NetRexx Tutorial

homas Schneider, |

-Consultant

WWW.Rexx2Nrx.com

Rexx LA meeting

IBM Laboratories, Boeblinge

Purpose of this Tutorial

Intended for Classic Rexx and/or IBM
Object Rexx users

With a working REXX knowledge

And the Need/Desire to quickly learn
NetRexx basics

Based on the language differences

From classic Rexx to NetRexx

Same/Similar language constructs
But with subtile differences

Both iIn Semantics
... and Syntax (Notation)
We Focus on the differences now

Notation of String Literals

Backslash(\) used as an ESCAPE-character
Rexx Literal ,,C:\tutor\Tutorial.PTT"

Must be denoted as
,C:\Wutor\Tutorial.PPT"

Attention: special escape sequences!!

Escape Seqguences in String

\t Tabulation (tab)
\n new-line (line-feed)
\r return (carriage

return)

\f formfeed

\" double quote
\' single quote

Literals

\O null character

\xhh hexadecimal
character defined by
hex digits (hh)
\uhhhh unicode

character defined by
hex digits (hhhh)

\\ represents single
backslash !

Notation of Hexadecimal and Binary
Literals

0123456789ABCDEF‘x In Rexx

Is: 16x'0123456789ABCDEF' in NetRexx
,01000100‘b In Rexx

|s: 8b‘01000100° in NetRexx

Both upper/lowercase x/b allowed
Length O may be used (literal length counts)

Notation of Variable Names

* As usual in Programming languages, but

— NO exclamation points (!) allowed in Variable
names

— NO question marks (?) allowed in variable
names

— In general: NO special characters (except ,%*
and underline ,,)

— So why we did allow them in the first place ?

Notation of Stems

Rexx notation isabc.def
ODbject Rexx notation isabc.def

OR abc|def]
NetRexx notation ISONLY abc[def]

And Stem must be defined asRexx
Variable before first usage, I.e.

abc = Rexx <default value>

Notation of Stems (2)

With multiple Indices:
Rexx notation is abc.x.y.z
Object Rexx notation Is abc.x.y.z

OR abc[x,y,Zz]
NetRexx notation is ONLY abc|[x,y,z]

And each Stem must lefined as a Rexx
Variable before first usage, I.e.

abc = Rexx <default value>

Notation of Stems (3)

Stems are now called ,Indexed Strings® In
NetRexx

Wrong, wrong, Mike

Better we would be able to define a Stem as
— X = RexxStem |
— OryY=Stem, etc

IN NetRexx, you never know from the ,first
Declaration* whether a Variable (Property) is a
(Rexx) Stem or a (Rexx) String !! (it's a pity)

Attention (NetRexx specifics)

e X =Rexx/
 May be

— asimple ,Rexx‘ ,String‘ (to be able to use the NetRexx
String functions (like length, index, pos, lastpos, etc,

etc)
— A Word-List (to be able to use words(), wordpos(), etc)
— A ,classic Rexx’ Stem
— A ,Rexx' Decimal Number
— or each/any of that.

e But you cannot see from the NOTATION which
variation is used.!

Using Functions vs. Methods (In
Object Oriented Languages)

Itsa PITY |

When | do have a simple (Java) String, | can NOT
use the ,Rexx' WORDS or WORDPOS functions,

for instance, directly, on this String.

| will have to declare/convert it to a REXX String
before — anyway, you may use Rexx(String)!

Correct ?7?

So why cannot we use Functions here (which
will be applicable to all cases) ? Sorry, but why?

Attention

« Same notation for INDEXED ARRAYS and

INDEXED Strings (formerly called ,Stems’) in
NetRexx, I.e.

o abc[x,y,z]

e may be
— A NetRexx Indexed String (Stem) reference OR
— A NetRexx/Java Array reference !

— depending on initial ,TYPE' Definition

Attention (2)

e Object REXX Array Indices start with 1
* but NetRexx/Java Indices start with O

— hence abc[l] is the FIRST element in Object
Rexx

— But abc[1] is the SECOND Element Iin
NetRexx or Java

— This difference applies ONLY to ARRAYS,
NOT to Stems !

CONTINUATION character

CONTINUATION character

— is atrailing COMMA (,) in classic Rexx and Object Rexx
— Butis a trailing HYPHEN (-) in NetRexx

Advantage / pitfall ??

Why do we need it at all (except for ,abut’) ???

Rey Rule (1): If a lineends with an OPERATOR, the next
line is a continuation.

Rey Rule (2): If a linestarts with an OPERATOR (like +,-
*.1.&,|,\, etc,etc) tMUST BE a continuation!
Or what ?

NOTES (inline comments)

e Concept of NOTES was always missing in Rexx!

e A Note'isa COMMENT at the end of the line

— Must be written as /* my note */ in classic Rexx

— Object Rexx and NetRexx use the double hyphen (--) to
Introduce a NOTE (as in SQL)

— Note that Java uses ,//' to introduce a Note (and ,--‘ as
the decrement operator (which means REMAINDER iIn
REXX 1))

— A NOTE Iis always finished on the same line !

e ... Bytherivers of BABYLON !!

Operators

o Same set of operators in NetRexx than in classic
Rexx!

 But COMPARISON of Text strings is CASE-

BLIND by default !!
— Hence ,abc’ = ,ABC' In NetRexx !

— Must use ,strict comparison‘ in NetRexx when needing
CASE-sensitive Comparison.

— Probably more natural than original REXX definition !
— Good choice for a change, Mike!

Concept of I YPES

A
classic REXX" and OBJECT REXX are
essentially TYPE-LESS languages!

NetRexx (and Java) use/need STRICT TYPING

NetRexx uses type ,Rexx‘ as default (and type
Rexx Is essentially TYPE-LESS again in
NetRexx!)

But NetRexx Type ,Rexx" is overloaded with too
many different semantical meanings (Rexx String,
Rexx Indexed String (Stem), Rexx WordList,
Rexx (Decimal) Number, etc, etc)

Standard (Primitive) T YPES

Boolean (0/1)
Byte (0,1,2,3,4,5,6,7)
Short (half word SIGNED Integer)

Int (full word SIGNED integer)

Long (double word SIGNED integer)

Float (full word SIGNED Real Number)
Double (double word SIGNED Real Number)

Char (is a UNICODE Character in
NetRexx/Java)

Primitive Types identical to Java!

Dimensioned TYPES

Any Variable may be DIMENSIONED

Use square BRACKETS (,[, and ,]') to
define dimensions

X =1int[3,5]
Y = char[17]

But NOTE that first ELEMENT has Index O
and NOT 1 !l (ill designed by Javal!!)

Difficult to distinguish Stems and Arrays!

Dimensioned TYPES

Any Variable may be DIMENSIONED
Use square BRACKETS (,[, and ,]') to

define dimensions
X =1Int[3,5]
Y = char[17/]

But NOTE that first ELEMENT has Index O
and NOT 1 !l (ill designed by Java!!)

Dimensioned TYPES (2)

« Empty Index bounds are acceptible
o Similar to the concept of ,adjustable‘ arrays

In other languages

 Hence the following declarations are OK
— X =int[,,]
— Y = charl]
— Z = Rexx]]

Initial (default) Values

 NetRexx uses the EQUAL Sign for TYPE
definitions

 Hence syntax Is

— name = <type> [<dimensions> | <default
value>

* Probably using the colon instead of the

equal sign would have been a BETTER
decision !!!

... WRHY ?

With the current NetRexx notation you
NEVER know whether a clause is an
assignment or a type definition!

Would also correspond more naturally to
languages as Pascal or UML (Unified
modelling language)

item_no = Rexx 0 /*Stety/
What do you think ?

Example 1: The QTSMALL program

 The (ONLY) example of Mike Cowlishaws
books ,the REXX language* and ,the
NetRexx language’.

e So what's different ?

« <BREAK>

So what's different: Labels and
Procedures vs Methods

Rexx and Object Rexx have the concept of
_abels

Denoted by a colon following the label
name

 And there is a GO TO statement (named
SIGNAL) in Rexx !

So what's different;: SIGNAL vs
RAISE vs SIGNAL

Simple SIGNAL in REXX isa GO TO
Object Rexx also has RAISE for ,Raising

an Exception’

Which is THROW in Java and SIGNAL In
NetRexXx!

... by the rivers of BABYLON!

Jumping FORWARD and
BACKWARDS

.
[* example3: simple loops */
F=,abc.def’ /* a simple sample file */
N=0
Loopl:
X = linein(F)

If length(x) = 0 then signal end_of file
n=n+1

say X
signal loopl
End_of file:
say n ,lines read’
exit

Jumping FORWARD and
BACKWARDS (classic Rexx)

L
[* example3: simple loops */
F=,abc.def’ /* a simple sample file */
N=0
Loopl:
X = linein(F)
If length(x) = 0 then signal end_of file
n=n+1
say X
signal loopl
End_of file:
say n ,lines read’
exit

Import Rexx2Nrx.Rexx2RT.RexxFile
class example3 uses RexxFile
properties public static
FD_F = RexxFile Null
F = Rexx 'abc.def' i
n=int0
XX = Rexx "
method main(args=String[]) static

arg=Rexx(args) -- program arguments as single string
arg=arg -- avoid NetRexx warning

F ='abc.def'

FD_F = RexxFile.FD(F).access('READ')

n=0

Loopl()

exit

method Loopl() static public;
/[* ... Attention: label: Loopl is jumped back! */
loop label Loopl again forever
xX = FD_F.linein()
If xx.length() = 0 then do
End_of file()

return
end--Iif
n=n+1
say n||"'||xx
iterate Loopl again
end--Loopl_again

method End_of file() static public ;
say n 'lines read'
exit

Summary

Variables are calleBroperties in NetRexx

GLOBAL variables must be defined ahead of
their usage (aSTATIC Properties after the

CLASS statement)

As all variables are LOCAL by default (as in
Object Rexx ::Methods and ::Routines !!)

Avoid Labels whenever possible, use
STRUCTURED Statements !!

Standard Program Layout
(Declarations)

OPTIONS BINARY (when applicable)
IMPORT package-name [.class-name]

_ASS class-name [USES class-name-list]
ROPERTIESPUBLIC STATIC

obal ,Variable' declarations/(sible outside class)
ROPERTIESPRIVATE STATIC

obal ;Variable' declarationsrnvisible outside class)

Standard Program Layout (Code)

e ME D met
Y= D met

 ME D met

nod-name PUBLIC STATIC
nod-name PRIVATE STATIC

nod-name (parameter-list) ...

— Where parameterlist is COMMA-delimited LIST of
parameter-names (with types and default value)

— E.g. Namel,

Namez2, ... (default Type REXX)

—Or Namel=Typel, Name2=Type2, ...

Parameter Lists

Semantically similar to USE ARG name-list in Object-
Rexx METHODS.

Parameter Nameaeaust be different to class
PROPERTIES

And ARE INVISIBLE (cannot be referenced) from
out-side of the respective METHOD

DEFAULT values may be provided for OPTIONAL
parameters, e.gQ:

METHOD ABC(parl= char[3], par2=int 0) PUBLIC
STATIC

Parameter Lists

Semantically similar to USE ARG name-list in Object-
Rexx METHODS.

Parameter Nameaeaust be different to class
PROPERTIES

And ARE INVISIBLE (cannot be referenced) from
out-side of the respective METHOD

DEFAULT values may be provided for OPTIONAL
parameters, e.gQ:

METHOD ABC(parl= char[3], par2=int 0) PUBLIC
STATIC

Caution

* Notice thatPARSE ARG iIsONLY
available for theM AIN program (main
method)

 Notice thatPULL andPARSE PULL are
NOT avalilable

* Do not forget the keywor&TATIC for
methods associated with the CLASS, and
NOT the Objects constructed by the class.

Structured Statements

e« Same structured statements than classic REXX

* With a few exceptions/additions:
— Repetitive DO is called LOOP now

— Additional key-words:
e Label name
* Protect term
« Catch excption
« Finally instruction-list

* Very well designed by M.F. Cowlishaw ...

Structured Statements (2)

Even PARSE-statement available

PARSE statement variations no longer used
(reserved Variable names like ARG, SOURCE,

etc used in turn)

With same Syntax and Semantics of the
TEMPLATES than classic Rexx

With a small exception:

— No QUALIFIED Variables (like stems, etc) allowed in
NetRexx (why ?)

Caution (2)

* Notice that up to now we still didn‘t use any
OBJECTS

e But we ARE now able to Write/Generate
(procedural) NetRexx Code, at least.

* Object Oriented Programming is another
art, not part of this initial tutorial.

Good LUCK

