
Input and Output in Rexx

Overview
Input/output, or I/O, is how a program interacts with its environment. Input may come from what
a user types in, an input file, or another program. Program output might be written to the display,
to an output file, or to a communication mechanism such as a pipe. These are just a few of the
possibilities.

Rexx provides a simple-to-use, high-level I/O interface. At the same time, Rexx aims for standard-
ization and portability across platforms. Unfortunately, this latter goal is difficult to achieve — I/O
is inherently platform-dependent, because it relies upon the file systems and drivers the operating
system provides for data management. These vary by operating system.

This chapter describes the Rexx I/O model at a conceptual level. Then it explores examples and
how to code I/O. The last part of the chapter discusses some of the problems that any program-
ming language confronts when trying to standardize I/O across platforms, some of the trade-offs
involved, and how this tension has been resolved in Rexx and its many implementations.

Rexx provides an I/O model that is easy to use and as portable as possible. Section II explores the
I/O extensions that many versions of Rexx offer for more sophisticated (but less portable) I/O.
Chapter 15 illustrates database I/O and how to interface scripts to popular database management
systems such as SQL Server, Oracle, DB2, and MySQL.

The Conceptual I/O Model
Rexx views both input and output as streams — a sequence of characters, or bytes. The characters in
the stream have a sequence, or order. For example, when a Rexx script reads an input stream, the
characters in that stream are presented to the script in the order in which they occur in the stream.

A stream may be either transient or persistent. A transient stream could be the characters a user
enters through the keyboard. They are read; then they are gone. A persistent stream has a degree

[This tutorial was excerpted from the Rexx Programmer’s Guide, Wiley, © 2005]

by Howard Fosdickby Howard Fosdick

of permanency. Characters in a file, for example, are stored on disk until someone deletes the file con-
taining them. Files are persistent.

For persistent streams only, Rexx maintains two separate, independent positions: a read position and a
write position. The type of access to the persistent stream or file determines which of these positions make
logical sense. For example, for a file that a script reads, the read position is important. For a file that it
writes, the write position is important.

The read and write positions for any one file may be manipulated by a script independently of one
another. They might be set or altered explicitly. Normally, they are altered implicitly as the natural result
of read or write operations.

Programs can process streams in either of two modes: character by character or line by line. Rexx pro-
vides a set of functions to perform I/O in either manner. These are typically referred to as character-
oriented I/O and line-oriented I/O. Figure 5-1 summarizes these two basic I/O modes.

Figure 5-1

A stream is typically processed in either one of the two I/O modes or the other. However, it is possible to
intermix character- and line- oriented processing on a single stream.

Like many programming languages, Rexx recognizes the concept of standard input and standard output.
The former is the default location from which input is read, and the latter is the default location to which
output is written. These defaults are applied when no specific name is encoded in a Rexx statement as
the target for an I/O operation. Standard input is normally the keyboard, and standard output is the dis-
play screen. Standard Rexx does not include the concept of a standard error stream.

As with variables, Rexx files are defined by their first use. They are not normally predefined or
“declared.” In standard Rexx, one does not explicitly “open” files for use as in most programming lan-
guages. Files do not normally need to be closed; they are closed automatically when a script ends. For
most situations, this high level of automation makes Rexx I/O easy to use and convenient. For complex

The Two I/O Modes

Line-oriented Character-oriented

Process one line at a time Process one character at a time

linein charin

lineout charout

lines chars

68

Chapter 5

programs with many files, a situation in which memory is limited, or when a file needs to be closed and
reopened, Rexx provides a way to explicitly close files.

Line-Oriented Standard I/O
With this conceptual background on how input/output works in Rexx, we can describe standard Rexx
I/O. Let’s start with I/O that considers the stream to consist of lines, or line-oriented I/O. Here the three
basic functions for standard line I/O:

❑ linein— Reads one line from an input stream. By default this reads the line from default stan-
dard input (usually the keyboard).

❑ lineout— Writes a line to an output stream. By default this writes to standard output (usually
the display screen). Returns 0 if the line was successfully written or 1 otherwise.

❑ lines— Returns either 1 or the number of lines left to read in an input stream (which could be
0).

This sample script reads all lines in an input file, and writes those containing the phrase PAYMENT
OVERDUE to an output file. (A form of this simple script actually found a number of lost invoices
and saved a small construction company tens of thousands of dollars!):

/* FIND PAYMENTS: */

/* */

/* Reads accounts lines one by one, writes overdue payments */

/* (containing the phrase PAYMENT OVERDUE) to an output file. */

parse arg filein fileout /* get 2 filenames */

do while lines(filein) > 0 /* do while a line to read */

input_line = linein(filein) /* read an input line */

if pos(‘PAYMENT OVERDUE’,input_line) >= 1 then /* $ Due? */

call lineout fileout,input_line /* write line if $ overdue */

end

To run this program, enter the names of its two arguments (the input and output files) on the command
line:

regina find_payments.rexx invoices_in.txt lost_payments_list_out.txt

In this code, the parse arg instruction is to arg as parse pull is to pull. In other words, it performs
the exact same function as its counterpart but does not translate input to uppercase. arg and parse arg
both read input arguments, but arg automatically translates the input string to uppercase, whereas
parse arg does not. This statement reads the two input arguments without automatically translating
them to uppercase:

parse arg filein fileout /* get 2 filenames */

69

Input and Output

This statement:

do while lines(filein) > 0

shows how Rexx programmers often perform a read loop. The lines function returns a positive number
if there are lines to read in the input file referred to. It returns 0 if there are none, so this is an easy way to
test for the end of file. The do loop, then, executes repeatedly until the end of the input file is encountered.

The next program statement reads the next input line into the variable input_line. It reads one line or
record, however the operating system defines a line:

input_line = linein(filein) /* read an input line */

The if statement uses the string function pos, which returns the position of the given string if it exists
in the string input_line. Otherwise, it returns 0. So, if the character string PAYMENT OVERDUE occurs in
the line read in, the next line invokes the lineout function to write a line to the output file:

if pos(‘PAYMENT OVERDUE’,input_line) >= 1 then /* $ Due? */

call lineout fileout,input_line /* write line if $ overdue */

There are two ways to code the lineout function:

call lineout fileout,input_line

or

feedback = lineout(fileout,input_line)

The recommended approach uses the call instruction to run the lineout function, which automati-
cally sets its return string in the special variable result. If the variable result is set to 0, the line was
successfully written, and if it is set to 1, a failure occurred. The sample script opts for clarity of illustra-
tion over robustness and does not check result to verify the success of the write.

The second approach codes lineout as a function call, which returns a result, which is then assigned to
a variable. Here we’ve assigned the function return code to the variable feedback. You’ll sometimes see
programmers use the variable rc to capture the return code, because rc is the Rexx special variable that
refers to return codes:

rc = lineout(fileout,input_line)

Now, here’s something to be aware of. This coding will not work, because the return string from the
lineout function has nowhere to go:

lineout(fileout,input_line) /* Do NOT do this, it will fail! */

What happens here? Recall that the return code from a function is placed right into the code as a replace-
ment for the coding of the function. So after this function executes, it will be converted to this if successful:

0

70

Chapter 5

A standard rule in Rexx is that whenever the interpreter encounters something that is not Rexx code
(such as instructions, expressions to resolve, or functions), Rexx passes that code to the operating system
for execution. So, Rexx passes 0 to the operating system as if it were an operating system command! This
causes an error, since 0 is not a valid operating system command.

We’ll discuss this in more detail in Chapter 14, when we discuss how to issue operating system com-
mands from within Rexx scripts. For now, all you have to remember is that you should either call a
function or make sure that your code properly handles the function’s returned result.

The lines function works slightly differently in different Rexx implementations. It always returns 0 if
there are no more lines to read. But in some Rexx interpreters it returns 1 if there are more lines to read,
while in others it returns the actual number of lines left to read. The latter produces a more useful result
but could cause Rexx to perform heavy I/O to determine this value.

The ANSI standard clarified this situation in 1996. Today ANSI-standard Rexx has two options:

❑ lines(file_name,C)— Count. Returns the number of lines left to read.

❑ lines(file_name,N)— Normal. Returns 1 if there are lines left to read.

For backward compatibility, the second case is the default. A true ANSI-standard Rexx will return 1 if
you encode the lines function without specifying the optional parameter, and there are one or more
lines left to read in the file. However, some Rexx implementations will return the actual number of lines
left to read instead of following the ANSI specification.

Standard Rexx does not permit explicitly opening files, but how about closing them? Rexx closes files
automatically when a script ends. For most programs, this is sufficient. The exception is the case where a
program opens many files and uses an exceptional amount of memory or system resources that it needs
to free when it is done processing files. Another example is the situation in which a program needs to
close and then reopen a file. This could happen, for example, if a program needed to sequentially pro-
cess the same file twice.

How a file is closed or how its buffers are flushed is implementation-dependent. Most Rexx interpreters
close a file by encoding a lineout function without any parameters beyond the filename. Just perform a
write operation that writes no data:

call lineout ‘c:\output_file’ /* flushes the buffers and closes the file –

in most Rexx implementations */

The stream function is another way to close files in many implementations. stream allows you to either:

Check the state of a file

or

Issue various commands on that file

71

Input and Output

The status check is ANSI standard, but the specific commands one can issue to control a file are left to the
choice of the various Rexx implementations. Here’s how to issue an ANSI-standard status check on a file:

status_string = stream(file_name) /* No options defaults to a STATUS check */

or

status_string = stream(file_name,’S’) /* ‘S’ option requests return of

file STATUS */

The status values returned are those shown in the following table:

Stream Status Meaning

READY File is good for use.

NOTREADY An I/O operation attempt will fail.

ERROR File has been subjected to an invalid operation.

UNKNOWN File status is unknown.

The commands you can issue through the stream function are completely dependent on which Rexx
interpreter you use. Regina Rexx allows you to open the file for reading, writing, appending, creating, or
updating; to close or flush the file, and to get its status or other file information. Regina’s stream func-
tion also allows scripts to manually move the file pointers, as would be useful in directly accessing parts
of a file.

The file pointers may be moved in several ways. All Rexx scripts that perform input and/or output do
this implicitly, as the result of normal read and write operations. Scripts can also move the file pointers
explicitly . . . but these operations are implementation-specific. Some Rexx interpreters, such as Regina,
enable this via stream function commands, while others provide C-language-style seek and tell func-
tions that go beyond the Rexx standard. Read your Rexx’s documentation to see what your interpreter
supports. Part II goes into how specific Rexx interpreters provide this feature and offers sample scripts.

The lineout, charout, linein, and charin functions provide the most standardized way to explicitly
control file positions, but care is advised. Most scripts just perform standard read and write operations
and let Rexx itself manage the file read and write positions. Later in this chapter we discuss alternatives
for those cases where you require advanced file I/O.

Character-Oriented Standard I/O
The previous section looked at line-oriented I/O, where Rexx reads or writes a line of data at a time.
Recall from the introduction that Rexx also supports character-oriented I/O, input and output by individ-
ual characters. Here the three basic functions for standard character I/O:

❑ charin— Returns one or more characters read from an input stream. By default this reads one
character from default standard input (usually the keyboard).

72

Chapter 5

❑ charout— Writes zero or more characters to an output stream. By default this writes to stan-
dard output (usually the display screen). Returns 0 if all characters were successfully written.
Or, it returns the number of characters remaining after a failed write.

❑ output (usually the display screen) — Returns 0 if all characters were successfully written. Or, it
returns the number of characters remaining after a failed write.

❑ chars— Returns either 1 or the number of characters left to read in an input stream (which
could be 0).

This sample program demonstrates character-oriented input and output. It reads characters or bytes, one
by one, from a file. It writes them out in hexadecimal form by using the charout function. The script is a
general-purpose “character to hexadecimal” translator. Here is its code:

/* TRANSLATE CHARS: */

/* */

/* Reads characters one by one, shows what they are in hex format */

parse arg filein fileout . /* get input & output filenames */

out_string = ‘’ /* initialize output string to null */

do j=1 while chars(filein) > 0 /* do while a character to read */

out_string = ‘ ‘ c2x(charin(filein)) /* convert it to hex */

call charout ,out_string /* write to display */

call charout fileout,out_string /* write to a file too */

end

The script illustrates the use of the chars function to determine when the input file contains no more
data to process:

do j=1 while chars(filein) > 0 /* do while a character to read */

This character-oriented chars function is used in a manner similar to the line-oriented lines function
to identify the end-of-file condition. Figure 5-2 below summarizes common ways to test for the end of a
file.

Figure 5-2

Common end of file tests –

• The "lines" function
• The "chars" function

Less common end of file tests –

• Scan for a known value
 (eg, user enters a null line to the script,
 or a value like "END" or "EXIT")
• The "stream" function
• SIGNAL ON NOTREADY error condition trap

EOF ?

Testing for End of File

73

Input and Output

The script uses the conversion function c2x to convert each input character into its hexadecimal equiva-
lent. This displays the byte code for these characters:

out_string = ‘ ‘ c2x(charin(filein)) /* convert it to hex */

This script illustrates the charout function twice. The first time it includes a comma to replace the out-
put filename, so the character is written to the default output device (the display screen). The second
charout function includes an output filename and writes characters out to that file:

call charout ,out_string /* write to display */

call charout fileout,out_string /* write to a file too */

Let’s take a look at some sample output from this script. Assume that the input file to this script consists
of two lines containing this information:

line1

line2

The hexadecimal equivalent of each character in the character string line1 is as follows:

l i n e 1

6C 69 6E 65 31

With this information, we can interpreter the script’s output. The script output appears as shown, when
run under Linux, Unix, Windows, DOS, and the MacOS. Linux, Unix, and BSD terminate each line with
a line feed character (x’0A’). This character is also referred to as the newline character or sometimes as
the linefeed. Windows ends each line with the pair of characters for carriage return and line feed
(x’0D0A’). DOS does the same as Windows, while the Macintosh uses only the carriage return to mark
the end of line:

Linux: 6C 69 6E 65 31 0A 6C 69 6E 65 32 0A

Unix: 6C 69 6E 65 31 0A 6C 69 6E 65 32 0A

Windows: 6C 69 6E 65 31 0D 0A 6C 69 6E 65 32 0D 0A

DOS: 6C 69 6E 65 31 0D 0A 6C 69 6E 65 32 0D 0A 1A

MacOS: 6C 69 6E 65 31 0D 6C 69 6E 65 32 0D

Some operating systems mark the end of the file by a special end-of-file character. This byte occurs once at
the very end of the file. DOS is an example. It writes its end-of-file character Control-Z or x’1A’ at the
very end of the file. Windows operating systems may optionally contain this character as the last in the
file (for compatibility reasons) but one rarely sees this anymore.

This example shows two things. First, what Rexx calls character I/O is really “byte-oriented” I/O. Bytes
are read one by one, regardless of their meaning to underlying operating system and how it may use spe-
cial characters in its concept of a file system. Rexx character I/O reads every byte in the file, including the
end-of-line or other special characters.

74

Chapter 5

Second, character I/O yields platform-dependent results. This is because different operating systems
manage their files in different ways. Some embed special characters to denote line end, others don’t, and
the characters they use vary. Character I/O reads these special characters without interpreting their
meanings. Line-oriented I/O strips them out. If you want only to read lines of data or I/O records in
your script, use line-oriented I/O. If you need to read all the bytes in the file, use character I/O.

Character I/O is easy to understand and to use. But it is often platform-dependent. If you’re concerned
about code portability, be sure to reference the operating system manuals and code to handle all situa-
tions. Or, stick to line-oriented I/O, which is inherently more portable.

Conversational I/O
A user interaction with a script is termed a conversation or dialogue. The interactive process is called con-
versational I/O. When writing a Rexx script that interacts with a user, one normally assumes that the user
sees program output on a display screen and enters input through the keyboard. These are the default
input and output streams for Rexx.

To output information to the user, code the say instruction. As we’ve seen, the operand on say can be
any expression (such as a list of literals and variables to concatenate). say is equivalent to this call to
lineout, except that say does not set the special variable result:

call lineout , [expression]

The comma indicates that the instruction targets standard output, normally the user’s display screen.

Use pull to read a string from the user and automatically translate it to uppercase, or use parse pull
to read a string without the uppercase translation. Both instructions read user input into a template, or
list of variables. Discard any unwanted input beyond the variable list by encoding a period (sometimes
referred to as the placeholder variable).

This statement reads a single input string and assigns the first three words of that string to the three
variables. If the user enters anything more than three words, Rexx discards it because we’ve encoded the
period placeholder variable at the end of the line:

parse pull input_1 input_2 input_3 .

Redirected I/O
I/O redirection means you can write a program using conversational I/O, but then redirect the input
and/or output to other sources. Without changing your program, you could alter its input from the key-
board to an input file. The pull or parse instructions in the program would not have to be changed to
make this work. Similarly, you could redirect a script’s say instructions to write output to a file instead
of the display screen, without changing your program code.

75

Input and Output

Here is how to redirect I/O. Just run the script using the redirection symbols shown in this table:

Redirection Symbol Meaning

> Redirects output to a new file. Creates a new file or overwrites an
existing file if one exists with that filename.

>> Appends (adds on to) an existing file. Creates a new output file if one
does not already exist having the filename.

< Redirects input from the specified file

How’s how to invoke the Four-Letter Words program of Chapter 3 with input from a file instead of the
keyboard:

regina four_letter_words.rexx <four_letter_words.input

The file four_letter_words.input consists of one word per line (so it conforms to the program’s
expectation that it will read one word in response to each prompt it gives). Here’s how to give the script
input from a file and redirect its output to a file named output.txt as well:

regina four_letter_words.rexx <four_letter_words.input >output.txt

Redirected I/O is a very powerful concept and a useful testing tool. You can write programs and change
their input source or output destination without changing the script!

But redirection is operating-system-specific. Operating systems that support redirected I/O include
those in the Linux, Unix, BSD, Windows, and DOS families.

A warning about Windows — members in the Windows family of operating systems do not handle I/O
redirection consistently. Different versions of Windows handle I/O redirection in slightly different ways.
This has long been an issue for programmers who want their programs to run across many Windows
versions. This is not a Rexx issue, but rather an inconsistency in the behavior of Windows operating sys-
tems. If you rely on redirection under Windows, you will have to test your scripts on each version of the
operating system they run on to ferret out any Windows inconsistencies.

I/O Issues
I/O is operating system dependent and thus presents a difficult issue for any programming language.
The reason is the inherent tension between an I/O model that is easy to use, easy to understand, and
portable — versus the desire to take advantage of operating-system-specific features for file system
manipulation.

Rexx always promotes ease of use and portability. Fitting with this philosophy, simplicity trumps OS-
specific features and maximizing I/O performance. So, the ANSI standard Rexx I/O model is simple
and portable. It does not take advantage of OS-specific I/O features or optimize I/O by platform.

76

Chapter 5

Standard Rexx recognizes the trade-off between I/O portability and OS-specific I/O features by includ-
ing functions such as stream and the options instruction, which are open ended and permit operands
beyond the ANSI standard. This allows Rexx interpreters to add I/O extensions within the context of the
ANSI standard that go beyond the standard to leverage OS-specific features.

The second section of the book describes the I/O extensions that different Rexx interpreters provide to
leverage OS- specific I/O features. Remember that all Rexx interpreters, whatever addtional I/O extensions
they offer, still provide the standard Rexx line-oriented and character-oriented I/O described in this chapter.

This chapter assumes the user interface to consist of a screen display and keyboard, and that disk I/O
means manipulating data residing in files. Of course, many programs require more advanced I/O and
different forms of user interfaces. Upcoming chapters cover these topics. Chapters 15 and 16, for exam-
ple, describe and illustrate both database I/O and screen I/O using various GUI packages. Chapter 17
discusses Web interfaces for Rexx scripts. Section II illustrates the I/O extensions in many Rexx inter-
preters that provide more sophisticated file processing.

Summary
This chapter provides an overview of the Rexx I/O model and how it is implemented in standard func-
tions for line- and character-oriented I/O. We discussed conversational I/O and how to redirect I/O
under operating systems that support it. Redirection is a powerful debugging tool and provides great
flexibility, because the source of input and target for output for scripts can be altered without changing the
scripts themselves. The flexibility that redirection provides is very useful during script testing and
debugging.

Two I/O related topics will be covered in upcoming chapters. The external data queue or stack is an area of
memory that can be used to support I/O operations. The second important topic is I/O error handling.
Both are covered in future chapters.

Upcoming chapters also cover I/O through interface packages, such as databases, GUI screen handlers,
Web server interfaces, and similar tools.

Test Your Understanding
1. What are the two basic kinds of standard Rexx input/output? Why would you use one

approach versus the other? Which is most portable across various operating systems?

2. What kinds of file control commands can you issue through the stream function? Do these vary
by Rexx implementation? What file statuses does the stream function return?

3. Describe the two ways in which you can invoke an I/O function like linein or charout. How
do you capture the return code from I/O functions? What happens if you fail to?

4. Do you need to close a file after using it? Under what conditions might this be appropriate?
How is it done?

5. If you require very powerful or sophisticated I/O, what options does Rexx offer?

77

Input and Output

