
ibm.com/redbooks

Implementing REXX
Support in SDSF

Lydia Parziale
Ludvik Drobnic

Dario Facchinetti
Richard Levey

Amy Miu

Harness the power of SDSF with the
versatility of REXX

Write powerful REXX code to
manage your environment

Access SDSF outside of
your mainframe

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Implementing REXX Support in SDSF

June 2007

International Technical Support Organization

SG24-7419-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2007)

This edition applies to z/OS Release 1 Version 9 with APAR PK43448

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Note: This book is based on a pre-GA version of a product and might not apply when the
product becomes generally available. We recommend that you consult the product
documentation or follow-on versions of this book for more current information.

Contents

Figures . ix

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this book . xiv
Become a published author . xv
Comments welcome. xvi

Introduction and overview . 1
The REXX with SDSF interface . 2
Telling SDSF to execute commands . 4

Panel display commands . 5
New capabilities of REXX with SDSF in z/OS V1.9 . 11
SDSF programming practices . 13

Host environment verses interactive environment 13
Recommendations . 14
Tune the command processing. 16
Areas to consider . 16

Debugging tools . 17
VERBOSE parameter . 17
SDSF trace . 17

Running REXX executables . 21
TSO/E address spaces . 21
Batch non TSO/E address spaces . 28
UNIX System Services address spaces . 31

Chapter 1. Issuing a system command . 37
1.1 Command environment . 38
1.2 Considerations when issuing a system command in the host command

environment . 38
1.2.1 Console name . 38
1.2.2 Console type . 39
1.2.3 Command authority . 39
1.2.4 Delay time limit . 39

1.3 Customization . 39
1.4 ISFEXEC operands . 40

1.4.1 System command . 40

© Copyright IBM Corp. 2007. All rights reserved. iii

1.4.2 Other optional parameters . 41
1.5 Command output. 41
1.6 REXX for SDSF system command executable samples. 41

1.6.1 Sample REXX exec - @SYSCMD . 42
1.6.2 Scenario 1 - Use the system-determined EMCS console 58
1.6.3 Scenario 2 - Use an internal console . 59
1.6.4 Scenario 3 - Use a specific EMCS console. 60
1.6.5 Scenario 4 - Request for the initial command response 61
1.6.6 Scenario 5 - Request for all command responses 63
1.6.7 Scenario 6 - Confirm the execution of the system command 67
1.6.8 Scenario 7 - Query for a started task status 68
1.6.9 Scenario 8 - Query for a device status . 70
1.6.10 Scenario 9 - Reply to the system command generated WTOR . . . 72
1.6.11 Scenario 10 - Confirm the execution of the system command and reply

to its WTOR . 74
1.6.12 Scenario 11 - Confirm the execution of the system command and the

reply to the WTOR . 76
1.6.13 Scenario 12 - Suppress all outputs . 78

Chapter 2. Copying SYSOUT to a PDS . 81
2.1 Background and overview of this scenario . 82
2.2 Input to BUILDPDS . 83
2.3 Program flow . 84

2.3.1 Decoding the arguments . 85
2.3.2 Deleting and reallocating the PDS . 88
2.3.3 Interfacing with IBM z/OS System Display and Search Facility 89
2.3.4 Writing the data to the PDS. 93

2.4 Suggestions for continued development . 96

Chapter 3. Bulk job update processor. 97
3.1 Scenario description . 98

3.1.1 Tasks that this scenario accomplishes . 98
3.1.2 Testing the scenario . 102

3.2 Programming the interface . 102
3.2.1 Program flow . 103
3.2.2 Retrieving SYSOUT information . 105
3.2.3 Generic filter processing . 111
3.2.4 Processing the CANCEL and OVERTYPE commands. 112

3.3 Processing the EXECUTE command . 115
3.3.1 A sample CLIST . 117

iv Implementing REXX Support in SDSF

3.4 Future development . 120

Chapter 4. SDSF support for the COBOL language 123
4.1 Understanding the middleware between a

REXX exec and another language . 124
4.2 The pieces of REXDRIVR and how they work together 126

4.2.1 The REX4SDSF exec . 126
4.3 The REXDRIVR interface program . 128

4.3.1 Entry point REXDRIVR - REX4SDSF function processor 128
4.3.2 The Application Program’s view of SDSF: The parameter list 135
4.3.3 Entry point REXXSDSF - Application program service routine 139

4.4 Entry point REXXDONE - REX4SDSF completion routine 143
4.4.1 Entry point REXXFREE - storage release routine. 147

4.5 The application programs included in the additional materials 147
4.6 The COBOL point of view . 148
4.7 Improving the interface . 151

Chapter 5. Searching for a message in SYSLOG 153
5.1 Scenario description . 154
5.2 Solving the issue with REXX with SDSF . 154
5.3 The actual code. 154

5.3.1 Parameters . 154
5.3.2 Program flow . 155
5.3.3 Configuring the SDSF execution environment 156
5.3.4 Obtaining the SYSLOG job names . 158

5.4 Sample output . 160

Chapter 6. Viewing SYSLOG . 163
6.1 Scenario description . 164
6.2 Programming caveats . 164
6.3 Parameters . 164

6.3.1 Program flow . 166
6.3.2 Testing execution environment . 166
6.3.3 Parameter verification . 167
6.3.4 Configuring the SDSF execution environment 167
6.3.5 Obtaining all the SYSLOG jobs. 169

6.4 Customization . 170

Chapter 7. Reviewing execution of a job. 173
7.1 Scenario description . 174
7.2 Solution . 174

7.2.1 Parameters . 174
7.2.2 Program logic . 176
7.2.3 Searching jobs . 177

 Contents v

7.2.4 Choosing the desired job . 179
7.2.5 Searching the report . 181
7.2.6 Processing the report . 182
7.2.7 Analyzing job execution . 182
7.2.8 Program output . 184
7.2.9 Possible enhancements . 185

Chapter 8. Remote control from other systems . 187
8.1 System structure . 188
8.2 The main server . 189

8.2.1 Main server’s program logic . 190
8.3 SDSF command processors . 191

8.3.1 Parameters . 191
8.3.2 Program logic . 191

8.4 A sample client . 196
8.5 Extending to more complex environments . 199

Chapter 9. JOB schedule and control . 201
9.1 Scenario description . 202
9.2 Implementation . 203

9.2.1 Server program . 203
9.2.2 Client program. 203
9.2.3 Personalizing the server code. 218

9.3 Compile and customize the sample programs . 219

Chapter 10. SDSF data in graphics . 223
10.1 TCP/IP socket communications . 225

10.1.1 TCP/IP socket functions . 226
10.2 Description of the server program . 228

10.2.1 Initializing the program . 229
10.2.2 Commands accepted by the server . 233
10.2.3 REXX with SDSF function call . 235
10.2.4 Running the server program . 240
10.2.5 Configuration of the server program . 241

10.3 First client program . 242
10.3.1 Use of the program . 246

vi Implementing REXX Support in SDSF

10.4 Second client program . 248
10.5 Third client program . 251
10.6 Extending the examples . 257
10.7 How to compile the Java programs . 258

Chapter 11. Extended uses . 261
11.1 A different desktop for each role . 262
11.2 Control your subsytems. 263
11.3 Application point of view of the system . 264
11.4 Verify the service level agreement of your batch jobs. 265
11.5 Remote control of your system . 266
11.6 Add SDSF commands and data to your own tools 266
11.7 Create a personalized Workload Manager . 267

Appendix A. REXX variables for SDSF host commands 269
REXX variables . 270
REXX variables for SDSF commands.. 272

Appendix B. Additional material . 305
Locating the Web material . 305
Using the Web material . 306

System requirements for downloading the Web material 306
How to use the Web material . 306

Glossary . 307

Index . 313

 Contents vii

viii Implementing REXX Support in SDSF

Figures

2-1 BUILDPDS flow. 82
2-2 BUILDPDS main program flow . 84
2-3 How BUILDPDS copies a single SYSOUT to the PDS 85
2-4 DDNAME substitution list format. 95
3-1 The LISTPROC job selection panel . 98
3-2 LISTPROC Selected Job Display Panel . 99
3-3 LISTPROC Selected Job Display Panel with excluded jobs 100
3-4 The job selection list with a progress bar . 101
3-5 LISTPROC program logic . 104
4-1 The REXDRIVR architecture. 124
4-2 COBOL / SDSF Parameter Area (except for returned data and stem

variables) . 136
4-3 COBOL/SDSF - explicit stem variable retrieval. 137
4-4 C / SDSF Parameter Area returned data . 138
4-5 Overview of REXXDONE logic (abridged) . 146
4-6 Flowchart: Calling REXXSDSF and REXXFREE from COBOL 150
5-1 Scanning SYSLOG, program flow. 155
5-2 Activation and deactivation of the console . 160
5-3 SYSTSPRT file after executing the REXX exec @SYSLOG 161
6-1 Browsing syslog in a UNIX path file . 165
6-2 Viewing SYSLOG . 166
6-3 Browsing SYSLOG output data set. 170
7-1 Sample scenario program logic. 176
7-2 Sample e-mail report sent by the REXX exec. 184
7-3 Job execution summary sent to the programmers team 185
8-1 Sample client-server system . 188
8-2 Main server logic . 190
8-3 REXX with SDSF command processor logic . 192
8-4 Configuring communications in the client panel 197
8-5 Image of the client program with ST panel selected 198
9-1 Example flow of a group of jobs . 202
9-2 Program control window . 204
9-3 Configuring the server IP address and port number 204
9-4 Example job flow . 205
9-5 Creating a job group . 206
9-6 Adding entries to the job group . 207
9-7 Updated job group. 207
9-8 List of jobs in the job group . 208

© Copyright IBM Corp. 2007. All rights reserved. ix

9-9 CPU time limit placed on a job . 208
9-10 Plotting job groups graphically . 209
9-11 Submitting the group . 211
9-12 Updating the list box by loading the job group 211
9-13 List box change after starting the scheduler . 212
9-14 Job scheduler in action after submission of first job 214
9-15 End of execution . 216
9-16 Graphical display of jobs running . 217
9-17 System output of a completed job. 218
10-1 Communication between two host systems . 226
10-2 TCP/IP socket functions used to establish communication. 227
10-3 Sending and receiving TCP/IP data . 233
10-4 Program logic . 245
10-5 Running run.bat. 246
10-6 Setup window . 246
10-7 Connecting message . 247
10-8 Dashboard, first glance . 247
10-9 Startup panel for example 2 Java program . 249
10-10 Example 2 program start . 249
10-11 Status of jobs in the output queue. 250
10-12 Getting the system output . 251
10-13 Startup window for example 4. 252
10-14 Starting the program . 252
10-15 Data rendered to client workstation - example 4. 254
10-16 Detail of chpid data . 255
10-17 Status of all devices - example 4 . 256
10-18 Getting device data - example 4 . 257
11-1 Sample programmers desktop . 262
11-2 Sample operators command entry facility . 263
11-3 Controlling subsystems using SDSF support for the REXX language . 264
11-4 Application point of view of the system . 265
11-5 Remote control application through SSH . 266

x Implementing REXX Support in SDSF

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. xi

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
eServer™
z/OS®
AIX®
CICS®
DB2®
DFSMSdfp™
IBM®

IMS™
Language Environment®
Lotus Notes®
Lotus®
MVS™
Notes®
OS/390®
POWER™

PR/SM™
Redbooks®
RACF®
REXX™
RMF™
S/390®
System/370™
WebSphere®

The following terms are trademarks of other companies:

Java, JavaBeans, JavaMail, JDK, J2ME, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xii Implementing REXX Support in SDSF

Preface

The Restructured Extended Executor (REXX™) language is a procedural
language that allows you to write programs and algorithms in a clear and
structural way. It is an interpreted and compiled language. It is not necessary to
compile a REXX command list before executing it.

The IBM® z/OS® System Display and Search Facility (SDSF) provides a number
of functions including1:

� Viewing the system log and searching for any literal string
� Entering system commands
� Controlling job processing (hold, release, cancel and purge jobs)
� Monitoring jobs while they are being processed
� Displaying job output before deciding to print it
� Controlling the order in which jobs are processed
� Controlling the order in which output is printed
� Controlling printers and initiators

With IBM z/OS V1.9, you can harness the versatility of REXX to interface and
interact with the power of SDSF. A new function called REXX with SDSF z/OS
V1.9 that provides access to SDSF functions through the use of the REXX
programming language. This REXX support provides a simple and powerful
alternative to using SDSF batch.

This IBM Redbooks® publication describes the new support and provides
sample REXX executables that exploit the new function and that perform
real-world tasks related to operations, systems programming, system
administration, and automation. This book complements the SDSF
documentation, which is primarily reference information.

The audience for this book includes operations support, system programmers,
automation support, and anyone with a desire to access SDSF using a REXX
interface.

1 See Introduction to the New Mainframe: z/OS Basics, SG24-6366 which is available at:
http://www.redbooks.ibm.com/redbooks/pdfs/sg246366.pdf

Note: We did the work in this book using IBM z/OS V1.9 with APAR PK43448
applied.

© Copyright IBM Corp. 2007. All rights reserved. xiii

http://www.redbooks.ibm.com/redbooks/pdfs/sg246366.pdf

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization (ITSO), Poughkeepsie
Center.

Lydia Parziale is a Project Leader for the ITSO team in
Poughkeepsie, New York, with domestic and international
experience in technology management, including software
development, project leadership, and strategic planning.
Her areas of expertise include e-business development
and database management technologies. Lydia is a
Certified IT Specialist with an MBA in Technology
Management and has been employed by IBM for 24 years

in various technology areas.

Ludvik Drobnic Martinez is an IT Architect at la Caixa
in Barcelona, Spain. He has 20 years of experience in
application development tools in MVS™ and UNIX®
systems. He is currently a member of an application
architecture support team.

Dario Facchinetti is a certified Product Service
Specialist working for IBM Italy in Integrated Technology
Services. He has more that 25 years of experience in
mainframe environment for VM, MVS, OS/390®, and
z/OS. He use to work in Milan and is part of the EMEA
z/OS virtual front end team.

Richard Levey is an Advisory Software Engineer for
IBM Global Services in Schaumburg, IL. He works on
operating system and program product exits and utility
programs for z/OS systems. Rich’s areas of expertise
include z/OS, REXX, SCLM and assembler language
and have now expanded to writing Redbooks. He has
a BS in Mathematics and has been employed by IBM
for 10 years.

xiv Implementing REXX Support in SDSF

Thanks to the following people for their contributions to this project:

Rich Conway, Robert Haimowitz
ITSO, Poughkeepsie Center

Ken Jonas, William Keller, John Kapernick, and Robert E Thompson
IBM Systems &Technology Group

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Amy Miu is an Advisory Remote Technical Support
Specialist in Canada. She has been with IBM and
working with the mainframe platform for 13 years. She is
part of the Canadian team that supports z/OS defect and
Q&A questions from Canadian customers, as well as
z/OS Q&A questions from American customers. She has
been supporting SDSF since 1996. She holds a degree
in Computer Science from the University of Manitoba in
Canada.

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xvi Implementing REXX Support in SDSF

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Introduction and overview

Until now, to use the power of IBM z/OS System Display and Search Facility
(SDSF), you had to invoke SDSF batch. Although SDSF batch provides the full
capabilities of SDSF, the interface can be awkward to use when creating utilities.
REXX with SDSF, new with IBM z/OS SDSF V1.9, provides a more natural
programming interface that opens SDSF’s strengths to a wider audience.

When using SDSF, you can access the interactive HELP panels that have some
small but good examples. This IBM Redbooks publication extends those
examples to help you solve typical problems found in data centers around the
world.

© Copyright IBM Corp. 2007. All rights reserved. 1

The REXX with SDSF interface

REXX with SDSF integrates with your REXX executable (referred to in the
remainder of this chapter as REXX exec) by executing commands and returning
the results in REXX variables. To understand the new REXX with SDSF API you
need to understand the commands and what they do and you need to know
which variables are set and what these variables include.

Our discussion here briefly covers the REXX with SDSF API, but for more
information refer to the chapter “Using SDSF with the REXX programming
language” in z/OS V1R9.0 SDSF Operation and Customization, SA22-7670. You
can also refer to the interactive tutorial panels that display when you press PF1
when using SDSF or use the REXXHELP command from any SDSF panel.

The best way to learn the interface is to run test programs while you are reading
about the various features and capabilities. Nothing fixes ideas in your mind
better than real experience. As you learn about commands and variables, run a
small program that tries out the command or tests the variables. We have found
the best approach is to display everything and to never assume that a variable
will assume a specific value.

Example 1 shows the skeleton that we used to develop the examples in this book
to explore all aspects of the API.

Example 1 Skeleton code used as the base for the examples in this book

01 /* REXX */
02
03 say;say;say /* Force the say text to the next page */
04
05 /* Load the SDSF environment and abort on failure */
06
07 IsfRC = isfcalls("ON")
08 if IsfRC <> 0 then do
09 say "RC" IsfRC "returned from isfcalls(ON)"
10 exit IsfRC
11 end
12
13 /* Issue the command */
14
15 address SDSF ""
16 if RC <> 0 then do
17 say "RC" RC "returned from ..."
18 call DisplayMessages
19 end

2 Implementing REXX Support in SDSF

20
21 /* Display the user log associated with the action */
22
23 say isfulog.0 "user log lines"
24 do i = 1 to isfulog.0
25 say " '"isfulog.i"'"
26 end
27
28 /* Display the responses associated with the action */
29
30 say isfresp.0 "response lines"
31 do i = 1 to isfresp.0
32 say " '"isfresp.i"'"
33 end
34
35 /* Unload the SDSF environment */
36
37 call isfcalls "OFF"
38
39 exit 0
40
41 /* Display the messages associated with the action */
42
43 DisplayMessages:
44 say "isfmsg: '"isfmsg"'"
45 say isfmsg2.0 "long messages in the isfmsg2 stem:"
46 do i = 1 to isfmsg2.0
47 say " '"isfmsg2.i"'"
48 end

The three say statements on line 3 in Example 1 were put in so that the first true
diagnostic output line displays on the top line of a full page rather than on the
bottom of the first page where it would be separated from the really interesting
information that shows on the next page. You plug your command into line 15
and follow it with whatever you need to verify your understanding of what you are
testing. Whenever you have a question—whether at the beginning of your
education or well into it—test, test, and test some more. Seeing is believing.

 Introduction and overview 3

Telling SDSF to execute commands

The REXX with SDSF API mimics the interactive use of the product. You might
understand many of the API’s facilities better by picturing just how you would
accomplish the same thing by executing SDSF at your terminal. SDSF provides
support to execute commands that you enter on the command line. These
commands can include:

1. Panel display commands, such as ST or DA, that result in a tabular display
replacing the current panel.

2. SDSF information commands, such as WHO or QUERY, that result in a
temporary information display.

3. MVS system commands, called slash commands, that perform system
operator functions.

You use the ISFEXEC API command to request that SDSF execute these kinds
of commands. Thus you enter the following command to switch the status
display:

isfexec st

To execute the who command, you enter this command:

isfexec who

To issue the command to display outstanding replies, you enter this command:

isfexec /d r

The general syntax of the ISFEXEC command is:

isfexec <command> [(<options>)]

The result of executing a command depends on what kind of command you
execute. Panel display commands create virtual tabular displays that are
returned to the executable as a series of stem variables, one for each selected
column. SDSF information command responses are returned in a special REXX
stem variable, isfresp. MVS command responses are returned in a special
REXX stem variable, isfulog.

Interactive SDSF also supports filtering commands, such as DEST, PREFIX, and
INPUT that establish selection criteria for populating tabular displays. REXX with
SDSF supports these commands in a different way. Rather than issue the
command, you set a special REXX variable—one for each supported
command—that accomplishes the same end.

4 Implementing REXX Support in SDSF

For example, you implement the SDSF command SET PREFIX ADR*Q* in
REXX as:

isfprefix = “ADR*Q*”

Appendix A, “REXX variables for SDSF host commands” on page 269 includes a
complete list of the filtering commands and associated variables.

Panel display commands

Until now, interactive SDSF was the only ways to access SDSF data.
Interactive SDSF uses the panel display commands to switch from the current
panel to the named panel. For example, the DA command switches to the active
job panel. The panel displays with all the fields in the primary field list as
established when SDSF was installed, one column for each field. You can view
fields that do not fit onto the initial panel by scrolling to the left or right or by
scrolling up and down.

With REXX with SDSF, when you issue a panel display command, SDSF
displays the panel by creating a virtual panel. It sets a series of stem variables to
the values that you would see if you had entered the command on the interactive
display. There is one stem variable for each field/column to display with one
member for each row. So, if you executed the ISFEXEC ST command, the
JNAME stem would be set for the job names with the job name on the first row
returned in JNAME.1, the second in JNAME.2, and so on. The 0 member includes
the number of rows in the display and is the same for all the returned stem
variables. All the stem variables are set when control returns from your ISFEXEC
command. The API does not support the concept of scrolling.

The stem variable names are frequently the same as the column titles but not
always so. SDSF uses special names, which are its internal identifiers for the
values. You can use the colshelp command on any SDSF panel to open a help
window that tells you the names of every variable for every panel along with the
column title and an indication of whether it is a delayed column. It is important to
know which stem variables are delayed (as you will see shortly). The names of
each variable are listed in Appendix A, “REXX variables for SDSF host
commands” on page 269.

In addition to the stem variables for the display columns, the API returns one
additional stem variable. TOKEN.i is set to a special value that uniquely identifies
the row. If you want to take some action against this row, to issue an operator
command against it (release/hold, perhaps, or cancel) or to overtype the value
in some column, you identify the row using the tokens.

 Introduction and overview 5

SDSF special variables
In addition to the stem variables, SDSF also exchanges control information in
special variables that begin with the letters isf. You can set these variables to
make requests of SDSF and to interrogate the variables to get information useful
to you in understanding how your call worked. Because of this naming scheme,
we recommend that you avoid starting your variables with the letters isf.
Otherwise, you might find yourself participating in a dialog that you had not
intended.

For more information about the special variables, see z/OS V1R9.0 SDSF
Operation and Customization, SA22-7670. Some of the more common variables
are:

isfcols Column name list. On input to an ISF command, you set
isfcols to the names of all the columns that you want
returned. On output from the command, isfcols is set to
the names of all the columns that are returned. The
difference is when 1) isfcols is blank on input, 2) when
SDSF adds columns (more on this later), or 3) when
some of the names that you pass to SDSF are not legal
columns on the display that you requested.

isfucols Updatable column name list. On output from an ISF
command, this variable is set to the names of all columns
in isfcols which can be updated by the user.

isfrows Returned row count.

isfsort Sort order. You set isfsort to direct SDSF to sort the
rows in the virtual table before returning them to you.

isfprefix Job name pattern. Setting isfprefix is the same as using
the PREFIX command in interactive SDSF.

isfowner Ownerid pattern. Setting isfowner is the same as using
the OWNER command in interactive SDSF.

isfmsg ISPF short message. Capsule description of how the
command completed if not blank.

isfmsg2 Additional message stem. Set to additional messages,
informational, warning and error. isfmsg2.0 is the number
of messages, isfmsg2.i is the i-th message.

Primary and alternate field lists
When you enter an interactive panel command at the SDSF command line, you
see a group of columns that reflect the primary field definition set up when SDSF
was installed. You can scroll the list left and right, but the only columns that you
see are those defined as primary fields. Entering a question mark (?) primary

6 Implementing REXX Support in SDSF

command on the command line changes the panel to display the alternate fields
as defined at installation. Again, you can scroll left and right, but the only
columns you see are those defined as alternate fields.

REXX with SDSF honors the primary and alternate field lists just as interactive
SDSF does. Unlike interactive SDSF, however, you can specify which set of
fields you want returned to you by specifying or omitting the alternate option.
Omitting the alternate option on the ISFEXEC command retrieves the primary
fields and specifying it retrieves the alternate fields. Specifying the alternate
option on the ISFEXEC command can lead to problems; however, if SDSF was
installed with the primary and alternate field definitions significantly modified from
the values with which the product is shipped. As shipped, the alternate definitions
include all the primary fields. So, by specifying the alternate option, you can
access all the columns defined for the panel. If fields have been removed from
the alternate definition, it is possible that your program could require a
combination of columns which, while defined for the panel you are requesting, do
not exist in either the primary or alternate field lists.

Another significant difference between the interactive and program versions of
SDSF are the REXX variables that are used to pass information between SDSF
and REXX. When you issue a panel definition command through ISFEXEC,
SDSF returns all of the stem variable names in REXX variable isfcols. In
addition, if you set isfcols prior to issuing the ISFEXEC command, only those
columns you specify are returned. (The TOKEN.i stem is returned regardless of
its presence in the isfcols variable.) By limiting the columns that display, you can
optimize your display, which saves some space and time.

Using DELAYED columns
SDSF has the concept of delayed columns in interactive displays that is
important to understand in the REXX with SDSF environment. Simply stated, a
delayed column is a column whose value cannot be immediately determined by
an examination of memory. It requires a SPOOL I/O to retrieve the value and,
thus, requires additional time to build and display either the interactive or virtual
panel. In fact, the difference between the primary and alternate field lists in SDSF
as shipped is that the alternate lists include the delayed columns and the primary
lists do not.

REXX with SDSF also supports the performance enhancement of not retrieving
delayed columns unless specifically requested on the ISFEXEC command. To
retrieve delayed columns, you must include the delayed option with the
ISFEXEC command:

isfexec da (alternate delayed

If you do not specify delayed, the delayed column values are not returned to you
in stem variables, even if you explicitly request them in isfcols.

 Introduction and overview 7

Primary and secondary panels
When you issue a panel display command using ISFEXEC, SDSF generates a
virtual panel and creates stem variables to represent the data on the panel and
on special variables (isfrows, isfcols, and so on) in order to pass additional
information to your program. When you use the ? action on one of the rows,
SDSF creates a secondary panel—one subordinate to the first—and creates
stem and special variables for that panel as well. Because these two panels exist
simultaneously, SDSF allows you to handle their related variables in a manner
that prevents them from interfering with each other. We discuss SDSF’s special
variables in this section and the stem variables in the next section, Overtyping
data fields.

The original panel is called the primary panel and the isfxxx special variables all
relate to the primary panel. These are the variables that we discussed previously
in “SDSF special variables” on page 6.

The secondary panel has its own variables with the same function, but their
name has the suffix 2. Some of the more common variables include:

isfcols2 Set to the columns that you want returned before you
invoke

isfact SDSF sets to the columns that are returned when you get
control back

isfsort2 Tell SDSF the desired sort order of the secondary display

isfucols2 SDSF informs you which columns in isfcols2 can be
overtyped

Overtyping data fields
After issuing a panel display command, you might want to modify data on the
virtual panel. You can overtype displayed data (if your authorization permits it) or
enter line commands in the NP column such as p to purge data sets or ? to
display a job’s data sets (JDS panel). REXX with SDSF calls overtyping data
taking an action and provides the following ISFACT command to allow you to do
it:

isfact <panel> token(‘<token>’) parm(<column> <value> ...) (<options>)

The first thing to note is that you always code the panel name, such as ST or DA.
Second, you code the <token> which identifies the row. This token is the one
returned to you when you executed the ISFEXEC command to create the virtual
panel. When you code the token, you must enclose it in apostrophes to ensure it
is interpreted properly by SDSF.

After identifying the panel and token, you indicate which columns you want to
modify and specify the new data to put into them by coding pairs of values in the

8 Implementing REXX Support in SDSF

parm. The first value in the pair is the column name which is the same as the
stem variable names (without the tail). The second value is what you want the
variable to include. If you want to set a second column at the same time, you
code a second pair after the first.

There are several options you can specify, but the one we want to emphasize is
the PREFIX option, which is coded as:

(PREFIX <string>)

To understand PREFIX, you need to understand the purpose for which it was
intended. A typical programming problem would be to retrieve rows on a panel,
such as O, where each row would correspond to one group of SYSOUT data
sets, satisfying the conditions of the specified filters (prefix, ownerid, and so
forth.), and then displaying the individual data sets by using the ? line command
on jobs of interest.

Now, let us say that you want to enter a line command on one of the lines of this
display, say to purge one of the data sets. How would you do this? Here are the
steps:

1. First you execute ISFEXEC o to display the virtual output panel.

2. Then execute isfact o token(‘<SYSOUT-token>’) parm(np ?) to display the
JDS virtual panel for the data sets for the row identified by <SYSOUT-token>,
one of the token stem variables that is returned by ISFEXEC.

3. Execute isfact o token(‘<dataset-token>‘’) parm(np p) for the row
identified by <dataset-token>, one of the token stem variables that is
returned by ISFACT, that you want to purge.

Example 2 shows a skeleton of this process.

Example 2 Interference between two SDSF commands

01 /* REXX */
02
03 isfprefix = ...
04 isfowner = ...
05 isfcols = ...
06
07 address SDSF "isfexec o"
08
09 do i = 1 to isfrows
10 address SDSF "isfact o token('"token.i"') parm(np ?)"
11 do j = 1 to isfrows
12 address SDSF "isfact o token('"token.j"') parm(np p)"
13 end
14 end

 Introduction and overview 9

There are two serious issues with the skeleton shown in Example 2.

� The isfact on line 10 has overlaid the token stem variable that was returned
by the isfexec on line 7.

� Both the isfexec on line 7 and isfact on line 10 have set variable isfrows,
so the number of rows on the virtual output panel has been lost.

You need to address the fact that the SDSF commands have interfered with
each other in the code. Having a common isfrows means that you need to save
the value returned by ISFEXEC before issuing the ISFACT. However, sharing a
common token stem array means that you now need a loop to save all the token
values from the ISFEXEC. And what about common columns between the two
panels? You have to save every common field of interest.

Now, you can enter the PREFIX option. You use the PREFIX string as a prefix to
create new stem variable names (but not to the special variables such as
isfcols2 or isfrows) to eliminate the requirement to copy the values returned by
the first SDSF function before issuing the subsequent function. Adding the
PREFIX option provides a new version of the skeleton, as shown in Example 3.

In Example 3, PREFIX has been added to the ISFACT on line 11, and the effect
is that all stem variables returned by that ISFACT now begin with j_. So the
reference to the JDS row token on line 13 is now to j_token and the tokens
returned by ISFEXEC are intact. In this example, we also copied isfrows on line
8 to remove the reuse of that variable.

Example 3 Interference solved using PREFIX

01 /* REXX */
02
03 isfprefix = ...
04 isfowner = ...
05 isfcols = ...
06
07 address SDSF "isfexec o"
08 Orows = isfrows
09
10 do i = 1 to Orows
11 address SDSF "isfact o token('"token.i"') parm(np ?) (prefix j_"
12 do j = 1 to isfrows
13 address SDSF "isfact o token('"j_token.j"') parm(np p)"
14 end
15 end

10 Implementing REXX Support in SDSF

New capabilities of REXX with SDSF in z/OS V1.9

REXX with SDSF extends the capabilities on most of the SDSF functions:

� The system command in a slash command can be up to 124 characters long.

� System command responses are returned in a variable.

� A return code is set for most SDSF commands, action characters, and
column field modifications.

� Each function is performed without changing the user’s customized online
environment.

� Users can connect to another SDSF server or JES2 node between host
commands.

� The data on each tabular panel is available outside the panel.

The REXX interface itself and the new capabilities on the SDSF functions
provide opportunities to implement new system management functions. Users
can now:

� Issue longer system command in an offline environment.

In batch mode, the SDSF program can only accept system command up to 42
characters long. User can now run a REXX exec in an offline environment to
issue system command up to 126 characters long.

� Confirm that a system command is executed successfully.

The SDSF short message confirms that SDSF has issued the system
command successfully. User can now look in the command responses for the
expected message text to confirm that the system has executed the
command successfully.

Chapter 1, “Issuing a system command” on page 37, implements a scenario
that illustrates these functions.

� Better automate system workloads.

The REXX interface sets a return code for most of the system-related SDSF
functions. When using this interface in an offline environment, user can start
or bypass later job steps based on the REXX exec return code.

� Better schedule operational events.

Users can package a sequence of SDSF functions in a REXX exec and
schedule it to run offline at a predetermined time without changing the user’s
customized interactive environment (for example, the PREFIX, OWNER, and
DEST setups).

 Introduction and overview 11

� Better control system resources in a sysplex environment.

The REXX interface allows user to connect to a different SDSF server or
JES2 node dynamically, which enables the user to better control the sysplex
resources without exiting the current online SDSF session.

� Display SDSF data in a different format.

Users can extract data from an SDSF tabular panel and present it in a
different format. For example, format the data in a printable report, or even
write an ISPF dialog box to display the extracted data and issue further host
commands.

Chapter 3, “Bulk job update processor” on page 97, implements a scenario
that illustrates these functions.

� Display SDSF data at a remote site.

Users can extract data from an SDSF tabular panel and send it to a remote
system, which can be running on a different type of computer system. The
remote system can further process the data and display it in a different
presentation.

Chapter 7, “Reviewing execution of a job” on page 173 implements a scenario
that illustrates this function.

� Send up-to-date system status to a remote site.

Users can issue system command to query the status of a job or a subsystem
and pass it to a remote system. The remote system can further start, stop, or
resume local workloads.

� Perform SDSF functions initiated by a remote site.

User can set up an SDSF server to receive requests from a remote client
which can run on different types of computer systems.

Chapter 8, “Remote control from other systems” on page 187, Chapter 9,
“JOB schedule and control” on page 201, and Chapter 10, “SDSF data in
graphics” on page 223, implement scenarios that illustrate these functions.

� Use SDSF functions in a high-level language program.

User can write an assembler program to accept and pass SDSF parameters
from a high-level language program to a REXX exec. The REXX exec can
then invoke the SDSF host commands.

Chapter 4, “SDSF support for the COBOL language” on page 123,
implements a scenario that illustrates this function.

12 Implementing REXX Support in SDSF

SDSF programming practices

When using the REXX interface for SDSF functions, you need to consider the
differences between the host environment and the interactive environment and
make adjustments to the function invocations. Otherwise, the results and the
performance can be inconsistent with that from the interactive environment.

Host environment verses interactive environment

Consider the following difference between the host environment and the
interactive environment:

1. The host environment does not use any ISPF services.

SDSF does not use the user customized setups that are saved in the
ISFPROF member of the ISPF profile data set. It uses the defaults defined in
the SDSF parms or those defined in the program code.

User might get different rows from a tabular display; the command might be
issued using a different console type, which can further affect the returned
command responses as well as the console performance.

2. The host environment does not allow sharing of an EMCS console.

By default, SDSF does not allow an EMCS console to share among multiple
address spaces, unless the user has customized the
Console.EMCS.CrossShare field in the group definition to TRUE or the SDSF
user exit is implemented to turn on the UPRSFLG5.UPRS5CSX bit. For more
details about the Console.EMCS.CrossShare field and the UPRS5CSX bit,
refer to the z/OS SDSF Customization and Operation, SG22-7670.

This means that when the user is current running SDSF in an interactive
environment using a specific EMCS console, running a REXX exec at the
same time in an online host environment gets the shared EMCS console.
Running the same REXX exec in an offline host environment fails to get the
shared EMCS console and uses the internal console instead.

Regardless of the different results, both internal console and shared EMCS
console do not return any command responses to SDSF. If your REXX exec
requires command responses back, specify a unique EMCS console name in
the isfcons variable.

3. The host environment treats each host command invocation as though the
user:

a. Logs on with a logon procedure called REXX.

b. Has READ access to the JCL profile in the RACF® TSOAUTH class and
no access to the ACCT or OPER profile.

 Introduction and overview 13

c. Logs on with the terminal name which SDSF derived from SAF or TSO
based on the current environment.

When RACF SDSF class is not activated, SDSF uses the SDSF parms
(ILPROC, XLPROC, ITNAME, XTNAME, IUID, XUID, and TSOAUTH in the
group definitions) to put a user into an SDSF group.

In a host environment, SDSF assumes all users have only JCL authority. If
the group that the user joins when running SDSF in an interactive
environment has more than JCL specified on the TSOAUTH parm, the user
will fail to join this same group when running SDSF in the host environment.
Thus, the user can end up in a lower authority group. When this happens,
user loses the authorities on some of the SDSF functions and uses a different
set of SDSF defaults.

4. The host environment uses different data and time format.

All dates formatted will be in yyyy.ddd format. The user can use the REXX
date() function to reformat the date to another format.

5. The host environment uses different number formats.

In this environment, numbers are:

– Do not include commas.

– Are never scaled, as they are not restricted by the column width. They will
not include scaling characters such as T or M. However, some values are
formatted with units. For example, the MemLimit column on the DA panel
are formatted with MB, PB, and so on.

– Are formatted as three asterisks (***) if the data is invalid or overflowed.

– Are formatted using a decimal point followed by one or two decimal digits
when the data is a fractional number.

Recommendations

Here are the recommendations to get consistent results and performance:

1. Override the global defaults with the following REXX variables:

ISFSERVER Specifies the server to connect to

ISFJESNAME Specifies the JES2 system to operate on

ISFSCHARS Affects FIND command results

ISFTIMEOUT Affects sysplex display on a tabular panel

ISFTRMASK Affects tracing

14 Implementing REXX Support in SDSF

2. Override the user group defaults with the following REXX variables:

ISFAPPC Filters the rows on a tabular panel

ISFDEST Filters the rows on a tabular panel

ISFINPUT Filters the rows on a tabular panel

ISFOWNER Filters the rows on a tabular panel

ISFPREFIX Filters the rows on a tabular panel

3. Override the SDSF hard-coded defaults with the following REXX variables:

ISFCONS Affects the type of console used

ISFDELAY Affects the command responses received

ISFSORT Affects the row sequence of a tabular panel

ISFSYSNAME Filters the rows on a tabular panel

4. Always list the current environment:

a. Issue the WHO command.

This command can confirm that the session is connected to the correct
server and the correct JES2 system and that the user has joined the
correct SDSF group before issuing further host commands.

You can find a sample REXX exec to issue a WHO command in the
REXXHELP command.

b. Issue the QUERY command.

This command can confirm that the user has authority on a specific SDSF
command before issuing the ISFEXEC command.

c. For tabular panel, set the ISFACTIONS variables to ON.

This variable can confirm that the user has authority on a specific action
before issuing the ISFACT command.

You can find a sample REXX exec to list action characters in the
REXXHELP command.

d. For tabular panel, write out the ISFDISPLAY variable.

This variable can confirm that the correct filter commands are currently
effective.

e. Display the host command return code.

f. Display the SDSF short message in the isfmsg variable.

g. Display all SDSF messages in the isfmsg2 stem variable.

If the REXX exec is used frequently, you can consider writing an ISPF dialog box
to save the overridden REXX variables in the dialog box’s profile member and

 Introduction and overview 15

prime the REXX variables with the profile variables every time the REXX exec is
run. Chapter 1, “Issuing a system command” on page 37 implements this
suggestion.

For a quick reference on the REXX variables, see Table 28 in Chapter 28,
“General REXX variables” on page 296. For more details about each REXX
variable, refer to the z/OS SDSF Customization and Operation, SG22-7670.

Tune the command processing

For better performance, decide on the type of console to use. For bulk
processing, an internal console has a shorter processing path length. For the
ability to confirm successful execution of a system command, a primary EMCS
console guarantees the return of the command responses.

For bulk update, to force a tabular action to use an internal console, the user can
specify an EMCS console which the caller has no access on, which causes
SDSF to use the internal console.

Areas to consider

The following are some areas you should consider when issuing the host
commands:

1. System command responses are not returned when the console that is used
is not a primary EMCS console (that is, a shared EMCS console or an internal
console). This can happen when the REXX exec runs while the user is
currently running SDSF in an interactive mode. If your REXX exec requires to
get command responses back, specify a different EMCS console name in the
ISFCONS variable.

2. System commands can be up to 126 characters long. SDSF requires two
single quotation marks to represent a single quotation mark. These two single
quotation marks are counted as two characters within the 126 characters.

3. The WAIT option is ignored when the console that is used is not a primary
EMCS console.

4. Upon completion of the REXX exec, SDSF will not deactivate the primary
EMCS console when the system command it issued has any unreplied
WTORs.

5. ISFEXEC command returns the desired column only if the desired column is
on the column-selection list of the user group. For example, if ISFEXEC is
issued against the primary panel asking for a column on the alternate panel,
SDSF does not return the desired column.

16 Implementing REXX Support in SDSF

6. The isfcols variable is both an input and an output REXX variable. You
might get incorrect results when two consecutive ISFEXEC commands are
issued for two different tabular panel. The output in the isfcols variable of
the first ISFEXEC command is used as the input for the second ISFEXEC
command.

Debugging tools

When the ISFEXEC or the ISFACT host command fails, there are two areas that
you can customize to get more details about the failure:

� VERBOSE parameter on the host command
� SDSF trace

VERBOSE parameter

The VERBOSE parameter adds diagnostic messages to the isfmsg2 stem
variable when you use the ISFEXEC or the ISFACT host command to get tabular
display type of panel entries. The messages describe each row variable that is
created by SDSF.

Here are two samples to specify the VERBOSE parameter:

Address SDSF "ISFEXEC ST (VERBOSE)"
Address SDSF "ISFACT ST TOKEN('"TOKEN.ix"') PARM(NP ?) (VERBOSE)"

SDSF trace

Although SDSF TRACE is intended to be used by the IBM technical staffs, in
most cases, you might find it useful in debugging security setup issues. Common
security setup issues include:

� A user can perform an SDSF function for which the user does not have
authority.

� A user joins the wrong SDSF group and is granted more authority than is
proper.

Setup
To start an SDSF trace in the host environment, consider the following
customizable areas:

� REXX variables

 Introduction and overview 17

There are two variables the caller can customize to run a function trace, and
these variables have no effect on initialization trace:

– ISFTRACE

This variable sets the trace option to ON or OFF and is equivalent to
entering the TRACE on or TRACE OFF command in an interactive
environment. For more details about the TRACE command, access the
online REXX with SDSF help tutorial (enter REXXHELP while in SDSF).

– ISFTRMASK

This variable specifies the trace mask option, which is equivalent to
entering the TRACE command with the trace mask in an interactive
environment. For example, ISFTRMASK = ‘8084’ or ALL. For more details
about the TRACE command, access the online REXX with SDSF help
tutorial (enter REXXHELP while in SDSF).

Refer to “Types of traces” on page 19 for more details about the types of
SDSF traces.

� Trace data set allocation

You can preallocate a trace data set to the ISFTRACE ddname or let SDSF
allocates one dynamically upon starting the trace. This allocation determines
the type of SDSF trace to run. For more details about the types of SDSF
traces, refer to the “Types of traces” on page 19.

The preallocated trace data set can be a physical sequential data set with the
record format of VBA and the logical record length of 137, or it can be a
SYSOUT data set. If it is a sequential data set, make sure it is large enough to
hold all the trace data. Each trace entry has multiple lines but only one
sequence number at the end of the first line. To obtain whether the trace data
is wrapped, check to make sure that the first entry has a sequence number of
one.

SDSF allocates the trace data set the same way that it does when the user
enters the TRACE ON command in an online environment. Refer to z/OS
SDSF Customization and Operation, SG22-7670 for more details about how
SDSF allocates a trace data set.

� User authority

If RACF SDSF class is activated, you need to have READ access on the
ISFCMD.MAINT.TRACE resource. Otherwise, you need to have the TRACE
command listed in the AUTH parameter of the user group definition in the
SDSF parms.

18 Implementing REXX Support in SDSF

Types of traces
Each ISFEXEC and ISFACT host command processing consists of two phases:

� The initialization phase
� The execution phase

So there are two corresponding types of SDSF traces:

� The initialization trace

This trace records the initialization phase of a single ISFEXEC or ISFACT
host command (that is, when SDSF assigns the user to an SDSF group). To
start the trace, preallocate a trace data set with the ISFTRACE ddname.
SDSF turns the trace option on automatically when the ISFTRACE ddname is
allocated. To end the trace, unallocate the ISFTRACE ddname. SDSF does
not free the ISFTRACE ddname automatically upon terminating the trace.
The REXX exec should unallocate the ISFTRACE ddname before returning to
the caller.

See the REXX exec in Example 4.

Example 4 Start an initialization trace

/* REXX */
rcode = ISFCALLS('ON')
"alloc f(ISFTRACE) da('smith.sdsf.trace') shr"
address SDSF "ISFEXEC '/p stc1'"
"free f(ISFTRACE)"
call ISFCALLS('OFF')
return rcode

� The function trace

This trace records the execution phase of a single ISFEXEC or ISFACT host
command. To start the trace, set the ISFTRACE variable to ON before
invoking the host command. To end the trace, set the ISFTRACE variable to
OFF or let the REXX exec runs to its completion.

See the REXX exec in Example 5.

Example 5 Start the function trace

/* REXX */
rcode = ISFCALLS('ON')
ISFTRMASK = ALL
ISFTRACE = ON
address SDSF "ISFEXEC '/p stc1'"
ISFTRACE = OFF
call ISFCALLS('OFF')
return rcode

 Introduction and overview 19

To capture all traces for all host commands into a single data set, preallocate the
ISFTRACE ddname to a SYSOUT data set. See the REXX exec in Example 6.

Example 6 Start both initialization trace and function trace for all host commands

/* rexx */
"alloc f(ISFTRACE) sysout(a)"
ISFTRMASK = 'ALL'
rcode = ISFCALLS('ON')
address SDSF "ISFEXEC '/p stc1'"
address SDSF "ISFEXEC '/p stc2'"
call ISFCALLS('OFF')
"free f(isftrace)"
return rcode

Analyzing the trace output
SDSF cuts a trace entry for each RACROUTE macro invocation. To find all the
RACF resources required to perform a single host command, start both traces
and look for all occurrences of the SAFRC keyword. Each SAFRC line has the
following fields:

SAFRC The Security Authorization Facility (SAF) return code
For RACF
0 - access granted
4 - resource class is not activated
8 - access denied

CLASS The RACF resource class
RESOURCE The resource name checked by SDSF

Example 7 shows a report that is created by executing the REXX exec in
Example 6 on page 20 and then using the ISPF VIEW command in the following
order:

1. EXCLUDE ALL
2. FIND SAFRC ALL
3. DELETE EXCLUDE ALL

20 Implementing REXX Support in SDSF

To save the trace output from a SYSOUT into a data set, you can issue the XDC
or XFC action character against the SYSOUT or issue the SE action character to
read the SYSOUT using the ISPF VIEW function and issue the ISPF CREATE
command.

Example 7 SDSF SAFRC trace entries

SAFRC= 0 CLASS= SDSF REQSTOR= ISFGROUP ATTR=02 LEN= 19 RESOURCE=GROUP.ISFSPROG.SDSF
SAFRC= 0 CLASS= SDSF REQSTOR= ISFIPREF ATTR=02 LEN= 20 RESOURCE=ISFCMD.FILTER.PREFIX
SAFRC= 0 CLASS= SDSF REQSTOR= ISFIOWNR ATTR=02 LEN= 19 RESOURCE=ISFCMD.FILTER.OWNER
SAFRC= 0 CLASS= SDSF REQSTOR= ISFOPER ATTR=02 LEN= 17 RESOURCE=ISFOPER.DEST.JES2
SAFRC= 0 CLASS= SDSF REQSTOR= ISFADEST ATTR=02 LEN= 20 RESOURCE=ISFOPER.ANYDEST.JES2
SAFRC= 0 CLASS= SDSF REQSTOR= ISFOPSYS ATTR=02 LEN= 14 RESOURCE=ISFOPER.SYSTEM
SAFRC= 0 CLASS= SDSF REQSTOR= ISFCULOG ATTR=02 LEN= 21 RESOURCE=ISFCMD.ODSP.ULOG.JES2
SAFRC= 0 CLASS= OPERCMDS REQSTOR= ISFACONS ATTR=02 LEN= 15 RESOURCE=MVS.MCSOPER.SMITH
SAFRC= 0 CLASS= SDSF REQSTOR= ISFGROUP ATTR=02 LEN= 19 RESOURCE=GROUP.ISFSPROG.SDSF
SAFRC= 0 CLASS= SDSF REQSTOR= ISFIPREF ATTR=02 LEN= 20 RESOURCE=ISFCMD.FILTER.PREFIX
SAFRC= 0 CLASS= SDSF REQSTOR= ISFIOWNR ATTR=02 LEN= 19 RESOURCE=ISFCMD.FILTER.OWNER
SAFRC= 0 CLASS= SDSF REQSTOR= ISFOPER ATTR=02 LEN= 17 RESOURCE=ISFOPER.DEST.JES2
SAFRC= 0 CLASS= SDSF REQSTOR= ISFADEST ATTR=02 LEN= 20 RESOURCE=ISFOPER.ANYDEST.JES2
SAFRC= 0 CLASS= SDSF REQSTOR= ISFOPSYS ATTR=02 LEN= 14 RESOURCE=ISFOPER.SYSTEM
SAFRC= 0 CLASS= SDSF REQSTOR= ISFCULOG ATTR=02 LEN= 21 RESOURCE=ISFCMD.ODSP.ULOG.JES2
SAFRC= 0 CLASS= OPERCMDS REQSTOR= ISFACONS ATTR=02 LEN= 15 RESOURCE=MVS.MCSOPER.SMITH

Running REXX executables

There are some different ways that you can run a REXX exec, depending on the
address space type in which it is executed: TSO/E address spaces, non TSO/E
batch address spaces, or UNIX System Services address spaces.

TSO/E address spaces

TSO/E address spaces offer some extended functions to the REXX
programming environment.

 Introduction and overview 21

Interactive TSO/E address spaces
TSO/E is a base element of the z/OS operating system that allows users to
interactively work with the system.You can use TSO/E in any one of the following
environments:

� Line mode TSO/E

The way programmers originally communicated interactively with the MVS
operating system was with TSO/E commands typed on a terminal, one line at
a time. It is a quick and direct way to use TSO/E.

� ISPF/PDF

The Interactive System Productivity Facility (ISPF) and its Program
Development Facility (ISPF/PDF) work together with TSO/E to provide panels
with which users can interact. ISPF provides the underlying dialog
management service that displays panels and enables a user to navigate
through the panels. ISPF/PDF is a dialog of ISPF that helps maintain libraries
of information in TSO/E and allows a user to manage the library through
facilities such as browse, edit, and utilities.

Running REXX executables in line mode TSO/E
Line mode TSO/E is the way programmers originally communicated interactively
with the MVS operating system. They issued TSO/E commands and entered text
at the terminal one line at a time rather than from panels.

You can still use line mode TSO/E to communicate with the MVS system. To use
line mode TSO/E, enter a command after the READY message displays. The
READY message indicates that you are in line mode TSO/E.

When you are in either ISPF/PDF, you need only press the RETURN PF key (PF
4) or press the END PF key (PF 3) repeatedly until you see the READY message.

When you are in the READY prompt, you can specify a data set name, according
to the TSO/E data set naming conventions, in several different ways. For
example the data set name USERID.REXX.EXEC(SDSFREXX) can be specified
as a fully-qualified data set that appears within single quotation marks, as shown
in Example 8.

Example 8 Running a REXX exec in a fully-qualified data set

READY
EXEC 'userid.rexx.exec(sdsfrexx)' exec

22 Implementing REXX Support in SDSF

A non fully-qualified data set, which has no quotation marks, can eliminate your
profile prefix (usually your user ID) as well as the third qualifier exec (Example 9).

Example 9 Running a REXX exec in a non fully-qualified data set

READY
EXEC rexx.exec(sdsfrexx) exec /* eliminates prefix */
READY
EXEC rexx(sdsfrexx) exec /* eliminates prefix and exec */

There are also alternative ways of entering the EXEC command:

� Explicit form

Enter EXEC or EX followed by the name of the data set that includes the
CLIST or REXX exec. If you need prompting, you should invoke EXEC
explicitly with the PROMPT option. Our examples are written using the
explicit form of invocation.

� Implicit form

Do not enter EXEC or EX. Enter only the name of the member to be found in
a procedure library such as SYSEXEC or SYSPROC.1 A procedure library
consists of partitioned data sets allocated to the specific file (SYSPROC or
SYSEXEC) either dynamically by the ALLOCATE command or as part of the
LOGON procedure. TSO/E determines whether the member name is a
system command before it searches the libraries. See Example 10.

Example 10 Executing a REXX implicit form

Menu Options View Utilities Compilers Help
--
DSLIST - Data Sets Matching WAT Row 1 of 11
Command ===> TSO @SYSCMD Scroll ===> CSR

Command - Enter "/" to select action Message Volume

 WAT *ALIAS
 WAT.BRODCAST SBOXFF
 WAT.SC70.ISPF42.ISPPROF SBOXE3
 WAT.SC70.ISPF42.ISPPROF.BATCH SBOXE3
 WAT.SC70.SPFLOG1.LIST SBOXB7
 WAT.SDSF.TRACE SBOXE3
 WAT.SRCHFOR.LIST SBOXB5
 WAT.SUPERC.LIST SBOXBF
 WAT.TEST.JCL SBOX20
 WAT.TEST.OUTPUT SBOXE3
 WAT.TEST.REXX SBOX20
***************************** End of Data Set list ****************************

1 In the module name table, the LOADDD field contains the name of the DD from which REXX execs
are fetched. The default TSO/E provides for non-TSO/E, TSO/E, and ISPF is SYSEXEC.

 Introduction and overview 23

� Extended implicit form

Enter a percent sign (%) followed by the member name. TSO/E only searches
the procedure library for the specified name. This form is faster because the
system does not search for commands. See Example 11.

Example 11 Executing a REXX exec extended implicit form

Menu List Mode Functions Utilities Help

 ISPF Command Shell
 Enter TSO or Workstation commands below:

 ===> %@SYSCMD

 Place cursor on choice and press enter to Retrieve command

 => %@SYSCMD
 => ex 'JOE.TEST.REXX(@ISPCL)' 'JOE.TEST'
 => ex 'JOE.TEST.REXX(@BRLOG)' 'PATH(/tmp/JOE.syslog.sc70ts)'
 => ex 'JOE.TEST.REXX(@BRLOG)'
 => ex 'JOE.TEST.REXX(WISPCL)' 'JOE.TEST'
 => ex 'JOE.TEST.REXX(@BRLOG)' 'DSNAME(JOE.SYSLOG.SC70TS)'
 => ex 'JOE.TEST.REXX(@BRLOG)' 'DATASET(JOE.SYSLOG.SC70TS)'
 => ex 'JOE.TEST.REXX(@BRLOG)' 'JOE.SYSLOG.SC70TS'
 =>
 =>

Running REXX executables under ISPF/PDF
Interactive executables and executables written that involve user applications
are generally run in the foreground. You can invoke an executable in the
foreground in the following ways:

� From the command input field of any panel, as long as the command line is
prefixed with the keyword tso (Example 12).

Example 12 Running a REXX exec from ISPF command input field

Menu Utilities Compilers Options Status Help
--
 ISPF Primary Option Menu
Option ===> tso exec rexx.exec(sdsfrexx) exec

0 Settings Terminal and user parameters User ID . : REDBOOK
1 View Display source data or listings Time. . . : 10:31
2 Edit Create or change source data Terminal. : 3278
3 Utilities Perform utility functions Screen. . : 2

24 Implementing REXX Support in SDSF

4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl ID . : PDF
6 Command Enter TSO or Workstation commands TSO logon : IKJACCT
7 Dialog Test Perform dialog testing TSO prefix: REDBOOK
9 IBM Products IBM program development products System ID : SC70
10 SCLM SW Configuration Library Manager MVS acct. : ACCNT#
11 Workplace ISPF Object/Action Workplace Release . : ISPF 5.9
12 z/OS System z/OS system programmer applications
13 z/OS User z/OS user applications

 Enter X to Terminate using log/list defaults

� From the ISPF command processor. The ISPF command shell option allows
TSO commands, CLISTs, and REXX executables to be executed under ISPF.
When in Workstation mode, the command entered on Option 6 is directed to
the users workstation. See Example 13.

Example 13 Running a REXX exec from the ISPF command processor

Menu List Mode Functions Utilities Help

 ISPF Command Shell
Enter TSO or Workstation commands below:

===> exec rexx.exec(sdsfrexx) exec

Place cursor on choice and press enter to Retrieve command

=> ex 'itso.rexx.exec(@ISPCL)' 'itso.test'
=> ex 'itso.rexx.exec(@BRLOG)' 'PATH(/tmp/ITSO.syslog.sc70ts)'
=> ex 'itso.rexx.exec(@BRLOG)'
=> ex 'itso.rexx.exec(WISPCL)' 'itso.test'
=> ex 'itso.rexx.exec(@BRLOG)' 'DSNAME(ITSO.SYSLOG.SC70TS)'
=> ex 'itso.rexx.exec(@BRLOG)' 'DATASET(ITSO.SYSLOG.SC70TS)'
=> ex 'itso.rexx.exec(@BRLOG)' 'ITSO.SYSLOG.SC70TS'
=>
=>
=>

� From the command prompt provided by the ISPF cmde command. After typing
cmde in the input command field of any panel, a pop-up panel (ISPCMDE) with
a 234-character command input field is displayed.

You can enter up to 234 characters using the entry field provided. ISPF
allows TSO commands, CLISTS, and REXX execs and parameters to be
entered in the input field. This panel is processed much like the PDF Option 6

 Introduction and overview 25

panel. Data passed to this panel is translated to uppercase characters. Data
passed from this panel remains as it appears on the panel.

Example 14 Running a REXX exec from the command prompt

ISPF Command Entry Panel

 Enter TSO commands below:
 ===> exec rexx.exec(sdsfrexx) exec

� From the member list of ISPF Dataset List Utility (3.4) Enter line command M
(Member list) beside the PDS data set that includes your REXX executables.
When the list member list has been displayed, type exec beside the member
that includes the REXX in which you are interested.

Example 15 Executing a REXX execs from ISPF Dataset List Utility

Menu Functions Confirm Utilities Help
--
DSLIST WAT.TEST.REXX Row 00001 of 00034
Command ===> Scroll ===> CSR
 Name Prompt Size Created Changed ID
_________ @CMDBK01 497 2007/04/15 2007/04/26 08:45:02 WAT
_________ @PARSE 49 2007/04/10 2007/04/10 12:34:36 WAT
_________ @SYSCMD 530 2007/04/13 2007/04/27 14:32:05 WAT
_________ @TESTING 186 2007/04/15 2007/04/15 22:07:48 WAT
EXEC_____ ALTLIB *RC=0 2 2007/03/29 2007/03/29 14:32:05 WAT
_________ BOBSAMP 1 2007/03/28 2007/03/28 16:20:09 WAT
_________ FORAMY 119 2007/04/09 2007/04/10 10:18:20 LEVEY
_________ IEFBR14 5 2007/04/23 2007/04/23 16:36:21 WAT
_________ IKJEFT01 11 2007/03/31 2007/04/03 08:51:19 WAT
_________ IRXJCL 13 2007/03/31 2007/04/10 09:51:24 WAT
_________ JIRX 20 2007/04/03 2007/04/10 09:41:53 WAT
_________ JISPF 16 2007/04/03 2007/04/03 14:33:24 WAT
_________ JTSO 137 2007/04/03 2007/04/27 11:10:38 WAT
_________ MSGRTN2 21 2007/03/27 2007/03/27 17:28:31 JOE
_________ SAMPLE1 32 2007/03/26 2007/03/27 09:17:35 JOE
_________ SAMPLE2 64 2007/03/26 2007/03/27 15:28:42 JOE
_________ SAMP01 38 2007/03/27 2007/03/27 15:33:11 WAT
_________ SAMP02 40 2007/03/27 2007/03/27 15:42:46 WAT
_________ SAMP03 68 2007/03/27 2007/03/27 17:29:08 JOE
_________ SAMP04 58 2007/03/27 2007/03/27 16:22:11 WAT
_________ SAMP05 78 2007/03/27 2007/03/27 16:31:03 WAT
_________ SAMP06 95 2007/03/27 2007/03/27 16:36:28 WAT
_________ SAMP07 71 2007/03/27 2007/03/27 17:29:55 JOE
_________ SAMP08 65 2007/03/27 2007/03/27 16:40:14 WAT
_________ SAMP09 31 2007/03/27 2007/03/27 16:41:36 WAT
_________ SAMP10 19 2007/03/27 2007/03/27 16:42:32 WAT

26 Implementing REXX Support in SDSF

Batch TSO/E address spaces
Executables that run in the background are processed when higher priority
programs are not using the system. Background processing does not interfere
with a person's use of the terminal. You can run time-consuming and low priority
execs in the background, or executables that do not require terminal interaction.

Running an exec in the background is the same as running a CLIST in the
background. The program needed to execute TSO/E commands from the
background is a terminal monitor program (TMP), which can be one of the
following: IKJEFT01, IKJEFT1A, or IKJEFT1B. The EXEC (execute) statement is
used to execute program IKJEFT01 or the alternate programs IKJEFT1A and
IKJEFT1B. Any of these programs sets up a TSO/E environment from which you
can invoke execs and CLISTs and issue TSO/E commands. For example, to run
an exec named @SYSCMD contained in a partitioned data set
JOE.TEST.REXX, submit the following JCL.

Example 16 Running TSO/E in batch

File Edit Edit_Settings Menu Utilities Compilers Test Help

VIEW REDBOOK.TEST.JCL(ALLSAMP) - 01.06 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 //REDBOOKS JOB 'SG24-7419',MSGCLASS=A,CLASS=A,NOTIFY=ITSOPRG
000002 //ISPF EXEC PGM=IKJEFT01,DYNAMNBR=40
000003 //SYSEXEC DD DSN=JOE.TEST.REXX,DISP=(SHR)
000004 // DD DSN=WAT.TEST.REXX,DISP=(SHR)
000005 //SYSTSPRT DD SYSOUT=A,HOLD=YES
000006 //SYSTSIN DD *
000007 @SYSCMD CMD(D SMF)
000008 /*
****** **************************** Bottom of Data ****************************

The EXEC statement defines the program as IKJEFT01.PGM= specifies the
module being executed. In addition to IKJEFT01, there are two other entry points
available for background execution that provide additional return code and abend
support. The differences among the three entry points are:

� PGM=IKJEFT01

When a command completes with a non-zero return code, the program goes
to the next command. When a command abends, the step ends with a
condition code of 12 (X'C').

� PGM=IKJEFT1A

If a command or program being processed by IKJEFT1A ends with a system
abend, IKJEFT1A causes the job step to terminate with a X'04C' system

 Introduction and overview 27

completion code. IKJEFT1A also returns to the caller the completion code
from the command or program in register 15.

If a command or program being processed by IKJEFT1A ends with a user
abend, IKJEFT1A saves the completion code in register 15 and then
terminates.

If a command, program or REXX exec being processed by IKJEFT1A returns
a non-zero return code to IKJEFT1A, IKJEFT1A saves this return code in
register 15 and then terminates. Non-zero return codes to IKJEFT1A from
CLISTs will not affect the contents of register 15 and the TMP continues
processing.

For a non-zero return code or an abend from a command or program that was
not given control directly by IKJEFT1A, no return code is saved in register 15,
and IKJEFT1A does not terminate.

� PGM=IKJEFT1B

If a command or program being processed by IKJEFT1B ends with a system
or user abend, IKJEFT1B causes the job step to terminate with a X'04C'
system completion code. IKJEFT1B also returns to the caller the completion
code from the command or program in register 15.

If a command, program, CLIST, or REXX exec being processed by IKJEFT1B
returns a non-zero return code to IKJEFT1B, IKJEFT1B saves this return
code in register 15 and then terminates.

For a non-zero return code or abend completion code from a program or
command that was not given control by IKJEFT1B, no return code is saved in
register 15, and IKJEFT1B does not terminate.

In a DD statement, you can assign one or more PDSs to the SYSEXEC or
SYSPROC system file, in the Example 16 on page 27 we have two files
concatenated: JOE.TEST.REXX and WAT.TEST.REXX. The SYSTSPRT DD
allows you to print output to a specified data set or a SYSOUT class. In the input
stream, after the SYSTSIN DD, you can issue TSO/E commands and invoke
execs and CLISTs.

Batch non TSO/E address spaces

Because executables that run in a non-TSO/E address space cannot be invoked
by the TSO/E EXEC command, you must use other means to run them. Ways to
run executables outside of TSO/E are:

� From MVS batch with JCL that specifies IRXJCL in the EXEC statement.

� From a high level program using the IRXEXEC or IRXJCL processing
routines.

28 Implementing REXX Support in SDSF

Using IRXJCL to run a REXX exec in MVS batch
To run an exec in MVS batch, specify IRXJCL as the program name (PGM=) on
the JCL EXEC statement. Specify the member name of the exec and one
argument you want to pass to the exec in the PARM field on the EXEC
statement. You can specify only the name of a member of a PDS. You cannot
specify the name of a sequential data set. The PDS must be allocated to the DD
specified in the LOADDD field of the module name table. The default is
SYSEXEC.

Example 17 shows example JCL to invoke the exec @SYSCMD.

Example 17 Using IRXJCL to run a REXX exec in MVS batch

File Edit Edit_Settings Menu Utilities Compilers Test Help

VIEW REDBOOK.TEST.JCL(JOE) - 01.01 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 //REDBOOK@ JOB 'SG24-7419',MSGCLASS=A,CLASS=A,NOTIFY=REDBOOK
000002 //* -- *
000003 //* IRXJCL TEST
000004 //* -- *
000005 //BATCH EXEC PGM=IRXJCL,
000006 // PARM='@SYSCMD CMD(D SMF) DELAY(5)'
000007 //* | | | |
000008 //* Name of exec <-----> | |
000009 //* Argument <---------------->
000006 //SYSEXEC DD DSN=WAT.TEST.REXX,DISP=(SHR)
000007 //SYSTSPRT DD SYSOUT=A
000008 //SYSPRINT DD SYSOUT=A
****** **************************** Bottom of Data ****************************

As Example 17 shows, the exec @SYSCMD is loaded from DD SYSEXEC.
SYSEXEC is the default setting for the name of the DD from which an exec is to
be loaded. In the example, one argument is passed to the exec. The argument
can consist of more than one token. In this case, the argument is:

@SYSCMD CMD(D SMF) DELAY(5)

 Introduction and overview 29

@SYSCMD is the name of the REXX exec. All the rest of the line are parameters
that are parsed by the @SYSCMD. After submitting the job and executing the
REXX exec, the output in this case is as shown in Example 18.

Example 18 Output from sample Example 17

Display Filter View Print Options Help

 SDSF OUTPUT DISPLAY REDBOOK@ JOB29764 DSID 4 LINE 6 COLUMNS 02- 81
 COMMAND INPUT ===> SCROLL ===> CSR
IEF142I REDBOOK@ BATCH - STEP WAS EXECUTED - COND CODE 0000
IEF285I WAT.TEST.REXX KEPT
IEF285I VOL SER NOS= SBOX20.
IEF285I REDBOOK.REDBOOK@.JOB29764.D0000101.? SYSOUT
IEF285I REDBOOK.REDBOOK@.JOB29764.D0000102.? SYSOUT
IEF373I STEP/BATCH /START 2007121.1124
IEF374I STEP/BATCH /STOP 2007121.1124 CPU 0MIN 00.02SEC SRB 0MIN
IEF375I JOB/REDBOOK@/START 2007121.1124
IEF376I JOB/REDBOOK@/STOP 2007121.1124 CPU 0MIN 00.02SEC SRB 0MIN
@SYSCMD operands : CMD(D SMF) DELAY(5)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Original command : /D SMF

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated
SDSF long message: ISF754I Command 'SET DELAY 5' generated from associated

SDSF ULOG messages:
SC70 2007121 11:24:34.99 ISF031I CONSOLE REDBOOK ACTIVATED
SC70 2007121 11:24:34.99 -D SMF
SC70 2007121 11:24:35.00 IEE974I 11.24.35 SMF DATA SETS 793
 NAME VOLSER
 P-SYS1.SC70.MAN1 SBOXD5
 S-SYS1.SC70.MAN2 SBOXD5
 S-SYS1.SC70.MAN3 SBOXD5

IRXJCL returns a return code as the step completion code. However, the step
completion code is limited to a maximum of 4095, in decimal. If the return code is
greater than 4095 (decimal), the system uses the right most three digits of the
hexadecimal representation of the return code and converts it to decimal for use
as the step completion code.

30 Implementing REXX Support in SDSF

UNIX System Services address spaces

The set of z/OS UNIX extensions to the TSO/E REXX language enable REXX
programs to access z/OS UNIX callable services. The z/OS UNIX extensions,
called syscall commands, have names that correspond to the names of the
callable services they invoke (for example, access, chmod, and chown).

You can run an interpreted or compiled REXX program with syscall commands
from TSO/E, from MVS batch, from the z/OS shells, or from a program.You can
run a REXX program with syscall commands only on a system with z/OS UNIX
System Services installed.

The choices to access z/OS UNIX include:

� rlogin or telnet

The rlogin and telnet are interfaces that heritage UNIX users will find most
comfortable. Access should be through an ASCII terminal. We describe these
interfaces in “telnet and rlogin connections” on page 34. rlogin and telnet
provide an asynchronous interface to the shell that is familiar to UNIX users.

� The TSO OMVS command

The TSO OMVS command provides a telnet-like interface, subject to the
limitations of 3270 technology.

� The ISPF shell

The ISPF shell is an interface that heritage MVS users will find most
comfortable. It exploits full-screen capabilities of ISPF.

� BPXBATCH

BPXBATCH allows UNIX work to be executed from batch JCL. We describe
this interface in “The BPXBATCH utility” on page 32.

Batch UNIX System Services address spaces
You can access z/OS UNIX services from MVS batch using the BPXBATCH
utility. BPXBATCH makes it easy for you to run shell scripts and executable files
that reside in z/OS UNIX files through the MVS job control language (JCL). If you
do most of your work from TSO/E, using BPXBATCH saves you the trouble of
going into the shell to run your scripts and executable files. REXX executables
can also use BPXBATCH to run shell scripts and executable files.

 Introduction and overview 31

The BPXBATCH utility
You can invoke BPXBATCH from a batch job or from the TSO/E environment (as
a command, through a CALL command, or from a CLIST or REXX EXEC).

Example 19 Format of BPXBATCH invocation

EXEC PGM=BPXBATCH,PARM='SH|PGM program_name'

BPXBATCH accepts one parameter string as input, the combination of SH|PGM
and program_name. At least one blank character must separate the parts of the
parameter string. The total length of the parameter string in a JCL is up to 100
characters. If you need more than 100 characters, parameters to BPXBATCH
can also be supplied through the STDPARM DD up to a limit of 65 536
characters. When the STDPARM DD is allocated BPXBATCH will use the data
found in the z/OS UNIX file or MVS data set associated with this DD rather than
what is found on the parameter string or in the STDIN DD. An informational
message BPXM079I will be displayed indicating that this is occurring, as a
warning to the user. The STDPARM DD will allow either a z/OS UNIX file, or a
MVS SYSIN, PDS or PDSE member or a sequential data set.

� SH|PGM

Specifies whether BPXBATCH is to run a shell script or command or a z/OS
C executable file located in an z/OS UNIX file.

� SH

Specifies that the shell designated in your TSO/E user ID's security product
profile is to be started and is to run shell commands or scripts provided from
stdin or the specified program_name.

� PGM

Specifies that the program identified by the program_name parameter is
invoked directly from BPXBATCH. This is done either through a spawn or a
fork and exec. BPXBATCH creates a process for the program to run in and
then calls the program. If you specify PGM, you must also specify
program_name.

.BPXBATCH has logic in it to detect when it is running from a batch job. By
default, BPXBATCH sets up the stdin, stdout, and stderr standard streams (files)
and then calls the exec callable service to run the requested program. The exec
service ends the current job step and creates a new job step to run the target
program. Therefore, the target program does not run in the same job step as the
BPXBATCH program; it runs in the new job step created by the exec service.

32 Implementing REXX Support in SDSF

For BPXBATCH to use the exec service to run the target program, all of the
following facts must be true:

� BPXBATCH is the only program running on the job step task level.
� The _BPX_BATCH_SPAWN=YES environment variable is not specified.
� The STDOUT and STDERR ddnames are not allocated as MVS data sets.

If any of these conditions is not true, then the target program runs either in the
same job step as the BPXBATCH program or in a WLM initiator in the OMVS
subsys category. The determination of where to run the target program depends
on the environment variable settings specified in the STDENV file and on the
attributes of the target program.

Running REXX execs using BPXBATCH
You can run a REXX program from the z/OS shells. The REXX program runs as
a separate process. It does not run in a TSO/E address space. You cannot use
TSO/E commands in the REXX program.

A REXX program that is invoked from a z/OS shell or from a program must be a
text file or a compiled REXX program that resides in the hierarchical file system
(HFS). It must have read and execute access permissions. Each line in the text
file must be terminated by a newline character and must not exceed 2048
characters. Lines are passed to the REXX interpreter as they are. Sequence
numbers are not supported; if you are using the ISPF editor to create the REXX
program, be sure to set NUMBER OFF.

Example 20 Running a REXX execs with BPXBATCH utility

File Edit Edit_Settings Menu Utilities Compilers Test Help

VIEW REDBOOK.TEST.JCL(ALLSAMP) - 01.06 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 //REDBOOK@ JOB 'SG24-7419',MSGCLASS=A,CLASS=A,NOTIFY=REDBOOK
000002 //BPXBATCH EXEC PGM=BPXBATCH,PARM='SH @SYSCMD ''CMD(D SMF) DELAY(5)'''
000003 //SYSEXEC DD DSN=WAT.TEST.REXX,DISP=(SHR)
000004 //SYSTSPRT DD SYSOUT=A
000005 //STDOUT DD SYSOUT=A,DCB=(RECFM=VB,LRECL=1024,BLKSIZE=0)
000006 //STDERR DD SYSOUT=A,DCB=(RECFM=VB,LRECL=1024,BLKSIZE=0)
****** **************************** Bottom of Data ****************************

Note: The parameters of the REXX exec must be enclosed by two
apostrophes. In the previous example, CMD(D SMF) DELAY(5) are the
parameters that we send to the REXX exec @SYSCMD.

 Introduction and overview 33

telnet and rlogin connections
To access z/OS UNIX System Services interactively, you can log in into your
user account using the rlogin or telnet interface. telnet and rlogin are similar
except rlogin supports access from trusted hosts without requiring a password
(thus, security people like this option less than telnet).

Most platforms (including Microsoft® Windows®) include a telnet command or
interface. On the z/OS side, telnet support comes with the z/OS
Communications Server. It uses an inetd daemon, which must be active and set
up to recognize and receive the incoming Telnet requests. The z/OS system
provides asynchronous terminal support for the z/OS UNIX shell. This is different
from the 3270-terminal support provided by the TSO/E OMVS command.

Example 21 Issuing @SYSCMD from a telnet connection

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\RESIDENT>telnet wtsc70oe.itso.ibm.com

EZYTE27I login: REDBOOK
EZYTE28I REDBOOK Password:
IBM
Licensed Material - Property of IBM
5694-A01 (C) Copyright IBM Corp. 1993, 2007
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

REDBOOK @ SC70:/u/REDBOOK>@SYSCMD 'CMD(D SMF) DELAY(5)'
@SYSCMD operands : CMD(D SMF) DELAY(5)
SDSF HCE status : established RC=00
--
ISFEXEC options : (VERBOSE)
Original command : /D SMF

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY 5' generated from associated variable ISFDELAY.

SDSF ULOG messages:
SC70 2007121 14:18:49.67 ISF031I CONSOLE REDBOOK ACTIVATED

34 Implementing REXX Support in SDSF

SC70 2007121 14:18:49.67 -D SMF
SC70 2007121 14:18:49.68 IEE974I 14.18.49 SMF DATA SETS 019
 NAME VOLSER SIZE(BLKS) %FULL
 P-SYS1.SC70.MAN1 SBOXD5 1500 75
 S-SYS1.SC70.MAN2 SBOXD5 1500 38
DUMP
 S-SYS1.SC70.MAN3 SBOXD5 1500 0

Command result : RC=0 System command issued, response received from the EMCS console.
--
SDSF HCE status : revoked RC=00
REDBOOK @ SC70:/u/REDBOOK>

SSH connections
OpenSSH is a suite of network connectivity tools that provide secure encrypted
communications between two untrusted hosts over an insecure network. These
tools provide shell functions where network traffic is encrypted and
authenticated. OpenSSH is based on client and server architecture. It supports
public key and private key pairs for authentication and encryption channels to
ensure secure network connections and host based authentication.

Note: In the parameters to the REXX exec @SYSCMD must be enclosed in
apostrophes (‘).

 Introduction and overview 35

36 Implementing REXX Support in SDSF

Chapter 1. Issuing a system command

This chapter describes a technique for issuing a system command using IBM
z/OS System Display and Search Facility (SDSF) support for the REXX
programming language. The technique is to enter a system command with the
ISFEXEC host command.

This chapter discusses the command environment, the things to consider, the
areas to customize, the command operands and the command output. It also
provides a sample REXX executable (referred to in the remainder of this chapter
as REXX exec) and includes some scenarios to exploit this interface.

1

© Copyright IBM Corp. 2007. All rights reserved. 37

1.1 Command environment

The slash command is an SDSF command that includes a slash character (/)
followed by a system command. The system command can be an MVS
command or a subsystem command (for example, /D T). When a user runs
SDSF in an interactive environment, the slash command can be entered at the
command line of any SDSF panels. For more details about the slash command,
access the online REXX for SDSF help tutorial (enter REXXHELP while in SDSF).

SDSF supports the slash command with the ISFEXEC host command. This host
command runs under an SDSF host environment. For more details about setting
up the SDSF host environment, access the online REXX for SDSF help tutorial.

1.2 Considerations when issuing a system command in
the host command environment

SDSF uses a console to issue a system command, which allows an Extended
Multiple Console Support (EMCS) console to be shared only if the console was
activated by SDSF in the same address space. If the EMCS console was
activated by another address space or by another application, SDSF will fail to
establish the EMCS console and will issue the system command with an internal
console. In both cases, the command responses will not be returned by the
console.

So, when issuing a system command in the host command environment,
consider the items that we discuss in this section.

1.2.1 Console name

If the ISFCONS variable has a value, SDSF issues a SET CONSOLE command
with it and echoes the SET command response in the ISFMSG2 stem variable. If
the ISFCONS variable is not assigned, SDSF determines the EMCS console
name in the same way as it does when the user enters the slash command in an
interactive mode. Access the online REXX for SDSF help tutorial for more details
about the SET CONSOLE command.

38 Implementing REXX Support in SDSF

1.2.2 Console type

SDSF uses one of the following consoles to issue a system command:

� Internal console: An internal MSC console with the console ID of 0.

� Primary EMCS console: An EMCS console that is activated by the current
user.

� Shared EMCS console: An EMCS console that is already activated by
another user.

SDSF determines the console type in the same way that it does when a user
enters the system command in an interactive mode. Access the online REXX for
SDSF help tutorial for more details about how SDSF determines the console
type.

1.2.3 Command authority

SDSF determines the user command authority in the same way that it does when
a user issues the system command in an interactive mode. For more information
on how SDSF checks system command authority, refer to the z/OS SDSF
Operation and Customization, SG22-7670.

1.2.4 Delay time limit

If the ISFDELAY variable has a value, SDSF issues a SET DELAY command
with it and echoes the SET command response in the ISFMSG2 stem variable. If
the ISFDELAY variable is not assigned, SDSF determines the delay time limit in
the same way that it does when the user enters the slash command in an
interactive mode. Access the online REXX for SDSF help tutorial for more details
about the SET DELAY command.

1.3 Customization

In an SDSF host environment, SDSF issues a system command when:

� The ISFEXEC host command is invoked with a slash command

� The ISFACT host command is invoked to issue an action character or to
modify a column which generates a system command

 Chapter 1. Issuing a system command 39

There are two variables that control function trace:

ISFCONS Specifies the EMCS console name that is used to issue
the system command.

ISFDELAY Specifies the command response delay time limit for the
system command.

1.4 ISFEXEC operands

As stated earlier, the ISFEXEC API command is used to request that SDSF
execute commands such as panel display commands, SDSF information
commands, and MVS system commands, also known as slash (/) commands. In
this section, we look a little deeper at the ISFEXEC host command and how it is
used with the SDSF MVS system commands as well as the optional parameters
for the slash command. For more information about the options for panel display
commands or SDSF information commands, see z/OS V1R9.0 SDSF Operation
and Customization, SA22-7670.

1.4.1 System command

The system command can be up to 126 characters. To preserve lowercase and
special characters in the command text, single quotation marks are required to
enclose it to make sure that the quotation marks are passed to SDSF and are not
removed by REXX.

If the system command includes any single quotation mark, each single
quotation mark requires two single quotation marks to represent it. For example,
you enter the following command in an interactive environment:

/DUMP COMM=’test1’

Then, the equivalent of the same command in the host environment is:

address SDSF “ISFEXEC ‘/DUMP COMM=’’test1’’’”

The two single quotation marks are counted as two characters of the 126
characters limit. Access the online REXX for SDSF help tutorial for the syntax of
the slash command.

40 Implementing REXX Support in SDSF

1.4.2 Other optional parameters

There are two optional parameters for the slash command:

INTERNAL Specifies that SDSF should issue an INTERNAL slash
command (I/) instead of the slash command (/). Access
the online REXX for SDSF help tutorial for more details
about the I/ command.

WAIT Specifies that SDSF should issue the WAIT slash
command (W/) instead of the slash command (/). Access
the online REXX for SDSF help tutorial for more details
about the W/ command.

1.5 Command output

When the slash command is issued with an internal console or a shared EMCS
console, the console does not return any command responses to SDSF. The
caller can find the command responses in the system log. To avoid this situation,
specify a unique EMCS console name in the ISFCONS variable.

When the slash command is issued with a primary EMCS console, the console
returns the command responses to SDSF. The ISFEXEC host command puts
values in the following variables:

ISFULOG A stem variable that includes both the system command
echo and the command responses that are returned by
the console.

ISFMSG A variable that includes the SDSF short message.

ISFMSG2 A stem variable that includes the SDSF messages (which
include the SDSF long messages when there is an error).

1.6 REXX for SDSF system command executable
samples

The @SYSCMD REXX exec issues a system command for the caller. Optionally,
it can look for the expected message text in the command responses, reply to the

Note: These optional parameters are not valid if ISFEXEC if invoked to issue
other SDSF commands.

 Chapter 1. Issuing a system command 41

first Reply to the Write to Operator Reply (WTOR)—if there is one, and look for
the expected message text in the REPLY command responses.

This section includes some scenarios on how to use this REXX exec:

� Scenario 1 - Use the system-determined EMCS console

� Scenario 2 - Use an internal console

� Scenario 3 - Use a specific EMCS console

� Scenario 4 - Request for the initial command response

� Scenario 5 - Request for all command responses

� Scenario 6 - Confirm the execution of the system command

� Scenario 7 - Query for a started task status

� Scenario 8 - Query for a device status

� Scenario 9 - Reply to the system command generated WTOR

� Scenario 10 - Confirm the execution of the system command and reply to its
WTOR

� Scenario 11 - Confirm the execution of the system command and the reply to
the WTOR

� Scenario 12 - Suppress all outputs

You can find information about the program source in the compressed file, which
is described in Appendix B, “Additional material” on page 305. Alternatively, you
can copy all the code in the examples in this section into a single member called
@SYSCMD.

1.6.1 Sample REXX exec - @SYSCMD

The mainline of the @SYSCMD REXX exec in Example 1-1 invokes the following
subroutines:

1. The parse_arguments subroutine in Example 1-2 on page 44 gets all the
keyword parameters.

2. The host_environment subroutine in Example 1-5 on page 49 sets up an
SDSF host environment.

3. The find_emcs_console subroutine in Example 1-6 on page 50 finds a
primary EMCS console.

4. The issue_command subroutine in Example 1-7 on page 51 issues the system
command in the COMMAND keyword parameter.

42 Implementing REXX Support in SDSF

5. If the console is a primary EMCS console, the find_message subroutine in
Example 1-8 on page 52 looks for the expected message in the MESSAGE
keyword parameter from the command responses.

6. The issue_reply_command subroutine in Example 1-9 on page 53 issues an
MVS REPLY command with the information in the REPLY keyword parameter.

7. If the console is a primary EMCS console, the find_message subroutine in
Example 1-8 on page 52 looks for the expected message in the REPLYMSG
keyword parameter from the REPLY command responses.

Example 1-1 @SYSCMD mainline

mainline:

 parse arg arguments

 if parse_arguments(arguments) <> 0 then call exit_routine(99)
 if host_environment('establish') <> 0 then call exit_routine(28)
 if find_emcs_console(retry_count) <> 0 then call exit_routine(24)
 if issue_command(system_command) <> 0 then call exit_routine(24)
 if pos('SHARED',ISFULOG.1) > 0 | ,
 pos('FAILED',ISFULOG.1) > 0 | ,
 internal_opt <> '' then call exit_routine(4)
 if find_message(command_response) <> 0 then call exit_routine(8)
 if issue_reply_command(reply_command) <> 0 then
 call exit_routine(rcode)
 /* rcode can be: 0,12,24 */
 if pos('SHARED',ISFULOG.1) > 0 | ,
 pos('FAILED',ISFULOG.1) > 0 | ,
 internal_opt <> '' then call exit_routine(16)
 if find_message(reply_response) = 8 then call exit_routine(20)
 call exit_routine(0)

The parse_arguments subroutine
The parse_arguments subroutine in Example 1-2 first invokes the parse_parms
subroutine in Example 1-3 on page 46 to extract all keyword parameter names
(in the KEYWORD stem variable) and their corresponding values (in the VALUE
stem variable). Then it assigns a value to every keyword parameter of the REXX
exec.

For the COMMAND and the REPLY parameters, it invokes the
handle_single_quote subroutine in Example 1-4 on page 48 to double every
single quotation mark found, which meets the requirement of the ISFEXEC host
command.

 Chapter 1. Issuing a system command 43

If there is an error, the subroutine returns a code of 99. Otherwise, it returns a
code of 0.

Example 1-2 The parse_arguments subroutine

parse_arguments:

 parse arg parms

if parse_parms(parms) > 0 then
 rcode = 99
 else do

 /* successfully parsed all parameters */
 system_command = ''
 ISFCONS = ''
 ISFDELAY = ''
 internal_opt = ''
 command_response = ''
 quiet_opt = 'N'
 reply_command = ''
 reply_response = ''
 retry_count = 0
 wait_opt = ''
 rcode = 0 /* default return code */

 do i = 1 to operand_ix
 keyword.i = translate(keyword.i)
 select
 when (keyword.i = 'COMMAND') | (keyword.i = 'CMD') then do
 system_command = handle_single_quote(value.i)
 if datatype(system_command) = "NUM" then do
 rcode = 99
 leave
 end /* if */
 end /* when */
 when (keyword.i = 'CONSOLE') | (keyword.i = 'CONS') then
 ISFCONS = value.i
 when (keyword.i = 'DELAY') | (keyword.i = 'DLY') then
 ISFDELAY = value.i
 when (keyword.i = 'INTERNAL')| (keyword.i = 'INT') then
 if left(translate(value.i),1) = 'Y' then
 internal_opt = 'INTERNAL'
 when (keyword.i = 'MESSAGE') | (keyword.i = 'MSG') then
 command_response = translate(value.i)

44 Implementing REXX Support in SDSF

 when (keyword.i = 'QUIET') | (keyword.i = 'Q') then
 if left(translate(value.i),1) = 'Y' then
 quiet_opt = 'Y'
 when (keyword.i = 'REPLY') | (keyword.i = 'RPY') then do
 reply_command = handle_single_quote(value.i)
 if datatype(reply_command) = "NUM" then do
 rcode = 99
 leave
 end /* if */
 end /* when */
 when (keyword.i = 'REPLYMSG') | (keyword.i = 'RMSG') then
 reply_response = translate(value.i)
 when (keyword.i = 'RETRY') | (keyword.i = 'TRY') then
 if datatype(value.i) = "NUM" then
 retry_count = value.i
 when (keyword.i = 'WAIT') | (keyword.i = 'W') then
 if left(translate(value.i),1) = 'Y' then
 wait_opt = 'WAIT'
 otherwise do
 say '***** Error - Unknown parameter' keyword.i || ,
 ', RC=99'
 rcode = 99
 leave
 end /* otherwise */
 end /* select */

 end /* do loop */

 end /* else */

 if quiet_opt = 'N' then say '@SYSCMD operands :' parms

 return rcode

The parse_parm subroutine
The parse_parm subroutine in Example 1-3 takes the character string in the
PARM1 input parameter and parses it into two stem variables: KEYWORD and
VALUE. The KEYWORD stem variable contains the names of the keyword
parameters. The VALUE stem variable contains the values of the corresponding
keyword parameter.

If there is an error, the subroutine returns a code of 99. Otherwise, it returns a
code of 0.

 Chapter 1. Issuing a system command 45

Example 1-3 The parse_parms subroutine

parse_parms:

 parse arg parm1

 /***/
 /* This routine takes the input parameter string and parse it. */
 /* The keyword parameter is saved in stem 'keyword' and its */
 /* content is saved in stem 'value'. */
 /* For example, */
 /* parm1 = DLY(3) CMD("D SMF,O") */
 /* variables: */
 /* new_parm1 = DLY(3) CMD("1") */
 /* save_area.1 = D SMF,O */
 /* keyword.1 = DLY */
 /* value.1 = 3 */
 /* keyword.2 = CMD */
 /* value.2 = D SMF O */
 /***/

 /* Start by removing all strings enclosed in double quotes */
 new_parm1 = ""
 cursor = 1
 save_ix = 0

 do forever

 quote_start = pos('"',parm1,cursor)
 if quote_start = 0 then do
 /* No more quotes. Copy the rest to the new string */
 new_parm1 = new_parm1 || substr(parm1,cursor)
 leave
 end /* if */

 /* Starting quote column in quote_start. Find ending quote */
 quote_end = pos('"',parm1,quote_start+1)
 if quote_end = 0 then do
 say '***** Error - no matching double quote for quote in' ,
 'column' quote_start
 return 99
 end /* if */

 /* Move string in between quote_start and quote_end
 (omitting the quotes) to the next save area in stem

46 Implementing REXX Support in SDSF

 'save_area' and replace the string with the save_area
 index number. */

 save_ix = save_ix + 1
 save_area.save_ix = substr(parm1, ,
 quote_start+1,quote_end-quote_start-1)
 new_parm1 = new_parm1 || ,
 substr(parm1,cursor,quote_start-cursor+1) || ,
 save_ix || ,
 '"'
 cursor = quote_end + 1

 end /* do loop */

 /**/
 /* By now, for example: */
 /* if parm1 has : DLY(3) CMD("D SMF,O") CONS(ABC) */
 /* new_parm1 has : DLY(3) CMD("1") CONS(AC) */
 /* save_area has : D SMF,O */
 /**/

 /* Parse the new string to put value in stem 'keyword' and stem
 'value'. If 'value' has an index number, get its value from
 stem 'save_area'. */

 operand_ix = 0
 do while new_parm1 <> ""

 parse var new_parm1 operand_name "(" operand_value ")" new_parm1
 new_parm1 = strip(new_parm1)
 operand_ix = operand_ix + 1
 keyword.operand_ix = operand_name

 if left(operand_value,1) <> '"' then
 value.operand_ix = operand_value
 else do
 /* The value is a save_area index in double quotes. */
 parse var operand_value '"' save_ix '"'
 value.operand_ix = save_area.save_ix
 end /* else */

 end /* do loop */

 return 0

 Chapter 1. Issuing a system command 47

The handle_single_quote subroutine
The handle_single_quote subroutine in Example 1-4 scans the character string
in the PARM2 input parameter and replaces every single quotation mark with two
single quotation marks.

If there is a mismatched single quotation mark, the subroutine returns a code of
99. Otherwise, it returns the modified character string.

Example 1-4 The handle_single_quote subroutine

handle_single_quote:

 parse arg parm2

 new_parm2 = ""
 cursor = 1
 rcode = 0 /* default return code */

 do forever

 quote_start = pos("'",parm2,cursor)
 if quote_start = 0 then do
 /* No more quotes. Copy the rest to the new string */
 new_parm2 = new_parm2 || substr(parm2,cursor)
 leave
 end /* if */

 /* Starting quote column in quote_start. Find ending quote */
 quote_end = pos("'",parm2,quote_start+1)
 if quote_end = 0 then do
 say '***** Error - no matching single quote for quote in' ,
 'column' quote_start
 return 99
 end /* if */

 /* For every single quote found, add one more to it. */
 new_parm2 = new_parm2 || ,
 substr(parm2,cursor,quote_start-cursor+1) || ,
 "'" || ,
 substr(parm2,quote_start+1,quote_end-quote_start) || ,
 "'"
 cursor = quote_end + 1

 end /* do loop */

 return new_parm2

48 Implementing REXX Support in SDSF

The host_environment subroutine
The host_environment subroutine in Example 1-5 sets up or revokes the SDSF
host command environment (HCE) by invoking the ISFCALLS host command
based on the ENVIRONMENT input parameter. It writes a message to report the
status of the HCE.

If there is an error, the subroutine returns with the ISFCALLS return code.
Otherwise, it returns a code of 0.

Example 1-5 The host_environment subroutine

host_environment:

 parse arg environment

 if translate(environment) = 'ESTABLISH' then
 rcode = ISFCALLS('ON')
 else
 rcode = ISFCALLS('OFF')

 select
 when (rcode = 0) then
 if quiet_opt = 'N' then
 if environment = 'establish' then
 say 'SDSF HCE status : established RC=00'
 else do
 say copies('-',131)
 say 'SDSF HCE status : revoked RC=00'
 end /* else */
 when (rcode = 1) then
 say 'SDSF HCE status : not established RC=01'
 when (rcode = 2) then
 say 'SDSF HCE status : not established RC=02'
 when (rcode = 3) then
 say 'SDSF HCE status : delete failed RC=03'
 otherwise
 say 'SDSF HCE status : failed, unrecognized RC=' rcode
 end /* select */

 return rcode

 Chapter 1. Issuing a system command 49

The find_emcs_console subroutine
When the console used is an internal console or a shared EMCS console, the
console returns nothing to the REXX exec to perform further message check or
reply to the WTOR.

The find_emcs_console subroutine in Example 1-6 first tests out the console in
the ISFCONS variable with a system command (DISPLAY TIME). If the console
is a not a primary EMCS console, the subroutine appends a number within the
range of the emcs_index input parameter to form a new EMCS console name and
try again, until either the emcs_index is reached or an primary EMCS console is
found. Upon exit, the subroutine has the EMCS console name set in the
ISFCONS variable.

If there is an error from the ISFEXEC host command, the subroutine returns a
code of 24. Otherwise, it returns a code of 0.

Example 1-6 The find_emcs_console subroutine

find_emcs_console:

 parse arg emcs_index

 if emcs_index = 0 | internal_opt <> '' then
 rcode = 0
 else do

 /*set up customizable fields */
 test_cmd = 'D T'
 saved_isfcons = ''
 saved_isfdelay = ISFDELAY
 rcode = 0 /* default return code */
 ISFDELAY = ''

 do jx = 1 to emcs_index

 if issue_command(test_cmd) <> 0 then do
 /* ISFEXEC error */
 rcode = 24
 leave
 end /* if */

 if (pos('SHARED',ISFULOG.1) = 0) & ,
 (pos('FAILED',ISFULOG.1) = 0) & ,
 (internal_opt = '') then
 /* primary EMCS console */
 leave

50 Implementing REXX Support in SDSF

 else do
 /* shared EMCS console or internal console */
 if saved_isfcons = '' then
 saved_isfcons = word(ISFULOG.1,6)
 if length(saved_isfcons) < 8 then
 ISFCONS = saved_isfcons || jx
 else do
 say '***WARNING: original EMCS console' ,
 saved_isfcons 'has 8 characters,' ,
 'RETRY operand ignored'
 leave
 end /* else */
 end /* if */

 end /* do loop */

 ISFDELAY = saved_isfdelay

 end /* else */

 return rcode

The issue_command subroutine
The issue_command subroutine in Example 1-7 invokes the ISFEXEC host
command to issue the system command in the sys_cmd input parameter. Based
on the quiet keyword parameter, it writes out the content of the SDSF short
message (in the ISFMSG variable), the SDSF messages (in the ISFMSG2 stem
variable), and the messages returned by the console (in the ISFULOG stem
variable, which consists of the command echo and the command responses).

It returns with the ISFEXEC command return code.

Example 1-7 The issue_command subroutine

issue_command:

 parse arg sys_cmd

 slash_cmd = "/" || sys_cmd
 options = '(' || wait_opt internal_opt || ')'

 if quiet_opt = 'N' then do
 say copies('-',131)
 say 'ISFEXEC options :' options
 if sys_cmd = test_cmd then

 Chapter 1. Issuing a system command 51

 say 'Test command :' slash_cmd
 else
 say 'Original command :' slash_cmd
 end /* if */

 /* issue SDSF host command */
 address SDSF "ISFEXEC '"slash_cmd"' " options
 rcode = rc

 if quiet_opt = 'N' then do

 /* write SDSF short message */
 say ' '
 say 'SDSF short message:' ISFMSG

 /* write SDSF long messages */
 do ix = 1 to ISFMSG2.0
 say 'SDSF long message:' ISFMSG2.ix
 end /* do loop */

 /* write command responses */
 say ' '
 say 'SDSF ULOG messages:'
 do ix = 1 to ISFULOG.0
 say ISFULOG.ix
 end /* do loop */

 end /* if */

 return rcode

The find_message subroutine
The find_message subroutine in Example 1-8 looks for the response_msg input
parameter in the command responses (in the ISFULOG stem variable).

If the message ID is not found, the subroutine returns a code of 8. Otherwise, it
returns a code of 0.

Example 1-8 The find_message subroutine

find_message:

 parse arg response_msg

 if response_msg = '' then

52 Implementing REXX Support in SDSF

 rcode = 0
 else do
 rcode = 8 /* default return code */
 do jx = 1 to ISFULOG.0
 if pos(response_msg,ISFULOG.jx) > 0 then do
 rcode = 0
 leave
 end /* if */
 end /* do loop */
 end /* else */

 return rcode

The issue_reply_command subroutine
The issue_reply_command subroutine in Example 1-9 looks for the outstanding
reply message ID in the command responses (in the ISFULOG stem variable),
builds an MVS REPLY command with the REPLY_CMD input parameter and
invokes the issue_command subroutine in Example 1-7 on page 51 to reply to the
outstanding write to operator reply (WTOR).

If there is an error, the subroutine returns a code of 12. Otherwise, it returns a
code of 0.

Example 1-9 The issue_reply_command subroutine

issue_reply_command:

 parse arg reply_cmd

 if reply_cmd = '' then
 rcode = 0
 else do
 rcode = 12 /* default return code */
 do lx = 1 to ISFULOG.0
 msg_id = word(ISFULOG.lx,4)
 if substr(msg_id,1,1) = '*' then do
 r_id = substr(msg_id,2)
 if datatype(r_id) = "NUM" then do
 rcode = issue_command('R' r_id||','||reply_cmd)
 leave
 end /* if */
 end /* if */
 end /* do loop */
 end /* else */

 return rcode

 Chapter 1. Issuing a system command 53

The exit_routine subroutine
The exit_routine subroutine in Example 1-10 writes the REXX exec results
based on the QUIET parameter. If the host environment was established earlier,
it revokes the SDSF host environment before returning with the return code in
the input parameter.

Example 1-10 The exit_routine subroutine

exit_routine:

 parse arg rcode

 if (quiet_opt = 'N') | (rcode > 0) then do

 say ' '
 select
 when (rcode = 0) then do
 say 'Command result : RC=00 System command issued,' ,
 'response received from the EMCS console.'
 if command_response <> '' then
 say copies(' ',26) || 'Message' command_response ,
 'found in the command responses.'
 if reply_command <> '' then
 say copies(' ',26) || 'MVS REPLY command issued.'
 if reply_response <> '' then
 say copies(' ',26) || 'Message' reply_response ,
 'found in the REPLY response.'
 end /* when */
 when (rcode = 4) then do
 say 'Command result : RC=04 System command issued,' ,
 'no response received from the EMCS console.'
 say copies(' ',26) || ,
 'Console used is an internal console or' ,
 'a shared EMCS console.'
 if command_response <> '' then
 say copies(' ',26) || ,
 'Note: command responses not checked.'
 if reply_command <> '' then
 say copies(' ',26) || 'Note: REPLY command not issued.'
 end /* when */
 when (rcode = 8) then do
 say 'Command result : RC=08 System command issued,' ,
 'expected message' command_response 'not found.'
 if reply_command <> '' then
 say copies(' ',26) || 'Note: REPLY command not issued.'

54 Implementing REXX Support in SDSF

 end /* when */
 when (rcode = 12) then
 say 'Command result : RC=12 System command issued,' ,
 'expected REPLY prompt not found.'
 when (rcode = 16) then do
 say 'Command result : RC=16 REPLY command issued,' ,
 'no response received from the EMCS console.'
 say copies(' ',26) || ,
 'Console used is an internal console or' ,
 'a shared EMCS console.'
 if reply_response <> '' then
 say copies(' ',26) || 'Note: REPLY response not checked.'
 end /* when */
 when (rcode = 20) then
 say 'Command result : RC=20 REPLY command issued,' ,
 'expected REPLY message' reply_response 'not found.'
 when (rcode = 24) then
 say 'Command result : RC=24 ISFEXEC host command failed.'
 when (rcode = 28) then
 say 'Command result : RC=28' ,
 'ISFCALLS host environment failed.'
 when (rcode = 99) then
 say 'Command result : RC=99 Invalid keyword parameters.'
 otherwise
 say 'Unregonized return code.'
 end /* select */

 end /* if */

 saved_rc = rcode

 if (rcode < 28) then call host_environment('revoke')

 exit saved_rc

Keyword parameters
Keyword parameters used by the main line of the @SYSCMD REXX exec in
Example 1-1 include:

COMMAND() or CMD() Specifies the system command issued with the
slash command. Enclose the command in double
quotation marks if it includes any special characters
(for example, single quotation marks, parentheses,
or commas). There is no need to put two single

 Chapter 1. Issuing a system command 55

quotation marks to represent one single quotation
mark here. However, each single quotation mark is
counted as two characters of the 126 characters
limit. This parameter is required, and it has no
default.

CONSOLE() or CONS() Specifies the EMCS console with which to issue the
slash command. It has the same syntax as the
online SET CONSOLE command parameter. The
default is null, which means it is a system
determined value.

DELAY() or DLY() Specifies the command response delay time limit in
seconds. It has the same syntax as the online SET
DELAY command parameter. The default is null,
which means it is a system determined value.

MESSAGE() or MSG() Specifies a message text to look for in the command
response. Enclose the message text in double
quotation marks if it includes any special characters
(for example, single quotation marks, parentheses,
or commas). There is no need to put two single
quotation marks to represent one single quotation
mark here. This parameter has no default.

RETRY() or TRY() Specifies the number of attempts to look for a
primary EMCS console. The default is 0.

REPLY() or RPY() Specifies the operands for the MVS REPLY
command. Enclose the entire operand string in
double quotation marks if it includes any special
characters (for example, single quotation marks,
parentheses, or commas). There is no need to put
two single quotation marks to represent one single
quotation mark here. However, each single
quotation mark is counted as two characters of the
126 characters limit. This parameter has no default.

REPLYMSG() or RMSG() Specifies the message text to look for in the REPLY
command response. Enclose the message text in
double quotation marks if it includes any special
characters (for example, single quotation marks,
parentheses, or commas). There is no need to put
two single quotation marks to represent one single
quotation mark. This parameter has no default.

WAIT() or W() Specifies to issue the WAIT slash (W/) command
instead of a slash command (/). If the value is not

56 Implementing REXX Support in SDSF

YES or Y, the REXX exec takes it as NO or N. The
default is N.

INTERNAL() or INT() Specifies to issue the INTERNAL slash command
(I/) instead of a slash command (/). If the value is
not YES or Y, the REXX exec takes it as NO or N. The
default is N.

QUIET() or Q() Specifies whether the output messages are
suppressed. If the value is not YES or Y, the REXX
exec takes it as NO or N. The default is N.

Customizable REXX variable
The following variable is customizable:

TEST_CMD Specifies the MVS command issued when the REXX
exec looks for a primary EMCS console. This
variable is defined in the find_emcs_console
subroutine and the default is the MVS DISPLAY
TIME command.s

Command invocation
To invoke this REXX exec, you can put the keyword parameters in any order, for
examples:

TSO @SYSCMD COMMAND() CONSOLE() DELAY() INTERNAL() MESSAGE() QUIET()
REPLY() REPLYMSG() RETRY() WAIT()

or

TSO @SYSCMD CMD() CONS() DLY() INT() MSG() Q() RPY() RMSG() TRY() W()

Return codes
Return codes include:

00 Command issued, expected response found, REPLY issued
04 Command issued, not checking for expected response, REPLY not issued
08 Command issued, expected response not found
12 Command issued, no expected REPLY prompt received
16 REPLY issued, no checking for expected REPLY response
20 REPLY issued, expected REPLY message not found
24 ISFEXEC host command failed
28 ISFCALLS host environment failed.
99 invalid keyword parameters

 Chapter 1. Issuing a system command 57

1.6.2 Scenario 1 - Use the system-determined EMCS console

This scenario explicitly omits the CONSOLE (or CONS) keyword parameter so
that SDSF determines which EMCS console to use. The REXX exec returns with
a return code of 0 when the console is a primary EMCS console, a return code of
16 when the ISFEXEC host command has an error, and a return code of 20
when it fails to establish the SDSF host environment.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD(D IPLINFO)

Output for this scenario
See Example 1-11 for the REXX exec output for this scenario. The REXX exec
returned with a return code of 0.

The SDSF short message shows the result of the ISFEXEC host command. The
SDSF messages show how SDSF determined the EMCS console name and the
response delay time.

The ISF031I message, the system command echo, and the command responses
are also in the output. The ISF031I message shows the EMCS console name
and its status.

Example 1-11 Scenario 1 output

@SYSCMD operands : CMD(D IPLINFO)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Original command : /D IPLINFO

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:26:43.48 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:26:43.48 -D IPLINFO
SC70 2007123 17:26:43.49 IEE254I 17.26.43 IPLINFO DISPLAY 351
 SYSTEM IPLED AT 07.56.45 ON 05/03/2007
 RELEASE z/OS 01.09.00 LICENSE = z/OS

58 Implementing REXX Support in SDSF

 USED LOADS8 IN SYS0.IPLPARM ON C730
 ARCHLVL = 2 MTLSHARE = N
 IEASYM LIST = XX
 IEASYS LIST = (R3,70) (OP)
 IODF DEVICE C730
 IPL DEVICE D21C VOLUME Z19RB1

Command result : RC=00 System command issued, response received from the EMCS
console.

SDSF HCE status : revoked RC=00

1.6.3 Scenario 2 - Use an internal console

This scenario specifies the INTERNAL (or INT) keyword parameter so that SDSF
uses an internal console. The REXX exec return a return code of 0 when the
console is a primary EMCS console, a return code of 4 when the console is not a
primary EMCS console, a return code of 24 when the ISFEXEC host command
has an error, and a return code of 28 when it fails to establish the SDSF host
environment.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD(D IPLINFO) INT(Y)

Output for this scenario
See Example 1-12 for the REXX exec output. The REXX exec returned with a
return code of 4. There was no command echo or the command responses in the
output.

Example 1-12 Scenario 2 output

@SYSCMD operands : CMD(D IPLINFO) INT(Y)
SDSF HCE status : established RC=00

ISFEXEC options : (INTERNAL)
Original command : /D IPLINFO

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

 Chapter 1. Issuing a system command 59

SDSF ULOG messages:

Command result : RC=04 System command issued, no response received from the EMCS
console.
 Console used is an internal console or a shared EMCS
console.

SDSF HCE status : revoked RC=00

1.6.4 Scenario 3 - Use a specific EMCS console

This scenario specifies the CONSOLE (or CONS) keyword parameter so that
SDSF will use the specified EMCS console.

The REXX exec returns with a return code of 0 when the console is a primary
EMCS console, a return code of 4 when the console is not a primary EMCS
console, a return code of 24 when the ISFEXEC host command has an error,
and a return code of 28 when it fails to establish the SDSF host environment.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD(D IPLINFO) CONS(IBM)

Output for this scenario
See Example 1-13 for the REXX exec output. The REXX exec returned with a
return code of 0.

The SDSF short message shows the result of the ISFEXEC host command. The
SDSF messages show how SDSF determined the EMCS console name and the
response delay time.

The ISF031I message, the system command echo and the command responses
are also in the output. The ISF031I message shows the EMCS console name
and its status.

Example 1-13 Scenario 3 output

@SYSCMD operands : CMD(D IPLINFO) CONS(IBM)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Original command : /D IPLINFO

60 Implementing REXX Support in SDSF

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE IBM' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:26:44.77 ISF031I CONSOLE IBM ACTIVATED
SC70 2007123 17:26:44.77 -D IPLINFO
SC70 2007123 17:26:44.77 IEE254I 17.26.44 IPLINFO DISPLAY 364
 SYSTEM IPLED AT 07.56.45 ON 05/03/2007
 RELEASE z/OS 01.09.00 LICENSE = z/OS
 USED LOADS8 IN SYS0.IPLPARM ON C730
 ARCHLVL = 2 MTLSHARE = N
 IEASYM LIST = XX
 IEASYS LIST = (R3,70) (OP)
 IODF DEVICE C730
 IPL DEVICE D21C VOLUME Z19RB1

Command result : RC=00 System command issued, response received from the EMCS
console.

SDSF HCE status : revoked RC=00

1.6.5 Scenario 4 - Request for the initial command response

This scenario is a modification of “Scenario 3 - Use a specific EMCS console” on
page 60. It specifies the RETRY (or TRY) keyword parameter so that SDSF uses
a different EMCS console when the specified EMCS console is not a primary
EMCS console. The RETRY keyword parameter increases the chance of using a
primary EMCS console and minimizes the chance of no command responses
returned.

The REXX exec returns with a return code of 0 when the console is a primary
EMCS console, a return code of 4 when the console is not a primary EMCS
console, a return code of 24 when the ISFEXEC host command has an error,
and a return code of 28 when it fails to establish the SDSF host environment.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD(D IPLINFO) CONS(IBM) TRY(2)

 Chapter 1. Issuing a system command 61

Output for this scenario
In Example 1-14, three system commands are issued. The REXX exec first
issued the test system command /D T with the EMCS console and received a
return code of 4, which means that no command response was returned. It then
issued the test system command /D T a second time with EMCS console IBM1
and received a return code of 0. Because a primary EMCS console was found, it
issued the D IPLINFO command with the EMCS console IBM1.

Example 1-14 Scenario 4 output

@SYSCMD operands : CMD(D IPLINFO) CONS(IBM) TRY(2)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Test command : /D T

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE IBM' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 18:31:39.39 ISF032I CONSOLE IBM ACTIVATE FAILED,
RETURN CODE 0004, REASON CODE 0000

ISFEXEC options : ()
Test command : /D T

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE IBM1' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 18:31:39.46 ISF031I CONSOLE IBM1 ACTIVATED
SC70 2007123 18:31:39.46 -D T
SC70 2007123 18:31:39.46 JOB02011 IEE136I LOCAL: TIME=18.31.39 DATE=2007.123
UTC: TIME=22.31.39 DATE=2007.123

ISFEXEC options : ()
Original command : /D IPLINFO

SDSF short message: COMMAND ISSUED

62 Implementing REXX Support in SDSF

SDSF long message: ISF754I Command 'SET CONSOLE IBM1' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 18:31:40.59 ISF031I CONSOLE IBM1 ACTIVATED
SC70 2007123 18:31:40.59 -D IPLINFO
SC70 2007123 18:31:40.59 IEE254I 18.31.40 IPLINFO DISPLAY 814
 SYSTEM IPLED AT 07.56.45 ON 05/03/2007
 RELEASE z/OS 01.09.00 LICENSE = z/OS
 USED LOADS8 IN SYS0.IPLPARM ON C730
 ARCHLVL = 2 MTLSHARE = N
 IEASYM LIST = XX
 IEASYS LIST = (R3,70) (OP)
 IODF DEVICE C730
 IPL DEVICE D21C VOLUME Z19RB1

Command result : RC=00 System command issued, response received from the EMCS
console.

SDSF HCE status : revoked RC=00

1.6.6 Scenario 5 - Request for all command responses

Some system command takes longer to execute. This scenario specifies both
the DELAY (or DLY) keyword parameter and the WAIT (or W) keyword
parameter. The DELAY parameter is to set the response delay time. The WAIT
parameter asks SDSF to wait the full delay interval before returning to the caller
with the command responses. When you specify the two parameters together,
this minimizes the chance of getting incomplete command responses.

As in “Scenario 4 - Request for the initial command response” on page 61, this
scenario uses the RETRY parameter to minimize the chance of no command
responses returned.

Because the system command has a comma, double quotation marks are
required to enclose it.

The REXX exec returns with a return code of 0 when the console is a primary
EMCS console, a return code of 4 when the console is not a primary EMCS
console, a return code of 24 when the ISFEXEC host command has an error,
and a return code of 28 when it fails to establish the SDSF host environment.

 Chapter 1. Issuing a system command 63

Invoking this scenario
To invoke the scenario, use this command line:

@SYSCMD CMD("F CATALOG,REPORT") CONS(IBM) TRY(2) DLY(0)

or

@SYSCMD CMD("F CATALOG,REPORT") CONS(IBM) TRY(2) DLY(5) W(Y)

Output for this scenario
Due to low workload volume on our test system, Example 1-15 uses a DELAY of
0 to show the effect of the DELAY parameter. When DELAY is 0, only the
command echo is returned.

Example 1-15 Scenario 5 output with DELAY(0) and no WAIT

@SYSCMD operands : CMD(F CATALOG,REPORT) CONS(IBM) TRY(2) DLY(0)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Test command : /D T

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE IBM' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:26:48.25 ISF031I CONSOLE IBM ACTIVATED
SC70 2007123 17:26:48.25 -D T
SC70 2007123 17:26:48.25 JOB02002 IEE136I LOCAL: TIME=17.26.48 DATE=2007.123
UTC: TIME=21.26.48 DATE=2007.123

ISFEXEC options : ()
Original command : /F CATALOG,REPORT

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE IBM' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY 0' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:26:49.35 ISF031I CONSOLE IBM ACTIVATED
SC70 2007123 17:26:49.36 -F CATALOG,REPORT

64 Implementing REXX Support in SDSF

Command result : RC=00 System command issued, response received from the EMCS
console.

SDSF HCE status : revoked RC=00

Example 1-16 for the output when the DELAY parameter has 5. It shows that
the REXX exec can receive multiple messages as well as multiple-line
messages.

Example 1-16 Scenario 5 output with DELAY(5) and WAIT

@SYSCMD operands : CMD("F CATALOG,REPORT") CONS(IBM) TRY(2) DLY(5) W(Y)
SDSF HCE status : established RC=00

ISFEXEC options : (WAIT)
Test command : /D T

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE IBM' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:26:49.55 ISF031I CONSOLE IBM ACTIVATED
SC70 2007123 17:26:49.55 -D T
SC70 2007123 17:26:49.55 JOB02002 IEE136I LOCAL: TIME=17.26.49 DATE=2007.123
UTC: TIME=21.26.49 DATE=2007.123

ISFEXEC options : (WAIT)
Original command : /F CATALOG,REPORT

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE IBM' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY 5' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:26:51.66 ISF031I CONSOLE IBM ACTIVATED
SC70 2007123 17:26:51.66 -F CATALOG,REPORT
SC70 2007123 17:26:51.66 IEC351I CATALOG ADDRESS SPACE MODIFY
COMMAND ACTIVE
SC70 2007123 17:26:51.66 IEC359I CATALOG REPORT OUTPUT

 Chapter 1. Issuing a system command 65

*CAS**
 * CATALOG COMPONENT LEVEL = HDZ1190
*
 * CATALOG ADDRESS SPACE ASN = 0037
*
 * SERVICE TASK UPPER LIMIT = 180
*
 * SERVICE TASK LOWER LIMIT = 60
*
 * HIGHEST # SERVICE TASKS = 19
*
 * CURRENT # SERVICE TASKS = 19
*
 * MAXIMUM # OPEN CATALOGS = 1,024
*
 * ALIAS TABLE AVAILABLE = YES
*
 * ALIAS LEVELS SPECIFIED = 1
*
 * SYS% TO SYS1 CONVERSION = OFF
*
 * CAS MOTHER TASK = 007FF5E8
*
 * CAS MODIFY TASK = 0078EE48
*
 * CAS ANALYSIS TASK = 0078E868
*
 * CAS ALLOCATION TASK = 0078EC18
*
 * VOLCAT HI-LEVEL QUALIFIER = SYS1
*
 * NOTIFY EXTENT = 80%
*
 * DEFAULT VVDS SPACE = (10, 10)
TRKS *
 * ENABLED FEATURES = DSNCHECK
DELFORCEWNG SYMREC *
 * ENABLED FEATURES = UPDTFAIL
AUTOTUNING *
 * DISABLED FEATURES = VVRCHECK
BCSCHECK *
 * INTERCEPTS = (NONE)
*

66 Implementing REXX Support in SDSF

*CAS**
SC70 2007123 17:26:51.67 IEC352I CATALOG ADDRESS SPACE MODIFY
COMMAND COMPLETED

Command result : RC=00 System command issued, response received from the EMCS
console.

SDSF HCE status : revoked RC=00

1.6.7 Scenario 6 - Confirm the execution of the system command

This scenario specifies the MESSAGE (or MSG) keyword parameter so that the
REXX exec looks for the expected system message identifier (message ID) in
the command responses.

Because the system command has a comma, double quotation marks are
required to enclose it.

The REXX exec returns with a return code of 0 when the console is a primary
EMCS console, a return code of 4 when the console is not a primary EMCS
console, a return code of 8 when the message ID is found, a return code of 24
when the ISFEXEC host command has an error, and a return code of 28 when it
fails to establish the SDSF host environment.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD(“F LLA,REFRESH”) MSG(CSV210I) TRY(1)

Output for this scenario
In Example 1-17, message ISF031I shows that the SDSF determined console is
a primary EMCS console and so the command responses are returned by the
console. Message CSV210I was found in the first line of the command
responses.

Example 1-17 Scenario 6 output

@SYSCMD operands : CMD("F LLA,REFRESH") MSG(CSV210I) TRY(1)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Test command : /D T

 Chapter 1. Issuing a system command 67

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:01.84 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:01.84 -D T
SC70 2007123 17:27:01.84 JOB02002 IEE136I LOCAL: TIME=17.27.01 DATE=2007.123
UTC: TIME=21.27.01 DATE=2007.123

ISFEXEC options : ()
Original command : /F LLA,REFRESH

SDSF short message: NO RESPONSE RECEIVED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:02.94 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:02.94 -F LLA,REFRESH
SC70 2007123 17:27:03.99 CSV210I LIBRARY LOOKASIDE REFRESHED

Command result : RC=00 System command issued, response received from the EMCS
console.
 Message CSV210I found in the command responses.

SDSF HCE status : revoked RC=00

1.6.8 Scenario 7 - Query for a started task status

This scenario is similar to “Scenario 6 - Confirm the execution of the system
command” on page 67. This scenario specifies the started task status in the
MESSAGE (or MSG) keyword parameter so that the REXX exec looks for the
message text in the command responses.

Because both the system command and the message have parentheses, double
quotation marks are required to enclose them.

The REXX exec returns with a return code of 0 when the console is a primary
EMCS console, a return code of 4 when the console is not a primary EMCS

68 Implementing REXX Support in SDSF

console, a return code of 8 when the message text is found, a return code of 24
when the ISFEXEC host command has an error, and a return code of 28 when it
fails to establish the SDSF host environment.

Invoking this scenario
To invoke the scenario, use this command line:

@SYSCMD CMD("$DS(CSF)") MSG("(EXECUTING/SC64)") TRY(1)

Output for this scenario
In Example 1-18, the message text (EXECUTING/SC64) was found in the second
line of the command responses.

Example 1-18 Scenario 7 output

@SYSCMD operands : CMD("$DS(CSF)") MSG("(EXECUTING/SC64)") TRY(1)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Test command : /D T

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:05.21 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:05.21 -D T
SC70 2007123 17:27:05.21 JOB02002 IEE136I LOCAL: TIME=17.27.05 DATE=2007.123
UTC: TIME=21.27.05 DATE=2007.123

ISFEXEC options : ()
Original command : /$DS(CSF)

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:06.33 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:06.33 -$DS(CSF)

 Chapter 1. Issuing a system command 69

SC70 2007123 17:27:06.33 STC29226 $HASP890 JOB(CSF)
 $HASP890 JOB(CSF)
STATUS=(EXECUTING/SC64),
 $HASP890
CLASS=STC,PRIORITY=15,
 $HASP890
SYSAFF=(SC64),HOLD=(NONE)
SC70 2007123 17:27:06.33 STC29523 $HASP890 JOB(CSF)
 $HASP890 JOB(CSF)
STATUS=(EXECUTING/SC63),
 $HASP890
CLASS=STC,PRIORITY=15,
 $HASP890
SYSAFF=(SC63),HOLD=(NONE)

Command result : RC=00 System command issued, response received from the EMCS
console.
 Message (EXECUTING/SC64) found in the command responses.

SDSF HCE status : revoked RC=00

1.6.9 Scenario 8 - Query for a device status

This scenario is similar to “Scenario 6 - Confirm the execution of the system
command” on page 67 as well as “Scenario 7 - Query for a started task status”
on page 68. It specifies the device number in the MESSAGE (or MSG) keyword
parameter so that the REXX exec looks for that device in the command
responses.

Because the system command has commas, double quotation marks are
required to enclose it.

The REXX exec returns with a return code of 0 when the console is a primary
EMCS console, a return code of 4 when the console is not a primary EMCS
console, a return code of 8 when the device number is found, a return code of 24
when the ISFEXEC host command has an error, and a return code of 28 when it
fails to establish the SDSF host environment.

Invoking this scenario
To invoke the scenario, use this command line:

@SYSCMD CMD("D U,,OFFLINE") MSG(0062) TRY(1)

70 Implementing REXX Support in SDSF

Output for this scenario
In Example 1-19, device 0062 was found in the fourth line of the command
responses.

Example 1-19 Scenario 8 output

@SYSCMD operands : CMD("D U,,OFFLINE") MSG(0062) TRY(1)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Test command : /D T

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:07.55 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:07.55 -D T
SC70 2007123 17:27:07.55 JOB02002 IEE136I LOCAL: TIME=17.27.07 DATE=2007.123
UTC: TIME=21.27.07 DATE=2007.123

ISFEXEC options : ()
Original command : /D U,,OFFLINE

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:08.66 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:08.66 -D U,,OFFLINE
SC70 2007123 17:27:08.67 IEE457I 17.27.08 UNIT STATUS 426
 UNIT TYPE UNIT TYPE UNIT TYPE UNIT TYPE
UNIT TYPE UNIT TYPE UNIT TYPE
 001A SWCH 0030 3286 0031 3286 0032 3286
0033 3286 0034 3286 0035 3286
 0061 SWCH 0062 SWCH 0063 SWCH 0064 SWCH
0090 SWCH 0091 SWCH 0130 3286
 0131 3286 0132 3286

 Chapter 1. Issuing a system command 71

Command result : RC=00 System command issued, response received from the EMCS
console.
 Message 0062 found in the command responses.

SDSF HCE status : revoked RC=00

1.6.10 Scenario 9 - Reply to the system command generated WTOR

This scenario specifies the REPLY (or RPY) keyword parameter so that the
REXX exec replies to the outstanding WTOR with it.

Because the system command has a parenthesis and the reply has a comma,
double quotation marks are required to enclose them.

The REXX exec returns with a return code of 0 when it successfully issues the
REPLY command, a return code of 4 when the console is not a primary EMCS
console, a return code of 12 when there is no outstanding reply, a return code of
16 when the reply is not issued with a primary EMCS console, a return code of
24 when the ISFEXEC host command has an error, and a return code of 28
when it fails to establish the SDSF host environment.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD("DUMP COMM=(MVS1)") RPY("ASID=1,END") TRY(1)

Output for this scenario
In Example 1-20, three system commands are issued. Look for the keywords
test and original in the output. The first command was the test DISPLAY TIME
command issued to find a primary EMCS console. The second command was
the original DUMP command, and the third command was the original REPLY
command.

Example 1-20 Scenario 9 output

@SYSCMD operands : CMD("DUMP COMM=(MVS1)") RPY("ASID=1,END") TRY(1)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Test command : /D T

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.

72 Implementing REXX Support in SDSF

SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:09.87 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:09.87 -D T
SC70 2007123 17:27:09.87 JOB02002 IEE136I LOCAL: TIME=17.27.09 DATE=2007.123
UTC: TIME=21.27.09 DATE=2007.123

ISFEXEC options : ()
Original command : /DUMP COMM=(MVS1)

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:10.98 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:10.98 -DUMP COMM=(MVS1)
SC70 2007123 17:27:10.98 *085 IEE094D SPECIFY OPERAND(S) FOR DUMP
COMMAND

ISFEXEC options : ()
Original command : /R 085,ASID=1,END

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:12.17 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:12.17 -R 085,ASID=1,END
SC70 2007123 17:27:12.18 IEE600I REPLY TO 085 IS;ASID=1,END

Command result : RC=00 System command issued, response received from the EMCS
console.
 MVS REPLY command issued.

SDSF HCE status : revoked RC=00

 Chapter 1. Issuing a system command 73

1.6.11 Scenario 10 - Confirm the execution of the system command
and reply to its WTOR

This scenario is a combination of “Scenario 6 - Confirm the execution of the
system command” on page 67 and “Scenario 9 - Reply to the system command
generated WTOR” on page 72. It specifies both the MESSAGE (or MSG)
keyword parameter and the REPLY (or RPY) keyword parameter. The REXX
exec first looks for the message ID in the command responses and, if there is a
match, it continues to look for the outstanding WTOR ID and replies to it.

Because the system command has a parenthesis and the reply has a comma,
double quotation marks are required to enclose them.

The REXX exec returns with a return code of 0 when it successfully issues the
REPLY command, a return code of 4 when the console is not a primary EMCS
console, a return code of 8 when the expected message is not found in the
command responses, a return code of 12 when there is no outstanding reply, a
return code of 16 when the reply is not issued with a primary EMCS console, a
return code of 24 when the ISFEXEC host command has an error, and a return
code of 28 when it fails to establish the SDSF host environment.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD("DUMP COMM=(MVS1)") MSG(IEE094D) RPY("ASID=1,END")
TRY(1)

Output
In Example 1-21, the REXX exec found the IEE094D message on the first line. It
then found the WTOR reply ID to be 086 and issued an MVS REPLY command
to reply with ASID=1,END.

Example 1-21 Scenario 10 output

@SYSCMD operands : CMD("DUMP COMM=(MVS1)") MSG(IEE094D) RPY("ASID=1,END")
TRY(1)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Test command : /D T

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.

74 Implementing REXX Support in SDSF

SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:14.30 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:14.30 -D T
SC70 2007123 17:27:14.30 JOB02002 IEE136I LOCAL: TIME=17.27.14 DATE=2007.123
UTC: TIME=21.27.14 DATE=2007.123

ISFEXEC options : ()
Original command : /DUMP COMM=(MVS1)

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:15.46 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:15.46 -DUMP COMM=(MVS1)
SC70 2007123 17:27:15.46 *086 IEE094D SPECIFY OPERAND(S) FOR DUMP
COMMAND

ISFEXEC options : ()
Original command : /R 086,ASID=1,END

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:16.73 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:16.73 -R 086,ASID=1,END
SC70 2007123 17:27:16.73 IEE600I REPLY TO 086 IS;ASID=1,END

Command result : RC=00 System command issued, response received from the EMCS
console.
 Message IEE094D found in the command responses.
 MVS REPLY command issued.

SDSF HCE status : revoked RC=00

 Chapter 1. Issuing a system command 75

1.6.12 Scenario 11 - Confirm the execution of the system command
and the reply to the WTOR

This scenario is a modification of “Scenario 10 - Confirm the execution of the
system command and reply to its WTOR” on page 74. It specifies the MESSAGE
(or MSG) keyword parameter, the REPLY (or RPY) keyword, parameter as well
as the REPLYMSG keyword parameter. The REXX exec first looks for the
message ID in the command responses and, if there is a match, it continues to
look for the outstanding WTOR ID and replies to it. It also looks for the message
ID in the REPLY command responses.

Because the system command has a parenthesis and the reply has a comma,
double quotation marks are required to enclose them.

The REXX exec returns with a return code of 0 when it successfully issues the
REPLY command, a return code of 4 when the console is not a primary EMCS
console, a return code of 8 when the expected message is not found in the
command responses, a return code of 12 when there is no outstanding reply, a
return code of 16 when the reply is not issued with a primary EMCS console, a
return code of 20 when the expected message is not found in the REPLY
command responses, a return code of 24 when the ISFEXEC host command has
an error, and a return code of 28 when it fails to establish the SDSF host
environment.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD("DUMP COMM=(MVS1)") MSG(IEE094D) RPY("ASID=1,END")
RMSG(IEE600I) TRY(1)

Output for this scenario
In Example 1-22, the REXX exec found the IEE094D message on the first line. It
then found the WTOR reply ID to be 473 and issued an MVS REPLY command
to reply with ASID=1,END. It also found the IEE600I message in the REPLY
command responses.

Example 1-22 Scenario 11 output

@SYSCMD operands : CMD("DUMP COMM=(MVS1)") MSG(IEE094D) RPY("ASID=1,END")
RMSG(IEE600I) TRY(1)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Test command : /D T

76 Implementing REXX Support in SDSF

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:18.89 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:18.89 -D T
SC70 2007123 17:27:18.89 JOB02002 IEE136I LOCAL: TIME=17.27.18 DATE=2007.123
UTC: TIME=21.27.18 DATE=2007.123

ISFEXEC options : ()
Original command : /DUMP COMM=(MVS1)

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:20.07 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:20.07 -DUMP COMM=(MVS1)
SC70 2007123 17:27:20.07 *087 IEE094D SPECIFY OPERAND(S) FOR DUMP
COMMAND

ISFEXEC options : ()
Original command : /R 087,ASID=1,END

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated variable
ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 17:27:21.29 ISF031I CONSOLE JOE ACTIVATED
SC70 2007123 17:27:21.29 -R 087,ASID=1,END
SC70 2007123 17:27:21.30 IEE600I REPLY TO 087 IS;ASID=1,END

Command result : RC=00 System command issued, response received from the EMCS
console.
 Message IEE094D found in the command responses.
 MVS REPLY command issued.

 Chapter 1. Issuing a system command 77

 Message IEE600I found in the REPLY response.

SDSF HCE status : revoked RC=00

1.6.13 Scenario 12 - Suppress all outputs

This scenario is a modification of “Scenario 3 - Use a specific EMCS console” on
page 60. It specifies the QUIET or Q keyword parameter so that the REXX exec
suppresses all outputs, except the error messages when the return code is
non-zero.

Invoking this scenario
To invoke the scenario, use this command line:

TSO @SYSCMD CMD(D IPLINFO) CONS(IBM) Q(Y)

Output for this scenario
When the console used is not a primary EMCS console, the REXX exec returns
with a return code of 4. Example 1-23 shows when output when the QUIET
parameter is omitted.

Example 1-23 Scenario 12 - without QUIET

@SYSCMD operands : CMD(D IPLINFO) CONS(IBM)
SDSF HCE status : established RC=00

ISFEXEC options : ()
Original command : /D IPLINFO

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE IBM' generated from associated
variable ISFCONS.
SDSF long message: ISF754I Command 'SET DELAY' generated from associated variable
ISFDELAY.

SDSF ULOG messages:
SC70 2007123 18:31:41.77 ISF032I CONSOLE IBM ACTIVATE FAILED,
RETURN CODE 0004, REASON CODE 0000

Command result : RC=04 System command issued, no response received from the EMCS
console.
 Console used is an internal console or a shared EMCS
console.

SDSF HCE status : revoked RC=00

78 Implementing REXX Support in SDSF

Example 1-24 shows the output when the QUIET parameter has YES or Y and the
return code is non-zero.

Example 1-24 Scenario 12voutput - with QUIET(Y)

Command result : RC=04 System command issued, no response received from the EMCS
console.
Console used is an internal console or a shared EMCS console.

 Chapter 1. Issuing a system command 79

80 Implementing REXX Support in SDSF

Chapter 2. Copying SYSOUT to a PDS

This chapter describes a scenario, BUILDPDS, that copies SYSOUT data from a
group of jobs to members of a partitioned data set (PDS). The scenario,
BUILDPDS, accepts a number of job selection criteria and, through the REXX
with SDSF API, locates and transfers SYSOUT records written to a specific
DDNAME.

This scenario can be valuable to anyone interested in capturing a series of
reports for further processing.

For more information about how to obtain the program source for this scenario,
see Appendix B, “Additional material” on page 305.

2

© Copyright IBM Corp. 2007. All rights reserved. 81

2.1 Background and overview of this scenario

My group is responsible for operating system exits for a complex of over 30
LPARs. Each LPAR is capable of running its own unique combination of exits.
We operate an RYO dynamic exit system that is controlled by system
parameters located in a member of SYS1.PARMLIB. Further, we are responsible
for JES exits that are controlled by JES2 initialization parameters, and we write
user SVCs that are controlled by the IEASVCnn members in PARMLIB.

As it turns out, there are a large number of source data sets that include
information that we need to reference to understand which exit is running where
and what it is doing. In the past, we have spent a lot of time browsing data sets
on each LPAR to answer questions concerning our exits. However, we have
determined that it is a better use of our time to automate this process.

We decide to create several groups of batch jobs, each of which copies one
member from a parameter library (typically SYS1.PARMLIB) to SYSOUT using
IEBGENER. We use the /*ROUTE JCL statement to direct each job to a specific
LPAR and then use SYSAFF to ensure that the job runs only where is it
supposed to run.

Figure 2-1 illustrates this scenario.

Figure 2-1 BUILDPDS flow

Figure 2-1 shows one group of jobs, with each job destined for a separate LPAR.
The output returns to the JES spool of the submitting system, and we want to
create a PDS on that LPAR with one member for each job. Subsequently, we run
an application program to read the members and to create a composite report.

/*ROUTE XEQ LPAR1

/*ROUTE XEQ LPAR2

/*ROUTE XEQ LPARn

Output
From

LPAR1

Output
From

LPAR2

Output
From

LPARn

BUILDPDS LPAR2 member

LPARn member

LPAR1 member

/*ROUTE XEQ LPAR1/*ROUTE XEQ LPAR1

/*ROUTE XEQ LPAR2/*ROUTE XEQ LPAR2

/*ROUTE XEQ LPARn/*ROUTE XEQ LPARn

o
 o

 o

Output
From

LPAR1

Output
From

LPAR1

Output
From

LPAR2

Output
From

LPAR2

Output
From

LPARn

Output
From

LPARn

LPARn

LPAR2

LPAR1

BUILDPDS LPAR2 member

LPARn member

LPAR1 member

IEBGENER

IEBGENER

IEBGENER

82 Implementing REXX Support in SDSF

As Figure 2-1 illustrates, BUILDPDS is the program which creates the PDS
members from the SYSOUT of each job.

2.2 Input to BUILDPDS

BUILDPDS accepts arguments in keyword(value) format to direct its operation.
The first list includes arguments that tell BUILDPDS how to select jobs from the
PRINT queue for processing. If any of these arguments is omitted, the
corresponding value for the jobs does not affect whether the job is selected for
SYSOUT processing.

The BUILDPDS arguments are:

JOB(<pattern>) Specifies which job names are to be selected for
SYSOUT processing. You can specify an SDSF job name
filter here.

OWNER(<pattern>) Specifies how to filter out jobs by owner ID mask. You can
specify an SDSF owner filter here.

CLASS(<class>) Specifies the execution class of the job.

DEST(<destination>) Specifies the output destination.

COND(<cond-code>) Specifies the maximum condition code for the job.

The remaining arguments tell BUILDPDS how to process the jobs that it selects.
The DDNAME and PDS keywords must be coded but MEMBER is optional. The
remaining arguments are:

DDNAME(<ddn>) SYSOUT DDNAME copied to the PDS.

PDS(<dsname>) The fully-qualified name of the PDS to which the
members are copied. This data set is deleted and
reallocated so it is important that the user ID running
BUILDPDS have ALTER authority. UPDATE authority is
not sufficient.

MEMBER(JOBID) Specifies that the member names to which the SYSOUT
is copied are set to the JOBID rather than the job name
which is the default. You specify this argument if some of
the jobs have the same name and the exact name is not
important.

 Chapter 2. Copying SYSOUT to a PDS 83

2.3 Program flow

BUILDPDS, like most other applications that use the REXX with SDSF API,
spends most of its time massaging data and interfacing with the user and only a
little time actually exercising the API. Figure 2-2 shows the main program flow.
The entire process relies on the variables that are returned by the ISFEXEC ST
command that is filtering the job list to remove unwanted jobs.

Figure 2-2 BUILDPDS main program flow

Delete and
reallocate the

PDS

Execute the
ISFEXEC ST

Does the job
pass filters

Build PDS
member

More jobs?

Remove the
SDSF

environment

No

Yes

Yes

Establish the
SDSF

environment

Decode
Arguments

84 Implementing REXX Support in SDSF

Figure 2-3 shows the logic for copying a single SYSOUT data set to a member of
the PDS.

Figure 2-3 How BUILDPDS copies a single SYSOUT to the PDS

2.3.1 Decoding the arguments

Example 2-1 shows the argument decoding logic in BUILDPDS. Default values
are established on lines 47 through 55 of the code, and the individual
specifications are decoded in the loop on lines 57 through 113. The parse
statements on lines 58 and 59 are based on the keyword(value) format of the
operands and are broken into two statements (although they could be performed
in one statement) so that the variable ThisArg is available for error messages.

Example 2-1 BUILDPDS Argument decoding logic

0047 JobPattern = "*"
0048 OwnerPattern = "*"
0049 JobClass = ""
0050 Destination = ""

Allocate the

SYSOUT

dataset

Allocate

IEBGENER

datasets

Copy SYSOUT

using IEBGENER

Use JDS to

display the job’s

datasets

Find the DD

name entry

 Chapter 2. Copying SYSOUT to a PDS 85

0051 CondCode = ""
0052 DdName = "*"
0053 PdsDsn = ""
0054 Error = "NO"
0055 MemberRule = "JOBNAME"
0056
0057 do while Arguments <> ""
0058 parse var Arguments ThisArg Arguments
0059 parse var ThisArg Keyword "(" Value ")"
0060
0061 select
0062 when Keyword = "JOB" then do
0063 JobPattern = Value
0064 end
0065 when Keyword = "OWNER" then do
0066 OwnerPattern = Value
0067 end
0068 when Keyword = "CLASS" then do
0069 JobClass = Value
0070 end
0071 when Keyword = "DEST" then do
0072 Destination = Value
0073 end
0074 when Keyword = "COND" then do
0075 if Value = "JCL" then
0076 CondCode = "JCL ERROR"
0077 else if left(Value, 1) = "S" then
0078 CondCode = "ABEND" Value
0079 else if left(Value, 1) = "U" then
0080 CondCode = "ABEND" Value
0081 else
0082 CondCode = CC right(Value, 4, '0')
0083 end
0084 when Keyword = "DDNAME" then do
0085 DdName = Value
0086 end
0087 when Keyword = "PDS" then do
0088 PdsDsn = Value
0089
0090 call msg "off"
0091 Opinion = sysdsn("'"PdsDsn"'")
0092 call msg "on"
0093 if Opinion <> "OK" then do
0094 say "PDS" PdsDsn "failed validation because" Opinion
0095 Error = "YES"

86 Implementing REXX Support in SDSF

0096 end
0097 end
0098 when Keyword = "MEMBER" then do
0099 if Value = "JOBID" then
0100 MemberRule = "JOBID"
0101 else if Value = "JOBNAME" then
0102 MemberRule = "JOBNAME"
0103 else do
0104 say "Bad MEMBER specification - must be JOBID or
JOBNAME"
0105 Error = "YES"
0106 end
0107 end
0108 otherwise do
0109 say "'"ThisArg"' is not a valid argument"
0110 Error = "YES"
0111 end
0112 end
0113 end
0114
0115 /* Verify that the PDS dataset name was specified */
0116
0117 if PdsDsn = "" then do
0118 say "PDS operand (PDS dataset name) must be specified"
0119 Error = "YES"
0120 end
0121
0122 /* If an error was found while processing the input arguments
then we
0123 can go no further */
0124
0125 if Error <> "NO" then do
0126 say "Correct arguments and rerun BUILDPDS"
0127 exit 1
0128 end

 Chapter 2. Copying SYSOUT to a PDS 87

2.3.2 Deleting and reallocating the PDS

The next step in the BUILDPDS scenario is to delete and reallocate the PDS, as
shown in Example 2-2. One downside to deleting and reallocating the PDS is
that this precludes replacing only a part of the contents. However, in our case this
method does not present an issue. (You can remove this code from our example
if you prefer.) If you define the data set as a PDSE, then you do not have to
compress the data set.

Example 2-2 Deleting and reallocating the output PDS

0133 call msg "off"
0134 ReturnCode = listdsi("'"PdsDsn"' directory")
0135 call msg "on"
0136
0137 if ReturnCode <> 0 then do
0138 say "Cannot retrieve the attributes of" PdsDsn "-" SYSREASON
0139 exit 1
0140 end
0141
0142 if SYSDSORG <> "PO" then do
0143 say PdsDsn "is not a partitioned dataset"
0144 exit 1
0145 end
0146
0147 /* TSO/E returns RECFM without blanks between the attribute
characters
0148 but requires blanks on the allocate statement */
0149
0150 Hold = SYSRECFM
0151 Recfm = ""
0152 do while Hold <> ""
0153 parse var Hold RecfmChar 2 Hold
0154
0155 Recfm = Recfm RecfmChar
0156 end
0157
0158 Recfm = strip(Recfm)
0159
0160 /* Build an allocation statement to recreate the PDS/library */
0161
0162 if SYSADIRBLK = "NO_LIM" then
0163 AllocCmd = "alloc da('"SYSDSNAME"')" ,
0164 "recfm("Recfm") lrecl("SYSLRECL")" ,
0165 "blksize("SYSBLKSIZE")" ,

88 Implementing REXX Support in SDSF

0166 "space("SYSPRIMARY SYSSECONDS")" ,
0167 "dir(1) dsntype(library)" ,
0168 SYSUNITS
0169 else
0170 AllocCmd = "alloc da('"SYSDSNAME"')" ,
0171 "recfm("Recfm") lrecl("SYSLRECL")" ,
0172 "blksize("SYSBLKSIZE")" ,
0173 "space("SYSPRIMARY SYSSECONDS")" ,
0174 "dir("SYSADIRBLK")" ,
0175 SYSUNITS
0176
0177 /* Delete the old dataset and allocate it anew */
0178
0179 call msg "off"
0180 "del '"SYSDSNAME"'"
0181 DeleteRC = RC
0182 call msg "on"
0183
0184 if DeleteRC <> 0 then do
0185 say "Can't delete" SYSDSNAME":"
0186 "del '"SYSDSNAME"'"
0187 exit 1
0188 end
0189
0190 AllocCmd
0191
0192 if RC <> 0 then
0193 exit 1

The code in Example 2-2 requires that you run the REXX exec in a TSO
environment to support the msg, listdsi, allocate, and delete functions. So,
you can run this EXEC either interactively or under IKJEFT0x. Neither IRXJCL
nor IRXEXEC are an option for this scenario.

Although the code copies RECFM, LRECL, and BLKSIZE from the currently
existing output, PDSE, JES, and IEBGENER limit our choices. During testing, we
discovered that JES sets the RECFM of the spool data set to Variable Block (VB)
and, of course, IEBGENER demands a match to work. So, in this case, either
your PDS will be VB, or you will need an alternative copy utility.

2.3.3 Interfacing with IBM z/OS System Display and Search Facility

Example 2-3 shows how BUILDPDS gets data from IBM z/OS System Display
and Search Facility (SDSF). The SDSF environment is initialized on line 197, and

 Chapter 2. Copying SYSOUT to a PDS 89

the SDSF filters are set on lines 205 through 207. Line 209 limits the columns to
only those which this executable requires. (BUILDPDS also needs the token
variable, but SDSF provides this variable automatically. So, you do not have to
explicitly request it.)

If line 209 had been omitted, the REXX exec would have worked identically, but
the amount of storage and the amount of CPU needed by SDSF to put data into
that storage would have increased. Line 210 is the call to load the status panel
stem variables, and the loop through the jobs takes place on lines 219 through
232.

The assignment statement on line 218 is an example of cautious programming at
its best. Using isfrows as the upper limit of the immediately following do loop
would yield the same results. However, if some inner process were to change its
value, the loop would not terminate at the same upper end. By copying the value
of isfrows at the point in time it has been freshly set and nothing else has
happened, you do not have to worry that one of the interface variables will
change while you are using it.

Example 2-3 Retrieving data from SDSF

0195 /* Load the SDSF environment and abort on failure */
0196
0197 IsfRC = isfcalls("ON")
0198 if IsfRC <> 0 then do
0199 say "RC" IsfRC "returned from isfcalls(ON)"
0200 exit IsfRC
0201 end
0202
0203 /* "Display" the ST panel to load the related variables */
0204
0205 isfprefix = JobPattern
0206 isfowner = OwnerPattern
0207 isffilter = "queue = print"
0208
0209 isfcols = "jname jobid ownerid queue jclass prtdest retcode"
0210 address SDSF "isfexec st"
0211 if RC <> 0 then do
0212 say "RC" RC "returned from ISFEXEC ST"
0213 call DisplayMessages
0214 end
0215
0216 /* Process every line in the ST display */
0217
0218 StRows = isfrows
0219 do i = 1 to StRows

90 Implementing REXX Support in SDSF

0220 /* Apply the other filters */
0221
0222 if JobClass <> "" & jclass.i <> JobClass then iterate
0223 if Destination <> "" & prtdest.i <> Destination then iterate
0224 if CondCode <> "" & retcode.i <> CondCode then iterate
0225
0226 /* The job is selected so go process its SYSOUT */
0227
0228 if MemberRule = "JOBID" then
0229 call ProcessSysout jname.i, jobid.i, token.i, DdName
0230 else
0231 call ProcessSysout jname.i, jname.i, token.i, DdName
0232 end
0233
0234 /* Unload the SDSF environment */
0235
0236 call isfcalls "OFF"
0237
0238 exit 0

The ProcessSysout routine, shown in Example 2-4, uses ISFACT on line 267 to
get a JDS listing for the single ST line that is identified by the token. The
option, prefix j_ ensures that the stem variables returned by ISFACT are
unique and do not conflict with those that are returned by ISFEXEC.

The rows returned by ISFACT are scanned from lines 277 to 299 to find the one
that matches the user’s DDNAME, and that row is then passed to SDSF as an
argument to isfact on line 282. Note the references to the j_-prefixed variables
on lines 277, 278, and 282.

Example 2-4 Performing the actual copy

0262 ProcessSysout:
0263 parse arg JobName, MemberName, SdsfToken, DDN
0264
0265 /* Display the job's datasets */
0266
0267 address SDSF "isfact st token('"SdsfToken"') parm(np ?) (prefix j_"
0268 ActRC = RC
0269 if RC <> 0 then do
0270 say "JDS processing failed for job" JobName "with RC" ActRC
0271 call DisplayMessages
0272 return
0273 end
0274
0275 /* Find the line for the specified DD name */

 Chapter 2. Copying SYSOUT to a PDS 91

0276
0277 do jX = 1 to j_ddname.0
0278 if j_ddname.jX <> DDN then iterate
0279
0280 /* Got the correct dataset. Now allocate the SYSOUT */
0281
0282 address SDSF "isfact st token('"j_token.jX"') parm(np sa)"
0283 ActRC = RC
0284 if RC <> 0 then do
0285 say "SYSOUT allocation failed for" JobName "with RC" ActRC
0286 call DisplayMessages
0287 return
0288 end
0289
0290 /* Copy the SYSOUT to the PDS member */
0291
0292 if CopySysout(PdsDsn"("MemberName")", ,
0293 "DD:"isfddname.1) <> 0 then do
0294 say "Copy failed!"
0295 return 8
0296 end
0297
0298 return 0
0299 end
0300
0301 return

The isfact on line 282 has an action unique to REXX with SDSF. In the
interactive SDSF, you view SYSOUT by selecting the data set using the S
command in the NP column. You use the SA command to view SYSOUT on the
virtual panel, which selects the SYSOUT and requests SDSF allocate it for you.
Allocation is done and the DDNAME is passed back to you in the isfddname stem
variable. (It is passed back in a stem because it is possible to allocate multiple
data sets using SA in other circumstances.) In this case, there is only a single
data set allocated, isfddname.1 is the variable that includes the allocated
DDNAME and that DDNAME is passed to the CopySysout routine on lines 292
and 293.

92 Implementing REXX Support in SDSF

2.3.4 Writing the data to the PDS

A shortened version of the CopySysout routine with error logic removed is in
Example 2-5. The actual copy is done using IEBGENER; however, we invoke
IEBGENER with a DDNAME substitution list.

Example 2-5 CopySysout routine (abridged)

0314 CopySysout:
0315 parse arg CS_Output, CS_Input
0316
0317 /* Allocate the input dataset if necessary */
0318
0319 if left(CS_Input, 3) = "DD:" then
0320 Sysut1DD = substr(CS_Input, 4)
0321 else do
0322 call bpxwdyn "ALLOC DSN('"CS_Input"') SHR RTDDN(Sysut1DD)" ,
0323 "MSG(CS_Msg.)"
0324 . . .
0332 end
0333
0334 /* Allocate the output dataset if necessary */
0335
0336 if left(CS_Output, 3) = "DD:" then
0337 Sysut2DD = substr(CS_Output, 4)
0338 else do
0339
0340 call bpxwdyn "ALLOC DSN('"CS_Output"') SHR RTDDN(Sysut2DD)"
,
0341 "MSG(CS_Msg.)"
0342 . . .
0350 end
0351
0352 /* Allocate a dummy dataset for SYSIN */
0353
0354 call bpxwdyn "ALLOC DUMMY RTDDN(SysinDD) MSG(CS_Msg.)"
0355 . . .
0363
0364 /* Allocate a temporary dataset for SYSPRINT */
0365
0366 call bpxwdyn "ALLOC UNIT(SYSALLDA) SPACE(10,10) TRACKS" ,
0367 "RTDDN(SysprintDD) MSG(CS_Msg.)"
0368 . . .
0376
0377 /* Build the DD name substitution list */

 Chapter 2. Copying SYSOUT to a PDS 93

0378
0379 Parm = "" /* No PARM= parm */
0380 DDlist = copies('00'x, 8) ||, /* DD 1: SYSLIN */
0381 copies('00'x, 8) ||, /* DD 2: n/a */
0382 copies('00'x, 8) ||, /* DD 3: SYSLMOD */
0383 copies('00'x, 8) ||, /* DD 4: SYSLIB */
0384 left(SysinDD, 8) ||, /* DD 5: SYSIN */
0385 left(SysprintDD, 8) ||, /* DD 6: SYSPRINT */
0386 copies('00'x, 8) ||, /* DD 7: SYSPUNCH */
0387 left(Sysut1DD, 8) ||, /* DD 8: SYSUT1 */
0388 left(Sysut2DD, 8) ||, /* DD 9: SYSUT2 */
0389 copies('00'x, 8) ||, /* DD 10: SYSUT3 */
0390 copies('00'x, 8) ||, /* DD 11: SYSUT4 */
0391 copies('00'x, 8) ||, /* DD 12: SYSTERM */
0392 copies('00'x, 8) ||, /* DD 13: n/a */
0393 copies('00'x, 8) /* DD 14: SYSCIN */
0394
0395 /* Call IEBGENER with two pointers: the first to a null PARM
0386 string and the second to the DD name substitution list */
0397
0398 address LINKMVS "IEBGENER Parm DDlist"

Every DFSMSdfp™ utility program is capable of being invoked with a DDNAME
substitution list when being called from within a program as documented in the
DFSMSdfp Utilities manual.

94 Implementing REXX Support in SDSF

As shown in Figure 2-4, the list includes the DD names that you want the utility to
use in place of the names that are defined in the utility description.

Figure 2-4 DDNAME substitution list format

The “holes” in the list which are labeled 8 bytes of binary zeroes are to make the
list compatible with similar lists that are used with different utilities. You code the
list as a solid block of storage, placing the actual DD names that you want to use
for the various files in the spots indicated. The DDNAME substitution list is
created on lines 380 through 393 of Example 2-5. The excess entries at the end
are used by other utility programs and are ignored by IEBGENER.

The CopySysout routine takes two arguments that are either a data set name or a
DD name and distinguishes between by requiring DD names to be prefixed by
DD:. The first argument is for the output of the copy and the second argument
defines the input. This unusual arrangement is because the routine was taken
from another program that had a similar requirement. In our case, the input will
always be a DD name, as returned by ISFACT from the parm(np sa) invocation,
and the output will always be a data set name (of the member in our PDS). We
use the bpxwdyn routine to do the allocations because we want the DD name to

SYSPRINT replacement

8 bytes of binary zeroes

8 bytes of binary zeroes

8 bytes of binary zeroes

8 bytes of binary zeroes

8 bytes of binary zeroes

SYSIN replacement

SYSUT1 replacement

SYSUT2 replacement

SYSUT3 replacement

SYSUT4 replacement

 Chapter 2. Copying SYSOUT to a PDS 95

be returned by the allocation rather than supplying it ourselves. We also allocate
a dummy SYSIN file and a temporary data set SYSPRINT. The comments
indicate where the various files are allocated in the logic.

We call IEBGENER on line 398 using the LINKMVS environment so that we can
pass the address of the DDNAME list as the second parameter in the call. The
first parameter, the PARM used to direct IEBGENER execution, is allocated as a
blank string on line 379 and used as a placeholder in the call.

2.4 Suggestions for continued development

BUILDPDS has proven useful in its present form, but we considered two areas
for update. The first update enhances the program to extract multiple SYSOUTs
from a singe job into multiple members of the PDS. To accomplish this, you have
to come up with a naming scheme that allows the different members to have
different names.This enhancement exists in two forms:

� Two or more DDNAMEs in a single step

� One DDNAME in two or more steps

The second variation allows gathering all data from a single LPAR in one job.

The second update makes BUILDPDS aware of the contents of the report and
uses that content to determine part or all of the member name. A variant of this
capability makes BUILDPDS aware of some sort of notation in the JCL, perhaps
a special-formatted comment, to identify the member name or DDNAME.

96 Implementing REXX Support in SDSF

Chapter 3. Bulk job update processor

This chapter describes a scenario, LISTPROC, that includes techniques that you
can use to process multiple jobs with a single command. Using these techniques,
you can cancel job output, modify several different job output fields, or execute a
CLIST for each job. The processor is implemented as a single REXX executable
(referred to in the remainder of this chapter as REXX exec) that extends the
functionality of IBM z/OS System Display and Search Facility (SDSF) in a natural
way.

The help panels for SDSF include examples of canceling a job’s SYSOUT and
several examples of modifying overtypable fields. However, the focus of those
examples can be a bit too narrow to be useful in the typical installation. The
program that we describe in this chapter expands on those examples to provide
a more robust solution.

Canceling jobs and automated updating of their fields are potentially serious
operations, especially when amplified by the power that REXX provides to
quickly process large numbers of jobs through the REXX with SDSF interface.
So, we discuss testing considerations as we examine the code.

This program is of interest to operations support and applications support
personnel as well as anyone who might benefit from bulk update operations.

3

© Copyright IBM Corp. 2007. All rights reserved. 97

3.1 Scenario description

Canceling job output is a serious process that you must approach with caution. In
our environment, we find a slow but persistent buildup of jobs over time that must
be purged to keep the number of queued jobs manageable. We also find
frequent cases where our user community falls behind our rapid update cycle
and fails to update printer destinations and forms in their JCL, resulting in jobs
that remain on the queue, requiring a manual update.

A facility to update jobs in bulk, for example a facility that changes all output for a
specific printer destination to a different destination, would be very valuable.
However, without care, unfortunately, we might find the cure far worse than the
issue. It is important that we ensure that the only the jobs that we want to modify
are the ones that are modified by the facility.

For information about how to obtain the program source for this scenario, see
Appendix B, “Additional material” on page 305.

3.1.1 Tasks that this scenario accomplishes

The program, LISTPROC (or SYSOUT list processor), is an ISPF application that
provides update, cancel, and CLIST execution functions. LISTPROC provides
two different panels. As shown in Figure 3-1, the first panel allows you to specify
several filters.

Figure 3-1 The LISTPROC job selection panel

98 Implementing REXX Support in SDSF

All jobs queued for output in the system are passed through the nonblank filter, s
and only jobs that pass all the tests are selected for display. In this example, we
want to see all jobs with the following characteristics:

� With a jobname that begins with letters ITSO and ends with the number 2 or
which begins with the letters LE

� With an ownerid whose first, third, and fifth character are the letters L, V, and
Y, and are exactly five characters long

� That ran in jobclass U

� That had a destination that begins with BETEL or JUP
� That abended

After you enter all the selection criteria, press Enter to display the jobs that
satisfy all the criteria simultaneously. At the same time, LISTPROC saves your
selection criteria so that you do not have to enter it again to select the same jobs.
Figure 3-2 shows the second panel where you can see every selected job.

Figure 3-2 LISTPROC Selected Job Display Panel

 Chapter 3. Bulk job update processor 99

By examining the jobs listed in the panel, you can see whether your filter criteria
selected the jobs that you want to process. If it did not, you can press PF3,
modify your filter criteria, and press Enter to redisplay the selected jobs. By
repeatedly updating the filters, you can eventually get the jobs in the Job Display
panel close to what you want. Then, you can use the X line command in the X
column to get to the panel shown in Figure 3-3.

Figure 3-3 LISTPROC Selected Job Display Panel with excluded jobs

When jobs are excluded in a list, they do not participate in a cancel, update, or
CLIST action. As the user, your goal is to create a list with only the SYSOUT to
be modified. To help locate all jobs that you might want to exclude, you can use
the SORT command to reorder the job list by the contents of any set of columns.
When you finally have the jobs that you want to modify or cancel in the display,
you can enter one of two commands on the command line.

� By specifying CANCEL, you can cancel the displayed jobs with purge.
� By specifying the OVERTYPE, you can change the SYSOUT class, forms

specification, or destination.

100 Implementing REXX Support in SDSF

Figure 3-4 shows the display after you enter the CANCEL command. The REXX
with SDSF API can take a while to complete all the updates, so the progress bar
shows the status of the command. The bar is updated every time an action
completes.

Figure 3-4 The job selection list with a progress bar

In addition to the CANCEL and OVERTYPE commands, you can use the
EXECUTE command against all that were not excluded SYSOUT in your list.
EXECUTE passes control to a CLIST or REXX EXEC to allow each entry in the
list to be processed outside the control of LISTPROC. There are two modes of
operation possible with EXECUTE, distinguished by an optional argument:

� If you omit the argument, EXECUTE invokes the CLIST once for each
SYSOUT in the list, passing it all the values on the line.

� If you use the argument BATCH, EXECUTE creates a temporary data set
with one record for each SYSOUT in your list that was not excluded and
invoke your CLIST passing the data set’s DDNAME as an argument. Your
CLIST can then process all the jobs at one time.

If you find that you have excluded too many jobs, you can press PF3 and press
Enter again to redisplay the original Job Selection Panel. Alternately, you can
specify the RESET command to remove the exclusion from all the excluded jobs.

 Chapter 3. Bulk job update processor 101

The Job Display panel remains until you press PF3 to either enter a different set
of filters or to get out by pressing PF3 again.

3.1.2 Testing the scenario

With a utility program this powerful, we recommend three overarching goals in
testing:

� Demonstrate that the program does what it is supposed to do.

� Demonstrate that the program does not do anything that it is not supposed to
do.

� Make sure that the program does not take itself, and everything near it, down
the sinkhole before it is fully debugged.

The first thing we did was to code the program to not take any action at all before
displaying the actions it was going to take when it decided that action was
necessary. This action has the dual benefit of letting us make sure that we were
not trying to send paychecks to the public printer as well as helping us when we
ran into the inevitable misunderstandings about the details of the API. The
volume of debugging messages was not too bad, but if we had more actions, we
would have written the debugging messages to a log data set. Log data sets
have the additional advantage of not disappearing whenever you press the Enter
key. Further, if you control logging through a command-line argument, you can
turn it back on without much effort on your part.

The next thing we did was create a series of batch jobs to provide a predictable
test bed for the display. That way, we could guarantee that every combination of
factors we wanted to test would be present on the system. Along with this, we
came up with a series of testing scenarios that directed our test sessions. We
made sure that not only was every positive function tested (the program would
do what it was supposed to) but that every negative function was tested (garbage
in, error messages out). In particular, we made sure that there were an
abundance of error messages and that there was at least one test case to
generate each and every one of them.

3.2 Programming the interface

The REXX with SDSF interface provides a very powerful way to retrieve
information from the JES job queue with a minimum of effort. In most
applications programs, LISTPROC being no exception, the actual extraction of
data is a minor part of the programming effort. Most of your time is spent in
connecting the user to the data.

102 Implementing REXX Support in SDSF

In this section, we examine how LISTPROC works. As you read through this
analysis, keep in mind that LISTPROC was never intended to be a fully
functioning application and would certainly benefit from extension. Its primary
purpose is to illustrate the use of the REXX with SDSF API and to show how you
can use the API to create a powerful and useful utility.

3.2.1 Program flow

Figure 3-5 presents the basic logic of the LISTPROC program. Initialization
includes setting up the ISPF environment, which allows you to use LISTPROC
interactively, thus improving the user’s experience. The traditional way to set up
the ISPF environment is to build panel and message libraries as part of a
product’s installation and to add them to the panel and message concatenation.
LISTPROC was not written in this way because to do so would require the user
to keep track of several different pieces, increasing the odds that the program
would never run at all. Instead, LISTPROC allocates two temporary data sets,
writes the panels and messages to them, and uses the LIBDEF service to add
the libraries to the ISPPLIB and ISPMLIB concatenations. This method keeps all
parts of the program together and makes it easier for the programmer to keep
track of how the ISPF interface is constructed. It also increases the size of
LISTPROC significantly.

 Chapter 3. Bulk job update processor 103

Figure 3-5 LISTPROC program logic

Display Selection Panel

Initialize Processing

Validate Input Parameters

Retrieve jobs from the
O display using the
SDSF/REXX API

Apply internal filters to
remove unwanted jobs

 Need
to change
 filters?

Display remaining jobs in
the Job List Panel

 Need
to exclude
 lines?

Terminate processing

Modify/cancel jobs as
needed using the
SDSF/REXX API

 Done?

No

No

No

Yes

Yes

Yes

104 Implementing REXX Support in SDSF

3.2.2 Retrieving SYSOUT information

As Figure 3-5 shows, the REXX with SDSF API only comes into play to retrieve a
job’s SYSOUT entries from the O panel and to perform the overtype or cancel
functions. As discussed in Chapter 1, “Issuing a system command” on page 37
the REXX with SDSF interface mimics a user’s interactive session. You establish
the SDSF environment, issue commands to retrieve and modify data, and
deactivate the SDSF environment.

Example 3-1 shows how to make the API available by creating a command
processing environment that is accessible through the address SDSF command.
The TSO or ISPEXEC environments are present when your EXEC begins
execution (assuming that you are executing under TSO/E and ISPF). However,
you need to establish the SDSF environment. The isfcalls subroutine is
provided to create and to destroy this environment. If you forget to do this step,
your calls to SDSF all fail with RC -3. The address SDSF instruction is not flagged
by the REXX interpreter.

Example 3-1 Initializing the SDSF environment

0039 IsfRC = isfcalls("ON")
0040 if IsfRC <> 0 then do
0041 say "RC" IsfRC "returned from isfcalls(ON)"
0042 exit IsfRC
0043 end

SDSF distinguishes requests that you make by where you would have entered
them if were you executing SDSF interactively. Requests that you would make
on the command line, such as requests for specific panels (such as ST or O),
SDSF commands (such as WHO), or MVS commands (such as D R) are passed
to SDSF using the ISFEXEC API command. Requests that you would make by
entering an action in the NP column or by modifying an overtypable field in the
display area are passed to SDSF using the ISFACT API command.

Some commands, however, are implemented by setting REXX variables prior to
invoking the interface. The job filtering commands—PREFIX, OWNER, DEST and
FILTER—fall into this category. Variables isfprefix, isfowner, isfdest, and
isffilter are set to the filtering values that their respective commands would
specify.

After ISFEXEC completes, the rows of data are placed into stem variables,
REXX variable isfcols is set to the names of all retrieved columns, and variable
isfrows is set to the number of rows that are retrieved. In addition, the 0 member
of each stem variable also includes the number of rows.

 Chapter 3. Bulk job update processor 105

Example 3-2 shows how LISTPROC retrieves and processes output data set
information from the output panel. SDSF provides several filters to restrict the
interactive display, which works well at restricting the rows that are returned by
ISFEXEC. Our program optionally uses two of these—the prefix and owner—to
implement the jobname and ownerid parameters. However, there are three
jobname and three ownerid masks on the selection panel, and SDSF only
supports one of each. The strategy of LISTPROC is to process the jobname and
ownerid parameters in similar fashion:

� If zero or one jobname or ownerid patterns is specified, they are assigned to
isfprefix or isfowner, respectively.

� If two or three jobname or ownerid patterns are specified, they are handled
completely by LISTPROC and isfprefix or isfowner is set to asterisk (*) to
force SDSF to pass all names into LISTPROC for filtering.

So isfprefix and isfowner are set on lines 370 through 378, but LISTPROC
supports several more filters than SDSF. The other filters are implemented
separately, which we will discussed shortly. LISTPROC limits the columns that
are returned by setting the isfcols variable to the column names which will
actually be processed on lines 381 through 382. SDSF is given control on line
389 to create the output display variables. We specify alternate because the
execution system (stem variable esys) and end date (stem variable daten) are
not defined as one of the primary columns, which raises an interesting issue.

This program, as is every program that uses the API, depends on the definition of
which columns are on the primary panel and which are on the alternate panel.
LISTPROC was written assuming the columns were assigned according to the
default definitions with which SDSF is shipped. However, if your environment
tailors SDSF, you might have to change the code. In the worst case, you could
find that neither the primary nor alternate definitions provide all the columns that
you need, and there is no way to retrieve all the data in a single call to SDSF.

Example 3-2 Initializing the SDSF environment

0370 if PnlJobn2 = "" then
0371 isfprefix = PnlJobn1
0372 else
0373 isfprefix = "*"
0374
0375 if PnlOwnr2 = "" then
0376 isfowner = PnlOwnr1
0377 else
0378 isfowner = "*"
0379
0380 isffilter = ""
0381 isfcols = "jname jobid ownerid oclass forms queue" ,

106 Implementing REXX Support in SDSF

0382 "jclass destn retcode daten esysid"
0383 P_Count = 0
0384
0385 /* The isfexec retrieval of the output panel stem variables will
0386 only work if all the variables are defined on the alternate
0387 screen definition. This is true for SDSF as distributed */
0388
0389 address SDSF "isfexec o (alternate delayed"
0390 if RC <> 0 then do
0391 say "RC" RC "returned from ISFEXEC O"
0392 call DisplaySdsfMessages
0393 return 1
0394 end
0395
0396 /* Delete and recreate the ISPF table to ensure we start with a
0397 clean slate */
0398
0399 if DeleteAndRecreateIspfTable() = "ERROR" then
0400 return 1
0401
0402 /* Loop through all the returned rows applying the remaining filters
0403 and adding selected jobs to the ISPF table */
0404
0405 UnexcludedRowCount = 0
0406
0407 do RJL_i = 1 to isfrows
0408 Opinion = DoesJobPassFilters(RJL_i)
0409 if Opinion = "NO" then iterate
0410
0411 /* The job is selected. Add it to the dispay table */
0412
0413 call AddJobToTheDisplay RJL_i
0414 UnexcludedRowCount = UnexcludedRowCount + 1
0415 end

The call to SDSF on line 389 also specifies delayed because the same two
columns, esys and daten, are defined as delayed columns. If you fail to do this
step, your call results in no data returned for the delayed columns, even if they
are in your isfcols list when you invoke SDSF and isfcols on return does not
include the columns either. There will, however, be ISF742I messages in the
isfmsg2 stem documenting that columns named in isfcols were not found.
SDSF returns RC 0 so you have to scan isfmsg2 to find the messages.

 Chapter 3. Bulk job update processor 107

As mentioned previously, only the jobname and ownerid filters were optionally
implemented through SDSF.

LISTPROC also provides filters for execution node, job class, SYSOUT class,
forms, Max-RC, End Date (called job age in the panel and program) as shown in
Example 3-3. PnlJobn2, the second jobname filter pattern, is only blank if there
were zero or one jobname patterns. As mentioned earlier, when there are no
more than one pattern, isfprefix is set to it and no filtering here is required; it has
already been done by SDSF. The jobname filtering on lines 460 through 481 is
only done when PnlJobn2 is non-blank. Similarly, ownerid filtering on lines 487 to
508 is only done when PnlOwnr2 is non-blank. Destination processing on lines
521 through 540 is done whenever there is any destination specified. Job aging
is handled on lines 544 to 570 to complete filter processing.

Example 3-3 Internal job filtering logic

0453 DoesJobPassFilters:
0454 arg DJPF_i
0455
0456 /* Apply the jobname filter if there are two or three of them.
0457 Otherwise filtering was done by SDSF through the isfprefix
0458 variable */
0459
0460 if PnlJobn2 <> "" then do
0461 PatternFound = "NO"
0462
0463 do DJPF_j = 1 to 3
0464 /* G_Pattern.JOBNAME<i> contains "YES" if jobname filter <i>
0465 is enabled */
0466
0467 JobnName = "JOBNAME"DJPF_j
0468 if G_Pattern.JobnName <> "YES" then iterate
0469 PatternFound = "YES"
0470
0471 /* Match the jobname against the "DJPF_j-th" pattern and exit
0472 the loop if there is a match */
0473
0474 if Generic_Match(JobnName, JName.DJPF_i) then leave
0475 end
0476
0477 /* If the jobname loop was terminated by running out of patterns
0478 to check then the job doesn't match any pattern */
0479
0480 if PatternFound = "YES" & DJPF_j > 3 then return "NO"
0481 end
0482

108 Implementing REXX Support in SDSF

0483 /* Apply the ownerid filter if there are two or three of them.
0484 Otherwise filtering was done by SDSF through the isfowner
0485 variable */
0486
0487 if PnlOwnr2 <> "" then do
0488 PatternFound = "NO"
0489
0490 do DJPF_j = 1 to 3
0491 /* G_Pattern.OWNERID<i> contains "YES" if ownerid filter <i>
0492 is enabled */
0493
0494 OwnrName = "OWNERID"DJPF_j
0495 if G_Pattern.OwnrName <> "YES" then iterate
0496 PatternFound = "YES"
0497
0498 /* Match the ownerid against the "DJPF_j-th" pattern and exit
0499 the loop if there is a match */
0500
0501 if Generic_Match(OwnrName, Ownerid.DJPF_i) then leave
0502 end
0503
0504 /* If the ownerid loop was terminated by running out of patterns
0505 to check then the job doesn't match any pattern */
0506
0507 if PatternFound = "YES" & DJPF_j > 3 then return "NO"
0508 end
0509
0510 /* Apply the queue name, job class and condition code filters */
0511
0512 if JobClass <> "" & jclass.DJPF_i <> JobClass then return "NO"
0513 if SysoutClass <> "" & oclass.DJPF_i <> SysoutClass then return "NO"
0514 if ExecuteNode <> "" & esysid.DJPF_i <> ExecuteNode then return "NO"
0515 if FormName <> "" & forms.DJPF_i <> FormName then return "NO"
0516 if CondCode <> "" & ,
0517 left(retcode.DJPF_i, CondLeng) <> CondCode then return "NO"
0518
0519 /* Apply the destination name filters */
0520
0521 PatternFound = "NO"
0522
0523 do DJPF_j = 1 to 8
0524 /* G_Pattern.DESTINATION<i> contains "YES" if destination
0525 filter <i> is enabled */
0526
0527 DestName = "DESTINATION"DJPF_j

 Chapter 3. Bulk job update processor 109

0528 if G_Pattern.DestName <> "YES" then iterate
0529 PatternFound = "YES"
0530
0531 /* Match the print destination against the "DJPF_j-th" pattern
0532 and exit the loop if there is a match */
0533
0534 if Generic_Match(DestName, Destn.DJPF_i) then leave
0535 end
0536
0537 /* If the destination loop was terminated by running out of
0538 patterns to check then the job doesn't match any pattern */
0539
0540 if PatternFound = "YES" & DJPF_j > 8 then return "NO"
0541
0542 /* Apply the aging filter */
0543
0544 if AgeInDays <> "" & daten.DJPF_i <> "" then do
0545 parse var daten.DJPF_i EndYear "." EndDay
0546
0547 /* Set ElapsedDays to the number of days since the job ended.
0548 If the job ended in this year, it is the difference
0549 between the ending date and today's Julian day. If the
0550 job ended last year, it is the difference in days plus the
0551 number of days in the year the job ended. Otherwise the
0552 job ended more than one year ago and we set ElapsedDays to
0553 365 to force it greater than the Age (which is constrained
0554 to not exceed 360 by the validation logic). */
0555
0556 ElapsedDays = JulianDays - EndDay
0557
0558 select
0559 when EndYear = JulianYear then NOP
0560 when EndYear = JulianYear - 1 then
0561 if EndYear // 4 = 0 then
0562 ElapsedDays = ElapsedDays + 366
0563 else
0564 ElapsedDays = ElapsedDays + 365
0565 otherwise
0566 ElapsedDays = 365
0567 end
0568
0569 if ElapsedDays < AgeInDays then return "NO"
0570 end
0571
0572 return "YES"

110 Implementing REXX Support in SDSF

3.2.3 Generic filter processing

LISTPROC provides generic filter processing for destination and multiple job
names and ownerids which is not supported by SDSF. The filters are
implemented in a straightforward manner but generic filter processing deserves
another word or two.

Generic filters in SDSF are those which allow accepting a group of values by
specifying a non-precise pattern rather than an explicit match. Every character in
the pattern stands for itself except for the percent sign, which represents any
single character and the asterisk which represents any number of characters,
including no characters at all. Adding generic pattern matching to your EXECs
can make them more powerful and when you know how to do it you see that it is
a straightforward matter.

Every generic pattern can be broken into up to three kinds of subpatterns. The
subpatterns are used to test a string which matches the pattern if it matches
every subpattern inside the pattern. There can be zero or one initial subpatterns,
zero or one final subpatterns and zero or more inner subpatterns.

An initial subpattern is the beginning of the pattern up to the first asterisk. If the
string begins with an asterisk, there is no initial subpattern. And if there is no
asterisk at all, then the entire pattern is the initial subpattern and the initial
subpattern is the only kind of subpattern. A final subpattern is the end of the
pattern after the last asterisk. If the pattern ends with an asterisk then there is no
final subpattern. And if there is only one asterisk in the pattern the everything
following the asterisk is the final subpattern and there are no inner subpatterns at
all. If the pattern contains two or more asterisks then the inner subpatterns are
the characters lying between the asterisks. Example 3-4 gives an example of
how a pattern is broken down into subpatterns.

Example 3-4 Sample generic pattern breakdown

DEST(NYC%1*RR*MM*03)

Initial subpattern NYC%1
Inner subpattern 1 RR
Inner subpattern 2 MM
Final subpattern 03

When a pattern is broken down, the three kinds of subpatterns are applied in turn
to each string you want to match. The initial subpatterns are matched to the start
of the string and the final subpatterns are matched to the end. The remainder of
the string is then scanned looking for matches with each inner subpattern, one

 Chapter 3. Bulk job update processor 111

after another. Only if all subpatterns match is the string considered to have
passed the filter.

LISTPROC implements generic pattern matching with three subroutines.
Generic_Pattern takes a pattern and breaks it into subpatterns. Generic_Match
takes a string and matches it against a specific pattern. Generic_Matches is a
subroutine to Generic_Match which sees if a subpattern matches a specific piece
of the string.

When SDSF has returned all rows satisfying the isfprefix and isfowner masks
and LISTPROC has applied its filters to the rows, all remaining rows are
displayed. The user can use the X line command to exclude individual rows. The
row’s appearance on the panel is changed by blanking out all fields except the
job name which is replaced by Excluded. The user can also request that the
output for all rows be canceled by using the CANCEL command or can request
that one of three columns be changed for all those that were not excluded rows
by using the OVERTYPE command.

3.2.4 Processing the CANCEL and OVERTYPE commands

Example 3-5 shows how LISTPROC handles the CANCEL command. When
SDSF returns rows of data in response to the ISFEXEC command, it creates, in
addition to the columns that you request, one additional stem variable, TOKEN.i,
which includes a value uniquely identifying the row. When you want SDSF to
perform an action against a row (that you would have requested interactively by
overtyping some column), you identify the row by naming the initial command (O,
ST, DA, and so forth) along with the token for the row. You then tell SDSF how to
overtype the row’s data by issuing an ISFACT command specifying a parameter
with one or more pairs of values enclosed in parentheses. The first value is the
name of the column and the second is the new value you want SDSF to put in
the column. In our case, the column to overtype is the NP column and the value
is P, the command for cancel with purge. Support for the OVERTYPE command
in routine OvertypeColumns is similar.

Example 3-5 Processing the CANCEL command

0634 CancelJobsInTheList:
0635 address ISPEXEC "tbtop lpjobtbl"
0636
0637 JobCnt = 0
0638 call InitializeProgressBar
0639
0640 do forever
0641 address ISPEXEC "tbskip lpjobtbl"
0642 if RC > 0 then leave

112 Implementing REXX Support in SDSF

0643
0644 if jtjname <> "Excluded" then do
0645 address SDSF "isfact o token('"jttoken"') parm(np p)"
0646 if RC <> 0 then do
0647 say "RC" RC "returned from ISFACT O"
0648 call DisplaySdsfMessages
0649 end
0650
0651 /* Mark all canceled jobs as feedback to the user */
0652
0653 jtowner = "Canceled"
0654 jtexsys = ""
0655 jtjclass = ""
0656 jtsclass = ""
0657 jtforms = ""
0658 jtdest = ""
0659 jtmaxrc = ""
0660 jtendate = ""
0661 jttoken = ""
0662
0663 address ISPEXEC "tbput lpjobtbl"
0664
0665 JobCnt = JobCnt + 1
0666 call DisplayProgressBar "Cancel", JobCnt, UnexcludedRowCount
0667 end
0668 end
0669
0670 call TerminateProgressBar
0671 ListMsg = "List009"
0672
0673 return 0

A progress bar displays while the EXEC runs. Each ISFACT request is a
separate SDSF operation, and SDSF has to completely initialize itself, including
acquiring a console to process the generated commands, perform the action,
and terminate itself. This process can take longer than the user expects,
especially if there is a large number of rows.

Example 3-6 shows how the window that holds the progress bar is placed on the
job list panel. The progress bar panel is member progress in the panel library and
includes eight lines with a maximum width of 52 columns. The routine calculates
the placement of the window so that it is centered at the bottom of the display

 Chapter 3. Bulk job update processor 113

regardless of the model of 3270 that you are emulating. The addpop service
ensures that all future display requests are placed in the window area which is
located by specifying row and column on the service invocation.

Example 3-6 Initializing the progress bar

0889 InitializeProgressBar:
0890 /* Add the popup window centered at the bottom with the bottom
0891 line unused. &zscreend is the number of lines on the screen
0892 and zscreenw is the number of columns */
0893
0894 address ISPEXEC "vget (zscreenw zscreend)"
0895
0896 IPB_RowsToAdd = zscreend - 12
0897 IPB_ColsToAdd = (zscreenw - 52) / 2 - 15
0898 if IPB_ColsToAdd < 0 then
0899 IPB_ColsToAdd = 0
0900
0901 zwinttl = ""
0902
0903 address ISPEXEC "addpop poploc(zcmd)" ,
0904 "row("IPB_RowsToAdd")" ,
0905 "column("IPB_ColsToAdd")"
0906 if RC <> 0 then do
0907 call xsay "RC" RC "adding the pop-up window"
0908 return 1
0909 end
0910
0911 return

Displaying the progress bar consists of simply calculating the number of pips in
the actual bar, suppressing user input, and displaying the progress panel as
shown in Example 3-7. The control display lock setting causes the display
service to return immediately as though the user had pressed the Enter key.
From the user’s perspective, the bar is updated continuously as the operation
progresses without requiring any action.

Example 3-7 Displaying the progress bar

0921 DisplayProgressBar:
0922 arg PBCommnd, PBCount, PBTotal
0923
0924 /* Prevent user input during progress bar display */
0925
0926 address ISPEXEC "control display lock"
0927 if RC <> 0 then do

114 Implementing REXX Support in SDSF

0928 call xsay "RC" RC "locking the display"
0929 return 1
0930 end
0931
0932 /* One "zit" for every 2% increase in completion */
0933
0934 DPB_NumberOfZits = trunc((100 * PBCount / PBTotal + .5) / 2)
0935
0936 Progbar1 = copies("@", DPB_NumberOfZits)
0937 Progbar2 = Progbar1
0938 Progbar3 = Progbar1
0939
0940 /* Display the progress bar. Because the display is locked, control
0941 will return immediately */
0942
0943 address ISPEXEC "display panel(progress)"
0944 if RC <> 0 then do
0945 call xsay "RC" RC "displaying the progress bar"
0946 return 1
0947 end
0948
0949 return

3.3 Processing the EXECUTE command

Example 3-8 shows how the EXECUTE command is processed. Command
syntax is enforced on lines 782 through 790, and a temporary data set is
allocated for BATCH mode processing on lines 794 to 804.

Example 3-8 EXECUTE command processing

0778 ExecuteExec:
0779 arg ExecuteVerb CmdName BatchMode Extraneous
0780 /* Verify the command was EXECUTE <command> [BATCH] */
0781
0782 if Extraneous <> "" then do
0783 ListMsg = "List000I"
0784 return 1
0785 end
0786
0787 if BatchMode <> "" & BatchMode <> "BATCH" then do
0788 ListMsg = "List000I"
0789 return 1

 Chapter 3. Bulk job update processor 115

0790 end
0791
0792 /* Batch mode requires a temporary dataset */
0793
0794 if BatchMode = "BATCH" then do
0795 parse value time("N") with Hour ":" Minute ":" Second
0796 DDname = "##" || Hour || Minute || Second
0797
0798 address TSO "alloc f("DDname") space(10 10) track" ,
0799 "lrecl(255) recfm(v b)"
0800 if RC <> 0 then do
0801 say "Brother, are you hosed!"
0802 exit 4
0803 end
0804 end
0805
0806 /* Now scan the table to find all the rows to process */
0807
0808 address ISPEXEC "tbtop lpjobtbl"
0809
0810 JobCnt = 0
0811
0812 do forever
0813 address ISPEXEC "tbskip lpjobtbl"
0814 if RC > 0 then leave
0815
0816 if jtjname <> "Excluded" then do
0817 /* This is a row to process. Build the argument string */
0818
0819 ArgString = "JOBNAME("ArgValue(jtjname)")" ,
0820 "JOBID("ArgValue(jtjobid)")" ,
0821 "OWNERID("ArgValue(jtowner)")" ,
0822 "EXEC("ArgValue(jtexsys)")" ,
0823 "JOBCLS("ArgValue(jtjclass)")" ,
0824 "OUTCLS("ArgValue(jtsclass)")" ,
0825 "FORMS("ArgValue(jtforms)")" ,
0826 "DEST("ArgValue(jtdest)")" ,
0827 "MAXCOND("ArgValue(jtmaxrc)")" ,
0828 "ENDDATE("ArgValue(jtendate)")"
0829
0830 /* Batch mode writes the argument to the batch file; otherwise
0831 we execute the CLIST/EXEC for the argument now */
0832
0833 if BatchMode = "BATCH" then do
0834 queue ArgString

116 Implementing REXX Support in SDSF

0835 address TSO "execio 1 diskw" DDname
0836 end
0837 else
0838 CmdName ArgString
0839
0840 JobCnt = JobCnt + 1
0841 end
0842 end
0843
0844 /* Batch mode closes the batch file and executes the CLIST/EXEC with
0845 the DDNAME as the argument */
0846
0847 if BatchMode = "BATCH" then do
0848 address TSO "execio 0 diskw" DDname "(finis"
0849
0850 address TSO CmdName DDname
0851
0852 address TSO "free f("DDname")"
0853 end
0854
0855 ListMsg = "List000J"
0856
0857 return 0

The ISPF table that includes the selected rows is scanned on lines 812 through
842. The argument is built on lines 819 to 828 using an internal routine. Every
column value is enclosed in apostrophes to ensure it can be parsed in a simple
fashion. The argument is built using a subroutine, ArgValue, which makes sure
that any apostrophe (‘) inside the value is doubled (‘ ‘) so that REXX parses it
correctly. When the value is built, the CLIST is executed on line 838 if not
BATCH mode or the argument is written to the temporary data set for BATCH
mode on lines 834 and 835. Finally, for BATCH mode, the CLIST is executed on
lines 847 through 853.

3.3.1 A sample CLIST

Example 3-9 presents a modest example of a BATCH mode REXX exec. The
EXEC reads all the argument strings and looks for restart JCL for the job in data
set <HLQ>.MASTER.JCL. If found, the JCL is submitted to restart the job. The
EXEC remembers all jobs that have restarted and will not restart a second job by
the same name. Whether found or not, a small report is written to SYSOUT to
document the actions taken by the EXEC.

 Chapter 3. Bulk job update processor 117

Now, in fact, the EXEC has no idea whether the JCL restarts the job or, more
fundamentally, whether the member is JCL or not. These niceties could be
added to fill this example out to an actual product. That out of the way, let’s see
how the EXEC performs its job.

The report file is allocated first and a header written to it. Then the argument
strings are read from the DDNAME supplied in the argument. Each argument line
is processed in the loop from lines 56 to 126. The argument is decoded in lines
61 through 78. This decoding scheme, in particular the parse statement on line
62, will not handle all possible input and needs to be beefed up but will suffice for
this sample. We decide whether the job has been submitted already on lines 82
through 88 and bypass the submission if so. We verify that there is JCL in the
resubmission data set on lines and submit the job on lines 99 through 102. We
trap the output lines from the submit command to find the submitted JOBID so
we can place it into the report line. The rest of the EXEC detects and processes
exception conditions.

Example 3-9 A sample BATCH mode CLIST

033 arg DDname
034
035 /* Allocate a SYSOUT dataset for a report and print the header */
036
037 "alloc f(#@rpt$#@) sysout(c) reu"
038 queue "---------------- RESUBMIT run on" date("S") "at" time("N")
039 queue
040 queue "Jobname Jobid Max-RC Status NewJobid"
041 queue "-------- -------- ---------- --------------- --------"
042 "execio" queued() "diskw #@rpt$#@"
043
044 /* Read the batch processing control file */
045
046 "execio * diskr" DDname"(stem Input. finis"
047 if RC <> 0 then do
048 say "RC" RC "reading" DDname
049 exit 1
050 end
051
052 /* Process each control record */
053
054 Submitted. = ""
055
056 do RecX = 1 to Input.0
057 Statement = Input.RecX
058
059 /* Parse the record to extract all the values */

118 Implementing REXX Support in SDSF

060
061 do while Statement <> ""
062 parse var Statement Keyword "('" Value "')" Statement
063
064 select
065 when Keyword = "JOBNAME" then Jobname = Value
066 when Keyword = "JOBID" then JobID = Value
067 when Keyword = "OWNERID" then Ownerid = Value
068 when Keyword = "EXEC" then Exec = Value
069 when Keyword = "JOBCLS" then Jobcls = Value
070 when Keyword = "OUTCLS" then Outcls = Value
071 when Keyword = "FORMS" then Forms = Value
072 when Keyword = "DEST" then Dest = Value
073 when Keyword = "MAXCOND" then MaxCond = Value
074 when Keyword = "ENDDATE" then EndDate = Value
075 otherwise
076 say "Keyword" Keyword "is unknown and will be ignored"
077 end
078 end
079
080 /* Ensure a job is only submitted once per invocation */
081
082 if Submitted.Jobname <> "" then do
083 queue left(Jobname, 8) left(Jobid, 8) left(MaxCond, 10) ,
084 left("Duplicate", 15) copies("-", 8)
085 "execio 1 diskw #@rpt$#@"
086 iterate
087 end
088 Submitted.Jobname = "YES"
089
090 /* Attempt to find the JCL in the resubmission JCL library */
091
092 call msg "off"
093 Opinion = sysdsn("master.jcl("Jobname")")
094 call msg "on"
095
096 /* Submit the member if it exists */
097
098 if Opinion = "OK" then do
099 call outtrap "Msgs."
100 "submit master.jcl("Jobname")"
101 SubmitRC = RC
102 call outtrap "off"
103
104 /* Examine the trapped messages and extract the new jobid */

 Chapter 3. Bulk job update processor 119

105
106 NewJobid = "????????"
107 do i = 1 to Msgs.0
108 if word(Msgs.i, 1) = "JOB" & ,
109 word(Msgs.i, 3) = "SUBMITTED" then do
110 parse var Msgs.i . "(" NewJobid ")" .
111 leave i
112 end
113 end
114
115 queue left(Jobname, 8) left(Jobid, 8) left(MaxCond, 10) ,
116 left("Submit RC" SubmitRC, 15) NewJobid
117 end
118 else if Opinion = "MEMBER NOT FOUND" then
119 queue left(Jobname, 8) left(Jobid, 8) left(MaxCond, 10) ,
120 left("No resubmit JCL", 15) copies("-", 8)
121 else
122 queue left(Jobname, 8) left(Jobid, 8) left(MaxCond, 10) ,
123 left("SYSDSN failed", 15) copies("-", 8)
124
125 "execio 1 diskw #@rpt$#@"
126 end
127
128 /* Close the report file and free it */
129
130 "execio 0 diskw #@rpt$#@(finis"
131 "free f(#@rpt$#@)"

3.4 Future development

LISTPROC is an excellent example of how you can use the SDSF API to develop
powerful utilities. In addition, you can improve LISTPROC to make it more useful
in your environment:

1. You can support more columns by adding one or more panels that represent
the scrolled display. Line count might be an especially useful column if you
add filtering support for it. Supporting Scroll ===> CSR and allowing the user
to scroll a partial screen’s worth of columns is much more difficult and might
not be worth the effort.

2. You can support more SDSF commands than O. You can clone LISTPROC
and use it to display printers, initiators, JES resources and so forth.

120 Implementing REXX Support in SDSF

3. You can add filters. Sensitivity to the creation date or FCB might be useful for
your installation.

4. You can add support for the hold and release commands.

5. You can implement a command to write a SYSOUT data set to an DASD data
set.

 Chapter 3. Bulk job update processor 121

122 Implementing REXX Support in SDSF

Chapter 4. SDSF support for the
COBOL language

Providing REXX programs with an API to access IBM z/OS System Display and
Search Facility (SDSF) functions gives you a powerful tool for accessing and
controlling JES resources. Although we chose REXX as the language for our
installation, you might choose other languages, such as C, COBOL, or
assembler.

This chapter presents a running interface that connects a COBOL application
program to the REXX with SDSF API. The result is a way for a high-level
language, in fact any high-level language, to make use of this powerful tool.

For information about how to download the programs in this scenario from the
Web, see the instructions in Appendix B, “Additional material” on page 305.

4

© Copyright IBM Corp. 2007. All rights reserved. 123

4.1 Understanding the middleware between a
REXX exec and another language

We wrote an assembler program, REXDRIVR, that acts as middleware between
a REXX exec and a high-level language. As shown in Figure 4-1, REXDRIVR sits
between REX4SDSF, a REXX exec that talks to SDSF through the API and
a high-level language program, which is any program written in the language of
you choice.

Figure 4-1 The REXDRIVR architecture

Initialize SDSF

Call REXDRIVR

Do for quite-a-while
if a command was entered,

pass the command to
SDSF

Call REXXDONE to return
the values to the high-
level language program

end

Terminate SDSF

REX4SDSF

Initialize SDSF

Call REXDRIVR

Do for quite-a-while
if a command was entered,

pass the command to
SDSF

Call REXXDONE to return
the values to the high-
level language program

end

Terminate SDSF

REX4SDSF

REXDRIVR
Get a work area to follow the

thread

Establish the REXXSDSF and
REXXDONE entry points

Call the high-level language pgm

Clean up from execution and set
indicator that REXX should exit

Return from REXX’s last call

Entry point REXXSDSF

Set the REXX variables to values
as directed by the parm list

Leave the command in a REXX
variable

Return from REXX’s last call

Entry point REXXDONE
Retrieve the SDSF variables as

directed by the parm list

Retrieve the REXX variables as
directed by isfcols and isfrows
to return the data to the high-
level language program

Return from the high-level lang-
uage programs last call

High-level Lang-
uage Program

Perform wonders
Construct an SDSF parm list
Call REXXSDSF to execute

the commands in the parm
list

Perform more wonders with
all that good data returned
by SDSF

Free data areas acquired
by REXXSDSF for the
last retrieval

Clean up after yourself.
Return to the caller

High-level Lang-
uage Program

Perform wonders
Construct an SDSF parm list
Call REXXSDSF to execute

the commands in the parm
list

Perform more wonders with
all that good data returned
by SDSF

Free data areas acquired
by REXXSDSF for the
last retrieval

Clean up after yourself.
Return to the caller

A

C

E D

I
J

F

B

Entry point REXXFREE
Release Stem Variable Storage
for columnar variables

Release Stem Variable Storage
for explicit variables

G

H

124 Implementing REXX Support in SDSF

Although Figure 4-1 might be a bit overwhelming at first, to understand it you
need to remember these three programs work together to accomplish the goals
of interfacing (in this case) the COBOL program with SDSF. There is only a
single thread of execution (execution is somewhere at all times and never at two
places at any one time. REX4SDSF, REXDRIVR, and the C program have
slightly different views of the world, including:

� REX4SDSF thinks it is the main program that controls execution. It believes
that it is calling a REXX subroutine, REXDRIVR, to retrieve an SDSF
command, that REXDRIVR has set the SDSF interface variables properly,
and that all it has to do is call SDSF using the address SDSF interface.

� The COBOL program thinks it is the main program that controls execution. It
believes that it is constructing an SDSF command in its parameter list and
that all it has to do is call REXXSDSF to interface with SDSF.

� REXDRIVR is the only program that actually knows what is happening. It
uses the COBOL program’s parameter list to create and update REXX
variables and passes control to REX4SDSF to actually drive the REXX with
SDSF API. To do all this, REXDRIVR has to be creative in how it handles
save areas and registers.

Figure 4-1 includes a series of lines with letters that represent how control
passes among the three players. Here is how the thread of execution progresses:

1. REX4SDSF calls isfcalls to establish the SDSF environment. It gets the
name of the COBOL program and any parameters from the command line
arguments and calls REXDRIVR (line A).

2. REXDRIVR obtains work storage, IDENTIFYs the REXXSDSF, REXXDONE,
and REXXFREE entry points, LOADs itself and the COBOL program into
storage, and saves the address of the REXX save area in the work storage
area. This address will come in handy in a little while. REXDRIVR then
passes control to the COBOL program (line B).

3. The COBOL program performs whatever initialization it requires and
constructs a parameter list to request an SDSF service. Note that this
parameter list was created just for this example, and there is no reason why
the parameters cannot be formatted differently. There is nothing in the SDSF
API that requires parameters to be sent in this way. The COBOL program
then calls REXXSDSF with the address of the parameter list as an argument
to pass control to SDSF (line C).

4. REXXSDSF, a subroutine in the REXDRIVR program, retrieves the address
of the work storage and saves the address of the COBOL program’s work
area. This address will come in handy in a little while. It also saves the
address of the COBOL program’s parameter list. You never know when you
are going to need these things. REXXSDSF then updates the REXX with
SDSF variables (isfcols, isfprefix, isffilter, and so forth) under control

 Chapter 4. SDSF support for the COBOL language 125

of the COBOL program’s parameter list and sets a REXX variable to the
COBOL program’s SDSF command. REXXSDSF then restores REX4SDSF’s
save area address and returns to REX4SDSF at the point immediately
following where REX4SDSF called REXDRIVR (line D).

5. REX4SDSF issues the COBOL program’s SDSF command and calls
REXXDONE (line E).

6. REXXDONE, a subroutine in the REXDRIVR program, retrieves the address
of the work storage and saves the address of REX4SDSF’s save area (in the
same place it did in item 2 above). It then restores the address of the COBOL
program’s parameter list and retrieves the values of the REXX with SDSF
variables (such as isfmsg, isfcols, isfulog.x, and so forth) under control of
the parameter list. It then creates a data area with all the stem variables
returned by the SDSF API. It restores the address of the COBOL program’s
save area and returns to the COBOL program at the point where the COBOL
program originally called REXXSDSF (line F).

7. The COBOL program processes the returned values and when done calls
REXXFREE to free the data area (line G).

8. REXXFREE frees the data area acquired to hold the stem variables
describing the columnar variables and the stem variables explicitly named in
the COBOL program’s parameter list and returns (line H).

9. The COBOL program completes its cleanup processing and returns (line I).

10.REXDRIVR gets control, frees the work area, restores the address of
REX4SDSF’s save area, and returns to where REX4SDSF last called
REXXDONE (line I).

4.2 The pieces of REXDRIVR and how they work
together

To understand how the process works, we need to consider the underlying
REXX exec, REX4SDSF, and the assembler interface program, REXDRIVR.

4.2.1 The REX4SDSF exec

Example 4-1 shows the driver program, which is the only REXX code that is
required for the high-level language interface. The command line arguments are
the name of the program optionally followed by arguments to pass in.

REX4SDSF begins by initializing the SDSF environment on line 12. It then calls
the REXDRIVR program to invoke the COBOL program at line 20. When control

126 Implementing REXX Support in SDSF

resumes at the next line, it is not because REXDRIVR is returning (that happens
when the COBOL program has completed execution), but rather because the
COBOL program has called REXXSDSF with an SDSF command or action.

REX4SDSF knows this because the REXXSDSF logic sets a variable,
R4S_Request, to COMMAND to tell REX4SDSF to execute a command. In addition,
REXXSDSF has taken the COBOL program’s command and placed it in variable
R4S_Cmd so REX4SDSF just has to issue the command as shown on line 26.
REX4SDSF now calls REXXDONE on line 30 to pass the data back to the
COBOL program. Control returns from this call in quite a while.

First REXXDONE passes the results of the call back to the COBOL program. The
COBOL program processes it and calls REXXSDSF with another request. Only
then does REX4SDSF get control to execute the new command. This process
continues, with REX4SDSF staying in the while loop, until the COBOL program
completes. At this time COBOL returns to the REXDRIVR program, which cleans
up and does not set R4S_Request. The final return to the call at line 30 happens
and control falls out of the loop because the test is unsatisfied. REX4SDSF then
terminates the SDSF environment at line 35 and exits.

Example 4-1 The REX4SDSF driver program

001 /* REXX ***
002 * *
003 * rex4sdsf <C-program-name> <assembler-program-parms> *
004 * *
005 **/
006
007 parse arg PgmName PgmParms
008 PgmName = translate(PgmName)
009
010 /* Initialize the SDSF environment */
011
012 IsfRC = isfcalls("ON")
013 if IsfRC <> 0 then do
014 say "RC" IsfRC "returned from isfcalls(ON)"
015 exit IsfRC
016 end
017
018 /* Call rexdrivr to pass control to the assembler program */
019
020 call rexdrivr PgmName, PgmParms
021
022 /* Pass commands to SDSF while the assembler program keeps on returning
023 with more SDSF commands to execute. */
024

 Chapter 4. SDSF support for the COBOL language 127

025 do while R4S_Request = "COMMAND"
026 address SDSF R2S_Cmd
027 IsfRC = RC
028
029 R4S_Request = ""
030 call rexxdone
031 end
032
033 /* Unload the SDSF environment */
034
035 call isfcalls "OFF"
036
037 exit 0

4.3 The REXDRIVR interface program

REXDRIVR is written in assembler language, which might be a little unfamiliar to
some of you. It is written (in part) as a REXX function. However, the concepts are
reasonably straightforward, and the REXX function interface is well documented
in IBM z/OS TSO/E REXX Reference, SA22-7790.

As shown in Figure 4-1 on page 124, REXDRIVR is divided into four sections:

� There is entry point REXDRIVR that is called by REXX as though it were a
function.

� Next there is entry point REXXSDSF that is called by the COBOL program to
execute an SDSF call.

� Then there is entry point REXXDONE that is called by REX4SDSF to return
the results of the executed SDSF command.

� Finally there is entry point REXXFREE to free the storage that is acquired to
hold variables that are returned by SDSF for processing by the COBOL
program.

4.3.1 Entry point REXDRIVR - REX4SDSF function processor

The REXX functions that you normally use are those built into the language,
such as substr, date, and outtrap. However, REXX provides a way for you to
construct your own functions that you then use in the same way as the REXX
functions. You can then call your functions using the call statement, which does
not return a value, or by specifying the function name with arguments
immediately following in parentheses, which is replaced by the returned value.

128 Implementing REXX Support in SDSF

You can write your own functions in REXX and put them into a library in your
SYSPROC or SYSEXEC concatenation. However, you can also write your own
functions in assembler language and put them into a data set that is in your load
library search order.

But why would you want to write your own functions in assembler language?
Because by using the function interface, you can access all of the REXX
variables through the REXX variable access routines, which means you can
retrieve the values of REXX variables and create or update variables with the
values that you choose. This function makes the interface natural and intuitive for
the REXX programmer. Then, when you have control, all MVS services are
available to your program rather than the subset of services that are available to
REXX programs. In this case, assembler language provides the layer that
connects REXX and COBOL.

The REXX Reference manual includes a chapter, TSO/E REXX Programming
Services, that discusses how to write REXX functions in assembler language.
We discuss a few of the concepts in this section, but we highly recommend that
you read the REXX Reference manual to get a thorough explanation of how it all
works.

Example 4-2 is an extract of the actual REXDRIVR program that we have
shortened to simplify the explanation. The code begins with setting up the
registers to point to the REXX interface areas on lines 8 through 11.

Example 4-2 The REXDRIVR program (abridged)

0001 REXDRIVR CSECT
0002 REXDRIVR AMODE 31
0003 REXDRIVR RMODE ANY
0004 STM R14,R12,12(R13) CAN'T USE LINKAGE STACK HERE
0005 LR R12,R15
0006 USING REXDRIVR,R12
0007
0008 LR R11,R0 ->REXX ENVIRONMENT BLOCK
0009 USING ENVBLOCK,R11
0010 LR R10,R1 ->PARAMETER LIST
0011 USING EFPL,R10
0012
0013 STORAGE OBTAIN,LENGTH=W$LENGTH
0014 ST R1,8(,R13) CHAIN NEW SAVE AREA
0015 ST R13,4(,R1)
0016 LR R13,R1
0017 USING WORK,R13
0018
0019 L R9,EFPLARG ->ARGUMENT VECTOR

 Chapter 4. SDSF support for the COBOL language 129

0020 USING ARGTABLE_ENTRY,R9
0021 CLC ARGTABLE_ENTRY,=8X'FF' CHECK FOR NO ARGUMENTS
0022 BE INVARG AND GO IF NOT VALID
0023 L R2,ARGTABLE_ARGSTRING_PTR GET ->ARGUMENT
0024 L R3,ARGTABLE_ARGSTRING_LENGTH AND ITS LENGTH
0025
0026 CHI R3,8 CHECK FOR ROUTINE NAME TOO
0027 BNH ARG1OK LONG AND GO IF NOT
0028 INVARG DS 0H
0029 L R15,EFPLEVAL ->->EVALUATION BLOCK
0030 L R15,0(,R15) ->EVALUATION BLOCK
0031 USING EVALBLOCK,R15
0032
0033 MVC EVALBLOCK_EVLEN,=F'1' SET THE RETURN CODE TO "8"
0034 MVC EVALBLOCK_EVDATA(1),=C'8'
0035
0036 DROP R15
0037 B EXIT0 AND TERMINATE
0038 ARG1OK DS 0H
0039 LA R0,W$PGMNAM MOVE THE PROGRAM NAME FROM
0040 LA R1,L'W$PGMNAM THE PARM LIST
0041 ICM R3,8,=C' ' BLANK PADDING
0042 MVCL R0,R2
0043
0044 XC W$PGMPRM(2),W$PGMPRM INDICATE NO PARMS
0045 CLC ARGTABLE_NEXT(8),=8X'FF' CHECK IF THERE ARE PROGRAM
0046 BE NOPARMS PARMS AND SKIP IF NOT
0047
0048 NEXT USING ARGTABLE_ENTRY,ARGTABLE_NEXT
0049 L R2,NEXT.ARGTABLE_ARGSTRING_PTR
0050 L R3,NEXT.ARGTABLE_ARGSTRING_LENGTH
0051 DROP NEXT,R9
0052 CHI R3,100 CHECK FOR PARMS TOO LONG AND
0053 BH INVARG GO ABORT IF SO
0054 STH R3,W$PGMPRM SAVE PARM LENGTH
0055 LA R0,W$PGMPRM+2 MOVE PARM TO HOLDING AREA
0056 LA R1,100
0057 ICM R3,8,=C' ' BLANK PADDING
0058 MVCL R0,R2
0059 NOPARMS DS 0H
0060
0061 * LOAD OURSELVES TO LOCK THIS PROGRAM IN MEMORY. WE WILL LOSE
0062 * CONTROL PERIODICALLY AND DON'T NEED TO INCUR THE OVERHEAD OF
0063 * RELOADING.
0064

130 Implementing REXX Support in SDSF

0065 LOAD EP=REXDRIVR LOAD OURSELVES
0066
0067 * GET A SPECIAL WORK AREA TO FOLLOW THE THREAD
0068
0069 STORAGE OBTAIN,LENGTH=P$LENGTH,LOC=ANY
0070 LR R9,R1 ->PERSISTENT WORKAREA
0071 LR R14,R9 CLEAR IT TO BINARY ZEROES
0072 LHI R15,P$LENGTH
0073 SLR R1,R1
0074 MVCL R14,R0
0075 USING PERSISTW,R9
0076 MVC P$IBALL,=C'REXXSDSF'
0077
0078 * WE SAVE THE REGISTERS OF THE REXX DRIVER SO WE CAN RETURN
0079 * WHEN THE APPLICATION PROGRAM MAKES AN INTERFACE REQUEST
0080
0081 L R15,4(,R13) ->ORIGINAL RSA
0082 ST R15,P$REXSAV SAVE IN PERSISTENT W/A
0083
0084 * INITIALIZE THE WORK AREA IN PREPARATION FOR CALLING THE REXX
0085 * VARIABLE INTERFACE ROUTINE.
0086
0087 LA R0,P$PARM_IBALL
0088 SLR R1,R1
0089 SLR R2,R2
0090 LA R3,P$REQ_BLK
0091 LA R4,P$ENV_BLK
0092 STM R0,R4,P$PARM_LIST
0093 OI P$PARM_LIST+16,X'80'
0094 OI P$ENV_BLK,X'80'
0095 MVC P$PARM_IBALL,=CL8'IRXEXCOM'
0096 ST R11,P$ENV_BLK
0097
0098 * SAVE SOME REXX POINTERS WE NEED TO SET AND RETRIEVE VARIABLES
0099
0100 ST R11,P$RXENVB ->REXX ENVIRONMENT BLOCK
0101 ST R10,P$RXEVAL ->EVALUATION BLOCK
0102
0103 * BUILD A TOKEN WITH AN EYECATCHER FOLLOWED BY THE ADDRESS OF
0104 * THE WORK AREA AND REGISTER IT WITH MVS.
0105
0106 LA R2,W$NTLVL -> LEVEL
0107 MVC W$NTLVL,=F'1' SET TASK LEVEL
0108 LA R3,W$NTNAME -> NAME
0109 MVC W$NTNAME,=CL16'REXX 4 SDSF API ' UNIQUE IDENTIFIER

 Chapter 4. SDSF support for the COBOL language 131

0110 MVC W$NTTOKN(12),=CL12'REXX I/F ==>'
0111 ST R9,W$NTTOKN+12
0112
0113 LA R2,W$NTLVL -> LEVEL
0114 LA R3,W$NTNAME -> NAME
0115 LA R4,W$NTTOKN -> TOKEN
0116 LA R5,W$NTZERO -> HOT ZERO
0117 XC W$NTZERO,W$NTZERO SET IT
0118 LA R6,W$NTRC -> RETURN CODE FEEDBACK AREA
0119 STM R2,R6,W$NTPARM SET UP P/L
0120 LA R1,W$NTPARM -> P/L
0121 L R15,16 ->CVT
0122 L R15,X'220'(,R15) ->CALLABLE SERVICE REQ TBL
0123 L R15,X'14'(,R15) ->NAME/TOKEN SERVICES VECTOR
0124 L R15,X'04'(,R15) ->IEANTCR
0125 BALR R14,R15
0126 LTR R15,R15 GO IF SUCCESSFUL CREATION
0127 BZ NTCROK
0128
0129 ABEND 101 FATAL ERROR
0130 NTCROK DS 0H
0131
0132 * DEFINE ONE ENTRY POINT FOR THE APPLICATION PROGRAM TO REQUEST
0133 * SDSF SERVICES, A SECOND FOR THE REXX DRIVER PROGRAM TO CALL
0134 * WHEN THE REQUEST HAS BEEN SERVICED AND A THIRD FOR THE
0135 * APPLICATION TO CALL TO FREE THE DATA AREA.
0136
0137 LA R1,REXXSDSF
0138 IDENTIFY EP=REXXSDSF,ENTRY=(1)
0139
0140 LA R1,REXXDONE
0141 IDENTIFY EP=REXXDONE,ENTRY=(1)
0142
0143 LA R1,REXXFREE
0144 IDENTIFY EP=REXXFREE,ENTRY=(1)
0145
0146 * TIME TO GO TO THE APPLICATION PROGRAM
0147
0148 LA R1,W$PGMPRM ->PARM LIST
0149 ST R1,W$PGMPTR
0150 OI W$PGMPTR,X'80' SET VL BIT
0151 LA R1,W$PGMPTR
0152 LA R2,W$PGMNAM ->NAME OF THE APPLICATION
0153 MVC W$LINK(W$LINKL),LINKMFL
0154 LINK EPLOC=(R2),SF=(E,W$LINK)

132 Implementing REXX Support in SDSF

0155
0156 * DELETE OURSELVES TO UNLOCK THE PROGRAM IN MEMORY.
0157
0158 DELETE EP=REXDRIVR HASTA LA VISTA, BABY
0159
0160 * THE APPLICATION PROGRAM IS DONE. GET RID OF THE WORK AREA AND THE
0161 * NAME/TOKEN PAIR AND RETURN TO THE REXX DRIVER PROGRAM.
0162
0163 MVC W$NTLVL,=F'1' SET TASK LEVEL
0164 MVC W$NTNAME,=CL16'REXX 4 SDSF API ' UNIQUE IDENTIFIER
0165
0166 LA R0,W$NTLVL ->LEVEL
0167 LA R1,W$NTNAME ->NAME
0168 LA R2,W$NTRC ->RETURN CODE
0169 STM R0,R2,W$NTPARM SET UP P/L
0170 OI W$NTPARM+8,X'80'
0171 LA R1,W$NTPARM ->P/L
0172 L R15,16 ->CVT
0173 L R15,X'220'(,R15) ->CALLABLE SERVICE TABLE
0174 L R15,X'14'(,R15) ->NAME/TOKEN SERVICES VECTOR
0175 L R15,X'0C'(,R15) ->IEANTDL ROUTINE
0176 CALL (15) DELETE THE NAME/TOKEN PAIR
0177
0178 L R3,P$REXSAV GET ->LATEST REXX RSA
0179 STORAGE RELEASE,ADDR=(R9),LENGTH=P$LENGTH
0180 L R15,EFPLEVAL ->->EVALUATION BLOCK
0181 L R15,0(,R15) ->EVALUATION BLOCK
0182 USING EVALBLOCK,R15
0183
0184 MVC EVALBLOCK_EVLEN,=F'2' SET THE RETURN CODE TO "OK"
0185 MVC EVALBLOCK_EVDATA(2),=C'OK'
0186 DROP R15
0187
0188 EXIT0 DS 0H
0189 LR R2,R13 SAVE ->OUR SAVE AREA
0190 LR R13,R3 ->LATEST REXX SAVE AREA
0191 STORAGE RELEASE,ADDR=(R2),LENGTH=W$LENGTH
0192 LM R14,R12,12(R13) RESTORE THE ORIGINAL REGISTERS
0193 SLR R15,R15 PEACHY KEEN
0194 BR R14 BACK TO REXDRIVR
0195
0196 LINKMFL LINK EPLOC=0,SF=L
0197 LTORG ,
0198 DROP R9,R12,R13

 Chapter 4. SDSF support for the COBOL language 133

The environment on entry to the function processor
When REXX calls its functions, it passes the addresses of two control blocks.
The environment block, pointed to by R0 at entry, represents the current
command processing environment (the one set using the address statement)
and is an important block because it must be passed to every REXX service
routine your program calls. The environment block also includes the address of
the Vector of External Entry Points and block that includes the address of REXX
service routines your function processor can use. You call one of these routines,
IRXEXCOM, to set and retrieve REXX variables. You can call another, IRXSAY,
to write messages to the same destination as messages written using say in your
REXX programs. IRXSAY is used in the program to write debugging messages
but was not shown here to simplify the discussion. The parameter list, pointed to
by R1 at entry, contains the addresses of all arguments to the function as well as
the address of the evaluation block which is where you leave the return code
from the function. Lines 19 through 59 show how the arguments are retrieved
from the REXX program.

Driver logic
On line 65, we use the MVS LOAD macro to increase the use count of
REXDRIVR. If we do not do this, REXDRIVR could appear to be free when
REX4SDSF regains control following the COBOL program’s first interface call
and REXX might free the storage. This won’t be necessary if the application
program issues a LOAD for the REXXSDSF entry point but putting the LOAD
here gives us one less thing to worry about. This LOAD will be in effect until the
DELETE on line 158 which is only executed after the COBOL program completes
execution.

We acquire a work area on line 69, which we call the persistent work area, to
follow the execution thread and we then use the name/token callable service to
have MVS hold the name and token for us on lines 106 to 130. The name is a
unique 16 byte identifier associated with the 16-byte token. We set the token to
point to the work area and use a name of REXX 4 SDSF API. The name/token
service saves the token and remembers the name we assigned it. On
subsequent entries to the routines inside REXDRIVR, we will be able to retrieve
the token by using the name and thus keep track of the work area across all the
devious weaving of the thread. Setting a level of 1 makes the name known to all
programs running under the same TCB but programs running under different
TCBs in the same address space will not be able to retrieve the token. This was
done in a belief that the process should all run under the same task and that
spanning tasks could be a problem for I/O.

The save areas
On lines 81 and 82 we get the address of REX4SDSF’s save area and save it in
the persistent work area. When REX4SDSF calls REXDRIVR it passes

134 Implementing REXX Support in SDSF

information in the registers and in the contents of its control blocks which
constitute the entire interface with the function processor. When REX4SDSF
receives control, it expects the registers and control block contents to be
unchanged except as defined in the interface. As long as the content is
unchanged, REX4SDSF has no way of knowing, and really no interest in
knowing what the function processor has done. Because one routine in the load
module receives control from REX4SDSF and a different routine returns control
to it is irrelevant.

Similarly, when the COBOL program calls the interface with an SDSF request,
the entire interface is embodied in the registers and contents of the control
blocks. It has no way of knowing, nor interest in finding out, just what has
transpired in the interim. REXDRIVR uses these mutual incuriosities to its
advantage. You can save both REXX’s and COBOL’s register save area
addresses as a means of accomplishing this end.

We use the IDENTIFY macros on lines 138, 141, and 144 to make the three
other routines known to MVS and to allow them to be called by the COBOL
program as needed.

We formally pass control to the COBOL routine using the LINK macro on lines
148 to 154. Control will not return until the COBOL program has completed its
work and exits.

When control eventually returns from the COBOL program, all SDSF accessing
has been completed. It is now safe to DELETE the REXDRIVR program (it is still
held in storage by the last call to REXXDONE from REX4SDSF as will be
described later), and we do so on line 158. The name/token pair is deleted on
lines 163 through 176. We pick up the address of the register save area last
passed to us at REXXDONE and free the persistent work area at lines 178 and
179. Lines 184 and 185 show how a return code is passed back to REXX. The
current save area is freed on lines 189 to 191 but r13 is set to the address we
picked up on line 178 rather than from the back pointer from the save area we
just freed. Setting R/C zero at line 193 convinces REXX that our function
succeeded (non-zero implies a failure which will give us an Incorrect call to
routine message), and we return from the last call to REXXDONE at line 194.

4.3.2 The Application Program’s view of SDSF: The parameter list

The COBOL application program that receives control from REXDRIVR gets
control as a main routine, not a subroutine. So, it gets the parameter just as
though it had been invoked from JCL. In our example, the parameter is a
message identifier to look for in SYSLOG and the parameter declaration is
shown in Example 4-3.

 Chapter 4. SDSF support for the COBOL language 135

Example 4-3 Parameter received by the COBOL program

linkage section.
01 msgid.

 03 msgid-l pic s9(4) usage is binary.
 03 msgid-txt pic x(8).
...
...
...
procedure division using msgid.

The first half word of the parameter is the length in binary and is followed by the
actual parameter character string.

The program needs to pass control to REXXSDSF each time that it wants to
perform an SDSF API function. When it does so, it uses a parameter area
formatted as shown in Figure 4-2.

Figure 4-2 COBOL / SDSF Parameter Area (except for returned data and stem variables)

@ P/L

R1

Flags

@ Data

@ Variables

@ Command Lng Command Text

Variable Count

@ Var name

Flags

@ Variable Data

Lng Variable Name

Lng Variable Value

@ Var name

Flags

@ Variable Data

Lng Variable Name

Lng Variable Value

Variable
1

Variable
2

136 Implementing REXX Support in SDSF

The flags include an indicator that data is returned (as is typical for ISFEXEC or a
JDS request through ISFACT). The command address points to a 2-byte length,
followed by the actual command text starting with ISFEXEC or ISFACT, and the
variable address points to an area that includes a 4-byte count of REXX
variables whose values are set or returned by REXXSDSF. The intent was to
provide a means to set isfprefix, isfowner, and the other SDSF-related
variables. However, you can set any REXX variable to allow you to communicate
with the REX4SDSF EXEC if desired.

The descriptors for each variable immediately follow the count. The variable
Flags field describes whether the variable’s value is to be set or returned. To
both set and return you need to have two entries in the variable list. The data
address is ignored when REXXSDSF gets control from the application program
and will be set to the address of a stem variable data feedback area when control
returns to the application.

Figure 4-3 illustrates how the program can retrieve stem variables other than
variables that are set to represent columnar data in the virtual tabular display.
The program would use this interface to retrieve variables such as isfmsg2 and
isfulog. The second flag byte of the variable descriptor (which is pointed to by
the parameter list) is S to indicate that this is a stem variable retrieval. The first
flag byte is R to indicate retrieval because stems can only be retrieved, not set,
using this interface. The variable data pointer is to the R4SS area that includes
an eye catcher, total area length, the count of stems and the address of the value
of each.

Figure 4-3 COBOL/SDSF - explicit stem variable retrieval

Variable Count

@ Var name

R S - -
@ Variable Data

Lng Variable NameVariable
1

Lng Variable Value

Lng Variable Value

R 4 S S
Area Length

Number of Stems

@ .1 value

@ .n value

… …

 Chapter 4. SDSF support for the COBOL language 137

Figure 4-4 shows the format of the area that is returned to the application
program. The area begins with a 4-character eye catcher and has the count of
stem variables being returned. After the count is a vector of addresses to column
descriptors, one for each stem. Each column descriptor includes the 8-character
stem variable head (the part before the period), the number of rows (isfrows),
and one address to the column data for each row. The column data is a 2-byte
length, followed by the actual data as returned by SDSF.

Figure 4-4 C / SDSF Parameter Area returned data

@ P/L

R1

Flags

@ Data

@ Variables

@ Command

R4SD
Total Length

N’Stem Variables

@Col Desc 1

@Col Desc n

…

…

Column Variable Name

N’Rows

@ Value 1

@ Value m

…

Column Variable Name

N’Rows

@ Value 1

@ Value m

138 Implementing REXX Support in SDSF

Both the R4SS and R4DD areas are obtained from subpool 0 and must be
released back to subpool 0, but this is a non-trivial operation in the COBOL
language. In fact, it is not possible. To support programs that, unlike children,
clean up after themselves, REXDRIVR has an entry point, REXXFREE, that
accepts the address of the parameter list and frees the data and variable areas
storage for the application program.

4.3.3 Entry point REXXSDSF - Application program service routine

When the application program has received control from REXDRIVR, it needs to
create the data area described in 4.3.2, “The Application Program’s view of
SDSF: The parameter list”in a non-reentrant area and call entry point
REXXSDSF with the parameter list address as an argument to perform SDSF
functions. The application makes multiple calls as it traverses the spool data,
each time updating the parameter list and processing the output. When done, it
executes a return from the main routine, which resumes control in REXDRIVR.

Example 4-4 is an excerpt from the REXXSDSF routine, which we have
shortened for clarity. This example gets a temporary save area that it chains to
the application’s save area, but this chain is unusable. The application’s save
area address is stored away in the persistent area awaiting completion of the
SDSF request, and the save area is not used by REXXSDSF.

We retrieve the address of the token on lines 18 through 30 using the name and
the IEANTRT routine (name/token retrieval). When we get the token, we pull the
persistent area address from the fourth word on line 35.

Example 4-4 The REXXSDSF routine (abridged)

0001 REXXSDSF DS 0H
0002 STM R14,R12,12(R13) CAN'T USE LINKAGE STACK HERE
0003 LR R12,R15
0004 USING REXXSDSF,R12
0005 L R7,0(,R1) ->INTERFACE AREA
0006 USING R4SAREA,R7
0007
0008 * GET A SHORT-TERM WORK AREA
0009
0010 STORAGE OBTAIN,LENGTH=W$LENGTH
0011 ST R1,8(,R13)
0012 ST R13,4(,R1)
0013 LR R13,R1
0014 USING WORK,R13
0015
0016 * RETRIEVE THE WORK AREA ADDRESS

 Chapter 4. SDSF support for the COBOL language 139

0017
0018 LA R2,W$NTLVL -> LEVEL
0019 MVC W$NTLVL,=F'1' SET TASK LEVEL
0020 LA R3,W$NTNAME -> NAME
0021 MVC W$NTNAME,=CL16'REXX 4 SDSF API ' UNIQUE IDENTIFIER
0022 LA R4,W$NTTOKN -> TOKEN FEEDBACK AREA
0023 LA R5,W$NTRC -> RETURN CODE FEEDBACK AREA
0024 STM R2,R5,W$NTPARM
0025 LA R1,W$NTPARM -> P/L
0026 L R15,16 ->CVT
0027 L R15,X'220'(,R15) ->CALLABLE SERVICE REQ TBL
0028 L R15,X'14'(,R15) ->NAME/TOKEN SERVICES VECTOR
0029 L R15,X'08'(,R15) ->IEANTRT
0030 BALR R14,R15
0031 OC W$NTRC,W$NTRC GO IF THE NAME WAS RESOLVED
0032 BZ NTRESOLV
0033 ABEND 100 UNRESOLVED NAME IS FATAL
0034 NTRESOLV DS 0H
0035 L R9,W$NTTOKN+12 GET -> PERSISTENT STORAGE
0036 USING PERSISTW,R9
0037
0038 L R11,P$RXENVB ->REXX ENVIRONMENT BLOCK
0039 USING ENVBLOCK,R11
0040 L R10,P$RXEVAL ->EVALUATION BLOCK
0041 USING EVALBLOCK,R10
0042 ST R7,P$PGMARG SAVE -> APPL PGM'S ARG LIST
0043
0044 * SET REXX VARIABLE R4S_CMD TO THE USER'S COMMAND
0045
0046 LA R0,=C'R4S_CMD' VARIABLE NAME
0047 LA R1,7 L'VARIABLE NAME
0048 L R3,R4SACMD ->VALUE REFERENCE
0049 USING R4SREFER,R3
0050 LA R2,R4SRDATA ->VALUE
0051 LH R3,R4SRLNG L'VALUE
0052 DROP R3
0053 L R15,=A(SET_VARIABLE)
0054 BALR R14,R15
0055
0056 * SET ALL THE VARIABLES THE USER WANTS SET
0057
0058 L R6,R4SAVARS ->VARIABLE BLOCK
0059 USING R4SVARS,R6
0060 L R5,R4SVCNT N'VARIABLES
0061 LA R6,R4SVNAME ->FIRST VARIABLE DESCRIPTOR

140 Implementing REXX Support in SDSF

0062 USING R4SVNAME,R6
0063 SETNEXT DS 0H
0064 CLI R4SVFLGS,R4SVFSET IS IT A VARIABLE TO BE SET?
0065 BNE NEXTDESC GO IF NOT
0066
0067 L R1,R4SVNAME ->NAME DESCRIPTOR
0068 USING R4SREFER,R1
0069 LA R0,R4SRDATA ->NAME ITSELF
0070 LH R1,R4SRLNG L'NAME
0071 DROP R1
0072 L R3,R4SVVALU ->VALUE DESCRIPTOR
0073 USING R4SREFER,R3
0074 LA R2,R4SRDATA ->VALUE ITSELF
0075 LH R3,R4SRLNG L'VALUE
0076 DROP R3
0077
0078 L R15,=A(SET_VARIABLE) GO SET THE VARIABLE
0079 BALR R14,R15
0080
0081 NEXTDESC DS 0H
0082 AHI R6,12 ->NEXT VARIABLE ENTRY
0083 BCT R5,SETNEXT GO PROCESS IT
0084 DROP R6
0085
0086 * SET REXX VARIABLE R4S_REQUEST TO 'COMMAND' TO TELL REXDRIVR
0087 * WHAT TO DO
0088
0089 LA R0,=C'R4S_REQUEST' VARIABLE NAME
0090 LA R1,11 L'VARIABLE NAME
0091 LA R2,=C'COMMAND' ->VALUE
0092 LA R3,7 L'VALUE
0093 L R15,=A(SET_VARIABLE)
0094 BALR R14,R15
0095
0096 * SAVE THE REGISTERS IN THE PERSISTENT WORK AREA - THEY WILL
0097 * COME IN HANDY WHEN RETURNING TO THE APPLICATION PROGRAM -
0098 * AND FREE THE SHORT-TERM WORK AREA
0099
0100 LR R2,R13 ->SHORT TERM W/A
0101 L R3,4(,R13) ->APPLICATION PROGRAM'S RSA
0102 ST R3,P$PGMSAV SAVE IN PERSISTENT W/A
0103 L R13,P$REXSAV GET REXX'S W/A BACK
0104 STORAGE RELEASE,ADDR=(R2),LENGTH=W$LENGTH FREE SHORT TERM W/A
0105
0106 * RESTORE REXDRIVR'S REGISTERS AND RETURN TO IT TO PROCESS THE

 Chapter 4. SDSF support for the COBOL language 141

0107 * APPLICATION PROGRAMS REQUEST
0108
0109 LM R14,R12,12(R13) RESTORE REX4SDSF'S REGISTERS
0110 SLR R15,R15
0111 BR R14
0112 LTORG
0113 DROP R7,R9,R12,R13

Lines 46 to 54 get the user’s command from the parameter list and create the
REXX variable R4S_CMD from it for REX4SDSF.

Example 4-5 shows the SET_VARIABLE routine. It shows how REXX service
IRXEXCOM is used to create REXX variables. SET_VARIABLE is called a second
time on lines 89 through 94 to set R4S_REQUEST to COMMAND to tell REX4SDSF that
it is being given control to process an SDSF request rather than being given
control to handle the end of the application program’s execution.

The logic on lines 58 through 84 examines all the entries in the variable list
anchored of the parameter list and call SET_VARIABLE to create/update any
variable whose flag bytes indicate that it needs to be set. We re-examine the
entries looking for variables to be returned later after the SDSF action has been
performed.

The application program’s save area address is saved in the persistent work
area on line 102 for use when the SDSF request has completed and the REXX
save area is picked up on line 103. We free the temporary work area on line 104
and return to REX4SDSF.

Example 4-5 SET_VARIABLE routine

0884 SET_VARIABLE DS 0H
0885 BAKR R14,0
0886 LR R12,R15
0887 USING SET_VARIABLE,R12
0888 USING PERSISTW,R9
0889
0890 RB USING SHVBLOCK,P$REQ_BLK
0891 XC RB.SHVBLOCK(SHVBLEN),RB.SHVBLOCK
0892 MVI RB.SHVCODE,SHVSTORE IND VARIABLE STORE OPERATION
0893 STM R0,R1,RB.SHVNAMA SAVE NAME ADDRESS AND LENGTH
0894 STM R2,R3,RB.SHVVALA SAVE VALUE ADDRESS AND LENGTH
0895
0896 LA R1,P$PARM_LIST
0897 L R15,ENVBLOCK_IRXEXTE ->REXX ROUTINE VECTORS
0898 USING IRXEXTE,R15
0899 L R15,IRXEXCOM

142 Implementing REXX Support in SDSF

0900 DROP R15
0901 BALR R14,R15
0902 ST R15,P$RETCODE
0903 DROP RB
0904
0905 PR ,
0906 DROP R9,R12
0907 LTORG ,

4.4 Entry point REXXDONE - REX4SDSF completion
routine

When SDSF returns to REX4SDSF after the command has been processed,
REX4SDSF calls REXXDONE to process the response. It is in REXXDONE that
the actual high-level language interface is implemented.

As shown in Figure 4-5 on page 146, REXXDONE saves the REXX save area
address in anticipation of the next REXXSDSF call (or ultimate return of the
application program) and picks up the application program’s parameter list that
was saved by the REXXSDSF routine. REXXDONE then analyzes the variable
list to return any variables that were requested. (The parameter list and variable
list are shown in Figure 4-2 on page 136.)

Example 4-6 shows the variable return logic. The logic distinguishes between
normal variables and stem variables. From the standpoint of the user, a normal
variable is returned in an area passed to REXXSDSF in the parameter list but a
stem variable, whose total length is unknown until after the call has completed, is
returned in storage obtained for the application. Thus, REXXDONE only has to
move normal variables to the location contained in the parameter list but must
calculate the total size of stem variable values and obtain storage for the user.
Example 4-6 includes logic for normal variables and calls RETURN_STEM to process
stem variables.

Example 4-6 REXXDONE variable return logic

0524 L R6,R4SAVARS ->VARIABLE BLOCK
0525 USING R4SVARS,R6
0526 L R5,R4SVCNT N'VARIABLES
0527 LA R6,R4SVNAME ->FIRST VARIABLE DESCRIPTOR
0528 USING R4SVNAME,R6
0529 SETNEXT2 DS 0H
0530 CLI R4SVFLGS,R4SVFRET IS IT A VAR TO BE RETRIEVED?
0531 BNE NEXTDSC2 GO IF NOT

 Chapter 4. SDSF support for the COBOL language 143

0532 CLI R4SVTYPE,R4SVTSTM IS THIS AN ISFXXX STEM VAR?
0533 BNE NOTSTEM GO IF NOT
0534
0535 LR R1,R6 ->R4SVARS
0536 L R15,=A(RETURN_STEM) GO RETURN THE STEM ARRAY
0537 BALR R14,R15
0538 ST R1,R4SVVALU POINT VARIABLE ENTRY TO R4SSTEM
0539 B NEXTDSC2 GO PROCESS NEXT VARIABLE ENTRY
0540
0541 NOTSTEM DS 0H
0542 L R1,R4SVNAME ->NAME DESCRIPTOR
0543 USING R4SREFER,R1
0544 LA R0,R4SRDATA ->NAME ITSELF
0545 LH R1,R4SRLNG L'NAME
0546 DROP R1
0547
0548 L R15,=A(RETRIEVE_VARIABLE) GO GET THE VARIABLE. ON
0549 BALR R14,R15 RETURN, R0->VALUE, R1 HAS
0550 * ITS LENGTH
0551
0552 L R3,R4SVVALU ->VALUE DESCRIPTOR
0553 USING R4SREFER,R3
0554 LA R2,R4SRDATA ->VALUE ITSELF
0555 LH R3,R4SRLNG L'VALUE
0556 DROP R3
0557 ICM R1,8,=C' ' BLANK PAD
0558 MVCL R2,R0 COPY VALUE TO THE AREA POINTED
0559 * TO IN THE INTERFACE AREA
0560
0561 NEXTDSC2 DS 0H
0562 AHI R6,12 ->NEXT VARIABLE ENTRY
0563 BCT R5,SETNEXT2 GO PROCESS IT

144 Implementing REXX Support in SDSF

Example 4-6 shows that routine RETRIEVE_VARIABLE is called for normal variable
processing to get the variable’s value from REXX. Example 4-7 shows the
routine and is a straightforward implementation of the REXX variable access
interface.

Example 4-7 RETRIEVE_VARIABLE routine in REXDRIVR

1121 RETRIEVE_VARIABLE DS 0H
1122 BAKR R14,0
1123 LR R12,R15
1124 USING RETRIEVE_VARIABLE,R12
1125 USING PERSISTW,R9
1126
1127 RB USING SHVBLOCK,P$REQ_BLK
1128 XC RB.SHVBLOCK(SHVBLEN),RB.SHVBLOCK
1129 MVI RB.SHVCODE,SHVFETCH IND VAR RETRIEVE OPERATION
1130 STM R0,R1,RB.SHVNAMA SAVE IN THE PARAMETER LIST
1131
1132 LA R0,P$BUFFER ->READ BUFFER
1133 L R1,=A(L'P$BUFFER)
1134 STM R0,R1,RB.SHVVALA SAVE FOR RETRIEVAL
1135 ST R1,RB.SHVBUFL
1136
1137 LA R1,P$PARM_LIST ->RETRIEVE THE VALUE
1138 L R15,ENVBLOCK_IRXEXTE ->REXX ROUTINE VECTORS
1139 USING IRXEXTE,R15
1140 L R15,IRXEXCOM
1141 DROP R15
1142 BALR R14,R15
1143 ST R15,P$RETCODE SAVE THE RETURN CODE
1144 LM R0,R1,RB.SHVVALA AND THE RETURNED VALUE
1145 STM R0,R1,P$VALUE
1146
1147 DROP RB
1148
1149 PR ,

 Chapter 4. SDSF support for the COBOL language 145

Figure 4-5 shows that REXXDONE determines the screen type and whether data
was returned right after handling the variables. Determining the screen type is an
important factor in returning data to the application and must be done before that
process can occur.

Figure 4-5 Overview of REXXDONE logic (abridged)

When REXDRIVR was written, if was decided to estimate the total variable size
rather than retrieve all the variables twice (once to determine their length and
again to actually retrieve the values). When SDSF builds the REXX variables to
return the results of the SDSF ISFEXEC or ISFACT command, it trims trailing
spaces before storing the values. This means that the value lengths can all vary
between 0 and the maximum allowed for the variable. To write REXDRIVR,
every SDSF panel was examined to determine the maximum length of the data
in each column and colshelp was used to match the internal column names with
the column titles. In the process it was discovered that some columns with the
same internal name have different lengths on different panels. So, REXDRIVR
has a significant amount of space dedicated to a list of column names and

G et short-term work area

Retrieve the persistent
work area

Save @ REXX RSA

Free short-term work area

Build data area

Determ ine screen type
and if data was returned

Return variab les to
the application

G et @ Application P/L

P/U Application RSA

146 Implementing REXX Support in SDSF

lengths organized by screen name. This logic depends on knowing the screen
name.

We have not presented the code necessary to scan the command to extract the
command name for this chapter because it is long but straightforward.

We use the contents of isfcols to obtain how many columns have been returned
to us in the stem variables and the internal tables to convert this to the bytes
necessary to hold all the information. We get the total length from the two most
popular of the four basic mathematical operations and get storage using the
STORAGE OBTAIN macro. This length is what is required to hold the variable
values if every value were as long as could be. In practice, the actual value will
be somewhat less.

After the data area is built, we pick up the application’s register save area from
where it was saved when REXXSDSF was called and return to the application.

4.4.1 Entry point REXXFREE - storage release routine

The last routine in REXDRIVR is REXXFREE, which releases storage
dynamically acquired in REXXDONE. We do not show the code here because it
is very straightforward. The data area is freed, followed by the stem variable
storage areas if any. After the free is done, the parameter list pointers are
zeroed.

4.5 The application programs included in the additional
materials

Three programs were included in the additional materials to act as templates for
you to write your own processing programs:

� ASMPGM, written in assembler
� CPROGRAM, written in C
� COBOLPGM, determining the language in which this last sample was written

is left to the reader as an exercise

ASMPGM was written purely for testing the interface and, while functional, is
unlikely to provide more than a shell in which you can lay your application.
Similarly, CPROGRAM simply displays the results of the operations.

COBOLPGM, however, implements the scenario described in Chapter 9, “JOB
schedule and control” on page 201, and might be more illustrative of how you can
write an application using the REX4SDSF/REXDRIVR architecture. Similarly,

 Chapter 4. SDSF support for the COBOL language 147

CPROGRAM was written to exercise the interface and to verify that the
Language Environment® does not interfere with the flow of control that is
imposed by the REXDRIVR logic or does not engage in any potentially
contentious behaviors with SDSF.

COBOLPGM, however, was the jewel of the sample world. It implemented the
application described in Chapter 6, “Viewing SYSLOG” on page 163 and
permitted us a view of how an algorithm implemented in REXX would compare
with the same algorithm implemented in COBOL. The results were encouraging.
Writing a series of SYSLOG data sets took .90 CPU seconds for the REXX
solution but only .11 CPU seconds for COBOL. This difference is solely due to
the improved performance of COBOL I/O (standard QSAM/BSAM, we would
assume) over that of REXX (EXECIO).

4.6 The COBOL point of view

From the COBOL point of view, the trickiest thing is dealing with the interface
variables. Calling the REXX interface is actually straightforward. Setting up the
environment that is defined by the variables requires a little more coding and
invoking a couple of Language Environment routines to acquire dynamic memory
to store them and free it after (as shown in Example 4-8). These routines,
CEEGTST and CEEFRST, are explained in Language Environment manuals.

Example 4-8 Acquiring dynamic memory to store variables

...

...
move 0 to heap-id.
call "CEEGTST" using heap-id,
 files-table-size,
 files-table-ptr,
 feedback.
if CEE000 of feedback then
 set address of files-table to files-table-ptr
else
...
...
end-if.

148 Implementing REXX Support in SDSF

You must also be methodical, calling REXXFREE after processing the values
returned by REXXSDSF, lest you can run in trouble. Example 4-9 shows how this
is accomplished.

Example 4-9 Calling REXXSDSF and REXXFREE routines

...

...
perform set-isfexec-vars.
perform call-rexxsdsf through call-rexxsdsf-exit.
set address of receiving-area to r4sadata.
perform load-jobs-table.
perform call-rexxfree through call-rexxfree-exit.
...
...

 Chapter 4. SDSF support for the COBOL language 149

Figure 4-6 shows the complete flow chart . After calling REXXSDSF, the
information is stored in a data structure. Because we do not know the size of the
data in advance, we cannot define working-storage space for it. Thus, we acquire
dynamic memory and copy the data there. When the data is copied, the
resources acquired by REXXSDSF can be freed by REXXFREE.

Figure 4-6 Flowchart: Calling REXXSDSF and REXXFREE from COBOL

Call REXXSDSF

Call REXXFREE

Compute space needed
to store variables returned

Call CEEGTST
to get heap memory

Store REXX variables
in heap memory

Process information

Call CEEFRST
to free heap memory

150 Implementing REXX Support in SDSF

4.7 Improving the interface

While results from the testing suggested that processing production quantities
would be better done in COBOL than REXX, there is always room for
improvement. Aesthetically, the interface seems a little grainy to us, requiring the
application program to be far more aware of the nitty-gritty of physical reality that
is normal in the COBOL world. Perhaps what is needed is a change in metaphor,
a way to separate COBOL and SDSF with another layer of abstraction.

It would simplify the COBOL programmer’s life, and make the programmer a
more productive person, if retrieval requests could be made in more traditional
COBOL terms rather than in the assembler terms the interface now requires. It
would be possible, for instance, for the programmer to request a status panel and
pass a 2-dimensional table to be filled by the interface. The columns would
include values for the individual fields, and the rows would represent the
individual jobs. The table would be of a fixed size, and the interface could be
called repeatedly to fill it until all SDSF-returned data had been passed.
Alternatively, perhaps the interface could be similar to that of an E35 exit,
repeatedly called for each record where in this case the record is an 01-level
structure including all requested fields in fixed locations.

 Chapter 4. SDSF support for the COBOL language 151

152 Implementing REXX Support in SDSF

Chapter 5. Searching for a message in
SYSLOG

You can use the power of IBM z/OS System Display and Search Facility (SDSF)
combined with the simplicity of the REXX language to solve daily management
tasks. In this chapter, we show you how to use REXX with SDSF to search for a
message in SYSLOG.

5

© Copyright IBM Corp. 2007. All rights reserved. 153

5.1 Scenario description

One installation needs to submit a batch job periodically that scans the system
log looking for a particular message. For each occurrence of the message in the
system log, the job then needs to issue a system command using all or part of
the information that is present in the line of the log where the message is found.

5.2 Solving the issue with REXX with SDSF

REXX with SDSF allows us to develop a very simple utility program that scans
the system log and issues a command at each occurrence of the particular
message.

5.3 The actual code

The actual code is written entirely in REXX language and will not use any feature
of the REXX language other than those present in the REXX language that are
supported by SDSF.

5.3.1 Parameters

@SYSLOG accepts and requires only one parameter in the message for which it
is searching, CSV0281. There is no validation of the parameter correctness.

Example 5-1 Invoking @SYSLOG for message CSV028I

@SYSLOG CSV028I

154 Implementing REXX Support in SDSF

5.3.2 Program flow

Figure 5-1 shows the flow of the program.

Figure 5-1 Scanning SYSLOG, program flow

The steps in the flow are:

1. Configuring SDSF execution environment.

The SDSF support for REXX language host command environment must be
activated. If the REXX program cannot add this host command environment it
must cancel the execution

2. Obtaining SYSLOG job names.

In a single ISFEXEC call, SDSF returns all the job names of the SYSLOG
requested.

c o n fig u re e xe c u tio n e n v iro n m e nt

o b ta in S Y S LO G jo b n a m e s

e n d

s ta r t

re tr ie v e S Y S LO G f ile s

a n y f ile to p ro c e s s ?

s c a n S Y S LO G f ile s e a rc h in g
th e m es s a g e

a n y jo b to p roc e s s ?

Y E S

Y E S

N O

N O

 Chapter 5. Searching for a message in SYSLOG 155

3. For each one of the jobs, @SYSLOG must retrieve all the SYSLOG files.

4. The REXX program must then scan each one of the files looking for the exact
message it is looking for.

5. Finally, it must issue the command after finding it.

To issue the command in this sample, we use the REXX sample @SYSCMD
that we discuss in Chapter 5, “Searching for a message in SYSLOG” on
page 153. @SYSCMD accepts a number of parameters, but we use only two
of them:

– CMD(), the system command that we want to submit
– QUIET(Y) to avoid verbose output

5.3.3 Configuring the SDSF execution environment

This step is split in two different functional sets of instructions:

1. Activating the SDSF support for the REXX programming language, as shown
in Example 5-2.

Example 5-2 Activating SDSF support for the REXX programming language

/*--*
/
/* In order to use REXX with SDSF is mandatory to add a host command
*/
/* environment prior to any other SDSF host environment commands
*/
/*--*
/
activate_SDSF_REXX_support:

 /*
 * Turn on SDSF "host command environment"
 */
 rc_isf = isfcalls("ON")
 select
 when rc_isf = 00 then return
 when rc_isf = 01 then msg_isf = "Query failed, environment not added"
 when rc_isf = 02 then msg_isf = "Add failed"
 when rc_isf = 03 then msg_isf = "Delete failed"
 otherwise do
 msg_isf = "Unrecognized Return Code from isfCALLS(ON): "rc_isf
 end
 end

156 Implementing REXX Support in SDSF

 if rc_isf <> 00 then do
 say "Error adding SDSF host command environment." msg_isf
 retcode = rc_isf * 10
 signal finish
 end

 return

2. Establishing the special SDSF variable values to retrieve only SYSLOG job,
ordered by date and time ended, in ascending order. The more that SDSF
does, the less that the program has to do.

Example 5-3 Setting SDSF special variables

/*---*/
/* Set SDSF special variables to customize information retrieval */
/*---*/
set_SDSF_special_variables:

 isfprefix = "SYSLOG*" /* Only syslog jobs */
 isfowner = "*" /* Owner does not care */
 isfcols = "JNAME TOKEN JOBID" /* Only retrieve certain columns */
 isfsort = "DATEE A TIMEE A" /* Ordered by datetime ending */
 command = "ST" /* SDSF panel STATUS */

 return

To retrieve only the job whose name conforms to the pattern of SYSLOG in our
installation, we must make the next assignment to the variable isfprefix that is
used to limit the returned variables

isfprefix = "SYSLOG*"

Reducing the columns to those strictly needed reduces the amount of storage
that SDSF must use to return the information to the caller and also reduce
slightly the time of processing. To avoid retrieving all the columns, the REXX
procedure assigns a string with the name of the desired columns to the special
variable isfcols:

isfcols = "JNAME TOKEN JOBID"

In this scenario, it is mandatory retrieve the jobs, classified by date and time of
ending and in ascending order. The REXX program must retrieve first the oldest
messages and continue till reaching the current time. This requirement is fulfilled
by SDSF with the next variable assignment:

isfsort = "DATEE A TIMEE A"1

 Chapter 5. Searching for a message in SYSLOG 157

5.3.4 Obtaining the SYSLOG job names

As stated previously, the REXX program only retrieves those job whose prefix is
SYSLOG with a single call to the internal REXX procedure exec_sdsf, which in
turn issues a command address SDSF “ISFEXEC ST”. SDSF, using the special
variables, tries to satisfy the request. Then, exec_sdsf controls the return code
and, in case of failure, displays some explanatory messages and cancels the
program.

Example 5-4 Obtaining all the SYSLOG job names

/*
 * Access the ST display
 */
call exec_sdsf "0 ISFEXEC ST”

The program loops through all the job names that are returned by SDSF, issues
the SA action (allocates authorized data sets), and processes each of the files
that are returned.

Example 5-5 Loop through all the jobs

/*
 * Loop for all SYSLOG jobs
 */
do njob = 1 to JNAME.0

/*
* Issue the SA action against the row to allocate all
* data sets in the job.
*/
call exec_sdsf "0 ISFACT ST TOKEN('"TOKEN.njob"') PARM(NP SA)"
/*

 * Read the records from each data set and take action
 */
 do loopdd=1 to isfddname.0

...

...

...
end

end

1 You can find the name of all the columns that you can use for sorting and filtering in the chapter
“Columns on the SDSF panels” of z/OS V1R9.0 SDSF Operation and Customization, SA22-7670.

158 Implementing REXX Support in SDSF

On each of the jobs, the REXX exec reads the system log, one line at a time,
using the REXX command EXECIO and parses every line looking for the desired
message. When it finds the message, @SYSLOG invokes @SYSCMD to
execute a command, in this case, to display information about the job.

Example 5-6 Scanning syslog searching a message

eof = 'NO'
do while(eof = 'NO')
 "EXECIO 1 DISKR" isfddname.loopdd "(STEM line."
 if (rc = 2) then
 eof = 'YES'
 else do
 parse var line.1,
 20 ldate,
 28 ltime,
 39 .,
 40 jobname,
 48 .,
 59 txtmsg
 currmsg = left(txtmsg,8)
 if currmsg = msgparm then do
 jobtype = left(jobname,1)
 jobid = substr(jobname,4,5)
 if jobtype <> "" then do
 display_parm = "$DO"jobtype"("jobid")"
 syscmd = "DELAY("3") CMD(“"display_parm"“)"
 call @SYSCMD syscmd
 end
 end
 end
end

 Chapter 5. Searching for a message in SYSLOG 159

5.4 Sample output

We submit the batch job showed in Example 5-7 to look for the message
IEA995I, which is the message that identifies a symptom dump, for all abnormal
ends when a SYSABEND, SYSUDUMP, or SYSMDUMP is requested. We use
IRXJCL to run the REXX exec in MVS batch.

Example 5-7 Searching the message IEA995I in the system log

//REDBOOK1 JOB 'SG24-7419',MSGCLASS=A,CLASS=A,NOTIFY=REDBOOK
//* IRXJCL @SYSLOG
//BATCH EXEC PGM=IRXJCL,PARM='@SYSLOG IEA995I'
//SYSEXEC DD DSN=REDBOOK.TEST.REXX,DISP=(SHR)
// DD DSN=MIU.TEST.REXX,DISP=(SHR)
//SYSTSPRT DD SYSOUT=A

In the job log, you can see how the console is activated and deactivated to issue
every command (Figure 5-2).

Figure 5-2 Activation and deactivation of the console

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY REDBOOK1 JOB26843 DSID 101 LINE 21 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> CSR

SDSF HCE status : revoked RC=00
@SYSCMD operands : DELAY(3) CMD("$DOJ(19868)")
SDSF HCE status : established RC=00
--
ISFEXEC options : (VERBOSE)
Original command : /$DOJ(19868)

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated vari
SDSF long message: ISF754I Command 'SET DELAY 3' generated from associated vari

SDSF ULOG messages:
SC70 2007109 13:17:06.85 ISF031I CONSOLE REDBOOK ACTIVATED
SC70 2007109 13:17:06.85 -$DOJ(19868)
SC70 2007109 13:17:06.86 JOB19868 $HASP686 OUTPUT(MHLRES1O)

$HASP686 OUTPUT(MHLRES1O) OUTGRP=2.1
$HASP686 FCB=****,F
$HASP686 FORMS=STD,
$HASP686 OUTDISP=WR
$HASP686 PRMODE=LIN
$HASP686 RECORDS=(6
$HASP686 ROUTECDE=L
$HASP686 TSOAVAIL=N
$HASP686 USERID=MHL

SC70 2007109 13:17:06.86 JOB19868 $HASP686 OUTPUT(MHLRES1O)
$HASP686 OUTPUT(MHLRES1O) OUTGRP=1.1
$HASP686 FCB=****,F

160 Implementing REXX Support in SDSF

Figure 5-3 shows the final output. The first lines are the verbose output from
@SYSCMD that establish the SDSF REXX host command environment and that
execute the system command. Below that is the information returned by the
system after issuing the command.

Figure 5-3 SYSTSPRT file after executing the REXX exec @SYSLOG

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY REDBOOK1 JOB26843 DSID 101 LINE 21 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> CSR

SDSF HCE status : revoked RC=00
@SYSCMD operands : DELAY(3) CMD("$DOJ(19868)")
SDSF HCE status : established RC=00
--
ISFEXEC options : (VERBOSE)
Original command : /$DOJ(19868)

SDSF short message: COMMAND ISSUED
SDSF long message: ISF754I Command 'SET CONSOLE' generated from associated vari
SDSF long message: ISF754I Command 'SET DELAY 3' generated from associated vari

SDSF ULOG messages:
SC70 2007109 13:17:06.85 ISF031I CONSOLE REDBOOK ACTIVATED
SC70 2007109 13:17:06.85 -$DOJ(19868)
SC70 2007109 13:17:06.86 JOB19868 $HASP686 OUTPUT(MHLRES1O)

$HASP686 OUTPUT(MHLRES1O) OUTGRP=2.1
$HASP686 FCB=****,F
$HASP686 FORMS=STD,
$HASP686 OUTDISP=WR
$HASP686 PRMODE=LIN
$HASP686 RECORDS=(6
$HASP686 ROUTECDE=L
$HASP686 TSOAVAIL=N
$HASP686 USERID=MHL

SC70 2007109 13:17:06.86 JOB19868 $HASP686 OUTPUT(MHLRES1O)
$HASP686 OUTPUT(MHLRES1O) OUTGRP=1.1
$HASP686 FCB=****,F

 Chapter 5. Searching for a message in SYSLOG 161

162 Implementing REXX Support in SDSF

Chapter 6. Viewing SYSLOG

This chapter describes a simple approach to using the IBM z/OS System Display
and Search Facility (SDSF) SYSLOG information with ISPF View or Edit
services. Simply browsing the system log from the SDSF panel can be
frustrating, because the only command available is find. Using the view
command also lets you find strings, but you can exclude unwanted lines, hide
them, or even incorporate your own macros for viewing only the information in
which you are interested.

The example that we describe in this chapter is a starting point that you can
modify to use with programs, such as a combination of UNIX sort and grep, as is
usually done when searching UNIX log files.

6

© Copyright IBM Corp. 2007. All rights reserved. 163

6.1 Scenario description

In this scenario, we review the current system log file, using the View ISPF
service, not using Browse. In addition, we save the log to a catalogued data set
or UNIX file for later analysis if the user calls the REXX exec.

This REXX program might be useful for system programmers and operations
support personnel who are looking for a way to tackle the system log.

6.2 Programming caveats

The code for this scenario, whenever possible, uses the facilities that are
provided by REXX and avoids similar functionality that might be found in other
IBM products.

6.3 Parameters

@BRLOG accepts two parameters that are mutually exclusive and that are
passed by name:

� A data set name
� A path name

If neither of these parameters is present, the program copies the SYSLOG data
sets to a temporary data set and browses that data set.

If the data set name parameter is present, @BRLOG copies all SYSLOG data
sets to the one that is received as a parameter and also browses it.

Example 6-1 Invoking @BRLOG with a data set name

@BRLOG DSNAME('B247419.SYSLOG.SC70TS')

164 Implementing REXX Support in SDSF

If the path name parameter is present, @BRLOG copies all SYSLOG data sets
to a temporary MVS data set and copies using OCOPY to the path that is
specified. Finally, using the TSO command, OEDIT allows the user to view it.
Copying the path name does use a Carriage Return/Linefeed (CR/LF) to
separate the file records. See Example 6-2.

Example 6-2 Invoking @BRLOG with a path name

@BRLOG PATH(‘/tmp/b247419.syslog.sc70ts’)

Figure 6-1 shows the result of Example 6-2.

Figure 6-1 Browsing syslog in a UNIX path file

 File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT /tmp/b247419.syslog.sc70ts Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 X 0000000 SC70 2007112 14:56:27.80 SYSLOG 00000000 IEE042I SYSTEM
000002 N 0000000 SC70 2007112 14:54:41.96 00000290 IEA630I OPERA
000003 NC0000000 SC70 2007112 14:54:41.99 INTERNAL 00000290 CONTROL M,UEXI
000004 N 0000000 SC70 2007112 14:53:04.88 00000290 IEA371I SYS0.I
000005 N 0000000 SC70 2007112 14:53:04.88 00000290 IEA246I LOAD
000006 N 0000000 SC70 2007112 14:53:04.88 00000290 IEA246I NUCLST
000007 N 0000000 SC70 2007112 14:53:04.88 00000290 IEA519I IODF D
000008 N 0000000 SC70 2007112 14:53:04.88 00000290 IEA520I CONFIG
000009 N 0000000 SC70 2007112 14:53:04.88 00000290 IEA091I NUCLEU
000010 N 0000000 SC70 2007112 14:53:04.88 00000290 IEA086I EJESSV
000011 N 0000000 SC70 2007112 14:53:04.88 00000290 IEA086I IGC213

 Chapter 6. Viewing SYSLOG 165

6.3.1 Program flow

Figure 6-2 illustrates the program flow for this scenario.

Figure 6-2 Viewing SYSLOG

6.3.2 Testing execution environment

The program uses the ISPF View service, so it must run under interactive ISPF.
In any other case, it will cancel.

start

View SYSLOG

Is execution
environment OK?

YES

NO

Are parameters
correct?

Get file names

Get SYSLOG job

Copy SYSLOG to data set

end

YES

NO

166 Implementing REXX Support in SDSF

6.3.3 Parameter verification

The program must verify that it has received the desired data set name. It is only
a simple verification and does no name validity checking. If the data sets exists, it
is overwritten. If it does not exist, it is created.

6.3.4 Configuring the SDSF execution environment

After establishing a valid REXX with SDSF environment, a call to the internal
procedure activate_SDSF_REXX_support invokes the isfcalls function and
analyzes the return code that is obtained, as shown in Example 6-3.

Example 6-3 Activating REXX with SDSF support

/*---*/
/* In order to use REXX with SDSF is mandatory to add a host command */
/* environment prior to any other SDSF host environment commands */
/*---*/
activate_SDSF_REXX_support:

 /*
 * Turn on SDSF "host command environment"
 */
 rc_isf = isfcalls("ON")
 select
 when rc_isf = 00 then return
 when rc_isf = 01 then msg_isf = "Query failed, environment not added"
 when rc_isf = 02 then msg_isf = "Add failed"
 when rc_isf = 03 then msg_isf = "Delete failed"
 otherwise do
 msg_isf = "Unrecognized Return Code from isfCALLS(ON): "rc_isf
 end
 end

 if rc_isf <> 00 then do
 say "Error adding SDSF host command environment." msg_isf
 signal finish
 end

 return

 Chapter 6. Viewing SYSLOG 167

The program modifies the SDSF control variables to obtain a copy of the
SYSLOG spool data sets of the system on which it is executed through a call to
the internal procedure set_SDSF_special_vars (Example 6-4).

Example 6-4 Setting SDSF special variables

set_SDSF_special_vars:

 /*
 * Target isfprefix special variable towards own system SYSLOG jobs
 */
 isfprefix = "SYSLOG*"
 isfowner = "*"
 isfcols = "JNAME TOKEN JOBID QUEUE ESYSID"
/*
 * We need the output sorted in ascending order by the date and
 * time when the execution began
 */
isfsort = "DATEE A TIMEE A"
/*
 * ISFFILTER specifies a filter criterion to be applied to the
 * returned variables. Use the column name rather than the column
 * title. Only a single criterion is supported. In this case we
 * use ESYSID (JES2 execution node) column name instead of "Esys"
 * column title
 */
 isffilter = "ESYSID =" mvsvar("SYSNAME")
/*
 * Allocation parameter user by XFC command.
 */
isfPrtDDNAME = tmpdd

return

Specifying these variables, the REXX program tries to obtain the SYSLOG jobs
of the system where it is run, ordered in ascending order by date and time of
execution.

Note: It is important to keep in mind that SDSF special variables (such as
isffilter, isfsort, or isfcols) must reference column names not panel
names. Refer to z/OS V1R9.0 SDSF Operation and Customization,
SA22-7670 to make sure that you are using the correct column names.

168 Implementing REXX Support in SDSF

6.3.5 Obtaining all the SYSLOG jobs

The program gathers all the SYSLOG jobs of the current system by accessing
the SDSF ST (STATUS) panel you would from the SDSF command line, as
shown in Example 6-5.

Example 6-5 Accessing SDSF STATUS panel from REXX

sdsf_command = "ST"
call exec_sdsf "0 ISFEXEC" sdsf_command

Each row that is retrieved has its own unique token identifier (stem TOKEN) that
lets the program copy each one of the spool data sets to the data set whose
name it has received as a parameter. For copying, @BRLOG uses the SDSF
command XFC. This command prints all data sets to a file (DDNAME) using the
attributes that are specified in the special variables. So, for each row, the ISFACT
routine must be called, specifying the same panel (ST) and the corresponding
row token. See Example 6-6.

Example 6-6 Copying all the syslog data sets

do njob = 1 to JNAME.0
 /*
 * Issue the XFC action against each row to copy all the
 * data sets in the job. Maximum return code admitted 0.
 */
 call exec_sdsf "0 ISFACT ST TOKEN('"TOKEN.njob"') PARM(NP XFC)"
end

 Chapter 6. Viewing SYSLOG 169

Figure 6-3 shows the output if the parameter received was a cataloged data set,
after waiting for all the data sets to be copied.

Figure 6-3 Browsing SYSLOG output data set

6.4 Customization

In a sysplex environment, you might be interested not only in the log of one
single system, but in the log of all the systems in the sysplex. If you are running
IMS™, it might be appealing to you to reformat and merge the IMS log with the
system log to have a more complete view of what is happening.

You could eliminate all the ISPF calls from the code and let the program run in a
pure batch environment or as a UNIX command shell script. In this latter case,
you can integrate your REXX in a pipe for sorting and searching and then
redirect the output to another program for later processing.

 File Edit Edit_Settings Menu Utilities Compilers Test Help
--s
VIEW B247419.SYSLOG.SC70TS Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 N 0000000 SC70 2007086 13:34:06.65 00000290 IEA630I OPERA
000002 X 0000000 SC70 2007086 13:35:34.60 SYSLOG 00000000 IEE042I SYSTEM
000003 NC0000000 SC70 2007086 13:34:06.68 INTERNAL 00000290 CONTROL M,UEXI
000004 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA371I SYS0.I
000005 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA246I LOAD
000006 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA246I NUCLST
000007 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA519I IODF D
000008 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA520I CONFIG
000009 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA091I NUCLEU
000010 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA086I EJESSV
000011 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA086I IGC213
000012 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA093I MODULE
000013 S IFFIOM
000014 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA093I MODULE
000015 S IEDQATTN
000016 N 0000000 SC70 2007086 13:30:37.77 00000290 IEA093I MODULE
000017 S IECTATEN
000018 N 8000000 SC70 2007086 13:31:01.56 00080290 *IEA213A DUPLIC
000019 N 8000000 SC70 2007086 13:31:01.58 00000290 * IEA213A REP
000020 N 0000000 SC70 2007086 13:31:44.09 00000290 IEE600I REPLY
000021 N 4000000 SC70 2007086 13:31:44.11 00000290 IEA313I DEVICE
000022 N 8000000 SC70 2007086 13:31:44.13 00080290 *IEA213A DUPLIC
000023 N 8000000 SC70 2007086 13:31:44.15 00000290 * IEA213A REP
000024 N 0000000 SC70 2007086 13:31:48.93 00000290 IEE600I REPLY
000025 N 4000000 SC70 2007086 13:31:49.04 00000290 IEA313I DEVICE
000026 N 8000000 SC70 2007086 13:31:49.06 00080290 *IEA213A DUPLIC

170 Implementing REXX Support in SDSF

Finally, removing the ISPF services lets you use it as a starting point for a
client-server pair of programs that allows you to browse your system logs from
outside the host system.

 Chapter 6. Viewing SYSLOG 171

172 Implementing REXX Support in SDSF

Chapter 7. Reviewing execution of a job

This chapter provides a sample REXX procedure that reviews the execution of a
batch job and, depending on some predefined conditions, issues different
actions. Writing a similar program without the aid of the IBM z/OS System
Display and Search Facility (SDSF) support for the REXX programming
language could be difficult and require some assembler programming to
accomplish the same tasks.

7

© Copyright IBM Corp. 2007. All rights reserved. 173

7.1 Scenario description

In this scenario, a batch job is run every day that produces a report for a group of
customers. If the jobs ends normally, the report must be sent. If any abnormal
condition occurs, the execution of the job must be analyzed and a summary of
the execution sent through e-mail to the programmers.

Of course, the customers report could be sent directly from the sample job, but
one of the purposes of this scenario is to extract and process some SYSOUT
data from the spool using the facilities that are provided by using REXX with
SDSF.

7.2 Solution

The solution provided with this scenario is a REXX program that receives the
target job by a parameter, verifies its execution using the REXX interface
provided by SDSF, and if the job is found analyzes it. Then, one of the following
conditions occurs:

� If the job has ended normally, VERIFJOB searches the report name signaled
by the parameter REPORT(), builds an e-mail body with it, and sends it to the
customers.

� If there is any abnormal condition, a summary of the execution of the job is
sent to the programmers team.

The e-mail configuration and the e-mail addresses of both customers and
programmers are read from files.

7.2.1 Parameters

There are a small number of parameters that you can use to tailor the behavior of
the REXX program:

JOBNAME(job_name) Job name to look for. If no ended job with this name
is found, the process fails and a summary must be
send to the programmers team.

JOBID(jobid) Job ID that can be specified to locate the correct
execution. This parameter is mutually exclusive with
parameter SUBMITTED().

MAXCC(return_code) Maximum return code that considered a valid return
code for the job.

174 Implementing REXX Support in SDSF

REPORT(report_name) The name of DD that the program has to search in
the Job Data Set panel (JDS). If the file is not found
in the step specified in the parameter STEP(), the
process fails, and a summary must be send to the
programmers team.

STEP(step_name) Step identifier where the report is created. If the step
is not found, the process fails, and a summary is
send to the programmers team.

SUBMITTED(date time) Submit date and time. The first job with the same job
name that ended after this time and date will be
chosen. This parameter is mutually exclusive with
parameter JOBID().

 Chapter 7. Reviewing execution of a job 175

7.2.2 Program logic

Figure 7-1 illustrates the program logic for this scenario.

Figure 7-1 Sample scenario program logic

Analyze execution
parameters

programmers
e-mails

customers
e-mails

e-mail system
configuration

Load
configuration

files

Search jobs that
conform to criteria

All required
parameters present?

Any job found?

Job ended normally?

Elaborate report for
programmers’ team

start

end

Show error message
on SYSPRINT

Search report in
job’s spool

Report found?

Format e-mail report for
customers

Send e-mails

NO

NO

NO

NO

YES

YES

YES

YES

EXIT

Configuration files

SDSF/REXX

SDSF/REXX

176 Implementing REXX Support in SDSF

7.2.3 Searching jobs

To retrieve the job that you want, you must first establish the environment. The
REXX program calls the internal routine activate_SDSF_REXX_support as shown
in Example 7-1.

Example 7-1 Activating the SDSF REXX host command environment

/*--*
/
/* In order to use REXX with SDSF is mandatory to add a host command
*/
/* environment prior to any other SDSF host environment commands
*/
/*--*
/
activate_SDSF_REXX_support:

 /*
 * Turn on SDSF "host command environment"
 */
 rc_isf = isfcalls("ON")
 select
 when rc_isf = 00 then return
 when rc_isf = 01 then msg_isf = "Query failed, environment not added"
 when rc_isf = 02 then msg_isf = "Add failed"
 when rc_isf = 03 then msg_isf = "Delete failed"
 otherwise do
 msg_isf = "Unrecognized Return Code from isfCALLS(ON): "rc_isf
 end
 end

 if rc_isf <> 00 then do
 say "Error adding SDSF host command environment." msg_isf
 retcode = rc_isf * 10
 signal finish
 end

 return

 Chapter 7. Reviewing execution of a job 177

Setting special variables
When you have established the host command environment, the REXX program
must set the special variables that SDSF uses to filter the information that it
retrieved. In this case, the variable isfprefix is the name of the job received,
and the variable isfowner is an asterisk (*), meaning that it might be a job that is
owned by anyone. See Example 7-2.

Example 7-2 Setting special variables to control SDSF

/*--*
/
/* Set SDSF special variables to customize information retrieval
*/
/*--*
/
set_SDSF_special_variables:

 isfprefix = parm_jobname /* Only those jobs that matches
*/
 isfowner = "*" /* Owner does not care
*/
 command = "ST" /* SDSF panel STATUS
*/

 return

Requesting to SDSF a list of jobs
To request a list of jobs that conform to the criteria established by the special
variables the only thing the program has to do is call the ISFEXEC function with
the status panel parameter (ST), specifying that it wants also the columns of the
alternate panel and those columns that are returned by SDSF if a delay is
admitted. See Example 7-3.

Example 7-3 Searching the job

/*--*
/
/* Search the job received by parameter using the tabular display
*/
/* provided by the SDSF Status panel
*/
/*--*
/
search_job:

178 Implementing REXX Support in SDSF

 if debug > 0 then
 opts_sdsf = "(VERBOSE ALTERNATE DELAYED)"
 else
 opts_sdsf = "(ALTERNATE DELAYED)"

 call exec_sdsf "0 ISFEXEC ST" opts_sdsf
 do ij = 1 to JNAME.0

...

...

...
 end

...

...

...

The internal subroutine exec_sdsf takes care of controlling the return code from
ISFEXEC and finishes the program if the return code of received is not equal to
zero.

7.2.4 Choosing the desired job

After the program has a list of jobs that satisfy the criteria, it must be filtered
again, choosing the first one that meets the additional constraints specified in the
parameters:

� The REXX program has used the ST panel, so it must make sure that the job
has ended.

� If there is a parameter JOBID(), then the REXX program searches the job
whose JES2 job ID equals the parameter received.

� If there is a SUBMITTIME() parameter, the first job executed after the date and
time specified is selected

If the correct job is found, the program stores the token returned by SDSF for
later use, as shown in Example 7-4.

Example 7-4 Storing the token returned by SDSF for later use

do ij = 1 to JNAME.0
if JNAME.ij = parm_jobname then do

if RETCODE.ij = "" then do /* Not ended */
if JOBID.ij = parm_jobid then

leave ij
else

 Chapter 7. Reviewing execution of a job 179

iterate
end
if parm_jobid <> "" then do

 if JOBID.ij = parm_jobid then
 job_found = "YES"
 end

if submit_time <> "" then do
 if later_time(parm_date,parm_time,DATER.ij,TIMER.ij) = 1 then
 job_found = "YES"
 end

if job_found = "YES" then do
 currtoken = TOKEN.ij
 job_found = "YES"
 leave ij
 end

end
end

Verifying the return code of the job
Using the column RETCODE, the REXX program verifies that the chosen job has
a maximum return code less or equal than the parameter received. If this
parameter is omitted, then the maximum return code allowed will be zero.

The code in Example 7-5 examines the return code information for the job
returned by SDSF in stem RETCODE. Based on it, the code decides whether it
has to format and send the report to the customers or whether there is an error
and has to analyze the job and send a summary to the application programmers.

Example 7-5 Verifying the return code of the job

/*
 * Test if the maximum return code of the job is greater or equal than
 * the parameter MAXCC
 */
 if word(RETCODE.ij,1) = "CC" & word(RETCODE.ij,2) <= parm_maxcc then do
 say " Parameter MAXCC: "parm_maxcc "(OK)"
 report_type = "CUSTOMER"
 report_title = "Report" parm_report ,
 "from " JNAME.ij"-"JOBID.ij ,
 "("DATEN.ij"-"TIMEN.ij")"
 end
 else do
 say " Parameter MAXCC: "parm_maxcc ". Job Max-RC:" RETCODE.ij
 say " Condition not satisfied. The programmers must be notified"
 report_type = "PROGRAMMER"
 report_title = "Error report of the job" ,

180 Implementing REXX Support in SDSF

 JNAME.ij"-"JOBID.ij ,
 "("DATEN.ij"-"TIMEN.ij")"
 end

7.2.5 Searching the report

To search for one report, the REXX exec must access the Job Data Set panel
that allows the user to display information about SYSOUT data sets for a
selected job, started task, or TSO user. This task is accomplished issuing the
isfact command with the ? action character for the job identified by the token
variable, parm(np ?) as shown in Example 7-6. In this case, we use the prefix
option to ensure unique variables are created, beginning with J, then, SDSF
returns stems JDDNAME and JSTEPN.

Example 7-6 Searching the report

if debug > 0 then
 opts_sdsf = "(VERBOSE PREFIX J)"
else
 opts_sdsf = "(PREFIX J)"

call exec_sdsf "0 ISFACT ST TOKEN('"currtoken"') PARM(NP ?)" opts_sdsf
do ddname = 1 to JDDNAME.0
 /*
 * Look for received parameter
 */
 if JDDNAME.ddname = reportdd then do
 if step_name = "" | JSTEPN.ddname = step_name then do
 report_token = jtoken.ddname
 leave ddname
 end
 end
end

if report_token = "" then do /* Report not found */
 ...

...

...
end

 Chapter 7. Reviewing execution of a job 181

7.2.6 Processing the report

To process the report, this sample REXX exec adds some HTML code to
transform the spool file into an e-mail message (in this case an e-mail message
readable by a Lotus® Notes® client). First, the program reads the spool file using
the host environment command ISFACT and specifying the allocate authorized
data sets command, SA.

After issuing the command, SDSF allocates the spool data set and its ddname is
returned in the stem variable isfddname.

Example 7-7 Reading a report from the spool

email_report:

 parse arg ddtoken

 t = 0
 call exec_sdsf "0 ISFACT ST TOKEN('"ddtoken"') PARM(NP SA)"
 do kx = 1 to isfddname.0
 "EXECIO * DISKR" isfddname.kx "(OPEN FINIS STEM spool.)"
 if rc <> 0 then call error_reading_spool isfddname.kx
 call create_report_header
 do lx = 1 to spool.0
 if t = 1 then
 t = 2
 else
 t = 1
 call store_line '<tr class=t't'><td><pre>',
 spool.lx'</pre></td></tr>'
 end
 call create_report_footer
 end

7.2.7 Analyzing job execution

If the user has implemented IEFACTRT SMF exit and the REXX exec is able to
find the termination summary that is formatted by this exit in the spool's
JESMSGLG that corresponds to the job, it sends this report to the list of
programmers.

182 Implementing REXX Support in SDSF

If either the user has not implemented IEFACTRT in the installation or the REXX
exec cannot find the expected report, it searches the JESYSMSG spool ddname
and looks for the system messages that it has read previously from the file
SYSMSGS. It then produces a report and sends it to the programmers list. See
Example 7-8.

Example 7-8 Analyzing the job execution

call search_report "CONTINUE" "JESMSGLG" ""
if report_token <> "" then do
 call locate_IEFACTRT_section report_token
 if IEFACTRT_found = "YES" then do
 call connect_to_smtp_server
 call send_email_message
 end
 return
end

...

...

...
call search_report "CONTINUE" "JESYSMSG" ""
if report_token <> "" then do
 call locate_system_messages report_token
 call connect_to_smtp_server
 call send_email_message
end

To find JESMSGLG and JESYSMSG, the REXX exec uses the internal
subroutine search_report, which we explain in 7.2.5, “Searching the report” on
page 181.

 Chapter 7. Reviewing execution of a job 183

7.2.8 Program output

The output of the program are e-mails. Figure 7-2 shows the report that is sent to
the customers. In this case, the report is the compilation listing file of the z/OS XL
C/C++ compiler.

Figure 7-2 Sample e-mail report sent by the REXX exec

184 Implementing REXX Support in SDSF

Figure 7-3 shows the e-mail that is sent to the programmers in the case of an
abnormal termination.

Figure 7-3 Job execution summary sent to the programmers team

7.2.9 Possible enhancements

In the sample provided, the information that is collected from the jobs
JESMSGLG and JESYSMSG is not used to provide any corrective action. For
some simple cases, it might be feasible to analyze the messages that the system
gives, take the appropriate corrective actions, and then resubmit the job.

 Chapter 7. Reviewing execution of a job 185

186 Implementing REXX Support in SDSF

Chapter 8. Remote control from other
systems

This chapter describes a very basic approach to access IBM z/OS System
Display and Search Facility (SDSF) from other systems. The aim of this scenario
is to show how easily someone can access the SDSF facilities with the REXX
interface and how SDSF can be accessed and operated from outside the
mainframe system. In this scenario, we are not concerned with security issues,
concurrency problems, or performance considerations.

8

© Copyright IBM Corp. 2007. All rights reserved. 187

8.1 System structure

The server side of this scenario receives requests from remote clients, connects
with SDSF, and processes these requests (Figure 8-1). It then returns the reply
from SDSF to the clients. The server side has two main components:

� A communications processor that listens for incoming requests and
dispatches them to one of the SDSF command processors.

� SDSF command processor, s whose responsability is to contact SDSF,
execute one or more commands, format the reply, and send it back to the
client.

Figure 8-1 Sample client-server system

The TCP/IP REXX server has no knowledge of SDSF. Its responsibility is to
receive client requests and to dispatch these requests to the corresponding
processors. The code on the server side of this scenario does not have to be
written in REXX and can be substituted by a program written in any other
programming language.

TCP/IP REXX server Server configuration
file

SDSF panel “ST”
command treatmentSDSF/REXX

SDSF panel “ST”
command treatment

REXX with
 SDSF

SDSF panel “NO”
command treatmentSDSF/REXX
SDSF panel “NO”

command treatment
REXX with
 SDSFX

SDSF panel “CK”
command treatmentSDSF/REXX
SDSF panel “CK”

command treatment
REXX with
 SDSF

TCP/IP Client

Configuration file specifies which
REXX knows how to cope with
each one of the SDSF panels

TCP/IP REXX server only knows about communications

Remote SDSF requestSDSF command processors
reply to the clients

188 Implementing REXX Support in SDSF

8.2 The main server

The purpose of the main server is to receive clients requests and dispatch them
to the appropriate SDSF command processor. It only replies to the clients if there
is no command processor available to process the SDSF command received. In
any other case, those command processors take care of the conversation and
reply directly to the clients. Example 8-1 shows the JCL to start the server.

Example 8-1 JCL to start the server with inline configuration file

//REDBOOKS JOB 'SG24-7419',MSGCLASS=A,CLASS=A,NOTIFY=REDBOOKS
/*JOBPARM S=SC70
//* --
*
//* IRXJCL TEST
//* --
*
//BATCH EXEC PGM=IRXJCL,PARM='@SDSFSRV’
//SYSEXEC DD DSN=REDBOOKS.TEST.REXX,DISP=(SHR)
//SYSTSPRT DD SYSOUT=A
//SRVCONF DD *
#--
CONFIGURATION FILE OF THE REXX SDSF SERVER
#--
PORT=24741
#--
ONE LINE FOR EACH REXX SDSF COMMAND PROCESSOR
#--
NO=@CMDNO
ST=@CMDST
/*

All the information needed to start the server is supplied in the inline
configuration file: the port number where it listens for incoming conversations as
well as the command processors for each one of the SDSF panels.

 Chapter 8. Remote control from other systems 189

8.2.1 Main server’s program logic

Figure 8-2 illustrates the main server’s program logic. On startup, the server
reads the configuration file and stores the name of the SDSF command
processors that it has to invoke in a stem variable. This stem variable is
dependent on the command that it receives from the client. It then starts the
TCP/IP REXX interface and listen for any incoming conversation.

Figure 8-2 Main server logic

Bind to predefined socket

Start

configuration Load configurationconfiguration Load configuration

Listen incoming requests

Accept connection

Analyze request

Is it a valid request?

Reply error to the clientCall command processor

YES NO

Do forever

190 Implementing REXX Support in SDSF

8.3 SDSF command processors

SDSF command processors receive the communications socket from the main
server. They execute the only command that each one of them knows how to
process, and then they reply to the client.

There are two kinds of requests that each command processor can process:

� The request for a tabular display resulting from a main panel command, such
a ST (status panel), NO (Nodes panel), and so forth. When a command is
received, the sample command processor replies with a series of lines to the
client, with all the columns of the SDSF panel, plus the token that is
associated with each one of the lines.

� A line command of the tabular display, such as D (Display). To know which
command processor has to receive the command and the line to which it
refers, the client request needs two additional parameters: the panel
command and the token that is associated with that line.

8.3.1 Parameters

The SDSF command processor must receive two parameters, socket and input
data, as described here:

Socket TCP/IP socket attached to the client. The command processor
will send its reply using this socket.

Input data Request sent by the client. It has at least the identifier of the
panel.

8.3.2 Program logic

At every call, the SDSF command processor has to start a new REXX with SDSF
environment to service client requests and at exit, after the process has been
completed, delete it. When calling the REXX interface more than once, it is
important to make sure that the cleanup has been correctly performed.

 Chapter 8. Remote control from other systems 191

Figure 8-3 illustrates the program logic for the REXX with SDSF command
processor.

Figure 8-3 REXX with SDSF command processor logic

start

Start SDSF support for REXX

Terminate REXX with SDSF support

Are parameters correct?

Reply to the client

analyze parameters

End

There is a subcommand?

Format lines Execute panel line command

Get panel tabular data Format SDSF line command reply

YESNO

192 Implementing REXX Support in SDSF

Activating SDSF support for the REXX language
Every SDSF command processor has to add the SDSF host command
environment to the list of available REXX command environments using the
REXX internal activate_SDSF_REXX_support subroutine. This subroutine takes
care of the return codes and, if it cannot add the SDSF environment, cancels the
REXX execution. See Example 8-2.

Example 8-2 Activating SDSF support for the REXX language environment

activate_SDSF_REXX_support:

 /* Turn on SDSF "host command environment" */
 rc_isf = isfcalls("ON")
 select
 when rc_isf = 00 then return
 when rc_isf = 01 then msg_isf = "Query failed, environment not added"
 when rc_isf = 02 then msg_isf = "Add failed"
 when rc_isf = 03 then msg_isf = "Delete failed"
 otherwise do
 msg_isf = "Unrecognized Return Code from isfCALLS(ON): "rc_isf
 end
 end

 if rc_isf <> 00 then do
 say "Error adding SDSF host command environment." msg_isf
 retcode = rc_isf * 10
 signal finish
 end

 return

Terminating SDSF support for the REXX language
To exit the program if any abnormal condition is detected, all the subroutines use
the REXX language clause SIGNAL to change the flow of control to the label
finish, where we free any resource that is used by the program, close all open
files and sockets, and terminate the REXX with SDSF environment. See
Example 8-3.

Example 8-3 Exiting the program

finish:
 rc = isfcalls('OFF')
 socktxt = exec_socket("*","Shutdown",s,"BOTH")
 exit retcode

 Chapter 8. Remote control from other systems 193

It is the client's responsibility to reply, finish any SDSF command processing, and
close the communication socket on both normal and abnormal exits.

Requesting services from SDSF
To call REXX with SDSF, all the code in the REXX uses the internal subroutine
exec_sdsf (Example 8-4). This subroutine accepts two parameters:

� The maximum return code must be numeric, but if it takes the special
nonnumeric value of an asterisk (“*”), it means, do not care about the result.

� The SDSF command is a string of characters. SDSF tries to execute and
analyze it to provide a meaningful message if it is incorrect.

Example 8-4 Internal subroutine exec_sdsf

/*--*
/
/* Subroutine to execute an SDSF REXX command testing its return
code */
/*--*
/
exec_sdsf:

 parse arg max_SDSF_rc exec_SDSF_command

 /*
 * Drop SDSF msg standard variable in order to not get confused by
 * any previous value
 */
 if symbol("ISFMSG") = "VAR" then
 drop isfmsg

 sdsf = "OK"
 address SDSF exec_SDSF_command "(VERBOSE ALTERNATE DELAYED)"
 if (max_SDSF_rc = "*") then
 return rc

 if (rc > max_SDSF_rc | rc < 0) then do
 call SDSF_msg_rtn exec_SDSF_command
 sdsf = "KO"
 end

 return 0

Note: This subroutine uses the maximum return code permitted and controls
whether the return code that is received from SDSF is admissible.

194 Implementing REXX Support in SDSF

Requesting tabular data
Example 8-5 shows how the SDSF command processors obtain data from SDSF
and format it to send a reply to the client. In the code, after calling the subroutine
exec_sdsf with the parameter ISFEXEC ST and a maximum return code of 0, we
know that the call succeeded, the subroutine has issued the ST command, and
SDSF has created variables for the alternate field list, including delayed-access
columns because the final request made to SDSF has been:

address SDSF "ISFEXEC ST (VERBOSE ALTERNATE DELAYED)"

Specifying the option VERBOSE, if there is any problem, the stem variable
isfmsg2. will includes SDSF numbered messages.

Example 8-5 Formatting information about jobs

/*--*/
/* Display information about Jobs */
/*--*/
display_status:

 parse arg token

 call exec_sdsf "0 ISFEXEC ST”
 if sdsf = "KO" then return

 /*
 * Loop through all JOBS
 */
 do njob = 1 to JNAME.0
 line = "<JOB>"
 do nw = 1 to words(isfcols)
 vnam = word(isfcols,nw)
 if left(vnam,4) = "DATE" then
 call reformat_date vnam njob
 interpret "line = line'<"vnam">'||"vnam".njob||'</"vnam">'"
 end
 line = line"</JOB>"
 nbytes = exec_socket("*","Send",s,line)
 end
 nbytes = exec_socket("*","Send",s,"/*EOD")

return

 Chapter 8. Remote control from other systems 195

The loop 1 ... JNAME.0 retrieves all the rows for the job names that are
returned by SDSF that satisfy the conditions expressed in the SDSF special
variables such as isfowner or isfprefix, formats all the variables returned, and
sends them back to the client.

8.4 A sample client

The sample client is an ISPF client. Its only purpose is to illustrate how to
construct a remote application to control a z/OS sysplex.

Here are the menu entries:

File The only option is Exit.

SDSF Panel This lists all the SDSF panels that are available remotely.
The sample provided has only two: ST and NO. The list of
valid SDSF panels must match the server configuration
file.

Communications This point of the menu, shows a window where the you
can specify the address of the remote system and the port
of communications used. The ISPF window is shown in
Figure 8-4.

196 Implementing REXX Support in SDSF

Figure 8-4 Configuring communications in the client panel

File SDSF Panel Communication
- +---+

¦ Customize communication ¦
C ¦ Command ===> ¦

¦ ¦
N ¦ Enter the following fields: ¦
_ ¦ ¦
_ ¦ System name/address wtsc70oe.itso.ibm.com ¦
_ ¦ Port number 24741 ¦
_ ¦ ¦
_ +---+
____ REDBOOK1 JOB25704 A CC 0000 2007/04/13 11:50:59 2007/04/13 11:51:00
____ REDBOOK1 JOB25706 A CC 0000 2007/04/13 11:55:12 2007/04/13 11:55:13
____ REDBOOK1 JOB25707 A CC 0000 2007/04/13 11:57:47 2007/04/13 11:57:48
____ REDBOOK1 JOB25710 A CC 0000 2007/04/13 13:12:26 2007/04/13 13:12:27
____ REDBOOK1 JOB25711 A CC 0000 2007/04/13 13:14:03 2007/04/13 13:14:04
____ REDBOOK1 JOB25712 A CC 0000 2007/04/13 13:15:53 2007/04/13 13:15:54
____ REDBOOK1 JOB25713 A CC 0000 2007/04/13 13:17:42 2007/04/13 13:17:43
____ REDBOOK1 JOB25714 A CC 0000 2007/04/13 13:17:55 2007/04/13 13:17:56
____ REDBOOK TSU25673 CC 0000 2007/04/13 07:24:29 2007/04/13 13:19:06
____ REDBOOK1 JOB25716 A CC 0000 2007/04/13 13:21:16 2007/04/13 13:21:17
____ REDBOOK1 JOB25717 A CC 3632 2007/04/13 13:23:39 2007/04/13 13:23:39
____ REDBOOK1 JOB25718 A CC 0000 2007/04/13 13:24:11 2007/04/13 13:24:12
____ REDBOOK1 JOB25720 A CC 0000 2007/04/13 13:28:51 2007/04/13 13:28:52
____ REDBOOK1 JOB25722 A CC 0000 2007/04/13 13:30:35 2007/04/13 13:30:36
____ REDBOOK1 JOB25723 A CC 3632 2007/04/13 13:41:39 2007/04/13 13:41:39
____ REDBOOK1 JOB25724 A CC 3632 2007/04/13 13:42:44 2007/04/13 13:42:44
____ REDBOOK1 JOB25725 A CC 0000 2007/04/13 13:43:57 2007/04/13 13:43:58
____ REDBOOK1 JOB25735 A CC 0020 2007/04/13 14:20:08 2007/04/13 14:20:08
____ REDBOOK1 JOB25736 A CC 0020 2007/04/13 14:20:38 2007/04/13 14:20:38
____ REDBOOK1 JOB25741 A CC 0099 2007/04/13 15:01:56 2007/04/13 15:01:56
____ REDBOOK1 JOB25742 A CC 0099 2007/04/13 15:03:57 2007/04/13 15:03:58

 Chapter 8. Remote control from other systems 197

Figure 8-5 shows the ISPF window with the ST panel selected.

Figure 8-5 Image of the client program with ST panel selected

File SDSF Panel Communication

SDSF Client Row 1 to 26 of 91
Command ===> Scroll ===> CSR

NP Jobname Jobid C Max-RC St-Date St-Time End-Date St-Time
____ REDBOOKS JOB26219 A 2007/04/17 09:45:21 00:00:00
____ REDBOOK TSU26233 2007/04/17 10:24:40 00:00:00
____ REDBOOK1 JOB25700 A CC 3632 2007/04/13 11:38:41 2007/04/13 11:38:41
____ REDBOOK1 JOB25702 A CC 0501 2007/04/13 11:44:48 2007/04/13 11:44:48
____ REDBOOK1 JOB25703 A CC 3632 2007/04/13 11:47:21 2007/04/13 11:47:22
____ REDBOOK1 JOB25704 A CC 0000 2007/04/13 11:50:59 2007/04/13 11:51:00
____ REDBOOK1 JOB25706 A CC 0000 2007/04/13 11:55:12 2007/04/13 11:55:13
____ REDBOOK1 JOB25707 A CC 0000 2007/04/13 11:57:47 2007/04/13 11:57:48
____ REDBOOK1 JOB25710 A CC 0000 2007/04/13 13:12:26 2007/04/13 13:12:27
____ REDBOOK1 JOB25711 A CC 0000 2007/04/13 13:14:03 2007/04/13 13:14:04
____ REDBOOK1 JOB25712 A CC 0000 2007/04/13 13:15:53 2007/04/13 13:15:54
____ REDBOOK1 JOB25713 A CC 0000 2007/04/13 13:17:42 2007/04/13 13:17:43
____ REDBOOK1 JOB25714 A CC 0000 2007/04/13 13:17:55 2007/04/13 13:17:56
____ REDBOOK TSU25673 CC 0000 2007/04/13 07:24:29 2007/04/13 13:19:06
____ REDBOOK1 JOB25716 A CC 0000 2007/04/13 13:21:16 2007/04/13 13:21:17
____ REDBOOK1 JOB25717 A CC 3632 2007/04/13 13:23:39 2007/04/13 13:23:39
____ REDBOOK1 JOB25718 A CC 0000 2007/04/13 13:24:11 2007/04/13 13:24:12
____ REDBOOK1 JOB25720 A CC 0000 2007/04/13 13:28:51 2007/04/13 13:28:52
____ REDBOOK1 JOB25722 A CC 0000 2007/04/13 13:30:35 2007/04/13 13:30:36
____ REDBOOK1 JOB25723 A CC 3632 2007/04/13 13:41:39 2007/04/13 13:41:39
____ REDBOOK1 JOB25724 A CC 3632 2007/04/13 13:42:44 2007/04/13 13:42:44
____ REDBOOK1 JOB25725 A CC 0000 2007/04/13 13:43:57 2007/04/13 13:43:58
____ REDBOOK1 JOB25735 A CC 0020 2007/04/13 14:20:08 2007/04/13 14:20:08
____ REDBOOK1 JOB25736 A CC 0020 2007/04/13 14:20:38 2007/04/13 14:20:38
____ REDBOOK1 JOB25741 A CC 0099 2007/04/13 15:01:56 2007/04/13 15:01:56
____ REDBOOK1 JOB25742 A CC 0099 2007/04/13 15:03:57 2007/04/13 15:03:58

198 Implementing REXX Support in SDSF

8.5 Extending to more complex environments

On the server side it is necessary to ensure the following precautions:

� Provide the same security that SDSF does, which implies receiving a valid
user ID and an encrypted password from the remote client, validating them in
RACF, and submitting the commands to SDSF on behalf of this received user
ID.

� To avoid sending and receiving a user ID and an encrypted password with
each request, the server might, for example, return a security token that
uniquely identifies the client in each subsequent request.

� The only way to stop the sample server is to cancel the job. It is necessary to
provide a way of stop the server gracefully, letting the command processors
reply to their clients before quitting.

� The command processors might be more aware of the replies that are
returned by SDSF. In the sample code that we provide, the only thing that the
command processors do is reformat the dates and provide a basic color
indication of the row returned.

� It is mandatory to provide some kind of parallelism to cope with more than
one request at a time. Some of the requests made to SDSF can take a while
to complete, and the queue of requests can grow large, to the point that
system performance is affected.

On the client side, you might need to modify the extremely simple ISPF client to
provide a more sophisticated look and a more pleasant user experience. It could
be a workstation or Web application that provides access not only to a single
sysplex system but to a group of geographically dispersed sysplex systems.

 Chapter 8. Remote control from other systems 199

200 Implementing REXX Support in SDSF

Chapter 9. JOB schedule and control

In this chapter, we describe a simple application that acts as a job scheduler by
executing a group of jobs according to some rules without any manual
intervention.

The application allows the user to group jobs, to define the dependencies of the
jobs that compose the group, and to run them unattended. The jobs are also
monitored during their execution. When one job ends, its return code is checked
to define which job of the group is the next job to be executed. Determining which
job is the next job to be executed is done by following the dependencies that are
specified by the user. While a job is running, you can use the application to
monitor the system resources used by the running job.

To perform these tasks, the application needs to interact with the system to start
the jobs and to monitor their execution. This interaction can be done easily using
the services that are provided by the REXX with SDSF interface. Of course, the
system provides many other different ways to do this, but the use of REXX with
SDSF makes this interaction very simple.

The scenario that we describe here is based on a client/server model to take
advantage of the graphics capability that is available on a workstation, because
we want to track job submissions and executions using a graphical interface.

9

© Copyright IBM Corp. 2007. All rights reserved. 201

9.1 Scenario description

Imagine that you have a group of jobs that you want to execute on your system.
Usually, without the use of an automation tool, you must start these jobs one at
time and check the return code to decide which will be the next job to be
executed. In addition, the sequence in which the jobs are executed depends on
the logic of the application and on the behavior of the job at run time. We call
these types of issues dependencies.

Some dependencies are hard coded by the application logic that runs the jobs in
a predefined sequence. As an example, one job can write a file that a
subsequent job needs to read. This type of dependency is a solid dependency
that can be defined before the jobs run. However, there are other dependencies
that can be seen only during the runtime of the jobs. For example, one job can
end with a different return code depending on its input. This kind of dependency
is only visible when one job ends. Again, on an application logic basis, we might
need to run a different job depending on the return code of the preceding one.

Figure 9-1 represents a logical flow of a group of jobs where JOB_x is the name
of a job.

Figure 9-1 Example flow of a group of jobs

202 Implementing REXX Support in SDSF

JOB_A is the first job that we want to execute. If the execution completes with a
return code of 0 (RC=0), then we want to start JOB_B. Again, when JOB_B
completes, we want to start JOB_C, JOB_D, or JOB_E, depending on the return
code of JOB_B. If RC=0, then we start JOB_C. If RC=4, then we start JOB_D. If
RC>4, then we start JOB_E, and so forth.

We can also decide to check the job execution and take some actions based on
its behavior. For example, we might decide to cancel the job if it consumes too
much CPU time or if the paging activity for this job is too high. In this case, we
can notify someone through e-mail when one job completes with an
unacceptable return code.

9.2 Implementation

The scheduler in this scenario is implemented as a client/server application. The
server part is a REXX procedure that runs on a z/OS host system. It is the same
server code that we use in Chapter 10, “SDSF data in graphics” on page 223.
The client part is a Java™ program that runs, in our case, on a Windows
workstation.

9.2.1 Server program

This scenario uses the same server program described in Chapter 10, “SDSF
data in graphics” on page 223. You can refer to that chapter for further
information about it.

This sample application makes two assumptions.

� The jobs to be executed must be submitted before the application is started.
These jobs must be available as an input class, and no init must be
available to take jobs for this class. In our scenario, the jobs are submitted,
specifying as execution class=I. We do not have any init available to pick
up jobs from this class in our installation.

� When finished, the jobs must be available on the Held output queue.

9.2.2 Client program

We can divide the client program into three parts:

� The first part allows the user to create a logical flow chart of a group of jobs
and to describe the dependencies between them. We can also describe the
actions to take when some limits are reached at execution time for a specific
job.

 Chapter 9. JOB schedule and control 203

� The second part includes the code and functions that are needed to submit a
job, check its execution, and check the maximum return code of the job.

� The third part includes code to monitor the execution of a job and to take
actions based on some rules that are defined by the user.

When you start the program, you are presented with the window as shown in
Figure 9-2.

Figure 9-2 Program control window

If you were to run a client program such as this, you would proceed in the
following fashion:

1. If you need to change the IP address or the port number of your server, click
File → Configure (Figure 9-3). Then, click Save.

Figure 9-3 Configuring the server IP address and port number

204 Implementing REXX Support in SDSF

2. You are then presented with the opportunity to describe the dependencies
and execution limits for a group of jobs. To do this, you will need to identify
the dependencies and the execution limits for a group of jobs. You need to
identify a group of jobs that you want to execute and then describe to the
application the relations and dependencies of the jobs within this group.

As an example, assume that you want to group and run the jobs with names
DARIO100 to DARIO910. These jobs compose a batch application, and you
want to group them because they are expected to be executed in a certain
order. The execution of one of them also depends on the return code of the
preceding job.

Figure 9-4 shows the dependencies of these jobs.

Figure 9-4 Example job flow

DARIO100

DARIO200

DARIO400

DARIO300

DARIO500

DARIO600 DARIO700 DARIO800

DARIO910DARIO900

RC0

RC0

RC0

RC0

RC8

RC4

RC4 RC8

RC4

 Chapter 9. JOB schedule and control 205

3. To describe the job flow shown in Figure 9-4, you need to create a job group.
To do this click Create → Job Group. You are presented with the window
shown in Figure 9-5.

Figure 9-5 Creating a job group

On the right side of the window, there are some entry fields and list boxes that
are used to describe the jobs in the group. Now, you need to describe how to
reflect the dependencies of the group of jobs that are reported in Figure 9-4
on page 205.

4. In our example, we start with job DARIO100. It is the first job in the chain. So,
it does not have any predecessors. Figure 9-6 shows a close up of this job.
Complete the JOBNAME: entry field with the jobname DARIO100.

5. Now, you have to describe what to do when each job ends:

– If the job ends with RC=4, you want to start the job DARIO200. Complete
the entry field RC0: with DARIO200.

– If the job ends with RC=8, you want to start the job DARIO300. Complete
the entry field RC > 4 with DARIO300.

– Where there is no entry, type the word none.
– For now, skip the remaining columns (limits and actions) of the window.

We will explain these columns later.

206 Implementing REXX Support in SDSF

6. When you have completed describing your first job in the chain, press the
ADD entry button (Figure 9-6) to accept this data.

Figure 9-6 Adding entries to the job group

The windows is updated as shown in Figure 9-7.

Figure 9-7 Updated job group

 Chapter 9. JOB schedule and control 207

7. Continue adding job entries to the group in this fashion by typing over the last
entry in each field and clicking the Add Entry button. Insert the data for all the
jobs in the group. When you have completed these steps for all of the jobs,
your list will look something like that shown in Figure 9-9.

Figure 9-8 List of jobs in the job group

As mentioned previously, you might want to look at some system indicators while
a specific job is running. You can put a limit on some system resources that this
job is using.

In this scenario, we decided to monitor the EXCP count and the CPU time used
by a job. You can define a limit for these resources on a job basis and decide to
take an action when the limit is reached.

You can define a limit when you define the group of jobs. At this time, you can
define which limit you have to monitor for a job and which action you take when
this limit is reached. Figure 9-9 shows that a CPU time limit for the job with the
name DARIO200.

Figure 9-9 CPU time limit placed on a job

208 Implementing REXX Support in SDSF

For this scenario, we also want the application to send an e-mail message when
the job is absorbing more that eight seconds of CPU time during its execution. To
set a limit, you can use the box on the right side of the job group windows:

If you want to have a graphics representation of your job dependencies, select
Plot Job Group. The window shown in Figure 9-10 opens. You can use the
button on the small control window to move the graph, zoom on it, and so forth.

Figure 9-10 Plotting job groups graphically

After you have successfully described the group of jobs to your scheduler, you
can save it by clicking File → Save. You can also recall an already saved job
group description by clicking File → Load.

You are now ready to submit your group of jobs which will follow the sequence
you have defined for the job group. The application expects to find the jobs
already submitted with a specific execution class assigned to them (that is,
CLASS=I).

Note: You cannot have any initiator available to pick up a job from this input
class.

 Chapter 9. JOB schedule and control 209

When the job is submitted, it sits in the input queue waiting for someone to
change its execution class. As an example, we decided to submit jobs with an
execution CLASS=I, because we do not have an initiator that selects this class in
our system. When our sample scheduler program wants to start a job, it simply
asks SDSF to change the execution class of the job from I to A, because we
have initiators available for this execution class.

At this point, you should have all the jobs that comprise your group already
submitted and available in a JES2 queue. In our test, they look as shown in
Example 9-1.

Example 9-1 Input queue displaying all classes

SDSF INPUT QUEUE DISPLAY ALL CLASSES DATA SET
DISPLAYED
COMMAND INPUT ===> SCROLL
===>
NP JOBNAME JobID Owner Prty C Pos PrtDest Rmt
Nod

 DARIO100 JOB28385 DARIO 5 I 1 WTSCPLX2
 DARIO200 JOB28386 DARIO 5 I 2 WTSCPLX2
 DARIO300 JOB28387 DARIO 5 I 3 WTSCPLX2
 DARIO400 JOB28388 DARIO 5 I 4 WTSCPLX2
 DARIO500 JOB28389 DARIO 5 I 5 WTSCPLX2
 DARIO600 JOB28390 DARIO 5 I 6 WTSCPLX2
 DARIO700 JOB28391 DARIO 5 I 7 WTSCPLX2
 DARIO800 JOB28392 DARIO 5 I 8 WTSCPLX2
 DARIO900 JOB28393 DARIO 5 I 9 WTSCPLX2

210 Implementing REXX Support in SDSF

Close the job group windows and the graphic windows.

From the main windows of the sample application click Submit → Submit
Group. A window similar to Figure 9-11 opens.

Figure 9-11 Submitting the group

Select Load JOB Group and, from the load dialog box, select the file that
includes the description of the job dependencies, which you created previously.
The list box in the upper part of the window is updated as shown in Figure 9-12.

Figure 9-12 Updating the list box by loading the job group

 Chapter 9. JOB schedule and control 211

The Status field of the list box includes the status of the jobs during their
execution. You just loaded the list at this point, and so status of the jobs is none.
Select Start Scheduler to continue. When you select this button, you ask the
application to check whether all the jobs listed in the list box are really present in
the input queue in class I. Figure 9-13 shows the list box contents change.

Figure 9-13 List box change after starting the scheduler

When you select Start Scheduler, the client sends a request to the server to list
all the jobs that are actually present in the input queue class I that belong to
user DARIO. This is the user ID that submitted the jobs. Its name is hard coded
into the client code. You can change it to meet your installation specification. The
server calls SDSF to retrieve this data.

Figure 9-2 is a fragment of code extracted from the REXX clist my_task.

Example 9-2 Listing all jobs in a particular input class with a specific owner

call_sdsf_get_i_data: procedure expose peer_socket

 isfprefix = "*"
 isfowner = "dario"
 isfcols = "jname jobid"
 /* isffilter = "jclass eq i" */

 Address SDSF "ISFEXEC I"
 isf_rc = rc
 call check_isf_rc isf_rc

When the response to this request comes from the server, the client code checks
whether all the jobs included in the job group in use are in the input queue. If the
job is found in the JES input queue, its status changes to Input Queue, and the
color of the list box cell changes to yellow. If the job is not found in the JES2 input
queue, the status of the job remains none, and the list box cell is painted in cyan
to indicate that this job is missing from the input queue.

212 Implementing REXX Support in SDSF

Submit the job DARIO910 to make it available in the spool. Again, select Start
Scheduler. This time, all the jobs are available, and the scheduler starts to
submit jobs.

To submit a job, the sample scheduler application changes the job’s class in the
input queue from I to A. Example 9-3 is an extract of the code that is executed by
the server program when it receives a request to submit a job.

Example 9-3 Request received to submit a job

submit_jobid: procedure expose peer_socket
arg my_jobid

isfprefix = "dario*"
isfowner = "dario"
isfcols = "jname jclass jobid"
/* isffilter = "jobid eq " || jobid */

Address SDSF "ISFEXEC I"
isf_rc = rc
call check_isf_rc isf_rc

do a = 1 to JNAME.0
 if (jobid.a = my_jobid) then do
 Address SDSF "ISFACT I TOKEN('"token.a"') PARM(JCLASS A)"
 isf_rc = rc

The client passes the JOBID to the server of the job to be executed. The server
looks at the I queue and when it finds the job, it issues an ISFACT command to
change the class of the job.

 Chapter 9. JOB schedule and control 213

Figure 9-14 shows the status of the first job (DARIO100) while it is executing.

Figure 9-14 Job scheduler in action after submission of first job

In the status column, the status of the job DARIO100 is changed to Running, and
the list box cell is green, indicating that the job is running. Every five seconds, the
client issues a request to the server to check the status of the job. The response
also includes some information about the system resources that are used by the
job that is executed. Example 9-4 is an extract of the code that is used by the
server whenever the server receives a request to check the status of the job from
the client.

Example 9-4 Request to check status of jobs

check_if_jobid_is_executing: procedure expose peer_socket
 arg jobid

 jobid = word(jobid,1)
 isfcols = "jname jobid paging excprt cpupr asid cpu excp real"
 isffilter = "jobid eq " || jobid

 Address SDSF "ISFEXEC DA"
 isf_rc = rc
 call check_isf_rc isf_rc

214 Implementing REXX Support in SDSF

Four graphs are included in the middle of Figure 9-14:

� The upper-left graph represents the CPU use of the job that is executed. The
values plotted are gathered from the cpupr field of the DA panel.

� The upper-right graph represents the number of sio issue by the job that is
executed. The values for this graph are obtained from the excprt field of the
DA panel.

� The lower-left graph represents the number of real storage pages in use by
the job that is executed. These values are obtained from the real field of the
DA panel.

� The lower-right graph represents the paging activity of the job that is
executed. This value is obtained from the paging field of the DA panel.

Below the graph, you might see the asid number in which the job is running, the
number of EXCPs issued by the job since the start of its execution, and the
number of CPU seconds used. These value are obtained from the fields asid,
excp, and cpu fields of the DA panel.

 Chapter 9. JOB schedule and control 215

When the application ends, all the jobs listed in the job group that was loaded
have been executed. Figure 9-15 shows the end of the execution.

Figure 9-15 End of execution

The status field of the window is changed to Ended for those jobs that have been
started and are complete. The color of the list box cell changes to blue. The
Max RC value also changes to reflect the maxrc value for the job as reported by
the retcode field into the H panel. When the job no longer appears in the DA
output, the client assumes that the job has ended, and it issues an H command
to retrieve the return code value. Example 9-5 is an extract of the server code
that is executed when the client requests to check the return code of a job that is
completed.

Example 9-5 Checking the return code of a job that is complete

get_job_maxrc: procedure expose peer_socket
arg jobid

isfprefix = "DARIO*"
isfowner = "DARIO"
isfcols = "jname jobid retcode"

216 Implementing REXX Support in SDSF

isffilter = "jobid eq " || jobid

Address SDSF "ISFEXEC H"
isf_rc = rc
call check_isf_rc isf_rc

Looking at the list box values in Figure 9-15 on page 216, you can check the job
while it is executing. You can also follow the scheduling of the job by selecting
Graphics on the lower side of the window. Figure 9-16 is a graphical
representation of the jobs as they are executed.

Figure 9-16 Graphical display of jobs running

In the graphical display window, as in the list box, the job that is executed is
marked in green, and the jobs that have ended are marked in blue.

When all the jobs in the group end their execution, you can also look at their
system output (SYSOUT) by selecting a job in the list box and selecting Get
Sysout. Note that the sample application expects to find the system output of a
job in the Held queue. If this method is not acceptable in your organization,
change the source code to reflect your requirement. (For information about how

 Chapter 9. JOB schedule and control 217

to obtain the source code, see Appendix B, “Additional material” on page 305.)
Figure 9-17 shows the SYSOUT of a job that has completed.

Figure 9-17 System output of a completed job

When you select Get Sysout, the server program allocates the SYSOUT data set
and reads it using EXECIO. For additional information about this program, refer
to Chapter 10, “SDSF data in graphics” on page 223. The program can retrieve a
small number of rows from SYSOUT. In our testing, we observed that a
maximum of 300 rows provides an acceptable response time.

You can purge a SYSOUT by selecting a job from the list box and selecting
Purge Sysout. For additional information, see Chapter 10, “SDSF data in
graphics” on page 223.

9.2.3 Personalizing the server code

As discussed previously, the sample application expects the jobs that are
executed to be available in class I with a specific user ID assigned. The user ID
in our case is DARIO. If you need to change any of these values in our sample
for your own use, you must do so in the server code Example 9-6 is an extract of
code from the my_task REXX program. We have highlighted the SDSF calls
where you need to modify the code for your environment in bold.

218 Implementing REXX Support in SDSF

Example 9-6 Personalizing the server code

/* This routine submits the job with jobid passed as parm */
/* It means that we change the class of the job from I to A */
/* We assume that the job is actually in the inout queue class=I */
/* To submit the job we simply change its class from I to A */
/*---*/
submit_jobid: procedure expose peer_socket
arg my_jobid

isfprefix = "dario*"
isfowner = "dario"
isfcols = "jname jclass jobid"
/* isffilter = "jobid eq " || jobid */

Address SDSF "ISFEXEC I"
isf_rc = rc
call check_isf_rc isf_rc

do a = 1 to JNAME.0
 if (jobid.a = my_jobid) then do
 Address SDSF "ISFACT I TOKEN('"token.a"') PARM(JCLASS A)"
 isf_rc = rc
 call check_isf_rc isf_rc
 if (isf_rc = 0) then do
 call send_response_to_peer "submitted"
 end
 leave
 end
end

return

9.3 Compile and customize the sample programs

In this section we describe how to install and compile the sample applications
that we implement in this chapter.

Before you begin, you need to download the compressed file that includes the
source code of the programs. For information about how to download this file,
see Appendix B, “Additional material” on page 305. The .zip file includes both the
server and the client code. Follow the instructions to extract the source code, go
to the ch9and10 directory, and find the directories example_3 and rexx. In these

 Chapter 9. JOB schedule and control 219

directories are the class files of the client Java programs and the server REXX
code that you need to upload to the host system.

Next, upload the REXX code using your preferred method (FTP, PC3270 file
transfer, or another method) into a UNIX System Services file system. You might
need to verify the TCP/IP port availability with your network organization
because the code uses TCP/IP sockets. For sample JCL that you can use to
start the server, see Chapter 10, “SDSF data in graphics” on page 223.

We compiled the Java sample programs using JDK1.6.0 (Standard Edition) on a
Windows XP workstation. As for the example in Chapter 10, “SDSF data in
graphics” on page 223, this program uses a library from JFreeChart, an open
source graphics rendering package (see http://www.jfree.org/), to draw
graphics. You can refer to the notes in that chapter about how to download and
install the library from JFreeChart. In addition, the sample program in that
chapter also uses JavaMail™ classes to send e-mail messages. You can
download JavaMail from the following Web site:

http://java.sun.com/products/javamail/

Follow the instructions to download and install the JavaMail classes on your
computer. When done, you also need to update your CLASSPATH variable to
include two jar files that are supplied by JFreeChart and two jar files that are
supplied with JavaMail. You need these jar files to compile the programs.

Your classpath variable should include an entry for the following .JAR files:

� jcommon-1.0.8.jar
� jfreechart-1.0.4.jar
� activation.jar
� mail.jar

Note: The activation.jar file is part of the JavaBeans™ Activation Framework
(JAF). You can download it (if needed) from the following Web site:

http://java.sun.com/products/javabeans/jaf/downloads/index.html

Note: If you are running an enterprise edition of the Java Developer Kit
(JDK™), you might have the JavaMail and JAF jar file already installed.

220 Implementing REXX Support in SDSF

http://www.jfree.org/
http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/jaf/downloads/index.html

The Java programs have some variables with hard coded values in them. You
need to update these values to adapt them to your installation.

The send_an_email method in the submit_worker class includes all the
information needed to send an e-mail. See Example 9-7.

Example 9-7 Sending an e-mail using send_an_email

//---
 private void send_an_email(int tipo, String jobname)
 {
 email.mail_subject = "Jobname: " + jobname + " limit exceeded.";
 email.from_address = "example3@it.ibm.com";
 email.to_address = "destinatio@it.ibm.com";
 email.set_mail_server("emea.relay.ibm.com");
 if (tipo == 0) email.mail_text = "The job in subject hit the EXCP
limit imposed.";
 if (tipo == 1) email.mail_text = "The job in subject hit the CPU
limit imposed.";
 email.run();
 }

The name of the methods used are self explanatory. You need to update or
change them to reflect your installation needs. You need to at least update the
to_address and the set_mail_server methods. The parameter that is passed to
the to_address method is the name of the designatory of the e-mail that is sent
when a limit is hit. The set_mail_server parameter is the name of the SMTP
server in your organization, that you can use to send your e-mail.

 Chapter 9. JOB schedule and control 221

222 Implementing REXX Support in SDSF

Chapter 10. SDSF data in graphics

Using REXX with SDSF support, you can access IBM z/OS System Display and
Search Facility (SDSF) functions through REXX variables and read SYSOUT
data sets using EXECIO. With this interface, a REXX procedure can easily
obtain, manipulate, and reduce SDSF data. You can run the REXX procedure in
batch mode or under TSO. In the latter case, as an example, a REXX procedure
can use the ISPF facilities to create panels to present structured data to the user.

Instead of using a 3270 screen to present the user with the data gathered by the
REXX interface, we decided to proceed in a different way. We collected the
SDSF data on the host system and sent the data to a workstation. Using this
method, we can plot or display the data graphically on a local personal computer.

This process is accomplished through the implementation of three small
client-server applications that use the REXX socket functions that are provided
by TCP/IP for communication between the workstation and the host system.
These applications use the new REXX support to access SDSF functions and
data on the host side.

� The first sample application gathers CPU consumption data from SDSF DA
panel and plots them graphically on a workstation screen.

� The second one lists, reads, and cancels a SYSOUT data set.

� The third sample application issues some system commands, summarizes
the data, and presents the output to the user in a graphical mode.

10

© Copyright IBM Corp. 2007. All rights reserved. 223

The client programs use the JFreeChart Java library to make graphics. This
library is covered by the GPL GNU Lesser General Public Licence. For further
details, refer to http://www.jfree.org/ under the link to JFreeChart where you
can find information about how to download and install JFreeChart.

Note: We built these sample applications for test purposes. They do not have
the completeness, performance, and reliability of production applications. The
main objective of these sample applications is to show what can be done with
the new REXX with SDSF interface.

224 Implementing REXX Support in SDSF

http://www.jfree.org/

10.1 TCP/IP socket communications

Before we start to describe in detail what our application does, let us take a
moment to describe how the TCP/IP socket communication works, assuming a
basic knowledge of TCP/IP.

Sockets are a mechanism provided by TCP/IP that allow two programs to
communicate with each other using a defined set of functions. The two programs
can reside on the same computer (the same TCP/IP stack) or on different
computer systems in the network.

In TCP/IP, every machine, or host, can have one or more IP addresses assigned
to it. A machine can have more addresses assigned to it, for example,
depending, on the number of hardware adapters that connect the machine to the
network.

In our context, for simplicity, we assume that our machines have a unique IP
address assigned to them.

You can think of an IP address as a phone number. A family usually has a single
phone number assigned to it, but a company or a hotel might have several phone
numbers assigned to it. When you want to call a specific person, you dial that
person’s number. With a company that has many phone numbers assigned to it,
you can choose to call a phone number for the company that might direct you to
an operator or receptionist, you might choose to dial a direct phone number to
talk with a specific person in the company. In any case, you always connect to
this specific company first.

The port is a unique number in a specific host that identifies a program or a
service available on this host. This program or this service can be contacted by
any client in the network that can reach this host.

In our phone number example, you can think of the port number as a company
phone extension. When you want to contact, using a phone, a specific person in
a company, you dial the company number first (IP address) and then the
person’s extension number (port).

The socket (talking about TCP/IP) is basically the combination of the IP address
and the port number. With our phone example in mind, this is the invisible wire
that connects two phone users when communications have been established
between them. The socket, like a phone connection, allows two programs to
communicate with each other. In the telephone example, you must first make a
phone call and, when the other party answers, you can then establish your
conversation (socket).

 Chapter 10. SDSF data in graphics 225

Figure 10-1 show two hosts called A and B, respectively. Host A has the IP
address 10.10.10.100 assigned and host B has the IP address 10.10.10.5
assigned.

Figure 10-1 Communication between two host systems

Assuming that program A in host A wants to communicate with program B in host
B, host A has to connect to 10.10.10.5 on port 1100. In TCP/IP socket
terminology, we issue a connect() function that specifies the IP address of the
host name and the port number to which we want to connect.

After program B agrees to receive the call from program A, both the programs
can talk to each other in a bi-directional way using respectively port 100 (program
A in host A) and port 1100 (program B in host B).

10.1.1 TCP/IP socket functions

This section describes how our simple client server application is using the
functions that are supplied by TCP/IP for the communication. In our
implementation, the server application can work with more than one client at
time. It uses the REXX built-in function RXSOCKET to access the TCP/IP socket
interface and UNIX System Services syscalls to spawn child tasks.

Host A

IP address

10.10.10.100

Port # 100

Network

Program A

Host B

IP address

10.10.10.5

Port # 1100

Program B

Note: In this section, we describe the TCP/IP functions at a basic level,
because discussing these functions in depth is beyond the scope of this book.

226 Implementing REXX Support in SDSF

Figure 10-2 shows the sequence of TCP/IP socket functions that are used to
establish a communications between a client and a server program. From top to
bottom, you can follow the flow of the functions on the client and on the server
side.

Figure 10-2 TCP/IP socket functions used to establish communication

Referring to Figure 10-2, our sever program uses the following REXX socket
functions:

socket() Creates an endpoint for communication and returns a
socket descriptor (a number) that represents that
endpoint. TCP/IP supplies various types of sockets with
different characteristics. A programmer can select one of
these based on the characteristics of the communication
to establish. In our case, we use a sock stream
connection that provides a reliable 2-way connection
between two peers.

setsockopt() Changes various options of a specific socket. As an
example, in our case, we used it to translate data to ASCII
when we send or receive data to or from our client
program. Because the application runs on two different

Socket()

Bind()

Listen()

Accept()

Read/Write()

Close()

Socket()

Connect()Wait for a client

Read/Write()

Close()

Server Program Client Program

Terminate()

Initialize()

 Chapter 10. SDSF data in graphics 227

platforms that use two different character sets, we need to
translate the data from EBCDIC to ASCII and vice versa.

bind() Binds a unique local name to the socket using the
descriptor received from a socket call. Basically, we
inform our TCP/IP stack that our program intents to use a
specific port number for our communication with our client
program.

listen() Notifies TCP/IP that we are ready to accept connection
from the client program. After this function is invoked, the
program will wait until a client connect() request comes
in. In other words, the program stops waiting to be
awaken by the TCP/IP stack until a client requests a
connection to the server program.

accept() Used by the server program to accept the connection
request from a client. When the function completes, the
two programs are ready to send and receive data
between them.

connect() The client invokes this function to establish a connection
with the server program. Generally speaking, a server
program can refuse a connection request on the basis of
some rules that the server might observe. In our
implementation, our server always accepts connection
requests coming from the client.

read() / write() Used to read data from a socket and to write data to a
socket.

close() Shuts down the socket and frees the resources allocated
to it.

initialize() Sets up the REXX socket environment for us.

terminate() Terminates the REXX socket environment.

For further details about these functions, refer to IP Programming Application
Interface Guide, SC31-8788.

10.2 Description of the server program

The server program is written in the REXX language and uses the TCP/IP REXX
socket functions to access the network and uses the REXX with SDSF interface
to issue SDSF commands. In addition, it uses REXX UNIX System Service
(syscalls) to create child tasks. Because these REXX interfaces do not need
TSO, you can also run the server program as a batch job.

228 Implementing REXX Support in SDSF

The REXX implementation on z/OS does not allow, by itself, the establishment of
a multi-thread programming environment. However, using the REXX syscalls
facilities that is provided by the UNIX System Services, we can create a
multitasking environment for our applications. In our implementation, we use the
spawn syscall to have a separate process that runs on the server side for every
client connected. In this way, a single server can handle multiple client
connections.

We recommend that you start the server program as a batch job using the UNIX
System Service BPXBATCH facility. Example 10-11 gives an example of how to
invoke the facility in batch.

The server is composed of two programs:

� A main program (the parent) with name MY_SRV
� A child program with name MY_TASK

We show some extracts of the code to understand the logic of the server
program. For information about how to obtain the code, refer to Appendix B,
“Additional material” on page 305.

10.2.1 Initializing the program

The server side of the application is composed of two programs, although it can
be considered as a single application. The server program requires one input
parameter, the port number. This port number is where the program listens for a
connection request coming from the client. If a port number is not specified, the
server program terminates with a return code of 8, as shown in Example 10-1.

Example 10-1 Coding for return codes

data = date()
ora = time()
say "MY_SRV: Started at" data "," ora

arg port_no
if (port_no = '') then do
 say 'MY_SRV: Invalid port number'
 exit(8)
end

In the server code, you need to activate the SDSF host command environment to
access REXX with SDSF. Because SDSF is an optional component of z/OS, the
default host environment that is shipped with REXX does not including SDSF by
default.

 Chapter 10. SDSF data in graphics 229

We invoke the isfcalls(on) function to establish the environment as shown in
Example 10-2. We also call to the routine setup_tcp to set up the TCP/IP REXX
interface.

Example 10-2 Invoking isfcalls(on)

rc = isfcalls('ON') /* Need to set up first */
if (rc <> 0) then do
 say mmm "Error activating the isfcalls() environment"
 select
 when (rc = 0) then say mmm "REXX SDSF HCE established"
 when (rc = 1) then say mmm "REXX SDSF HCE not established. RC=1"
 when (rc = 2) then say mmm "REXX SDSF HCE not established. RC=2"
 when (rc = 3) then say mmm "REXX SDSF HCE delete failed. RC=3"
 otherwise say mmm 'Unknown Return Code from isfcalls(on). RC=' rc
 end
 exit(8)
end

call setup_tcp

The subroutine setup_tcp initializes TCP/IP and calls the REXX socket functions
to obtain a socket, bind it, and change some socket options.

In Example 10-3, the TCP/IP socket functions are shown in bold. We have
described some of them briefly in Chapter 9, “JOB schedule and control” on
page 201. The gethostid() and gethostname() methods are used just to printout
the IP address and the host name of the server’s program machine. They do not
have any interactions with the application’s logic.

Example 10-3 Routine to set up the TCP socket interface

/*--*/
/* Routine to setup the tcp socket interface */
/*--*/
setup_tcp: procedure expose my_socket port_no

s_rc= Socket('Initialize', 'MY_SRV')
if word(s_rc, 1) <> 0 then do
 say 'MY_SRV: Unable to initialize the TCP/IP socket interface'
 say 'MY_SRV: rc: ' word(s_rc, 1) word(s_rc,2)
 exit(8)
end

s_rc = Socket('GetHostId')
if word(s_rc, 1) = 0 then do

230 Implementing REXX Support in SDSF

 my_ip_address = word(s_rc, 2)
 say 'MY_SRV: IP address of this host: ' my_ip_address
end

s_rc = Socket('Gethostname')
if word(s_rc, 1) <> 0 then do
 say 'MY_SRV: Host name is: ' word(s_rc, 2)
end

s_rc = Socket('Socket')
if word(s_rc, 1) <> 0 then call errore 'Socket()' s_rc
my_socket = word(s_rc, 2)

s_rc = Socket('Setsockopt', my_socket, 'SOL_SOCKET','SO_ASCII','ON')
if word(s_rc, 1) <> 0 then call errore 'Setsockopt()' s_rc

s_rc = Socket('Setsockopt', my_socket,
'SOL_SOCKET','SO_REUSEADDR','ON')
if word(s_rc, 1) <> 0 then call errore 'Setsockopt()' s_rc

s_rc = Socket('Bind', my_socket, 'AF_INET' port_no)
if word(s_rc, 1) <> 0 then call errore 'Bind()' s_rc

return

When this internal procedure terminates, the REXX socket interface has been
initialized, and we are ready to accept requests coming from the client program.
Example 10-4 shows the calls to the listen() and accept() functions. The
getpeername() function returns the IP address of the client after a connection
has been established. It does not have any interactions with the core logic of the
application.

Example 10-4 Calls to the listen, accept and Getpeername functions

s_rc = Socket('Listen', my_socket, 10)
if word(s_rc, 1) <> 0 then call errore 'Listen()' s_rc

s_rc = Socket('Accept', my_socket)
if word(s_rc, 1) <> 0 then call errore 'Accept()' s_rc
peer_socket = word(s_rc, 2)

s_rc = Socket('Getpeername', peer_socket)
if word(s_rc, 1) <> 0 then call errore 'Getpername()' s_rc
say 'MY_SRV: Incoming Connection from: ' word(s_rc, 4)

 Chapter 10. SDSF data in graphics 231

After the program has invoked the accept() function, it waits to be notified by
TCP/IP of an incoming client request. When notified, it wakes up and issues the
accept() function to accept the connection request coming from the client. Then,
it prints out the IP address of the client, obtained through the getpeername()
function.

When the request for a connection comes in, we accept it and spawn a separate
task for every client. This task carries on the connection and the data traffic
between the client and the server. This part of process has been realized using
the REXX UNIX System Service syscall interface. Refer to Example 10-5 for
further details.

Example 10-5 Calling the UNIX System Service spawn syscall

map.0=-1
map.1=1
map.2=2
parm.0=4
parm.1= '/u/dario/my_task' /* name of the child program */
parm.2= my_jobname /* jobname of the parent task */
parm.3= peer_socket /* socket number we want to pass */
parm.4= '/'
Address syscall 'spawn /u/dario/my_task 3 map. parm. __environment.'

We start the program /u/dario/my_task that calls the UNIX System Service
spawn syscall. This syscall, creates a separate process in which the program
my_task runs.

In our sample, we used a stream socket connection. This type of connection
provides a reliable, order preserving, flow controlled 2-way communication.

Because TCP/IP stream sockets send and receive information in streams of
data, it can take more than one read() or write() function call to transfer all of
the data. It is up to the client and the server to agree on some rules to signal that
all of the data has been transferred. So, we adapted a simple protocol to
exchange data between our two peers. The communication is always initiated by
the client that is sending a request (or command) to the server and expecting,
where needed, a response.

In detail:

1. The client sends a request (or command) to the server as a packet of 10
bytes.

2. The server, based on the request coming in, issues SDSF commands and
sends back the result to the client

232 Implementing REXX Support in SDSF

3. It sends first a 10 bytes packet that includes the length of the data to be sent
back to the client.

4. After, it sends the real data.

Figure 10-3 illustrates this process.

Figure 10-3 Sending and receiving TCP/IP data

10.2.2 Commands accepted by the server

The client sends the server a packet of 10 bytes that includes the request. The
packet can include a simple command or a command in the first byte, followed by
one parameter. The server, based on the command received issues in turn the
appropriate SDSF or system command on the host system. Where needed, it
also sets up some SDSF special variables, to limit the size of the response
produced by the SDSF commands.

The server recognizes the following commands coming from the client:

get_data Informs the server to issue the ISFEXEC O or H
command depending on the setting of the sdsf_queue
variable.

Dparm Informs the server to issue an SDSF DA command. It is
used by the example2 program to gather CPU
consumption data from SDSF.

Cparm Informs the server to issue a C command for a SYSOUT
belonging to a specific JOBID. The parm field passed by
the client contains the JOBID of the job selected. Note

C L IE N T S E R V E R

1) C lie n t re q u e s t (1 0 b y te s)

S e rve r re sp o n se

2) L e ng th o f d a ta (10 b y te s)

3) D a ta

 Chapter 10. SDSF data in graphics 233

that the behavior of the C command, changes depending
on the queue (Held or Output) selected.

Oparm Tells the server to set the name of the SYSOUT file
owner. The input parm value, is moved into the sdsf
special variable isfowner. It is used to filter the row
produced by the subsequent ISFEXEC commands.

Pparm Passes to the server the value (parm) that has to be put
into the SDSF special variable isfprefix. It it used to limit
the number of rows produced by the ISFEXEC command.

Gparm Used to read the SYSOUT for a specific JOBID. The parm
field include the value of the JOBID.

Qparm Selects the Output or Held queue. The parameters
recognized are O or H , to indicate Output or Held. Again,
this is used as filter for the subsequent SDSF ISFEXEC
call.

end_end Sent to the server when the client program is terminating.
It indicates that the client program is going to disconnect,
and the server is free to accept other connection
requests.

sysplex Tells the server to issue a D XCF command to retrieve the
name of the systems belonging to the sysplex

Sparm Informs the server to set the special variable isfsysname.
This is used to identify the target system of subsequent
SDSF commands.

Lparm Sent to the server when we want to cancel a running job.
The parm field is the JOBID that identifies the job that has
to be cancelled.

Kparm Sent to the server when we want to have information
about a specific job that is running in the system . If the
job is running when the command is issued, we have
back some information about the resources used by the
job. It it is not running, we simply get back an indication
then notify this. The parm field identify the jobid of the job.

Mparm Sent to the server when we want to start a specific job. In
order to make a job running, the server program changes
the execution class from I to A. You can change these
classes as you prefer. Also in this case, the parm field
identifies the job ID of the job.

234 Implementing REXX Support in SDSF

Xparm Sent to the server when we want to have the maximum
return code of the job. The parm field contains the job ID of
the job.

dm_chp Sent to the server when we want to issue a D M=CHP
system command.

Jparm Sent to the server when we want to issue a D
M=DEV(parm) system command. The parm field includes
the device address.

Hparm Sent to the server when we want to issue a D
M=CHP(parm) system command. The parm field includes
the chpid address.

10.2.3 REXX with SDSF function call

The ISFEXEC command is called from different places in the program,
depending on which SDSF command we want to issue. Some special SDSF for
REXX variables are also used in the program to limit and control the data that is
received back from the command invocation.

Usually, SDSF formats only rows and columns that are visible.

In the REXX environment, the full complement of columns and rows are
formatted and thus the max number of variables are created. For a large number
of rows and columns, this could lead to a very high number of variables which
can consume both CPU cycles and storage.

In detail we use ISFEXEC to obtain DA, O, and H data from SDSF. As an
example, the DA data are used by the client example1 to gather CPU
consumption information for all the active address spaces (asid) in the system.
The O and H commands are used to get or purge SYSOUT data for the job in the
Held or Output queue.

Before any ISFEXEC command is issued, the program assigns a value to some
SDSF special variables in order to control and limit the data returned by the
command. Some of these values are passed by the client while sending a
request such as O, P, G, and Q. Other values are imposed by the program
depending on the routine being executed. When the SDSF command completes,
the values extracted from the SDSF special variables (that is isfcols or isfrows)
are reduced and sent to the client in order to be graphically showed on the
workstation screen.

Example 10-6, shows an extract of the code where the call to the procedure
isfexec_call is done. You can refer to the source code of the sever program for
further details.

 Chapter 10. SDSF data in graphics 235

In this example, we issue a command using the REXX for SDSF interface. We
defined four special variables earlier to control the behavior of the command an
its response:

isfprefix Names the jobname prefix to be used when filtering the
row.

isfowner Names the owner to be used when filtering the rows.

isfcols Names the list of columns used for the display.

isfsort Names a sort field to be used when building the returned
variables.

On return from the command, the SDSF special variables isfrows and isfcols
are filled respectively with the number of rows returned and the column names
and contents.

Example 10-6 Calling isfexec_call

call_sdsf_get_da_data: procedure expose peer_socket

isfprefix = "*"
isfowner = "*"
isfcols = "jname cpupr"
isfsort = "cpupr d"

call isfexec_call "DA"
if (rc <> 0) then do
 say mmm 'Error invoking ISFEXEC. rc:' rc
end

colonne = words(isfcols)

resp = ''
do riga = 1 to isfrows
 do colonna = 1 to colonne
 nome_colonna = word(isfcols, colonna)
 contenuto = value(nome_colonna"."riga)
 if (nome_colonna = 'TOKEN') then iterate
 resp = resp || ' ' || ' ' || contenuto
 end
end

236 Implementing REXX Support in SDSF

Example 10-7 shows that we issue an O or H command setting up special SDSF
variables for them. We again set the same special variable used in
Example 10-6, but in this case we use different values.

Note that the isfprefix and isfowner variable are set by the client sending the
commands Pparm and Oparm. You might want to review the routine set_owner and
set_prefix for further details.

Example 10-7 Issuing SDSF commands

call_sdsf_get_data:

isfcols = "jname jobid dsdate reccnt ownerid retcode"
isfsort = "dsdate a"

if (sdsf_queue = 0) then call isfexec_call "O"
if (sdsf_queue = 1) then call isfexec_call "H"

In Example 10-7, sdsf_queue passes either a 0 or a 1 to the routine named
isfexec_call. This routine then issues the isfexec command and handles the
return code, as shown in Example 10-8.

Example 10-8 Issuing the isfexec command

isfexec_call:

arg cmd
Address SDSF "ISFEXEC" cmd
if (rc <> 0) then do
 say 'MY_SRV: ERROR: Error calling ISFEXEC'
 say 'MY_SRV: ERROR: command:' cmd
 say 'MY_SRV: ERROR: return code:' rc
 exit(-1)
end

return

Another routine that might be of interest is the call_sdsf_read_SYSOUT. It is
called when we want to read the SYSOUT for a defined job ID. The jobid
parameter passed as input parameter to the routine identifies the job for which
we want to read the SYSOUT.

The client program sends the Gparm request to the server when it wants to read
system output. Before the client sends a Gparm request, it also sends a Qparm
request to select which queue the user wants to scan: Held or Output. After we
issued the desired ISFEXEC (O or H) command to SDSF, we scan the answer

 Chapter 10. SDSF data in graphics 237

returned to find the entry for our JOBID. When we find our job, we read the entire
SYSOUT data set for this job through EXECIO.

The data read is packed into a variable and sent to the client. Note that we mark
the end of every record read, with the sequence of characters E_O_R. This is
done to enable the client to find the end of a line to print the data correctly.

Example 10-9 uses the ISFACT command to issue a SDSF action. We can see in
this extract of code, how the server use ISFACT to allocate all the SYSOUT data
sets for the job represented by TOKEN.

Remember that for a tabular display (O or H in this case) an additional column
variable named TOKEN contains a string that uniquely identifies the row and is
used as an input on the ISFACT command if the row is to be modified. The token
contains special characters, must not be modified by the user and must be
passed as is to ISFACT.

Example 10-9 Using the ISFACT command

call_sdsf_read_sysout:

arg jobid

if (sdsf_queue = 0) then address SDSF "ISFEXEC O"
if (sdsf_queue = 1) then address SDSF "ISFEXEC H"
if (rc <> 0) then do
 say mmm 'Error invoking ISFEXEC. RC:' rc
 exit(8)
end

sysout_buf = ""

do a = 1 to JNAME.0
 if JOBID.a = jobid then do
 if (sdsf_queue = 0) then
 Address SDSF "ISFACT O TOKEN('"TOKEN.a"') PARM(NP SA)"
 if (sdsf_queue = 1) then
 Address SDSF "ISFACT H TOKEN('"TOKEN.a"') PARM(NP SA)"

 /* we read in the sysout data set */
 /* Need to mark the end of every rows */
 /* We use the char sequence E_O_R */

 do b=1 to isfddname.0
 "EXECIO * DISKR" isfddname.b "(STEM s_tab. FINIS"
 if (rc <> 0) then do

238 Implementing REXX Support in SDSF

 say 'MY_SRV: Error reading spool data'
 exit(-1)
 end

 do c=1 to s_tab.0
 sysout_buf = sysout_buf || s_tab.c || "E_O_R"
 end

 end /* do b */
 leave
 end /* if jobid */
end

The routine, call_sdsf_cancel_sysout (as shown in Example 10-10) is called to
cancel the SYSOUT for a specific JOBID.

The jobid is passed as an input parameter to the routine. The request to purge a
SYSOUT comes from the client as a Cparm command, where parm is the job ID
selected. We issue an SDSF O or H command to retrieve the list of the job in the
Output or Held queue. Note that as reported previously some special variables
are set to limit and control the output of the command.

When we find a job with the corresponding jobid assigned, we pick up its token
and call ISFACT to cancel its SYSOUT as follows:

Address SDSF "ISFACT O TOKEN('"TOKEN.a"') PARM(NP C)

The special variable NP is used to represent the column for action character. In
our case the action character is C (see the parm field).

This command notifies SDSF to issue an O command. Then, using the token that
identifies our job (the row in the O command output) we ask SDSF to issue the C
action command. This result is the cancel of the SYSOUT for the defined job.

Example 10-10 Canceling SYSOUT

call_sdsf_cancel_sysout:

arg jobid

if (sdsf_queue = 0) then address SDSF "ISFEXEC O"
if (sdsf_queue = 1) then address SDSF "ISFEXEC H"
if (rc <> 0) then do
 say mmm 'Error invoking ISFEXEC. RC:' rc
 exit(8)
end

 Chapter 10. SDSF data in graphics 239

sysout_buf = ""

do a = 1 to JNAME.0
 if JOBID.a = jobid then do
 if (sdsf_queue = 0) then
 Address SDSF "ISFACT O TOKEN('"TOKEN.a"') PARM(NP C)"
 if (sdsf_queue = 1) then
 Address SDSF "ISFACT H TOKEN('"TOKEN.a"') PARM(NP C)"
 return
 end
end

return

10.2.4 Running the server program

You can find the REXX code of the server program together with the client Java
programs in the .zip files for this book. For information about how to obtain these
files, see Appendix B, “Additional material” on page 305.

You need to move the code into a UNIX System Service file system directory. In
our example, the code is loaded into the directory /u/dario.You can use your
preferred method to do this.

The server program can run both under a TSO UNIX System Service session or
as a batch job. You need to specify the port number to use it. We use, as an
example, the JCL shown in Example 10-11 to start it from a batch job. Note the
port number value 20030 passed as a parameter.

Example 10-11 Starting a TSO UNIX System Service session in batch

//DARIOS JOB CLASS=A,NOTIFY=&SYSUID
/*JOBPARM S=SC70
//STEP1 EXEC PGM=BPXBATCH,PARM='sh /u/dario/my_srv 20030'
//SYSPRINT DD SYSOUT=*
//STDOUT DD PATH='/u/dario/stdout'
//STDERR DD PATH='/u/dario/stderr'
//STDENV DD *

240 Implementing REXX Support in SDSF

You need to create the two files, stdout and stderr, using the shell command
touch (for example, touch stdout). When started, the server program issues the
messages shown in Example 10-12 and then waits for a connection request
coming from a client.

Example 10-12 Example touch stdout

MY_SRV ==> Started at 5 Apr 2007 , 10:37:53
MY_SRV ==> Listening on port: 20030
MY_SRV ==> IP address of this host: 9.12.4.202
MY_SRV ==> Host name is: WTSC70

When a client connects to the server as shown in Example 10-13. The IP
address of the client being connected is reported in the message.

Example 10-13 Client connecting to a server

MY_SRV ==> Incoming Connection from: 9.57.138.152

When the client disconnects, we can see the message displayed in
Example 10-14. Again, the IP address of the client being disconnected is
reported in the message text.

Example 10-14 Client disconnected

MY_SRV ==> Disconnect received from: 9.57.138.152

10.2.5 Configuration of the server program

In the server code, there are some variables initialized with hard coded values.
Example 10-15 has been extracted from the my_task REXX program. You need
to update the isfsysname variable content, in order to reflect your default system
name. In the example, the system name of our default system is SC70.

Example 10-15 Server code with hard coded isfsysname

peer_socket = 0 /* init some variables */
 peer_name = ''
 isfprefix = "*"
 isfowner = "*"
 isfsysname = "SC70"
 sdsf_queue = 0

 Chapter 10. SDSF data in graphics 241

You need to update some lines of code in the my_srv REXX program in order to
reflect the UNIX System Service directory name where the code resides. In
Example 10-16, we loaded the code into /u/dario.

Example 10-16 UNIX System Service directory with server code

-rwx------ 1 DARIO SYS1 6192 Apr 26 10:50 my_srv
-rwx------ 1 DARIO SYS1 20764 May 2 04:04 my_task

You need to update the code, specifying the directory where you loaded the
server code. Example 10-17 has highlighted in bold, the places where you need
to modify the code.

Example 10-17 Updating parameters with your directory structure

map.0=-1
map.1=1
map.2=2
parm.0=4
parm.1= '/u/dario/my_task' /* name of the child program */
parm.2= my_jobname /* jobname of the parent task */
parm.3= peer_socket /* socket number we want to pass */
parm.4= '/'
Address syscall 'spawn /u/dario/my_task 3 map. parm. __environment.'
if (errno <> 0) then do
 say mmm 'Error in the spawn() syscall'
 say mmm 'retval : ' retval
 say mmm 'errno : ' errno
 say mmm 'errnojr: ' errnojr
end
say mmm 'Child spawned. PID: ' retval

10.3 First client program

The first client program, renders the CPU consumption data of the ASIDs that
are running currently in the system graphically. The program is written in Java
and uses the JFreeChart library to display graphics.

The server program gathers the data by issuing an ISFEXEC DA command and
sends the data to the client to be plotted in graphical format. The program is just
a sample, written to show a possible use of the new REXX with SDSF interface.

We describe what the client program does and how it interacts with the server in
10.2, “Description of the server program” on page 228.

242 Implementing REXX Support in SDSF

Example 10-18, shows an extract of the code taken from the Java class
thread_1.

Example 10-18 Java client code

public void run()
 {
 int delay_value, i;
 host = new Host();
 Grafico_1 graf_1 = new Grafico_1();
 String job_selected = "";
 String sysname_selected = "";
 String s_w;

 JOptionPane.showMessageDialog(null,
 "\n Connecting to the Server Program. " +
 "\n This may take a few seconds. Please Wait..." +
 "\n\n Press OK to continue\n\n");

 get_server_info();
 host.connect(host_addr, host_port);

 host.cmd("sysplex");
 st = host.get_data_from_host();
 graf_1.set_sysnames(st);

 for(;;)
 {
 sysname_selected = graf_1.get_sysname_selected();
 s_w = "S";
 s_w = s_w + sysname_selected;
 boolean b = s_w.equals("S");
 if (! b)
 {
 host.cmd(s_w); // send a Sxxx command to select a system
 }

 host.cmd("D");
 st = host.get_data_from_host();
 job_selected = graf_1.draw(st, job_selected);
 graf_1.setVisible(true);
 delay_value = graf_1.get_delay_value();
 delay_value = delay_value * 500;
 try {
 Thread.sleep(delay_value);

 Chapter 10. SDSF data in graphics 243

 } catch (InterruptedException e) {
 System.out.println("Thread: Error in thread.");
 System.out.println("e:" + e.getMessage());
 }
 }

 }

The client program connects to the server through a call to the connect() method
in the class host. This method builds a socket and initializes a TCP/IP stream
connection with the server. The IP address of the server and the related port
number can be specified in a configuration panel.

The first command issued by the server host.cmd("sysplex") asks the server to
return a list of the systems belonging to the sysplex. A list box is then filled in with
this information. In this way, the user can choose to retrieve DA information for a
specific system.

Then, it calls the method cmd() in class host to issue a D request to the server.
Before this, it calls host.cmd(s_w) to select the system chosen by the user. It
retrieves the output data gathered by the server calling the
get_data_from_host() method in the class host. The data is plotted by calling
graf_1.draw().

The program waits for a specified amount of time and reissues the D command
again until the program terminates. The wait time can be changed dynamically
while the program is executing.

244 Implementing REXX Support in SDSF

Example 10-4 shows a high-level overview of the program logic. On the left is the
server program, and on the right is the client program.

Figure 10-4 Program logic

host.connect

host.cmd("D")

host.get_data_from_host

graf_1.draw

Thread.sleep

Wait for a request

Accept the Connection

call call_sdsf_get_da_data

Until PGM
terminates

 Chapter 10. SDSF data in graphics 245

10.3.1 Use of the program

To use the program, follow these steps:

1. Start the program by typing Java example1 from the Command Prompt
window of a workstation. When started, the program shows a window like that
shown in Figure 10-5.

Figure 10-5 Running run.bat

2. Click File → Configure to enter the configuration windows (Figure 10-6).
Enter the IP address of the host where the server program resides and the
related port number.

Figure 10-6 Setup window

246 Implementing REXX Support in SDSF

3. Close the configuration window and click File → Start. After a few seconds,
the window shown in Figure 10-7 opens.

Figure 10-7 Connecting message

4. The client program is connecting to the server. Press OK to continue.

The server, accepts the connection from the client and retrieves the list of the
active systems into the sysplex. This step can take a few seconds. When this
process is complete, a window opens that looks similar to that shown in
Figure 10-8.

Figure 10-8 Dashboard, first glance

 Chapter 10. SDSF data in graphics 247

Figure 10-8 shows the following information:

� The report on the upper-right, shows the total CPU consumption of all the
active Address Spaces (ASID) in the system. This value is calculated by
adding together the cpupr values for all the active ASID as returned by the DA
command.

� The pie chart on the left, reports the cpupr value for the 10 highest CPU
consumers in the last interval. Before the server issues the DA command, it
sets the following SDSF special value:

– isfcols = “jname cpupr”
– isfsort = “cpupr d”

So, when the command is executed, we receive as output a job name and the
CPU absorbed, sorted on the cpupr value in descending order. We pick up
the cpupr of the first 10 jobs reported into the list and create the pie chart.

� The graph in the lower-right area reports the CPU consumption for a selected
ASID. You can select a specific ASID from the list box and by pressing the
Select ASID button below it. The list box is repopulate every interval and is
sorted on the cpupr value. The asids listed are reported on a cpupr
consumption order.

� The graph on the lower-left area reports the excprt value for the 10 most
active ASIDs in term of EXCP per seconds issued in the interval. They are
sorted on the excprt value.

� The slider on the bottom-right of the window is used to change the wait time
interval between the DA commands. As shown in Example 10-18, the client
program issues the DA command, plots the data received back and then waits
for a specific amount of time.

� The lower list box can be used to select the system that we want to
interrogate. To determine the system, you can select it from the list box and
press Select system.

For both the sysname and asid selection, the program takes one interval to make
the data available. When you select the button, you need to wait for the next
cycle of the program to have the data updated and refreshed.

10.4 Second client program

The second Java client program, shows how to list and read SYSOUT data. It
uses the same server program. To obtain the SYSOUT data, the client program
sends a Q command to the server to select the Held or Output queue, then
issues a get_data command to retrieve the list of job in Held or Output queue.

248 Implementing REXX Support in SDSF

You can select a job from the list box presented by the program and decide to
retrieve or purge the SYSOUT of the job selected.

At start up, the program shows the window displayed in Figure 10-9.

Figure 10-9 Startup panel for example 2 Java program

To use the program, follow these steps:

1. Click File → Start and you get the panel shown in Figure 10-10.

Figure 10-10 Example 2 program start

 Chapter 10. SDSF data in graphics 249

This window allows you to see the status of the jobs in the Output (O) or Held
(H) queue to retrieve the SYSOUT of a job and to purge a SYSOUT.

2. To select the queue, click QUEUE and select O or H.

Complete the Prefix and Owner fields to represent the current selection. It is
recommended to uses these filters to limit the bandwidth used by the
application.

3. When done, click Refresh data. Based on the selection made, the panel
updates as shown in Figure 10-11.

Figure 10-11 Status of jobs in the output queue

In this example, we asked for the list of job in the Output queue with a owner
beginning with D*. The window includes some information about the job,
including the maxrc value. The cell of the table that include this value can have
different colors, depending on the maxrc value:

GREEN The maximum return code (maxrc) of the job is equal 0
YELLOW The maxrc of the job is equal 4
RED The maxrc of the job is equal 8
CYAN The maxrc of the job is none of the above

250 Implementing REXX Support in SDSF

You can now select a job from the list and have the SYSOUT exported to a pc
window. Select a row and click Get Sysout. You should receive a window similar
to the one shown in Figure 10-12.

Figure 10-12 Getting the system output

Because this is a sample program, we tested and verified that it works when the
number of rows returned in not high. We recommend that you set up the Owner
and Prefix input fields to limit the output produced and to export to a PC
SYSOUTs with no more then 200 to 300 output lines to avoid performance
problems. You can also purge the SYSOUT for a specific job by selecting the job
and selecting the Purge Sysout button.

10.5 Third client program

The idea behind this example is to show how to reduce the data provided by
some system commands and show their output on a workstation in graphic
mode. There are some system commands whose output spans more than one
page. You need to scroll the output pages to see all the output.

As an example, we implemented our sample application around the D M system
command. We issue the command through the SDSF REXX interface, reduce
the output, and display the results using some graphics. We implemented the
program, as in the other cases, using a client server approach. It uses the same
server as the other two samples.

 Chapter 10. SDSF data in graphics 251

Figure 10-13 shows the window that opens when the program starts.

Figure 10-13 Startup window for example 4

To run the program, follow these steps:

1. If you click File → Configure, you receive the configuration window where
you can select the IP address of the machine where the server program
reside and its port number. Refer to the description of the previous sample for
further information.

2. Click File → Start to start the program. You receive the window shown in
Figure 10-14.

Figure 10-14 Starting the program

252 Implementing REXX Support in SDSF

3. Press the GetData button to proceed. When you press this button, the
program sends to the server a request to issue a D M=CHP command to
collect information about all the chpid connected to the partition in which z/OS
is running. Example 10-19 is an extract of the code executed by the server.

Example 10-19 Server code extract - example 4

issue_dm_chp_cmd:

isfdelay = 5
address SDSF "ISFEXEC '/D M=CHP' (WAIT"
isf_rc = rc
call check_isf_rc isf_rc

dm_buf = ''
sw = 0
do a = 1 to isfulog.0
 if word(isfulog.a, 1) = 'CHANNEL' then do
 sw = 1
 iterate
 end
 s = word(isfulog.a, 1)
 l = length(s) l = length(s)
 if (l <> 1) then iterate /* discard some output lines.. */
 if (s = '*') then iterate
 if (s = '+') then iterate
 riga = isfulog.a
 if (a = 5) | (a = 26) then do
 riga = '* ' || riga
 end
 dm_buf = dm_buf || riga || ' '
end

if (sw = 0) then dm_buf = "no_data"
call send_response_to_peer dm_buf

As we can see, it invokes the D M=CHP system command through the SDSF
REXX slash command. Before the command is send, it sets the isfdelay special
variable to 5. This causes a five second wait for the command response. When
the command is issued, we pull out the output of the command from the isfulog.
special variable (it is a REXX stem), extract some output lines and send the data
to the client program.

 Chapter 10. SDSF data in graphics 253

When this process completes, we can see window shown in Figure 10-15 on the
workstation.

Figure 10-15 Data rendered to client workstation - example 4

If you try a D M=CHP system command from a console or through SDSF, you
see that the output spans four pages. Moreover, you might have to scroll left or
right on the screen to see all the information in it. Reducing the data in the way
we did, we might have all the information condensed onto one single page. In
addition we use color to identify the status of the chpid.

254 Implementing REXX Support in SDSF

The Figure 10-16, shows a portion of the window. Every cell of the table, contains
the information belonging to a specific chpid. As an example, the chpid with
address 01 is an OSA system adapter card. The plus sign (+) indicates that this
chpid is online to our system. We painted the cells of the table containing online
chpid in green. We painted in red, the cells that describe offline chpid.

Figure 10-16 Detail of chpid data

Assume, as an example, that we want to see more information for the chpid with
address 60. As shown in Figure 10-15 on page 254, it is a CVC chpid and its
status in online.

So, click on the cell of the table that describes this chpid and press Get CHP
Data. When you click this button, the client sends to the server a request to issue
a D M=CHP(60) command. You can refer to the routine with name
issue_dm_chp_specific_cmd in the my_task REXX program for further details.
We do not report the code here because the logic is very similar to the one
described in the Example 10-19 on page 253.

 Chapter 10. SDSF data in graphics 255

You should receive the window shown in Figure 10-17.

Figure 10-17 Status of all devices - example 4

This window reports the status of all the devices connected to the chpid that we
selected in the previous step (chpid 60). Every cell into the table represent a
device. We paint the cells in different colors depending on the status of the
device described by the cell. We just copy into the cell the status of the device as
reported back by the D M command output. You can refer to the z/OS System
Commands and z/OS Messages and Codes manuals for a complete description
of the keyword used to describe the device and chpid status.

256 Implementing REXX Support in SDSF

We want now to retrieve all the information for the device with address 6001. We
click the device cell and press Get Device Data. After a while we should receive
the window shown in Figure 10-18.

Figure 10-18 Getting device data - example 4

When we press Get Device Data, the client send to the server a command J6001
(in this case). J represent the command type and 6001 is the parameter for this
command. The server code, in turn issue a system command D M=DEV(6001)
using the SDSD slash command and send back to the client the response.

10.6 Extending the examples

The three simple examples described in this chapter, can be further modified and
improved. Our goal is to provide you with ideas about what it is possible to do
with REXX for SDSF. We used in the server code the ISFEXEC, ISFACT and
‘slash’ commands.

The client applications are written in JAVA and can be run on different platforms.
For our sample programs, we decided to implement a client/server application to
use the graphics capability of a workstation.

 Chapter 10. SDSF data in graphics 257

We decided to plot the CPU% consumption as reported by the SDSF DA
command. Using the same mechanism, you can collect, plot, and mix many
other data that can be obtained from the SDSF DA command.

As an example, you might decide to plot the following DA fields:

� Real To track the current utilization of real storage in frames

� SIO To track the address space's EXCP rate in EXCPs per second

� CPU-Time To track the accumulated CPU time (TCB plus SRB) consumed on
behalf of the address space, for the current job

You can also decide not to plot graphically the data, but use the raw data from
the server. In this case, any application able to use TCP/IP services can act as a
client program. Furthermore, a palm handled computer or a mobile phone can
also be used for this scope writing a J2ME™ (Java2 Mobile Edition) client
program.

Adding additional logic to the client program, you can also monitor and control
from a remote location the status and vitality of a system. You might decide, as
an example, to take some actions based on the health of some system values
returned by the server program.

You can expand the third sample, as an example, to issue some system VARY
command to put online/offline devices and chpid.

The idea to reduce the system command output and send the result to a graphic
workstation, can be applied to other system commands. We can have a graph
representation, as an example, of the status of system data sets (such as,
DUMP, PAGE, LNKLST, and so forth).

10.7 How to compile the Java programs

In this section we describe how to install and compile the sample applications.

First, you need to download from the ITSO Java site, the compressed file that
includes the source code of the programs. The compressed file includes both the
server and the client code. Decompress the file, and you have four directories
created with the names example_1, example_2, example_3, and ch9and10. In
these directories, you find the source code of the client Java programs and the
server REXX code that has to be uploaded to the host system.

Upload the REXX code, using your preferred method (FTP, PC3270 file transfer,
and so forth) into a UNIX System Service file system. When loaded, you can use
the JCL shown in Example 10-11 on page 240 to start the server side of the

258 Implementing REXX Support in SDSF

application.You might need to verify the networking definition and the TCP/IP
port availability because the code uses TCP/IP sockets.

The Java sample programs have been compiled using JDK1.6.0. In our case, we
compiled them on Windows XP. The Example 10-20 shows the java -version
command that you can use to verify the level of the Java available on the
workstation.

Example 10-20 Checking your Java version

C:\SG24-7419\addmat\java_code\example_1>java -version
java version "1.6.0"
Java(TM) SE Runtime Environment (build 1.6.0-b105)
Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode)

You also need to update your CLASSPATH variable to include two jar files
supplied by JFreeChart, jfreechart-1.0.4.jar and jcommon-1.0.8.jar, that are
needed for the compilation of the programs. In our case the JFreeChart top level
directory in located in C:\$user\java.sources\jfreechart-1.0.4.

We use a .bat file to add the two jar files to the existing Java CLASSPATH
contents, as shown in Example 10-21.

Example 10-21 Example classpath statement

set
CLASSPATH=%CLASSPATH%;C:\$user\java.sources\jfreechart-1.0.4\lib\jfreec
hart-1.0.4.jar

set
CLASSPATH=%CLASSPATH%;C:\$user\java.sources\jfreechart-1.0.4\lib\jcommo
n-1.0.8.jar

We are now ready to compile the programs using these commands from their
respective directories: javac Example_1.java, javac Example_2.java, and javac
Example_3.java. You can ignore the warning message that you receive.

At this point you should have the Java workstation programs compiled and the
REXX code loaded into the host system. Start first the server program submitting
the provided JCL. After this, start the workstation part of the application invoking
java Example_1, java Example_2, or java Example_3 from a command prompt
window.

 Chapter 10. SDSF data in graphics 259

260 Implementing REXX Support in SDSF

Chapter 11. Extended uses

In this chapter we describe some uses of the REXX with SDSF interface that we
were unable to explore fully during the residency for this book but might be
considered of interest to you and your installation.

11

© Copyright IBM Corp. 2007. All rights reserved. 261

11.1 A different desktop for each role

Only a few users would ever use all of the features provided by SDSF. The
interface of the product can become too cumbersome for someone who only has
to accomplish a small set of tasks related to the system.

For instance, in their day-to-day work, operators might only manage output
queues and devices such as readers, printers, lines, or punches and would not
be interested in system tasks or initiators, and even in those former panels, not
all the columns shown by the tabular displays might be meaningful for their
specific needs. Alternatively, application programmers might be interested only
in viewing the jobs they submit and not in the nodes of the system, the punches
or the WLM enclaves.

To help you, SDSF only shows on the primary menu the options to which you are
authorized, but even with this feature, programmers might want to see abended
jobs in a different color or might need an additional column telling them to which
application their jobs belong or which subsystems they used as shown in
Figure 11-1.1

Figure 11-1 Sample programmers desktop

Operators might want to see a list in one screen of the last issued commands, a
quick way to retype them and a journal of the ulog (user log) from session to
session. You can refer to Chapter 1, “Issuing a system command” on page 37 for

1 Changing the color of rows in an ISPF table display dynamically requires using dynamic areas to
show the actual screen.

File Compilers Utilities SDSF Help
--
Command ==> Scroll ==> CSR
Cmd Member Lang Max-RC Library Application
--
___ CBLPGM1 CBL CC 0000 ITSO.DEVELOP.CBL PAYROLL
___ CBLPGM2 CBL CC 0012 ITSO.PAYROLL.CBL ACCOUNTING
___ ASMPGM1 ASM CC 0004 ITSO.DEVELOP.ASM ACCOUNTING
___ PAYROLL1 JCL ABEND S0C1 ITSO.STRESS.TEST.JCL PAYROLL
___ TESTCBL6 JCL CC 0000 ITSO.PAYROLL.CBL PAYROLL
___ CBLPGM9 CBL CC 0000 ITSO.PAYROLL.CBL PAYROLL
___ PLIPGM1 PLI CC 0000 ITSO.PAYROLL.PLI PAYOLL
___ PLIPGM1 PLI CC 0012 ITSO.PAYROLL.PLI REDBOOKS
___ PAYROLLX JCL CC 0000 ITSO.LEVEL1.TEST.JCL PAYROLL
___ EMPLOYEE JCL CC 0000 ITSO.LEVEL1.TEST.JCL PAYROLL
___ STRESJCL JCL ABEND S0C4 ITSO.STRESS.TEST.JCL REDBOOKS
___ PAYROLLW JCL CC 0000 ITSO.LEVEL1.TEST.JCL REDBOOKS
___ ASMMOD7 ASM CC 0000 ITSO.SDSF9.ASM PAYROLL
___ CBLPGM8 CBL CC 0000 ITSO.PAYROLL.CBL ACCOUNTING
___ CBLPGM9 CBL CC 0000 ITSO.PAYROLL.CBL REDBOOKS
___ CBLPGMA CBL CC 0000 ITSO.DEVELOP.CBL REDBOOKS

End

262 Implementing REXX Support in SDSF

more information about how to do something like this. Figure 11-2 shows an
example of this.

Figure 11-2 Sample operators command entry facility

With the REXX with SDSF, all these tasks can be accomplished easily. You can
build a task-oriented desktop for every role in your organization that needs the
services SDSF offers. These desktops can have the look you want and the
functionality you want.

11.2 Control your subsytems

You might want to periodically monitor your subsystems: DB2®, IMS, or CICS®,
verify that they are up and running and analyze their logs, looking for errors that
could affect system performance.

If you know the name of the started tasks of your subsystems, with the help of
the REXX interface for SDSF, you can implement a batch control of the
subsystems status: verifying CPU time used during the last interval, looking for
system messages in JESMSGLG and JESYSMSG, or reading each subsystem
log searching symptoms of an abnormal behavior. In Chapter 7, “Reviewing
execution of a job” on page 173, there is a sample of how review these files.

Menu Ulog List Mode Functions Utilities Help
--

Operators Command Shell
Enter JES2 or system commands below:

===> ___
__
__

Place cursor on choice and press enter to Retrieve command

=> /PJ01589
=> /D ASM,PLPA
=> /CMDS REMOVE,CMD=VARY,JOB=JOB1111
=> /DUMP PARMLIB=NJ,SYMDEF=(&PAGING1.='AQFT',&CICS.='CICS1')
=> /M 282,VOL=(SL,222222),USE=PRIVATE
=>
=>
=>
=>
=>

 Chapter 11. Extended uses 263

Figure 11-3 depicts how SDSF support for REXX fits into the larger system
picture.

Figure 11-3 Controlling subsystems using SDSF support for the REXX language

If you want a more graphical presentation of your subsystem’s health, your
application can run in a workstation and get the data using the techniques
presented in the previous chapter (see Chapter 10, “SDSF data in graphics” on
page 223).

11.3 Application point of view of the system

SDSF presents the system from the point of view of physical resources and
physical names. It, obviously, does not know anything about your applications,
the subsystems they use, the jobs they run or the STCs that are needed. With
REXX interface of SDSF, you might obtain a completely different view of your
system. For example, you might view all the jobs and started tasks of your
application together, review them, change their SYSOUT destination, their
priority, and so forth.

SDSF DA panel

DB2

IMS

CICS

Job Monitor

REXXSDSF support for REXX

264 Implementing REXX Support in SDSF

Figure 11-4 shows an example of the system from an application point of view.

Figure 11-4 Application point of view of the system

11.4 Verify the service level agreement of your batch
jobs

You can control the batch service level agreement of your installation using the
REXX interface for SDSF to gather statistics of the jobs that are executing and
also in the different queues: how long have been them in the input queue, how
long took them to complete, what percentage of them has ended abnormally.

For example, if your installation service level agreement is that the turnaround of
98% of the jobs submitted in class Q must be 15 minutes or less, and 5 minutes
or less for 95% of jobs in class P, you can write a small REXX exec that uses the

Display Filter View Print Options Help

INSTALLATION STATUS DISPLAY LINE 1-25 (2195)
COMMAND INPUT ===> SCROLL ===> CSR
APPLICATION=PAYROLL DEST=(ALL) OWNER=* SORT= SYSNAME=
NP JOBNAME JobID Owner Prty Queue C Pos SAff ASys Status
____ IMS9EXPX STC69069 STC 15 PRINT 1
____ PAYROL1 JOB25151 LEVEY 1 PRINT B 1360
____ PAYROL1 JOB25152 LEVEY 1 PRINT D 1361
____ PAYROL1 JOB25153 LEVEY 15 EXECUTION U 1362 SCHI SCHI
____ PAYROL2 JOB15219 MIU 1 PRINT A 35
____ LOCALTAX JOB20116 DARIO 1 PRINT A 530
____ PAYROL2 JOB21730 DARIO 1 PRINT A 1006
____ PAYROL2 JOB21731 DARIO 1 PRINT A 1007
____ PAYROL2 JOB23514 DARIO 1 PRINT A 1324
____ PAYROL2 JOB23515 DARIO 1 PRINT A 1325
____ PAYROL2 JOB23516 DARIO 1 PRINT A 1326
____ LOCALTAX JOB23517 DARIO 1 PRINT A 1327
____ PAYROL2 JOB24311 DARIO 1 PRINT A 1345
____ PAYROL2 JOB24333 DARIO 1 PRINT A 1346
____ PAYROL2 JOB24337 DARIO 1 PRINT A 1347
____ FEDTAXES JOB24338 DARIO 1 PRINT A 1348
____ PAYROL2 JOB24389 DARIO 1 PRINT A 1350
____ PAYROL2 JOB24390 DARIO 1 PRINT A 1351
____ DB9BIRLM STC23492 STC 15 PRINT A 1352 SMIL SMIL
____ DB9BDBM1 STC23499 STC 15 PRINT A 1352 SMIL SMIL
____ PAYROL2 JOB29496 MIU 1 PRINT A 15
____ PAYROL2 JOB29499 MIU 1 PRINT A 17
____ FEDTAXES JOB29504 MIU 15 EXECUTION A 19 STOR STOR
____ PAYROL3 JOB24435 DARIO 1 PRINT A 1355
____ PAYROL3 JOB24436 DARIO 1 PRINT A 1356

 Chapter 11. Extended uses 265

facilities provided by SDSF to control if this agreement is being accomplished,
and if not throw take a predefined action or throw an alert.

11.5 Remote control of your system

If your mainframe accepts TELNET or SSH connections, you can let your trusted
applications access SDSF in order to execute queries or some predefined
command easily.

For example, if an AIX® server controls whether a Web application is running
correctly, and if it finds some problem, your control application can query SDSF if
the WebSphere® started task is up and running or even read the logs to see if
something unusual has been happening.

Another example might be that your ATM network is controlled in a dedicated
computer. This application would periodically query, executing through SSH, a
small SDSF REXX exec. The application could search for any of a set of batch
jobs that might be running on the mainframe, and if found, could put an order in
the network to not allow those operations (Figure 11-5).

Figure 11-5 Remote control application through SSH

11.6 Add SDSF commands and data to your own tools

If your installation has a set of tools which are now familiar to the users and you
were planning to add some data from SDSF to them or need to submit some
authorized system command and control the reply, REXX with SDSF is a perfect
solution.

z/OS

SDSF

REXX for SDSF

ulog

System
command

Reply goes back to the control application

Command issued from control application
SSH

SSH

Remote control application

266 Implementing REXX Support in SDSF

11.7 Create a personalized Workload Manager

Using the INIT and JC panels, you could write a workload manager to process a
large number of different kinds of jobs. For instance, if you were running DB2
image copies as well as other maintenance for a large number of volumes, you
could set up two jobclass and a set of initiators to work off both types of work.
You could then monitor the number of jobs queued to each class to control which
initiators would be set to which class, the purpose being to ensure that the two
jobstreams end at the same time to minimize the total maintenance window.

Note: In writing the examples that we present in this book, we found the
interactive rexxhelp panels quite useful. They have some small but good
examples. The rexxhelp provides information on using REXX with SDSF. It is
available in SDSF online help. The help includes links to descriptions of
commands, action characters and overtypable columns. To display the online
help on using REXX with SDSF, enter rexxhelp on any command line in
SDSF when using SDSF under ISPF.

 Chapter 11. Extended uses 267

268 Implementing REXX Support in SDSF

Appendix A. REXX variables for SDSF
host commands

This appendix shows some tables on the REXX variables that are required to
use SDSF functions in the host environment. See Chapter 1, “Issuing a system
command” on page 37 for more information about invoking SDSF host
commands.

A

© Copyright IBM Corp. 2007. All rights reserved. 269

REXX variables

SDSF defines several REXX variables to supplement host environment
commands or to provide request feedback. These special variables all begin with
the prefix ISF. They are divided into two groups:

� General variables
� Print related variables

We present the following tables in this appendix:

� Table 1, “SDSF commands and the supported REXX interface”

� Table 2, “SET command and the supported REXX interface”

� Table 3, “CK panel and the supported REXX interface”

� Table 4, “DA panel and the supported REXX interface”

� Table 5, “ENC panel and the supported REXX interface”

� Table 6, “H panel and the supported REXX interface”

� Table 7, “I panel and the supported REXX interface”

� Table 8, “INIT panel and the supported REXX interface”

� Table 9, “JC panel and the supported REXX interface”

� Table 10, “JDS panel and the supported REXX interface”

� Table 11, “JDS panel (when accessed from H panel) and the supported REXX
interface”

� Table 12, “JDS panel (when accessed from DA, I or ST panel) and the
supported REXX interface”

� Table 13, “LI panel and the supported REXX interface”

� Table 14, “MAS panel and the supported REXX interface”

� Table 15, “NO panel and the supported REXX interface”

� Table 16, “O panel and the supported REXX interface”

� Table 17, “OD panel and the supported REXX interface”

� Table 18, “PR panel and the supported REXX interface”

� Table 19, “PS panel and the supported REXX interface”

� Table 20, “PUN panel and the supported REXX interface”

� Table 21, “RDR panel and the supported REXX interface”

� Table 22, “RES panel and the supported REXX interface”

� Table 23, “SE panel and the supported REXX interface”

270 Implementing REXX Support in SDSF

� Table 24, “SO panel and the supported REXX interface”

� Table 25, “SP panel and the supported REXX interface”

� Table 26, “SR panel and the supported REXX interface”

� Table 27, “ST panel and the supported REXX interface”

� Table 28, “General REXX variables”

� Table 29, “REXX variables related to the tabular requests”

� Table 30, “REXX variables related to the filter commands for tabular requests”

� Table 31, “REXX variables related to browse function.”

� Table 32, “REXX variables related to printing to a SYSOUT”

� Table 33, “REXX variables related to printing to a data set”

� Table 34, “REXX variables related to printing to a SYSOUT”

� Table 35, “REXX variables related to console processing”

� Table 36, “REXX variables for diagnosing host command problems”

 Appendix A. REXX variables for SDSF host commands 271

REXX variables for SDSF commands.

Table 1 lists the SDSF commands and the corresponding REXX interface
required to perform the same function in the host environment.

Table 1 SDSF commands and the supported REXX interface

Command Function Use on
ISFEXEC?

Use on
ISFACT?

REXX
variable

Notes

/ Issue a system
command

Yes No

? Switch between the
primary and the
alternate panels

Yes No Use the ALTERNATE
and DELAYED
options of the
ISFEXEC command

ABEND Force SDSF to abend No No No REXX support

ACTION Control the display of
the SYSLOG WTORs

No No Syslog is not
supported

AFD Invoke SDSF with the
ISFAFD program

No No No REXX support

APPC Control the display of
the transaction data

No No ISFAPPC

ARRANGE Control the order of
the panel columns

No No No REXX support

BOOK Invoke BookManger No No No REXX support

BOTTOM Scroll to the bottom No No No REXX support

CK Display the CK panel Yes Yes See Table 29
for the REXX
variables

COLS Display the scale line No No No REXX support

DA Display the DA panel Yes Yes See Table 29
for the REXX
variables

Requires RMF™

DEST Filter the display by
destination

No No ISFDEST Destinations list can
exceed 42 characters

DOWN Scroll down No No No REXX support

272 Implementing REXX Support in SDSF

ENC Display the ENC
panel

Yes Yes

END Return to the
previous panel

No No No REXX support

FILTER Filter the display No No ISFFILTER &
ISFFILTER2

Only 1 filter criteria
can be specified

FIND Find a data string No No No REXX support

FINDLIM Set the number of
lines to search

No No No REXX support

H Display the H panel Yes Yes See Table 29
for the REXX
variables

I Display the I panel Yes Yes See Table 29
for the REXX
variables

I/ Issue a system
command with an
internal console

Yes No Issue a system
command with the
INTERNAL option of
the ISFEXEC
command

INIT Display the INIT
panel

Yes Yes See Table 29
for the REXX
variables

INPUT Control the inclusion
of the input data sets
in browse

No No ISFINPUT

JC Display the JC panel Yes Yes See Table 29
for the REXX
variables

LEFT Scroll left No No No REXX support

LI Display the LINES
panel

Yes Yes See Table 29
on page 299
for the REXX
variables

LOCATE Locate a line or a
column

No No No REXX support

Command Function Use on
ISFEXEC?

Use on
ISFACT?

REXX
variable

Notes

 Appendix A. REXX variables for SDSF host commands 273

LOG Display the syslog or
the operlog

No No Syslog and operlog
are not supported

LOGLIM Limit the operlog
display

No No Operlog is not
supported

MAS Display the MAS
panel

Yes Yes See Table 29
for the REXX
variables

NEXT Skip to the next data
set

No No No REXX support

NO Display the NODES
panel

Yes Yes See Table 29
for the REXX
variables

O Display the O panel Yes Yes See Table 29
for the REXX
variables

OWNER Filter the display by
owner ID

No No ISFOWNER

PANELID Display the panel ID No No No REXX support

PR Display the PR panel Yes Yes See Table 29
for the REXX
variables

PREFIX Filter the display by
JOBNAME

No No ISFPREFIX

PREV Display the previous
data set

No No No REXX support

PRINT Print data or screen No No No REXX support

PS Display the PS panel Yes Yes See Table 29
for the REXX
variables

PUN Display the PUN
panel

Yes Yes See Table 29
for the REXX
variables

Command Function Use on
ISFEXEC?

Use on
ISFACT?

REXX
variable

Notes

274 Implementing REXX Support in SDSF

QUERY List the SDSF data Yes No Support is on the
QUERY AUTH
command but not the
QUERY MOD
command; output
returned in the
ISFRESP stem
variable

RDR Display the RDR
panel

Yes Yes See Table 29
for the REXX
variables

RES Display the RES
panel

Yes Yes See Table 29
for the REXX
variables

RESET Clear pending
actions

No No No REXX support

RIGHT Scroll right No No No REXX support

RM Display the RM panel Yes Yes See Table 29
for the REXX
variables

RSYS Filter the SYSLOG
WTORs by system

No No Syslog and operlog
are not supported

SE Display the SE panel Yes Yes See Table 29
for the REXX
variables

SELECT Display the selected
rows

No No No REXX support

SET Set the SDSF options No No See Table 2
for the REXX
variables

SO Display the SO panel Yes Yes

SORT Sort the display No No ISFSORT &
ISFSORT2

SP Display the SP panel Yes Yes See Table 29
for the REXX
variables

Command Function Use on
ISFEXEC?

Use on
ISFACT?

REXX
variable

Notes

 Appendix A. REXX variables for SDSF host commands 275

SR Display the SR panel Yes Yes See Table 29
for the REXX
variables

ST Display the ST panel Yes Yes See Table 29
for the REXX
variables

SYSID Filter the SYSLOG
data by system ID

No No Syslog is not
supported

SYSNAME Filter the display by
system name

No No ISFSYSNAM
E

TOP Scroll to the top No No No REXX support

TRACE Enable SDSF tracing No No ISFTRACE &
ISFTRMASK

TUTOR Invoke the SDSF
tutorial

No No No REXX support

ULOG Display the ULOG
panel

No No ISFULOG
stem variable

Issue a system
command with the
WAIT option of the
ISFEXEC command;
or issue an action
character with the
WAIT option of the
ISFACT command

UP Scroll up No No No REXX support

W/ Issue a system
command with the
WAIT option

Yes No Issue a system
command with the
WAIT option of the
ISFEXEC command

WHO List environmental
data

Yes No Output returned in the
ISFRESP stem
variable

Command Function Use on
ISFEXEC?

Use on
ISFACT?

REXX
variable

Notes

276 Implementing REXX Support in SDSF

Table 2 lists the SET command and its corresponding REXX interface that is
required to perform the same function in the host environment.

Table 2 SET command and the supported REXX interface

Command Function Supporte
d by
REXX?

Input REXX
variable

Output REXX
variable

SET ACTION Control the display of valid action
characters

Yes ISFACTIONS ISFRESP stem

SET APPC Control the display of the
transaction data

SET BROWSE Set the default browse characters No

SET CONFIRM Control the display of confirmation
prompt for actions

No

SET CONSOLE Set the console name for ULOG Yes ISFCONS

SET CURSOR Set the cursor position No

SET DATE Set the date and time format No

SET DELAY Set the timeout limit for command
responses

Yes ISFDELAY

SET DISPLAY Control the display on current
active filters

Yes ISFDISPLAY

SET HEX Control the display of browse data
in hex

No

SET LANG Set the default panel language No

SET LOG Set the default log type No

SET SCHARS Set the search characters for the
FIND command

Yes ISFSCHARS

SET SCREEN Set the screen display
characteristics

No

SET SHELF Set the bookshelf name No

SET TIMEOUT Set the timeout limit for the sysplex
displays

Yes ISFTIMEOUT

 Appendix A. REXX variables for SDSF host commands 277

Table 3 to Table 27 show the supported action characters on the ISFACT
command.

Table 3 CK panel and the supported REXX interface

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. (Use RESET to reset) No

A Activate Yes

D Display Yes

DL Display long Yes

DP Display policies Yes

DPO Display policies that are outdated and not applied Yes

DS Display status Yes

E Refresh Yes

H Deactivate Yes

P Delete Yes

PF Delete force Yes

R Run Yes

S Browse Yes

SB Browse using ISPF BROWSE No

SE Browse using ISPF EDIT No

U Remove all categories for the check Yes

X Print the check output Yes

XC Print the check output and close the print file

XD Display the Open Print Dataset panel Yes

XDC Display the Open Print Dataset panel and close the print file Yes

XF Display the Open Print File panel Yes

278 Implementing REXX Support in SDSF

Table 4 DA panel and the supported REXX interface

XFC Display the Open Print File panel and close the print file Yes

XS Display the Open Print panel Yes

XSC Display the Open Print panel and close the print file Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. (Use RESET to reset) No

A Release a held job Yes

C Cancel a job Yes

CA Cancel a job that is defined to Automatic Restart Manager (ARM) Yes

CDA Cancel a job that is defined to ARM and take a dump Yes

D Display job information in the log Yes

DL Display job information in the log, long form Yes

E Process a job again Yes

EC Process a job again, but cancel and hold it prior to execution Yes

H Hold a job Yes

K Cancel a start task system cancel) Yes

KD Cancel a started task and take a dump (system cancel) Yes

L List output status of a job in the log Yes

P Cancel a job and purge its output Yes

PP Cancel a protected job and purge its output Yes

R Reset and resume a job Yes

RQ Reset and quiesce a job Yes

Action Description Supported by
REXX?

 Appendix A. REXX variables for SDSF host commands 279

Table 5 ENC panel and the supported REXX interface

Q Display out put descriptors for all of the data sets in an output
group

No

S Browse No

SA Browse using data set allocation Yes only

SB Browse using ISPF BROWSE No

SE Browse using ISPF EDIT No

SJ JCL Edit No

SJA JCL edit using data set allocation Yes only

W Cause job and message logs to spin Yes

X Print the job output Yes

XC Print the job output and close the print file Yes

XD Display the Open Print Dataset panel Yes

XDC Display the Open Print Dataset panel and close the print file Yes

XF Display the Open Print File panel Yes

XFC Display the Open Print File panel and close the print file Yes

XS Display the Open Print panel Yes

XSC Display the Open Print panel and close the print file Yes

Y Stop a started task (system stop) Yes

Z Cancel a started task (system force) Yes

? Display a list of data sets for a job. (Access the Job Dataset
panel)

Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

Action Description Supported by
REXX?

280 Implementing REXX Support in SDSF

Table 6 H panel and the supported REXX interface

I Display additional information about the enclave No

M Match the enclave by export token, to display on the instances of
a multisystem enclave. Valid only for multisystem enclaves, as
indicated in the Scope column. To see all enclaves again,
reaccess the panel

No

R Reset and resume an enclave Yes

RQ Reset and quiesce an enclave Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

? Display a list of the data sets for an output group. (Access the Job
Data Set Panel)

Yes

A Release a job’s output Yes

C Purge a job’s output Yes

H Hold a job’s output Yes

L List a job’s output in the log Yes

LL List a job’s output in the log, long form Yes

O Release output to be printed, then purged Yes

OK Release output to be printed and kept Yes

P Purge a job’s output Yes

Q Display output descriptors for all of the data sets for an output
group

No

S Browse No

SA Browse using data set allocation Yes only

SB Browse using ISPF BROWSE No

Action Description Supported by
REXX?

 Appendix A. REXX variables for SDSF host commands 281

Table 7 I panel and the supported REXX interface

SE Browse using ISPF EDIT No

SJ JCL Edit No

SJA JCL edit using data set allocation Yes only

X Print the job output Yes

XC Print the job output and close the print file Yes

XD Display the Open Print Dataset panel Yes

XDC Display the Open Print Dataset panel and close the print file Yes

XF Display the Open Print File panel Yes

XFC Display the Open Print File panel and close the print file Yes

XS Display the Open Print panel Yes

XSC Display the Open Print panel and close the print file Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

? Display a list of the data sets for a job. (Access the Job Data Set
panel)

Yes

A Release a held job Yes

C Cancel a job Yes

CA Cancel a job that is defined to Automatic Restart Manager (ARM) Yes

CD Cancel a job and take a dump Yes

CDA Cancel a job that is defined to ARM and take a dump Yes

D Display job information in the log Yes

DL Display job information in the log, long form Yes

Action Description Supported by
REXX?

282 Implementing REXX Support in SDSF

E Process a job again Yes

EC Process a job again, but cancel and hold it prior to execution Yes

H Hold a job Yes

I Display job delay information Yes

J Start a job immediately (WLM-managed classes only) Yes

L List output status of a job in the log Yes

P Cancel a job and purge its output Yes

PP Cancel a protected job and purge its output Yes

Q Display output descriptors for all of the data sets for an output
group

No

S Browse No

SA Browse using data set allocation Yes only

SB Browse using ISPF BROWSE No

SE Browse using ISPF EDIT No

SJ JCL Edit No

SJA JCL edit using data set allocation Yes only

W Cause job and message logs to spin Yes

X Print the job output Yes

XC Print the job output and close the print file Yes

XD Display the Open Print Dataset panel Yes

XDC Display the Open Print Dataset panel and close the print file Yes

XF Display the Open Print File panel Yes

XFC Display the Open Print File panel and close the print file Yes

XS Display the Open Print panel Yes

XSC Display the Open Print panel and close the print file Yes

Action Description Supported by
REXX?

 Appendix A. REXX variables for SDSF host commands 283

Table 8 INIT panel and the supported REXX interface

Table 9 JC panel and the supported REXX interface

Table 10 JDS panel and the supported REXX interface

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

D Display information about an initiator Yes

DL Display the long form of information about an initiator Yes

P Stop an initiator when the current job completes Yes

S Start an initiator Yes

Z Halt an initiator when the current job completes. This suspends,
rather than stops, the initiator

Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

D Display information about a job class in the logs and ULOG Yes

ST Display the ST panel for all jobs in the class No

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

C Purge an output data set Yes

284 Implementing REXX Support in SDSF

Table 11 JDS panel (when accessed from H panel) and the supported REXX interface

H Hold an output data set Yes

O Release an output data set Yes

P Purge an output data set Yes

Q Display output descriptors for the data set No

S Browse No

SA Browse using data set allocation Yes only

SB Browse using ISPF BROWSE No

SE Browse using ISPF EDIT No

SJ JCL edit No

SJA JCL edit using data set allocation Yes only

V View page mode output No

X Print the job output. Add C to close the print file after printing (XC) No

XD Display the Open Print Data Set panel (XD or XDC) No

XF Display the Open Print Data Set panel (XF or XFC) No

XS Display the Open Print panel (XS or XSC) No

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

C Purge an output data set Yes

O Release an output data set Yes

P Purge an output data set Yes

Q Display output descriptors for the data set No

S Browse No

Action Description Supported by
REXX?

 Appendix A. REXX variables for SDSF host commands 285

Table 12 JDS panel (when accessed from DA, I or ST panel) and the supported REXX interface

SA Browse using data set allocation Yes only

SB Browse using ISPF BROWSE No

SE Browse using ISPF EDIT No

SJ JCL edit No

SJA JCL edit using data set allocation Yes only

V View page mode output No

X Print the job output. Add C to close the print file after printing (XC) No

XD Display the Open Print Data Set panel (XD or XDC) No

XF Display the Open Print File panel (XF or XFC) No

XS Display the Open Print panel (XS or XSC) No

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column No

Q Display output descriptors for the data set No

S Browse No

SA Browse using data set allocation Yes only

SB Browse using ISPF BROWSE No

SE Browse using ISPF EDIT No

SJ JCL Edit No

SJA JCL edit using data set allocation Yes only

V View page mode output No

X Print the job output. Add C to close the print file after printing (XC) No

XD Display the Open Print Data Set panel (XD or XDC) No

Action Description Supported by
REXX?

286 Implementing REXX Support in SDSF

Table 13 LI panel and the supported REXX interface

Table 14 MAS panel and the supported REXX interface

XF Display the Open Print File panel (XF or XFC) No

XS Display the Open Print panel (XS or XSC) No

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

C Cancel a transmitter or receiver Yes

D Display a line, transmitter or receiver in the log Yes

E Restart a line, transmitter or receiver Yes

I Interrupt a line Yes

P Drain a line, transmitter or receiver Yes

Q Quiesce a line Yes

S Start a line, transmitter, or receiver Yes

SN Start network communications Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

D Display a member of the MAS in the log Yes

E Restart a member of the MAS Yes

ER Reset a member of the MAS Yes

Action Description Supported by
REXX?

 Appendix A. REXX variables for SDSF host commands 287

Table 15 NO panel and the supported REXX interface

J Display the current state of monitor subtasks Yes

JD Display monitor details Yes

JH Display resource history Yes

JJ Display the current state of JES2 Yes

JS Display the current status of JES2 Yes

P Stop a member of the MAS Yes

PA Stop a member of the MAS (abend) Yes

PQ Stop a member of the MAS, ignoring cross system activity Yes

PT Stop a member of the MAS, ignoring active programs Yes

PX Stop scheduling of jobs for the member of the MAS Yes

S Start a member of the MAS Yes

SX Start scheduling of jobs for a member of the MAS Yes

ZM Stop the JES2 monitor Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

D Display information about a node in the log Yes

DC Display information about network connections for a node in the
log

Yes

DP Display information about paths in the log Yes

SN Start node communication on a line Yes

Action Description Supported by
REXX?

288 Implementing REXX Support in SDSF

Table 16 O panel and the supported REXX interface

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column. No

? Display a list of the data sets for an output group Yes

A Release held output data sets. (If job has been held, it must be
released from the Status panel).

Yes

C Purge a job’s output (do not cancel the job) Yes

H Hold output Yes

L List a job’s output status in the log Yes

LL List a job’s output status in the log, long form Yes

P Purge output data sets Yes

Q Display output descriptors for all of the data sets for an output
group

No

S Browse No

SA Browse using data set allocation Yes only

SB Browse using ISPF BROWSE No

SE Browse using ISPF EDIT No

SJ JCL Edit No

SJA JCL edit using data set allocation Yes only

X Print the job output Yes

XC Print the job output and close the print file Yes

XD Display the Open Print Data Set panel Yes

XDC Display the Open Print Data Set panel and close the print file Yes

XF Display the Open Print File panel Yes

XFC Display the Open Print File panel and close the print file Yes

XS Display the Open Print panel Yes

 Appendix A. REXX variables for SDSF host commands 289

Table 17 OD panel and the supported REXX interface

Table 18 PR panel and the supported REXX interface

XSC Display the Open Print panel and close the print file Yes

Action Description Supported by
REXX?

E Erase an output descriptor. E is valid only when the Output
Descriptors panel is accessed from the:
� Output Queue panel
� Held Ooutput Queue panel
� Job Data Set panel if it was accessed from the Output

Queue panel or the Held Output Queue panel

No

? Display a list of data sets No

S Browse No

SB Browse using ISPF BROWSE No

SE Browse using ISPF EDIT No

SJ JCL edit No

X Print job output No

XC Print job output and close the print file No

XD Display the Open Print Data Set panel No

XDC Display the Open Print Data Set panel and close the print file No

XF Display the Open Print File panel No

XFC Display the Open Print File panel and close the print file No

XS Display the Open Print panel No

XSC Display the Open Print panel and close the print file No

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

Action Description Supported by
REXX?

290 Implementing REXX Support in SDSF

Table 19 PS panel and the supported REXX interface

+ Expand the NP column. No

B(x) Backspace a printer. ‘x’ can be:
� number of pages
� D (top of the current data set)
� C (most recent checkpoint)
� C,number (pages before the most recent checkpoint)

Yes

C Purge output printing on a printer Yes

D Display information about a job Yes

DL Display the long form of information about a job Yes

E Restart a printer Yes

F(x) Space a printer forward. x can be:
� number of pages
� D (top of the current data set)
� C(most recent checkpoint)
� number,C(pages before the most recent checkpoint)

Yes

I Interrupt a printer Yes

K Force termination of the FSS Yes

N Print another copy of the output Yes

P Stop a printer Yes

S Start a printer Yes

Z Halt an active printer Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed.

No

= Repeat previous action character or overtype No

+ Expand the NP column No

C Cancel the address space that owns the process Yes

D Display information about processes Yes

Action Description Supported by
REXX?

 Appendix A. REXX variables for SDSF host commands 291

Table 20 PUN panel and the supported REXX interface

K Kill the process (SIGKILL) Yes

T Kill the process (SIGTERM) Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed.

No

= Repeat previous action character or overtype No

+ Expand the NP column No

Bx Backspace a punch. x can be:
- number of pages
- D (top of the current data set)
- C (most recent checkpoint)
- C, number (pages before the most recent checkpoint)

Yes

C Purge output being processed by a punch Yes

D Display information about a job Yes

DL Display the long form of information about a job Yes

E Restart a punch Yes

Fx Space a punch forward. x can be:
- number of pages
- D (top of the current data set)
- C (most recent checkpoint)
- C, number (pages before the most recent checkpoint)

Yes

I Interrupt a punch Yes

N Punch another copy of the output Yes

P Stop a punch Yes

S Start a punch Yes

Z Halt an active punch Yes

Action Description Supported by
REXX?

292 Implementing REXX Support in SDSF

Table 21 RDR panel and the supported REXX interface

Table 22 RES panel and the supported REXX interface

Table 23 SE panel and the supported REXX interface

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column No

C Cancel a job being processed by a reader Yes

D Display information about a job Yes

DL Display the long form of information about a job Yes

P Stop a reader Yes

S Start a reader Yes

Z Halt a reader Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column No

D Display information about the resource Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column No

D Display scheduling environments in the log. This issues the MVS
D command

Yes

 Appendix A. REXX variables for SDSF host commands 293

Table 24 SO panel and the supported REXX interface

Table 25 SP panel and the supported REXX interface

R Display resources for a scheduling environment No

ST Display the ST panel for all jobs requiring the scheduling
environment

No

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column No

C Cancel a transmitter or receiver Yes

D Display an offloader, transmitter, or receiver in the log Yes

E Restart a transmitter Yes

P Drain an offloader, transmitter or receiver Yes

S Start a transmitter or receiver Yes

SR Start an offloader to receive jobs and SYSOUT Yes

ST Start an offloader to transmit jobs and SYSOUT Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column No

D Display the status of a spool volume Yes

DL Display the long form of status Yes

J Display all jobs using the spool volume Yes

P Drain a spool volume Yes

Action Description Supported by
REXX?

294 Implementing REXX Support in SDSF

Table 26 SR panel and the supported REXX interface

Table 27 ST panel and the supported REXX interface

PC Drain a spool volume and cancel all jobs that have used it Yes

S Start a spool volume, adding or reactivating it to the spool
configuration

Yes

Z Halt a spool volume, deallocating it after active work completes
its current phase of processing

Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column No

C Remove an action message Yes

D Display a message in the logs or ULOG Yes

R(command) Reply to the message. R by itself displays a pop-up on which you
can complete the command

Yes

Action Description Supported by
REXX?

// Block repeat; type // on the first row and another // on the last row
to be processed

No

= Repeat previous action character or overtype No

+ Expand the NP column No

? Display a list of the data sets for a job Yes

A Release a held job Yes

C Cancel an active job or a job waiting to be processed Yes

CA Cancel a job that is defined to Automatic Restart Manager (ARM) Yes

CD Cancel a job and take a dump Yes

Action Description Supported by
REXX?

 Appendix A. REXX variables for SDSF host commands 295

Table 28 lists the general REXX variables and their corresponding SDSF
functions. For more details about each variable, refer to z/OS V1R9.0 SDSF
Operation and Customization, SA22-7670.

Table 28 General REXX variables

CDA Cancel a job that is defined to ARM, and take a dump Yes

D Display job information in the log Yes

DL Display job information in the log, long form Yes

E Process a job again Yes

EC Process a job again, but hold it prior to execution Yes

H Hold a job Yes

I Display job delay information No

J Start a job immediately (WLM-managed classes only) Yes

L List a job’s output status in the log Yes

Action Description Supported by
REXX?

Variable Description Associated
online
command

Input
or
output

Stem
variable?

ISFACTIONS Controls return of valid action characters SET ACTION Input No

ISFAPPC Controls the display of the transaction
data

SET APPC Input No

ISFCOLS Sets the columns to be returned for the
primary panel;
Returns the columns for the primary panel

Input

Output

No

ISFCOLS2 Sets the columns to be returned for the
secondary panel;
Returns the columns for the secondary
panel

Input

Output

No

ISFCONS Sets the console name for ULOG SET CONSOLE Input No

ISFDCOLS Returns the delayed access columns for
the primary panel

Output No

ISFDCOLS2 Returns the delayed access columns for
the secondary panel

Output No

296 Implementing REXX Support in SDSF

ISFDDNAME Returns the ddnames within the
requested row entry

Output Yes

ISFDELAY Sets the timeout limit for command
responses

SET DELAY Input No

ISFDEST Sets the destinations for filtering DEST Input No

ISFDISPLAY Returns the current active filters SET DISPLAY Output No

ISFDSNAME Returns the spool data set names within
the requested row entry

Output Yes

ISFFILTER Sets a single filter criterion for the primary
panel

FILTER Input No

ISFFILTER2 Sets a single filter criteria for the
secondary panel

FILTER Input No

ISFINPUT Controls the inclusion of the input data
sets in browse

SET INPUT Input No

ISFJESNAME Sets the JES2 subsystem to be
processed

Input No

ISFLINE Returns the lines of data in response to a
browse request

Output Yes

ISFMSG Returns SDSF short message Output No

ISFMSG2 Returns SDSF messages associated with
a request, especially when the VERBOSE
option is specified on a tabular request

Output Yes

ISFOWNER Sets the owner ID for filtering OWNER Input No

ISFPREFIX Sets the jobname prefix for filtering PREFIX Input No

ISFRCOLS Returns the related field columns for the
primary panel

Output No

ISFRCOL2 Returns the related field columns for the
secondary panel

Output No

ISFRESP Returns the command responses from the
WHO and the QUERY AUTH commands;
returns the output when ISFACTIONS is
set to ON

QUERY AUTH &
WHO &
SET ACTION

Output Yes

Variable Description Associated
online
command

Input
or
output

Stem
variable?

 Appendix A. REXX variables for SDSF host commands 297

ISFROWS Returns the number of rows created by a
tabular request for the primary panel

Output Yes

ISFROWS2 Returns the number of rows created by a
tabular request for the secondary panel

Output Yes

ISFSCHARS Sets the search characters for the FIND
command

Input No

ISFSERVER Sets the SDSF server to process the host
command

Input No

ISFSORT Sets the criteria for sorting the primary
panel

Input No

ISFSORT2 Sets the criteria for sorting the secondary
panel

Input No

ISFSYSNAME Sets the system name for filtering SYSNAME Input No

ISFTIMEOUT Sets the timeout limit for the sysplex
displays

SET TIMEOUT Input No

ISFTITLES Returns the column names associated
with the variables on the primary panel

Output No

ISFTITLES2 Returns the column names associated
with the variables on the secondary panel

Output No

ISFTLINE Returns the title line from the tabular
request

Output No

ISFTRACE Enables SDSF tracing TRACE Input No

ISFTRMASK Sets the trace mask TRACE Input No

ISFUCOLS Returns the modifiable columns for the
primary panel

Output No

ISFUCOLS2 Returns the modifiable columns for the
secondary panel

Output No

ISFULOG Returns the console activation message,
system command echo and command
responses

Output Yes

Variable Description Associated
online
command

Input
or
output

Stem
variable?

298 Implementing REXX Support in SDSF

Table 29 lists the REXX variables related to the tabular requests.

Table 29 REXX variables related to the tabular requests

REXX Variable Description Input or Output Stem variable?

ISFACTIONS Controls return of valid action characters Input No

ISFCOLS Sets the columns to be returned for the
primary panel;
Returns the columns for the primary panel

Input

Output

No

ISFCOLS2 Sets the columns to be returned for the
secondary panel;
Returns the columns for the secondary
panel

Input

Output

No

ISFCONS Sets the console name for slash command
and actions

Input No

ISFDCOLS Returns the delayed access columns for
the primary panel

Output No

ISFDCOLS2 Returns the delayed access columns for
the secondary panel

Output No

ISFDELAY Set the timeout limit for command
responses

Input No

ISFDISPLAY Returns the current active filters Output No

ISFMSG Returns SDSF short message Output No

ISFMSG2 Returns SDSF messages associated with
a request, especially when VERBOSE
option is specified on a tabular request

Output Yes

ISFRCOLS Returns the related field columns for the
primary panel

Output No

ISFRCOL2 Returns the related field columns for the
secondary panel

Output No

ISFROWS Returns the number of rows created by a
tabular request for the primary panel

Output Yes

ISFROWS2 Returns the number of rows created by a
tabular request for the secondary panel

Output Yes

ISFSCHARS Set the search characters for the FIND
command

Input No

 Appendix A. REXX variables for SDSF host commands 299

Table 30 lists the REXX variables related to the filter commands for tabular
requests.

Table 30 REXX variables related to the filter commands for tabular requests

ISFSORT Sets the criteria for sorting the primary
panel

Input No

ISFSORT2 Sets the criteria for sorting the secondary
panel

Input No

ISFTIMEOUT Sets the timeout limit for the sysplex
displays

Input No

ISFTITLES Returns the column names associated
with the variables on the primary panel

Output No

ISFTITLES2 Returns the column names associated
with the variables on the secondary panel

Output No

ISFTLINE Returns the title line from the tabular
request

Output No

ISFUCOLS Returns the modifiable columns for the
primary panel

Output No

ISFUCOLS2 Returns the modifiable columns for the
secondary panel

Output No

REXX Variable Description Input or Output Stem variable?

Variable Associated SDSF filter command Input or
Output

Stem
variable?

ISFAPPC SET APPC command Input No

ISFDEST DEST command Input No

ISFFILTER FILTER command for the primary panel Input No

ISFFILTER2 FILTER command for the secondary panel Input No

ISFINPUT INPUT command Input No

ISFJESNAME No corresponding SDSF command but
sets the JES2 subsystem to be processed

Input No

ISFOWNER OWNER command Input No

ISFPREFIX PREFIX command Input No

300 Implementing REXX Support in SDSF

Table 31 lists the REXX variables related to the browse function

Table 31 REXX variables related to browse function.

SDSF can print a SYSOUT to another SYSOUT, to a data set, and to a ddname.
Table 32 list the REXX variables related to print a SYSOUT to another SYSOUT.

Table 32 REXX variables related to printing to a SYSOUT

ISFSERVER No corresponding SDSF command but
sets the SDSF server to process the host
command

Input No

ISFSYSNAME SYSNAME command Input No

Variable Associated SDSF filter command Input or
Output

Stem
variable?

Variable Description Input
or
Output

Stem variable?

ISFDDNAME Returns the ddnames within the requested
row entry

Output Yes

ISFDSNAME Returns the Spool data set names within
the requested row entry

Output Yes

ISFLINE Returns the lines of data in response to a
browse request

Output Yes

Variable Description Input
or
Output

Stem variable?

ISFPRTCLASS Sets the output class Input No

ISFPRTCOPIES Sets the number of copies Input No

ISFPRTDEST Sets the destination Input No

ISFPRTFCB Sets the FCB Input No

ISFPRTFORMDEF Sets the formdef Input No

ISFPRTFORMS Sets the forms Input No

ISFPRTOUTDESNAME Sets the output descriptor name Input No

ISFPRTPAGEDEF Sets the pagedef for the SYSOUT Input No

 Appendix A. REXX variables for SDSF host commands 301

Table 33 lists the REXX variables related to print a SYSOUT to a data set.

Table 33 REXX variables related to printing to a data set

ISFPRTPRTMODE Sets the process mode Input No

ISFPRTUCS Sets the UCB Input No

Variable Description Input
or
Output

Stem variable?

Variable Description Input
or
Output

Stem variable?

ISFPRTBLKSIZE Sets the block size Input No

ISFPRTDATACLAS Sets the data class Input No

ISFPRTDIRBLKS Sets the number of directory blocks Input No

ISFPRTDISP Sets the allocation disposition Input No

ISFPRTDSNAME Sets the data set name Input No

ISFPRTLRECL Sets the logical record length Input No

ISFPRTMEMBER Sets the member name Input No

ISFPRTMGMTCLAS Sets the management class Input No

ISFPRTPRIMARY Sets the primary space Input No

ISFPRTRECFM Sets the record format Input No

ISFPRTSECONDARY Sets the secondary space Input No

ISFPRTSPACETYPE Sets the allocation space units for the data
set

Input No

ISFPRTSTORCLAS Sets the storage class for the data set Input No

ISFPRTUNIT Sets the allocation unit for the data set Input No

ISFPRTVOLSER Sets the volume serial for the data set Input No

302 Implementing REXX Support in SDSF

Table 34 lists the REXX variables related to the print a SYSOUT to a ddname.

Table 34 REXX variables related to printing to a SYSOUT

Table 35 lists the REXX variables related to the console functions.

Table 35 REXX variables related to console processing

Table 36 lists the REXX variables for debugging the host command problems.

Table 36 REXX variables for diagnosing host command problems

Variable Description Input
or
Output

Stem variable?

ISFPRTDDNAME Sets the ddname of the output file Input No

Variable Description Input
or
Output

Stem variable?

ISFCONS Sets the console name for ULOG Input No

ISFDELAY Sets the timeout limit for command
responses

Input No

ISFULOG Returns the system command echo and
the system responses generated by the
host command

Output Yes

Variable Description Input
or
Output

Stem variable?

ISFMSG Returns SDSF short message Output No

ISFMSG2 Returns SDSF messages associated with
a request, especially when VERBOSE
option is specified on a tabular request

Output Yes

ISFTRACE Enables SDSF tracing Input No

ISFTRMASK Sets the trace mask Input No

 Appendix A. REXX variables for SDSF host commands 303

304 Implementing REXX Support in SDSF

Appendix B. Additional material

This appendix describes the additional material to which this book refers that you
can download from the Internet.

Locating the Web material

The Web material that is associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247419

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
IBM Redbooks form number, SG24-7419.

B

© Copyright IBM Corp. 2007. All rights reserved. 305

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this book includes the following
files:

File name Description
SG247419.zip Compressed Code Samples for each chapter

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space: 2 MB minimum
Operating System: At least Windows XP
Processor: 1700 MHz or higher
Memory: At least 500 MB

How to use the Web material

Create a subdirectory (folder) on your workstation, and decompress the contents
of the Web material compressed file into this folder.

306 Implementing REXX Support in SDSF

Glossary

3270 Display devices made by IBM since 1972.
Unlike common serial ASCII terminals, the 3270
minimizes the number of I/O interrupts that are
required by accepting large blocks of data known as
data streams and uses high-speed proprietary
communications interface.

AIX (Advanced Interactive Executive) A UNIX
operating system developed by IBM that is designed
and optimized to run on POWER™
microprocessor-based hardware such as servers,
workstations, and blades. Based on UNIX System V,
AIX was introduced in 1986.

AMRF (Action Message Retention Facility) A z/OS
facility that, when active, retains all action
messages, except those specified by the
installation.

ATM An automated teller machine is a
computerized telecommunications device that
provides a financial institution’s customers a method
of financial transactions in a public space without the
need of a human clerk or bank teller.

BPXBATCH MVS utility that can be used to run
shell commands or shell scripts and to run
executable files through the MVS batch facility.
BPXBATCH can be invoked from a batch job or from
the TSO/E environment.

CK Health Checker panel (CK) The CK panel
shows information from IBM Health Checker for
z/OS about the active checks.

© Copyright IBM Corp. 2007. All rights reserved.
client/server Pertaining to the model of interaction
in distributed data processing in which a program on
one computer sends a request to a program on
another computer and awaits response. The
requesting program (often an application that uses a
graphical user interface) is called a client; the
answering program is called a server. Each instance
of the client software can send requests to the
server.

COBOL (Common Business Oriented Language)
High level third-generation programming language
that is used primarily for commercial data
processing. Its primary domain is in business,
finance and administrative systems. It is one of the
oldest programming languages still in active use.

console A display station from which an operator
can control and observe the system operation.

DA Display Active Users panel (DA) The DA panel
shows information about MVS address spaces
(jobs, started tasks, and TSO users) that are
running. SDSF obtains the information from RMF
when it is installed. Columns for which RMF is
required are indicated by RMF.

Eclipse An open-source initiative that provides
ISVs and other tool developers with a standard
platform comprised of extensible frameworks for
developing plug-in compatible application
development tools.

ENC Enclaves panel (ENC) The Enclaves panel
allows authorized users to display information about
WLM enclaves.

H Held Output panel (H) The Held Output panel
shows the user information about SYSOUT data
sets for jobs, started tasks, and TSO users on any
held JES2 output queue.

 307

Health Checker An IBM licensed program that
provides a foundation to help simplify and automate
the identification of potential configuration problems
before they impact system availability.

HLL (High Level Language) A programming
language that provides some level of abstraction
from assembler language and independence from a
particular type of system. Rather that dealing with
registers, memory addresses and call stacks,
high-level languages deal with variables, arrays,
boolean expressions or complex arithmetic.

I Input Queue panel (I) The Input Queue panel
allows the user to display information about jobs,
started tasks, and TSO users on the JES2 input
queue or executing.

SR SDSF System Requests panel (SR) The
System Requests panel allows authorized users to
display information about reply and action
messages.
If AMRF is not active, the panel shows only reply
messages. This is controlled by the AMRF
parameter in PARMLIB member CONSOLxx.

IMS (Information Management System) System
environment with a database manager and
transaction processing that are capable of managing
complex databases and terminal networks.

INIT Initiator panel (INIT) The Initiator panel allows
users to display information about JES2 initiators
that are defined in the active JES2 on their CPUs.

IRXEXEC Routine to run REXX execs from any
MVS address space.running in any address space.
IRXEXEC routine gives you more flexibility than
IRXJCL. For example, you can preload the REXX
exec in storage and pass the address of the
preloaded exec to IRXEXEC. This is useful if you
want to run an exec multiple times to avoid the exec
being loaded and freed whenever it is invoked. You
might also want to use your own load routine to load
and free the exec.

IRXJCL Routine to run REXX execs from any MVS
address space.

ISFACT REXX command, belonging to the SDSF
host command environment, used to execute SDSF
commands such as the commands to SDSF panels.

ISFEXEC REXX command, belonging to the SDSF
host command environment, used for action
characters and overtyping columns.

ISPF (Interactive System Productivity Facility) IBM
licensed program that serves as a full-screen editor
and dialog manager. Used for writing application
programs, it provides a IBM 3270 terminal interface,
and a means of generating standard screen panels
and interactive dialogs between the application
programmer and terminal user. ISPF is frequently
used to manipulate z/OS data sets through its
Product Development Facility (PDF). ISPF is user
extensible and it is often used as an application
program interface (API).

Java An object-oriented programming language
for portable interpretive code that supports
interaction among remote objects Java was
developed and specified by Sun Microsystems,
Incorporated.

JC Job Class panel (JC) The Job Class (JC) panel
allows authorized users to display and control the
job classes in the MAS. It shows both JES2 and
WLM managed job classes.

JDK (Java Development Kit) The name of the
software development kit that Sun Microsystems
provides for the Java platform.

JDS Job Data Set panel (JDS) The Job Data Set
panel allows the user to display information about
SYSOUT data sets for a selected job, started task,
and TSO user.

JES (Job Entry Subsystem) An IBM licensed
program that receives jobs into the system and
processes all output data that is produced by jobs.

308 Implementing REXX Support in SDSF

JES2 An MVS subsystem that receives jobs into
the system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In an installation with
more than one processor, each JES2 processor
independently controls its job input, scheduling and
output processing.

JES3 An MVS subsystem that receives jobs into
the system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In complexes that
have several loosely coupled processors so that the
global processor exercises centralized control over
the local processors and distributes jobs to them
using a common job queue.

JESMSGLG DDNAME where JES and operator
messages for the job are written.

JESYSMSG DDNAME where system messages
for the job are written.

JOE Information that describes a unit of work for
the JES output processor and represents that unit of
work for queuing purposes.

JQE A control block containing a summary
information from a Job Control Table (JCT) entry.
JQEs move from queues as work moves through
each stage of processing. JQEs are used instead of
JCT entries for the scheduling of work.

LI The Lines panel allows the user to display
information about JES2 lines and their associated
transmitters and receivers.

LPAR (Logically Partitioned Mode) A capability
provided by the Processor Resource/System
Manager (PR/SM™) that allows a single processor
to run multiple operating systems using separate
sets of system resources, or logical partitions.

MAS (Multi-Access Spool) A multiple-processor
complex that consists of two to more processors ate
the same physical location, which share the same
spool and checkpoint data sets.

MAS Multi-Access Spool panel (MAS) The
Multi-Access Spool (MAS) panel simplifies the
display and control of members in a JES2 MAS.

MVS (Multiple Virtual Storage) An IBM operating
system that accesses multiple address spaces in
virtual storage. It was the most commonly used
operating system on the System/370™ and S/390®
series. By design, programs written for MVS can still
run on z/OS without modification.

NO Nodes panel (NO) The Nodes panel allows the
user to display information about JES2 nodes.

O Output Queue panel (O) The Output Queue
panel allows the user to display information about
SYSOUT data sets for jobs, started tasks, and TSO
users on any nonheld JES2 output queue.

OCOPY Copy an MVS data set member or z/OS
UNIX file to another file or member. COPYcommand
can be used to copy data between an MVS data set
and the z/OS UNIX file system.

OD Output Descriptors panel (OD) The OD panel
allows the user to display SYSOUT data sets before
they are printed.
Columns can be overtyped only if you accessed the
OD panel from the O or H panel, or from a JDS panel
that was accessed from the O or H panel.

OEDIT Edit an z/OS UNIX file system file. OEDIT
enables users to edit a file in the z/OS UNIX file
system. This command uses the ISPF/PDF Edit
facility.

port In TCP/IP, a separately addressable point to
which an application can connect. For example, by
default HTTP uses port 80 and Secure HTTP
(HTTPS) uses port 443.

PR Printer panel (PR) The Printer panel allows the
user to display information about JES2 printers
printing jobs, started task, and TSO user output.

PS Processes panel (PS) The PS panel displays
information about z/OS UNIX System Services
processes.

 Glossary 309

PUN Punch panel (PUN) The PUN panel allows
the user to display information about JES2 punches.

RACF (Resource Access Control Facility) IBM
licensed program that provides control by identifying
users to the system; verifying users of the system;
authorizing access to protected resources; logging
unauthorized attempts to enter the system; and
logging assesses to protected resources.

RC A REXX special variable set to the return code
from any executed host command or subcommand.
It is also set to the return code when the conditions
ERROR, FAILURE, and SYNTAX are trapped.

RDR Reader panel (RDR) The RDR panel allows
the user to display information about JES2 readers.

RES Resource panel (RES) The RES panel allows
users to display information about WLM resources in
a scheduling environment, or in the sysplex.

RESULT A REXX special variable that is set by the
RETURN instruction in a called routine. The
RESULT variable is dropped if the called routine
does not return a value.

REXX (Restructured Extended Executor) A
general-purpose, interpreted high level
programming language which was developed at IBM
and was designed to be both easy to learn and easy
to read. Designed originally by Mike Cowlishaw as a
scripting programming language, it is particularly
well suited for writing quickly small utility programs.

rexxhelp Rexxhelp provides information about
using REXX with SDSF. It is available in SDSF's
online help. The help includes links to descriptions of
commands, action characters and overtypable
columns. To display the online help on using REXX
with SDSF, type rexxhelp on any command line in
SDSF when using SDSF under ISPF.

rlogin UNIX software utility that allows users to log
in another host through a network, communicating
through TCP port 513. rlogin has serious security
problems

RM Resource Monitor (RM) panel The Resource
Monitor panel shows information about JES2
resources such as JOEs, JQEs and BERTs.

RMF (Resource Measurement Facility) A feature of
z/OS that measures selected areas of system
activity and presents the data collected in the format
of printed reports, System Management Facility
(SMF) records, or display reports.

scheduler In this book, a computer program that
performs functions such as scheduling, initiation,
and termination ofr jobs.

scheduling environment A list of resource names
along with their required states. If an MVS image
satisfies all of the requirements in the scheduling
environment associated with a given unit of work,
then that unit of work can be assigned to that MVS
image. If any of the requirements are not satisfied,
then that unit of work cannot be assigned to that
MVS image.

SDSF (System Display and Search Facility) IBM
licensed program that provides a menu-driven
full-screen interface that is used to obtain detailed
information about jobs and resources in a system.

SE Scheduling Environment panel (SE) The SE
panel allows authorized users to display information
about scheduling environments in the MAS or the
sysplex.

SMF (System Management Facility) A component
of z/OS operating system that collects and records a
variety of system and job related information,
including I/O, network activity, software usage, error
conditions, processor utilization, and so forth. SMF
forms the basis for nearly all the monitoring and
automation utilities.

SO Spool Offload panel (SO) The Spool Offload
panel allows authorized users to display information
about JES2 spool offloaders and their associated
transmitters and receivers.

310 Implementing REXX Support in SDSF

socket A means of directing data to an application
in a TCP/IP network using a unique identifier that is
a combination of an IP address and a port number.
It is the communication end-point unique to a
system.

SP Spool Volumes panel (SP) The Spool Volumes
panel lets authorized users to display and control
JES2 spool volumes.

spool data set A data set written on an auxiliary
storage device and managed by Job Entry
Subsystem (JES).

SSH (Secure Shell) Set of standards and network
protocol used to establish a secure channel between
to computers on the Internet or local area network
(LAN) connections.

ST The SDSF Status panel allows the user to
display information about jobs, started tasks, and
TSO users on the JES2 queues.

stem In REXX, that part of a compound symbol up
to and including the first period. It contains just one
period, which is the last character. It cannot start
with a digit or a period. A reference to a stem can
also be used to manipulate all variables sharing that
stem.

sysplex A set of z/OS systems that communicate
with each other through certain multisystem
hardware components and software services.

tail In REXX, that part of a compound symbol that
follows the stem. A tail can consist of constant
symbols, simple symbols and periods.

TCP (Transmission Control Protocol) A
communications protocol used in the Internet and in
any network that follows the Internet Engineering
Task Force (IETF) standards for internetwork
protocol. TCP provides a reliable host-to-host
protocol in packet-switched communication
networks and in interconnected systems for such
networks.

TELNET (Teletype Network) Network protocol
used on the Internet or local area network (LAN)
connections. The term also refers to the software
that implements the client part of the protocol, and
this is the meaning in this book. The TELNET
command enables remote users to log on to a
foreign host that supports TCP/IP using a telnet
client. The z/OS UNIX telnet server is started for
each user by the inetd listener program.

JESJCL DDNAME where JCL statements of
the job are written.

MCS (Multiple Console Support) A feature of MVS
that permits selective message routing to multiple
consoles. MCS consoles are either output-only
devices like printers or input/output devices like a
3279 display console.
To extend the number of consoles on MVS systems
or to allow applications and programs to access
MVS messages and send commands, an installation
can use extended MCS consoles. The use of these
consoles can help alleviate the constraint of the 99
MCS console limit. Moving to an extended MCS
console base from a subsystem-allocatable console
base will allow for easier expansion in a sysplex.
You can define a TSO/E user to operate an
extended MCS console from a TSO/E terminal. The
user issues the TSO/E CONSOLE command to
activate the extended MCS console.
An installation can also write an application program
to act as an extended MCS console. An authorized
program issues the MVS authorized macro
MCSOPER to activate and control the extended
MCS console and uses other MVS macros and
services to receive messages and send commands.

TSO (Time Sharing Option) Base element of z/OS
operating system with which users can interactively
work with the system. It fills the same purpose as the
login sessions used by users on UNIX or Windows.
It was originally introduced in the 1960s,
time-sharing was considered then an “optional
feature”, and hence TSO was offered as an optional
feature of OS/360. It became a standard part of the
system with the introduction of MVS in 1974.

 Glossary 311

UNIX System Services An element of z/OS that
creates a UNIX environment that conforms to XPG4
UNIX 1995 specification and that provides two
open-system interfaces on the z/OS operating
system: an application programming interface (API)
and an interactive shell interface.

UNIX A highly portable operating system, originally
developed in the 1960s and 1970s by a team of
AT&T employees at Bell Labs, that features
multiprogramming in a multiuser environment. The
UNIX operating system was originally developed for
use on minicomputers, but was adapted for
mainframes and microcomputers. The AIX operating
system is the implementation of the UNIX operating
system from IBM. The owner of the trademark UNIX
is The Open Group, an industry standards
consortium. Operating systems can only use the
UNIX trademark if they have been certified to do so
by The Open Group. UNIX-compatible operating
systems that are not certified by The Open Group
are typically referred to as “UNIX-like”. For instance,
Linux® is a UNIX-like operating system.

Web server A software program that is capable of
servicing Hypertext Transfer Protocol (HTTP)
requests. It accepts HTTP requests from clients
which are generally known as Web browsers, and
serving them HTTP responses along with optional
data contents.

WebSphere An IBM brand name that
encompasses tools for developing e-business
applications and middleware for running Web
applications.

WLM (WorkLoad Manager) Component of z/OS
that provides the ability to run multiple workloads at
the same time within one z/OS image or across
multiple images.

WLM enclave An enclave is an anchor for a
transaction that can be spread across multiple
dispatchable units in multiple address spaces.
These multiple address spaces can even span
across multiple systems in a parallel sysplex.

z/OS An operating system for the IBM eServer™
product line that uses 64-bit real storage. It is the
successor to the mainframe operating system
OS/390, combining MVS and UNIX System
Services.

312 Implementing REXX Support in SDSF

Index

Symbols
@SYSCMD 159
_BPX_BATCH_SPAWN 33

Numerics
2-byte length 137
3270 307
3270 terminal 34

A
A,C Lass 160, 189
abnormal condition 174, 193
access 31
address SDSF

command 105
instruction 105
interface 125
R2S_Cmd 128

address space 38
AIX 266, 307, 312
ALLOCATE command 23
ALTERNATE 179, 194–195
AMRF, Action Message Retention Facility 307–308
API, application programming interface 312
application program 82, 123

data area storage 139
ultimate return 143

ATM, automated teller machine 266, 307

B
batch job 82, 102, 154, 173, 265

several groups 82
BPXBATCH, MVS utility 31–33, 307
BSAM 148

C
call exec_sdsf 158, 169, 179, 195
call isfcalls 19, 91, 128
call msg 86
CEEGTST 148
character string 43

© Copyright IBM Corp. 2007. All rights reserved.
chmod 31
chown 31
CICS 263
CK, Health Checker panel 307
client program 198
cmde, ISPF command 25
COBOL 148
COBOL, Common Business Oriented Language
307
command invocation 57
command line 4, 38, 100
command response 38, 41, 63

character string 74, 76
first line 67
fourth line 71
outstanding reply message ID 53
RESPONSE_MSG input parameter 52
second line 69

CondCode 86
console 307
CPU time 263

D
D T 38, 62
D, Display command 191
DA command 5
DA, Display Active Users panel 307
data set name 164
DATEE 157, 168
DATEE, Date that execution began 157
DATEN, Date that execution ended 180
DATER, Date that the job was read in 180
DB2 263
DDNAME 169
DELAYED 179, 194–195

option 7
Delayed column

definition 7
device 262
double quotation mark

entire operand string 56
double quotation marks

character string 56

 313

E
Eclipse 307
e-mail address 174
EMCS 38, 60
ENC, Enclaves panel 307
entry point

REXDRIVR 128
REXXDONE 128, 143, 147
REXXSDSF 128, 139

ESYSID 168
EXECIO 148

F
final subpattern 111
FIND_EMCS_CONSOLE subroutine 42
free f 19

G
grep 163

H
H, Held Output panel 307
HFS, hierarchical file system 33
high-level language 123
HLL, High Level Programming Language 308
host command environment

system command 38
host command environment (HCE) 38, 155, 167,
177, 193
HTTP 309, 312
HTTP requests 312
HTTP responses 312
HTTPS 309

I
I, Input Queue panel 308
IBM 164
IBM Health Checker for z/OS 307–308
IBM Redbooks

publication 1
Web server 305

IBM z/OS 22, 32, 34, 307, 309–312
IBM z/OS SDSF. See SDSF
IEA093I Module 170
IEA995I 160
IEE600I Reply 170
IEFACTRT, SMF exit 182–183

IKJEFT01 27
IKJEFT01, running TSO/E in batch 27
IKJEFT1A 27
IKJEFT1A, running TSO/E in batch 27–28
IKJEFT1B 27
IKJEFT1B, running TSO/E in batch 27–28
IMS 170, 263
IMS, Information Management System 308
inetd daemon 34
INIT, Initiator panel 308
initial subpattern 111
Inner subpattern

2 MM 111
inner subpattern 111
IRXEXEC 28
IRXJCL 28, 30, 160, 189, 308
ISF031I message 58
ISFACONS ATTR 21
ISFACT 17, 19, 158, 169, 308
isfact 9–10, 181
ISFACT St 17, 169, 181
ISFACT, Action characters host environment com-
mand 182
ISFACT, Actions characters host environment com-
mand 182
ISFADEST ATTR 21
isfcalls 156, 167, 177, 193
isfcols 157, 168
ISFCULOG ATTR 21
isfddname 158, 182
ISFEXEC 17, 19, 169, 179
isfexec 9–10
ISFEXEC host command 37–38

slash command 38
system command 37

isfexec st 4, 17, 84, 158, 195
isffilter 168
ISFGROUP ATTR 21
ISFIPREF ATTR 21
ISFMSG 194
ISFMSG2 17
isfowner 157, 178, 196
isfprefix 157, 178, 196
isfPrtDDNAME 168
isfsort 157, 168
ISFTRACE 18, 20
ISFTRACE ddname 18–19
ISFTRACE variable 19
ISFTRMASK 18

314 Implementing REXX Support in SDSF

ISPCMDE, ISPF panel 25
ISPF 170–171, 199
ISPF CREATE 21
ISPF Dataset List Utility 26
ISPF VIEW 21
ISPF, Interactive System Productivity Facility 22,
24, 308
ISSUE_COMMAND subroutine 42

J
Java, programming language 308
JC, Job Class panel 308
JCL 98, 189
JDDNAME 181
JDK, Java Development Kit 308
JDS, Job Data Set panel 308
JES resource 120, 123
JES, Job Entry Subsystem 308
JES2 168
JES2, MVS subsystem 307–310
JES3, MVS subsystem 309
JESJCL 311
JESMSGLG 182, 263, 309
JESYSMSG 183, 263, 309
JNAME 157, 168
JNAME, Job name 157–158, 169, 179–181,
195–196
Job Data Set (JDS) 175
Job Id 174
Job name 174
JOBID 157, 168
JOBID, JES2 Job id 179
JOBID, JES2 job id 180
JOE, Job Output Element 310
JQE, Job Queue Element 310
JSTEPN 181

K
keyword parameter 42, 45

L
LEN 21
LI, Lines panel 309
Linux 312
LLA 67
LOADDD 23, 29
LOGON procedure 23

LPAR 82, 309

M
MAS, Multi-Access Spool 309–310
MAS, Multi-Access Spool panel 309
MCS, Multiple Console Support 311
message IEA995I 160
Microsoft Windows 34
Mike Cowlishaw, designer of the REXX program-
ming language 310
Multiple Console Support (MCS) 38
MVS 165
MVS batch 28
MVS system commands 4
MVS, Operating system 22, 309, 311–312
MVS, operating system 22, 307, 309–311

N
NO 196
NO, Node panel 191
NO, Nodes panel 309
nonblank filter 99
NP 158
np 9
NP column 8, 105

O
O, Output Queue panel 309
OCOPY, Copy an MVS data set member or z/OS
UNIX file to another member or file 165
OEDIT 309
OEDIT, Edit an z/OS UNIX file system file 165
OMVS 33
OMVS command 31
OMVS, command 34
Open Group, The 312
OpenSSH, network connectivity tools 35
operator 262
output queue 262
OVERTYPE command 100

P
parm 9
parm list 125
PARMLIB 308
partitioned data set 81
PDF 25

 Index 315

PDF, Program Development Facility 22
port 309
port number 189
POWER architecture 307
PR, Printer panel 309
PREFIX option 10
Primary EMCS 39
printer 262
PROMPT option 23
PS, Processes panel 309
PUN, Punch panel 310

Q
QSAM 148
QUEUE 168

R
RACF 20, 199, 310
RACF SDSF class 18
RACROUTE macro 20
RB.SHVB Lock 142
RB.SHVN AMA 142
RC, special REXX variable 310
RDR, Reader panel 310
READ access 18
reader 262
READY, prompt 22
Recfm 88
Redbooks Web site

Contact us xvi
REQ_BLK (RB) 142
RES, Resource panel 310
RESULT, special REXX variable 310
RETCODE, Return code information for the job
179–180
return code

subroutine returns 44
return code (RC) 11, 20, 57, 156, 167, 179, 193
return rcode 19
REX 310
REXDRIVR program 125
REXX 1–2, 11, 37, 81, 97, 123, 164, 187, 310–311
REXX exec 11, 19, 37, 50, 97, 124, 160, 181, 265

output 58–59
result 54
return code 11
SDSF functions 11

REXX help 18, 267, 310

REXX interpreter 33
REXX language 153, 174, 193, 264

SDSF support 193
REXX procedure 157
REXX program 134, 155, 168, 174, 177
REXX variable 2, 17, 105, 125

4-byte count 137
access interface 145
access routine 129
isfcols 7, 105

rexxhelp 18, 267, 310
rlogin 31, 34
RM, Resource Monitor panel 310
RMF, Resource Measurement Facility 307, 310

S
SA 158
SA, Allocate authorized data sets 182
SA, Allocate authorized data sets command 182
SAFRC 20
same way 18, 38, 128

delay time limit 39
user command authority 39

scanning SYSLOG 159
scheduling environment 310
SDSF 41, 163, 187

command line 6
command processor 188
command XFC 169
environment 89, 105, 125, 193
host

command environment 49, 157, 167, 177,
193
environment 38, 156, 167, 177

issue 38
long message 41, 51
short message 41
support 37, 154, 173–174, 193, 223, 264, 266
trace 17

SDSF information commands 4
SE, Scheduling Environment panel 310
Security Authorization Facility (SAF) 20
service level agreement 265
SET Delay 39
SET_VARIABLE routine 142
single ISFEXEC 19

execution phase 19
initialization phase 19

316 Implementing REXX Support in SDSF

single quotation mark 40, 48
slash command 11, 38

optional parameters 41
SMF, System Management Facility 310
SO, Spool Offload panel 310
Socket 191
socket 311
sort 163
SP, Spool Volumes panel 311
SR, System Requests panel 308
SSH 266
SSH, protocols 35
ST 169, 191, 195–196
ST, STatus panel 157–158, 179, 311
started tasks 263
STATUS 169
STatus panel 178–179
STC, started task 264
STDENV 33
STDERR 33
STDOUT 33
STDPARM, parameters of BPXBATCH 32
stem variable 4, 38, 105, 126

data area 126
stem, type of variable 169, 180, 182, 190, 195, 311
STEPN 181
subroutine return 44
subsystems 263
SYSABEND 160
SYSEXEC 23, 28–29, 189
SYSLOG 155, 157–158, 165, 168–169
SYSLOG job 157–158, 168
SYSMDUMP 160
SYSNAME 168
SYSOUT 18, 81, 264
SYSOUT class 100
SYSOUT data 81, 174
SYSPLEX 199
sysplex 170, 310–312
SYSPRIMARY SYSSECONDS 89
SYSPROC 23, 28
system command 11, 37, 67, 74, 154, 161

command response delay time limit 40
ISFCONS variable 50

System Display and Search Facility. See SDSF
system log 170
system-determined EMCS 58
SYSTSIN 28
SYSTSPRT 28, 189

SYSUDUMP 160

T
tail, part of compound REXX symbol 311
TCP, Transmission Control Protocol 311
TCP/IP 190–191, 309
telnet 31, 34
TELNET, communications command 266, 311
TIMEE 157, 168
TIMEE, Time that execution began 157
TIMEN, Time that execution ended 180
TIMER, Time that the job was read in 180
TMP, terminal monitor program 27
TOKEN 17, 157–158, 168–169, 180
token 9
TRACE command 18
TRACE ON 18
TSO

address spaces 21
batch execution 27
command 165
console command 311
environment 89, 307
interactive address spaces 22
line mode 22
terminal 311
Time Sharing Option 22, 28, 311

TSO user 181
turnaround 265

U
ulog 262
UNIX 163, 165, 307, 312
UNIX System Services 34, 309, 312
user log (ULOG) 262
USING R4SREFER 140

V
VERBOSE 17, 179, 181, 194–195
VERBOSE parameter 17
View 166

W
Web 266
Web server 312
Web Site 305
WebSphere 266, 312

 Index 317

WLM, WorkLoad Manager 33, 262, 310, 312
WLM, WorkLoad Manager, enclave 307, 312
work area (W/A) 125
Write to Operator Reply (WTOR) 50, 74

X
XDC 21
XFC 21, 169
XPG4, standard UNIX specification 312

Z
z/OS 22, 32, 34, 307, 309–312

Communications Server 34
shell 33
UNIX 31, 34
UNIX System Services 34

318 Implementing REXX Support in SDSF

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Im
plem

enting REXX Support in SDSF

®

SG24-7419-00 ISBN 073848914X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Implementing REXX
Support in SDSF

Harness the power of
SDSF with the
versatility of REXX

Write powerful REXX
code to manage your
environmen

Access SDSF outside
of your mainframe

The Restructured Extended Executor (REXX) language is a
procedural language that allows you to write programs and
algorithms in a clear and structural way. It is an interpreted
and compiled language, and you do not have to compile a
REXX command list before executing it.

With IBM z/OS V1.9, you can harness the versatility of REXX
to interface and interact with the power of SDSF. A new
function called REXX with SDSF is available that provides
access to SDSF functions through the use of the REXX
programming language. This REXX support provides a simple
and powerful alternative to using SDSF batch.

This IBM Redbooks publication describes the new support
and provides sample REXX execs that exploit the new
function and that perform real-world tasks related to
operations, systems programming, system administration,
and automation. This book complements the SDSF
documentation, which is primarily reference information.

The audience for this book includes operations support,
system programmers, automation support, and anyone with
a desire to access SDSF using a REXX interface.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Introduction and overview
	The REXX with SDSF interface
	Telling SDSF to execute commands
	Panel display commands

	New capabilities of REXX with SDSF in z/OS V1.9
	SDSF programming practices
	Host environment verses interactive environment
	Recommendations
	Tune the command processing
	Areas to consider

	Debugging tools
	VERBOSE parameter
	SDSF trace

	Running REXX executables
	TSO/E address spaces
	Batch non TSO/E address spaces
	UNIX System Services address spaces

	Chapter 1. Issuing a system command
	1.1 Command environment
	1.2 Considerations when issuing a system command in the host command environment
	1.2.1 Console name
	1.2.2 Console type
	1.2.3 Command authority
	1.2.4 Delay time limit

	1.3 Customization
	1.4 ISFEXEC operands
	1.4.1 System command
	1.4.2 Other optional parameters

	1.5 Command output
	1.6 REXX for SDSF system command executable samples
	1.6.1 Sample REXX exec - @SYSCMD
	1.6.2 Scenario 1 - Use the system-determined EMCS console
	1.6.3 Scenario 2 - Use an internal console
	1.6.4 Scenario 3 - Use a specific EMCS console
	1.6.5 Scenario 4 - Request for the initial command response
	1.6.6 Scenario 5 - Request for all command responses
	1.6.7 Scenario 6 - Confirm the execution of the system command
	1.6.8 Scenario 7 - Query for a started task status
	1.6.9 Scenario 8 - Query for a device status
	1.6.10 Scenario 9 - Reply to the system command generated WTOR
	1.6.11 Scenario 10 - Confirm the execution of the system command and reply to its WTOR
	1.6.12 Scenario 11 - Confirm the execution of the system command and the reply to the WTOR
	1.6.13 Scenario 12 - Suppress all outputs

	Chapter 2. Copying SYSOUT to a PDS
	2.1 Background and overview of this scenario
	2.2 Input to BUILDPDS
	2.3 Program flow
	2.3.1 Decoding the arguments
	2.3.2 Deleting and reallocating the PDS
	2.3.3 Interfacing with IBM z/OS System Display and Search Facility
	2.3.4 Writing the data to the PDS

	2.4 Suggestions for continued development

	Chapter 3. Bulk job update processor
	3.1 Scenario description
	3.1.1 Tasks that this scenario accomplishes
	3.1.2 Testing the scenario

	3.2 Programming the interface
	3.2.1 Program flow
	3.2.2 Retrieving SYSOUT information
	3.2.3 Generic filter processing
	3.2.4 Processing the CANCEL and OVERTYPE commands

	3.3 Processing the EXECUTE command
	3.3.1 A sample CLIST

	3.4 Future development

	Chapter 4. SDSF support for the COBOL language
	4.1 Understanding the middleware between a REXX exec and another language
	4.2 The pieces of REXDRIVR and how they work together
	4.2.1 The REX4SDSF exec

	4.3 The REXDRIVR interface program
	4.3.1 Entry point REXDRIVR - REX4SDSF function processor
	4.3.2 The Application Program’s view of SDSF: The parameter list
	4.3.3 Entry point REXXSDSF - Application program service routine

	4.4 Entry point REXXDONE - REX4SDSF completion routine
	4.4.1 Entry point REXXFREE - storage release routine

	4.5 The application programs included in the additional materials
	4.6 The COBOL point of view
	4.7 Improving the interface

	Chapter 5. Searching for a message in SYSLOG
	5.1 Scenario description
	5.2 Solving the issue with REXX with SDSF
	5.3 The actual code
	5.3.1 Parameters
	5.3.2 Program flow
	5.3.3 Configuring the SDSF execution environment
	5.3.4 Obtaining the SYSLOG job names

	5.4 Sample output

	Chapter 6. Viewing SYSLOG
	6.1 Scenario description
	6.2 Programming caveats
	6.3 Parameters
	6.3.1 Program flow
	6.3.2 Testing execution environment
	6.3.3 Parameter verification
	6.3.4 Configuring the SDSF execution environment
	6.3.5 Obtaining all the SYSLOG jobs

	6.4 Customization

	Chapter 7. Reviewing execution of a job
	7.1 Scenario description
	7.2 Solution
	7.2.1 Parameters
	7.2.2 Program logic
	7.2.3 Searching jobs
	7.2.4 Choosing the desired job
	7.2.5 Searching the report
	7.2.6 Processing the report
	7.2.7 Analyzing job execution
	7.2.8 Program output
	7.2.9 Possible enhancements

	Chapter 8. Remote control from other systems
	8.1 System structure
	8.2 The main server
	8.2.1 Main server’s program logic

	8.3 SDSF command processors
	8.3.1 Parameters
	8.3.2 Program logic

	8.4 A sample client
	8.5 Extending to more complex environments

	Chapter 9. JOB schedule and control
	9.1 Scenario description
	9.2 Implementation
	9.2.1 Server program
	9.2.2 Client program
	9.2.3 Personalizing the server code

	9.3 Compile and customize the sample programs

	Chapter 10. SDSF data in graphics
	10.1 TCP/IP socket communications
	10.1.1 TCP/IP socket functions

	10.2 Description of the server program
	10.2.1 Initializing the program
	10.2.2 Commands accepted by the server
	10.2.3 REXX with SDSF function call
	10.2.4 Running the server program
	10.2.5 Configuration of the server program

	10.3 First client program
	10.3.1 Use of the program

	10.4 Second client program
	10.5 Third client program
	10.6 Extending the examples
	10.7 How to compile the Java programs

	Chapter 11. Extended uses
	11.1 A different desktop for each role
	11.2 Control your subsytems
	11.3 Application point of view of the system
	11.4 Verify the service level agreement of your batch jobs
	11.5 Remote control of your system
	11.6 Add SDSF commands and data to your own tools
	11.7 Create a personalized Workload Manager

	Appendix A. REXX variables for SDSF host commands
	REXX variables
	REXX variables for SDSF commands.

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Glossary
	Index
	Back cover

