
BY L IONEL B. DYCK

THE REXX programming language is very flexible and
powerful, but it lacks a simple built-in facility to

extract arguments passed when you call a REXX program as
a TSO command with arguments. The older, some say obsolete,
TSO CLIST programming language supported command line
arguments via the PROC statement, which has no equivalent
in REXX.

However, by using the power of the PARSE function in
REXX, you can easily come close to duplicating the TSO
CLIST PROC functionality and with some additional coding,
you can surpass it. Figure 1 shows the full PARSE syntax.

First, what is a command line argument? When you call a
TSO command, you can provide additional information on
the command line, such as arguments or parameters. The sys-
tem passes this additional information to the called program.
The REXX programming language provides a function
called arg, which will take the command line arguments and
put them into one or more REXX variables that you can use
within the REXX program.

For example, if the user entered the command test one
two three, the command name is test and the arguments are
one two three. To access these arguments you would code
the statement arg options to put all three arguments into
the single variable options. You could also code arg one
two three to place each argument into its own variable.
These are called positional arguments because if you do
not enter argument two, then argument three becomes
argument two.

The arg function will translate the arguments into upper
case. If you want to retrieve the arguments in mixed case use
the statement parse arg ... which will take the arguments in
whatever case the user entered them.

This is the simplest form of parsing the command line
arguments.

Now, let’s say you want to enter something other than posi-
tional arguments. For example, you want to use keywords.
You would enter test one(abc) two(def) and you do not want
to require that both arguments be entered. To deal with this,
you could code the REXX statement shown in Figure 2. This
works in the following way:

● Line 1 uses the arg function to pull the entire set of
command line arguments and places them into the
variable options. All of the arguments are converted to
upper case for this example.

● Line 2 then parses the variable options using the parse
var function, starting at position 1 looking for the literal
ONE(and ending with a). Any value found between the
ONE(and the) will be placed into the variable one.
Parsing then resumes starting at position 1, again
looking for the literal TWO(and ending with another)
and placing the data found between the TWO(and)
into the variable two.

This simple parsing works and allows the user to enter only a
single keyword with its parameter or to enter both keywords
in any sequence.

Figure 3 shows a similar approach to parse the command:
test in dataset out dataset. In this case, the parameters for the
keywords are not enclosed in parentheses.

Line 1 uses the arg function to take all of the command line
arguments and places them into the single variable options

How to Parse Command
Line Parameters in REXX

While it is one thing to write a program in REXX, it is an entirely different process to enable
the program to take command line arguments. This article demonstrates several different

techniques you can use to process command line arguments in your REXX program.

TECHNICAL SUPPORT • JUNE 2002

Author’s Note: This article is intended for someone
who is familiar with REXX and who wants to learn more
about dealing with command line arguments. The infor-
mation is applicable to REXX on various platforms.

©2002 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

while translating them to upper case. This is the default for arg; use
parse arg to retrieve the passed data without case translation.

Line 2 inserts a single blank in front of the data in the variable
options. This enables the next statement to find the string IN or the
word OUT which requires that blanks surround them. If this state-
ment is not surrounded by blanks, it is possible to find the literal IN
or OUT within the parameters for the keywords.

Line 3 parses the variable options starting in position 1, looking
for the literal “ IN “ and placing the next string into the variable
inda and ignoring every string after that as indicated by the period.
The parsing then resumes in position 1 looking for the literal “
OUT “ and placing the next word into the variable outda and ignor-
ing every word after that as indicated by the period. Note that a
string is a set of characters ending with a blank.

Lines 4 and 5 echo to the terminal the resulting values of inda
and outda.

All of this is fine if all of your arguments are upper case, however
that is not always the case (no pun intended).

To process input keywords and arguments with mixed case
requires more extensive coding. Figure 4 shows an example of a
simple case.

● Line 1 takes the command line
arguments and places them into a
single variable option. Because we
are using parse arg, the case of the input will not be altered.

● Line 2 translates the variable options into upper case in vari-
able uoptions.

● Line 4 uses the parse function to set variables one, two, and
null to a null value. That way, if one of the keywords is not
found, the associated variable will be null.

● Line 6 tests for the existence of the word ONE in the variable
uoptions, and if the position is greater than 0,
meaning that it was found, then lines
7 to 9 are processed.

● Line 7 places the word position into variable wp.

● Line 8 extracts the word wp+1 and places it into variable one
from the variable options (the variable with the mixed case data).

● Line 9 is the end of the do loop.

● Line 10 tests for the word TWO in the variable uoptions and if
found then
executes the do loop in lines 11 to 13.

● Line 11 places the word position into variable wp.

● Line 12 extracts the word wp+1 from the options variable into
variable two.

● Line 13 is the end of the do loop.

● Lines 15 and 16 use the say function to echo to the terminal
the values that were found.

The creation of a variable called null with a null value is very
helpful in self documenting your code, as it is clearer to test for a
variable of null than to test for “”.

These are just a few of the many options you can use to process
command line arguments in your REXX program.

USEFUL REXX REFERENCES

● The REXX Language Association on the Web at
www.rexxla.org.

● An excellent list of REXX publications on the Web at
www2.hursley.ibm.com/
rexx/rexxbook.htm maintained by the originator of REXX,
Mike Cowlishaw.

● The IBM REXX Web site at www2.hursley.ibm.com/rexx.
● The IBM REXX Product Web page at www-4.ibm.com/

software/ad/rexx.

TECHNICAL SUPPORT • JUNE 2002

1. parse arg options
2. uoptions = translate(options)
3.
4. parse value “” with one two null
5.
6. if wordpos(“ONE”,uoptions) > 0 then do
7. wp = wordpos(“ONE”,uoptions)
8. one = word(options,wp+1)
9. end
10. if wordpos(“TWO”,uoptions) > 0 then do
11. wp = wordpos(“TWO”,uoptions)
12. two = word(options,wp+1)
13. end
14.
15. say “one:” one
16. say “two:” two

FIGURE 4: PARSING MIXED CASE ARGUMENTS

1. arg options
2. parse var options 1 “ONE(“one”)” 1 “TWO(“two”)”

FIGURE 2: PARSING KEYWORDS

1. arg options
2. options = “ “options
3. parse var options 1 “ IN “ inda . 1 “ OUT “ outda .
4. say “IN: “ inda
5. say “OUT:” outda

FIGURE 3: PARSING KEYWORDS — NO PARENTHESIS

FIGURE 1: THE PARSE SYNTAX (FROM IBM Z/OS
REXX REFERENCE SA22-7790-02)

©2002 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

● The IBM z/OS 1.2 TSO/E REXX Reference at
http://publibz.boulder.ibm.com/epubs/pdf/ikj4a310.pdf.

● The IBM z/OS 1.2 TSO/E REXX User’s Guide at
http://publibz.boulder.ibm.com/epubs/pdf/ikj4c310.pdf.

● The IBM z/VM 4.2 REXX/VM Reference at
www.vm.ibm.com/pubs/pdf/hcse2a30.pdf.

● The IBM z/VM 4.2 REXX/VM User’s Guide at
www.vm.ibm.com/pubs/pdf/hcsb3a20.pdf.

● The IBM REXX Compiler Web site at www-4.ibm.com/
software/ad/rexx/rexxcompd.html.

If you are new to REXX, be sure to check out Jeff Glatt’s Web site,
which claims you can “Learn REXX Programming in 56,479 steps”
at www.borg.com/~jglatt/rexx/scripts/language/language.htm.

You can also find numerous REXX examples for OS/390 and
z/OS at my Web site at www.lbdsoftware.com. Look on the ISPF
Tools and Toys page and the TCP/IP page.

NaSPA member Lionel B. Dyck is a lead MVS systems programmer for
a large HMO in California. He has been in systems programming since
1972 and has written numerous ISPF dialogs over the years. His
current project is evaluating Linux on the S/390 and zSeries platform.
Lionel is an active member of NaSPA and SHARE, and can be contacted
via email at Lionel.B.Dyck@kp.org.

WWW.NASPA.COMTECHNICAL SUPPORT • JUNE 2002

