irx.h, irxproto.h, irxsaa0.h, rexxsaa.h)

378 uni-REXX Reference Manual

Default: none; the location where these files are in-
stalled is site-specific

REXXLOADPATH
If defined, dynamic loading will use this path instead
of the default search path. This is intended to improve
portability between the various UNIX systems.

REXXMODULECC
the command or full path name to execute the C com-
piler on your system; used only when generating plat-
form-specific binaries with the uni-REXX Developer’s
Kit

Default: cc

REXXMODULECFLAGS
the C compiler flags required on your system; used
only when generating platform-specific binaries with
the uni-REXX Developer’s Kit

Default: platform-specific

REXXMODULECOMMANDINTERPRETER
If specified, rxc will use this value as the command
interpreter and arguments to insert as the first line of
compiled output.

Default: #!/usr/local/bin/rxx, or the actual install
location

REXXMODULEEXTRALIBS
For rxc -m, allows additional archive libraries to be
specified when linking a standalone executable mod-
ule. Applies to uni-REXX Developer’s Kit only.

REXXMODULELDFLAGS
the loader flags required to generate a binary on your
system; used only when generating platform-specific
binaries with the uni-REXX Developer’s Kit

Appendix E: uni-REXX Environment Variables 379

Default: platform-specific

At a minimum, you will require access to the math
library and the socket library. Additional libraries
may also be required.

REXXMODULELDSYMBOLS
indicates if loader symbol tables should be re-
moved (stripped) from a binary; used only when
generating platform-specific binaries with the
uni-REXX Developer’s Kit

Default: module is stripped

Set this environment variable to any value to dis-
able stripping of the binary.

REXXNUMERICDIGITS
When this variable is set to a numeric value, it es-
tablishes the default value for the NUMERIC
DIGITS setting within all uni-REXX programs.

REXXPATH
the path searched for external uni-REXX programs
(functions or subroutines) called by a program

Default: current working directory

Set this environment variable in the same way you
would set PATH to specify all the directories to be
searched for your external programs.

REXXPARSESOURCEACTIVEENVIRONMENT
For backward compatibility, when set to ‘1’, the
fifth word of output from the PARSE SOURCE in-
struction will be the active external command envi-
ronment, instead of the default environment when
the program was started.

380 uni-REXX Reference Manual

REXXSTACKSHARED
enables sharing of the uni-REXX program stack (ex-
ternal data queue) between programs running in sepa-
rate processes

Default: stack sharing disabled

Set this environment variable to any value to enable
sharing of the program stack. The default behavior is
a change from previous releases of the product.

REXXSTREAMCOMMANDNOCOLON
For compatibility with older releases of uni-REXX,
setting the variable to ‘1’ will cause the stream func-
tion to delete the trailing “:” character on its
“READY:” response string.

REXXSUFFIXSOURCE
the file extension (suffix) used to locate a
uni-REXX program for execution or compilation

Default: rex

Set this environment variable to the extension that
identifies all uni-REXX programs. Both the inter-
preter (rxx) and the compiler (rxc) use this setting to
locate source programs.

REXXTEMP
the directory where uni-REXX temporary files are
placed; these may be disk files or special files created
by sockets for interprocess communications

Default: /tmp

Set this environment variable to the full directory
path to be used for all uni-REXX temporaries.

Appendix E: uni-REXX Environment Variables 381

REXXTEMPDISK
the directory where uni-REXX temporary disk files
are placed; such temporary files are normally cre-
ated only when generating a platform-specific bi-
nary using the uni-REXX Developer’s Kit

Default: current setting of REXXTEMP, or its
default if it is unset

Set this environment to the directory in which you
wish disk files to be placed. This variable does
not affect the location for temporaries associated
with interprocess communications.

REXXTEMPIPC
the directory for uni-REXX temporary files associ-
ated with interprocess communications

Default: current setting of REXXTEMP, or its
default if it is unset

Set this environment to the directory in which you
want special IPC files to be placed. This variable
does not affect the location for disk files.

REXXTRACE
when set to any of the TRACE instruction options,
provides a default TRACE setting for all uni-REXX
programs.

REXXTRACELOGFILE
When set to the name of a disk file, uni-REXX
writes extensive internal debugging trace output to
the file. For TWG Technical Supprot use only, not
intended for end users.

382 uni-REXX Reference Manual

INDEX

! _ACCEPT function ...225
_BIND function ...227
_CLOSEDIR function...229
_CLOSESOCKET function..229
_CONNECT function..230
_ERRNO function ...232
_EXIT function ..233
_FD_CLR function ..233
_FD_ISSET function ..234
_FD_SET function ..234
_FD_ZERO function ...234
_FORK function ..234
_GETEUID function ...235
_GETHOSTBYADDR function ..236
_GETHOSTBYNAME function ..236
_GETHOSTID ...238
_GETHOSTNAME ...238
_GETPEERNAME function ..239
_GETPID function ..240
_GETPPID function ..241
_GETSERVBYNAME function ..241
_GETSOCKNAME function..242
_GETSOCKOPT function ..243
_GETUID function ..244
_IOCTL function ...245
_KILL function ..246
_LISTEN function ...247
_OPENDIR function ...248
_READDIR function...249

Index 383

_RECV function ..249
_REGEX function ...251
_SELECT function ..252
_SEND function...253
_SETSID function ...254
_SETSOCKOPT function...255
_SLEEP function ...257
_SOCKET function ...257
_STAT function ...258
_SYS_ERRLIST function ..260
_SYSTEMDIR function ...260
_TRUNCATE function ...261
_UMASK function ..261
_WAIT function...262
_WAITPID function..263

A ABBREV function...114
Abbreviations...114
ABS function..115
Absolute value ...115
Abuttal concatenation ...12
ADDRESS built-in function ..42
ADDRESS function ..115
ADDRESS instruction ...15, 35, 39, 42

command I/O redirection ..39-41
Altering the flow of a DO loop ..67
AND operation ...118
API

SEE Application Programming Interfaces
Application Programming Interfaces291

ARGLIST structure ..335
building the application ..319
control blocks ...335
EVALBLOCK structure ..336
EXECBLK structure ..336
executing a uni-REXX program.................291, 297, 305
EXITBLK structure..337
FPCKDIR structure ..339
host command environments291, 315
INSTBLK structure ..341
IRXEXCOM ..292-293

384 uni-REXX Reference Manual

IRXEXEC ...291, 297
IRXEXITS ..292, 300
IRXJCL ...291, 305
IRXSTK ..292, 308
IRXSTOP ..292, 312
IRXSUBCM ...315
IRXSUBCOM ..291
IRXSUBCT structure...343
sharing variables ..292-293
SHVBLOCK structure ...344
STMT structure ...347
terminating a uni-REXX program.......................292, 312
uni-REXX archive libraries ...320
uni-REXX header file ...320
uni-REXX program stack......................................292, 308
user exits ..292, 300

ARG function ...117
ARG instruction ...44
ARGLIST structure (control block)....................................335
Argument strings ..44, 74, 117
Arithmetic operators ...11
Arithmetic precision ...70

determining current setting ..144

B B2X function ..121
Bibliography ..371
Binary string ...6
Binary to hexadecimal conversion121
BITAND function..118
BITOR function ...119
BITXOR function ..120
Blank concatenation ..12
blanks ..5
Bourne shell ...35, 42
Built-in functions ..46, 111

ABBREV ..114
ABS ...115
ADDRESS...42, 115
ARG ..117
B2X ...121

Index 385

BITAND ...118
BITOR ..119
BITXOR ...120
C2D ...135
C2X ...135
CENTER...122
CHARIN..16, 124
CHAROUT ...16, 126
CHARS..16, 128
CHDIR...18, 129
COMPARE...130
CONDITION ...131
COPIES ..133
CUSERID..18, 134
D2C ...145
D2X ...146
DATATYPE...136
DATE ..138
DELSTR ...142
DELWORD ..143
DIGITS ...144
ERRORTEXT ..146
FIND ...147
FORM ...149
FORMAT..150
FUZZ...154
GETCWD ..18, 155
GETENV ...18, 156
INDEX ..157
INSERT ..158
JUSTIFY ..159
LASTPOS...159
LEFT ...160
LENGTH ..162
LINEIN..16, 163
LINEOUT ...16, 165
LINES..16, 167
list of ..112
LOWER ..168
MAX ...169

386 uni-REXX Reference Manual

MIN ...170
OVERLAY ...170
POPEN ...18, 36, 172
POS ...173
PUTENV ...18, 174
QUALIFY ..175
QUEUED...17, 176
RANDOM ..177
REVERSE ..178
RIGHT ..178
SIGN ...179
SOURCELINE...180
SPACE ..181
STREAM...17, 183
STRIP ...185
SUBSTR ...186
SUBWORD ..187
SYMBOL..188
TIME...190
TRACE ...193
TRANSLATE ..194
TRUNC ...196
UPPER ..197
USERID..197
VALUE ...198
VERIFY..200
WORD ..202
WORDINDEX ...203
WORDLENGTH ...204
WORDPOS ..205
WORDS ..206
X2B ...207
X2C ...208
X2D ...209
XRANGE..206

Built-in functions ..13

C C compiler ..379
C shell ...35, 42
C2D function ..135

Index 387

C2X function ..135
CALL instruction...46
CENTER function ...122
Changing directories ..18, 129
Character to decimal conversion ...135
Character to hexadecimal conversion.................................135
CHARIN function ...16, 124
CHAROUT function ...16, 126
CHARS function ...16, 128
CHDIR function ..18, 129
Clauses ..5-12

continuation ...8
instruction...7
label ...8
null clause ..8

Clearing stack buffers ...275
Client/Server Sample Application265
Closing a directory ..229
Closing a file ..126, 165, 184, 278
cms host command environment ...42
command host command environment35, 42
Comment ...8
Comparative operators ..11-12

normal ...12
strict ..12

COMPARE function ...130
Comparing strings ...130
Compiler ...21, 27-28
Compound symbol ...9
Concatenation ..12

abuttal ...12
blank..12

Concatenation operators ...12
CONDITION function ..131
Condition traps ...14-15, 48, 99, 131
Conditional processing ..54, 63, 96
Conditions...14-15

ERROR ...15
FAILURE ...15
HALT ..15
information about current trapped................................131

388 uni-REXX Reference Manual

LOSTDIGITS...15
NOTREADY ..15
NOVALUE ...15
SYNTAX ..15

Configuration management functions222
Constant symbol...8
Constants...8
Continuation ...8
Continuation character ..8
Control variables ...53
Conversion

binary to hexadecimal ...121
character to decimal ..135
character to hexadecimal ..135
decimal to character ..145
decimal to hexadecimal ..146
hexadecimal to binary ...207
hexadecimal to character ..208
hexadecimal to decimal ..209
to lowercase ...168, 194
to uppercase..110, 194, 197

Converting to lowercase ..168, 194
Converting to uppercase110, 194, 197
COPIES function ...133
Creating a child process ...234
Creating stack buffers ...289
csh host command environment35, 42
Current date ..138
Current directory...18, 155
CUSERID function ...18, 134

D D2C function ..145
D2X function..146
Data type ...136
DATATYPE function ...136
Date formats ...138-139
DATE function...138
Debugging a program ...103-104, 365
Decimal to character conversion ...145
Decimal to hexadecimal conversion146
Deleting a file...184

Index 389

Deleting characters ...142
Deleting words ...143
DELSTR function..142
DELWORD function...143
DESBUF command...19, 274-275
Developer's Kit ...21, 27-28, 30
Diagnostic messages ...353
DIGITS function..144
DO instruction..53
DO loop ...53

altering the flow ...67
control variable ...53
leaving ..68

Documentation conventions ...2-4
DROP instruction ..59
DROPBUF command ...19, 274, 276
Dropping stack buffers ...276
Dummy instruction ..69
Duplicating strings ..133

E Effective userid..235
Embedded applications...291

SEE ALSO Application Programming Interfaces
building ..319

End of file ..15, 49, 100
Environment variables ...18, 377

current setting ..18, 156
defining ..18, 32, 174
PATH ..24
REXXCOMMANDNOTQUOTED.................................377
REXXENVPREFIX ..377-378
REXXEXECIOCASELESS ...378
REXXEXTERNALUPPERCASEFILENAME378
REXXIOPERSISTENTNAMEDFIFOS.........................378
REXXLIB ..31, 321, 378
REXXLOADPATH...379
REXXMODULECC...30, 379
REXXMODULECFLAGS..31, 379
REXXMODULECOMMANDINTERPRETER379
REXXMODULEEXTRALIBS ..379
REXXMODULELDFLAGS31, 379

390 uni-REXX Reference Manual

REXXMODULELDSYMBOLS31, 380
REXXNUMERICDIGITS..380
REXXPARSESOURCEACTIVEENVIRONMENT380
REXXPATH...22, 25, 33, 380
REXXSTACKSHARED...381
REXXSTREAMCOMMANDNOCOLON381
REXXSUFFIXSOURCE........................24-25, 29-30, 381
REXXTEMP ...30, 381
REXXTEMPDISK ..382
REXXTEMPIPC ...382
REXXTRACE..382
REXXTRACELOGFILE..382
setting ..31-32, 377

ERROR condition ..15
Error messages ...353
ERRORTEXT function...146
EVALBLOCK structure (control block)336
Exclusive OR operation..120
EXECBLK structure (control block)336
EXECIO command ...274, 277
Executable binary..28, 30-31

C compiler ...30-31
loader symbol tables..380
temporary space ..30
uni-REXX libraries ..30-31
unresolved references ..379

Executing dynamically-created instructions66
Executing uni-REXX programs

SEE Program execution
Executing Unix commands...18
EXIT instruction ..61
EXITBLK structure (control block)337
Exits ..292, 300

command ..301
initialization ..301
terminal input..301
terminal output ...301
termination ...301

Explicit execution..22
Exponential notation ...70-71

determining current setting ..149

Index 391

Exposing variables to a subroutine47, 85
Expression ..10-12
Extensions..2, 18, 34
External data queue

SEE uni-REXX program stack
External function packages ..323

ARGLIST structure ..324, 335
control blocks ...323
EVALBLOCK structure...324, 336
FPCKDIR structure ..323, 339
in embedded applications ...328
in stand-alone uni-REXX programs330

External functions ...13, 33
External subroutines ...33

F FAILURE condition ..15
File and directory management functions223
File permissions ...22-23
File status..258
FIND function ..147
Finding a string147, 157, 159, 173, 202-203, 205
FORM function ..149
FORMAT function ..150
Formatting numeric output ..150
Formatting string output.....................159-160, 178, 181, 194
FPCKDIR structure (control block)....................................339
Function calls ...11
Functions ..13

built-in..13, 46, 111
configuration management ...222
external...13, 33, 46
file and directory management223
general rules ..113
internal...13, 46
interprocess communication ...223
invocation...111
locating ...33
process management ..222
regular expression processing223
system error processing ..223
Unix-specific ..20, 222

392 uni-REXX Reference Manual

user-written ..291, 323
Fuzz factor ..71

determining current setting ..154
FUZZ function ...154

G GETCWD function ...18, 155
GETENV function ..18, 156
GLOBALV command ..19, 274, 284

H HALT condition ...15
Hexadecimal string ..6
Hexadecimal to binary conversion......................................207
Hexadecimal to character conversion.................................208
Hexadecimal to decimal conversion209
Host command environments....................................35, 39, 42

command ...35, 42
csh ..35, 42
default ...35
defining ...291, 315
determining default ..75
determining the current setting115
ksh ...42
sh ..35, 42
UNIX...35

Host commands ..34
environments ..35, 39
execution ..34, 36, 39, 172
I/O redirection...39-41

Host configuration ..236, 238

I I/O
SEE Input/Output

I/O redirection..15
IF instruction ..63
IF-THEN-ELSE ...63
Implementation name

determining ..76
Implementation release date

determining ..76
Implicit execution..23

Index 393

Implicit execution string ..23
INDEX function...157
Informational messages ..353
Input/Output ...15-17

commands ..17-18, 274, 277
functions15-16, 124, 126, 163, 183
instructions ...17, 74, 89, 95
redirection ..39-41
streams ..17

INSERT function ...158
Inserting a string ..158
INSTBLK structure (control block)....................................341
Instruction...7

assignment ..7
command...7
keyword ..7

Instructions ...37
ADDRESS...35, 39
ARG ..44
CALL ..46
DO ...53
DROP ..59
EXIT..61
IF..63
INTERPRET ..66
ITERATE..67
LEAVE ...68
list of ..38
NOP ..63, 69, 97
NUMERIC..70
OPTIONS ...73
PARSE ...16, 74
PROCEDURE ..85
PULL..16, 89
PUSH ...16, 91
QUEUE..17, 92
RETURN ..93
SAY..17, 95
SELECT..96
SIGNAL..99

394 uni-REXX Reference Manual

TRACE ...103
UPPER ..110

Interactive tracing ...104
Intermediate code generation...27
Intermediate code version ..29
Internal functions ..13
INTERPRET instruction...66
Interprocess communication.................................34, 223, 348
Introduction ..1
irx.h ...320
irxproto.h ..320
IRXSUBCT structure (control block).................................343
ITERATE instruction ..67

J JUSTIFY function ...159

K Korn shell ...35, 42
ksh host command environment ..42

L Label ..8
Language definition ..1
Language extensions ..2, 18, 34
Language features ..5

clauses ...5-12
expressions ...10-12
functions ...13
input/output ..15
operators ...11
parsing ..17
special variables ...14
symbols ...8-10

LASTPOS function ...159
LEAVE instruction ..68
Leaving a DO loop...68
Leaving a program ..61, 93
LEFT function..160
LENGTH function ...162
Length of a string ..162, 204
librx.a ..320
librxi.a ...348

Index 395

Limitation ...375
LINEIN function ...16, 163
LINEOUT function ...16, 165
LINES function ...16, 167
Literal string ..6, 10
Locating a uni-REXX program22, 24
Locating a uni-REXX program..24
Logical operators ...13
LOSTDIGITS condition ...15
LOWER function ...168

M MAKEBUF command..19, 274, 289
MAX function ..169
Message summary ...353
Message text

retrieving ..146
MIN function..170

N NOP instruction ..63, 69, 97
Normal comparison ...12
NOTREADY condition..15, 49, 100
NOVALUE condition..15
Null clause ..8
Numeric comparisons ...71
NUMERIC instruction ..70

O Opening a directory...248
Opening a file ...184
Operator ..7
Operators ..11

arithmetic ...11
comparative ..11-12
concatenation ...12
logical ...13

OPTIONS instruction..73
OR operation ..119
ORXXVersionCheck() C language function320
Output of Unix commands..18
OVERLAY function..170

396 uni-REXX Reference Manual

P Parent process id..241
PARSE instruction ..16, 74
PARSE LINEIN ...16
PARSE PULL ...16
PARSE SOURCE...75
PARSE VERSION ...76
Parsing ..17, 74-83

by pattern ...78
by position ...79
by words ...77
placeholder ...82
template ...74, 76-82

PATH environment variable ..24
Pausing a program ...257
Persistent I/O streams ...17
Pipes ..17

reading from ..124, 163
writing to ..126, 165

Pitfalls in uni-REXX programs ...365
POPEN function ...18, 36, 172
POS function ..173
Precision

determining current setting ..144
Precision of numbers...70
PROCEDURE instruction ..85
Process group leader ...254
Process id..240-241
Process management functions ...222
Program execution...22

explicit ..22
file permissions...22-23
implicit..23
locating the program ..22, 24-25

Program invocation
determining method ...75

Program name
determining ..75

Program names ..21, 24, 29
Program pathname

determining ..75
Program stack

Index 397

SEE uni-REXX program stack
Protecting variables ..47, 85
PULL instruction...16, 89
PUSH instruction ..16, 91
PUTENV function...18, 174

Q QUALIFY function ...175
QUEUE instruction ...17, 92
QUEUED function ..17, 176

R RANDOM function ...177
Random numbers ...177
RC special variable..14
Reading a file ..124, 163, 277
Reading directory entries ...249
Real userid ..244
Regenerating the interpreter ..28
Regular expressions ...223, 251
Removing blanks ...185
RESULT special variable14, 46, 93, 111
RETURN instruction...93
Returning a value ..61, 93
REVERSE function ...178
REXX language definition ...1
REXX language level

determining ..76
REXXCOMMANDNOTQUOTED environment variable377
REXXENVPREFIX environment variable377-378
REXXEXECIOCASELESS environment variable378
REXXEXTERNALUPPERCASEFILENAME environment
variable ...378
REXXIOPERSISTENTNAMEDFIFOS environmentvariable378
REXXLIB environment variable31, 321, 378
REXXLOADPATH environment variable.........................379
REXXMODULECC environment variable30, 379
REXXMODULECFLAGS environment variable31, 379
REXXMODULEEXTRALIBS environment variable379
REXXMODULELDFLAGS environment variable....31, 379
REXXMODULELDSYMBOLS environment variable31, 380
REXXNUMERICDIGITS environment variable..............380

398 uni-REXX Reference Manual

REXXPARSESOURCEACTIVEENVIRONMENT environment
variable ...380
REXXPATH environment variable22, 25, 33, 380
REXXSTACKSHARED environment variable33, 381
REXXSTREAMCOMMANDNOCOLON environment
variable ...381
REXXSUFFIXSOURCE environment variable24-25,
29-30, 381
REXXTEMP environment variable..............................30, 381
REXXTEMPDISK environment variable382
REXXTEMPIPC environment variable382
REXXTRACE environment variable..................................382
REXXTRACELOGFILE environment variable................382
RIGHT function ...178
rxc command ..28-29, 32
RXFUNCADD function ...212
RXFUNCDROP function ...212
RXFUNCQUERY function ..212
RXQUEUE command ...290
rxx command..22, 24-25
RXXCOMMANDKILL function ..213
RXXCOMMANDSPAWN function213
RXXCOMMANDWAIT function213
RXXOSENDOFLINESTRING function214
RXXOSENVIRONMENTSEPARATOR function214
RXXOSPATHSEPARATOR function214
RXXSLEEP function ..214

S SAY instruction ...17, 95
SELECT instruction ..96
SENTRIES command ...19, 290
Server configuration ...241
Setting environment variables ...377
sh host command environment ..35, 42
Sharing variables19, 274, 284, 292-293
SHVBLOCK structure (control block)344
SIGL special variable ...14, 99
SIGN function ..179
SIGNAL instruction ..99
Simple symbol ..9
Socket operations225, 227, 229-230, 247, 249, 253, 257

Index 399

Source code security ...27
SOURCELINE function ...180
SPACE function...181
Spawning a process ...234
Special characters ..7
Special variables ..14

RC..14
RESULT ...14, 46, 93, 111
SIGL...14, 99

STDIN ...17
STDOUT ...17
Stem ...10
STMT structure (control block) ..347
STREAM function ..17, 183
Streams..17
Strict comparison...12
STRIP function ..185
Subroutines

execution ..99
external ..33, 46
internal ..46
invoking...46, 99
locating ...33

SUBSTR function..186
SUBWORD function...187
Symbol ..6, 8-10

compound ...9
constant ...8
simple ..9
status of..188
value of ..198

SYMBOL function ..188
SYNTAX condition ...15
System error processing224, 232, 260
System error processing functions223
System limitations...375
System name

determining ..75

400 uni-REXX Reference Manual

T Template
SEE Parsing

Terminal input16, 74-75, 89, 124, 163
Terminal output ..16-17, 95, 126, 165
Terminating a process ..233, 246
Time formats ..190-191
TIME function ...190
TRACE function ..193
TRACE instruction..103
Trace output ...105
Trace setting ..103-104, 193
Tracing a program ...103-104
Transient I/O streams ..17
TRANSLATE function ...194
TRUNC function ...196
Truncating a file ..261

U uni-REXX archive libraries ...31
librx.a..320
librxi.a ..348

uni-REXX header file (irx.h) ...320
uni-REXX program stack ...33

access from a C language program292, 308
adding data...91-92
buffers ..19, 274-276, 289
host command output ...172, 290
number of items ...290
number of lines ...89, 176
retrieving data ..75, 89
sharing ..33

uni-SPF..1
Unix commands

executing..18, 39, 172
output ...18, 172

Unix processes ...42
Unix userid ...197

effective..235
real...244
retrieving ..134

Unix-specific functions..20, 222

Index 401

_ACCEPT...225
_BIND...227
_CLOSEDIR ..229
_CLOSESOCKET ...229
_CONNECT ...230
_ERRNO...232
_EXIT ...233
_FD_CLR ...233
_FD_ISSET ..234
_FD_SET..234
_FD_ZERO ..234
_FORK..234
_GETEUID ..235
_GETHOSTBYADDR..236
_GETHOSTBYNAME ...236
_GETHOSTID ...238
_GETHOSTNAME ...238
_GETPEERNAME..239
_GETPID..240
_GETPPID ...241
_GETSERVBYNAME ...241
_GETSOCKNAME ...242
_GETSOCKOPT ...243
_GETUID ...244
_IOCTL ..245
_KILL ...246
_LISTEN ..247
_OPENDIR ..248
_READDIR ..249
_RECV..249
_REGEX ...251
_SELECT ...252
_SEND ..253
_SETSID ..254
_SETSOCKOPT ..255
_SLEEP ..257
_SOCKET ..257
_STAT ..258
_SYS_ERRLIST..260
_TRUNCATE ..261

402 uni-REXX Reference Manual

_UMASK..261
_WAIT ..262
_WAITPID ...263
list of ..222-223

uni-XEDIT ..1
UPPER function...197
UPPER instruction ..110
User-written functions ...291, 323

in embedded applications ...328
in stand-alone uni-REXX programs330

USERID function ..197

V VALUE function ...198
Variable reference...59, 85
Variables

assigning a value ..7
compound ...9
contol ..53
dropping..59
exposing to a subroutine ...47, 85
names ..10
parsing ..75
protecting ..47, 85
sharing ..19, 274, 284, 292-293
simple ..9
special ...14
stem ...10
variable reference ...85

VERIFY function ..200
Version number..25

W Waiting for processes ...262-263
Waiting on a process ...262-263
WORD function ...202
WORDINDEX function..203
WORDLENGTH function ..204
WORDPOS function ...205
WORDS function...206
Writing to a file ..126, 165, 277

Index 403

X X2B function ..207
X2C function ..208
X2D function..209
XRANGE function ..206

404 uni-REXX Reference Manual

	TA BLE OF CON TENTS
	Pref ace iii
	Chap ter 1: In tro duc tion 1
	Doc u men ta tion Con ven tions 2

	Chap ter 2: Lan guage Fea tures 5
	Clauses 5
	Sym bols 8
	Ex pres sions 10
	Func tions 13
	Spe cial Vari ables 14
	Con di tion Traps 14
	In put/Out put 15
	Parsing 17
	Lan guage Ex ten sions 18

	Chap ter 3: Op er a tion 21
	Pro gram Names 21
	Pro gram Ex e cu tion 22
	The rxx Com mand 24
	The uni-REXX Com piler 27

	The rxc Com mand 28
	Ex ter nal Func tions and Sub rou tines 33
	Ex ter nal Data Queue 33
	Host Com mand Ex e cu tion 34

	Chap ter 4: In struc tions 37
	AD DRESS 39
	ARG 44
	CALL 46
	DO 53
	DROP 59
	EXIT 61
	IF 63
	IN TER PRET 66
	IT ER ATE 67
	LEAVE 68
	NOP 69
	NU MERIC 70

	OP TIONS 73
	PARSE 74
	PRO CE DURE 85
	PULL 89
	PUSH 91
	QUEUE 92

	RE TURN 93
	SAY 95
	SE LECT 96
	SIG NAL 99

	TRACE 103
	UPPER 110

	Chap ter 5: Built-In Func tions 111
	ABBREV 114
	ABS 115
	AD DRESS 115
	ARG 117
	BITAND 118
	BITOR 119
	BITXOR 120
	B2X 121
	CENTER 122
	CHANGESTR 123

	CHARIN 124
	CHAROUT 126
	CHARS 128
	CHDIR 129
	COMPARE 130
	CON DI TION 131
	COUNTSTR 133

	COPIES 133
	CUSERID 134
	C2D 135
	C2X 135
	DATATYPE 136
	DATE 138
	DELSTR 142
	DELWORD 143
	DIGITS 144
	D2C 145
	D2X 146

	ERRORTEXT 146
	FIND 147
	FORM 149
	FOR MAT 150

	FUZZ 154
	GETCWD 155
	GETENV 156
	IN DEX 157

	IN SERT 158
	JUS TIFY 159
	LASTPOS 159
	LEFT 160
	LENGTH 162
	LINEIN 163
	LINEOUT 165

	LINES 167
	LOWER 168
	MAX 169
	MIN 170
	OVER LAY 170
	POPEN 172

	POS 173
	PUTENV 174
	QUAL IFY 175
	QUEUED 176
	RAN DOM 177
	RE VERSE 178

	RIGHT 178
	SIGN 179
	SOURCELINE 180
	SPACE 181
	STREAM 183

	STRIP 185
	SUBSTR 186
	SUBWORD 187
	SYM BOL 188
	TIME 190

	TRACE 193
	TRANS LATE 194
	TRUNC 196
	UPPER 197
	USER ID 197
	VALUE 198
	VER IFY 200
	WORD 202
	WORDINDEX 203
	WORDLENGTH 204
	WORDPOS 205

	WORDS 206
	XRANGE 206
	X2B 207
	X2C 208
	X2D 209

	Chap ter 6: uni-REXX Ex ten sions 211
	uni-REXX Spe cific Func tions 211
	RXFUNCADD 212
	RXFUNCDROP 212
	RXFUNCQUERY 212
	RXXCOMMANDSPAWN 213

	RXXCOMMANDKILL 213
	RXXCOMMANDWAIT 213
	rxxosendoflinestrinG 214
	rxxosenvironmentseparator 214
	rxxospathseparator 214
	rxxsleep 214
	rxxfunctionpackageload 215
	rxxcommandpackageload 218
	UNIX-Specific Func tions 222
	_AC CEPT 225

	_BIND 227
	_CLOSEDIR 229
	_CLOSESOCKET 229

	_CON NECT 230
	_ERRNO 232
	_EXIT 233

	_FD_CLR 233
	_FD_ISSET 234

	_FD_SET 234
	_FD_ZERO 234
	_FORK 234
	_GETEUID 235
	_GETHOSTBYADDR 236
	_GETHOSTBYNAME 236

	_GETHOSTID 238
	_GETHOSTNAME 238
	_GETPEERNAME 239

	_GETPID 240
	_GETPPID 241
	_GETSERVBYNAME 241
	_GETSOCKNAME 242
	_GETSOCKOPT 243

	_GETUID 244
	_IOCTL 245
	_KILL 246
	_LISTEN 247
	_OPENDIR 248
	_READDIR 249

	_RECV 249
	_REGEX 251

	_SE LECT 252
	_SEND 253

	_SETSID 254
	_SETSOCKOPT 255
	_SLEEP 257

	_SOCKET 257
	_STAT 258
	_SYS_ERRLIST 260

	_SYSTEMDIR 260
	_TRUN CATE 261

	_UMASK 261
	_WAIT 262
	_WAITPID 263
	Cli ent/Server Sam ple Ap pli ca tion 265

	Op er ating Sys tem Fa cil ities 274
	DESBUF 275

	DROPBUF 276
	EXECIO 277
	GLOBALV 284
	MAKEBUF 289

	RXQUEUE 290
	SEN TRIES 290

	 Chap ter 7: Ap pli ca tion Pro gramming In ter faces 291
	IRXEXCOM 293
	IRXEXEC 297
	IRXEXITS 300
	IRXJCL 305
	IRXSTK 308
	IRXSTOP 312
	IRXSUBCM 315
	Build ing Em bedded Ap pli ca tions 319

	Ex ter nal Func tion Pack ages 323
	Con trol Blocks 335

	ARGLIST 335
	CPCKDIR 335
	EVALBLOCK 336
	EXECBLK 336
	EXITBLK 337
	FPCKDIR 339
	INSTBLK 341
	IRXSUBCT 343
	SHVBLOCK 344

	STMT 347
	Interprocess Com mu ni ca tion with uni-REXX 348

	Ap pen dix A: Mes sage Sum mary 353
	Ap pen dix B: Com mon Pit falls in uni-REXX Pro grams 365
	Ap pen dix C: Bib li og ra phy 371
	Ap pen dix D: Sys tem Lim i ta tions 375
	Ap pen dix E: uni-REXX En vi ron ment Vari ables 377

	IN DEX
	!
	_AC CEPT func tion 225
	_BIND func tion 227
	_CLOSEDIR func tion 229
	_CLOSESOCKET func tion 229
	_CON NECT func tion 230
	_ERRNO func tion 232
	_EXIT func tion 233
	_FD_CLR func tion 233
	_FD_ISSET func tion 234
	_FD_SET func tion 234
	_FD_ZERO func tion 234
	_FORK func tion 234
	_GETEUID func tion 235
	_GETHOSTBYADDR func tion 236
	_GETHOSTBYNAME func tion 236
	_GETHOSTID 238
	_GETHOSTNAME 238
	_GETPEERNAME func tion 239
	_GETPID func tion 240
	_GETPPID func tion 241
	_GETSERVBYNAME func tion 241
	_GETSOCKNAME func tion 242
	_GETSOCKOPT func tion 243
	_GETUID func tion 244
	_IOCTL func tion 245
	_KILL func tion 246
	_LISTEN func tion 247
	_OPENDIR func tion 248
	_READDIR func tion 249
	_RECV func tion 249
	_REGEX func tion 251
	_SE LECT func tion 252
	_SEND func tion 253
	_SETSID func tion 254
	_SETSOCKOPT func tion 255
	_SLEEP func tion 257
	_SOCKET func tion 257
	_STAT func tion 258
	_SYS_ERRLIST func tion 260
	_SYSTEMDIR func tion 260
	_TRUN CATE func tion 261
	_UMASK func tion 261
	_WAIT func tion 262
	_WAITPID func tion 263

	A
	ABBREV func tion 114
	Ab bre vi a tions 114
	ABS func tion 115
	Ab so lute value 115
	Abuttal con cat e na tion 12
	AD DRESS built-in func tion 42
	AD DRESS func tion 115
	AD DRESS in struc tion 15, 35, 39, 42
	com mand I/O re di rec tion 39-41

	Al tering the flow of a DO loop 67
	AND op er a tion 118
	API
	SEE Ap pli ca tion Pro gramming In ter faces

	Ap pli ca tion Pro gramming In ter faces 291
	ARGLIST struc ture 335
	build ing the ap pli ca tion 319
	con trol blocks 335
	EVALBLOCK struc ture 336
	EXECBLK struc ture 336
	ex e cut ing a uni-REXX pro gram 291, 297, 305
	EXITBLK struc ture 337
	FPCKDIR struc ture 339
	host com mand en vi ron ments 291, 315
	INSTBLK struc ture 341
	IRXEXCOM 292-293
	IRXEXEC 291, 297
	IRXEXITS 292, 300
	IRXJCL 291, 305
	IRXSTK 292, 308
	IRXSTOP 292, 312
	IRXSUBCM 315
	IRXSUBCOM 291
	IRXSUBCT struc ture 343
	shar ing vari ables 292-293
	SHVBLOCK struc ture 344
	STMT struc ture 347
	ter mi nat ing a uni-REXX pro gram 292, 312
	uni-REXX ar chive li brar ies 320
	uni-REXX header file 320
	uni-REXX pro gram stack 292, 308
	user ex its 292, 300

	ARG func tion 117
	ARG in struc tion 44
	ARGLIST struc ture (con trol block) 335
	Ar gu ment strings 44, 74, 117
	Arith me tic op er a tors 11
	Arith me tic pre ci sion 70
	de ter min ing cur rent set ting 144

	B
	B2X func tion 121
	Bib li og ra phy 371
	Bi nary string 6
	Bi nary to hex a dec i mal con ver sion 121
	BITAND func tion 118
	BITOR func tion 119
	BITXOR func tion 120
	Blank con cat e na tion 12
	blanks 5
	Bourne shell 35, 42
	Built-in func tions 46, 111
	ABBREV 114
	ABS 115
	AD DRESS 42, 115
	ARG 117
	B2X 121
	BITAND 118
	BITOR 119
	BITXOR 120
	C2D 135
	C2X 135
	CENTER 122
	CHARIN 16, 124
	CHAROUT 16, 126
	CHARS 16, 128
	CHDIR 18, 129
	COMPARE 130
	CON DI TION 131
	COPIES 133
	CUSERID 18, 134
	D2C 145
	D2X 146
	DATATYPE 136
	DATE 138
	DELSTR 142
	DELWORD 143
	DIGITS 144
	ERRORTEXT 146
	FIND 147
	FORM 149
	FOR MAT 150
	FUZZ 154
	GETCWD 18, 155
	GETENV 18, 156
	IN DEX 157
	IN SERT 158
	JUS TIFY 159
	LASTPOS 159
	LEFT 160
	LENGTH 162
	LINEIN 16, 163
	LINEOUT 16, 165
	LINES 16, 167
	list of 112
	LOWER 168
	MAX 169
	MIN 170
	OVER LAY 170
	POPEN 18, 36, 172
	POS 173
	PUTENV 18, 174
	QUAL IFY 175
	QUEUED 17, 176
	RAN DOM 177
	RE VERSE 178
	RIGHT 178
	SIGN 179
	SOURCELINE 180
	SPACE 181
	STREAM 17, 183
	STRIP 185
	SUBSTR 186
	SUBWORD 187
	SYM BOL 188
	TIME 190
	TRACE 193
	TRANS LATE 194
	TRUNC 196
	UPPER 197
	USER ID 197
	VALUE 198
	VER IFY 200
	WORD 202
	WORDINDEX 203
	WORDLENGTH 204
	WORDPOS 205
	WORDS 206
	X2B 207
	X2C 208
	X2D 209
	XRANGE 206

	Built-in func tions 13

	C
	C com piler 379
	C shell 35, 42
	C2D func tion 135
	C2X func tion 135
	CALL in struc tion 46
	CENTER func tion 122
	Changing di rec to ries 18, 129
	Char ac ter to dec i mal con ver sion 135
	Char ac ter to hex a dec i mal con ver sion 135
	CHARIN func tion 16, 124
	CHAROUT func tion 16, 126
	CHARS func tion 16, 128
	CHDIR func tion 18, 129
	Clauses 5-12
	con tin u a tion 8
	in struc tion 7
	la bel 8
	null clause 8

	Clear ing stack buff ers 275
	Cli ent/Server Sam ple Ap pli ca tion 265
	Closing a di rec tory 229
	Closing a file 126, 165, 184, 278
	cms host com mand en vi ron ment 42
	com mand host com mand en vi ron ment 35, 42
	Com ment 8
	Com par a tive op er a tors 11-12
	nor mal 12
	strict 12

	COMPARE func tion 130
	Com paring strings 130
	Com piler 21, 27-28
	Com pound sym bol 9
	Con cat e na tion 12
	abuttal 12
	blank 12

	Con cat e na tion op er a tors 12
	CON DI TION func tion 131
	Con di tion traps 14-15, 48, 99, 131
	Con di tional pro cess ing 54, 63, 96
	Con di tions 14-15
	ER ROR 15
	FAIL URE 15
	HALT 15
	in for ma tion about cur rent trapped 131
	LOSTDIGITS 15
	NOTREADY 15
	NOVALUE 15
	SYN TAX 15

	Con fig u ra tion man age ment func tions 222
	Con stant sym bol 8
	Con stants 8
	Con tin u a tion 8
	Con tin u a tion char ac ter 8
	Con trol vari ables 53
	Con ver sion
	bi nary to hex a dec i mal 121
	char ac ter to dec i mal 135
	char ac ter to hex a dec i mal 135
	dec i mal to char ac ter 145
	dec i mal to hex a dec i mal 146
	hex a dec i mal to bi nary 207
	hex a dec i mal to char ac ter 208
	hex a dec i mal to dec i mal 209
	to low er case 168, 194
	to up per case 110, 194, 197

	Con verting to low er case 168, 194
	Con verting to up per case 110, 194, 197
	COPIES func tion 133
	Cre ating a child pro cess 234
	Cre ating stack buff ers 289
	csh host com mand en vi ron ment 35, 42
	Cur rent date 138
	Cur rent di rec tory 18, 155
	CUSERID func tion 18, 134

	D
	D2C func tion 145
	D2X func tion 146
	Data type 136
	DATATYPE func tion 136
	Date for mats 138-139
	DATE func tion 138
	De bugging a pro gram 103-104, 365
	Dec i mal to char ac ter con ver sion 145
	Dec i mal to hex a dec i mal con ver sion 146
	De leting a file 184
	De leting char ac ters 142
	De leting words 143
	DELSTR func tion 142
	DELWORD func tion 143
	DESBUF com mand 19, 274-275
	De vel oper's Kit 21, 27-28, 30
	Di ag nos tic mes sages 353
	DIGITS func tion 144
	DO in struc tion 53
	DO loop 53
	al ter ing the flow 67
	con trol vari able 53
	leav ing 68

	Doc u men ta tion con ven tions 2-4
	DROP in struc tion 59
	DROPBUF com mand 19, 274, 276
	Drop ping stack buff ers 276
	Dummy in struc tion 69
	Du pli cating strings 133

	E
	Ef fec tive user id 235
	Em bedded ap pli ca tions 291
	SEE ALSO Ap pli ca tion Pro gramming In ter faces
	build ing 319

	End of file 15, 49, 100
	En vi ron ment vari ables 18, 377
	cur rent set ting 18, 156
	de fin ing 18, 32, 174
	PATH 24
	REXXCOMMANDNOTQUOTED 377
	REXXENVPREFIX 377-378
	REXXEXECIOCASELESS 378
	REXXEXTERNALUPPERCASEFILENAME 378
	REXXIOPERSISTENTNAMEDFIFOS 378
	REXXLIB 31, 321, 378
	REXXLOADPATH 379
	REXXMODULECC 30, 379
	REXXMODULECFLAGS 31, 379
	REXXMODULECOMMANDINTERPRETER 379
	REXXMODULEEXTRALIBS 379
	REXXMODULELDFLAGS 31, 379
	REXXMODULELDSYMBOLS 31, 380
	REXXNUMERICDIGITS 380
	REXXPARSESOURCEACTIVEENVIRONMENT 380
	REXXPATH 22, 25, 33, 380
	REXXSTACKSHARED 381
	REXXSTREAMCOMMANDNOCOLON 381
	REXXSUFFIXSOURCE 24-25, 29-30, 381
	REXXTEMP 30, 381
	REXXTEMPDISK 382
	REXXTEMPIPC 382
	REXXTRACE 382
	REXXTRACELOGFILE 382
	set ting 31-32, 377

	ER ROR con di tion 15
	Er ror mes sages 353
	ERRORTEXT func tion 146
	EVALBLOCK struc ture (con trol block) 336
	Ex clu sive OR op er a tion 120
	EXECBLK struc ture (con trol block) 336
	EXECIO com mand 274, 277
	Ex e cut able bi nary 28, 30-31
	C com piler 30-31
	loader sym bol ta bles 380
	tem po rary space 30
	uni-REXX li brar ies 30-31
	un re solved ref er ences 379

	Ex e cuting dy nam i cally-cre ated in struc tions 66
	Ex e cuting uni-REXX pro grams
	SEE Pro gram ex e cu tion

	Ex e cuting Unix com mands 18
	EXIT in struc tion 61
	EXITBLK struc ture (con trol block) 337
	Exits 292, 300
	com mand 301
	ini tial iza tion 301
	ter mi nal in put 301
	ter mi nal out put 301
	ter mi na tion 301

	Ex plicit ex e cu tion 22
	Ex po nen tial no ta tion 70-71
	de ter min ing cur rent set ting 149

	Ex posing vari ables to a sub rou tine 47, 85
	Ex pres sion 10-12
	Ex ten sions 2, 18, 34
	Ex ter nal data queue
	SEE uni-REXX pro gram stack

	Ex ter nal func tion pack ages 323
	ARGLIST struc ture 324, 335
	con trol blocks 323
	EVALBLOCK struc ture 324, 336
	FPCKDIR struc ture 323, 339
	in em bed ded ap pli ca tions 328
	in stand-alone uni-REXX pro grams 330

	Ex ter nal func tions 13, 33
	Ex ter nal sub rou tines 33

	F
	FAIL URE con di tion 15
	File and di rec tory man age ment func tions 223
	File per mis sions 22-23
	File sta tus 258
	FIND func tion 147
	Find ing a string 147, 157, 159, 173, 202-203, 205
	FORM func tion 149
	FOR MAT func tion 150
	For matting nu meric out put 150
	For matting string out put 159-160, 178, 181, 194
	FPCKDIR struc ture (con trol block) 339
	Func tion calls 11
	Func tions 13
	built-in 13, 46, 111
	con fig u ra tion man age ment 222
	ex ter nal 13, 33, 46
	file and di rec tory man age ment 223
	gen eral rules 113
	in ter nal 13, 46
	interprocess com mu ni ca tion 223
	in vo ca tion 111
	lo cat ing 33
	pro cess man age ment 222
	reg u lar ex pres sion pro cess ing 223
	sys tem er ror pro cess ing 223
	Unix-spe cific 20, 222
	user-writ ten 291, 323

	Fuzz fac tor 71
	de ter min ing cur rent set ting 154

	FUZZ func tion 154

	G
	GETCWD func tion 18, 155
	GETENV func tion 18, 156
	GLOBALV com mand 19, 274, 284

	H
	HALT con di tion 15
	Hex a dec i mal string 6
	Hex a dec i mal to bi nary con ver sion 207
	Hex a dec i mal to char ac ter con ver sion 208
	Hex a dec i mal to dec i mal con ver sion 209
	Host com mand en vi ron ments 35, 39, 42
	com mand 35, 42
	csh 35, 42
	de fault 35
	de fin ing 291, 315
	de ter min ing de fault 75
	de ter min ing the cur rent set ting 115
	ksh 42
	sh 35, 42
	UNIX 35

	Host com mands 34
	en vi ron ments 35, 39
	ex e cu tion 34, 36, 39, 172
	I/O re di rec tion 39-41

	Host con fig u ra tion 236, 238

	I
	I/O
	SEE In put/Out put

	I/O re di rec tion 15
	IF in struc tion 63
	IF-THEN-ELSE 63
	Im ple men ta tion name
	de ter min ing 76

	Im ple men ta tion re lease date
	de ter min ing 76

	Im plicit ex e cu tion 23
	Im plicit ex e cu tion string 23
	IN DEX func tion 157
	In for ma tional mes sages 353
	In put/Out put 15-17
	com mands 17-18, 274, 277
	func tions 15-16, 124, 126, 163, 183
	in struc tions 17, 74, 89, 95
	re di rec tion 39-41
	streams 17

	IN SERT func tion 158
	In serting a string 158
	INSTBLK struc ture (con trol block) 341
	In struc tion 7
	as sign ment 7
	com mand 7
	key word 7

	In struc tions 37
	AD DRESS 35, 39
	ARG 44
	CALL 46
	DO 53
	DROP 59
	EXIT 61
	IF 63
	IN TER PRET 66
	IT ER ATE 67
	LEAVE 68
	list of 38
	NOP 63, 69, 97
	NU MERIC 70
	OP TIONS 73
	PARSE 16, 74
	PRO CE DURE 85
	PULL 16, 89
	PUSH 16, 91
	QUEUE 17, 92
	RE TURN 93
	SAY 17, 95
	SE LECT 96
	SIG NAL 99
	TRACE 103
	UPPER 110

	In ter ac tive trac ing 104
	In ter me di ate code gen er a tion 27
	In ter me di ate code ver sion 29
	In ter nal func tions 13
	IN TER PRET in struc tion 66
	Interprocess com mu ni ca tion 34, 223, 348
	In tro duc tion 1
	irx.h 320
	irxproto.h 320
	IRXSUBCT struc ture (con trol block) 343
	IT ER ATE in struc tion 67

	J
	JUS TIFY func tion 159

	K
	Korn shell 35, 42
	ksh host com mand en vi ron ment 42

	L
	La bel 8
	Lan guage def i ni tion 1
	Lan guage ex ten sions 2, 18, 34
	Lan guage fea tures 5
	clauses 5-12
	ex pres sions 10-12
	func tions 13
	in put/out put 15
	op er a tors 11
	pars ing 17
	spe cial vari ables 14
	sym bols 8-10

	LASTPOS func tion 159
	LEAVE in struc tion 68
	Leaving a DO loop 68
	Leaving a pro gram 61, 93
	LEFT func tion 160
	LENGTH func tion 162
	Length of a string 162, 204
	librx.a 320
	librxi.a 348
	Lim i ta tion 375
	LINEIN func tion 16, 163
	LINEOUT func tion 16, 165
	LINES func tion 16, 167
	Lit eral string 6, 10
	Lo cating a uni-REXX pro gram 22, 24
	Lo cating a uni-REXX pro gram 24
	Log i cal op er a tors 13
	LOSTDIGITS con di tion 15
	LOWER func tion 168

	M
	MAKEBUF com mand 19, 274, 289
	MAX func tion 169
	Mes sage sum mary 353
	Mes sage text
	re triev ing 146

	MIN func tion 170

	N
	NOP in struc tion 63, 69, 97
	Nor mal com par i son 12
	NOTREADY con di tion 15, 49, 100
	NOVALUE con di tion 15
	Null clause 8
	Nu meric com par i sons 71
	NU MERIC in struc tion 70

	O
	Open ing a di rec tory 248
	Open ing a file 184
	Op er a tor 7
	Op er a tors 11
	arith me tic 11
	com par a tive 11-12
	con cat e na tion 12
	log i cal 13

	OP TIONS in struc tion 73
	OR op er a tion 119
	ORXXVersionCheck() C lan guage func tion 320
	Out put of Unix com mands 18
	OVER LAY func tion 170

	P
	Par ent pro cess id 241
	PARSE in struc tion 16, 74
	PARSE LINEIN 16
	PARSE PULL 16
	PARSE SOURCE 75
	PARSE VER SION 76
	Parsing 17, 74-83
	by pat tern 78
	by po si tion 79
	by words 77
	place holder 82
	tem plate 74, 76-82

	PATH en vi ron ment vari able 24
	Pausing a pro gram 257
	Per sis tent I/O streams 17
	Pipes 17
	read ing from 124, 163
	writ ing to 126, 165

	Pit falls in uni-REXX pro grams 365
	POPEN func tion 18, 36, 172
	POS func tion 173
	Pre ci sion
	de ter min ing cur rent set ting 144

	Pre ci sion of num bers 70
	PRO CE DURE in struc tion 85
	Pro cess group leader 254
	Pro cess id 240-241
	Pro cess man age ment func tions 222
	Pro gram ex e cu tion 22
	ex plicit 22
	file per mis sions 22-23
	im plicit 23
	lo cat ing the pro gram 22, 24-25

	Pro gram in vo ca tion
	de ter min ing method 75

	Pro gram name
	de ter min ing 75

	Pro gram names 21, 24, 29
	Pro gram pathname
	de ter min ing 75

	Pro gram stack
	SEE uni-REXX pro gram stack

	Pro tecting vari ables 47, 85
	PULL in struc tion 16, 89
	PUSH in struc tion 16, 91
	PUTENV func tion 18, 174

	Q
	QUAL IFY func tion 175
	QUEUE in struc tion 17, 92
	QUEUED func tion 17, 176

	R
	RAN DOM func tion 177
	Ran dom num bers 177
	RC spe cial vari able 14
	Read ing a file 124, 163, 277
	Read ing di rec tory en tries 249
	Real user id 244
	Re gen er ating the in ter preter 28
	Reg u lar ex pres sions 223, 251
	Re moving blanks 185
	RE SULT spe cial vari able 14, 46, 93, 111
	RE TURN in struc tion 93
	Re turning a value 61, 93
	RE VERSE func tion 178
	REXX lan guage def i ni tion 1
	REXX lan guage level
	de ter min ing 76

	REXXCOMMANDNOTQUOTED en vi ron ment vari able 377
	REXXENVPREFIX en vi ron ment vari able 377-378
	REXXEXECIOCASELESS en vi ron ment vari able 378
	REXXEXTERNALUPPERCASEFILENAME en vi ron ment vari able 378
	REXXIOPERSISTENTNAMEDFIFOS en vi ron ment vari able 378
	REXXLIB en vi ron ment vari able 31, 321, 378
	REXXLOADPATH en vi ron ment vari able 379
	REXXMODULECC en vi ron ment vari able 30, 379
	REXXMODULECFLAGS en vi ron ment vari able 31, 379
	REXXMODULEEXTRALIBS en vi ron ment vari able 379
	REXXMODULELDFLAGS en vi ron ment vari able 31, 379
	REXXMODULELDSYMBOLS en vi ron ment vari able 31, 380
	REXXNUMERICDIGITS en vi ron ment vari able 380
	REXXPARSESOURCEACTIVEENVIRONMENT en vi ron ment vari able 380
	REXXPATH en vi ron ment vari able 22, 25, 33, 380
	REXXSTACKSHARED en vi ron ment vari able 33, 381
	REXXSTREAMCOMMANDNOCOLON en vi ron ment vari able 381
	REXXSUFFIXSOURCE en vi ron ment vari able 24-25, 29-30, 381
	REXXTEMP en vi ron ment vari able 30, 381
	REXXTEMPDISK en vi ron ment vari able 382
	REXXTEMPIPC en vi ron ment vari able 382
	REXXTRACE en vi ron ment vari able 382
	REXXTRACELOGFILE en vi ron ment vari able 382
	RIGHT func tion 178
	rxc com mand 28-29, 32
	RXFUNCADD func tion 212
	RXFUNCDROP func tion 212
	RXFUNCQUERY func tion 212
	RXQUEUE com mand 290
	rxx com mand 22, 24-25
	RXXCOMMANDKILL func tion 213
	RXXCOMMANDSPAWN func tion 213
	RXXCOMMANDWAIT func tion 213
	RXXOSENDOFLINESTRING func tion 214
	RXXOSENVIRONMENTSEPARATOR func tion 214
	RXXOSPATHSEPARATOR func tion 214
	RXXSLEEP func tion 214

	S
	SAY in struc tion 17, 95
	SE LECT in struc tion 96
	SEN TRIES com mand 19, 290
	Server con fig u ra tion 241
	Set ting en vi ron ment vari ables 377
	sh host com mand en vi ron ment 35, 42
	Sharing vari ables 19, 274, 284, 292-293
	SHVBLOCK struc ture (con trol block) 344
	SIGL spe cial vari able 14, 99
	SIGN func tion 179
	SIG NAL in struc tion 99
	Sim ple sym bol 9
	Socket op er a tions 225, 227, 229-230, 247, 249, 253, 257
	Source code se cu rity 27
	SOURCELINE func tion 180
	SPACE func tion 181
	Spawning a pro cess 234
	Spe cial char ac ters 7
	Spe cial vari ables 14
	RC 14
	RE SULT 14, 46, 93, 111
	SIGL 14, 99

	STDIN 17
	STDOUT 17
	Stem 10
	STMT struc ture (con trol block) 347
	STREAM func tion 17, 183
	Streams 17
	Strict com par i son 12
	STRIP func tion 185
	Sub rou tines
	ex e cu tion 99
	ex ter nal 33, 46
	in ter nal 46
	in vok ing 46, 99
	lo cat ing 33

	SUBSTR func tion 186
	SUBWORD func tion 187
	Sym bol 6, 8-10
	com pound 9
	con stant 8
	sim ple 9
	sta tus of 188
	value of 198

	SYM BOL func tion 188
	SYN TAX con di tion 15
	Sys tem er ror pro cess ing 224, 232, 260
	Sys tem er ror pro cess ing func tions 223
	Sys tem lim i ta tions 375
	Sys tem name
	de ter min ing 75

	T
	Tem plate
	SEE Parsing

	Ter mi nal in put 16, 74-75, 89, 124, 163
	Ter mi nal out put 16-17, 95, 126, 165
	Ter mi nating a pro cess 233, 246
	Time for mats 190-191
	TIME func tion 190
	TRACE func tion 193
	TRACE in struc tion 103
	Trace out put 105
	Trace set ting 103-104, 193
	Trac ing a pro gram 103-104
	Tran sient I/O streams 17
	TRANS LATE func tion 194
	TRUNC func tion 196
	Trun cating a file 261

	U
	uni-REXX ar chive li brar ies 31
	librx.a 320
	librxi.a 348

	uni-REXX header file (irx.h) 320
	uni-REXX pro gram stack 33
	ac cess from a C lan guage pro gram 292, 308
	add ing data 91-92
	buff ers 19, 274-276, 289
	host com mand out put 172, 290
	num ber of items 290
	num ber of lines 89, 176
	re triev ing data 75, 89
	shar ing 33

	uni-SPF 1
	Unix com mands
	ex e cut ing 18, 39, 172
	out put 18, 172

	Unix pro cesses 42
	Unix user id 197
	ef fec tive 235
	real 244
	re triev ing 134

	Unix-spe cific func tions 20, 222
	_AC CEPT 225
	_BIND 227
	_CLOSEDIR 229
	_CLOSESOCKET 229
	_CON NECT 230
	_ERRNO 232
	_EXIT 233
	_FD_CLR 233
	_FD_ISSET 234
	_FD_SET 234
	_FD_ZERO 234
	_FORK 234
	_GETEUID 235
	_GETHOSTBYADDR 236
	_GETHOSTBYNAME 236
	_GETHOSTID 238
	_GETHOSTNAME 238
	_GETPEERNAME 239
	_GETPID 240
	_GETPPID 241
	_GETSERVBYNAME 241
	_GETSOCKNAME 242
	_GETSOCKOPT 243
	_GETUID 244
	_IOCTL 245
	_KILL 246
	_LISTEN 247
	_OPENDIR 248
	_READDIR 249
	_RECV 249
	_REGEX 251
	_SE LECT 252
	_SEND 253
	_SETSID 254
	_SETSOCKOPT 255
	_SLEEP 257
	_SOCKET 257
	_STAT 258
	_SYS_ERRLIST 260
	_TRUN CATE 261
	_UMASK 261
	_WAIT 262
	_WAITPID 263
	list of 222-223

	uni-XEDIT 1
	UPPER func tion 197
	UPPER in struc tion 110
	User-writ ten func tions 291, 323
	in em bed ded ap pli ca tions 328
	in stand-alone uni-REXX pro grams 330

	USER ID func tion 197

	V
	VALUE func tion 198
	Vari able ref er ence 59, 85
	Vari ables
	as sign ing a value 7
	com pound 9
	contol 53
	drop ping 59
	ex pos ing to a sub rou tine 47, 85
	names 10
	pars ing 75
	pro tect ing 47, 85
	shar ing 19, 274, 284, 292-293
	sim ple 9
	spe cial 14
	stem 10
	vari able ref er ence 85

	VER IFY func tion 200
	Ver sion num ber 25

	W
	Waiting for pro cesses 262-263
	Waiting on a pro cess 262-263
	WORD func tion 202
	WORDINDEX func tion 203
	WORDLENGTH func tion 204
	WORDPOS func tion 205
	WORDS func tion 206
	Writ ing to a file 126, 165, 277

	X
	X2B func tion 207
	X2C func tion 208
	X2D func tion 209
	XRANGE func tion 206

