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Preface
This book describes the Open Object Rexx Interpreter, called the interpreter or language processor in
the following, and the object-oriented Rexx language.

This book is intended for people who plan to develop applications using Rexx. Its users range from the
novice, who might have experience in some programming language but no Rexx experience, to the
experienced application developer, who might have had some experience with Open Object Rexx.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets" the language as a program is running.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1.1. Typographic Conventions
Typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold is used to highlight literal strings, class names, or inline code examples. For
example:

The Class class comparison methods return .true or .false, the result of
performing the comparison operation.

This method is exactly equivalent to subWord(n, 1).

Mono-spaced Normal denotes method names or source code in program listings set off as separate
examples.

This method has no effect on the action of any hasEntry, hasIndex, items,
remove, or supplier message sent to the collection.

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

-- five, four, three, two, one
aReverse = .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")

Proportional Italic is used for method and function variables and arguments.

A supplier loop specifies one or two control variables, index, and item, which receive a
different value on each repetition of the loop.

Returns a string of length length with string centered in it and with pad characters
added as necessary to make up length.

1.2. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.
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How to Read the Syntax Diagrams

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed, like mandatory initialization. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The  symbol indicates the beginning of a statement.

The  symbol indicates that the statement syntax is continued on the next line.

The  symbol indicates that a statement is continued from the previous line.

The  symbol indicates the end of a statement.

• Required items appear on the horizontal line (the main path).

STATEMENT required_item

• Optional items appear below the main path.

STATEMENT

optional_item

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

STATEMENT required_choice1

required_choice2

• If choosing one of the items is optional, the entire stack appears below the main path.
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Getting Help and Submitting Feedback

STATEMENT

optional_choice1

optional_choice2

• If one of the items is the default, it is usually the topmost item of the stack of items below the main
path.

STATEMENT

default_choice

optional_choice

optional_choice

• A path returning to the left above the main line indicates an item that can be repeated.

STATEMENT repeatable_item

,

A repeat path above a stack indicates that you can repeat the items in the stack.

• A pointed rectangle around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

STATEMENT DETAIL - fragment

• Keywords appear in uppercase (for example, SIGNAL). They must be spelled exactly as shown
but you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, index). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

MAX( number

,

)

3. Getting Help and Submitting Feedback
The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

3.1. The Open Object Rexx SourceForge Site
Open Object Rexx utilizes SourceForge to house its source repositories, mailing lists and other project
features at https://sourceforge.net/projects/oorexx. ooRexx uses the Developer and User mailing lists
at https://sourceforge.net/p/oorexx/mailman for discussions concerning ooRexx. The ooRexx user is
most likely to get timely replies from one of these mailing lists.

xvi

https://sourceforge.net/projects/oorexx
https://sourceforge.net/p/oorexx/mailman


The Rexx Language Association Mailing List

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
Subscribe to the oorexx-devel mailing list at https://lists.sourceforge.net/lists/listinfo/oorexx-
devel to discuss ooRexx project development activities and future interpreter enhancements.
You can find its archive of past messages at http://sourceforge.net/mailarchive/forum.php?
forum_name=oorexx-devel.

The Users Mailing List
Subscribe to the oorexx-users mailing list at https://lists.sourceforge.net/lists/listinfo/oorexx-users
to discuss how to use ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
Subscribe to the oorexx-announce mailing list at https://lists.sourceforge.net/lists/listinfo/oorexx-
announce to receive announcments of significant ooRexx project events.

The Bug Mailing List
Subscribe to the oorexx-bugs mailing list at https://lists.sourceforge.net/lists/listinfo/oorexx-bugs to
monitor changes in the ooRexx bug tracking system.

Bug Reports
You can view ooRexx bug reports at https://sourceforge.net/p/oorexx/bugs. To be able to create
new bug reports, you will need to first register for a SourceForge userid at https://sourceforge.net/
user/registration. When reporting a bug, please try to provide as much information as possible to
help developers determine the cause of the issue. Sample program code that can reproduce your
problem will make it easier to debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at https://sourceforge.net/p/
oorexx/documentation. Please try to provide as much information in a documentation report as
possible. In addition to listing the document and section the report concerns, direct quotes of the
text will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement
You can new suggest ooRexx features or enhancements at https://sourceforge.net/p/oorexx/
feature-requests.

Patch Reports
If you create an enhancement patch for ooRexx please post the patch at https://sourceforge.net/
p/oorexx/patches. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report at https://
sourceforge.net/p/oorexx/bugs and attach the patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located at https://sourceforge.net/p/oorexx/discussion. There are currently three forums available:
Help, Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association maintains a forum at http://www.rexxla.org/forum.html.
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comp.lang.rexx Newsgroup

3.3. comp.lang.rexx Newsgroup
The comp.lang.rexx newsgroup at https://groups.google.com/forum/#!forum/comp.lang.rexx is a good
place to obtain help from many individuals within the Rexx community. You can obtain help on Open
Object Rexx and other Rexx interpreters and tools.

4. Related Information
See also Open Object Rexx: Programmer Guide and Open Object Rexx: Application Programming
Interfaces.
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Chapter 1.

Open Object Rexx General Concepts
The Rexx language is particularly suitable for:
• Application scripting

• Command procedures

• Application front ends

• User-defined macros (such as editor subcommands)

• Prototyping

• Personal computing

As an object-oriented language, Rexx provides data encapsulation, polymorphism, an object class
hierarchy, class-based inheritance of methods, and concurrency. It includes a number of useful base
classes and allows you create new object classes of your own.

Open Object Rexx is compatible with earlier Rexx versions, both non-object based Rexx and IBM's
Object Rexx. It has the usual structured-programming instructions, for example IF, SELECT, DO
WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes few restrictions   on the program format. There can be more than one clause
on a line, or a single clause can occupy more than one line. Any indentation scheme is allowed. You
can, therefore, code programs in a format that emphasizes their structure, making them easier to read.

There is no limit to the size of variable values, as long as all values fit into the storage available. There
are no restrictions on the types of data that variables can contain.

A language processor (interpreter) runs Rexx programs. That is, the program runs line by line and
word by word, without first being translated (compiled) to machine language. One of the advantages of
this is that you can fix the error and rerun the program faster than when using a compiler.

Note: Open Object Rexx also supplies the rexxc program that can be used to translate Rexx programs
into a sourceless executable file. Translating a program is not the same as compiling a program to
machine language. A translated Rexx program will still be interpreted line by line, though it will typically
start faster as the initial parsing has already been done.

1.1. What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates,
or models, objects in the physical world as closely as possible. Then the objects interact with each
other to produce the desired result.

Real-world objects, such as a company's employees, money in a bank account, or a report, are stored
as data so the computer can act upon it. For example, when you print a report, print is the action and
report is the object acted upon. Essentially, the objects are the "nouns", while the actions are the
"verbs".

1.2. Modularizing Data
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Modularizing Data

In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one
simple action. You might have a PRINT module, a SEND module, an ERASE module. The data these
modules operate on must be constructed by the programmer and passed to the modules to perform an
action.

But with object-oriented programming, it is the data that is modularized. And each data module
includes its own operations for performing actions directly related to its data. The programmer that
uses the objects need only be aware of the operations an object performs and not how the data is
organized internally.

Figure 1.1. Modular Data—a Report Object

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE
operations.

Object-oriented programming lets you model real-world objects—even very complex ones—precisely
and elegantly. As a result, object manipulation becomes easier and computer instructions become
simpler and can be modified later with minimal effort.
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Modeling Objects

Object-oriented programming hides any information that is not important for acting on an object,
thereby concealing the object's complexities. Complex tasks can then be initiated simply, at a very
high level.

1.3. Modeling Objects
In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown, bounced, caught. But it also
has its own physical characteristics—size, shape, composition, weight, color, speed, position. An
accurate data model of a real ball would define not only the physical characteristics but all related
actions and characteristics in one package:

Figure 1.2. A Ball Object

In object-oriented programming, objects are the basic building blocks—the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object—such as a character string—always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a name, and an associated
data value that can change over time. The variables represent the internal state of the object, and can
be directly accessed only by the code that implements the object's actions.

Figure 1.3. Ball Object with Variable Names and Values

To access an object's data, you must always specify an action. For example, suppose the object is the
number 5. Its actions might include addition, subtraction, multiplication, and division. Each of these
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How Objects Interact

actions is an interface to the object's data. The data is said to be encapsulated   because the only way
to access it is through one of these surrounding actions. The encapsulated internal characteristics of
an object are its  variables. The variables are associated with an object and exist for the lifetime of that
object:

Figure 1.4. Encapsulated 5 Object

1.4. How Objects Interact

The actions defined by an object are its only interface to other objects. Actions form a kind of "wall"
that encapsulates the object, and shields its internal information from outside objects. This shielding
is called  information hiding. Information hiding protects an object's data from corruption by outside
objects, and also protects outside objects from relying on another object's private data, which can
change without warning.

One object can act upon another (or cause it to act) only by calling that object's actions, namely by
sending messages. Objects respond to these messages by performing an action, returning data, or
both. A message to an object must specify:
• A receiving object

• The "message send" symbol, ~, which is called the twiddle    

• The action and, optionally in parentheses, any parameters required by the action

So the message format looks like this:

object~action(parameters)

Assume that the object is the string !iH. Sending it a message to use its REVERSE action:

"!iH"~reverse

returns the string object Hi!.

1.5. Methods

Sending a message to an object results in performing some action; that is, it executes some
underlying code. The action-generating code is called a method. When you send a message to an
object, the message is the name of the target method. Method names are character strings like
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Data Abstraction

reverse. In the preceding example, sending the reverse message to the !iH object causes it to
run the reverse method. Most objects are capable of more than one action, and so have a number of
available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example,
has completed, init, notify, result, send, and start methods. When you create your own
classes, you can write new methods for them in Rexx code. Much of the object programming in Rexx
is writing the code for the methods you create.

Rexx lets you send the same message to objects that are different:

Example 1.1. Methods

"!iH"~reverse   -- Reverses the characters "!iH" to form "Hi!"
pen~reverse     -- Reverses the direction of a plotter pen
ball~reverse    -- Reverses the direction of a moving ball

As long as each object has its own reverse method, reverse runs even if the programming
implementation is different for each object. Each object knows only its own version of reverse. And
even though the objects are different, each reverses itself as dictated by its own code.

Although the !iH object's reverse code is different from the plotter pen's, the method name can
be the same because Rexx keeps track of the methods each object owns. You do not need to have
several message names like reverse_string, reverse_pen, reverse_ball. This keeps
method-naming schemes simple and makes complex programs easy to follow and modify.

1.6. Data Abstraction

The ability to create new, high-level data types and organize them into a meaningful class structure
is called data abstraction. Data abstraction is at the core of object-oriented programming. Once
you model objects with real-world properties from the basic data types, you can continue creating,
assembling, and combining them into increasingly complex objects. Then you can use these objects
as if they were part of the original programming language.

1.7. Classes and Instances

In Rexx, objects are organized into classes. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class.
In that Icon class you can include all the icon objects with similar actions and characteristics:
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Classes and Instances

Figure 1.5. A Simple Class

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the
data assigned to its variables. For the Windows system icon, it might be position="20,20", while for the
shredder it is "20,30" and for information it is "20,40":

Figure 1.6. Icon Class

Objects that belong to a class are called instances of that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information icon acquire the methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name.
All instances, however, have their own unique properties—the data associated with the variables.
Everything else can be stored at the class level.
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Figure 1.7. Instances of the Icon Class

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called an object class.  The Icon class is an object
class you can use to create other objects with similar properties, such as an application icon or a
drives icon.

An object class is like a factory for producing instances of the objects.

1.8. Polymorphism

Polymorphism gives you a single interface to objects of different types. This example shows instances
of classes inheriting from the Collection class, all sharing a common method named put, but with a
different implementation each.

Example 1.2. Polymorphism

stem~put("value", "tail")         -- sets a Stem tail to "value"
stringTable~put("value", "index") -- sets a StringTable "index" to "value"
array~put("value", 1)             -- sets Array index 1 to "value"
set~put("value")                  -- makes "value" a member of the Set

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism. On a higher level, polymorphism permits extensive code reuse.

1.9. Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. Any subclass (a class below another class in the hierarchy) inherits the
methods and variables of one or more superclasses (classes above a class in the hierarchy):
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Figure 1.8. Superclass and Subclasses

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Figure 1.9. The Screen-Object Superclass

In this way, the subclass inherits additional methods from the superclass. A class can have more
than one superclass, for example, subclass Bitmap might have the superclasses Screen-Object and
Art-Object. Acquiring methods and variables from more than one superclass is known as multiple
inheritance:

Figure 1.10. Multiple Inheritance

1.10. Structure and General Syntax

A Rexx program is built from a series of clauses that are composed of:

• Zero or more whitespace characters (blank or horizontal tabs) (which are ignored)

• A sequence of tokens (see Section 1.10.4, “Tokens”)

• Zero or more whitespace characters (again ignored)

• A semicolon (;)  delimiter that the line end, certain keywords, or the colon (:) implies.

Conceptually, each clause is scanned from left to right before processing, and the tokens composing
it are identified. Instruction keywords are recognized at this stage, comments are removed, and
sequences of whitespace characters (except within literal strings) are converted to single blanks.
Whitespace characters adjacent to operator characters and special   characters are also removed.

1.10.1. Characters

A character is a member of a defined set of elements that is used for the control or representation
of data. You can usually enter a character with a single keystroke. The coded representation of
a character is its representation in digital form. A character, the letter A, for example, differs from
its coded representation or encoding. Various coded character sets (such as ASCII and EBCDIC)
use different encodings for the letter A (decimal values 65 and 193, respectively). This book uses
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characters to convey meanings and not to imply a specific character code, except where otherwise
stated. The exceptions are certain built-in functions that convert between characters and their
representations. The functions C2D, C2X, D2C, X2C, and XRANGE depend on the character set
used.

A code page specifies the encodings for each character in a set. Be aware that:
• Some code pages do not contain all characters that Rexx defines as valid (for example, the logical

NOT character).

• Some characters that Rexx defines as valid have different encodings in different code pages, for
example the exclamation mark (!).

1.10.2. Whitespace

A whitespace character is one that the interpreter recognizes as a "blank" or "space" character. There
are two characters used by Rexx as whitespace that can be used interchangeably:

(blank)
A "blank" or "space" character. This is represented by '20'X in ASCII implementations.

(horizontal tab)
A "tab". This is represented by '09'X in ASCII implementations.

Horizontal tabs encountered in Rexx program source are converted into blanks, allowing tab
characters and blanks to be use interchangeably in source. Additionally, Rexx operations such as the
PARSE instruction or the SUBWORD() built-in function will also accept either blank or tab characters
as word delimiters.

1.10.3. Comments

A comment is a sequence of characters delimited by specific characters. It is ignored by the program
but acts as a separator. For example, a token containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:

• A line comment, where the comment is limited to one line 

• The standard Rexx comment, where the comment can cover several lines 

A line comment is started by two subsequent minus signs (--) and ends at the end of a line. Example:

"Fred"
"Don't Panic!"
'You shouldn''t'        -- Same as "You shouldn't"
""

In this example, the language processor processes the statements from 'Fred' to 'You
shouldn''t', ignores the words following the line comment, and continues to process the statement
"".

A standard comment is a sequence of characters (on one or more lines) delimited by /* and */.
Within these delimiters any characters are allowed. Standard comments can contain other standard
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comments, as long as each begins and ends with the necessary delimiters. They are called nested
comments. Standard comments can be anywhere and of any length.

/* This is an example of a valid Rexx comment */

Take special care when commenting out lines of code containing /* or */ as part of a literal string.
Consider the following program segment:

Example 1.3. Comments

01    parse pull input
02    if substr(input,1,5) = "/*123"
03      then call process
04    dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01    parse pull input
02 /* if substr(input,1,5) = "/*123"
03      then call process
04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is part of the literal
string /*123 as the start of a nested standard comment. It would not process the rest of the program
because it would be looking for a matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing /* or */; line 2
would be:

if substr(input,1,5) = "/" || "*123"

You could comment out lines 2 and 3 correctly as follows:

Example 1.4. Comments

01    parse pull input
02 /* if substr(input,1,5) = "/" || "*123"
03      then call process
04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest the two types, the type of
comment that comes first takes precedence over the one nested. Here is an example:

Example 1.5. Comments

"Fred"
"Don't Panic!"
'You shouldn''t'        /* Same as "You shouldn't"
""                      -- The null string         */

In this example, the language processor ignores everything after 'You shouldn''t' up to the end
of the last line. In this case, the standard comment has precedence over the line comment.
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When nesting the two comment types, make sure that the start delimiter of the standard comment /*
is not in the line commented out with the line comment signs.

Example 1.6. Comments

"Fred"
"Don't Panic!"
'You shouldn''t'        -- Same as /* "You shouldn't"
""                      The null string         */

This example produces an error because the language processor ignores the start delimiter of the
standard comment, which is commented out using the line comment.

1.10.4. Tokens

A token is the unit of low-level syntax from which clauses are built. Programs written in Rexx are
composed of tokens. Tokens can be of any length, up to an implementation-restricted maximum. They
are separated by whitespace or comments, or by the nature of the tokens themselves. The classes of
tokens are:

• Literal strings

• Hexadecimal strings

• Binary strings

• Symbols

• Numbers

• Operator characters

• Special characters

1.10.4.1. Literal Strings

A literal string is a sequence including any characters except line-end and end-of-file characters, and
delimited by a single quotation mark (') or a double quotation mark ("). You use two consecutive
double quotation marks ("") to represent one double quotation mark (") within a literal string delimited
by double quotation marks. Similarly, you use two consecutive single quotation marks ('') to
represent one single quotation mark (') within a string delimited by single quotation marks. A literal
string is a constant and its contents are never modified when it is processed. Literal strings must be
complete on a single line. This means that unmatched quotation marks can be detected on the line
where they occur.

A literal string with no characters (that is, a string of length 0) is called a null string.

These are valid strings:

Example 1.7. Valid strings

"Fred"
"Don't Panic!"
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'You shouldn''t'        /* Same as "You shouldn't" */
""                      /* The null string         */

  A literal string has no upper bound on the number of characters, limited only by available memory.

Note that a string immediately followed by a left parenthesis is considered to be the name of a
function. If immediately followed by the symbol X or x, it is considered to be a hexadecimal string. If
followed immediately by the symbol B or b, it is considered to be a binary string.

1.10.4.2. Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped in pairs. A single leading 0
is assumed, if necessary, at the beginning of the string to make an even number of hexadecimal digits.
The groups of digits are optionally separated by one or more whitespace characters, and the whole
sequence is delimited by single or double quotation marks and immediately followed by the symbol
x or X. Neither x nor X can be part of a longer symbol. The whitespace characters, which can only
be on byte boundaries (and not at the beginning or end of the string), are to improve readability. The
language processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing
the hexadecimal digits removes whitespace and converts each pair of hexadecimal digits into its
equivalent character, for example, '41'x to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

Example 1.8. Valid hexadecimal strings

"ABCD"x
"1d ec f8"X
'1 d8'x

Note

A hexadecimal string is not a representation of a number. It is an escape mechanism that lets
a user describe a character in terms of its encoding (and, therefore, is machine-dependent). In
ASCII, '20'x is the encoding for a blank. In every case, a string of the form '.....'x is an
alternative to a straightforward string. In ASCII '41'x and "A" are identical, as are '20'x and a
blank, and must be treated identically.

  The packed length of a hexadecimal string (the string with whitespace removed) is unlimited.

1.10.4.3. Binary Strings

A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group
can have less than four digits; in this case, up to three 0 digits are assumed to the left of the first digit,
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making a total of four digits. The groups of digits are optionally separated by one or more whitespace
characters, and the whole sequence is delimited by matching single or double quotation marks and
immediately followed by the symbol b or B. Neither b nor B can be part of a longer symbol. The
whitespace characters, which can only be byte or nibble boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of 8, leading zeros are added on the left to make a multiple of 8 before packing.
Binary strings allow you to specify characters explicitly, bit by bit. These are valid binary strings:

Example 1.9. Valid binary strings

"11110000"b        /* == "f0"x                  */
"101 1101"b        /* == "5d"x                  */
'1'b               /* == '00000001'b or '01'x  */
"10000 10101010"b  /* == "0001 0000 1010 1010"b */
""b                /* == ""                     */

  The packed length of a binary-literal string is unlimited.

1.10.4.4. Symbols

Symbols are groups of characters, selected from the:

• English alphabetic characters (A-Z and a-z).

• Numeric characters (0-9)

• Characters . ! ? and underscore (_).

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a-z to
uppercase A-Z) before use.

These are valid symbols:

Example 1.10. Valid symbols

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned a value to it, its value is the characters of the symbol itself, translated
to uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin with a number or a period
are constant symbols and cannot directly be assigned a value.

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0-9) or a period, and it can end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The character sequence to the left of the "E" or "e" must be
a valid simple number, consisting only of digits or '.'. There must be at least one digit and at most one
'.'. The sign in this context is part of the symbol and is not an operator.
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These are valid numbers in exponential notation: 

Example 1.11. Valid exponential numbers

17.3E-12
.03e+9

These are not valid numbers in exponential notation, but rather multiple tokens with an operator
between:

Example 1.12. Invalid exponential numbers

.E-12     -- no digits
3ae+6     -- non-digit character
3..0e+9   -- more than one '.'

1.10.4.5. Numbers

Numbers are character strings consisting of one or more decimal digits, with an optional prefix of a
plus (+) or minus (-) sign, and optionally including a single period (.) that represents a decimal point.
A number can also have a power of 10  suffixed in conventional exponential notation: an E (uppercase
or lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding can occur to a
precision specified by the NUMERIC DIGITS instruction (the default is nine digits). See Chapter 10,
Numbers and Arithmetic for a full definition of numbers.

Numbers  can have leading whitespace (before and after the sign) and trailing whitespace.
Whitespace characters cannot be embedded among the digits of a number or in the exponential part.
Note that a symbol or a literal string can be a number. A number cannot be the name of a variable.

These are valid numbers:

Example 1.13. Valid numbers

12
"-17.9"
127.0650
73e+128
" + 7.9E5 "

You can specify numbers with or without quotation marks around them. Note that the sequence -17.9
(without quotation marks) in an expression is not simply a number. It is a minus operator (which can be
prefix minus if no term is to the left of it) followed by a positive number. The result of the operation is
a number, which might be rounded or reformatted into exponential form depending on the size of the
number and the current NUMERIC DIGITS setting.

A whole number is a number that has a no decimal part and that the language processor would not
usually express in exponential notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS.

Implementation maximum:    The exponent of a number expressed in exponential notation can have
up to nine digits.
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1.10.4.6. Operator Characters

The characters + - \ / % * | & = ¬ > < and the sequences >= <= \> \< \= >< <> ==
\== // && || ** ¬> ¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<= indicate operations
(see Section 1.11.2, “Operators”). A few of these are also used in parsing templates, and the equal
sign  and the sequences += -= *= /= %= //= ||= &= |= &&= **= are also used to indicate
assignment. Whitespace characters and standard Rexx comments adjacent to operator characters
and within operator character sequences are ignored. Therefore, the following are identical in
meaning:

Example 1.14. White space and numbers

345>=123
345 >=123
345 >= 123
345 > = 123
345 >/*not smaller*/ = 123

Some of these characters (and some special characters—see the next section) might not be available
in all character sets. In this case, appropriate translations can be used.  In particular, the vertical bar (|)
is often shown as a split vertical bar (¦).

Note

The Rexx interpreter uses ASCII character 124 in the concatenation operator and as the logical
OR operator. Depending on the code page or keyboard for your particular country, ASCII 124 can
be shown as a solid vertical bar ( | ) or a split vertical bar ( ¦ ). The character on the screen might
not match the character engraved on the key. If you receive error 13, Invalid character in
program, on an instruction including a vertical bar character, make sure this character is ASCII
124.

Throughout the language, the NOT (¬)   character is synonymous with the backslash  (\). You can use
the two characters interchangeably according to availability and personal preference.

The Rexx interpreter recognizes both ASCII character 170 ('AA'x) and ASCII character 172 ('AC'x)
for the logical NOT operator. Depending on your country, the ¬ might not appear on your keyboard. If
the character is not available, you can use the backslash (\) in place of ¬.

1.10.4.7. Special Characters

The following characters, together with the operator characters, have special significance when found
outside of literal strings:

,   ;   :   (   )   [   ]   ~

These characters constitute the set of special characters. They all act as token delimiters, and 
whitespace characters (blank or horizontal tab) adjacent to any of these are removed. There is an
exception: a whitespace character adjacent to the outside of a parenthesis or bracket is deleted only
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if it is also adjacent to another special character (unless the character is a parenthesis or bracket and
the whitespace character is outside it, too). For example, the language processor does not remove the
blank in A (Z). This is a concatenation that is not equivalent to A(Z), a function call. The language
processor removes the blanks in (A) + (Z) because this is equivalent to (A)+(Z).

1.10.4.8. Example
The following example shows how a clause is composed of tokens: 

Example 1.15. Special characters

"REPEAT"   A + 3;

This example is composed of six tokens—a literal string ("REPEAT"), a blank operator, a symbol (A,
which can have an assigned value), an operator (+), a second symbol (3, which is a number and a
symbol), and the clause delimiter (;). The blanks between the A and the + and between the + and the
3 are removed. However, one of the blanks between the "REPEAT" and the A remains as an operator.
Thus, this clause is treated as though written:

"REPEAT" A+3;

1.10.5. Implied Semicolons

The last element in a clause is the semicolon (;) delimiter. The language processor implies the
semicolon at a line end, after certain keywords, and after a colon if it follows a single symbol. This
means that you need to include semicolons only when there is more than one clause on a line or to
end an instruction whose last character is a comma.

A line end usually marks the end of a clause and, thus, Rexx implies a semicolon at most end of lines.
However, there are the following exceptions:
• The line ends in the middle of a multi-line (/* ... */) comment. The clause continues on to the next

line.

• The last token was the continuation character (a comma or a minus sign) and the line does not end
in the middle of a comment. (Note that a comment is not a token.)

Rexx automatically implies semicolons after colons (when following a single symbol or literal string,
a label) and after certain keywords when they are in the correct context. The keywords that have
this effect are ELSE, OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

Note

The two characters forming the comment delimiters, /* and */, must not be split by a line end
(that is, / and * should not appear on different lines) because they could not then be recognized
correctly; an implied semicolon would be added.

1.10.6. Continuations
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One way to continue a clause on the next line is to use the comma or the minus sign (-), which is
referred to as the continuation character. The continuation character is functionally replaced by
a blank, and, thus, no semicolon is implied. One or more comments can follow the continuation
character before the end of the line.

The following example shows how to use the continuation character to continue a clause:  

Example 1.16. Continuations

say "You can use a comma",       -- this line is continued
"to continue this clause."

or

say "You can use a minus"-       -- this line is continued
"to continue this clause."

1.11. Terms, Expressions, and Operators

Expressions in Rexx are a general mechanism for combining one or more pieces of data in various
ways to produce a result, usually different from the original data. All expressions evaluate to objects. 

Everything in Rexx is an object.  Rexx provides some objects, which are described in later sections.
You can also define and create objects that are useful in particular applications—for example, a menu
object for user interaction. See Section 1.3, “Modeling Objects” for more information.

1.11.1. Terms and Expressions

Terms are literal strings, symbols, message terms and sequences, Array terms, Variable Reference
terms, function calls, or subexpressions interspersed with zero or more operators that denote
operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols (no quotation marks) are translated to uppercase. A symbol that does not begin with a digit
or a period can be the name of a variable; in this case the  value of that variable is used. A symbol
that begins with a period can identify an object that the current environment provides; in this case, that
object is used. Otherwise a symbol is treated as a constant string. A symbol can also be compound.

Message terms are described in Section 1.11.4, “Message Terms”, Message sequences are described
in Section 1.11.5, “Message Sequences”.

Array terms are described in Section 1.11.6, “Array Term”.

Variable Reference terms are described in Section 1.11.7, “Variable Reference Term”.

Function calls (see Chapter 7, Functions), which are of the following form:

symbolorstring(

expression

,

)

The symbolorstring is a symbol or literal string.
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An expression consists of one or more terms. A subexpression  is a term in an expression surrounded
with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and operator precedence in the
usual algebraic manner (see Section 1.11.3, “Parentheses and Operator Precedence”). Expressions
are wholly evaluated, unless an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The result is an object.
Consequently, the result of evaluating any expression is itself an object  (such as a character string).

1.11.2. Operators

An operator is a representation of an operation, such as an addition, to be carried out on one or
two terms. Each operator, except for the prefix operators, acts on two terms, which can be symbols,
strings, function calls, message terms, intermediate results, or subexpressions. Each prefix operator
acts on the term or subexpression that follows it. Whitespace characters (and comments) adjacent
to operator characters have no effect on the operator; thus, operators constructed from more than
one character can have embedded whitespace and comments. In addition, one or more whitespace
characters, if they occur in expressions but are not adjacent to another operator, also act as an
operator. The language processor functionally translates operators into message terms. For dyadic
operators,  which operate on two terms, the language processor sends the operator as a message to
the term on the left, passing the term on the right as an argument. For example, the sequence

say 1+2

is functionally equivalent to:

say 1~"+"(2)

The blank concatenation operator sends the message " " (a single blank), and the abuttal
concatenation operator sends the "" message (a null string). When the ¬ character is used in an
operator, it is changed to a \. That is, the operators ¬= and \= both send the message \= to the target
object.

For an operator that works on a single term (for example, the prefix - and prefix + operators), Rexx
sends a message to the term, with no arguments. This means -z has the same effect as z~"-".

See Section 5.1.4.2, “Comparison Methods” for comparison operator methods of the Object class and
Section 5.1.7.18, “Arithmetic Methods” for arithmetic operator methods of the String class.

There are four types of operators:
• Concatenation

• Arithmetic

• Comparison

• Logical

1.11.2.1. String Concatenation
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The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

(blank) Concatenate terms with one blank in between   

|| Concatenate without an intervening blank  

(abuttal) Concatenate without an intervening blank  

You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This
can occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they
are only separated by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then Fred"%" evaluates to
37.4%.

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37.41.

The two adjoining strings, one hexadecimal and one literal, "4a 4b"x"LMN" evaluate to JKLMN.

In the case of

Fred/* The NOT operator precedes Peter. */¬Peter

there is no abuttal operator implied, and the expression is not valid. However,

(Fred)/* The NOT operator precedes Peter. */(¬Peter)

results in an abuttal, and evaluates to 37.40.

1.11.2.2. Arithmetic

You can combine character strings that are valid numbers (see Section 1.10.4.5, “Numbers”) using the
following arithmetic operators:

+ Add  

- Subtract  

* Multiply  

/ Divide  

% Integer divide (divide and return the integer part of the result)  

// Remainder (divide and return the remainder—not modulo, because the result can
be negative) 

** Power (raise a number to a whole-number power)  

Prefix - Same as the subtraction: 0 - number 

Prefix + Same as the addition: 0 + number 
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See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it is
likely that rounding has occurred.

1.11.2.3. Comparison

The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or 0 otherwise.

The strict comparison operators  all have one of the characters defining the operator doubled. The
==,   \==,    and ¬==   operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >>   or <<   carry out a simple character-by-character comparison,
with no padding of either of the strings being compared. The comparison of the two strings is from left
to right. If one string is shorter than the other and is a leading substring of another, then it is smaller
than (less than) the other. The strict comparison  operators also do not attempt to perform a numeric
comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a numeric comparison (see
Section 10.4, “Numeric Comparisons”) is effected. Otherwise, both terms are treated as character
strings, leading and trailing whitespace characters are ignored, and the shorter string is padded with
blanks on the right.

Character comparison and strict comparison operations are both case-sensitive, and the exact
collating order might depend on the character set used for the implementation. In an ASCII
environment, such as Windows and Unix-like systems, the ASCII character value of digits is lower
than that of the alphabetic characters, and that of lowercase alphabetic characters is higher than that
of uppercase alphabetic characters.

The comparison operators and operations are:

= True if the terms are equal (numerically or when padded)  

\=, ¬= True if the terms are not equal (inverse of =)   

> Greater than  

< Less than 

>< Greater than or less than (same as not equal)  

<> Greater than or less than (same as not equal) 

>= Greater than or equal to  

\<, ¬< Not less than   

<= Less than or equal to 

\>, ¬> Not greater than   

== True if terms are strictly equal (identical)  

\==, ¬== True if the terms are not strictly equal (inverse of ==)   

>> Strictly greater than  

<< Strictly less than  

>>= Strictly greater than or equal to  

\<<, ¬<< Strictly not less than   

<<= Strictly less than or equal to 

\>>, ¬>> Strictly not greater than   
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Note

Throughout the language, the NOT (¬)  character is synonymous with the backslash(\).    You
can use the two characters interchangeably, according to availability and personal preference.
The backslash can appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and
\>>.

1.11.2.4. Logical (Boolean)

A character string has the value false if it is 0, and true if it is 1. The logical operators take one or two
such values and return 0 or 1 as appropriate. Values other than 0 or 1 are not permitted.

& AND — returns 1 if both terms are true.  

|  Inclusive OR — returns 1 if either term or both terms are true. 

&&  Exclusive OR — returns 1 if either term, but not both terms, is true. 

Prefix \, ¬  Logical NOT— negates; 1 becomes 0, and 0 becomes 1.

1.11.3. Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence modify this:
• When parentheses are encountered—other than those that identify the arguments on messages

(see Section 1.11.4, “Message Terms”) and function calls—the entire subexpression between the
parentheses is evaluated immediately when the term is required.

• When the sequence

term1 operator1 term2 operator2 term3

is encountered, and operator2 has precedence over operator1, the subexpression (term2
operator2 term3) is evaluated first.

Note, however, that individual terms are evaluated from left to right in the expression (that is, as
soon as they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 13 (rather than the
25 that would result if a strict left-to-right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression as (3+2)*5. Adding the parentheses makes the first
three tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9) because
the prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

~   ~~ (message send)

+   -   ¬   \ (prefix operators)

** (power)

*   /   %   // (multiply and divide)

+   - (add and subtract)

21



Parentheses and Operator Precedence

(blank)   ||   (abuttal) (concatenation with or without blank)

=   >   < (comparison operators, all with equal precedence)

==   >>   <<  

\=   ¬=  

><   <>  

\>   ¬>  

\<   ¬<  

\==   ¬==  

\>>   ¬>>  

\<<   ¬<<  

>=   >>=  

<=   <<=  

& (and)

|   && (or, exclusive or)

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and
other variables are uninitialized. Then:  

Example 1.17. Arithmetic

A+5                  ->    "8"
A-4*2                ->    "-5"
A/2                  ->    "1.5"
0.5**2               ->    "0.25"
(A+1)>7              ->    "0"         /* that is, .false */
" "=""               ->    "1"         /* that is, .true  */
" "==""              ->    "0"         /* that is, .false */
" "\==""             ->    "1"
/* that is, .true  */
(A+1)*3=12           ->    "1"         /* that is, .true  */
"077">"11"           ->    "1"         /* that is, .true  */
"077" >> "11"        ->    "0"         /* that is, .false */
"abc" >> "ab"        ->    "1"         /* that is, .true  */
"abc" << "abd"       ->    "1"         /* that is, .true  */
"ab " << "abd"       ->    "1"         /* that is, .true  */
Today is Day         ->    "TODAY IS Monday"
"If it is" day       ->    "If it is Monday"
Substr(Day,2,3)      ->    "ond"    /* Substr is a function */
"!"xxx"!"            ->    "!XXX!"
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Note

The Rexx order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common
notations:
• The prefix minus operator always has a higher priority than the power operator.

• Power operators (like other operators) are evaluated from left to right.

For example:

-3**2     ==  9  /* not -9  */
-(2+1)**2 ==  9  /* not -9  */
2**2**3   == 64  /* not 256 */

1.11.4. Message Terms
You can include messages to objects in an expression wherever a term, such as a literal string, is
valid. A message can be sent to an object to perform an action, obtain a result, or both.

A message term can have one of the following forms:

receiver ~

~~

messagename

: symbol

(

expression

,

)

receiver [

expression

,

]

The receiver is a term (see Section 1.11.1, “Terms and Expressions” for a definition of term). It
receives the message. The ~ or ~~ indicates sending a message. The messagename is a literal
string or a symbol that is taken as a constant. The expressions (separated by commas) between
the parentheses or brackets are the arguments for the message. The receiver and the argument
expressions can themselves include message terms. If the message has no arguments, you can omit
the parentheses.

The left parenthesis, if present, must immediately follow a token (messagename or symbol) with no
blank in between them. Otherwise, only the first part of the construct is recognized as a message term.
(A blank operator would be assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any number of expressions, separated by commas. The expressions are evaluated from
left to right and form the arguments during the execution of the called method. Any ARG, PARSE
ARG, or USE ARG instruction or ARG() built-in function in the called method accesses these objects
while the called method is running. You can omit expressions, if appropriate, by including extra
commas.

The receiver object is evaluated, followed by one or more expression arguments. The message name
(in uppercase) and the resulting argument objects are then sent to the receiver object. The receiver
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object selects a method to be run based on the message name, and runs the selected method with the
specified argument objects. The receiver eventually returns, allowing processing to continue.

If the message term uses ~, the receiver method must return a result object. This object is included
in the original expression as if the entire message term had been replaced by the name of a variable
whose value is the returned object.

For example, the message POS is valid for strings, and you could code:

c="escape"
a="Position of 'e' is:" c~pos("e",3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ~~, the receiver method need not return a result object. Any result object is
discarded, and the receiver object is included in the original expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (see Section 5.1.1, “Class
Class (Metaclass)”) and, assuming the existence of the Persistent class, you could code:

account = .object~subclass("Account")~~inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object. (The expressions
within the brackets are available to the receiver object as arguments.) The effect is the same as for the
corresponding ~ form of the message term. Thus, a[b] is the same as a~"[]"(b).

For example, the message [] is valid for arrays (see Section 5.3.6, “Array Class”) and you could
code: 

Example 1.18. Arrays

a = .array~of(10,20)
say "Second item is" a[2]   /* Same as: a~at(2)              */
/* or a~"[]"(2)                  */
/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify only those required. For
example, "ESCAPE"~POS("E") returns 1.

A colon (:) and symbol can follow the message name. In this case, the symbol must be the name of a
variable (usually the special variable SUPER ) or an environment symbol. The resulting value changes
the usual method selection. For more information, see Section 4.2.7, “Changing the Search Order for
Methods”.

1.11.5. Message Sequences

The ~  and ~~  forms of message terms differ only in their treatment of the result object. Using ~
returns the result of the method. Using ~~ returns the object that received the message. Here is an
example:

Example 1.19. Messages

/* Two ways to use the INSERT method to add items to a list */
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/* Using only ~ */
team = .list~of("Bob","Mary")
team~insert("Jane")
team~insert("Joe")
team~insert("Steve")
say "First on the team is:" team~firstitem     /* Bob   */
say "Last on the team is:" team~lastitem       /* Steve */
/* Do the same thing using ~~ */
team=.list~of("Bob","Mary")
/* Because ~~ returns the receiver of the message       */
/* each INSERT message following returns the list       */
/* object (after inserting the argument value).         */
team~~insert("Jane")~~insert("Joe")~~insert("Steve")
say "First on the team is:" team~firstitem     /* Bob   */
say "Last on the team is:" team~lastitem       /* Steve */

Thus, you would use ~ when you want the returned result to be the receiver of the next message in
the sequence.

1.11.6. Array Term

As a convenience, Rexx allows a shortened syntax for creating arrays, called Array term, of the
following form:

expression

,

expression

Except for trailing commas, an Array term returns a newly created array, as if it had been created with
the message term rexx:Array~of(…). (An Array term will always return an instance of the Rexx-
defined Array class, even if a user-defined class named Array exists.)

Here are some examples:

week = "mon", "tue", "wed", "thu", "fri", "sat", "sun"
say week~items "days"                           -- 7 days

say ("here", "we", "go")~makeString(, " ")      -- here we go

iso639 = .Directory~of(("de", "Deutsch"), ("en", "English"), ("fr", "français"))

do list over .environment, .local
  say list~items                                -- 65
end                                             -- 10

say 0~sendWith("MAX", (2, 3, 5, 7, 11, 13))     -- 13

sparse = ,,,0
say "size" sparse~size"," sparse~items "items"  -- size 4, 1 items

If the array term has trailing commas, the returned array has a bigger size than what .Array~of(…)
would have returned:

say (1, , 3, ,)~size .Array~of(1, , 3, ,)~size  -- 5 3
say (,)~size .Array~of(,)~size                  -- 2 0

In a context, where commas already have a different meaning, it may be necessary to put an Array
term between brackets. For example:
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call func "uno", 2, "tre"      -- no Array term: three parms
call func ("uno", 2, "tre")    -- Array term: one Array as parm

An Array term cannot return an array of size zero or one, although it can return an array with zero or
one items (but still of at least size two).

say (,)~items      -- 0
say (,)~size       -- 2

1.11.7. Variable Reference Term

A variable reference term represents a reference to a variable. Variable reference terms can be used
as arguments to subroutines, functions, methods, or routines, thus allowing the original variable to be
modified or created by the called Rexx code.

While subroutines, functions, methods, or routines can modify argument objects when accessed with
the USE ARG instruction without using a variable reference, changing the value of arguments to new
objects—like setting them to a new string, a new Array, or to .nil—can only be done using a variable
reference term.

Variable reference terms start with either of the two reference operators, > or <, followed by a simple
variable name or a stem variable name. Variable references to compound variables are not allowed.

Here is an example:

call dir >files, ".txt"
say files~items "files with extension .txt"

::routine dir
  use strict arg >array, extension = ""
  array = .Array~new
  do file over .File~new(".")~list
    if file~caselessEndsWith(extension) then
      array~append(file)
  end

Variable reference arguments and USE ARG names must match. They must either be both simple
variable references, or both stem references. USE ARG variable references can never be optional, a
default value is not allowed.

1.12. Clauses and Instructions
Clauses can be subdivided into the following types:
• Null Clauses,
• Directives,
• Labels,
• Instructions,
• Assignments,
• Message Instructions,
• Keyword Instructions, and
• Commands.

1.12.1. Null Clauses
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A clause consisting only of whitespace characters, comments, or both is a null clause. It is completely
ignored.

Note

A null clause is not an instruction; for example, putting an extra semicolon after the THEN or
ELSE in an IF instruction is not equivalent to using a dummy instruction (as it would be in the C
language). The NOP instruction is provided for this purpose.

1.12.2. Directives

A clause that begins with two colons is a directive. Directives are nonexecutable code and can start
in any column. They divide a program into separate executable units (methods and routines) and
supply information about the program or its executable units. Directives perform various functions,
such as creating new Rexx classes (::CLASS directive) or defining a method (::METHOD directive).
See Chapter 3, Directives for more information about directives.

1.12.3. Labels

A clause that consists of a single symbol or string followed by a colon is a label. The colon  in this
context implies a semicolon (clause separator), so no semicolon is required.

The label's name is taken from the string or symbol part of the label. If the label uses a symbol for the
name, the label's name is in uppercase. If a label uses a string, the name can contain mixed-case
characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and internal function calls. Label
searches for CALL, SIGNAL, and internal function calls are case-sensitive. Label-search targets
specified as symbols cannot match labels with lowercase characters. Literal-string or computed-label
searches can locate labels with lowercase characters.

Labels can be any number of successive clauses. Several labels can precede other clauses. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Duplicate labels are permitted, but control is only passed to the first of any duplicates in the main
program (prolog), a method, or a routine. The duplicate labels occurring later can be traced but cannot
be used as a target of a CALL, SIGNAL, or function invocation.

1.12.4. Instructions

An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be assignments, message instructions, keyword instructions, or
commands.

1.12.5. Assignments

A single clause of the form symbol=expression is an instruction known as an assignment. An
assignment gives a (new) value to a variable. See Section 1.13, “Assignments and Symbols”.
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1.12.5.1. Extended Assignments
The character sequences +=, -=, *=, /=, %=, //=, ||=, &=, |=, &&=, and **= can be
used to create extended assignments. These sequences combine an operation with the assignment.
See Section 1.13.1, “Extended Assignments” for more details.

1.12.6. Message Instructions

A message instruction is a single clause in the form of a message term (see Section 1.11.4, “Message
Terms”) or in the form messageterm=expression. A message is sent to an object, which responds by
performing some action. See Section 1.15, “Message Instructions”.

1.12.7. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control, for example, the external interfaces and the flow of control.
Some keyword instructions can include nested instructions. In the following example, the DO construct
(DO, the group of instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
  instruction
  instruction
  instruction
END

A subkeyword is a keyword that is reserved within the context of a particular instruction, for example,
the symbols TO and WHILE in the DO instruction.

1.12.8. Commands

A command is a clause consisting of an expression only. The expression is evaluated and the result is
passed as a command string to an external environment.

1.13. Assignments and Symbols

A variable is an object whose value can change during the running of a Rexx program. The process
of changing the value of a variable is called assigning a new value to it. The value of a variable is a
single object. Note that an object can be composed of other objects, such as an array or directory
object.

You can assign a new value to a variable with the ARG, PARSE, PULL, or USE instructions, or
the VALUE built-in function, but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause in the form

symbol= expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named
by the symbol to the left of the equal sign.
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Example:

/* Next line gives FRED the value "Frederic" */
Fred="Frederic"

The symbol naming the variable cannot begin with a digit (0-9) or a period.

You can use a symbol in an expression even if you have not assigned a value to it, because a symbol
has a defined value at all times. A variable to which you have not assigned  a value is uninitialized.
Its value is the characters of the symbol itself, translated to uppercase (that is, lowercase a-z to
uppercase A-Z). However, if it is a compound symbol (described in Section 1.13.5, “Compound
Symbols”), its value is the derived name of the symbol.  

Example 1.20. Derived symbol names

/* If Freda has not yet been assigned a value,   */
/* then next line gives FRED the value "FREDA"   */
Fred=Freda

The meaning of a symbol in Rexx varies according to its context. As a term in an expression, a symbol
belongs to one of the following groups: constant symbols, simple symbols, compound symbols,
environment symbols, and stems. Constant symbols cannot be assigned new values. You can use
simple symbols for variables where the name corresponds to a single value. You can use compound
symbols and stems for more complex collections of variables although the collection classes might be
preferable in many cases. See Section 5.3.2, “Collection Class”.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in function, or the variable
pool interface changes a variable, the effect is identical to an assignment.

2. Any clause that starts with a symbol and whose second token is (or starts with) an equal sign (=)
is an assignment, rather than an expression (or a keyword instruction). This is not a restriction,
because you can ensure that the clause is processed as a command, such as by putting a null
string before the first name, or by enclosing the expression in parentheses.

If you unintentionally use a Rexx keyword as the variable name in an assignment, this should
not cause confusion. For example, the following clause is an assignment, not an ADDRESS
instruction:

Address="10 Downing Street";

3. You can use the VAR function to test whether a symbol has been assigned a value. In addition,
you can set NOVALUE  to trap the use of any uninitialized variables (except when they are tails in
compound variables or stem variables, which are always initialized with a Stem object when first
used.)

1.13.1. Extended Assignments

The character sequences +=, -=, *=, /=, %=, //=, ||=, &=, |=, &&=, and **= can be
used to create extended assignment instructions. An extended assignment combines a non-prefix
operator with an assignment where the term on the left side of the assignment is also used as the left
term of the operator. For example,
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    a += 1

is exactly equivalent to the instruction

    a = a + 1

Extended assignments are processed identically to the longer form of the instruction.

1.13.2. Constant Symbols

A constant symbol starts with a digit (0-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters
of the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

Example 1.21. Constants

77
827.53
.12345
12e5       /* Same as 12E5 */
3D
17E-3

Constant symbols, where the first character is a period, which have at least one other character, and
which are not a valid Rexx number, are environment symbols and may have a value other than the
symbol name.

1.13.3. Simple Symbols

A simple symbol does not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

Example 1.22. Simple symbols

FRED
Whatagoodidea?    /* Same as WHATAGOODIDEA? */
?12

1.13.4. Stems

A stem is a symbol that contains a single period as the last character of the name. It cannot start with
a digit.

These are stems:
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Example 1.23. Stems

FRED.
A.

The value of a stem is always a Stem object (see Section 5.3.16, “Stem Class” for details). The stem
variable's Stem object is automatically created the first time you use the stem variable or a compound
variable containing the stem variable name. The Stem object's assigned name is the name of the
stem variable (with the characters translated to uppercase). If the stem variable has been assigned
a value, or the Stem object has been given a default value, the assigned name overrides the default
stem name. A reference to a stem variable will return the associated Stem object.

When a stem is the target of an assignment, the action taken depends on the value being assigned.
If the new value is a Stem object, the new Stem object will replace the Stem object that is currently
associated with the stem variable. This can result in multiple stem variables referring to the same
Stem object, effectively creating a variable alias.

Example 1.24. Stems

hole.   = "empty"
hole.19 = "full"
say  hole.1  hole.mouse  hole.19
/* Says "empty empty full" */

hole2. = hole.       /* copies reference to hole. stem to hole2. */

say  hole2.1  hole2.mouse  hole2.19

/* Also says "empty empty full" */

If the new value is not a Stem object, a new Stem object is created and assigned to the stem variable,
replacing the Stem object currently associated with the stem variable.

The new value assigned to the stem variable is given to the new Stem object as a default value.
Following the assignment, a reference to any compound symbol with that stem variable returns the
new value until another value is assigned to the stem, the Stem object, or the individual compound
variable.  

Example 1.25. Stems

hole.  = "empty"
hole.19 = "full"
say  hole.1  hole.mouse  hole.19
/* says "empty empty full" */

Thus, you can initialize an entire collection of compound variables to the same value.

You can pass stem collections as function, subroutine, or method arguments.

Example 1.26. Stems

/* CALL RANDOMIZE count, stem. calls routine */
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Randomize: Use Arg count, stem.
do i = 1 to count
  stem.i = random(1,100)
end
return

The USE ARG instruction functions as an assignment instruction. The variable STEM. in the example
above is functionally equivalent to:

stem. = arg(2)

Note

USE ARG must be used to access the stem variable as a collection. PARSE and PARSE ARG
will force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results. The resulting return value is
the Stem object associated with the stem variable.

Example 1.27. Stems

/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i = 1 to count
  stem.i = random(1,100)
end
return stem.

When a stem. variable is used in an expression context, the stem variable reference returns the
associated Stem object. The Stem object will forward many object messages to its default value. For
example, the STRING method will return the Stem object's default value's string representation:

Example 1.28. Stems

total. = 0
say total.                         /* says "0" */

The [] method with no arguments will return the currently associated default value. variables can
always be obtained by using the stem. However, this is not the same as using a compound variable
whose derived name is the null string.

Example 1.29. Stems

total. = 0
null = ""
total.null = total.null + 5
say total.[] total.null              /* says "0 5" */
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You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate collections of
variables, referred to by their stems. DROP FRED. assigns a new Stem object to the specified stem.
EXPOSE FRED. and PROCEDURE EXPOSE FRED. expose all possible variables with that stem.

The DO instruction can also iterate over all of the values assigned to a stem variable.

1.13.5. Compound Symbols

A compound symbol contains at least one period and two other characters. It cannot start with a digit
or a period, and if there is only one period it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period) and is
followed by a tail consisting of one or more name parts (delimited by periods)  that are constant
symbols, simple symbols, or null. Note that you cannot use constant symbols with embedded signs
(for example, 12.3E+5) after a stem; in this case the whole symbol would not be valid.

These are compound symbols:

Example 1.30. Compound symbols

FRED.3
Array.I.J
AMESSY..One.2.

Before the symbol is used, that is, at the time of reference, the language processor substitutes in the
compound symbol the character string values of any simple symbols in the tail (I, J, and One in the
examples), thus generating a new, derived tail. The value of a compound symbol is, by default, it's the
name of the Stem object associated with the stem variable concatenated to the derived tail or, if it has
been used as the target of an assignment, the value of Stem element named by the derived tail.

The substitution in the symbol permits arbitrary indexing (subscripting) of collections of variables that
have a common stem. Note that the values substituted can contain any characters (including periods
and blanks). Substitution is done only once.

More formally, the derived name of a compound variable that is referenced by the symbol

s0.s1.s2. --- .sn

is given by

d0.v1.v2. --- .vn

where d0 is the name of the Stem object associated with the stem variable s0 and v1 to vn are the
values of the constant or simple symbols s1 through sn. Any of the symbols s1 to sn can be null.
The values v1 to vn can also be null and can contain any characters (including periods). Lowercase
characters are not translated to uppercase, blanks are not removed, and periods have no special
significance. There is no limit on the length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a small extract from a Rexx
program:

Example 1.31. Compound symbols

a=3       /* assigns "3" to the variable A    */
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z=4                 /*   "4"      to Z        */
c="Fred"            /*   "Fred"   to C        */
a.z="Fred"          /*   "Fred"   to A.4      */
a.fred=5            /*   "5"      to A.FRED   */
a.c="Bill"          /*   "Bill"   to A.Fred   */
c.c=a.fred          /*   "5"      to C.Fred   */
y.a.z="Annie"       /*   "Annie"  to Y.3.4    */
say  a  z  c  a.a  a.z  a.c  c.a  a.fred y.a.4
/* displays the string:                     */
/*    "3 4 Fred A.3 Fred Bill C.3 5 Annie"  */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering a great scope for the creative programmer. A useful application is to
set up an array in which the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

1.13.5.1. Evaluated Compound Variables
The value of a stem variable is always a Stem object (see Section 5.3.16, “Stem Class” for details).
A Stem object is a type of collection that supports the [] and []= methods used by other collection
classes. The [] method provides an alternate means of accessing compound variables that also
allows embedded subexpressions.

Tails for compound variables are normally specified by symbols separated by periods. An alternative
is to specify the tail as a bracketed list of expressions separated by commas. The expressions are
evaluated to character strings. These are concatenated with intervening periods and the resulting
string is used as tail. This notation can be used in assignments to compound variables as well as
when referencing them. Examples:

Example 1.32. Evaluated compound variables

a.[1+2,3+4]=17      -- assigns A.3.7
Say a.3.7           -- => 17
v1='1+2'
v2='3+4'
a.v1.v2=18          -- tail used: '1+2.3+4'
Say a.['1+2','3+4'] -- => 18
Parse Value '1 2 3' With . a.[1,1+1] .
Say a.1.2           -- => 2

1.13.6. Environment Symbols

An environment symbol starts with a period and has at least one other character. The symbol may
not be a valid Rexx number. By default the value of an environment symbol is the string consisting of
the characters of the symbol (translated to uppercase). If the symbol identifies an object in the current
environment, its value is the mapped object.

These are environment symbols:

Example 1.33. Environment symbols

.method    // A reference to the Rexx Method class

.true      // The Rexx "true" object.  Has the value "1"

.xyz       // Normally the value .XYZ
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.3DGlasses // Normally the value .3DGLASSES

When you use an environment symbol, the language processor performs a series of searches to see if
the environment symbol has an assigned value. The search locations and their ordering are:
1. Constants .true, .false and .nil.

2. The list of classes declared on ::CLASS directives within the current program package or added to
the current package using the addClass method.

3. The list of public classes declared on ::CLASS directives of other files included with a
::REQUIRES directive or added to the current Package instance using the addPackage method.

4. The list of public Rexx supplied classes in the REXX package, like Object, String, or Array.

5. The package local environment directory specific to the current package. You can access the
package local environment directory through the Package local  method.

6. The local environment directory specific to the current interpreter instance. The local environment
includes instance-specific objects such as the .INPUT and .OUTPUT objects. You can directly
access the local environment directory by using the .LOCAL environment symbol.

7. The global environment directory. The global environment includes Rexx supplied objects like
.endofline or the .RexxInfo object. You can directly access the global environment by using the
.ENVIRONMENT environment symbol. Entries in the global environment directory can also be
accessed via the VALUE built-in function by using a null string for the selector argument.

8. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx built-
in environment objects. The currently defined built-in objects are .RS, .LINE, .METHODS,
.ROUTINES, .RESOURCES, and .CONTEXT.

If an entry is not found for an environment symbol, then the default character string value is used.

Note

You can place entries in both the .LOCAL and the .ENVIRONMENT directories for programs to
use. To avoid conflicts with future Rexx defined entries, it is recommended that the entries that
you place in either directory include at least one period in the entry name, for example:

/* establish settings directory */
.local~setentry("MyProgram.settings", .directory~new)

1.14. Namespaces

Namespaces can be used to differentiate between classes or routines of the same name, having been
loaded through ::REQUIRES directives.

Using ::REQUIRES with the NAMESPACE option allows to tag a loaded file with a namespace name,
which in turn can be used to qualify references to classes or routines within that namespace to
explicitly identify a specific class or routine. A special reserved namespace "REXX" will allow to always
access the Rexx-provided classes.
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Examples:

Example 1.34. Namespaces

-- disambiguate between two classes with same name
say .number~id                          -- The Real Number class
say natural:number~id                   -- The Natural Number class

-- use reserved namespace "REXX" to get Rexx-defined .Array
-- not :class array as defined below
say rexx:array~of(2, 3, 5, 7)~items     -- 4

-- call ::routine verify, not built-in function
call natural:verify(17)

-- use natural:number as a message target
say natural:number~subclass("Integer")  -- The Integer class

-- subclass natural:number, not ::class number as defined below
::class rationalNumber subclass natural:number

-- class "number"; same name as a class in 'number.cls'
::class number
::method id class
return "The Real Number class"

-- class "Array"; same name as Rexx-defined
::class array

::requires 'number.cls' namespace natural

Example 1.35. number.cls

::class number public
::method id class
return "The Natural Number class"

::routine verify public
return arg(1) >= 0 & arg(1)~dataType("W")

1.15. Message Instructions

You can send a message to an object to perform an action, obtain a result, or both. You use a
message instruction if the main purpose of the message is to perform an action. You use a message
term if the main purpose of the message is to obtain a result.

A message instruction is a clause of the form:

messageterm

= expression

If there is only a messageterm, the message is sent in exactly the same way as for a message term. If
the message yields a result object, it is assigned to the sender's special variable RESULT. If you use
the ~~ form of message term, the receiver object is used as the result. If there is no result object, the
variable RESULT is dropped (becomes uninitialized). A message term using ~~ is sometimes referred
to as a cascading message. 
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Example 1.36. Message instructions

mytable~add("John",123)

This sends the message ADD to the object MYTABLE. The ADD method need not return a result. If
ADD returns a result, the result is assigned to the variable RESULT.

The equal sign (=) sets a value. If =expression follows the message term, a message is sent to the
receiver object with an = concatenated to the end of the message name. The result of evaluating the
expression is passed as the first argument of the message.

Example 1.37. Message instructions

person~age = 39                   /* Same as person~"AGE="(39) */
table[i] = 5                      /* Same as table~"[]="(5,i)  */

The expressions are evaluated in the order in which the arguments are passed to the method.
That is, the language processor evaluates the =expression first. Then it evaluates the argument
expressions within any [] pairs from left to right.

The extended assignment form may also be used with message terms.

Example 1.38. Message instructions

   table[i] += 1        -- Same as table[i] = table[i] + 1

See Section 1.13.1, “Extended Assignments” for more details

1.16. Commands to External Environments
Issuing commands to the surrounding environment is an integral part of Rexx.

1.16.1. Environment

The base system for the language processor is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a Rexx program. You can
change the environment by using the ADDRESS instruction. You can find out the name of the current
environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the Rexx program. The environments selected depend on the caller. The
default environment is CMD on Windows and sh on Unix-like systems . There are three aliases for the
default environment, "" (null string), COMMAND and SYSTEM. These environments execute commands
through the standard command interpreter or system shell, which is cmd.exe on Windows and sh
on Unix-like systems . On Unix-like systems alternate environments bsh, bash, csh, ksh, tcsh, and
zsh are available, which allow execution of commands through a shell named like the environment, if
such a shell is installed on the system.

An additional environment PATH—available on both Windows and Unix-like systems—provides an
alternative to command interpreter- / shell-based environments. It executes commands directly,
without the need for a command interpreter or shell by searching the environment variable PATH
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to locate the command. Note that this environment does not provide shell or command interpreter
features such as internal commands, redirection, piping, environment variable substitution or wildcard
expansion.

If called from an editor that accepts subcommands from the language processor, the default
environment can be that editor.

A Rexx program can issue commands—called subcommands—to other application programs. For
example, a Rexx program written for a text editor can inspect a file being edited, issue subcommands
to make changes, test return codes to check that the subcommands have been processed as
expected, and display messages to the user when appropriate.

An application that uses Rexx as a macro language must register its environment with the Rexx
language processor. See the Open Object Rexx: Application Programming Interfaces for a discussion
of this mechanism.

1.16.2. Commands

To send a command to the currently addressed environment, use a clause of the form:

expression;

The expression (which must not be an expression that forms a valid message instruction) is evaluated,
resulting in a character string value (which can be the null string), which is then prepared as
appropriate and submitted to the environment specified by the current ADDRESS setting.

The environment then processes the command and returns control to the language processor after
setting a return code. A return code is a string, typically a number, that returns some information about
the command processed. A return code usually indicates if a command was successful but can also
represent other information. The language processor places this return code in the     Rexx special
variable RC.

In addition to setting a return code, the underlying system can also indicate to the language processor
if an error or failure occurred. An error is a condition raised by a command to which a program that
uses that command can respond. For example, a locate command to an editing system might report
requested string not found as an error. A failure is a condition raised by a command to which
a program that uses that command cannot respond, for example, a command that is not executable or
cannot be found.

Errors  and failures in commands can affect Rexx processing if a condition trap for ERROR or
FAILURE is ON (see Chapter 11, Conditions and Condition Traps). They can also   cause the
command to be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is
the default—see Section 2.29, “TRACE”.

The .RS environment symbol can also be used to detect command failures and errors. When the
command environment indicates that a command failure has occurred, the Rexx environment
symbol .RS has the value -1. When a command error occurs, .RS has a value of 1. If the command
did not have a FAILURE or ERROR condition, .RS is 0.

Here is an example of submitting a command. Where the default environment is Windows, the
sequence:

Example 1.39. Commands

fname = "CHESHIRE"
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exten = "CAT"
"TYPE" fname"."exten

would result in passing the string TYPE CHESHIRE.CAT to the command processor, CMD.EXE. The
simpler expression:

Example 1.40. Commands

"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file CHESHIRE.CAT were typed, or
a nonzero value if the file could not be found in the current directory.

Note

Remember that the expression is evaluated before it is passed to the environment. Constant
portions of the command should be specified as literal strings.

Example 1.41. Commands — Windows

delete "*".lst           /* not "multiplied by" */
var.003 = anyvalue
type "var.003"           /* not a compound symbol */

w = any
dir"/w"                  /* not "divided by ANY" */

Example 1.42. Commands — Linux

rm "*".lst               /* not "multiplied by" */
var.003 = anyvalue
cat "var.003"            /* not a compound symbol */

w = any
ls "/w"                  /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message result to be used as a
command. Any clause that is a message instruction is not treated as a command. Thus, for example,
the clause

myfile~linein

causes the returned line to be assigned to the variable RESULT, not to be used as a command to an
external environment, while

(myfile~linein)
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would submit the return value from the linein method as a command to the external environment.

1.17. Using Rexx on Windows and Unix-like systems

1.17.1. Calling other Rexx scripts

Rexx programs can call other Rexx programs as external functions or subroutines with the CALL
instruction.

If a program is called with the CALL instruction, the program runs in the same process as the
calling program. If you call another program by a Rexx command, the program is executed in a new
process and therefore does not share .environment, .local, or the Windows or Unix-like systems shell
environment.

Example 1.43. Calling other Rexx scripts

call "other.REX"         /* runs in the same process */
"rexx other.REX"         /* runs in a new child process */
"start rexx other.REX"   /* runs in a new detached process */

When Rexx programs call other Rexx programs as commands, the return code of the command is
the exit value of the called program provided that this value is a whole number in the range -32768 to
32767. Otherwise, the exit value is ignored and the called program is given a return code of 0.

1.17.2. Shebang support

Rexx supports shebangs, also called hashbangs, as the first line of a Rexx program on both Unix-like
and Windows systems.

Typically, shebangs are found on Unix-like systems to identify the script language with which to run
a script. On these systems, to run a script as a Rexx program, depending on where the interpreter is
installed, the shebang would be something like #!/usr/bin/rexx.

With several Unix-like systems changing the standard installation location away from /usr/bin
(including macOS), a new convention is used for the sample programs, which works if the Rexx
interpreter is anywhere on the path. This convention uses the env command in the shebang, like this:
#!/usr/bin/env rexx. This has the advantage that it is portable, and will use the first occurrence
of rexx that is found on $PATH.

On a Windows system, Rexx will simply ignore the first line of a Rexx program, if it starts with the
character sequence "#!".

1.17.3. Line-end characters
Windows and Unix-like systems use different characters to indicate a line-break (ending one line
and starting a new one) in a text file. While Windows uses the two-character sequence '0d 0a'x
(carriage-return, line-feed), Unix-like systems use the character '0a'x (line-feed) as a line-end
indicator.

Rexx supports both line-end indicators on each platform, both for the Rexx program itself, and for
data manipulated with e. g. built-in functions LINES, LINEIN, Stream methods lines, lineIn, arrayIn,
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String method makeArray, or MutableBuffer method makeArray. This means, when moving
from one platform to another, typically there should be no line-end conversions necessary for Rexx
programs or data read by these programs.

Note that you cannot include line-end characters '0d'x or '0a'x in a literal string.

1.17.4. End-of-file character
Traditionally Windows used a special character '1a'x (end-of-file) to signify the end of a text file.
Although today use of this special end-of-file character has become less common, some editors may
still append it to the end of a text file. Unix-like systems do not use a special end-of-file character in
text files.

Rexx will honor the end-of-file character '1a'x within a Rexx program source file on both Windows
and Unix-like platforms. It will not scan the source file beyond any end-of-file character it finds. This
means, that a character '1a'x cannot be directly used within a Rexx program source file, for example
within a literal string or a comment.
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Chapter 2.

Keyword Instructions
A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords. Other words, such as expression, denote a collection of tokens as defined previously.
Note, however, that the  keywords and subkeywords are not case-dependent. The symbols if, If,
and iF all have the same effect. A clause requires a semicolon (;) as a terminating delimiter  unless
the end of a line implies it.

A keyword instruction is recognized only if its keyword is the first token in a clause and if the second
token does not start with an equal (=) character (implying an assignment) or a colon (implying a label).
The keywords ELSE, END, OTHERWISE, THEN, and WHEN are treated in the same way. Note that
any clause that starts with a keyword defined by Rexx cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function.
A syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT
instruction. The keyword THEN is also recognized in the body of an IF or WHEN clause. In other
contexts, keywords are not reserved and can be used as labels or as the names of variables (though
this is generally not recommended).

Subkeywords are reserved within the clauses of individual instructions. For example, the symbols
VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions, respectively. For
details, see the description of each instruction.

Whitespace characters (blanks or horizontal tabs) adjacent to keywords separate the keyword from
the subsequent token. One or more whitespace characters following VALUE are required to separate
the expression from the subkeyword in the example following:

 ADDRESS VALUE expression

However, no whitespace character is required after the VALUE subkeyword in the following example,
although it would improve readability:

ADDRESS VALUE"ENVIR"||number

2.1. ADDRESS

ADDRESS

environment

expression

VALUE

env_expression

WITH - fragment

WITH:          
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WITH INPUT NORMAL

STEM stem

STREAM stream

USING expr

OUTPUT

ERROR

NORMAL

REPLACE

APPEND

STEM stem

STREAM stream

USING expr

ADDRESS permanently changes the destination or I/O redirection of commands, or temporarily
changes the destination and sends a command with optional I/O redirection of standard input,
standard output, and standard error from or to Rexx objects.

Commands are strings sent to an external environment. You can send commands by specifying
clauses consisting of only an expression or by using the ADDRESS instruction. (See Section 1.16,
“Commands to External Environments”.)

To send a single command to a specified environment, code an environment,  a literal string or a
single symbol, which is taken to be a constant, followed by an expression. The environment name
is the name of an external procedure or process that can process commands. The expression is
evaluated to produce a character string value, and this string is routed to the environment to be
processed as a command. After execution of the command, environment is set back to its original
state, thus temporarily changing the destination for a single command. The special variable RC and
the environment symbol .RS are set and errors and failures in commands processed in this way are
trapped or traced.

The following evironments are available in ooRexx:
sh (Unix-like systems only)

This is the default environment on Unix-like systems. It uses sh as a shell program to execute the
command. All shell features such as redirection or piping can be used.

bsh, bash, csh, ksh, tcsh, zsh (Unix-like systems only)
These environments use alternate Unix-like system shells bsh, bash, csh, ksh, tcsh, or zsh
to execute the command. If the appropriate shell is not installed on the system, executing a
command in any of these enviroments will raise a failure.

cmd (Windows only)
This is the default environment on Windows systems. It uses cmd.exe as a command interpreter
to execute the command. Command interpreter features such as internal commands, redirection
or piping can be used.

command, system, ""
These environment names are synonyms for the default environments sh on Unix-like systems
and cmd on Windows.

path
This environment executes commands directly, without using an intermediate command interpreter
or shell program. It searches the environment variable PATH to locate the command to execute.
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No shell features such as internal commands, redirection, piping or environment variable
substitution are available.

The WITH subkeyword sets a command's I/O redirection. STDIN input can be redirected from a Rexx
object to the command, and STDOUT and STDERR output from the command can be redirected to a
Rexx object.

I/O redirection is permanent when specified on an ADDRESS instruction without a command,
and temporary if a command is specified. Any permanent I/O redirection is associated with the
environment name and will be saved and restored across function and subroutine calls. For
permanent I/O redirections, any redirection objects or expressions are not evaluated at the time the
ADDRESS instruction is processed. Each time a command is sent to this environment, these objects
and expressions will be evaluated in the then current variable context.

WITH INPUT
redirects data from a stem, a stream, or other Rexx object to the command's input.

If option NORMAL is specified, the command's standard input will be used.

If option STEM is specified, stem must be a stem variable, where stem.0 specifies the number of
input lines, and each stem.i (with i from 1 through stem.0) specifies an input line.

If option STREAM is specified, stream must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a string which is used as the stream name. Input lines
for the command are read from stream using the lineIn method.

If option USING is specified, expr must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a String, a Stem object, an InputStream, a Monitor or
a File object, or an Array object or any other object that supports a makeArray method (e. g.
a RexxQueue object). If the resulting object is a String, the command will receive a single input
line, if it is a Stem, an InputStream, a Monitor, or a File object, input is redirected as described for
options STEM and STREAM. If the resulting object is an Array object, all Array items are converted
to strings and are sent to the command as input lines. Empty array items are ignored.

WITH OUTPUT and WITH ERROR
redirect a command's standard output or error output to a stem, a stream, or other Rexx objects.

If option NORMAL is specified, the command's default output destination, or default error
destination is used.

If option STEM is specified, stem must be a stem variable. If REPLACE is specified together with
STEM, the number of output lines is stored in stem.0 and individual lines are stored as stem.i,
with i running from 1 through stem.0. REPLACE is the default. If APPEND is specified with STEM,
individual lines are stored as stem.i, with i starting at the value of the existing stem.0 plus 1. The
initial stem.0 value is then incremented by the total number of output lines for the command.

If option STREAM is specified, stream must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a string which is used as the stream name. Output or
error lines from the command are written to the stream with the lineOut method. If REPLACE
is specified with STREAM, stream is truncated to zero length before any output lines are written.
REPLACE is the default. If APPEND is specified with STREAM, output lines are appended to stream.

If option USING is specified, expr must be a constant symbol, or an expression enclosed in
parentheses that evaluates to a Stem object, an OutputStream, a Monitor, a RexxQueue, a File
object, or an OrderedCollection object. If the resulting object is a Stem or a File object, output
lines are written as described for options STEM and STREAM. If it is an OutputStream or a Monitor
object, output lines are always appended to the stream; neither REPLACE nor APPEND can be
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specified in this case. If the object is a RexxQueue, method queue is used for each output line.
Neither REPLACE nor APPEND can be specified for a RexxQueue. If the resulting object is an
OrderedCollection object and REPLACE is specified, the collection is emptied using method emtpy
before any output lines are added to the collection using method append. REPLACE is the default.
If APPEND is specified, output lines are appended to the existing collection using method append.

Notes:

1. Specifying one of the INPUT, OUTPUT, or ERROR subkeywords more than once is an error.

2. If an input source object and an output or error target object is the same, Rexx uses appropriate
read and write buffering to make sure results are correct.

3. If the standard output target and the standard error target object is the same object, Rexx will send
interleaved output and error lines to the target.

   

Example 2.1. Instructions — ADDRESS

ADDRESS "CMD" 'dir "\Program Files"'            -- Windows
ADDRESS "sh" "ls /usr/bin"                      -- Unix-like system

address "" "cat" with input using "single line" -- Unix-like system: "single line"
address "" "ver" with output stem v.; say v.2   -- "Microsoft Windows ..."

address "" with input using (a) output using (a)
a = 4, 2, 3, 1
"sort"
say a~toString(, " ")                           -- 1 2 3 4

If you specify only environment, a lasting change of destination occurs: all commands (see
Section 1.16.2, “Commands”) that follow are routed to the specified command environment, until the
next ADDRESS instruction is processed. The previously selected environment is saved.

Assume that the environment for a Windows text editor is registered by the name EDIT:

Example 2.2. Instructions — ADDRESS environments

address CMD
"DIR C:\AUTOEXEC.BAT"
if rc=0 then "COPY C:\AUTOEXEC.BAT C:\*.TMP"
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the environment. Here
env_expression, which can be a variable name, is evaluated, and the resulting character string value
forms the name of the environment. You can omit the subkeyword VALUE if env_expression does
not begin with a literal string or symbol, that is, if it starts with a special character such as an operator
character or parenthesis.

Example 2.3. Instructions — ADDRESS environments

ADDRESS ("ENVIR"||number)  /* Same as ADDRESS VALUE "ENVIR"||number */
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With no arguments, commands are routed back to the environment that was selected before the
previous change of the environment, and the current environment name is saved. After changing the
environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments. Using a null string for the environment name ("") is the same as using the
default environment.

The two environment names are automatically saved across internal and external subroutine and
function calls. See the CALL instruction for more details.

The address setting is the currently   selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function. The Open Object Rexx: Application Programming
Interfaces describes the creation of alternative subcommand environments.

2.2. ARG

ARG

template_list

ARG retrieves the argument strings provided to a program, internal routine, or method and assigns
them to variables. It is a short form of the instruction:

PARSE UPPER ARG

template_list

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace characters, patterns, or both.

The objects passed to the program, routine, or method are converted to string values and parsed into
variables according to the rules described in Chapter 9, Parsing.

The language processor converts the objects to strings and translates the strings to uppercase (that is,
lowercase a-z to uppercase A-Z) before processing them. Use the PARSE ARG instruction if you do
not want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source objects (typically
with different templates). The source objects do not change.  

Example 2.4. Instructions — ARG

/* String passed is "Easy Rider"  */
Arg adjective noun .

/* Now:  ADJECTIVE  contains "EASY"           */
/*       NOUN       contains "RIDER"          */

If you expect more than one object to be available to the program or routine, you can use a comma   in
the parsing template_list so each template is selected in turn.

Example 2.5. Instructions — ARG

/* Function is called by  FRED("data X",1,5)    */
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Fred:  Arg string, num1, num2

/* Now:   STRING  contains "DATA X"             */
/*        NUM1    contains "1"                  */
/*        NUM2    contains "5"                  */

Notes:

1. The ARG built-in function can also retrieve or check the arguments.

2. The USE ARG instruction is an alternative way of retrieving arguments. USE ARG performs
a direct, one-to-one assignment of argument objects to Rexx variables. You should use this
when your program needs a direct reference to the argument object, without string conversion
or parsing. ARG and PARSE ARG produce string values from the argument objects, and the
language processor then parses the string values.

2.3. CALL

CALL name

( expr )
expression

,

CALL ON ANY

ERROR

FAILURE

HALT

NOTREADY

USER usercondition

NAME trapname

CALL OFF ANY

ERROR

FAILURE

HALT

NOTREADY

USER usercondition

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. The usercondition is a single symbol
that is taken as a constant. The trapname is a symbol or string taken as a constant. All information on
condition traps is contained in Chapter 11, Conditions and Condition Traps.
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To call a routine, specify name, which must be a literal string or symbol that is taken as a constant.
The routine called can be:

An internal routine
A subroutine that is in the same program as the CALL instruction or function call that calls it.
Internal routines are located using label instructions.

A built-in routine  
A function that is defined as part of the Rexx language.

An external routine 
A subroutine that is neither built-in nor a label within the same same program as the CALL
instruction call that invokes it. See Section 7.2.1, “Search Order” for details on the different types
of external routines.

If name is a literal string (that is, specified in quotation marks), the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that built-in function
names are in uppercase. Therefore, a literal string call to a built-in function must also use uppercase
characters.

You can also specify (expr), any valid expression enclosed in parentheses. The expression is
evaluated before any of the argument expressions, and the value is the target of the CALL instruction.
The language processor does not translate the expression value into uppercase, so the evaluated
name must exactly match any label name or built-in function name. See Section 1.12.3, “Labels” for a
description of label names.

The called routine can optionally return a result. In this case, the CALL instruction is functionally
identical with the clause:

result = name (

expression

,

)

You can use any number of expressions, separated by     commas. The expressions are evaluated
from left to right and form the arguments during execution of the routine. Any ARG, PARSE ARG, or
USE ARG instruction or ARG built-in function in the called routine accesses these objects while the
called routine is running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine called name, using exactly the same mechanism as function
calls. See Chapter 7, Functions. The search order is as follows:

Internal routines
These are sequences of instructions inside the same program, starting at the label that matches
name in the CALL instruction. If you specify the routine name in quotation marks, then an internal
routine is not considered for that search order. The RETURN instruction completes the execution
of an internal routine.

Built-in routines
These are routines built into the language processor for providing various functions. They always
return an object that is the result of the routine. See Section 7.4, “Built-in Functions”.
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Note

You can call any built-in function as a subroutine. Any result is stored in RESULT. Simply
specify CALL, the function name (with no parenthesis) and any arguments, for example:

call length "string"   /* Same as length("string") */
say result             /* Produces: 6              */

External routines
Users can write or use routines that are external to the language processor and the calling
program. You can code an external routine in Rexx or in any language that supports the system-
dependent interfaces. If the CALL instruction calls an external routine written in Rexx as a
subroutine, you can retrieve any argument strings with the ARG, PARSE ARG, or USE ARG
instructions or the ARG built-in function.

For more information on the search order, see Section 7.2.1, “Search Order”.

During execution of an internal routine, all variables previously known are generally accessible.
However, the PROCEDURE instruction can set up a local variables environment to protect the
subroutine and caller from each other. The EXPOSE option on the PROCEDURE instruction can
expose selected variables to a routine.

Calling an external program or routine defined with a ::ROUTINE directive is similar to calling an
internal routine. The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden. The status of internal values, for  example NUMERIC settings, start with
their defaults (rather than inheriting those of the caller). In addition, you can use EXIT to return from
the routine.

When control reaches an internal routine, the line number of the CALL instruction is available in
the variable SIGL (in the caller's variable environment). This can be used as a debug aid because
it is possible to find out how control reached a routine. Note that if the internal routine uses the
PROCEDURE instruction, it needs to EXPOSE    SIGL to get access to the line number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the clause following the
original CALL. If the RETURN instruction specified an expression, the variable RESULT   is set to the
value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.    

Example 2.6. Instructions — CALL

/* Recursive subroutine execution... */
arg z
call factorial z
say z"! =" result
exit
factorial: procedure     /* Calculate factorial by  */
  arg n                  /*  recursive invocation.  */
  if n=0 then return 1
  call factorial n-1
  return  result * n
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During internal subroutine (and function) execution, all important pieces of information are
automatically saved and then restored upon return from the routine. These are:  

• The status of loops and other structures: Executing a SIGNAL within a subroutine is safe
because loops and other structures that were active when the subroutine was called are not ended.
However, those currently active within the subroutine are ended.

• Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it
without affecting the tracing of the caller. If you want to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at entry (for example, Off)
upon return. Similarly, ? (interactive debug) is saved across routines.

• NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations are saved and then
restored on return. A subroutine can, therefore, set the precision, for example, that it needs to use
without affecting the caller.

• ADDRESS settings:   The current and previous destinations for commands, including any
associated I/O redirection configurations, are saved and then restored on return.

•  Condition traps: CALL ON and SIGNAL ON are saved and then restored on return. This means
that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without
affecting the conditions the caller set up.

• Condition information: This information describes    the state and origin of the current trapped
condition. The CONDITION built-in function returns this information.

• .RS value: The value of the .RS environment symbol.

• Elapsed-time clocks:  A subroutine inherits the elapsed-time clock (see Section 7.4.65, “TIME”)
from its caller, but because the time clock is saved across routine calls, a subroutine or internal
function can independently restart and use the clock without affecting its caller. For the same
reason, a clock started within an internal routine is not available to the caller.

2.4. DO

DO

LOOP
LABEL name COUNTER ctr REPETITOR - fragment

CONDITIONAL - fragment

instruction

END

name

REPETITOR:       
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DO

control1 = expri

TO exprt BY exprb FOR exprf

control2 OVER collection

FOR exprf

WITH INDEX index

ITEM item

OVER supplier

FOR exprf

FOREVER

exprr

CONDITIONAL:  

WHILE exprw

,

UNTIL expru

,

DO groups instructions and optionally processes them repetitively. During repetitive execution, control
variables (control1, control2, index, or item) can be stepped through some range of values.

LOOP groups instructions and processes them repetitively. LOOP behaves identically to DO, except
for the simple LOOP ... END case, which is equivalent to DO FOREVER ... END.

Notes:

1. The LABEL and COUNTER phrases can be in any order, if used. They must precede any repetitor
or conditional fragment.

2. The COUNTER phrase is only valid with a repetitive or conditional DO, it cannot be used on a
simple DO group.

3. control1, control2, index, item, and ctr must be symbols that are valid variable names.

4. The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number.  The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

5. The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This
includes the list form of a conditional expression, which is a list of expressions separated by ",".
The list of expressions is evaluated left-to-right. Each subexpression must evaluate to either 0 or
1. Evaluation will stop with the first 0 result and 0 will be returned as the condition result. If all of
the subexpressions evaluate to 1, then the condition result is also 1.

6. The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in
which they are written.   

7. The INDEX and ITEM phrases can be in any order, if used. They cannot be used more than once.
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8. The instruction can be any instruction, including assignments, commands, message instructions,
and keyword instructions (including any of the more complex constructs such as IF, SELECT, and
the DO or LOOP instruction itself).

9. The subkeywords WHILE, UNTIL, OVER, WITH, INDEX, and ITEM are reserved within a DO or
LOOP instruction in that they act as expression terminators for other keywords. Thus they cannot
be used as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in
expri, exprt, exprb, or exprf.  FOREVER is also reserved, but only if it immediately follows the
keyword DO or LOOP and is not followed by an equal sign. However, parentheses around or
within an expression can prevent these keywords from terminating an expression. For example,

Example 2.7. Instructions — DO variable without parenthesis

do i = 1 while i < until
   say i
end

is considered a syntax error because of the variable named UNTIL. Using parentheses around the
expression allows the variable UNTIL to be used:

Example 2.8. Instructions — DO variable with parenthesis

do i = 1 while (i < until)
   say i
end

10. The exprb option defaults to 1, if relevant.

11. The collection can be any expression that evaluates to an object that supports a makeArray
method. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

12. The supplier can be any expression that evaluates to an object that supports a supplier
method.

For more information, refer to Appendix A, Using DO and LOOP.

2.5. DROP

DROP name

( name )

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more whitespace characters or comments.

If parentheses enclose a single name, then its value is used as a  subsidiary list of variables to drop.
Whitespace characters are not necessary inside or outside the parentheses, but you can add them if
desired. This subsidiary list must follow the same rules as the original list, that is, be valid character
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strings separated by whitespace, except that no parentheses are allowed. The list need not contain
any names—that is, it can be empty.

Variables are dropped from left to right. It is not an error to specify a name more than once or to
drop a variable that is not known. If an exposed variable is named (see Section 2.7, “EXPOSE” and
Section 2.19, “PROCEDURE”), then the original variable is dropped.  

Example 2.9. Instructions — DROP

j=4
Drop  a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4              */
/* so that reference to them returns their names.    */

Here, a variable name in parentheses is used as a subsidiary list.

Example 2.10. Instructions — DROP

mylist="c d e"
drop (mylist) f
/* Drops the variables C, D, E, and F          */
/* Does not drop MYLIST                        */

Specifying a stem  (that is, a symbol that contains only one period as the last character) assigns the
stem variable to a new, empty stem object.

Example:

Drop  z.
/* Assigns stem variable z. to a new empty stem object */

2.6. EXIT

EXIT

expression

EXIT leaves a program unconditionally. Optionally, EXIT returns a result object to the caller. The
program is stopped immediately, even if an internal routine is being run. If no internal routine is active,
RETURN and EXIT are identical in their effect on the program running.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back to
the caller when the program stops.  

Example 2.11. Instructions — EXIT

j=3
Exit j*4
/* Would exit with the string "12" */
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If you do not specify expression, no data is passed back to the caller. If the program was called as a
function, this is detected as an error.

You can also use EXIT within a method. The method is stopped immediately, and the result object, if
specified, is returned to the sender. If the method has previously issued a REPLY instruction, the EXIT
instruction must not include a result expression.

Notes:

1. If the program was called through a command interface, an attempt is made to convert the
returned value to a return code acceptable by the underlying operating system. The returned string
must be a whole number in the range -32768 to 32767. If the conversion fails, no error is raised,
and a return code of 0 is returned.

2. If you do not specify EXIT, EXIT is implied at the end of the program, but no result value is
returned. 

3. On Unix-like systems the returned value is limited to a numerical value between 0 and 255.

2.7. EXPOSE

EXPOSE name

( name )

EXPOSE causes the object variables identified in name to be exposed to a method. References to
exposed variables, including assigning and dropping, access variables in the current object's variable
pool.  (An object variable pool is a collection of variables that is associated with an object rather
than with any individual method.) Therefore, the values of existing variables are accessible, and any
changes are persistent even after RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately visible to any other methods
that share the same object variable scope. All other variables that a method uses are local to the
method and are dropped on RETURN or EXIT. If an EXPOSE instruction is included, it must be the
first instruction of the method.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired.  This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than
once, or to specify a name that has not been used as a variable.  

Example 2.12. Instructions — EXPOSE

/* Example of exposing object variables */
myobj = .myclass~new
myobj~c
myobj~d         /* Would display "Z is: 120"                 */

::class myclass /* The ::CLASS directive                     */
::method c      /* The ::METHOD directive                    */
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  expose z
  z = 100       /* Would assign 100 to the object variable z */
  return

::method d
  expose z
  z=z+20        /* Would add 20 to the same object variable z */
  say "Z is:" z
  return

You can expose an entire collection of compound variables by specifying their stem in the variable list
or a subsidiary list. The variables are exposed for all operations.

Example 2.13. Instructions — EXPOSE

expose j k  c. d.
/*  This exposes "J", "K", and all variables whose            */
/*  name starts with "C." or "D."                             */
c.1="7."        /*  This sets "C.1" in the object             */
                /*  variable pool, even if it did not         */
                /*  previously exist.                         */

2.8. FORWARD

FORWARD

CONTINUE ARGUMENTS expra

ARRAY ( expri

,

)

MESSAGE exprm CLASS exprs TO exprt

Note

You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to begin running. The
FORWARD instruction can change parts of the forwarded message, such as the target object, the
message name, the arguments, and the superclass override.

If you specify the TO option, the language processor evaluates exprt to produce a new target object for
the forwarded message. The exprt is a literal string, a constant symbol, or an expression enclosed in
parentheses. If you do not specify the TO option, the initial value of the Rexx special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluates expra to produce an array
object that supplies the set of arguments for the forwarded message. The expra can be a literal string,
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a constant symbol, or an expression enclosed in parentheses. The ARGUMENTS value must evaluate to
a Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce a set of arguments for
the forwarded message. It is an error to use both the ARRAY and the ARGUMENTS options on the same
FORWARD instruction.

If you specify neither ARGUMENTS nor ARRAY, the language processor uses the same arguments
specified on the original method call.

If you specify the MESSAGE option, the exprm is a literal string, a constant symbol, or an expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its value. The uppercase character string value of the
MESSAGE option is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to call the currently active
method.

If you specify the CLASS option, the exprs is a literal string, a constant symbol, or an expression
enclosed in parentheses. This is the class object used as a superclass specifier on the forwarded
message.

If you do not specify CLASS, the message is forwarded without a superclass override.

If you do not specify the CONTINUE option, the language processor immediately exits the current
method before forwarding the message. Results returned from the forwarded message are the return
value from the original message that called the active method (the caller of the method that issued
the FORWARD instruction). Any conditions the forwarded message raises are raised in the calling
program (without raising a condition in the method issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and continues with the next
instruction when the forwarded message completes. If the forwarded message returns a result, the
language processor assigns it to the special variable RESULT. If the message does not return a result,
the language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message invocation to another method.
For example, the FORWARD instruction can forward a message to a different target object, using the
same message name and arguments.  

Example 2.14. Instructions — FORWARD

::method substr
  forward to (self~string)       /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another object the message that the
UNKNOWN method traps.

Example 2.15. Instructions — FORWARD

::method unknown
  use arg msg, args
  /* Forward to the string value */
  /* passing along the arguments */
  forward to (self~string) message (msg) arguments (args)
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You can use FORWARD in a method to forward a message to a superclass's methods, passing the
same arguments. This is very common usage in object INIT methods.

Example 2.16. Instructions — FORWARD

::class  savings subclass account
::method init
  expose type penalty
  forward class (super) continue       /* Send to the superclass      */
  type = "Savings"                     /* Now complete initialization */
  penalty = "1% for balance under 500"

In the preceding example, the CONTINUE option causes the FORWARD message to continue with the
next instruction, rather than exiting the Savings class INIT method.

2.9. GUARD

GUARD ON

OFF

WHEN expression

,

GUARD controls a method's exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable pool. This prevents
other methods that also require exclusive use of the same variable pool from running on the same
object. If another method has already acquired exclusive access, the GUARD instruction causes the
issuing method to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods that require exclusive
use of the same variable pool can begin running.

If you specify WHEN, the method delays running until the expression evaluates to .true. If the
expression evaluates to .false, GUARD waits until another method assigns or drops an object
variable (that is, a variable named on an EXPOSE instruction) used in the WHEN expression. When
an object variable changes, GUARD reevaluates the WHEN expression. If the expression evaluates
to .true, the method resumes running. If the expression evaluates to .false, GUARD resumes
waiting.

The condition expression after a WHEN can also be a list of expressions which is evaluated left-to-
right. Each expression must evaluate to either .false or .true. Evaluation will stop with the first
.false result and .false will be returned as the condition result. If all of the expressions evaluate to
.true, then the condition result is also .true.  

Example 2.17. Instructions — GUARD

::method c
  expose y
  if y>0 then
    return 1
  else
    return 0
::method d
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  expose z
  guard on when z>0
  self~c    /* Reevaluated when Z changes  */
  say "Method D"

If you specify WHEN and the method has exclusive access to the object's variable pool, then the
exclusive access is released while GUARD is waiting for an object variable to change. Exclusive
access is reacquired before the WHEN expression is evaluated. Once the WHEN expression
evaluates to .true, exclusive access is either retained (for GUARD ON WHEN) or released (for
GUARD OFF WHEN), and the method resumes running.

Note

If the condition expression cannot be met, GUARD ON WHEN puts the program in a continuous
wait condition. This can occur in particular when several activities run concurrently. See
Section 12.4.3, “Guarded Methods” for more information.

2.10. IF

IF expression

,

;

THEN

;

instruction

ELSE

;

instruction

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in 0 or 1.

The instruction after the THEN is processed only if the result is .true. If you specify an ELSE, the
instruction after ELSE is processed only if the result of the evaluation is .false.

Example:  

if answer="YES" then say "OK!"
else say "Why not?"

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before ELSE.

Example:

if answer="YES" then say "OK!";  else say "Why not?"

ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.
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Example 2.18. Instructions — IF

If answer = "YES" Then
  If name = "FRED" Then
    say "OK, Fred."
  Else
    nop
Else
  say "Why not?"

The expression may also be a list of expressions separated by ",". The list of expressions is evaluated
left-to-right. Each subexpression must evaluate to either 0 or 1. Evaluation will stop with the first 0
result and 0 will be returned as the condition result. If all of the subexpressions evaluate to 1, then the
condition result is also 1.

Example 2.19. Instructions — IF

If answer~datatype('w'), answer//2 = 0 Then
  say answer "is even"
Else
  say answer "is odd"

The example above is not the same as using the following

Example 2.20. Instructions — IF

If answer~datatype('w') & answer//2 = 0 Then
  say answer "is even"
Else
  say answer "is odd"

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in
a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first .false result, so the "answer//2" term will not be evaluated if the datatype test returns 0.

Notes:

1. The instruction can be any assignment, message instruction, command, or keyword instruction,
including any of the more complex constructs such as DO, LOOP, SELECT, or the IF instruction
itself. A null clause is not an instruction, so putting an extra semicolon (or label) after THEN or
ELSE is not equivalent to putting a dummy instruction (as it would be in C). The NOP instruction is
provided for this purpose.

2. Except when within a bracketed subexpression, the symbol THEN cannot be used within
expression, because the keyword THEN is treated differently in that it need not start a clause.
This allows the expression on the IF clause to be ended by THEN, without a semicolon (;) being
required.

2.11. INTERPRET

INTERPRET expression
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INTERPRET processes instructions that have been built dynamically by evaluating expression.

The expression is evaluated to produce a character string, and is then processed (interpreted) just as
though the resulting string were a line inserted into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such
as DO...END and SELECT...END must be complete. For example, a string of instructions being
interpreted cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive loop) unless
it also contains the whole repetitive DO...END or LOOP...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.  

Example 2.21. Instructions — INTERPRET

/* INTERPRET example */
data="FRED"
interpret data "= 4"
/* Builds the string  "FRED = 4" and        */
/* Processes:  FRED = 4;                    */
/* Thus the variable FRED is set to "4"     */

/* Another INTERPRET example */
data="do 3; say "Hello there!"; end"
interpret data        /* Displays:          */
                      /*  Hello there!      */
                      /*  Hello there!      */
                      /*  Hello there!      */

Notes:

1. Labels within the interpreted string are not permanent and are, therefore, an error.

2. Executing the INTERPRET instruction with TRACE R or TRACE I can be helpful in interpreting the
results you get.  

Example 2.22. Instructions — INTERPRET

/* Here is a small Rexx program. */
Trace Int
name="Kitty"
indirect="name"
interpret 'say "Hello"' indirect'"!"'

When this is run, you get the following trace:

     3 *-* name="Kitty"
       >L>   "Kitty"
       >>>   "Kitty"
     4 *-* indirect="name"
       >L>   "name"
       >>>   "name"
     5 *-* interpret 'say "Hello"' indirect'"!"'
       >L>   "say "Hello""
       >V>   INDIRECT => "name"
       >O>   " " => "say "Hello" name"
       >L>   ""!""
       >O>   "" => "say "Hello" name"!""
       >>>   "say "Hello" name"!""
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     5 *-* say "Hello" name"!"
       >L>   "Hello"
       >V>   NAME => "Kitty"
       >O>   " " => "Hello Kitty"
       >L>   "!"
       >O>   "" => "Hello Kitty!"
       >>>   "Hello Kitty!"
Hello Kitty!

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and
another literal string. The resulting pure character string is then interpreted, just as though it
were actually part of the original program. Because it is a new clause, it is traced as such (the
second *-* trace flag under line 5) and is then processed. Again a literal string is concatenated
to the value of a variable (NAME) and another literal, and the final result (Hello Kitty!) is then
displayed.

3. For many purposes, you can use the VALUE function instead of the INTERPRET instruction. The
following line could, therefore, have replaced line 5 in the previous example:

Example 2.23. Instructions — INTERPRET

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are
to be interpreted together, or when an expression is to be evaluated dynamically.

4. You cannot use a directive within an INTERPRET instruction.

2.12. ITERATE

ITERATE

name

ITERATE alters the flow within a repetitive loop (that is, any DO construct other than that with a simple
DO or a LOOP instruction).

Execution of the group of instructions stops, and control is passed to the DO or LOOP instruction just
as though the END clause had been encountered. The control variable, if any, is incremented and
tested, as usual, and the group of instructions is processed again, unless the DO or LOOP instruction
ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE continues with the
current repetitive loop. If name is specified, it must be the name of the control variable or the LABEL
name of a currently active loop, which can be the innermost, and this is the loop that is stepped. Any
active loops inside the one selected for iteration are ended (as though by a LEAVE instruction).  

Example 2.24. Instructions — ITERATE

loop label MyLabelName i=1 to 4 /* label set to 'MYLABELNAME' */
  if i=2 then iterate
  say i
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end myLabelName
/* Displays the numbers:
  1
  3
  4
*/

Notes:

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO
or LOOP clause in all respects except the case. No substitution for compound variables is carried
out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during the execution of a loop, the loop becomes inactive until the
subroutine has returned or the INTERPRET instruction has completed. ITERATE cannot be used
to continue with an inactive loop.

3.  If more than one active loop uses the same name, ITERATE selects the innermost loop.

2.13. LEAVE

LEAVE

name

LEAVE causes an immediate exit from one or more repetitive loops or block instruction (simple DO or
SELECT).

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had
been met. However, on exit, the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable or LABEL name of a
currently active LOOP, DO, or SELECT, which can be the innermost, and that block, and any active
block  inside it, are then ended. Control then passes to the clause following the END that matches the
instruction of the selected block.  

Example 2.25. Instructions — LEAVE

max=5
do label myDoBlock /* define a label 'MYDOBLOCK' */
  loop i=1 to max /* label defaults to control variable 'I' */
    if i = 2 then iterate i
    if i = 4 then leave myDoBlock
    say i
  end i
end myDoBlock
say 'after looping' i 'times'
/* Displays the following
  1
  3
  after looping 4 times
*/
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Notes:

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO,
LOOP, or SELECT clause in all respects except the case. No substitution for compound variables
is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during execution of a loop, the loop becomes inactive until the subroutine
has returned or the INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive block.

3. If more than one active block uses the same control variable, LEAVE selects the innermost block.

2.14. LOOP

DO

LOOP
LABEL name COUNTER ctr REPETITOR - fragment

CONDITIONAL - fragment

instruction

END

name

REPETITOR:       

control1 = expri

TO exprt BY exprb FOR exprf

control2 OVER collection

FOR exprf

WITH INDEX index

ITEM item

OVER supplier

FOR exprf

FOREVER

exprr

CONDITIONAL:  
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WHILE exprw

,

UNTIL expru

,

LOOP groups instructions and processes them repetitively.

LOOP behaves identically to DO, except for the simple LOOP ... END case, which is equivalent to DO
FOREVER ... END.

For details refer to Section 2.4, “DO”.

2.15. NOP

NOP

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE
clause.  

Example 2.26. Instructions — NOP

Select
  when a=c then nop           /* Do nothing */
  when a>c then say "A > C"
  otherwise     say "A < C"
end

Note

Putting an extra semicolon instead of the NOP would merely insert a null clause, which would
be ignored. The second WHEN clause would be seen as the first instruction expected after the
THEN, and would, therefore, be treated as a syntax error. NOP is a true instruction, however, and
is, therefore, a valid target for the THEN clause.

2.16. NUMERIC
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NUMERIC DIGITS

expression1

FORM

SCIENTIFIC

ENGINEERING

VALUE

expression2

FUZZ

expression3

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail in Chapter 10, Numbers and Arithmetic.

NUMERIC DIGITS 
controls the precision to which arithmetic operations and built-in functions are evaluated. If you
omit expression1, the precision defaults to 9 digits, but can be overridden on a source-file basis
using the ::OPTIONS directive. Otherwise, the character string value result of expression1 must
evaluate to a positive whole number and must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but high
precisions are likely to require a great amount of processing time. It is recommended that you use
the default value whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function.

NUMERIC FORM  
controls the form of exponential notation for the result of arithmetic operations and built-in
functions. This can be either SCIENTIFIC (in which case only one, nonzero digit appears before
the decimal point) or ENGINEERING (in which case the power of 10 is always a multiple of 3).
The default is SCIENTIFIC, but can be overridden on a source-file basis using the ::OPTIONS
directive. The subkeywords SCIENTIFIC or ENGINEERING set the FORM directly, or it is
taken from the character string result of evaluating the expression (expression2) that follows
VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string, that is, if it
starts with a special character, such as an operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM built-in function.

NUMERIC FUZZ  
controls how many digits, at full precision, are ignored during a numeric comparison operation. If
you omit expression3, the default is 0 digits, but can be overridden on a source-file basis using the
::OPTIONS directive. Otherwise, the character string value result of expression3 must evaluate to
0 or a positive whole number rounded, if necessary, according to the current NUMERIC DIGITS
setting, and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ
value during every numeric comparison. The numbers are subtracted under a precision of DIGITS
minus FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function.
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Note

The three numeric settings are automatically saved across internal subroutine and function calls.
See the CALL instruction for more details.

2.17. OPTIONS

OPTIONS expression

The OPTIONS instruction is used to pass special requests to the language processor.

The expression is evaluated, and individual words in the result that are meaningful to the language
processor will be obeyed. Options might control how the interpreter optimizes code, enforces
standards, enables implementation-dependent features, etc. Unrecognized words in the result are
ignored, since they are assumed to be instructions for a different language processor.

Open Object Rexx does not recognize any option keywords.

2.18. PARSE

PARSE

UPPER

LOWER

CASELESS

ARG

LINEIN

PULL

SOURCE

VALUE

expression

WITH

VAR name

VERSION

template_list

Note

You can specify UPPER and CASELESS or LOWER and CASELESS in either order.
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PARSE assigns data from various sources to one or more variables according to the rules of parsing.
(See Chapter 9, Parsing.)

  If you specify UPPER, the strings to be parsed are translated to uppercase before parsing. If you
specify LOWER, the strings are translated to lowercase. Otherwise no translation takes place.

If you specify CASELESS, character string matches during parsing are made independent of the case.
This means a letter in uppercase is equal to the same letter in lowercase.

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

Each template is applied to a single source string. Specifying several templates is not a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See Section 9.8.1,
“Parsing Several Strings” for information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared for parsing, if necessary.
Thus for PARSE PULL, a data string is removed from the current data queue, for PARSE LINEIN (and
PARSE PULL if the queue is empty), a line is taken from the default input stream, and for PARSE
VALUE, expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does not
have a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG  
parses the strings passed to a program, routine, or method as input arguments. See the ARG
instruction for details and examples.

Note

Parsing uses the string values of the argument objects. The USE ARG instruction provides
direct access to argument objects. You can also retrieve or check the argument objects to a
Rexx program, routine, or method with the ARG built-in function.

PARSE LINEIN  
parses the next line of the default input stream. (See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output.) PARSE LINEIN is a shorter form of the following instruction:

PARSE VALUE LINEIN() WITH

template_list

If no line is available, program execution usually pauses until a line is complete. Use PARSE
LINEIN only when direct access to the character input stream is necessary. Use the PULL or
PARSE PULL instructions for the usual line-by-line dialog with the user to maintain generality.
PARSE LINEIN will not pull lines from the external data queue.

To check if any lines are available in the default input stream, use the LINES built-in function.

PARSE PULL 
parses the next string of the external data queue. If the external data queue is empty, PARSE
PULL reads a line of the default input stream (the user's terminal), and the program pauses, if
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necessary, until a line is complete. You can add data to the head or tail of the queue by using
the PUSH and QUEUE instructions, respectively. You can find the number of lines currently in
the queue with the QUEUED built-in function. The queue remains active as long as the language
processor is active. Other programs in the system can alter the queue and use it to communicate
with programs written in Rexx. See also the PULL instruction.

Note

PULL and PARSE PULL read the current data queue. If the queue is empty, they read the
default input stream, .INPUT (typically, the keyboard).

PARSE SOURCE     
parses data describing the source of the program, routine or method running.

The first two tokens of source string are the operating system name, followed by either COMMAND,
FUNCTION, SUBROUTINE, METHOD, or REQUIRES, depending on whether the program was called
as a host command, or from a function call in an expression, or using the CALL instruction, or as
a method of an object, or from a ::REQUIRES directive to run the prolog code. These two tokens
are followed by the path specification of the program, or the name given to a Package, Routine or
Method instance, or the string INSTORE when run via rexx -e.

The string might look like one of the following:

WindowsNT COMMAND C:\Program Files\ooRexx\rexxtry.rex
LINUX COMMAND /usr/local/bin/rexxtry.rex

PARSE VALUE  
parses the data, a character string, that is the result of evaluating expression. If you specify no
expression, the null string is used. Note that WITH is a subkeyword in this context and cannot be
used as a symbol within expression.

Thus, for example:  

PARSE VALUE time() WITH  hours ":" mins ":" secs

gets the current time and splits it into its constituent parts.

PARSE VAR name  
parses the character string value of the variable name. The name must be a symbol that is valid
as a variable name, which means it cannot start with a period or a digit. Note that the variable
name is not changed unless it appears in the template, so that, for example:

PARSE VAR string word1 string

removes the first word from string, puts it in the variable word1, and assigns the remainder back to
string.

PARSE UPPER VAR string word1 string

also translates the data from string to uppercase before it is parsed.
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PARSE VERSION   
parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:
• The string REXX-ooRexx_5.0.0(MT)_64-bit, if using the ooRexx interpreter at version 5,

release 0, modification 0, and compiled for 64-bit addressing mode.

• The language level description, for example 6.05 for ooRexx 5.0, or 6.04 for ooRexx 4.2.

• Three tokens that describe the language processor release date in the same format as the
default for the DATE built-in function, for example, "1 Sep 2016".

2.19. PROCEDURE

PROCEDURE EXPOSE name

( name )

PROCEDURE, within an internal routine (subroutine or function), protects the caller's variables by
making them unknown to the instructions that follow it. After a RETURN instruction is processed, the
original variable environment is restored and any variables used in the routine (that were not exposed)
are dropped. (An exposed variable is one belonging the caller of a routine that the PROCEDURE
instruction has exposed. When the routine refers to, or alters, the variable, the original (caller's) copy
of the variable is used.) An internal routine need not include a PROCEDURE instruction. In this case
the variables it is manipulating are those the caller owns. If the PROCEDURE instruction is used, it
must be the first instruction processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified by the name is exposed. Any reference to it
(including setting and dropping) is made to the variables environment the caller owns. Hence, the
values of existing variables are accessible, and any changes are persistent even on RETURN from
the routine. If the name is not enclosed in parentheses, it identifies a variable you want to expose
and must be a symbol that is a valid variable name, separated from any other name with one or more
whitespace characters.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired.  This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name more than once, or to
specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some of the
caller's variables can be made accessible and can be changed, or new variables can be created. All
these changes are visible to the caller upon RETURN from the routine.  

Example 2.27. Instructions — PROCEDURE

/* This is the main Rexx program */
j=1; z.1="a"
call toft
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say j k m       /* Displays "1 7 M"          */
exit

/* This is a subroutine     */
toft: procedure expose j k z.j
  say j k z.j   /* Displays "1 K a"          */
  k=7; m=3      /* Note: M is not exposed    */
  return

Note that if Z.J in the EXPOSE list is placed before J, the caller's value of J is not visible, so Z.1 is
not exposed.

The variables in a subsidiary list are also exposed from left to right.

Example 2.28. Instructions — PROCEDURE

/* This is the main Rexx program */
j=1;k=6;m=9
a ="j k m"
call test
exit

/* This is a subroutine     */
test: procedure expose (a)   /* Exposes A, J, K, and M     */
  say a j k m                /* Displays "j k m 1 6 9"     */
  return

You can use subsidiary lists to more easily expose a number of variables at a time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example 2.29. Instructions — PROCEDURE

/* This is the main Rexx program */
c=11; d=12; e=13
Showlist="c d"     /* but not E              */
call Playvars
say c d e f        /* Displays "11 New 13 9" */
exit

/* This is a subroutine     */
Playvars: procedure expose (showlist) f
  say word(showlist,2)              /* Displays "d"                     */
  say value(word(showlist,2),"New") /* Displays "12" and sets new value */
  say value(word(showlist,2))       /* Displays "New"                   */
  e=8                               /* E is not exposed                 */
  f=9                               /* F was explicitly exposed         */
  return

Specifying a stem as name exposes this stem and all possible compound variables whose names
begin with that stem. 

Example 2.30. Instructions — PROCEDURE

/* This is the main Rexx program */
a.=11; i=13; j=15
i = i + 1
C.5 = "FRED"
call lucky7
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say a. a.1 i j c. c.5
say "You should see 11 7 14 15 C. FRED"
exit

lucky7:Procedure Expose i j a. c.
  /* This exposes I, J, and all variables whose     */
  /* names start with A. or C.                      */
  A.1="7"  /* This sets A.1 in the caller-'s         */
           /* environment, even if it did not       */
           /* previously exist.                     */
  return

Note

Variables can be exposed through several generations of routines if they are included in all
intermediate PROCEDURE instructions.

See the CALL instruction and Chapter 7, Functions for details and examples of how routines are
called.

2.20. PULL

PULL

template_list

PULL reads a string from the head of the external data queue or, if the external data queue is empty,
from the standard input stream (typically the keyboard). (See Chapter 14, Input and Output Streams
for a discussion of Rexx input and output.) It is a short form of the following  instruction:

PARSE UPPER PULL

template_list

The current head of the queue is read as one string. Without a template_list specified, no further
action is taken and the string is thus effectively discarded. The template_list can be a single template
or list of templates separated by commas, but PULL parses only one source string. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

If you specify several comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowercase a-z to uppercase A-Z)
and then parsed into variables according to the rules described in Chapter 9, Parsing. Use the PARSE
PULL instruction if you do not desire uppercase translation.

Note

If the current data queue is empty, PULL reads from the standard input (typically, the keyboard). If
there is a PULL from the standard input, the program waits for keyboard input with no prompt.
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Example:

Say "Do you want to erase the file?  Answer Yes or No:"
Pull answer .
if answer="NO" then say "The file will not be erased."

Here the dummy placeholder, a period (.), is used in the template to isolate the first word the user
enters.

If the external data queue is empty, a line is read from the default input stream and the program
pauses, if necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been
processed. For details see PARSE LINEIN

The QUEUED built-in function returns the number of lines currently in the external data queue.

2.21. PUSH

PUSH

expression

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) into the
external data queue. (See Chapter 14, Input and Output Streams for a discussion of Rexx input and
output.)

If you do not specify expression, a null string is stacked.  

Example 2.31. Instructions — PUSH

a="Fred"
push       /* Puts a null line onto the queue */
push a 2   /* Puts "Fred 2"    onto the queue */

The QUEUED built-in function returns the number of lines currently in the external data queue.

2.22. QUEUE

QUEUE

expression

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out).  (See Chapter 14, Input and Output Streams for a discussion of Rexx
input and output.)

If you do not specify expression, a null string is queued.  

Example 2.32. Instructions — QUEUE

a="Toft"
queue a 2  /* Enqueues "Toft 2" */
queue      /* Enqueues a null line behind the last */
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The QUEUED built-in function returns the number of lines currently in the external data queue.

2.23. RAISE

RAISE ERROR errorcode

FAILURE failurecode

HALT

LOSTDIGITS

NOMETHOD

NOSTRING

NOTREADY

NOVALUE

SYNTAX number

USER usercondition

PROPAGATE

OPTIONS - fragment

OPTIONS:

ADDITIONAL expra

ARRAY ( expri

,

)

DESCRIPTION exprd

EXIT

expre

RETURN

exprr

Note

You can specify the options ADDITIONAL, ARRAY, DESCRIPTION, RETURN, and EXIT in any
order. However, if you specify EXIT without expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and raises a condition in the caller
(for a routine) or sender (for a method). See Chapter 11, Conditions and Condition Traps for details of
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the actions taken when conditions are raised. The RAISE instruction can raise all conditions that can
be trapped.

If the ERROR or FAILURE condition is raised, you must supply the associated return code as
errorcode or failurecode, respectively. These can be literal strings, constant symbols, or expressions
enclosed in parentheses. If you specify an expression enclosed in parentheses, a subexpression, the
language processor evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated Rexx error number as number. This
error number can be either a Rexx major error code or a Rexx detailed error code in the form nn.nnn.
The number can be a literal string, a constant symbol, or an expression enclosed in parentheses. If
you specify an expression enclosed in parentheses, the language processor evaluates the expression
to obtain its character string value.

If a USER condition is raised, you must supply the associated user condition name as usercondition,
which must be a symbol that is taken as a constant.

If you specify the ADDITIONAL option, the language processor evaluates expra to produce an object
that supplies additional object information associated with the condition. The expra can be a literal
string, a constant symbol, or an expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information. For SYNTAX conditions, the ADDITIONAL value must evaluate to a single-dimensional
Array.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce an array object that
supplies additional object information associated with the condition. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information as an array of values. It is an error to use both the ARRAY option and the ADDITIONAL
option on the same RAISE instruction.

The content of expra or expri is used as the contents of the secondary error message produced for a
condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object information associated
with the condition.

If you specify the DESCRIPTION option, the exprd can be a literal string, a constant symbol, or
an expression enclosed in parentheses. If you specify an expression enclosed in parentheses,
the language processor evaluates the expression to obtain its character string value. This is the
description associated with the condition. The "D" option of the CONDITION built-in function and the
DESCRIPTION entry of the condition object return this string.

If you do not specify DESCRIPTION, the language processor uses a null string as the descriptive
string.

If you specify the RETURN or EXIT option, the language processor evaluates the expression exprr
or expre, respectively, to produce a result object that is passed back to the caller or sender as if
it were a RETURN or EXIT result. The expre or exprr is a literal string, a constant symbol, or an
expression enclosed in parentheses. If you specify an expression enclosed in parentheses, the
language processor evaluates the expression to obtain its character string value. If you do not specify
exprr or expre, no result is passed back to the caller or sender. In either case, the effect is the same
as that of the RETURN or EXIT instruction. The EXIT option is the default. Following the return or
exit, the appropriate action is taken in the caller or sender (see Section 11.1, “Action Taken when a
Condition Is Not Trapped”). If specified, the result value can be obtained from the RESULT entry of the
condition object.  
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Example 2.33. Instructions — RAISE

raise syntax 40                      /* Raises syntax error 40                */
raise syntax 40.12 array (1, number) /* Raises syntax error 40, subcode 12    */
                                     /* Passing two substitution values       */
raise syntax (errnum)                /* Uses the value of the variable ERRNUM */
                                     /* as the syntax error number            */
raise user badvalue                  /* Raises user condition BADVALUE        */

If you specify PROPAGATE, and there is a currently trapped condition, this condition is raised again
in the caller (for a routine) or sender (for a method). Any ADDITIONAL, DESCRIPTION, ARRAY,
RETURN, or EXIT information specified on the RAISE instruction replaces the corresponding values
for the currently trapped condition. A SYNTAX error occurs if no condition is currently trapped.

Example 2.34. Instructions — RAISE

signal on syntax
a = "xyz"
c = a+2                /* Raises the SYNTAX condition             */
.
.
.
exit
syntax:
  raise propagate      /* Propagates SYNTAX information to caller */

2.24. REPLY

REPLY

expression

REPLY sends an early reply from a method to its caller. The method issuing REPLY returns control,
and possibly a result, to its caller to the point from which the message was sent; meanwhile, the
method issuing REPLY continues running on a newly created thread.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back. If
you omit expression, no object is passed back.

Unlike RETURN or EXIT, the method issuing REPLY continues to run after the REPLY until it issues
an EXIT or RETURN instruction. The EXIT or RETURN must not specify a result expression.  

Example 2.35. Instructions — REPLY

reply 42           /* Returns control and a result    */
call tidyup        /* Can run in parallel with sender */
return

Notes:

1. You can use REPLY only in a method.

2. A method can execute only one REPLY instruction.
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3. When the method issuing the REPLY instruction is the only active method on the current thread
with exclusive access to the object's variable pool, the method retains exclusive access on the
new thread. When other methods on the thread also have access, the method issuing the REPLY
releases its access and reacquires the access on the new thread. This might force the method to
wait until the original activity has released its access.

See Chapter 12, Concurrency for a complete description of concurrency.

2.25. RETURN

RETURN

expression

RETURN returns control, and possibly a result, from a Rexx program, method, or routine to the point
of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect
on the program that is run.

If called as a routine, expression (if any) is evaluated, control is passed back to the caller, and the
Rexx special variable  RESULT is set to the value of expression. If you omit expression, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at the time of the
CALL (for example, tracing and addresses) are also restored.

If a function call is active, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point
where the function was called. See Chapter 7, Functions for more details.

If a method is processed, the language processor evaluates expression (if any) and returns control to
the point from which the method's activating message was sent. If called as a term of an expression,
expression is required. If called as a message instruction, expression is optional and is assigned to the
Rexx special variable   RESULT if a return expression is specified. If the method has previously issued
a REPLY instruction, the RETURN instruction must not include a result expression.

If a PROCEDURE instruction was processed within an internal subroutine or internal function, all
variables of the current generation are dropped (and those of the previous generation are exposed)
after expression is evaluated and before the result is used or assigned to RESULT.

Note

If the RETURN statement causes the program to return to the operating system on a Unix-like
systems the value returned is limited to a numerical value between 0 and 255 (an unsigned byte).
If no expression is supplied then the default value returned to the operating system is zero.

2.26. SAY

SAY

expression
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SAY writes a line to the default output stream, which displays it to the user. However, the output
destination can depend on the implementation. See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output. The string value of the expression result is written to the default
character output stream. The resulting string can be of any length. If you omit expression, the null
string is written.

The SAY instruction is a shorter form of the following instruction:

CALL LINEOUT ,

expression

except that:
• SAY does not affect the special variable RESULT.

• If you use SAY and omit expression, a null string is used.

• CALL LINEOUT can raise NOTREADY; SAY will not.

Example 2.36. Instructions — SAY

data=100
Say data "divided by 4 =>" data/4
/* Displays: "100 divided by 4 => 25"  */

Notes:

1. Data from the SAY instruction is sent to the default output stream (.OUTPUT). However, the
standard rules for redirecting output apply to the SAY output.

2. The SAY instruction does not format data; the operating system and the hardware handle line
wrapping. However, formatting is accomplished, the output data remains a single logical line.

2.27. SELECT
        

SELECT

LABEL name CASE case_expression

WHEN expression

,

;

THEN

;

instruction

OTHERWISE

;

instruction
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END

name

SELECT conditionally calls one of several alternative instructions.

Evaluation of the expression list after a WHEN is as follows:
SELECT without CASE

The list of expressions after a WHEN is evaluated left-to-right. Each expression must evaluate
to either .false or .true. Evaluation will stop with the first .false result and .false will be
returned as the condition result.

If all of the expressions evaluate to .true, then the condition result is also .true.

SELECT CASE
The case_expression is evaluated only once, before the first WHEN instruction is processed. The
list of expressions after a WHEN is evaluated left-to-right. Each expression is compared to the
result of case_expression using "==". Evaluation will stop with the first .true result and .true
will be returned as the condition result.

If all comparisons evaluate to .false, then the condition result is also .false.

If the result from above is .true, the instruction following the associated THEN (which can be a
complex instruction such as IF, DO, LOOP, or SELECT) is processed and control is then passed to the
END. If the result is .false, control is passed to the next WHEN clause.

If none of the WHEN results are .true, control is passed to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE produces an error, however, you can
omit the instruction list that follows OTHERWISE.

Example 2.37. Instructions — SELECT

balance=100
check=50
balance = balance - check
Select
  when balance > 0 then
    say "Congratulations! You still have" balance "dollars left."
  when balance = 0 then do
    say "Warning, Balance is now zero!  STOP all spending."
    say "You cut it close this month! Hope you do not have any"
    say "checks left outstanding."
    end
  Otherwise do
    say "You have just overdrawn your account."
    say "Your balance now shows" balance "dollars."
    say "Oops!  Hope the bank does not close your account."
    end
end  /* Select */

Example 2.38. Instructions — SELECT

select
  when answer~datatype('w'), answer//2 = 0 Then
     say answer "is even"
  when answer~datatype('w'), answer//2 = 1 Then
     say answer "is odd"
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  otherwise
     say answer "is not a number"
end

The example above is not the same as using the following

select
  when answer~datatype('w') & answer//2 = 0 Then
     say answer "is even"
  when answer~datatype('w') & answer//2 = 1 Then
     say answer "is odd"
  otherwise
     say answer "is not a number"
end

The logical "&" operator will evaluate both terms of the operation, so the term "answer//2" will result
in a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop
with the first .false result, so the "answer//2" term will not be evaluated if the datatype test returns
.false.

Example 2.39. Instructions — SELECT CASE

select case random(6)
  when 1 then say "bad luck!"
  when 5, 6 then say "great!"
  otherwise say "try again"
end

Notes:

1. The instruction can be any assignment, command, message instruction, or keyword instruction,
including any of the more complex constructs, such as DO, LOOP, IF, or the SELECT instruction
itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is
not equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. Except when within a bracketed subexpression, the symbol THEN cannot be used within
expression, because the keyword THEN is treated differently in that it need not start a clause. This
allows the expression on the WHEN clause to be ended by the THEN without a semicolon (;).

2.28. SIGNAL

SIGNAL labelname

VALUE

expression
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SIGNAL ON ANY

ERROR

FAILURE

HALT

LOSTDIGITS

NOMETHOD

NOSTRING

NOTREADY

NOVALUE

SYNTAX

USER usercondition

NAME trapname

SIGNAL OFF ANY

ERROR

FAILURE

HALT

LOSTDIGITS

NOMETHOD

NOSTRING

NOTREADY

NOVALUE

SYNTAX

USER usercondition

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE
expression), or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Chapter 11, Conditions and Condition Traps.

To change the flow of control, a label name is derived from labelname or taken from the character
string result of evaluating the expression after VALUE. The labelname you specify must be a literal
string or symbol that is taken as a constant. If you specify a symbol for labelname, the search looks
for a label with uppercase characters. If you specify a literal string, the search uses the literal string
directly. You can locate label names with lowercase letters only if you specify the label as a literal
string with the same case. Similarly, for SIGNAL VALUE, the lettercase of labelname must match
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exactly. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal
string, that is, if it starts with a special character, such as an operator character or parenthesis. All
active pending DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended
and cannot be resumed. Control is then passed to the first label in the program that matches the given
name, as though the search had started at the beginning of the program.

The labelname  and usercondition are single symbols, which are taken as constants. The trapname is
a string or symbol taken as a constant.  

Example 2.40. Instructions — SIGNAL

Signal fred;  /* Transfer control to label FRED below */
....
....
Fred: say "Hi!"

If there are duplicates, control is always passed to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable  SIGL. This can aid debugging because you can use SIGL to determine the source of
a transfer of control to a label.

2.29. TRACE

TRACE

?

Normal

All

Commands

Error

Failure

Intermediates

Labels

Off

Results

number

string

symbol

VALUE expression

TRACE controls the tracing action (that is, how much is displayed to the user) during the processing
of a Rexx program. Tracing describes some or all of the clauses in a program, producing descriptions
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of clauses as they are processed. TRACE is mainly used for debugging. Its syntax is more concise
than that of other Rexx instructions because TRACE is usually entered manually during interactive
debugging. (This is a form of tracing in which the user can interact with the language processor while
the program is running.)

Note

TRACE cannot be used in the Rexx macrospace.

If specified, the number must be a whole number.

The string or expression evaluates to:

• A numeric option

• One of the valid prefix or alphabetic character (word) options

• Null

The symbol is taken as a constant and is therefore:

• A numeric option

• One of the valid prefix or alphabetic character (word) options

The option that follows TRACE or the character string that is the result of evaluating expression
determines the tracing action. You can omit the subkeyword VALUE if expression does not begin
with a symbol or a literal string, that is, if it starts with a special character, such as an operator or
parenthesis.

2.29.1. Trace Alphabetic Character (Word) Options

Although you can enter the word in full, only the first capitalized letter is needed; all following
characters are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All
Traces (that is, displays) all clauses before execution.

Commands
Traces all commands before execution. If the command results in an error or failure, tracing also
displays the return code from the command.

Error 
Traces any command resulting in an error or failure after execution, together with the return code
from the command.

Failure
Traces any command resulting in a failure after execution, together with the return code from the
command. This is the same as the Normal option.
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Intermediates
Traces all clauses before execution. Also traces intermediate results during the evaluation of
expressions and substituted names.

Labels
Traces method and routine invocations, internal subroutine calls, transfers of control because of
the SIGNAL instruction, and labels passed during program execution. This is especially useful with
debug mode, when the language processor pauses after each invocation or call.

Normal
Traces any failing command after execution, together with the return code from the command.
This is the default setting, if not overridden using the ::OPTIONS directive.

For the default Windows command processor, an attempt to enter an unknown command raises
a FAILURE condition. The CMD return code for an unknown command is 1. An attempt to enter a
command in an unknown command environment also raises a FAILURE condition; in such a case,
the variable RC is set to 30.

Off
Traces nothing and resets the special prefix option (described later) to OFF.

Results 
Traces all clauses before execution. Displays the final results (in contrast with Intermediates
option) of the expression evaluation. Also displays values assigned during PULL, ARG, PARSE,
and USE instructions. This setting is recommended for general debugging.

2.29.2. Prefix Option

The prefix ? is valid alone or with one of the alphabetic character options. You can specify the prefix
more than once, if desired. Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix must immediately precede the option (no intervening whitespace).

The prefix ? controls interactive debugging. During normal execution, a TRACE option with a prefix
of ? causes interactive debugging to be switched on. (See Chapter 15, Debugging Aids for full details
of this facility.) When interactive debugging is on, interpretation pauses after most clauses that are
traced. For example, the instruction TRACE ?E makes the language processor pause for input after
executing any command that returns an error, that is, a nonzero return code or explicit setting of the
error condition by the command handler.

Any TRACE instructions in the program being traced are ignored to ensure that you are not taken out
of interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:

• Entering TRACE O turns off all tracing.

• Entering TRACE with no options restores the defaults—it turns off interactive debugging but
continues tracing with TRACE Normal (which traces any failing command after execution).

• Entering TRACE ? turns off interactive debugging and continues tracing with the current option.

• Entering a TRACE instruction with a ? prefix before the option turns off interactive debugging and
continues tracing with the new option.
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Using the ? prefix, therefore, switches you in or out of interactive debugging. Because the language
processor ignores any further TRACE statements in your program after you are in interactive debug
mode, use CALL TRACE "?" to turn off interactive debugging.

2.29.3. Numeric Options

If interactive debugging is active and the option specified is a positive whole number (or an expression
that evaluates to a positive whole number), that number indicates the number of debug pauses to be
skipped. (See Chapter 15, Debugging Aids for further information.) However, if the option is a negative
whole number (or an expression that evaluates to a negative whole number), all tracing, including
debug pauses, is temporarily inhibited for the specified number of clauses. For example, TRACE -100
means that the next 100 clauses that would usually be traced are not displayed. After that, tracing
resumes as before.

2.29.4. Tracing Tips

• When a loop is traced, the DO clause itself is traced on every iteration of the loop.

• You can retrieve the trace actions currently in effect by using the TRACE built-in function.

• The trace output of commands traced before execution always contains the final value of the
command, that is, the string passed to the environment, and the clause generating it.

• Trace actions are automatically saved across subroutine, function, and method calls. See
Section 2.3, “CALL” for more details.

One of the most common traces you will use is:

Example 2.41. Instructions — TRACE

TRACE ?R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins.          */

2.29.5. The Format of Trace Output

Every clause traced appears with automatic  formatting (indentation) according to its logical depth
of nesting, for example. Results, if requested, are indented by two extra spaces and are enclosed in
double quotation marks so that leading and trailing whitespace characters are apparent. Any control
codes in the data encoding (ASCII values less than "20"x) are replaced by a question mark (?) to
avoid screen interference. Results other than strings appear in the string representation obtained by
sending them a STRING message. The resulting string is enclosed in parentheses. The line number
in the program precedes the first clause traced on any line. All lines displayed during tracing have a
three-character prefix to identify the type of data being traced. These can be:

*-*   
Identifies the source of a single clause, that is, the data actually in the program.

84



The Format of Trace Output

+++   
Identifies a trace message. This can be the nonzero return code from a command, the prompt
message when interactive debugging is entered, an indication of a syntax error when in interactive
debugging.

>I>   
Identifies an entry to a routine or method. This trace entry will only appear if tracing is enabled
using the ::OPTIONS directive using TRACE A, TRACE R, TRACE I or TRACE L.

>K>   
Identifies the result of a subkeyword value in a keyword instruction, like the TO subkeyword of a
DO or LOOP instruction, or the DIGITS subkeyword in a NUMERIC instruction.

>>>   
Identifies the result of an expression (for TRACE R) or the value returned from a subroutine call, or
a value evaluated by execution of a DO loop.

>=>   
Identifies a variable assignment or a message assignment result. The trace message includes
both the name of the assignment target and the assigned value. Assignment trace lines are
displayed by assignment instructions, variable assigned via PARSE, ARG, PULL, or USE ARG, as
well as control variable updates for DO and LOOP instructions.

>.>   
Identifies the value assigned to a placeholder during parsing (see Section 9.1.2, “The Period as a
Placeholder”).

The following prefixes are used only if TRACE Intermediates is in effect:

>A>   
Identifies a value used as a function, subroutine, or message argument.

>C>   
The data traced is the original name of the compound variable and the name of a compound
variable, after the name has been replaced by the value of the variable but before the variable
is used. If no value was assigned to the variable, the trace shows the variable in uppercase
characters.

>E>   
The data traced is the name and value of an environment symbol.

>F>   
The data traced is the name and result of a function call.

>L>   
The data traced is a literal (string, uninitialized variable, or constant symbol).

>M>   
The data traced is the name and result of an object message.

>N>   
The data traced is the name and result of a namespace-prefixed symbol.

>O>   
The data traced is the name and result of an operation on two terms.
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>P>   
The data traced is the name and result of a prefix operation.

>R>   
The data traced is the name of an argument variable and the name of the referenced variable.

>V>   
The data traced is the name and contents of a variable.

Note

The characters => indicate the value of a variable or the result of an operation.

The characters <= indicate a value assignment. The name to the left of the marker is the
assignment topic. The data to the right of the marker is the assigned value.

The character ? could indicate a non-printable character in the output.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced.

2.30. USE
    The USE instruction can be used to
• retrieve the argument objects by using USE ARG or USE STRICT ARG, or to
• define local variables in a method by using USE LOCAL.

2.30.1. USE ARG, USE STRICT ARG

USE

STRICT

ARG

name

= expr

,

, ...

...

USE ARG retrieves the argument objects provided in a program, routine, function, or method and
assigns them to variables, variable references, or message term assignments.

Each name must be a valid variable name, a variable reference term, or an assignment message
term. The names are assigned from left to right. For each name you specify, the language processor
assigns it a corresponding argument from the program, routine, function, or method call. If there is no
corresponding argument, name is assigned the value of expr. If = expr is not specified for the given
argument, the variable name is dropped. If the assignment target is a variable reference term, the
corresponding argument must never be omitted. If the assignment target is a message term, no action
is taken for omitted arguments.
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A USE ARG instruction can be processed repeatedly and it always accesses the same current
argument data.

If = expr is specified for an argument, the expression is evaluated to provide a default value for an
argument when the corresponding argument does not exist. The default expr must be a literal string,
a constant symbol, or an expression enclosed in parentheses. No default value is allowed for variable
reference terms.

The STRICT option imposes additional constraints on argument processing. The number of arguments
must match the number of names, otherwise an error is raised. An argument is considered optional if
expr has been specified for the argument.

An ellipsis (...) can be specified after the last variable in a USE STRICT ARG statement to indicate
that more arguments may follow. This allows defining a minimum number of arguments that must
be supplied or for which there are default values defined, which may optionally be followed by any
additional arguments.  

Example 2.42. Instructions — USE

/* USE Example                       */
/* FRED("Ogof X",1,5) calls function */
Fred: use arg string, num1, num2

/* Now: STRING contains "Ogof X"     */
/*      NUM1 contains "1"            */
/*      NUM2 contains "5"            */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each  */
stem.1 = "Value"
array = .array~of("Item")
say "Before subroutine:" stem.1 array[1]  /* Shows "Value Item"         */
Call Change_First stem. , array
say "After subroutine:" stem.1 array[1]   /* Shows "NewValue NewItem"   */
Exit

Change_First: Procedure
  Use Arg substem., subarray
  substem.1 = "NewValue"
  subarray[1] = "NewItem"
  Return

/* USE STRICT Example                */
/* FRED("Ogof X",1) calls function  */
Fred: use strict arg string, num1, num2=4

/* Now: STRING contains "Ogof X"     */
/*      NUM1 contains "1"            */
/*      NUM2 contains "4"            */

In the above example, a call to the function FRED may have either 2 or 3 arguments. The STRICT
keyword on the USE instruction will raise a syntax error for any other combination of arguments.

Example 2.43. Instructions — USE

call test "one"
call test "one", "two"
call test "one", "two", "three"
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call test "one", , "three", "four", "five"
exit

test: procedure /* a minimum of one argument must be supplied */
  use strict arg v1, v2="zwei", ...
  say "There are ["arg()"] argument(s); v1,v2=["v1","v2"]"
  do i=3 to arg()
    say " arg #" i"=["arg(i)"]"
  end
  say "--"
  return

Output:

There are [1] argument(s); v1,v2=[one,zwei]
--
There are [2] argument(s); v1,v2=[one,two]
--
There are [3] argument(s); v1,v2=[one,two]
 arg # 3=[three]
--
There are [5] argument(s); v1,v2=[one,zwei]
 arg # 3=[three]
 arg # 4=[four]
 arg # 5=[five]
--

The assignment targets may be any term that can be on the left side of an assignment statement.

Example 2.44. Instructions — USE

expose myArray myDirectory
use arg myArray[1], myDirectory~name

would be equivalent to

myArray[1] = arg(1)
myDirectory~name = arg(2)

You can retrieve or check the arguments by using the ARG built-in function. The ARG and PARSE
ARG instructions are alternative ways of retrieving arguments. ARG and PARSE ARG access the
string values of arguments. USE ARG performs a direct, one-to-one assignment of arguments. This
is preferable when you need direct access to an argument, without translation or parsing. USE ARG
also allows access to both string and non-string argument objects; ARG and PARSE ARG convert the
arguments to string values before parsing.

2.30.2. USE LOCAL

USE LOCAL

name

USE LOCAL defines local variables in a method.

Generally object variables must be specified in a method using EXPOSE, while all other variables
used in the method will become local variables. In contrast to this, USE LOCAL allows to explicitly
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declare local variables, while all other variables not listed on the USE LOCAL instruction will
automatically become object variables.

Each name must be a valid variable name. if no name is specified, all variables will become object
variables.

If a USE LOCAL instruction is present, it must be the first instruction of the method.

Note that USE LOCAL will always keep Rexx special variables RC, RESULT, SIGL, SELF, and SUPER
as local variables.  

Example 2.45. Instructions — USE LOCAL

::method init
USE LOCAL x y z   -- only x, y, and z are local
                  -- all other become object variables

::method init
use local         -- any variable is an object variable
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Chapter 3.

Directives
A Rexx program contains one or more executable code units. Directive instructions separate these
executable units. A directive begins with a double colon (::) and is a nonexecutable instruction. For
example, it cannot appear in a string for the INTERPRET instruction to be interpreted. The first
directive instruction in a program marks the end of the main executable section of the program.

For a program containing directives, all directives are processed first to set up the program's classes,
methods, and routines. Then any program code in the main code unit (preceding the first directive) is
processed. This code can use any classes, methods, and routines that the directives established.

Supported directives are ::ANNOTATE, ::ATTRIBUTE, ::CLASS, ::CONSTANT, ::METHOD,
::OPTIONS, ::REQUIRES, ::RESOURCE, and ::ROUTINE.

A directive requires a semicolon (;) as a terminating delimiter unless the end of a line implies it.

3.1. ::ANNOTATE

The ::ANNOTATE directive creates annotations to the package, its classes, methods, attributes,
constants, or routines.

::ANNOTATE ATTRIBUTE attribute

CLASS class

CONSTANT constant

METHOD method

PACKAGE

ROUTINE routine

name value

The ::ANNOTATE directive can add metadata information (called "annotations") in the form of name/
value pairs to the current package, or any of its classes, methods, attributes, constants, and routines.

An annotation attribute, class, constant, method, and routine must be a valid class name, constant
name, method name, or routine name defined with its respective directive in the same source
program.

The annotation name must be a symbol that is taken as a constant; a literal string is not allowed. The
annotation value must be a single literal string, a symbol, or a valid number, optionally preceded by a
plus or minus sign, that is taken as a constant.

Example 3.1. ANNOTATE directive

::annotate package author "B. Fox"                 -- annotate current package

::class command

::attribute address
::attribute command

::method init
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use strict arg command, address = ""
self~command = command
self~address = address

::annotate class command languagelevel "6.05"      -- annotate class COMMAND
::annotate attribute command os "unix windows mac" -- annotate attribute COMMAND
::annotate method init version "100" maxParms 2    -- annotate method INIT

Notes:

1. Each ::ANNOTATE directive, except for ::ANNOTATE PACKAGE, must be placed after its
respective ::ATTRIBUTE, ::CLASS, ::CONSTANT, ::METHOD, or ::ROUTINE directive in the
sourcefile.

2. When annotating non-floating attributes, constants, or methods, the ::ANNOTATE directive must
precede any following ::CLASS directive.

3. An annotation for an attribute, a method, or a routine should be placed after any attribute/method/
routine code body, as ::ANNOTATE, like any other directive, will end the code body.

4. A subclass of an annotated class will not inherit any annotations of its superclass or mixinclass.

5. A copy of an annotated method, package, or routine object will keep any existing annotations.

6. The ::ANNOTATE directive cannot be used to annotate packages, classes, methods, attributes,
constants, and routines which are provided by Rexx or have been made available through
a ::REQUIRES directive.

7. Currently Rexx does not use or predefine any specific annotation names.

8. To query an annotation name/value pair, to get a list of all attached annotation name/value pairs,
or to add new or change existing annotations, use
• the Package methods annotation and annotations,
• the Class methods annotation and annotations,
• the Method methods annotation and annotations, or
• the Routine methods annotation and annotations.

3.2. ::ATTRIBUTE

The ::ATTRIBUTE directive creates attribute methods and defines the method properties.

::ATTRIBUTE name

GET

SET

CLASS PUBLIC

PACKAGE

PRIVATE

GUARDED

UNGUARDED

UNPROTECTED

PROTECTED

ABSTRACT

DELEGATE delegatename

EXTERNAL spec
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The ::ATTRIBUTE directive creates accessor methods for object instance variables. An accessor
method allows an object instance variable to be retrieved or assigned a value. ::ATTRIBUTE can
create an attribute getter method, a setter method, or the getter/setter pair.

The name is a literal string or a symbol that is taken as a constant. The name must also be a valid
Rexx variable name. The ::ATTRIBUTE directive creates methods in the class specified in the most
recent ::CLASS directive. If no ::CLASS directive precedes an ::ATTRIBUTE directive, the attribute
methods are not associated with a class but are accessible to the main (executable) part of a program
through the .METHODS built-in object. Only one ::ATTRIBUTE directive can appear for any method
name not associated with a class.

If you do not specify either GET or SET, ::ATTRIBUTE will create two attribute methods with the names
name and name=. These are the methods for getting and setting an attribute. These generated
methods are equivalent to the following code sequences:

Example 3.2. ATTRIBUTE directive equivalent code

::method name         -- attribute get method
  expose name         -- establish direct access to object variable (attribute)
  use strict arg      -- enforce zero parameters
  return name         -- return object variable's current value

::method "NAME="      -- attribute set method
  expose name         -- establish direct access to object variable (attribute)
  use strict arg name -- retrieve argument and assign it to the object variable

Both methods will be created with the same method properties (for example, PRIVATE, GUARDED,
etc.). If GET or SET are not specified, the pair of methods will be automatically generated. In that case,
there is no method code body following the directive, so another directive (or the end of the program)
must follow the ::ATTRIBUTE directive.

If GET or SET is specified, only the single get or set attribute method is generated. Specifying separate
GET or SET ::ATTRIBUTE directives allows the methods to be created with different properties. For
example, the sequence:

::attribute name get
::attribute name set private

will create a NAME method with PUBLIC access and a NAME= method with PRIVATE access.

The GET and SET options may also be used to override the default method body generated for the
attribute. This is frequently used so the SET attribute method can perform new value validation.

Example 3.3. ATTRIBUTE directive — get and set methods

::attribute size get
::attribute size set
  expose size     /* establish direct access to object variable (attribute) */
  use arg value   /* retrieve argument                                      */
  if datatype(value, "Whole") = .false | value < 0  then
    raise syntax 93.906 array ("size", value)
  size=value

If you specify the CLASS option, the created methods are class methods. See Chapter 4, Objects and
Classes. The attribute methods are associated with the class specified on the most recent ::CLASS
directive. The ::ATTRIBUTE must be preceded by a ::CLASS directive if CLASS is specified.
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If ABSTRACT is specified, then all created methods will be marked as ABSTRACT and will raise
an error if directly invoked. For ABSTRACT methods there is no method code body following the
directive, so another directive (or the end of the program) must follow the ::ATTRIBUTE directive.

If DELEGATE is specified, execution of get method name and set method name= (depending on
whether GET or SET or none of these two is specified on the ::ATTRIBUTE directive) is delegated to
object delegatename. It is a common design pattern to delegate method execution to an embedded
object. The directive for such a delegation

::attribute name delegate delegateName

is equivalent to the following code sequence:

Example 3.4. DELEGATE subkeyword equivalent code

::method name
expose delegateName
forward to(delegateName)

::method "NAME="
expose delegateName
forward to(delegateName)

If the EXTERNAL option is specified, then spec identifies a method in an external native library that
will be invoked as the named method. The spec is a literal string containing a series of whitespace-
delimited tokens defining the external method. The first token must be LIBRARY, which indicates the
method resides in a native library of the type allowed on a ::REQUIRES directive. The second token
must identify the name of the external library. The external library is located using platform-specific
mechanisms for loading libraries. For Unix-like systems, the library name is case-sensitive. The third
token is optional and specifies the name of the method within the library package. If not specified,
the ::METHOD name is used. The target package method name is case insensitive.

If the GET or SET option is not specified with the EXTERNAL option, then two method objects need to
be created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".
If GET or SET is specified and the method name is not specified within spec, then the target library
method name is generated by concatenating name with "GET" or "SET" as appropriate. If the method
name is specified in spec and GET or SET is specified, the spec name will be used unchanged.

Example 3.5. ATTRIBUTE directive — naming the get and set methods

-- maps "NAME" method to "GETNAME and
-- "NAME=" to "SETNAME"
::ATTRIBUTE name EXTERNAL "LIBRARY mylib"
-- maps "ADDRESS" method to "GETADDRESS"
::ATTRIBUTE address GET EXTERNAL "LIBRARY mylib"
-- maps "ADDRESS=" method to "setHomeAddress"
::ATTRIBUTE address SET EXTERNAL "LIBRARY mylib setHomeAddress"

Notes:

1. You can specify all options in any order.
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2. If you specify the PACKAGE option, the methods are created with a package-scope, if you specify
the PRIVATE option, the created methods are private methods. Package-scope and private
methods have restricted access rules on how they can be invoked. See Section 4.2.8, “Public,
Package-Scope, and Private Methods” for details of how these methods can be used. If you omit
the PACKAGE or PRIVATE option, or specify PUBLIC, the method is a public method that any
sender can activate.

3. If you  specify the UNGUARDED option, the methods can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the
object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the methods are protected methods. (See Chapter 13,
The Security Manager for more information.) If you omit the PROTECTED option or specify
UNPROTECTED, the methods are not protected.

5. It is an error to specify ::ATTRIBUTE more than once within a class definition that creates a
duplicate get or set method.

3.3. ::CLASS

The ::CLASS directive causes the interpreter to create a Rexx class.

::CLASS classname

METACLASS metaclass PRIVATE

PUBLIC

MIXINCLASS mclass

SUBCLASS sclass

ABSTRACT

INHERIT iclass

The ::CLASS directive creates a Rexx class named classname. The classname is a literal
string or symbol that is taken as a constant. The created class is available to programs through
the Rexx environment symbol .classname. The classname acquires all methods defined by
subsequent ::METHOD directives until the end of the program or another ::CLASS directive is found.
Only null clauses (comments or blank lines) can appear between a ::CLASS directive and any
following directive instruction or the end of the program. Only one ::CLASS directive can appear for
classname in a program.

If you specify the METACLASS option, the instance methods of the metaclass class become class
methods of the classname class. (See Chapter 4, Objects and Classes.) The metaclass and
classname are literal strings or symbols that are taken as constants. In the search order for methods,
the metaclass methods precede inherited class methods and follow any class methods defined
by ::METHOD directives with the CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. If you do not specify the PUBLIC
option, the class is visible only within its containing Rexx program. All public classes defined within a
program are used before PUBLIC classes created with the same name.
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If you specify the SUBCLASS option, the class becomes a subclass of the class sclass for inheritance
of instance and class methods. The sclass is a literal string or symbol that is taken as a constant.

If you specify the MIXINCLASS option, the class becomes a subclass of the class mclass for
inheritance of instance and class methods. You can add the new class instance and class methods
to existing classes by using the INHERIT option on a ::CLASS directive or by sending an INHERIT
message to an existing class. If you specify neither the SUBCLASS nor the MIXINCLASS option, the
class becomes a non-mixin subclass of the Object class.

If you specify the ABSTRACT option, the class will be marked as an abstract class. Trying to create an
instance of an abstract class will raise an error. Only subclasses of abstract classes will allow to create
instances from.

If you specify the INHERIT option, the class inherits instance methods and class methods from the
classes iclasses in their order of appearance (leftmost first). This is equivalent to sending a series of
inherit messages to the class object, with each inherit message (except the first) specifying the
preceding class in iclasses as the classpos argument. As with the inherit message, each of the
classes in iclasses must be a mixin class. The iclasses is a whitespace-separated list of literal strings
or symbols that are taken as constants. If you omit the INHERIT option, the class inherits only from
sclass.

Example 3.6. CLASS directive

::class rectangle
::method area    /* defined for the RECTANGLE class */
  expose width height
  return width*height

::class triangle
::method area    /* defined for the TRIANGLE class */
  expose width height
  return width*height/2

The ::CLASS directives in a program are processed in the order in which they appear. If a ::CLASS
directive has a dependency on ::CLASS directives that appear later in the program, processing of the
directive is deferred until all of the class's dependencies have been processed.

Example 3.7. CLASS directive deferred processing

::class savings subclass account  /* requires the ACCOUNT class */
::method type
  return "a Savings Account"

::class account
::method type
  return "an Account"

The Savings class in the preceding example is not created until the Account class that appears later in
the program has been created.

Notes:

1. You can specify the options METACLASS, MIXINCLASS, SUBCLASS, and PUBLIC in any order.

2. If you specify INHERIT, it must be the last option.
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3.4. ::CONSTANT

The ::CONSTANT directive creates methods that return constant values for a class and its instances.

::CONSTANT name

value

A ::CONSTANT directive defines a method that returns a constant value. This is useful for creating
named constants associated with a class.

The name is a literal string or a symbol that is taken as a constant. A method of the given name
is created as both an instance method and a class method of the most recent ::CLASS directive.
A ::CLASS directive is not required before a ::CONSTANT directive. If no ::CLASS directive
precedes ::CONSTANT, a single "floating" constant method is created that is not associated with a
class but is accessible through the .METHODS built-in object. Only one ::CONSTANT directive can
appear for any method name not associated with a class.

The methods created by a ::CONSTANT directive are UNGUARDED and will have a return result that
is specified by value. If specified, the constant value must be a single literal string, a symbol that is
taken as a constant, or an expression enclosed in parentheses. Also permitted is the single character
"-" or "+" followed by a symbol that is a valid number. If value is omitted, the constant name will return
its value in uppercase.

Here are some examples of valid constants:

Example 3.8. CONSTANT examples

::class MathConstants public
::constant pi 3.14159265
::constant author "Isaac Asimov"
::constant absolute_zero -273.15
::constant e ( rxcalcexp(1) )
::constant eSquare (self~e ** 2)
::constant primes (2, 3, 5, 7, 11, 13)

::class Search
::constant caseless

::requires rxmath library

A ::CONSTANT directive is a shorthand syntax for creating constants associated with a class. The
created name constant can be accessed using either the class object or an instance of the class itself.

Example 3.9. CONSTANT access examples

say "Pi is" .MathConstants~pi    -- displays "Pi is 3.14159265"
instance = .MathConstants~new
say "Pi is" instance~pi          -- also displays "Pi is 3.14159265"

say .Search~caseless             -- "CASELESS"

::class MathConstants public
::constant pi 3.14159265

::class Search
::constant caseless
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Notes:

1. Calculated ::CONSTANT directives (where value is an expression enclosed in parenthesis) can
reference any other constant ::CONSTANT directives (where value is omitted, a single literal
string, a symbol that is taken as a constant, or a valid number optionally preceded by "-" or "+").
For a calculated ::CONSTANT directive to reference another calculated ::CONSTANT directive,
the referenced directive must be defined earlier in order of appearance. Forward references to
calculated ::CONSTANT directives are not allowed.

2. For a floating ::CONSTANT directive the constant value must be a single literal string, or a symbol
that is taken as a constant. An expression enclosed in parentheses is not allowed.

3. A ::CONSTANT directive cannot have a method body.

3.5. ::METHOD

The ::METHOD directive creates a method object and defines the method attributes.

::METHOD methodname

ATTRIBUTE CLASS PUBLIC

PACKAGE

PRIVATE

GUARDED

UNGUARDED

UNPROTECTED

PROTECTED

ABSTRACT

DELEGATE delegatename

EXTERNAL spec

A ::METHOD directive creates method objects that may be associated with a class instance.
The created method may be from Rexx code, mapped to method in an external native library, or
automatically generated. The type of method is determined by the combination of options specified.

The methodname is a literal string or a symbol that is taken as a constant. The method is defined
as methodname in the class specified in the most recent ::CLASS directive. Only one ::METHOD
directive can appear for any methodname in a class.

A ::CLASS directive is not required before a ::METHOD directive. If no ::CLASS directive
precedes ::METHOD, the method is not associated with a class but is accessible to the main
(executable) part of a program through the .METHODS built-in object. Only one ::METHOD directive
can appear for any method name not associated with a class.

If you specify the CLASS option, the method is a class method. See Chapter 4, Objects and
Classes. The method is associated with the class specified on the most recent ::CLASS directive.
The ::METHOD directive must follow a ::CLASS directive when the CLASS option is used.

If ABSTRACT is specified, then the created method will be marked as an abstract method and will raise
an error if directly invoked. For abstract methods there is no method code body following the directive,
so another directive (or the end of the program) must follow the ::METHOD directive.
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If ABSTRACT, ATTRIBUTE, or EXTERNAL is not specified, the ::METHOD directive starts a section of
method code which is ended by another directive or the end of the program. The ::METHOD is not
included in the source of the created METHOD object.

Example 3.10. METHOD examples

r = .rectangle~new(20,10)
say "Area is" r~area       /* Produces "Area is 200" */

::class rectangle

::method area              /* defined for the RECTANGLE class */
  expose width height
  return width*height

::method init
  expose width height
  use arg width, height

::method perimeter
  expose width height
  return (width+height)*2

If you specify the ATTRIBUTE option, method variable accessor methods are created. In addition to
generating a method named methodname, another method named methodname= is created. The
first method returns the value of object instance variable that matches the method name. The second
method assigns a new value to the object instance variable.

For example, the directive

::method name attribute

creates two methods, NAME and NAME=, equivalent to the following code sequences:

::method name         -- attribute get method
  expose name         -- establish direct access to object variable (attribute)
  use strict arg      -- enforce zero parameters
  return name         -- return object variable's current value

::method "NAME="      -- attribute set method
  expose name         -- establish direct access to object variable (attribute)
  use strict arg name -- retrieve argument and assign it to the object variable

Using the ATTRIBUTE option is equivalent to using the ::ATTRIBUTE directive.

If you specify the ABSTRACT option, the method creates an ABSTRACT method placeholder.
ABSTRACT methods define a method that an implementing subclass is expected to provide a
concrete implementation for. Any attempt to invoke an ABSTRACT method directly will raise a
SYNTAX condition.

If DELEGATE is specified, execution of method name is delegated to object delegatename. It is a
common design pattern to delegate method execution to an embedded object. The directive for such a
delegation

::method name delegate delegateName

is equivalent to the following code sequence:
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Example 3.11. DELEGATE subkeyword equivalent code

::method name
expose delegateName
forward to(delegateName)

If the EXTERNAL option is specified, then spec identifies a method in an external native library that
will be invoked as the named method. The spec is a literal string containing a series of whitespace
delimited tokens defining the external method. The first token must be LIBRARY, which indicates the
method resides in a native library of the type allowed on a ::REQUIRES directive. The second token
must identify the name of the external library. The external library is located using platform-specific
mechanisms for loading libraries. For Unix-like systems, the library name is case-sensitive. The third
token is optional and specifies the name of the method within the library package. If not specified,
the ::METHOD name is used. The target package method name is case insensitive.

Example 3.12. METHOD EXTERNAL examples

-- creates method INIT from method RegExp_Init in library rxregexp
::METHOD INIT EXTERNAL "LIBRARY rxregexp RegExp_Init"

-- creates method RegExp_Parse from library rxregexp
::METHOD RegExp_Parse EXTERNAL "LIBRARY rxregexp"

If the ATTRIBUTE option is specified with the EXTERNAL option, then two method objects need to be
created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".

Example 3.13. METHOD EXTERNAL examples

-- maps "NAME" method to "GETNAME and
-- "NAME=" to "SETNAME"
::METHOD name ATTRIBUTE EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS" method to "GETMyAddress and
-- "ADDRESS=" to "SETMyAddress"
::METHOD address ATTRIBUTE EXTERNAL "LIBRARY mylib MyAddress"

Notes:

1. You can specify all options in any order.

2. If you specify the PACKAGE option, the method is created with a package-scope, if you specify the
PRIVATE option, the created method is a private method. Package-scope and private methods
have restricted access rules on how they can be invoked. See Section 4.2.8, “Public, Package-
Scope, and Private Methods” for details of how these methods can be used. If you omit the
PACKAGE or PRIVATE option, or specify PUBLIC, the method is a public method that any sender
can activate.

3. If you  specify the UNGUARDED option, the method can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the
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object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the method is a protected method. (See Chapter 13,
The Security Manager for more information.) If you omit the PROTECTED option or specify
UNPROTECTED, the method is not protected.

5. If you specify ATTRIBUTE, ABSTRACT, or EXTERNAL, another directive (or the end of the program)
must follow the ::METHOD directive.

6. It is an error to specify ::METHOD more than once within the same class and use the same
methodname.

3.6. ::OPTIONS

The ::OPTIONS directive defines default values for numeric, trace, and other runtime settings for all
Rexx code contained within a package.

::OPTIONS DIGITS digits

FORM ENGINEERING

SCIENTIFIC

FUZZ fuzz

ALL

ERROR

FAILURE

LOSTDIGITS

NOSTRING

NOTREADY

NOVALUE

CONDITION

SYNTAX

PROLOG

NOPROLOG

TRACE trace

Any of the options may be specified on a single ::OPTIONS directive in any order. If an option is
specified more than once, the last specified value will the be one used. If more than one ::OPTIONS
directive appears in a source file, the options are processed in the order they appear and the effect is
accumulative. If a given option type is specified on more than one directive, the last specified will be
the value used.

The specified options will override the normal default settings for all Rexx code contained in the source
file. For example,
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::OPTIONS DIGITS 20

would direct that all method and routine code defined in this source package execute with an initial
NUMERIC DIGITS setting of 20 digits. The ::OPTIONS directive controls only the initial setting. A
method or routine may change the current setting with the NUMERIC DIGITS instruction as normal.
The values specified with ::OPTIONS only apply to code that appears in the same source file. It does
not apply to code in other source files that may reference or use this code. For example, a subclass of
a class defined in this source package will not inherit the ::OPTIONS settings if the subclass code is
located in a different source package.

The following options may be specified on an ::OPTIONS directive:

DIGITS controls the precision to which arithmetic operations and built-in functions are
evaluated. The value digits must be a symbol or string that is a valid positive whole
number value and must be larger than the current FUZZ ::OPTIONS setting. The
package value can be retrieved using the Package class digits method.

There is no limit to the value for DIGITS (except the amount of storage available),
but high precisions are likely to require a great amount of processing time. It is
recommended that you use the default value whenever possible.

FORM controls the form of exponential notation for the result of arithmetic operations and
built-in functions. This can be either SCIENTIFIC (in which case only one, nonzero
digit appears before the decimal point) or ENGINEERING (in which case the power
of 10 is always a multiple of 3). The default is SCIENTIFIC. The subkeywords
SCIENTIFIC or ENGINEERING must be specified as symbols. The package value
can be retrieved using the Package class form method.

FUZZ controls how many digits, at full precision, are ignored during a numeric comparison
operation. The value fuzz must be a symbol or string that is a valid positive whole
number value and must be smaller than the current DIGIT ::OPTIONS setting. The
package value can be retrieved using the Package class fuzz method.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the
NUMERIC FUZZ value during every numeric comparison. The numbers are
subtracted under a precision of DIGITS minus FUZZ digits during the comparison
and are then compared with 0.

ALL is a shortcut for all six ::OPTIONS condition directives ERROR, FAILURE,
LOSTDIGITS, NOSTRING, NOTREADY, and NOVALUE.

::OPTIONS ALL SYNTAX sets all six conditions to raise SYNTAX, while ::OPTIONS
ALL CONDITION sets all of them to their default state.

ERROR
FAILURE
LOSTDIGITS
NOSTRING
NOTREADY
NOVALUE      

controls whether an ERROR, FAILURE, LOSTDIGITS, NOSTRING, NOTREADY,
or NOVALUE condition event raises its associated condition, or raises a SYNTAX
condition.

If ::OPTIONS condition CONDITION is in effect, which is the default, the condition
event raises its associated condition as usual. If ::OPTIONS condition SYNTAX is in
effect, a SYNTAX condition is raised instead.

To override an ::OPTIONS condition SYNTAX package default, you can use
SIGNAL ON condition, SIGNAL OFF condition, SIGNAL ON ANY, or SIGNAL OFF
ANY, to raise the associated condition, or raise no condition at all. For conditions
ERROR, FAILURE, and NOTREADY you can also use CALL ON condition, CALL OFF
condition, CALL ON ANY, or CALL OFF ANY, to raise the associated condition, or
raise no condition at all.
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PROLOG
NOPROLOG  

controls whether prolog code (any code in the source program that comes before
the first directive) is run when another program requires it through a ::REQUIRES
directive.

If ::OPTIONS PROLOG is in effect, any prolog code is run as usual when the
source program is being required using a :REQUIRES directive. If ::OPTIONS
NOPROLOG is in effect, any prolog code is not run. The default is ::OPTIONS
PROLOG.

TRACE controls the tracing action (that is, how much is displayed to the user) during the
processing of all Rexx code contained in the package. Tracing describes some
or all of the clauses in a program, producing descriptions of clauses as they are
processed. TRACE is mainly used for debugging. The value trace must be one of
the prefix or alphabetic character (word) options valid for the TRACE instruction.
The package value can be retrieved using the Package class trace method.

3.7. ::REQUIRES

The ::REQUIRES directive specifies that the program requires access to the classes and objects of
the Rexx program programname.

::REQUIRES programname

LIBRARY

NAMESPACE namespace

If the LIBRARY option is not specified, all public classes and routines defined in the named program
are made available to the executing program. The programname is a literal string or a symbol that is
taken as a constant. The string or symbol programname can be any string or symbol that is valid as
the target of a CALL instruction. The program programname is called as an external routine with no
arguments. The program is searched for using the external program search order.

If any Rexx code precedes the first directive in programname then that code is executed at the time
the ::REQUIRES is processed by the interpreter. This will be executed prior to executing the main
Rexx program in the file that specifies the ::REQUIRES statement.

If the LIBRARY option is specified, programname is the name of an external native library that is
required by this program. The library will be loaded using platform-specific mechanisms, which
generally means the library name is case sensitive. Any routines defined in the library will be made
available to all programs running in the process. If the native library cannot be loaded, the program will
not be permitted to run. All LIBRARY ::REQUIRES directives will be processed before ::REQUIRES for
Rexx programs, which will ensure that the native libraries are available to the initialization code of the
Rexx packages.

If the NAMESPACE option is specified, namespace must be a symbol that is taken as a constant; a
literal string is not allowed.

The NAMESPACE option attaches the qualifier namespace to the package loaded by the ::REQUIRES
directive. To distinguish public classes or public routines of the same name in different ::REQUIRES
files, use a namespace-qualified symbol of the form namespace:class or namespace:routine. For
details see Section 1.14, “Namespaces”.

::REQUIRES directives can be placed anywhere after the main section of code in the package. The
order of ::REQUIRES directives determines the search order for classes and routines defined in
the named programs and also the load order of the referenced files. Once a program is loaded by
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a ::REQUIRES statement in a program, other references to that same program by ::REQUIRES
statements in other programs will resolve to the previously loaded program. The initialization code for
the ::REQUIRES file will only be executed on the first reference.

The following example illustrates that two programs, ProgramA and ProgramB, can both access
classes and routines that another program, ProgramC, contains. (The code at the beginning of
ProgramC runs prior to the start of the main Rexx program.)

The language processor uses local routine definitions within a program in preference to routines of
the same name accessed through ::REQUIRES directives. Local class definitions within a program
override classes of the same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES directive. Only null clauses
can appear between them.

3.8. ::RESOURCE

The ::RESOURCE directive allows to include associated data directly in the program code.

::RESOURCE name

END delimiter

resource_data

::END

delimiter
ignored_data

The ::RESOURCE directive allows to include lines of resource_data of almost arbitrary form directly
within the source program.

The resource name must be a symbol or a literal string that is taken as a constant. The optional
resource end delimiter must be a symbol or a literal string that is taken as a constant. If delimiter is not
specified, it defaults to the string "::END".
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Example 3.14. RESOURCE directive

::resource greyCat end "-"
La nuit, tous les chats sont gris
---------------------------------

::resource "brown fox"
The quick brown fox jumps over the lazy dog
::END

::resource nollop end ANONYMOUS
     The wicked peon quivered,
then gazed balefully at the judges
         who examined him.
ANONYMOUS TYPESETTER

Notes:

1. Specifying more than one ::RESOURCE directive with the same resource name is an error.

2. The terminating resource end delimiter must start in the first column and is case-sensitive. Any
text following on the same line as the terminating delimiter is ignored.

3. Although resource_data may include almost arbitrary data (including any Rexx code), it is not well-
suited for inclusion of binary data. Including special characters like line-end or end-of-file may
cause unwanted results.

4. Resource data is accessible through the .RESOURCES built-in object, and the Package class
methods resource and resources.

3.9. ::ROUTINE

The ::ROUTINE directive creates named routines within a program.

::ROUTINE routinename

PRIVATE

PUBLIC

EXTERNAL spec

The routinename is a literal string or a symbol that is taken as a constant. Only one ::ROUTINE
directive can appear for any routinename in a program.

If the EXTERNAL option is not specified, the ::ROUTINE directive starts a routine, which is ended by
another directive or the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing Rexx program to any
other program that references this program with a ::REQUIRES directive. If you do not specify the
PUBLIC option, or specify the PRIVATE option, the routine is visible only within its containing Rexx
program.

Routines you define with the ::ROUTINE directive behave like external routines. In the search order for
routines, they follow internal routines and built-in functions but precede all other external routines.
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Example 3.15. ROUTINE examples

::class c
::method a
call r "A"  /* displays "In method A" */

::method b
call r "B"  /* displays "In method B" */

::routine r
use arg name
say "In method" name

If the EXTERNAL option is specified, then spec identifies a routine in an external native library that will
be defined as the named routine for this program. The spec is a literal string containing a series of
whitespace delimited tokens defining the external function. The first token identifies the type of native
routine to locate:

LIBRARY
Identifies a routine in an external native library of the type supported by the ::REQUIRES directive.
The second token must identify the name of the external library. The external library is located
using platform-specific mechanisms for loading libraries. For Unix-like systems, the library name is
case-sensitive. The third token is optional and specifies the name of the routine within the library
package. If not specified, the ::ROUTINE name is used. The routine name is not case sensitive.

REGISTERED
Identifies a routine in an older-style Rexx function package. The second token must identify the
name of the external library. The external library is located using platform-specific mechanisms
for loading libraries. For Unix-like systems, the library name is case-sensitive. The third token
is optional and specifies the name of the function within the library package. If not specified,
the ::ROUTINE name is used. Loading of the function will be attempted using the name as given
and as all uppercase. Using REGISTERED is the equivalent of loading an external function using
the RXFUNCADD built-in function.

Example 3.16. ROUTINE EXTERNAL examples

-- load a function from rxmath library
::routine RxCalcPi external "LIBRARY rxmath"
-- same function, but a different internal name
::routine Pi external "LIBRARY rxmath RxCalcPi"
-- same as call rxfuncadd "SQLLoadFuncs", "rexxsql", "SQLLoadFuncs"
::routine SQLLoadFuncs EXTERNAL "REGISTERED rexxsql SQLLoadFuncs"

Notes:

1. It is an error to specify ::ROUTINE with the same routine name more than once in the same
program. It is not an error to have a local ::ROUTINE with the same name as another ::ROUTINE
in another program that the ::REQUIRES directive accesses. The language processor uses the
local ::ROUTINE definition in this case.

2. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller's variables are hidden and the internal values (NUMERIC
settings, for example) start with their defaults.
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Note

If you specify the same ::ROUTINE routinename more than once in different programs, the last
one is used. Using more than one ::ROUTINE routinename in the same program produces an
error.
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Objects and Classes
This chapter provides an overview of the Rexx class structure.

A Rexx object consists of object methods  and object variables ("attributes"). Sending a message to
an object causes the object to perform some action; a method whose name matches the message
name defines the action that is performed. Only an object's methods can access the object variables
belonging to an object. EXPOSE instructions within an object's methods specify which object variables
the methods will use. Any variables not exposed are local to the method and are dropped on return
from a method.

You can create an object by sending a message to a class object—typically a "new" method. An object
created from a class is an instance of that class. The methods a class defines for its instances are
called the instance methods  of that class. These are the object methods that are available for every
instance of the class. Classes can also define class methods, which are a class's own object methods.

Note

When referring to instance methods (for objects other than classes) or class methods (for
classes), this book uses the term methods when the meaning is clear from the context. When
referring to instance methods and class methods of classes, this book uses the qualified terms to
avoid possible confusion.

4.1. Types of Classes
There are four kinds of classes:

• Object classes

• Mixin classes

• Abstract classes

• Metaclasses

The following sections explain these.

4.1.1. Object Classes

An object class is a factory for producing objects. An object class creates objects (instances) and
provides methods that these objects can use. An object acquires the instance methods of the class to
which it belongs at the time of its creation. If a class gains additional methods, objects created before
the definition of these methods do not acquire the new or changed methods.

The instance variables within an object are created on demand whenever a method EXPOSEs an
object variable. The class creates the object instance, defines the methods the object has, and the
object instance completes the job of constructing the object.

The String class and the Array class are examples of object classes.
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4.1.2. Mixin Classes

Classes can inherit from more than the single superclass from which they were created. This is called
multiple inheritance. Classes designed to add a set of instance and class methods to other classes are
called mixin classes, or simply mixins.

You can add mixin methods to an existing class by sending an INHERIT message or using the
INHERIT option on the ::CLASS directive. In either case, the class to be inherited must be a mixin.
During both class creation and multiple inheritance, subclasses inherit both class and instance
methods from their superclasses.

Mixins are always associated  with a base class, which is the mixin's first non-mixin superclass. Any
subclass of the mixin's base class can (directly or indirectly) inherit a mixin; other classes cannot. For
example, a mixin class created as a subclass of the Array class can only be inherited by other Array
subclasses. Mixins that use the Object class as a base class can be inherited by any class.

To create a new mixin class, you send a MIXINCLASS message to an existing class or use
the ::CLASS directive with the MIXINCLASS option. A mixin class is also an object class and can
create instances of the class.

4.1.3. Abstract Classes

Abstract classes provide definitions for instance methods and class methods but are not intended
to create instances. Abstract classes often define the message interfaces that subclasses should
implement.

You create an abstract class by specifying the ABSTRACT subkeyword on the ::CLASS directive.
Trying to create an instance from an abstract class will result in an error.

It is possible to create abstract methods or attributes on a class. Abstract methods or attributes are
placeholders that subclasses are expected to override. Failing to provide a real method or attribute
implementation will result in an error when the abstract version is called.

4.1.4. Metaclasses

A metaclass is a class you can use to create another class. The Class class is the metaclass of all the
classes Rexx provides. This means that instances of .Class are themselves classes. The Class class
is like a factory for producing the factories that produce objects.

To change the behavior of an object that is an instance, you generally use subclassing. For example,
you can create Statarray, a subclass of the Array class. The statArray class can include a method for
computing a total of all the numeric elements of an array.

Example 4.1. Creating an array subclass

/* Creating an array subclass for statistics */

::class statArray subclass array public

::method init    /*  Initialize running total and forward to superclass */
  expose total
  total = 0
  forward class (super)
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::method put     /*  Modify to increment running total */
  expose total
  use arg value
  total = total + value  /* Should verify that value is numeric!!! */
  forward class (super)

::method "[]="   /*  Modify to increment running total */
  forward message "PUT"

::method remove  /*  Modify to decrement running total */
  expose total
  use arg index
  forward message "AT" continue
  total = total - result
  forward class (super)

::method average /*  Return the average of the array elements */
  expose total
  return total / self~items

::method total   /*  Return the running total of the array elements */
  expose total
  return total

You can use this method on the individual array instances, so it is an instance method.

However, if you want to change the behavior of the factory producing the arrays, you need a new class
method. One way to do this is to use the ::METHOD directive with the CLASS option. Another way to
add a class method is to create a new metaclass that changes the behavior of the Statarray class. A
new metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS message or on a ::CLASS
directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a particular class, use
the ::METHOD directive with the CLASS option. However, if you are adding a class method that would
be useful for many classes, such as an instance counter that counts how many instances a class
creates, you use a metaclass.

The following examples add a class method that keeps a running total of instances created. The first
version uses the ::METHOD directive with the CLASS option. The second version uses a metaclass.

Version 1

Example 4.2. Adding a CLASS method

/* Adding a class method using ::METHOD */

a = .point~new(1,1)               /* Create some point instances  */
say "Created point instance" a
b = .point~new(2,2)               /* create another point instance */
say "Created point instance" b
c = .point~new(3,3)               /* create another point instance */
say "Created point instance" c
                                  /* ask the point class how many */
                                  /* instances it has created     */
say "The point class has created" .point~instances "instances."
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::class point public                /* create Point class           */

::method init class
  expose instanceCount
  instanceCount = 0                 /* Initialize instanceCount     */
  forward class (super)             /* Forward INIT to superclass   */

::method new class
  expose instanceCount              /* Creating a new instance      */
  instanceCount = instanceCount + 1 /* Bump the count               */
  forward class (super)             /* Forward NEW to superclass    */

::method instances class
  expose instanceCount              /* Return the instance count    */
  return instanceCount

::method init
  expose xVal yVal                  /* Set object variables         */
  use arg xVal, yVal                /* as passed on NEW             */

::method string
  expose xVal yVal                  /* Use object variables         */
  return "("xVal","yVal")"          /* to return string value       */

Version 2

/* Adding a class method using a metaclass  */

a = .point~new(1,1)                    /* Create some point instances  */
say "Created point instance" a
b = .point~new(2,2)
say "Created point instance" b
c = .point~new(3,3)
say "Created point instance" c
                                       /* ask the point class how many */
                                       /* instances it has created     */
say "The point class has created" .point~instances "instances."

::class InstanceCounter subclass class /* Create a new metaclass that */
                                       /* will count its instances     */
::method init
  expose instanceCount
  instanceCount = 0                    /* Initialize instanceCount     */
  forward class (super)                /* Forward INIT to superclass   */

::method new
  expose instanceCount                 /* Creating a new instance      */
  instanceCount = instanceCount + 1    /* Bump the count               */
  forward class (super)                /* Forward NEW to superclass    */

::method instances
expose instanceCount                   /* Return the instance count    */
return instanceCount

::class point public metaclass InstanceCounter  /* Create Point class */
                                       /* using InstanceCounter metaclass */
::method init
  expose xVal yVal                     /* Set object variables         */
  use arg xVal, yVal                   /* as passed on NEW             */

::method string
  expose xVal yVal                     /* Use object variables         */
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  return "("xVal","yVal")"             /* to return string value       */

4.2. Creating and Using Classes and Methods
You can define a class using either directives or messages.

To define a class using directives, you place a ::CLASS directive after the main part of your source
program:

::class "Account"

This creates an Account class that is a subclass of the Object class. Object is the default superclass
if one is not specified. See Section 5.1.4, “Object Class” for details. The string "Account" is a string
identifier for the new class. The string identifier is both the internal class name and the name of the
environment symbol used to locate your new class instance.

Now you can use ::METHOD directive to add methods to your new class. The ::METHOD directives
must immediately follow the ::CLASS directive that creates the class.

Example 4.3. Adding a method

::method type
  return "an account"

::method "name="
  expose name
  use arg name

::method name
  expose name
  return name

This adds the methods TYPE, NAME, and NAME= to the Account class.

You can create a subclass of the Account class and define a method for it:

Example 4.4. Adding a method

::class "Savings" subclass account
::method type
return "a savings account"

Now you can create an instance of the Savings class with the new method and send TYPE, NAME,
and NAME= messages to that instance:

Example 4.5. Invoking a method

asav = .savings~new
say asav~type
asav~name = "John Smith"

The Account class methods NAME and NAME= create a pair of access methods to the account object
variable NAME. The following directive sequence creates the NAME and NAME= methods:
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Example 4.6. Defining SET and GET methods

::method "name="
  expose name
  use arg name

::method name
  expose name
  return name

You can replace this with a single ::ATTRIBUTE directive. For example, the directive

::attribute name

adds two methods, NAME and NAME= to a class. These methods perform the same function as the
NAME and NAME= methods in the original example. The NAME method returns the current value of
the object variable NAME; the NAME= method assigns a new value to the object variable NAME.

In addition to defining operational methods and attribute methods, you can add "constant" methods to
a class using the ::CONSTANT directive. The ::CONSTANT directive will create both a class method
and an instance method to the class definition. The constant method will always return the same
constant value, and can be invoked by sending a message to either the class or an instance method.
For example, you might add the following constant to your Account class:

::constant checkingMinimum 200

This value can be retrieved using either of the following methods

Example 4.7. Retrieving method values

  say .Account~checkingMinimum    -- displays "200"
  asave = .savings~new
  say asave~checkingMinimum       -- also displays "200"

4.2.1. Using Classes
When you create a new class, it is always a subclass of an existing class. You can create new classes
with the ::CLASS directive or by sending the SUBCLASS or MIXINCLASS message to an existing
class. If you specify neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive, the
superclass for the new class is the Object class, and it is not a mixin class.

Example of creating a new class using a message:

persistence = .object~mixinclass("Persistence")
myarray=.array~subclass("myarray")~~inherit(persistence)

Example of creating a new class using the directive:

::class persistence mixinclass object
::class myarray subclass array inherit persistence
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4.2.2. Scope

A scope refers to the methods and object variables defined for a single class (not including the
superclasses). Only methods defined in a particular scope can access the object variables within that
scope. This means that object variables in a subclass can have the same names as object variables
used by a superclass, because the variables are created at different scopes.

4.2.3. Defining Instance Methods with SETMETHOD or ENHANCED
In Rexx, methods are usually associated with instances using classes, but it is also possible to add
methods directly to an instance using the setMethod or enhanced method.

All subclasses of the Object class inherit SETMETHOD. You can use SETMETHOD to create one-
off objects, objects that must be absolutely unique so that a class that is capable of creating other
instances is not necessary. The Class class also provides an ENHANCED method that lets you create
new instances of a class with additional methods. The methods and the object variables defined on an
object with SETMETHOD or ENHANCED form a separate scope, like the scopes the class hierarchy
defines.

4.2.4. Method Names
A method name can be any string. When an object receives a message, the language processor
searches for a method whose name matches the message name in uppercase.

Note

The language processor also translates the specified name of all methods added to objects into
uppercase characters.

You must surround a method name with quotation marks when it contains characters that are not
allowed in a symbol (for example, the operator characters). The following example creates a new class
(the Cost class), defines a new method (%), creates an instance of the Cost class (mycost), and sends
a % message to mycost:

Example 4.8. Accessing a method

cost=.object~subclass("A cost")
cost~define("%", 'expose p; say "Enter a price."; pull p; say p*1.07;')
mycost=cost~new
mycost~"%"        /* Produces:  Enter a price.             */
                  /* If the user specifies a price of 100, */
                  /* produces: 107.00                      */

4.2.5. Default Search Order for Method Selection

The search order for a method name matching the message is for:

1. A method the object itself defines with setMethod or enhanced.
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2. A method the object's class defines. (Note that an object acquires the instance methods of the
class to which it belongs at the time of its creation. If a class gains additional methods, objects
created before the definition of these methods do not acquire these methods.)

3. A method that a superclass of the object's class defines. This is also limited to methods that were
available when the object was created. The order of the inherit messages sent to an object's class
determines the search order of the superclass method definitions.

This search order places methods of a class before methods of its superclasses so that a class can
supplement or override inherited methods.

If the language processor does not find a match for the message name, the language processor
checks the object for a method name UNKNOWN. If it exists, the language processor calls the
UNKNOWN method and returns as the message result any result the UNKNOWN method returns.
The UNKNOWN method arguments are the original message name and a Rexx array containing the
original message arguments.

If the object does not have an UNKNOWN method, the language processor raises a NOMETHOD
condition. If there are no active traps for the NOMETHOD condition, a syntax error is raised.

4.2.6. Defining an UNKNOWN Method
When an object that receives a message does not have a matching message name, the language
processor checks if the object has a method named UNKNOWN. If the object has an UNKNOWN
method, the language processor calls UNKNOWN, passing two arguments. The first argument is the
name of the method that was not located. The second argument is an array containing the arguments
passed with the original message.

For example, the following UNKNOWN method will print out the name of the invoked method and then
invoke the same method on another object. This can be used track the messages that are sent to an
object:

Example 4.9. Defining an UNKNOWN method

::method unknown
expose target      -- will receive all of the messages
use arg name, arguments
say name "invoked with" arguments~toString
-- send along the message with the original args
forward to(target) message(name) arguments(arguments)

4.2.7. Changing the Search Order for Methods

You can change the usual search order for methods by specifying a colon and a class symbol after the
message name. The class symbol can be a variable name or an environment symbol. It identifies the
class object to be used as the starting point for the method search.

The class object must be a superclass of the class defining the active method, or, if you used
setMethod to define the active method, the object's own class. The class symbol is usually the
special variable SUPER , but it can be any environment symbol or variable name whose value is a
valid class.

Suppose you create an Account class that is a subclass of the Object class, define a TYPE method
for the Account class, and create the Savings class that is a subclass of Account. You could define a
TYPE method for the Savings class as follows:
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savings~define("TYPE", 'return "a savings account"')

You could change the search order by using the following line:

savings~define("TYPE", 'return self~type:super "(savings)"')

This changes the search order so that the language processor searches for the TYPE method first
in the Account superclass (rather than in the Savings subclass). When you create an instance of the
Savings class (asav) and send a TYPE message to asav:

say asav~type

an account (savings) is displayed. The TYPE method of the Savings class calls the TYPE
method of the Account class, and adds the string (savings) to the results.

4.2.8. Public, Package-Scope, and Private Methods

A method can be public, package-scope, or private.

Any object can send a message that runs a public method.

A package-scope method can only be invoked from methods or routines defined in the same package
as the package-scope method.

A private method can only be invoked from specific calling contexts. These contexts are:
1. From within a method owned by the same class as the target. This is frequently the same object,

accessed via the special variable SELF. Private methods of an object can also be accessed from
other instances of the same class (or subclass instances).

2. From within a method defined at the same class scope as the method. For example:

Example 4.10. Referencing methods

::class Savings
::method newCheckingAccount CLASS
  instance = self~new
  instance~makeChecking
  return instance

::method makeChecking private
  expose checking
  checking = .true

The newCheckingAccount CLASS method is able to invoke the makeChecking method because
the scope of the makeChecking method is .Savings.

3. From within an instance (or subclass instance) of a class to a private class method of its class. For
example:

Example 4.11. Referencing methods

::class Savings
::method init class
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  expose counter
  counter = 0

::method allocateAccountNumber private class
  expose counter
  counter = counter + 1
  return counter

::method init
  expose accountNumber
  accountNumber = self~class~allocateAccountNumber

The instance init method of the Savings class is able to invoke the allocateAccountNumber private
method of the .Savings class object because it is owned by an instance of the .Savings class.

Private methods include methods at different scopes within the same object. This allows superclasses
to make methods available to their subclasses while hiding those methods from other objects.
A private method is like an internal subroutine. It shields the internal information of an object to
outsiders, but allowing objects to share information with each other and their defining classes.

4.2.9. Initialization
Any object requiring initialization at creation time must define an INIT method. If this method is
defined, the class object runs the INIT method after the object is created. If an object has more than
one INIT method (for example, it is defined in several classes), each INIT method must forward the
INIT message up the hierarchy to complete the object's initialization.

Example 4.12. Instance initialization

asav = .savings~new(1000.00, 6.25)
say asav~type
asav~name = "John Smith"

::class Account

::method INIT
  expose balance
  use arg balance

::method TYPE
  return "an account"

::method name attribute

::class Savings subclass Account

::method INIT
  expose interest_rate
  use arg balance, interest_rate
  self~init:super(balance)

::method type
  return "a savings account"

The NEW method of the Savings class object creates a new Savings object and calls the INIT method
of the new object. The INIT method arguments are the arguments specified on the NEW method. In
the Savings INIT method, the line:
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Example 4.13. Instance initialization

self~init:super(balance)

calls the INIT method of the Account class, using just the balance argument specified on the NEW
message.

4.2.10. Object Destruction and Uninitialization
Object destruction is implicit. When an object is no longer in use, Rexx automatically reclaims its
storage. If the object has allocated other system resources, you must release them at this time. (Rexx
cannot release these resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a message object holding
an unreported error. An object requiring uninitialization should define an UNINIT method. If this
method is defined, Rexx runs it before reclaiming the object's storage. If an object has more than
one UNINIT method (defined in several classes), each UNINIT method is responsible for sending the
UNINIT method up the object hierarchy.

4.2.11. Required String Values
Rexx requires a string value in a number of contexts within instructions and built-in function calls.

• DO statements containing exprr or exprf

• Substituted values in compound variable names

• Commands to external environments

• Commands and environment names on ADDRESS instructions

• Strings for ARG, PARSE, and PULL instructions to be parsed

• Parenthesized targets on CALL instructions

• Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions

• Instruction strings on INTERPRET instructions

• DIGITS, FORM, and FUZZ values on NUMERIC instructions

• Options strings on OPTIONS instructions

• Data queue strings on PUSH and QUEUE instructions

• Label names on SIGNAL VALUE instructions

• Trace settings on TRACE VALUE instructions

• Arguments to built-in functions

• Variable references in parsing templates

• Data for PUSH and QUEUE instructions to be processed

• Data for the SAY instruction to be displayed
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• Rexx dyadic operators when the receiving object (the object to the left of the operator) is a string

If you supply an object other than a string in these contexts, by default the language processor
converts it to some string representation and uses this. However, the programmer can cause the
language processor to raise the NOSTRING condition when the supplied object does not have an
equivalent string value.

To obtain a string value, the language processor sends a request("STRING") message to the
object. Strings and other objects that have string values return the appropriate string value for Rexx to
use. (This happens automatically for strings and for subclasses of the String class because they inherit
a suitable makeString method from the String class.) For this mechanism to work correctly, you must
provide a makeString method for any other objects with string values.

For other objects without string values (that is, without a makeString method), the action taken
depends on the setting of the NOSTRING condition trap. If the NOSTRING condition is being trapped
(see Chapter 11, Conditions and Condition Traps), the language processor raises the NOSTRING
condition. If the NOSTRING condition is not being trapped, the language processor sends a string
message to the object to obtain its readable string representation and uses this string.

Example 4.14. Comparing to the .nil object

d = .directory~new
say substr(d,5,7)         /* Produces "rectory" from "a Directory" */
signal on nostring
say substr(d,5,7)         /* Raises the NOSTRING condition */
say substr(d~string,3,6)  /* Displays "Direct" */

For arguments to Rexx object methods, different rules apply.
For String arithmetic, comparison, and concatenation methods:

These methods always require a string argument, so first a request("STRING") message is
sent to the argument object. If request returns .nil because the argument object does not have
a makeString method, and the NOSTRING condition is not being trapped, a string message is
sent to the object to obtain its string representation.

For all other methods:
When a method expects a string as an argument, the argument object is sent the
request("STRING") message. If request returns .nil, the method raises an error.

4.2.12. Concurrency
Rexx supports concurrency, multiple methods running simultaneously on a single object. See
Chapter 12, Concurrency for a full description of concurrency.

4.3. Overview of Classes Provided by Rexx
This section gives a brief overview of the classes and methods Rexx defines.

4.3.1. The Class Hierarchy
Rexx provides the following classes belonging to the Object class.

The classes are in a class hierarchy with an inheriting class indented below its superclass or mixin
class. Classes inheriting from multiple mixin classes are only listed below one of these mixin classes.

Alarm class
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AlarmNotification class
Buffer class
Class class
Collection class
     MapCollection class
          Bag class
          Directory class
               Properties class
          IdentityTable class
          Relation class
          Set class
          Stem class
          StringTable class
          Table class
     OrderedCollection class
          Array class
          List class
          Queue class
               CircularQueue class
     SetCollection class
Comparable class
     DateTime class
     File class
     String class
     TimeSpan class
Comparator class
     CaselessColumnComparator class
     CaselessComparator class
     CaselessDescendingComparator class
     ColumnComparator class
     DescendingComparator class
     InvertingComparator class
     NumericComparator class
InputStream class
     InputOutputStream class
          Stream class
MessageNotification class
     Message class
Method class
Monitor class
MutableBuffer class
Object class
Orderable class
OutputStream class
Package class
Pointer class
RexxContext class
RexxInfo class
RexxQueue class
Routine class
StackFrame class
Supplier class
     StreamSupplier class
Ticker class
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Validate class
VariableReference class
WeakReference class

Note that there might also be other classes available, depending on the operating system. Additional
classes may be accessed by using an appropriate ::requires directive to load the class definitions.

4.3.2. Class Library Notes
The chapters that follow describe the classes and other objects that Rexx provides and their available
methods. Rexx provides the objects listed in these sections and they are generally available through
environment symbols.

Notes:

1. In the method descriptions in the chapters that follow, methods that return a result begin with the
word "returns".

2. For [] and []= methods, the syntax diagrams include the index or indexes within the brackets.
These diagrams are intended to show how you can use these methods. For example, to set the
element (2, 3) of a multi-dimensional Array named matrix to 0, you would typically use the
syntax:

matrix[2, 3] = 0

rather than:

matrix~"[]="(0, 2, 3)

even though the latter is valid and equivalent. For more information, see Section 1.11.4, “Message
Terms” and Section 1.12.6, “Message Instructions”.

3. When the argument of a method must be a specific kind of object (such as array, class, method,
or string) the variable you specify must be of the same class as the required object or be able
to produce an object of the required kind in response to a conversion message. In particular,
subclasses are acceptable in place of superclasses (unless overridden in a way that changes
superclass behavior), because they inherit a suitable conversion method from their Rexx
superclass.

The isA method of the Object class can perform this validation.
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Builtin Classes
This chapter describes all of the Rexx built-in classes.

Fundamental Classes
These classes are the fundamental building blocks for all other classes.
• Object and Class class,
• String Class,
• Method, Routine, and Package class, and
• Message class.

Stream Classes
This set of classes implements Rexx data streams. They consist of InputStream, OutputStream,
InputOutputStream, and Stream class.

Collection Classes
This set of classes implements object collections. It includes
• Ordered collections Array, List, Queue, and CircularQueue class,
• Map collections Directory, StringTable, Stem, Table, IdentityTable, Relation, and Properties

class, and
• Map/Set collections Bag and Set class.

Utility Classes
This set of classes consists of
• MutableBuffer Class,
• File Class,
• Date-, time-, and timing-related classes DateTime, TimeSpan, Alarm, Ticker, and the notification

classes AlarmNotification and MessageNotification,
• the synchronization classes EventSempahore and MutexSempahore,
• Comparable class and Orderable class,
• eight Comparator classes used for sorting (Caseless)Comparator,

(Caseless)ColumnComparator, (Caseless)DescendingComparator, InvertingComparator, and
NumericComparator, and

• other miscellaneous classes Buffer, Monitor, Pointer, RegularExpression, RexxContext,
RexxInfo, RexxQueue, StackFrame, StreamSupplier, Supplier, Validate, VariableReference, and
WeakReference.

5.1. Fundamental Classes
This section describes the Rexx fundamental classes.
• Object and Class class,
• String Class,
• Method, Routine, and Package class, and
• Message class.

5.1.1. Class Class (Metaclass)

The Class class is like a factory that produces the factories that produce objects. It is a subclass of the
Object class. The instance methods of the Class class are also the class methods of all classes.

Note that the copy method is forbidden for Class and all other class objects, and will result in an error.
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Table 5.1. Class Class
Object

Methods inherited from the Object class

Class

Comparison Methods = == <> >< \= \==

activate id new
annotation inherit package
annotations isAbstract queryMixinClass
baseClass isMetaclass subclass
defaultName isSubclassOf subclasses
define metaClass superClass
defineMethods method superClasses
delete methods uninherit
enhanced mixinClass

5.1.1.1. Comparison Methods

comparison_operator( argument )

Returns .true or .false, the result of performing a specified comparison operation.

For the Class class, if argument is the same class as the receiver class, the result is .true, otherwise
.false is returned.

The comparison operators you can use in a message are:

=, ==    
.true if the terms are the same class.

\=, ><, <>, \==        
.true if the terms are not the same class (inverse of =).

5.1.1.2. activate

activate

Completes initialization of a class object created from a ::CLASS directive. The activate method is
called after all classes in a package have been created and made available, but before the main
portion of the program starts to execute. Activate is called for each class in the package in their
construction order. The class object is fully constructed and capable of creating new instances of the
class. All other classes in the same package are also available, although other classes might not have
been activated yet. Because the INIT method is called early in the class construction process, only
limited class initialization is possible at that time. The activate method is the preferred method for
initializing a class object.

5.1.1.3. annotation

annotation( name )
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Returns the value of the annotation named name for this class. If no such annotation exists, .nil is
returned.

See also
• method annotations and
• ::ANNOTATE directive.

5.1.1.4. annotations

annotations

Returns a StringTable of all annotation name/value pairs for this class.

See also
• method annotation and
• ::ANNOTATE directive.

5.1.1.5. baseClass

baseClass

Returns the base class associated with the class. If the class is a mixin class, the base class is the first
superclass that is not also a mixin class. If the class is not a mixin class, the base class is the class
receiving the baseClass message.

5.1.1.6. defaultName

defaultName

Returns a short human-readable string representation of the class. The string returned is of the form

The id class

where id is the identifier assigned to the class when it was created.

Example 5.1. Class class — defaultName method

say .array~defaultName     /* Displays "The Array class"   */
say .account~defaultName   /* Displays "The ACCOUNT class" */
say .savings~defaultName   /* Displays "The Savings class" */

::class account            /* Name is all upper case       */
::class "Savings"          /* String name is mixed case    */

5.1.1.7. define

define( methodname

, method

)
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Incorporates the method object method in the receiver class's collection of instance methods. The
method name methodname is translated to uppercase. Using the define method replaces any
existing definition for methodname in the receiver class.

If you omit method, the method name methodname is made unavailable for the receiver class.
Sending a message of that name to an instance of the class causes the unknown method (if any) to
be run.

The method argument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. Either way, define
creates an equivalent method object.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. The define method is a protected method.

Example 5.2. Class class — define method

bank_account=.object~subclass("Account")
bank_account~define("TYPE",'return "a bank account"')

5.1.1.8. defineMethods
 

defineMethods( methods )

Incorporates all methods methods in the receiver class's collection of instance methods.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). The method names are translated to
uppercase. Any existing methods with the same method name in the receiver class are replaced.

If, for any item in methods, the method name is .nil, then a method of this name in the receiver class
is made unavailable.

See also method define.

Example 5.3. Class class — defineMethods method

before = .c~new
say before~a                           -- a-original

.c~defineMethods(.methods)
after = .c~new
say after~a after~b                    -- a-define b-define

::method a
return "a-define"
::method b
return "b-define"

::class c
::method a
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return "a-original"

5.1.1.9. delete

delete( methodname )

Removes the receiver class's definition for the method name methodname. If the receiver class
defined methodname as unavailable with the define method, this definition is nullified. If the receiver
class had no definition for methodname, no action is taken.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. delete deletes only methods the target class defines. You cannot delete inherited methods the
target's superclasses define.

3. The delete method is a protected method.

Example 5.4. Class class — delete method

myclass=.object~subclass("Myclass")        /* After creating a class  */
myclass~define("TYPE",'return "my class"') /* and defining a method   */
myclass~delete("TYPE")                     /* this deletes the method */

5.1.1.10. enhanced

enhanced( methods ,

argument

)

Returns an enhanced new instance of the receiver class, with object methods that are the instance
methods of the class, enhanced by the methods in the collection methods. The collection indexes are
the names of the enhancing methods, and the items are the method objects (or strings or arrays of
strings containing method code). You can use any collection that supports a supplier method.

enhanced sends an init message to the created object, passing the arguments specified on the
enhanced method.

See also method define.

Example 5.5. Class class — enhanced method

/* Set up rclass with class method or methods you want in your */
/* remote class */
rclassmeths = .directory~new

rclassmeths["DISPATCH"]=d_source     /* d_source must have code for a  */
                                     /* DISPATCH  method.              */
/* The following sends init("Remote Class") to a new instance */
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rclass=.class~enhanced(rclassmeths,"Remote Class")

5.1.1.11. id

id

Returns the class identity (instance) string. (This is the string that is an argument on the subclass
and mixinClass methods.) The string representations of the class and its instances contain the class
identity.

Example 5.6. Class class — id method

myobject=.object~subclass("my object")  /* Creates a subclass    */
say myobject~id                         /* Produces: "my object" */

5.1.1.12. inherit

inherit( classobj

, classpos

)

Causes the receiver class to inherit the instance and class methods of the class object classobj. The
classpos is a class object that specifies the position of the new superclass in the list of superclasses.
(You can use the superClasses method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified class. If the classpos class is not
found in the set of superclasses, an error is raised. If you do not specify classpos, the new superclass
is added to the end of the superclasses list.

Inherited methods can take precedence only over methods defined at or above the base class of the
classobj in the class hierarchy. Any subsequent change to the instance methods of classobj takes
immediate effect for all the classes that inherit from it.

The new superclass classobj must be created with the MIXINCLASS option of the ::CLASS directive
or the mixinClass method and the base class of the classobj must be a direct superclass of the
receiver object. The receiver must not already descend from classobj in the class hierarchy and vice
versa.

The method search order of the receiver class after inherit is the same as before inherit, with
the addition of classobj and its superclasses (if not already present).

Notes:

1. You cannot change the classes that Rexx provides by sending inherit messages.

2. The inherit method is a protected method.

Example 5.7. Class class — inherit method

room~inherit(.location)
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5.1.1.13. isAbstract
 

isAbstract

Returns .true if the receiving class is an abstract class, otherwise returns .false.

See also ABSTRACT option of the ::CLASS directive.

Example 5.8. Class class — isAbstract method

say .abs~isAbstract                    -- 1

::class abs abstract

5.1.1.14. isMetaclass
 

isMetaclass

Returns .true if the receiving class is a metaclass, otherwise returns .false. The Class class is
the only metaclass that Rexx provides; any subclasses of the Class class are also metaclasses.

Example 5.9. Class class — isMetaclass method

do class
 over .RexxInfo~package~classes~allItems~appendAll(.context~package~classes~allItems)
  if class~isMetaclass then
    say class~string": metaclass"      -- The Class class: metaclass
                                       -- The META class: metaclass
end

::class meta subclass class
::class other

5.1.1.15. isSubclassOf

isSubclassOf( class )

Returns .true if the object is a subclass of the specified class. Returns .false if the object is not a
subclass of the specified class. A class is a subclass of a class if the target class is the same as class
or if class is in the object's direct or mixin class inheritance chain. For example:

Example 5.10. Class class — isSubclassOf method

.String~isSubclassOf(.object)             ->  1

.String~isSubclassOf(.mutablebuffer)      ->  0

5.1.1.16. metaClass

metaClass
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Returns the receiver class's default metaclass. This is the class used to create subclasses of this
class when you send subclass or mixinClass messages (with no metaclass arguments). The instance
methods of the default metaclass are the class methods of the receiver class.

For more information about class methods, see Section 4.1.1, “Object Classes”. See also the
description of method subclass.

5.1.1.17. method

method( methodname )

Returns the method object for the receiver class's definition for the method name methodname. If the
receiver class defined methodname as unavailable, this method returns .nil. If the receiver class did
not define methodname, an error is raised.

Example 5.11. Class class — method method

/* Create and retrieve the method definition of a class */
myclass=.object~subclass("My class")   /* Create a class         */
mymethod=.method~new(" ","Say arg(1)") /* Create a method object */
myclass~define("ECHO",mymethod)        /* Define it in the class */
method_source = myclass~method("ECHO")~source     /* Extract it  */
say method_source                 /* Says "an Array"              */
say method_source[1]              /* Shows the method source code */

5.1.1.18. methods

methods(

class_object

)

Returns a Supplier object for all the instance methods of the receiving class and its superclasses, if
no argument is specified. In this case, the supplier's indexes may contain duplicate entries, if classes
override methods in superclasses.

If class_object is .nil, methods returns a Supplier object for only the instance methods of the
receiving class. If a class_object is specified, this method returns a Supplier object containing only the
instance methods that class_object defines.

The returned supplier's indexes are the method names and the supplier's items are their associated
Method objects. The Supplier enumerates all the names and methods existing at the time of the
supplier's creation.

Note

Methods that have been hidden with a setMethod or define method are included with the
other methods that methods returns. The hidden methods have .nil for their associated
method.
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Example 5.12. Class class — methods method

objsupp = .object~methods
do while objsupp~available
  say objsupp~index           -- displays all instance method
  objsupp~next                -- names of the Object class
end

5.1.1.19. mixinClass

mixinClass( classid ,

metaclass , methods

)

Returns a new mixin subclass of the receiver class. You can use this method to create a new mixin
class that is a subclass of the superclass to which you send the message. The classid is a string that
identifies the new mixin subclass. You can use the id method to retrieve this string.

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of
metaclass. (A metaclass is a class that you can use to create a class, that is, a class whose instances
are classes. The Class class and its subclasses are metaclasses.)

If you do not specify a metaclass, the new mixin subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class
is enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaClass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the
addition of the new subclass at the start of the order.

Example 5.13. Class class — mixinClass method

buyable=.object~mixinClass("Buyable")  /* New subclass is buyable    */
                                       /* Superclass is Object class */

5.1.1.20. new

new(

arg

,

)

Returns a new instance of the receiver class, whose object methods are the instance methods of
the class. This method initializes a new instance by running its init methods (see Section 4.2.9,
“Initialization”). new also sends an init message. If you specify args, new passes these arguments
on the init message.
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Example 5.14. Class class — new method

/* new method example */
a = .account~new             /* -> Object variable balance=0           */
y = .account~new(340.78)     /* -> Object variable balance=340.78      */
                             /*    plus free toaster oven              */
::class account subclass object
::method init                /* Report time each account created       */
                             /* plus free toaster when more than $100  */
Expose balance
Arg opening_balance
Say "Creating" self~objectName "at time" time()
If datatype(opening_balance, "N") then balance = opening_balance
else balance = 0
If balance > 100 then Say "  You win a free toaster oven"

5.1.1.21. package
 

package

Returns the Package class instance that defined the receiving class. The package instance controls
and defines the search order for classes and routines referenced by the receiving class.

See also Package class.

Example 5.15. Class class — package method

say .Class~package~name                -- REXX
say .other~package~name                -- C:\ExampleClassPackage.rex

::class other

5.1.1.22. queryMixinClass

queryMixinClass

Returns .true if the class is a mixin class, or .false.

5.1.1.23. subclass

subclass( classid ,

metaclass , methods

)

Returns a new subclass of the receiver class. You can use this method to create a new class that is a
subclass of the superclass to which you send the message. The classid is a string that identifies the
subclass. (You can use the id method to retrieve this string.)

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of
metaclass. (A metaclass is a class that you can use to create a class, that is, a class whose instances
are classes. The Class class and its subclasses are metaclasses.)
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If you do not specify a metaclass, the new subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class
is enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaclass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the
addition of the new subclass at the start of the order.

Example 5.16. Class class — subclass method

room=.object~subclass("Room")   /* Superclass is .object     */
                                /* Subclass is room          */
                                /* Subclass identity is Room */

5.1.1.24. subclasses

subclasses

Returns the immediate subclasses of the receiver class in the form of a single-dimensional Array of
the required size, in an unspecified order. (The program should not rely on any order.)

5.1.1.25. superClass

superClass

Returns the immediate superclass of the receiver class. The immediate superclass is the original class
used on a subclass or a mixinClass method. For the Object Class, superClass returns .nil.

Example 5.17. Class class — superClass method

say .object~superclass    -- displays "The NIL object"
say .class~superclass     -- displays "The Object class"
say .set~superclass       -- displays "The Table class"

5.1.1.26. superClasses

superClasses

Returns the immediate superclasses of the receiver class in the form of a single-dimensional Array
of the required size. The immediate superclasses are the original class used on a subclass or a
mixinClass method, plus any additional superclasses defined with the inherit method. The array
is in the order in which the class has inherited the classes. The original class used on a subclass or
mixinClass method is the first item of the array.
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Example 5.18. Class class — superClasses method

z=.class~superClasses
/* To obtain the information this returns, you could use:     */
do i over z
  say i
end

5.1.1.27. uninherit

uninherit( classobj )

Nullifies the effect of any previous inherit message sent to the receiver for the class classobj.

Note

You cannot change the classes that Rexx provides by sending uninherit messages.

Example 5.19. Class class — uninherit method

location=.object~mixinClass("Location")
room=.object~subclass("Room")~~inherit(location) /* Creates subclass */
/* and specifies inheritance */
room~uninherit(location)

5.1.2. Message Class

A message object provides for the deferred or asynchronous sending of a message. You can create
a message object by using the new (Class Method) method of the Message class or the start and
startWith methods of the Object class.

Table 5.2. Message Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ AlarmNotification (Mixin Class)

Methods inherited from the AlarmNotification class
cancel
triggered (Abstract method)

+ MessageNotification (Mixin Class)

Methods inherited from the MessageNotification class
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messageComplete (Abstract Method)

Message

new (Class Method)

arguments messageName start
completed notify startWith
errorCondition reply target
halt replyWith triggered
hasError result wait
hasResult send
messageComplete sendWith

5.1.2.1. new (Class Method)

new( target , messagename , "Individual" ,

argument

, "Array" , arguments

)

Initializes the message object for sending the message name messagename to object target.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

If you specify neither Individual nor Array, the message sent has no arguments.

If you specify the Individual or Array option, any remaining arguments are arguments for the
message. (You need to specify only the first letter; all characters following the first are ignored.)

Individual
If you specify this option, specifying argument is optional. Any arguments are passed as message
arguments to target in the order you specify them.

Array
If you specify this option, you must specify arguments, which is an Array object. The member
items of the array are passed to target as arguments. The first argument is at index 1, the
second argument at index 2, and so on. If you omitted any indexes when creating the array, the
corresponding message arguments are also omitted.

Note

This method does not send the message messagename to object target. See methods
start/startWith , send /sendWith , and reply /replyWith .
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5.1.2.2. arguments

arguments

Returns an array of argument objects used to invoke the message.

5.1.2.3. completed

completed

Returns 1 if the message object has completed executing its message, or 0. You can use this method
to test for completion as an alternative to calling result and waiting for the message to complete.

5.1.2.4. errorCondition

errorCondition

Returns an error condition object from any execution error with the message object's message
invocation. If the message completed normally, or is still executing, errorCondition returns .nil.

5.1.2.5. halt  
halt(

description

)

Returns .true if it could raise the halt condition for the message the receiving message object is
currently executing. Returns .false if there is no message executing.

An optional string description can be supplied, which the halted message can retrieve by requesting
the "DESCRIPTION" item of the CONDITION built-in function or the Condition Object.

Example 5.20. Message class — halt method 

dog = .WatchDog~new(1)                 -- watchdog with 1 sec time-out
say dog~watchTask(.task~new~start("runsLong", 0.5))
say dog~watchTask(.task~new~start("runsLong", 1.5))

::class Task

-- a long-running task that we may want to terminate early
::method runsLong
  use strict arg seconds
  signal on halt
  do s = 0 to seconds by 0.1           -- split SysSleep to enable halting
    call SysSleep 0.1                  -- do "hard work"
  end
  return "task finished"

  halt:
  return condition("DESCRIPTION")      -- return description from halt()

::class Watchdog inherit AlarmNotification
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-- sets a time-out, after which a running task will be halted
::method init
  expose timeOut
  use strict arg timeOut

-- watches over a task, halting it if it runs too long
::method watchTask
  expose timeOut
  use strict arg message
  -- we set an Alarm for 'timeOut' seconds, which, upon triggering
  -- will call method triggered(), passing this Alarm object as an argument
  -- (this is why we inherit from AlarmNotification)
  -- we also attach 'message' to enable triggered() to halt the task
  alarm = .Alarm~new(timeOut, self, message)

  -- now we just wait for 'message' to finish; either normally, or halted
  msgResult = message~result
  alarm~cancel                         -- cancel alarm; may still be active
  return msgResult

::method triggered unguarded
  expose timeOut
  -- our watchTask Alarm has triggered
  -- this means that the task has run too long
  use arg alarm
  message = alarm~attachment           -- message is our attachment
  message~halt("task took longer than" timeOut "sec")

will output

task finished
task took longer than 1 sec

5.1.2.6. hasError

hasError

Returns 1 if the message object's message was terminated with an error condition. Returns 0 if the
message has not completed or completed without error.

5.1.2.7. hasResult  
hasResult

Returns .true if the message object has completed executing its message, and the message
has returned a result. Returns .false if the message object has not yet completed executing its
message, or the message hasn't returned a result.

See also method result.

5.1.2.8. messageComplete  
messageComplete(

source

)
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This method implements the MessageNotification interface. It will be called whenever a message
completes processing, for which notification was requested by using the notify method with a message
object as the notification target.

As a result of receiving such a notification, messageComplete will send the receiving message to
start processing. Any source argument will be ignored.

See also class MessageNotification.

Example 5.21. Message class — messageComplete method 

msg = .Message~new(.Array~new(1000)~fill(0)~allIndexes, "sort")
msg~notify(.Message~new(.stdout, "say", "I", "sorting complete"))
msg~notify(.Message~new(.r~new, "items", "I", msg))
msg~start
say "processing continues"

::class r
::method items
use strict arg m
say m~target~items "items sorted"

will output

processing continues
sorting complete
1000 items sorted

5.1.2.9. messageName

messageName

Returns the message name of the receiving message object.

5.1.2.10. notify

notify( target )

Requests notification about the completion of processing of the message.

The notification target must be an object that implements the MessageNotification interface. Upon
completion of message processing, target will be sent a messageComplete message, with the
completed Message object as argument source.

Any number of notifications can be requested for a message.

To retrieve the result of the completed message, use method result.

See also class MessageNotification.

Example 5.22. Message class — notify method 

msg = .Message~new(.Array~new(1000)~fill(0)~allIndexes, "sort")
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msg~notify(.Sorter~new)
msg~start
say "processing continues"

::class Sorter inherit MessageNotification
::method messageComplete
  use strict arg message

  say message~target~items "items sorted"

will output

processing continues
1000 items sorted

5.1.2.11. reply  

reply(

target

,

argument

)

Returns and sends a copy of the message to start processing, while the sender also continues
processing.

As this method, other than the similar method start, starts a copy of the message, it can be called
mutiple times with the same receiving message.

If target is specified, the message is sent to target and both the receiving message and the message
copy are changed to use the new target. Otherwise the message is sent to the target the message
object provides.

If any arguments are specified, the message is sent with these arguments and both the receiving
message and the message copy are changed to use the new arguments. Otherwise the message is
sent with any arguments the message object provides.

This method returns as soon as possible and does not wait until message processing is complete.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also
• method replyWith ,
• methods start and startWith , and
• methods send  and sendWith .

5.1.2.12. replyWith  
replyWith(

target

, arguments )

Returns and sends a copy of the message with the specified arguments to start processing, while the
sender also continues processing.
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As this method, other than the similar method startWith , starts a copy of the message, it can be called
mutiple times with the same receiving message.

If target is specified, the message is sent to target and both the receiving message and the message
copy are changed to use the new target. Otherwise the message is sent to the target the message
object provides.

The arguments array items are used as message arguments and both the receiving message and the
message copy are changed to use these new arguments.

This method returns as soon as possible and does not wait until message processing is complete.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also
• method reply ,
• methods start and startWith , and
• methods send  and sendWith .

5.1.2.13. result

result

Returns the result of the message send or start. If message processing is not yet complete, this
method waits until it completes. If the message send or start raises an error condition, this method
also raises an error condition.

For an example see halt method example.

5.1.2.14. send  

send(

target

,

argument

)

Returns the result (if any) of sending the message.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

If any arguments are specified, the message is sent with these arguments and the receiving message
object is changed to use the new arguments. Otherwise the message is sent with any arguments the
message object provides.

This method does not return until message processing is complete.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also
• method sendWith ,
• methods start and startWith , and
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• methods reply  and replyWith .

5.1.2.15. sendWith  
sendWith(

target

, arguments )

Returns the result (if any) of sending the message with the specified arguments.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

The arguments array items are used as message arguments and the receiving message object is
changed to use these new arguments.

This method does not return until message processing is complete.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also
• method send ,
• methods start and startWith , and
• methods reply  and replyWith .

5.1.2.16. start

start(

target

,

argument

)

Sends the message to start processing, while the sender also continues processing.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

If any arguments are specified, the message is sent with these arguments and the receiving message
object is changed to use the new arguments. Otherwise the message is sent with any arguments the
message object provides.

This method returns as soon as possible and does not wait until message processing is complete.

Note that once a message object has been started with either the start or the startWith
method, it can not be run with any of the send/sendWith, start/startWith, reply/replyWith
methods again. A message object can be run multiple times with methods send/sendWith and
reply/replyWith.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also
• method startWith ,
• methods send  and sendWith , and
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• methods reply  and replyWith .

Example 5.23. Message class - start method  

ez=.testclass~new                  /* Creates a new instance of Testclass     */

/* Creates and starts message mymsg to send SHOWMSG to ez                     */
mymsg=ez~start("SHOWMSG","Hello, Ollie!",5)

/* Continue with main processing while SHOWMSG runs concurrently              */
do 5
  say "Hello, Stan!"
end

/* Get final result of the SHOWMSG method from the mymsg message object       */
say mymsg~result
say "Goodbye, Stan..."
exit

::class testclass public             /* Directive defines Testclass           */

::method showmsg                     /* Directive creates new method SHOWMSG  */
use arg text,reps                    /* class Testclass                       */
do reps
  say text
end
reply "Bye Bye, Ollie..."
return

The following output is possible:

Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Bye Bye, Ollie...
Goodbye, Stan...

5.1.2.17. startWith  
startWith(

target

, arguments )

Sends the message with the specified arguments to start processing, while the sender also continues
processing.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

The arguments array items are used as message arguments and the receiving message object is
changed to use these new arguments.

This method returns as soon as possible and does not wait until message processing is complete.
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Note that once a message object has been started with either the start or the startWith
method, it can not be run with any of the send/sendWith, start/startWith, reply/replyWith
methods again. A message object can be run multiple times with methods send/sendWith and
reply/replyWith.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also
• method start,
• methods send  and sendWith , and
• methods reply  and replyWith .

5.1.2.18. target

target

Returns the object that is the target of the invoked message.

5.1.2.19. triggered  
triggered(

source

)

This method implements the AlarmNotification interface. It will be called whenever an Alarm or a
Ticker triggers, for which a Message object was set as notification target.

As a result of receiving such a notification, triggered will send the receiving message to start
processing. Any source argument will be ignored.

See also class AlarmNotification.

Example 5.24. Message class — triggered method 

arg = .Array~new(1)
msg = .Message~new(.a~new, "ring", "A", arg)
oneSecond = .Alarm~new(1, msg, arg)
arg~append(oneSecond)
-- oneSecond = .Alarm~new(1, .Message~new(.a~new, "ring", "I", alarm))
say "processing continues"

::class a
::method ring
use strict arg alarm
say "alarm went off at" .DateTime~new
say "was scheduled for" alarm~scheduledTime

may output

processing continues
alarm went off at 2015-12-18T16:54:15.550000
was scheduled for 2015-12-18T16:54:15.545000
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5.1.2.20. wait  
wait

Waits until the message object has completed executing its message.

See also method completed.

5.1.3. Method Class

The Method class creates method objects from Rexx source code. It is a subclass of the Object class.

Table 5.3. Method Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Method

new (Class Method)
loadExternalMethod (Class Method)
newFile (Class Method)

annotation isPackage setPrivate
annotations isPrivate setProtected
isAbstract isProtected setSecurityManager
isAttribute package setUnguarded
isConstant scope source
isGuarded setGuarded

5.1.3.1. new (Class Method)

new( name , source

, context

)

Returns a new instance of the Method class, which is an executable representation of the code
contained in the source. The name is a string. The source can be a single string or an array of strings
containing individual method lines.

The context allows the created method to inherit class and routine lookup scope from another
source. If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created method
will inherit the class and routine search scope from the caller of the new method.

5.1.3.2. newFile (Class Method)

newFile( filename

, context

)
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Returns a new instance of the Method class, which is an executable representation of the code
contained in the file filename. Raises an error if the file filename cannot be read. The filename is a
string.

The context allows the created method to inherit class and routine lookup scope from another
source. If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created method
will inherit the class and routine search scope from the caller of the newFile method.

5.1.3.3. loadExternalMethod (Class Method)

loadExternalMethod( name , descriptor )

Resolves a native method in an external library package and returns a Method object instance that
can be used to call the external method. The descriptor is a string containing whitespace-delimited
tokens that identify the location of the native method. The first token identifies the type of native
function and must be LIBRARY. The second token must identify the name of the external library. The
external library is located using platform-specific mechanisms for loading libraries. For Unix-based
systems, the library name is case-sensitive. The third token is optional and specifies the name of
the method within the library package. If not specified, name is used. The method name is not case
sensitive. If the target method cannot be resolved, .nil is returned.

Example 5.25. Method class — loadExternalMethod method

method = .Method~loadExternalMethod("homeAddress=", "LIBRARY mylib setHomeAddress")

5.1.3.4. annotation

annotation( name )

Returns the value of the annotation named name for this method. If no such annotation exists, .nil is
returned.

See also
• method annotations and
• ::ANNOTATE directive.

5.1.3.5. annotations

annotations

Returns a StringTable of all annotation name/value pairs for this method.

See also
• method annotation and
• ::ANNOTATE directive.

5.1.3.6. isAbstract
 

isAbstract
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Returns .true if the method is an Abstract method, otherwise returns .false.

See also
• ABSTRACT option of the ::METHOD directive and
• ABSTRACT option of the ::ATTRIBUTE directive.

Example 5.26. Method class — isAbstract method

say .InputStream~method("lines")~isAbstract    -- 1
say .Stream~method("lines")~isAbstract         -- 0

5.1.3.7. isAttribute
 

isAttribute

Returns .true if the method is an Attribute method, otherwise returns .false.

See also ::ATTRIBUTE directive.

Example 5.27. Method class — isAttribute method

say .File~method("lastModified")~isAttribute     -- 1
say .File~method("lastModified=")~isAttribute    -- 1

5.1.3.8. isConstant
 

isConstant

Returns .true if the method is a Constant method, otherwise returns .false.

See also ::CONSTANT directive.

Example 5.28. Method class — isConstant method

say .physics~method("c")~isConstant              -- 1

::class physics
::constant c 299792458

5.1.3.9. isGuarded

isGuarded

Returns .true if the method is a Guarded method. Returns .false for Unguarded methods.

5.1.3.10. isPackage  
isPackage
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Returns .true if the method is a Package-scope method. Returns .false for Public methods or
Private methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on
package-scope method restrictions.

See also method isPrivate.

5.1.3.11. isPrivate

isPrivate

Returns .true if the method is a Private method. Returns .false for Public methods or Package-
scope methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on
private method restrictions.

See also method isPackage .

5.1.3.12. isProtected

isProtected

Returns .true if the method is a Protected method. Returns .false for unprotected methods.

5.1.3.13. package

package

Returns the Package class instance that defined the method instance. The package instance controls
and defines the search order for classes and routines referenced by the method code.

5.1.3.14. scope
 

scope

Returns the defining class scope for a method. Returns .nil for any method not defined by a class
scope.

Example 5.29. Method class — scope method

scopes = .Stem~new
scopes[] = 0
loop with item method over .List~methods
  scopes[method~scope] += 1                 -- possible output:
end                                         -- 27 methods from The List class
loop scope over scopes                      -- 19 methods from The Collection class
  say scopes[scope] "methods from" scope    -- 20 methods from The OrderedCollection class
end                                         -- 31 methods from The Object class

.Method~new("any", "nop")~scope             -- .nil

.methods["FLOAT"]~scope                     -- .nil
::method float
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5.1.3.15. setGuarded

setGuarded

Specifies that the method is a guarded method that requires exclusive access to its scope variable
pool to run. If the receiver is already guarded, a setGuarded message has no effect. Guarded is the
default state for method objects.

5.1.3.16. setPrivate

setPrivate

Specifies that a method is a private method. By default, method objects are created as public
methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on private
method restrictions.

5.1.3.17. setProtected

setProtected

Specifies that a method is a protected method. Method objects are not protected by default. (See
Chapter 13, The Security Manager for details.)

5.1.3.18. setSecurityManager

setSecurityManager(

security_manager_object

)

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.3.19. setUnguarded

setUnguarded

Turns off the guard attribute of the method, allowing this method to run on an object even if another
method has acquired exclusive access to the scope variable pool. Methods are guarded by default.

A guarded method can be active for an object only when no other method requiring exclusive access
to the object's variable pool is active in the same object. This restriction does not apply if an object
sends itself a message to run a method and it already has exclusive use of the same object variable
pool. In this case, the method runs immediately regardless of its guarded state.

5.1.3.20. source

source

Returns the method source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.
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5.1.4. Object Class

The Object class is the root of the class hierarchy. The instance methods of the Object class are,
therefore, available on all objects.

Table 5.4. Object Class
Class (Metaclass)

Methods inherited from the Class class

Object

new (Class Method)

Comparison Methods = == <> >< \= \==
Concatenation Methods (abuttal) || (blank)

class isA sendWith
copy isInstanceOf setMethod (Private Method)
defaultName isNil start
hashCode objectName startWith
hasMethod objectName= string
identityHash request unsetMethod (Private Method)
instanceMethod run (Private Method)
instanceMethods send

5.1.4.1. new (Class Method)

new

Returns a new instance of the receiver class.

5.1.4.2. Comparison Methods

comparison_operator( argument )

Returns .true or .false, the result of performing a specified comparison operation.

For the Object class, if argument is the same object as the receiver object, the result is .true,
otherwise .false is returned. Subclasses may override this method to define equality using different
criteria. For example, the String class determines equality based on the value of the string data.

Note

The MapCollection classes such as Table and Relation use the == operator combined with
the hashCode method to determine index and item equivalence. It is generally necessary for a
class to override both the hashCode method and the == operator method to maintain the contract
specified for the hashCode method.

The comparison operators you can use in a message are:
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=, ==    
.true if the terms are the same object.

\=, ><, <>, \==        
.true if the terms are not the same object (inverse of =).

5.1.4.3. Concatenation Methods

concatenation_operator( argument )

Returns a new string that is the concatenation the of receiver object's string value with argument. (See
Section 1.11.2.1, “String Concatenation”.) The concatenation_operator can be:

""
concatenates without an intervening blank. The abuttal operator "" is the null string. The language
processor uses the abuttal operator to concatenate two terms that another operator does not
separate.

||  
concatenates without an intervening blank.

" "
concatenates with one blank between the receiver object and the argument. (The operator " " is a
blank.)

5.1.4.4. class

class

Returns the class object that created the object instance.

5.1.4.5. copy

copy

Returns a copy of the receiver object. The copied object has the same methods as the receiver object
and an equivalent set of object variables, with the same values.

Example 5.30. Object class — copy method

myarray=.array~of("N","S","E","W")
/* Copies array myarray to array directions */
directions=myarray~copy
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Note

The copy method is a “shallow copy”. Only the target object is copied. Additional objects
referenced by the target object are not copied. For example, copying an Array object instance
only copies the Array, it does not copy any of the objects stored in the Array.

5.1.4.6. defaultName

defaultname

Returns a short human-readable string representation of the object. The exact form of this
representation depends on the object and might not alone be sufficient to reconstruct the object. All
objects must be able to produce a short string representation of themselves in this way, even if the
object does not have a string value. See Section 4.2.11, “Required String Values” for more information.
defaultName returns a string that identifies the class of the object, for example, an Array or a
Directory.

See also methods objectName and string.

See objectName= for an example using defaultName.

5.1.4.7. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollections such as Table, Relation, Set,
Bag, and Directory. MapCollections use this string value to hash an object for hash table-based
searches.

Object implementations are expected to abide by a general contract for hash code usage:

• Whenever hashCode is invoked on the same object more than once, hashCode must return the
same hashcode value, provided than none of the internal information the object uses for an "=="
comparison has changed.

• If two object instances compare equal using the "==" operator, the hashCode methods for both
object instances must return the same value.

• It is not required that two object instances that compare unequal using "==" return different hash
code values.

• Returning a wide range of hash values will produce better performance when an object is used as
an index for a MapCollection. A return value of 4 string characters is recommended. The characters
in the hash value may be any characters from '00'x to 'ff'x, inclusive.

5.1.4.8. hasMethod

hasMethod( methodname )
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Returns .true if the receiver object has a method named methodname (translated to uppercase).
Otherwise, it returns .false.

Note

The hasMethod method will return .true even if the target method is defined as private. A
private method has restricted access rules, so it's possible to receive an unknown method error
(error 97) when invoking methodname even if hasMethod indicates the method exists. See
Section 4.2.8, “Public, Package-Scope, and Private Methods” for private method restrictions.

5.1.4.9. identityHash

identityHash

Returns a unique identity number for the object. This number is guaranteed to be unique for the
receiver object until the object is garbage collected.

5.1.4.10. init

init

Performs any required object initialization. Subclasses of the Object class can override this method to
provide more specific initialization.

5.1.4.11. instanceMethod

instanceMethod( methodname )

Returns the corresponding Method class instance if the methodname is a valid method of the class.
Otherwise it returns .nil.

5.1.4.12. instanceMethods

instanceMethods(

class_object

)

Returns a Supplier object for all the object methods of the receiving object and its superclasses, if no
argument is specified. In this case, the supplier's indexes may contain duplicate entries, if classes
override methods in superclasses.

If a class_object is specified, instanceMethods returns a Supplier object for only the object methods
of the receiving object. If the receiving object object is not an instance of class_object, an empty
Supplier is returned.

The returned supplier's indexes are the method names and the supplier's items are their associated
Method objects. The Supplier enumerates all the names and methods existing at the time of the
supplier's creation.

150



Object Class

Note

Methods that have been hidden with a setMethod or define method are included with the
other methods that instanceMethods returns. The hidden methods have .nil for their
associated method.

Example 5.31. Object class — instanceMethods method

-- list all class methods of .String only
say .String~instanceMethods(.String)~allIndexes   --> CR,NEW,NL,NULL,TAB

-- count all class methods of .String and its superclasses
-- 4 .String class methods, 32 .Object class methods, 34 .Class class methods
say .String~instanceMethods~allIndexes~items      --> 70

-- count all instance methods of .String only
say ''~instanceMethods(.String)~allIndexes~items  --> 116

-- count all instance methods of .String and its superclasses
say ''~instanceMethods~allIndexes~items           --> 148

5.1.4.13. isA

isA( class )

Note

This method is an alias of the isInstanceOf method.

5.1.4.14. isInstanceOf

isInstanceOf( class )

Returns .true if the object is an instance of the specified class, otherwise it returns .false, An
object is an instance of a class if the object is directly an instance of the specified class or if class is in
the object's direct or mixin class inheritance chain. For example:

Example 5.32. Object class — isInstanceOf method

"abc"~isInstanceOf(.string)             ->  1
"abc"~isInstanceOf(.object)             ->  1
"abc"~isInstanceOf(.mutablebuffer)      ->  0
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5.1.4.15. isNil  
isNil

Returns .true if the receiving object is the .nil object. Returns .false otherwise.

Example 5.33. Object class — isNil method 

say .Object~isNil    -- 0
say .nil~isNil       -- 1

5.1.4.16. objectName

objectName

Returns any name set on the receiver object using the objectName= method. If the receiver
object does not have a name, this method returns the result of the defaultName method. See
Section 4.2.11, “Required String Values” for more information. See the objectName= method for an
example using objectName.

5.1.4.17. objectName=

objectName=( newname )

Sets the receiver object's name to the string newname.

Example 5.34. Object class — objectName= method

points=.array~of("N","S","E","W")
say points~objectName         /* (no change yet) Says: "an Array"    */
points~objectName=("compass") /* Changes obj name POINTS to "compass"*/
say points~objectName         /* Shows new obj name. Says: "compass" */
say points~defaultName        /* Default is still available.         */
                              /* Says "an Array"                     */
say points                    /* Says string representation of       */
                              /* points "compass"                    */
say points[3]                 /* Says: "E"  Points is still an array */
                              /* of 4 items                          */

5.1.4.18. request

request( classid )

Returns an object of the classid class, or .nil if the request cannot be satisfied.

This method first compares the identity of the object's class (see the id method of the Class
class) to classid. If they are the same, the receiver object is returned as the result. Otherwise,
request tries to obtain and return an object satisfying classid by sending the receiver object the
conversion message make with the string classid appended (converted to uppercase). For example,

152



Object Class

a request("string") message causes a makeString message to be sent. If the object does not
have the required conversion method, request returns .nil.

The conversion methods cause objects to produce different representations of themselves.
The presence or absence of a conversion method defines an object's capability to produce the
corresponding representations. For example, lists can represent themselves as arrays, because they
have a makeArray method, but they cannot represent themselves as directories, because they do
not have a makeDirectory method. Any conversion method must return an object of the requested
class. For example, makeArray must return an array. The language processor uses the makeString
method to obtain string values in certain contexts; see Section 4.2.11, “Required String Values”.

5.1.4.19. run (Private Method)

run( method , "Individual" ,

argument

, "Array" , arguments

)

Runs method, which can be either
• a method object, or
• a string containing a method source line, or an Array of strings containing individual method source

lines (for these cases an equivalent method object is created).

The method has access to the object variables of the receiver object, as if the receiver object had
defined the method by using setMethod.

If you specify neither Individual nor Array, the method runs without arguments.

If you specify the Individual or Array option, any remaining arguments are arguments for the
method. (You need to specify only the first letter; all characters following the first character are
ignored.)

Individual
Passes any remaining arguments to the method as arguments in the order you specify them.

Array
Requires arguments, which is an Array object. The member items of the array are passed to the
method as arguments. The first argument is at index 1, the second argument at index 2, and so
on. If you omitted any indexes when creating the array, the corresponding arguments are omitted
when passing the arguments.

Notes:

1. The run method is a private method (see Section 4.2.8, “Public, Package-Scope, and Private
Methods”) with the additional restriction that it can only be called
• from an instance method of the receiving object itself, or
• from a class method in the receiving object's inheritance chain.

2. The run method is a protected method.

5.1.4.20. send

153



Object Class

send( messagename ,

argument

)

Returns the result of invoking a method on the target object using the specified message name and
arguments. The send method allows methods to be invoked using dynamically constructed method
names.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

Any arguments are passed to the receiver as arguments for messagename in the order you specify
them.

Example 5.35. Object class — send method

world = .WorldObject~new
-- these calls are equivalent and produce "Hello World, I'm Fred!"
say world~hello("World", "Fred")
say world~send("HELLO", "World", "Fred")

::class WorldObject
::method hello
  use strict arg place, name
  return "Hello" place", I'm"  name"!"

5.1.4.21. sendWith

sendWith( messagename , arguments )

Returns the result of invoking a method on the target object using the specified message name and
arguments. The sendWith method allows methods to be invoked using dynamically constructed
method names and arguments.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

The arguments argument must be a single-dimensional Array instance. The values contained in
arguments are passed to the receiver as arguments for messagename in the order you specify them.

Example 5.36. Object class — sendWith method

world = .WorldObject~new
-- these calls are equivalent and produce "Hello World, I'm Fred!"
say world~hello("World", "Fred")
say world~sendWith("HELLO", .Array~of("World", "Fred"))

::class WorldObject
::method hello
  use strict arg place, name
  return "Hello" place", I'm"  name"!"
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5.1.4.22. setMethod (Private Method)

setMethod( methodname

, method

, "FLOAT"

, "OBJECT"

)

Adds method to the receiver object's collection of object methods.

The methodname is the name of the new method. This name is translated to uppercase. If you
previously defined a method with the same name using setMethod, the new method replaces the
earlier one. If you omit method, setMethod makes the method name methodname unavailable for the
receiver object. In this case, sending a message of that name to the receiver object runs the unknown
method (if any).

The method can be either
• a method object, or
• a string containing a method source line, or an Array of strings containing individual method source

lines (for these cases an equivalent method object is created).

The third parameter is optional, and describes if the method that is attached to an object should have
OBJECT or FLOAT scope. FLOAT scope, which is the default, means that it shares the same scope
with methods that were defined outside of a class. OBJECT scope means it shares the scope with
other, potentially statically defined, methods of the object it is attached to.

Notes:

1. The setMethod method is a private method (see Section 4.2.8, “Public, Package-Scope, and
Private Methods”) with the additional restriction that it can only be called
• from an instance method of the receiving object itself, or
• from a class method in the receiving object's inheritance chain.

2. The setMethod method is a protected method.

5.1.4.23. start

start( messagename ,

argument

)

Returns a message object and sends it a start message to start concurrent processing. The
object receiving the message messagename processes this message concurrently with the sender's
continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

Any arguments are passed to the receiver as arguments for messagename in the order you specify
them.
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When the receiver object has finished processing the message, the message object retains its result
and holds it until the sender requests it by sending a result message. For further details, see
Message class method start.

Example 5.37. Object class — start method

world = .WorldObject~new
-- these calls are equivalent and produce "Hello World, I'm Fred!"
msg1 = world~start("HELLO", "World", "Fred")
msg2 = .message~new(world, "HELLO", "i", "World", "Fred")~~start
say msg1~result
say msg2~result

::class WorldObject
::method hello
  use strict arg place, name
  return "Hello" place", I'm"  name"!"

5.1.4.24. startWith

startWith( messagename , arguments )

Returns a message object and sends it a start message to start concurrent processing. The
object receiving the message messagename processes this message concurrently with the sender's
continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

The arguments argument must be a single-dimensional Array instance. Any values contained in
arguments are passed to the receiver as arguments for messagename in the order you specify them.

When the receiver object has finished processing the message, the message object retains its result
and holds it until the sender requests it by sending a result message. For further details, see
Message class method start.

Example 5.38. Object class — startWith method

world = .WorldObject~new
-- these calls are equivalent and produce "Hello World, I'm Fred!"
msg1 = world~startWith("HELLO", .Array~of("World", "Fred"))
msg2 = .message~new(world,"HELLO", "a", .Array~of("World", "Fred"))~~start
say msg1~result
say msg2~result

::class WorldObject
::method hello
  use strict arg place, name
  return "Hello" place", I'm"  name"!"

5.1.4.25. string

string
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Returns a human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be
able to produce a string representation of themselves in this way.

The object's string representation is obtained from the objectName method (which can in turn use the
defaultName method).

The distinction between this method, the makeString method (which obtains string values) and the
request method is important. All objects have a string method, which returns a string representation
(human-readable form) of the object. This form is useful in tracing and debugging. Only those objects
that have information with a meaningful string form have a makeString method to return this value.
For example, Directory objects have a readable string representation ("a Directory"), but no string
value, and, therefore, no makeString method.

Of the classes that Rexx provides, the Array Class, the CircularQueue Class, the DateTime Class,
the File Class, the MutableBuffer Class, the StackFrame Class, the String Class, and the TimeSpan
Class have a makeString method. Any subclasses of these classes inherit this method by default, so
these subclasses also have string values. Any other class can also provide a string value by defining a
makeString method.

5.1.4.26. unsetMethod (Private Method)

unsetMethod( methodname )

Cancels the effect of all previous setMethods for method methodname. It also removes any method
methodname introduced with enhanced when the object was created. If the object has received no
setMethod method, no action is taken.

Notes:

1. The unsetMethod method is a private method (see Section 4.2.8, “Public, Package-Scope, and
Private Methods”) with the additional restriction that it can only be called
• from an instance method of the receiving object itself, or
• from a class method in the receiving object's inheritance chain.

2. The unsetMethod method is a protected method.

5.1.5. Package Class

The Package class contains the source code for a package of Rexx code. A package instance holds
all of the routines, classes, and methods created from a source code unit and also manages external
dependencies referenced by ::REQUIRES directives. The files loaded by ::REQUIRES are also
contained in Package class instances. It is a subclass of the Object class.

Table 5.5. Package Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Package

new (Class Method)

157



Package Class

addClass findPublicClass prolog
addPackage findPublicRoutine publicClasses
addPublicClass findRoutine publicRoutines
addPublicRoutine form resource
addRoutine fuzz resources
annotation importedClasses routines
annotations importedPackages setSecurityManager
classes importedRoutines source
definedMethods loadLibrary sourceLine
digits loadPackage sourceSize
findClass local trace
findNamespace name
findProgram namespaces

5.1.5.1. new (Class Method)

new( name ,

source , context

)

Returns a new instance of the package class, which is a representation of the code contained in
the source. The name is a string. The source can be a single string or an array of strings containing
individual method lines. If source isn't specified, name identifies a file that will be used as the package
source. The file is searched for using the external program search order.

The context allows the created package to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, or a Package object. If not specified, the
newly created package will inherit the class and routine search scope from the caller of new method.

5.1.5.2. addClass

addClass( name , class )

Adds the class object class to the available classes under the name name. This is added to the
package as a non-public class.

5.1.5.3. addPackage

addPackage( package

, namespace

)

Adds the package object package to the dependent packages. An optional string namespace may be
specified, which will allow to qualify references to classes or routines within package.

The added package is processed as if it had been added using a ::REQUIRES directive in the original
package source.

Example 5.39. Package class — addPackage method

.context~package~addPackage(.Package~new('winsystm.cls'), 'windows')
say windows:virtualkeycodes~new~keyName(36)   -- HOME
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5.1.5.4. addPublicClass

addPublicClass( name , class )

Adds the class object class to the available public classes under the name name. This is added to the
package as a public class.

5.1.5.5. addPublicRoutine

addPublicRoutine( name , routine )

Adds the routine object routine to the available routines under the name name. This is added to the
package as a public routine.

5.1.5.6. addRoutine

addRoutine( name , routine )

Adds the routine object routine to the available routines under the name name. This is added to the
package as a non-public routine.

5.1.5.7. annotation

annotation( name )

Returns the value of the annotation named name for this package. If no such annotation exists, .nil
is returned.

See also
• method annotations and
• ::ANNOTATE directive.

5.1.5.8. annotations

annotations

Returns a StringTable of all annotation name/value pairs for this package.

See also
• method annotation and
• ::ANNOTATE directive.

5.1.5.9. classes

classes

Returns a StringTable containing all classes defined by this package.

See also methods publicClasses and importedClasses.
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5.1.5.10. definedMethods

definedMethods

Returns a StringTable containing all unattached methods defined by this package. This is the same
StringTable available to code within the package via the .METHODS environment symbol.

5.1.5.11. digits

digits

Returns the initial NUMERIC DIGITS setting used for all Rexx code contained within the package. The
default value is 9. The ::OPTIONS directive can override the default value.

5.1.5.12. findClass

findClass( name )

Performs the standard environment symbol searches given name. The search is performed using
the same search mechanism used for environment symbols or class names specified on ::CLASS
directives. If the name is not found, .nil will be returned.

Note that the standard environment symbol search will return an object instance (and not a class)
when searching e. g. for "nil", "true", "false", "endofline", "RexxInfo", or objects in the .LOCAL directory.

See also method findPublicClass.

Example 5.40. Package class — findClass method

say .RexxInfo~package~findClass("Dummy")  -- The NIL object
say .context~package~findClass("Dummy")   -- The DUMMY class

::class Dummy

5.1.5.13. findNamespace
 

findNamespace( name )

Returns the Package object that has been tagged with namespace name. Returns .nil if namespace
name does not exist.

See also method addPackage.

Example 5.41. Package class — findNamespace method

say .context~package~findNamespace("rexx")      -- The REXX Package
say .context~package~findNamespace("windows")   -- a Package

::requires "winsystm.cls" namespace windows
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5.1.5.14. findProgram
 

findProgram( name )

Locates program name using the target package context and returns the fully resolved filename. name
must be a string that specifies the filename or path to an external program. The program is searched
for using the external program search order.

Returns .nil if name cannot be located.

Example 5.42. Package class — findProgram method

say .context~package~findProgram("mime.cls")  -- e. g. C:\Program Files\ooRexx\mime.cls

5.1.5.15. findPublicClass
 

findPublicClass( name )

Returns the public class named name. Returns .nil if no public class of the specified name exists
within the scope of the receiving package.

See also method findClass.

Example 5.43. Package class — findPublicClass method

say .context~package~findPublicClass("String")   -- The String class
say .context~package~findPublicClass("Dummy")    -- The NIL object
say .context~package~findPublicClass("RexxInfo") -- The NIL object

::class Dummy   -- private class

5.1.5.16. findPublicRoutine
 

findPublicRoutine( name )

Returns the public routine named name. Returns .nil if no public routine of the specified name exists
within the scope of the receiving package.

See also methods publicRoutines and findRoutine.

Example 5.44. Package class — findPublicRoutine method

say .context~package~findPublicRoutine("Dummy")~source    -- "nop"

::routine Dummy public
nop

5.1.5.17. findRoutine
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findRoutine( name )

Searches for a routine within the package search order. This includes ::ROUTINE directives within
the package, public routines imported from other packages, or routines added using the addRoutine
method. The argument name must be a string object. If the name is not found, .nil will be returned.

5.1.5.18. form

form

Returns the initial NUMERIC FORM setting used for all Rexx code contained within the package. The
default value is SCIENTIFIC. The ::OPTIONS directive can override the default value.

5.1.5.19. fuzz

fuzz

Returns the initial NUMERIC FUZZ setting used for all Rexx code contained within the package. The
default value is 0. The ::OPTIONS directive can override the default value.

5.1.5.20. importedClasses

importedClasses

Returns a StringTable containing all public classes imported from other packages.

See also methods classes and publicClasses.

5.1.5.21. importedPackages

importedPackages

Returns an Array containing all packages imported by the target package.

5.1.5.22. importedRoutines

importedRoutines

Returns a StringTable containing all public routines imported from other packages.

5.1.5.23. loadLibrary

loadLibrary( name )

Loads a native library package and adds it to the list of libraries loaded by the interpreter. The name
identifies a native external library file that will be located and loaded as if it had been named on
a ::REQUIRES LIBRARY directive. If the library is successfully loaded, loadLibrary will return
.true, otherwise it returns .false.
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5.1.5.24. loadPackage

loadPackage( name

, source

)

Loads a package and adds it to the list of packages loaded by the package manager. If only name
is specified, name identifies a file that will be located and loaded as if it had been named on a
::REQUIRES directive. The file is searched for using the external program search order.

If source is given, it must be an array of strings that is the source for the loaded package.

If a package name has already been loaded by the package manager, the previously loaded version
will be used.

The resolved package object will be added to the receiving package object's dependent packages.

5.1.5.25. local  
local

Returns a Directory of objects local to the receiving package.

See also .LOCAL for a Directory of objects local to the interpreter instance.

5.1.5.26. name

name

Returns the string name of the package.

The package name may be
• the absolute path of the executing program,
• any name that was specified when creating an instance of a Package or Routine class,
• "REXX" for classes defined by Rexx, or
• "INSTORE" for code executed through the rexx -e command.

Example 5.45. Package class — name method

say .context~package~name              -- e. g. C:\ExamplePackageName.rex
say .Class~package~name                -- REXX
say .Routine~new("rtn", "return .context~package~name")[]  -- rtn
say .Package~new("pkg", "")~name       -- pkg

5.1.5.27. namespaces
 

namespaces

Returns a StringTable of all namespaces defined in the target package.

See also method findNamespace.
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Example 5.46. Package class — namespaces method

say .context~package~namespaces~allIndexes      -- WINDOWS

::requires "winsystm.cls" namespace windows

5.1.5.28. prolog
 

prolog

Returns a routine object that represents the code of the target package that precedes any directives.

Example 5.47. Package class — prolog method

say .context~package~prolog~source  -- "say .context~package~prolog~source"

::options noprolog

5.1.5.29. publicClasses

publicClasses

Returns a StringTable containing all public classes defined in this package.

See also methods findPublicClass and classes.

Example 5.48. Package class — publicClasses method

say .package~new("csvstream.cls")~publicClasses~allIndexes -- CSVSTREAM
say .context~package~publicClasses~allIndexes              -- DUMMY
say .rexxinfo~package~publicClasses~items                  -- 56

::class dummy public

5.1.5.30. publicRoutines

publicRoutines

Returns a StringTable containing all public routines defined in this package. The StringTable indexes
are the routine names, the StringTable values are individual routine objects.

See also method findPublicRoutine.

Example 5.49. Package class — publicRoutines method

say .package~new("csvstream.cls")~publicRoutines~items  -- 0
say .context~package~publicRoutines~allIndexes          -- DUMMY
say .rexxinfo~package~publicRoutines~items              -- 0

::routine dummy public
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5.1.5.31. resource
 

resource( name )

Returns an Array of resources data lines a ::RESOURCE name directive in the target package
defines. Returns .nil, if no resource name exists.

See also
• method resources and
• ::RESOURCE directive.

Example 5.50. Package class — resource method

say .context~package~resource("GREYCAT")~makeString  -- La nuit, tous les chats sont gris

::resource greyCat
La nuit, tous les chats sont gris
::END

5.1.5.32. resources
 

resources

Returns a StringTable of all data resources that ::RESOURCE directives in the target package define.
The StringTable indexes are the resource names, the StringTable values are arrays of individual
resource data lines.

See also
• method resource and
• ::RESOURCE directive.

Example 5.51. Package class — resources method

say .context~package~resources~allIndexes  -- "BROWN FOX"
                                           -- "GREYCAT"
::resource greyCat
La nuit, tous les chats sont gris
::END

::resource "brown fox"
The quick brown fox jumps over the lazy dog
::END

5.1.5.33. routines

routines

Returns a StringTable containing all routines defined in this package. The StringTable indexes are the
routine names, the StringTable values are individual routine objects.
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5.1.5.34. setSecurityManager

setSecurityManager(

security_manager_object

)

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.5.35. source

source

Returns the package source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.

5.1.5.36. sourceLine

sourceLine( n )

Returns the nth source line from the package source. If the source code is not available or the
indicated line does not exist, a null string is returned.

5.1.5.37. sourceSize

sourceSize

Returns the size of the source code for the package object. If the source code is not available, 0 is
returned.

5.1.5.38. trace

trace

Returns the initial TRACE setting used for all Rexx code contained within the package. The default
value is Normal. The ::OPTIONS directive can override the default value.

5.1.6. Routine Class

The Routine class creates routine objects from Rexx source code. It is a subclass of the Object class.

Table 5.6. Routine Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Routine
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new (Class Method)
loadExternalRoutine (Class method)
newFile (Class Method)

[] call setSecurityManager
annotation callWith source
annotations package

5.1.6.1. new (Class Method)

new( name , source

, context

)

Returns a new instance of the Routine class, which is an executable representation of the code
contained in the source. The name is a string. The source can be a single string or an array of strings
containing individual method lines.

The context allows the created routine to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created routine
will inherit the class and routine search scope from the caller of the new method.

5.1.6.2. newFile (Class Method)

newFile( filename

, context

)

Returns a new instance of the Routine class, which is an executable representation of the code
contained in the file filename. The filename is a string.

The context allows the created routine to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created routine
will inherit the class and routine search scope from the caller of the newFile method.

5.1.6.3. loadExternalRoutine (Class method)

loadExternalRoutine( name , descriptor )

Resolves a native routine in an external library package and returns a Routine object instance that
can be used to call the external routine. The descriptor is a string containing whitespace-delimited
tokens that identify the location of the native routine. The first token identifies the type of native routine
and must be LIBRARY. The second token must identify the name of the external library. The external
library is located using platform-specific mechanisms for loading libraries. For Unix-based systems, the
library name is case-sensitive. The third token is optional and specifies the name of the routine within
the library package. If not specified, name is used. The routine name is not case sensitive. If the target
routine cannot be resolved, .nil is returned.

Example 5.52. Routine class — loadExternalRoutine method

pi = .Routine~loadExternalRoutine("pi", "library rxmath rxcalcpi")
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say pi~call(16) -- 3.141592653589793

5.1.6.4. []
 

[

argument

,

]

Calls the routine object using the provided arguments. The code in the routine object is called as if it
was an external routine call. The return value will be any value returned by the executed routine.

See also method call for which this method is a synonym.

5.1.6.5. annotation

annotation( name )

Returns the value of the annotation named name for this routine. If no such annotation exists, .nil is
returned.

See also
• method annotations and
• ::ANNOTATE directive.

5.1.6.6. annotations

annotations

Returns a StringTable of all annotation name/value pairs for this routine.

See also
• method annotation and
• ::ANNOTATE directive.

5.1.6.7. call

call(

argument

,

)

Calls the routine object using the provided arguments. The code in the routine object is called as if it
was an external routine call. The return value will be any value returned by the executed routine.

See also method [] for which this method is a synonym.

5.1.6.8. callWith
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callWith( array )

Calls the routine object using the arguments provided in array. Each element of array will be mapped
to its corresponding call argument. The code in the routine object is called as if it was an external
routine call. The return value will be any value returned by the executed routine.

5.1.6.9. package

package

Returns the Package class instance that defined the routine instance. The package instance controls
and defines the search order for classes and routines referenced by the routine code.

5.1.6.10. setSecurityManager

setSecurityManager(

security_manager_object

)

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.6.11. source

source

Returns the routine source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.

5.1.7. String Class

String objects represent character-string data values. A character string value can have any length
and contain any characters.

Table 5.7. String Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparable (Mixin Class)

Methods inherited from the Comparable class
compareTo

String

new (Class Method) digit (Class Method) punct (Class Method)
alnum (Class Method) graph (Class Method) space (Class Method)
alpha (Class Method) lower (Class Method) tab (Class Method)
blank (Class Method) nl (Class Method) upper (Class Method)
cntrl (Class Method) null (Class Method) xdigit (Class Method)
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cr (Class Method) print (Class Method)

Arithmetic Methods + - * ** / // %
Comparison Methods = == < <= << <<= <> > >= >< >> >>= \= \== \< \<< \> \>>
Concatenation Methods (abuttal) || (blank)
Logical Methods \ & && |

[] compare modulo
? (inline if) compareTo overlay
abbrev contains pos
abs containsWord replaceAt
append copies reverse
b2x countStr right
bitAnd d2c round
bitOr d2x sign
bitXor dataType space
c2d decodeBase64 startsWith
c2x delStr strip
caselessAbbrev delWord subChar
caselessChangeStr encodeBase64 substr
caselessCompare endsWith subWord
caselessCompareTo equals subWords
caselessContains floor translate
caselessContainsWord format trunc
caselessCountStr hashCode upper
caselessEndsWith insert verify
caselessEquals lastPos word
caselessLastPos left wordIndex
caselessMatch length wordLength
caselessMatchChar lower wordPos
caselessPos makeArray words
caselessStartsWith makeString x2b
caselessWordPos match x2c
ceiling matchChar x2d
center/centre max
changeStr min

5.1.7.1. new (Class Method)

new( stringvalue )

Returns a new string object initialized with the characters in stringvalue.

5.1.7.2. alnum (Class Method)

alnum

Returns the string
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, a character
sequence representing the POSIX character class name ALNUM (alphanumeric characters).

See also class methods alpha and digit.
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5.1.7.3. alpha (Class Method)

alpha

Returns the string ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, a character
sequence representing the POSIX character class name ALPHA (alphabetic characters).

See also class methods lower and upper.

5.1.7.4. blank (Class Method)

blank

Returns the string '09 20'x, a character sequence representing the POSIX character class name
BLANK (tab and space character).

See also class method space.

5.1.7.5. cntrl (Class Method)

cntrl

Returns the string '00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13
14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 7F'x, a character sequence representing the POSIX
character class name CNTRL (control characters).

See also class method print (Class Method).

5.1.7.6. cr (Class Method)

cr

Returns the single character string for the carriage-return character, which has the value '0d'x.

5.1.7.7. digit (Class Method)

digit

Returns the string 0123456789, a character sequence representing the POSIX character class name
DIGIT (digits).

See also class method xdigit.

5.1.7.8. graph (Class Method)
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graph

Returns the string !"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_` abcdefghijklmnopqrstuvwxyz{|}~, a character
sequence representing the POSIX character class name GRAPH (visible characters).

See also class method print.

5.1.7.9. lower (Class Method)

lower

Returns the string abcdefghijklmnopqrstuvwxyz, a character sequence representing the POSIX
character class name LOWER (lowercase letters).

See also class methods upper and alpha.

5.1.7.10. nl (Class Method)

nl

Returns the single character string for the line-feed character, which has the value '0a'x.

5.1.7.11. null (Class Method)

null

Returns the single character string for the null character, which has the value '00'x.

5.1.7.12. print (Class Method)

print

Returns the string  !"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_` abcdefghijklmnopqrstuvwxyz{|}~ (with a
leading space), a character sequence representing the POSIX character class name PRINT (visible
characters and space character).

See also class method graph.

5.1.7.13. punct (Class Method)  
punct

Returns the string !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~, a character sequence representing the
POSIX character class name PUNCT (punctuation characters).
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5.1.7.14. space (Class Method)

space

Returns the string '09 0A 0B 0C 0D 20'x, a character sequence representing the POSIX
character class name SPACE (whitespace characters horizontal tab, line feed, vertical tab, form feed,
carriage return, and space).

See also class method blank.

5.1.7.15. tab (Class Method)

tab

Returns the single character string for the tab character, which has the value '09'x.

5.1.7.16. upper (Class Method)

upper

Returns the string ABCDEFGHIJKLMNOPQRSTUVWXYZ, a character sequence representing the POSIX
character class name UPPER (uppercase letters).

See also class method lower.

5.1.7.17. xdigit (Class Method)

xdigit

Returns the string 0123456789ABCDEFabcdef, a character sequence representing the POSIX
character class name XDIGIT (hexadecimal digits).

See also class method digit.

5.1.7.18. Arithmetic Methods

arithmetic_operator ( argument )

Note

The syntax diagram above is for the non-prefix operators. For the prefix operators, omit the
parentheses and argument.
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Returns the result of performing the specified arithmetic operation on the receiver object. The receiver
object and the argument must be valid numbers. The arithmetic_operator can be:

+  Addition

-  Subtraction

*  Multiplication

/  Division

%  Integer division (divide and return the integer part of the result)

//  Remainder (divide and return the remainder—not modulo, because the result can
be negative)

**  Exponentiation (raise a number to a whole-number power)

Prefix - Same as the subtraction: 0 - number

Prefix + Same as the addition: 0 + number

See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it
might have been rounded.

Example 5.53. String class — arithmetic methods

5+5     ->    10
8-5     ->     3
5*2     ->    10
6/2     ->     3
9//4    ->     1
9%4     ->     2
2**3    ->     8
+5      ->     5             /* Prefix +  */
-5      ->    -5             /* Prefix -  */

5.1.7.19. Comparison Methods

comparison_operator( argument )

Returns .true or .false, the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared. Both must be string objects. If argument is not a
string object, it is converted to its string representation for the comparison. The one exception is when
argument is .nil for the ==, \==, =, \=, ><, and <> operators. A string object will never compare
equal to .nil, even when the string matches the string value of .nil ("The NIL object"). As a result,
== will always return .false when compared to .nil and \== will always return .true. All of the
relational comparisons (for example, <, >, <=, etc.) will always return .false when compared to
.nil.

The comparison operators you can use in a message are:

=  .true if the terms are equal (for example, numerically or when padded). .false if
argument is .nil.

\=, ><, <>      .true if the terms are not equal (inverse of =). .true if argument is .nil.

>  Greater than. .false if argument is .nil.
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<  Less than. .false if argument is .nil.

>=  Greater than or equal to. .false if argument is .nil.

\<  Not less than. .false if argument is .nil.

<=  Less than or equal to. .false if argument is .nil.

\>  Not greater than. .false if argument is .nil.

Example 5.54. String class — comparison methods

5=5        ->     1          /* equal            */

42\=41     ->     1          /* All of these are */
42><41     ->     1          /* "not equal"      */
42<>41     ->     1

13>12      ->     1          /* Variations of    */
12<13      ->     1          /* less than and    */
13>=12     ->     1          /* greater than     */
12\<13     ->     0
12<=13     ->     1
12\>13     ->     1

All strict comparison operations have one of the characters doubled that define the operator. The
== and \== operators check whether two strings match exactly. The two strings must be identical
(character by character) and of the same length to be considered strictly equal.

The strict comparison operators such as >> or << carry out a simple character-by-character
comparison. There is no padding of either of the strings being compared. The comparison of the two
strings is from left to right. If one string is shorter than and a leading substring of another, then it is
smaller than (less than) the other. The strict comparison operators do not attempt to perform a numeric
comparison on the two operands.

For all the other comparison operators, if both terms are numeric, the String class does a numeric
comparison (ignoring, for example, leading zeros—see Section 10.4, “Numeric Comparisons”).
Otherwise, it treats both terms as character strings, ignoring leading and trailing whitespace characters
and padding the shorter string on the right with blanks.

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order can depend on the character set. In an ASCII environment, the digits are lower than
the alphabetic characters, and lowercase alphabetic characters are higher than uppercase alphabetic
characters.

The strict comparison operators you can use in a message are:

==  .true if terms are strictly equal (identical)

\==  .true if the terms are NOT strictly equal (inverse of ==)

>>  Strictly greater than

<<  Strictly less than

>>=  Strictly greater than or equal to

\<<  Strictly NOT less than

<<=  Strictly less than or equal to
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\>>  Strictly NOT greater than

Example 5.55. String class — comparison methods

"space"=="space"     ->     1         /* Strictly equal     */

"space"\==" space"   ->     1         /* Strictly not equal */

"space">>" space"    ->     1         /* Variations of      */
" space"<<"space"    ->     1         /* strictly greater   */
"space">>=" space"   ->     1         /* than and less than */
"space"\<<" space"   ->     1
" space"<<="space"   ->     1
" space"\>>"space"   ->     1

5.1.7.20. Logical Methods

logical_operator( argument )

Note

For NOT (prefix \),  omit the parentheses and argument.

Returns .true or .false, the result of performing the specified logical operation. The receiver
object and the argument are character strings that evaluate to 1 or 0.

The logical_operator can be:

&  AND (Returns 1 if both terms are .true.)

|  Inclusive OR (Returns 1 if either term or both terms are true.)

&&  Exclusive OR (Returns 1 if either term, but not both terms, is .true.)

Prefix \ Logical NOT (Negates; 1 becomes 0, and 0 becomes 1.)

Example 5.56. String class — logical methods

1&0     ->     0
1|0     ->     1
1&&0    ->     1
\1      ->     0

5.1.7.21. Concatenation Methods

concatenation_operator( argument )

Concatenates the receiver object with argument. (See Section 1.11.2.1, “String Concatenation”.) The
concatenation_operator can be:
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"" concatenates without an intervening blank. The abuttal operator "" is the null string.
The language processor uses the abuttal to concatenate two terms that another
operator does not separate.

||  concatenates without an intervening blank.

" " concatenates with one blank between the receiver object and the argument. (The
operator " " is a blank.)

Example 5.57. String class — concatenation methods

f = "abc"
f"def"      ->   "abcdef"
f || "def"  ->   "abcdef"
f "def"     ->   "abc def"

5.1.7.22. []
 

[ n

, length

]

If length is omitted, returns the character at position n of the receiving string. If n is larger than the
length of the receiving string, a null string is returned.

If length is specified, returns the substring of the receiving string starting at position n and of length
length. No padding occurs for any portion of the returned string not within the boundaries of the
receiving string.

The n must be a positive whole number, and, if specified, length must be a a non-negative whole
number.

See also methods subChar and substr.

Example 5.58. String class — [] method

"abc"[2]       -- "b"
"abc"[2,4]     -- "bc"

5.1.7.23. ? (inline if)
 

?( first , second )

Returns first if the receiving string is .true, returns second if it is .false.

Example 5.59. String class — ? method

do apples = 0 to 2                               -- 0 apples
  say apples (apples = 1)~?("apple", "apples")   -- 1 apple
end                                              -- 2 apples
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5.1.7.24. abbrev

abbrev( info

, length

)

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not
less than length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Example 5.60. String class — abbrev method

"Print"~abbrev("Pri")      ->    1
"PRINT"~abbrev("Pri")      ->    0
"PRINT"~abbrev("PRI",4)    ->    0
"PRINT"~abbrev("PRY")      ->    0
"PRINT"~abbrev("")         ->    1
"PRINT"~abbrev("",1)       ->    0

Note

A null string always matches if a length of 0, or the default, is used. This allows a default keyword
to be selected automatically if desired.

Example 5.61. String class — abbrev method

say "Enter option:";   pull option .
select  /* keyword1 is to be the default */
  when "keyword1"~abbrev(option) then ...
  when "keyword2"~abbrev(option) then ...
  ...
  otherwise nop;
end;

5.1.7.25. abs

abs

Returns the absolute value of the receiving string. The result has no sign and is formatted according to
the current NUMERIC settings.

Example 5.62. String class — abs method

12.3~abs      ->     12.3
"-0.307"~abs  ->     0.307
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5.1.7.26. append
 

append( string )

Returns a string consisting of string appended to the receiving string.

5.1.7.27. b2x

b2x

Returns a string, in character format, that represents the receiving binary string converted to
hexadecimal.

The receiving string is a string of binary (0 or 1) digits. It can be of any length. It can optionally include
whitespace characters (at 4-digit boundaries only, not leading or trailing). These are to improve
readability and are ignored.

The returned string uses uppercase alphabetic characters for the values A-F and does not include
whitespace.

If the receiving binary string is a null string, b2x returns a null string. If the number of binary digits
in the receiving string is not a multiple of four, up to three 0 digits are added on the left before the
conversion to make a total that is a multiple of four.

Example 5.63. String class — b2x method

"11000011"~b2x     ->   "C3"
"10111"~b2x        ->   "17"
"101"~b2x          ->   "5"
"1 1111 0000"~b2x  ->   "1F0"

You can combine b2x with the methods x2d and x2c to convert a binary number into other forms.

Example 5.64. String class — b2x method with x2d

"10111"~b2x~x2d  ->   "23"   /* decimal 23 */

5.1.7.28. bitAnd

bitAnd(

string , pad

)

Returns a string composed of the receiver string and the argument string logically ANDed together, bit
by bit. (The encodings of the strings are used in the logical operation.) The length of the result is the
length of the longer of the two strings. If you omit the pad character, the AND operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended
to the partial result. If you provide pad, it extends the shorter of the two strings on the right before the
logical operation. The default for string is the zero-length (null) string.

179



String Class

Example 5.65. String class — bitand method

"12"x~bitAnd                   ->    "12"x
"73"x~bitAnd("27"x)            ->    "23"x
"13"x~bitAnd("5555"x)          ->    "1155"x
"13"x~bitAnd("5555"x,"74"x)    ->    "1154"x
"pQrS"~bitAnd(,"DF"x)          ->    "PQRS"      /* ASCII   */

5.1.7.29. bitOr

bitOr(

string , pad

)

Returns a string composed of the receiver string and the argument string logically inclusive-ORed, bit
by bit. The encodings of the strings are used in the logical operation. The length of the result is the
length of the longer of the two strings. If you omit the pad character, the OR operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended
to the partial result. If you provide pad, it extends the shorter of the two strings on the right before the
logical operation. The default for string is the zero-length (null) string.

Example 5.66. String class — bitor method

"12"x~bitOr                   ->    "12"x
"15"x~bitOr("24"x)            ->    "35"x
"15"x~bitOr("2456"x)          ->    "3556"x
"15"x~bitOr("2456"x,"F0"x)    ->    "35F6"x
"1111"x~bitOr(,"4D"x)         ->    "5D5D"x
"pQrS"~bitOr(,"20"x)          ->    "pqrs" /* ASCII   */

5.1.7.30. bitXor

bitXor(

string , pad

)

Returns a string composed of the receiver string and the argument string logically eXclusive-ORed,
bit by bit. The encodings of the strings are used in the logical operation. The length of the result is
the length of the longer of the two strings. If you omit the pad character, the XOR operation stops
when the shorter of the two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If you provide pad, it extends the shorter of the two strings on the right
before carrying out the logical operation. The default for string is the zero-length (null) string.

Example 5.67. String class — bitxor method

"12"x~bitXor                      ->  "12"x
"12"x~bitXor("22"x)               ->  "30"x
"1211"x~bitXor("22"x)             ->  "3011"x
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"1111"x~bitXor("444444"x)         ->  "555544"x
"1111"x~bitXor("444444"x,"40"x)   ->  "555504"x
"1111"x~bitXor(,"4D"x)            ->  "5C5C"x
"C711"x~bitXor("222222"x," ")     ->  "E53302"x  /* ASCII  */

5.1.7.31. c2d

c2d(

n

)

Returns the decimal value of the binary representation of the receiving string. If the result cannot be
expressed as a whole number, an error results. That is, the result must not have more digits than the
current setting of NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do
not specify n, the receiving string is processed as an unsigned binary number. If the receiving string is
null, C2D returns 0.

Example 5.68. String class — c2d method

"09"X~c2d       ->        9
"81"X~c2d       ->      129
"FF81"X~c2d     ->    65409
""~c2d          ->        0
"a"~c2d         ->       97     /*  ASCII   */

If you specify n, the receiving string is taken as a signed number expressed in n characters. The
number is positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is
converted to a whole number, which can therefore be negative. The receiving string is padded on the
left with "00"x characters (not "sign-extended"), or truncated on the left to n characters. This padding
or truncation is as though receiving_string~right(n,'00'x) had been processed. If n is 0,
c2d always returns 0.

Example 5.69. String class — c2d method

"81"X~c2d(1)      ->     -127
"81"X~c2d(2)      ->      129
"FF81"X~c2d(2)    ->     -127
"FF81"X~c2d(1)    ->     -127
"FF7F"X~c2d(1)    ->      127
"F081"X~c2d(2)    ->    -3967
"F081"X~c2d(1)    ->     -127
"0031"X~c2d(0)    ->        0

5.1.7.32. c2x

c2x

Returns a string, in character format, that represents the receiving string converted to hexadecimal.
The returned string contains twice as many bytes as the receiving string. On an ASCII system,
sending a c2x message to the receiving string 1 returns 31 because "31"X is the ASCII representation
of 1.
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The returned string has uppercase alphabetic characters for the values A-F and does not include
whitespace. The receiving string can be of any length. If the receiving string is null, c2x returns a null
string.

Example 5.70. String class — c2x method

"0123"X~c2x    ->    "0123"   /* "30313233"X     in ASCII */
"ZD8"~c2x      ->    "5A4438" /* "354134343338"X in ASCII */

5.1.7.33. caselessAbbrev

caselessAbbrev( info

, length

)

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not
less than length. Returns 0 if either of these conditions is not met. The characters are tested using a
caseless comparison.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Example 5.71. String class — caselessAbbrev method

"Print"~caselessAbbrev("Pri")      ->    1
"PRINT"~caselessAbbrev("Pri")      ->    1
"PRINT"~caselessAbbrev("PRI",4)    ->    0
"PRINT"~caselessAbbrev("PRY")      ->    0
"PRINT"~caselessAbbrev("")         ->    1
"PRINT"~caselessAbbrev("",1)       ->    0

Note

A null string always matches if a length of 0, or the default, is used. This allows a default keyword
to be selected automatically if desired.

Example 5.72. String class — caselessAbbrev method

say "Enter option:";   parse pull option .
select  /* keyword1 is to be the default */
  when "keyword1"~caselessAbbrev(option) then ...
  when "keyword2"~caselessAbbrev(option) then ...
  ...
  otherwise nop;
end;
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5.1.7.34. caselessChangeStr

caselessChangeStr( needle , newneedle

, count

)

Returns a copy of the receiver object in which newneedle replaces occurrences of needle. If count is
not specified, all occurrences of needle are replaced. If count is specified, it must be a non-negative,
whole number that gives the maximum number of occurrences to be replaced. The needle searches
are performed using caseless comparisons.

Here are some examples:

Example 5.73. String class — caselessChangeStr method

"AbaAbb"~caselessChangeStr("A","")     ->    "bbb"
AbaBabAB~changeStr("ab","xy")          ->    "xyxyxyxy"
AbaBabAB~changeStr("ab","xy",1)        ->    "xyaBabAB"

5.1.7.35. caselessCompare

caselessCompare( string

, pad

)

Returns 0 if the argument string is identical to the receiving string using a caseless comparison.
Otherwise, returns the position of the first character that does not match. The shorter string is padded
on the right with pad if necessary. The default pad character is a blank.

Example 5.74. String class — caselessCompare method

"abc"~caselessCompare("ABC")         ->    0
"abc"~caselessCompare("Ak")          ->    2
"ab "~caselessCompare("AB")          ->    0
"AB "~caselessCompare("ab"," ")      ->    0
"ab "~caselessCompare("ab","x")      ->    3
"abXX "~caselessCompare("ab","x")    ->    5

5.1.7.36. caselessCompareTo

caselessCompareTo( string ,

n , length

)

Performs a caseless sort comparison of the target string to the string argument. If the two strings are
equal, 0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger
string. The comparison is performed starting at character n for length characters in both strings. n
must be a positive whole number. If n is omitted, the comparison starts at the first character. length
must be a non-negative whole number. If omitted, the comparison will take place to the end of the
target string.
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Example 5.75. String class — caselessCompareTo method

"abc"~caselessCompareTo("abc")         ->    0
"b"~caselessCompareTo("a")             ->    1
"a"~caselessCompareTo("b")             ->   -1
"abc"~caselessCompareTo("aBc")         ->    0
"aBc"~caselessCompareTo("abc")         ->    0
"000abc000"~caselessCompareTo(111abc111", 4, 3)  -> 0

5.1.7.37. caselessContains
 

caselessContains( other ,

start , length

)

Returns .true if the receiving string contains the other string. It returns .false if other is the null
string or is not found within the receiving string. The search is performed using caseless comparisons.

By default, the search starts at the first character of the receiving string and continues to the end. You
can override this by specifying start, the point at which the search starts, and length, the bounding limit
for the search.

If specified, start must be a positive whole number and length must be a non-negative whole number.

See also methods contains, caselessStartsWith, caselessEndsWith, and caselessPos.

Example 5.76. String class — caselessContains method

say "-abcdef-"~caselessContains("EF")         -- 1
say "-abcdef-"~caselessContains("-", 2, 6)    -- 0

5.1.7.38. caselessContainsWord
 

caselessContainsWord( phrase

, start

)

Returns .true if phrase is found in the receiving string. Returns .false if phrase contains no
words or if phrase is not found. Word matches are made independent of case. Multiple whitespace
characters between words in either phrase or the receiving string are treated as a single blank for the
comparison, but, otherwise, the words must match, except for case.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be a positive whole number), the word at which the search is to be started.

See also methods containsWord and caselessWordPos (caselessContainsWord returns .false
exactly if caselessWordPos would have returned "0".)

Example 5.77. String class — caselessContainsWord method

good = "Now is the time for all good men"
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good~caselessContainsWord("the")          -- .true
good~caselessContainsWord("The")          -- .true
good~caselessContainsWord("is the")       -- .true
good~caselessContainsWord("is   the ")    -- .true
good~caselessContainsWord("is time")      -- .false
good~caselessContainsWord("time")         -- .true
good~caselessContainsWord("time", 5)      -- .false

5.1.7.39. caselessCountStr

caselessCountStr( needle )

Returns a count of the occurrences of needle in the receiving string that do not overlap. All matches
are made using caseless comparisons.

Here are some examples:

Example 5.78. String class — caselessCountStr method

"a0Aa0A"~caselessCountStr("a")        ->    4
"J0kKk0"~caselessCountStr("KK")       ->    1

5.1.7.40. caselessEndsWith
 

caselessEndsWith( other )

Returns .true if the characters of the other match the characters at the end of the target string.
Returns .false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessEndsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

See also methods caselessStartsWith, endsWith, and caselessMatch.

5.1.7.41. caselessEquals

caselessEquals( other )

Returns .true if the target string is strictly equal to the other string, using a caseless comparison.
Returns .false if the two strings are not strictly equal.

Example 5.79. String class — caselessEquals method

"a"~caselessEquals("A")          ->    1
"aa"~caselessEquals("A")         ->    0
"4"~caselessEquals("3")          ->    0
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5.1.7.42. caselessLastPos

caselessLastPos( needle ,

start , length

)

Returns the position of the last occurrence of a string, needle, in the receiving string. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
string and scans backward to the beginning of the string. You can override this by specifying start,
the point at which the backward scan starts and length, the range of characters to scan. The start
must be a positive whole number and defaults to receiving_string~length if larger than that
value or omitted. The length must be a non-negative whole number and defaults to start. The search is
performed using caseless comparisons.

See also methods lastPos, caselessPos, and pos.

Example 5.80. String class — caselessLastPos method

"abc def ghi"~caselessLastPos(" ")      ->    8
"abcdefghi"~caselessLastPos(" ")        ->    0
"efgxyz"~caselessLastPos("XY")          ->    4
"abc def ghi"~caselessLastPos(" ",7)    ->    4
"abc def ghi"~caselessLastPos(" ",7,3)  ->    0

5.1.7.43. caselessMatch

caselessMatch( start , other ,

n , length

)

Returns .true if the characters of the other match the characters of the target string beginning at
position start. Returns .false if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The caselessMatch method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

Example 5.81. String class — caselessMatch method

"Saturday"~caselessMatch(6, "day")           ->    1
"Saturday"~caselessMatch(6, "DAY")           ->    1
"Saturday"~caselessMatch(6, "SUNDAY", 4, 3)  ->    1
"Saturday"~caselessMatch(6, "daytime", 1, 3) ->    1
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5.1.7.44. caselessMatchChar

caselessMatchChar( n , chars )

Returns .true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The match is made
using caseless comparisons. The argument n must be a positive whole number.

Example 5.82. String class — caselessMatchChar method

"a+b"~caselessMatchChar(2, "+-*/")           ->    1
"a+b"~caselessMatchChar(1, "+-*/")           ->    0
"Friday"~caselessMatchChar(3, "aeiou")       ->    1
"FRIDAY"~caselessMatchChar(3, "aeiou")       ->    1

5.1.7.45. caselessPos

caselessPos( needle ,

start , length

)

Returns the position in the receiving string of another string, needle. It returns 0 if needle is the
null string or is not found or if start is greater than the length of the receiving string. The search is
performed using caseless comparisons. By default, the search starts at the first character of the
receiving string (that is, the value of start is 1), and continues to the end of the string. You can override
this by specifying start, the point at which the search starts, and length, the bounding limit for the
search. If specified, start must be a positive whole number and length must be a non-negative whole
number.

See also methods pos and caselessLastPos.

Example 5.83. String class — caselessPos method

"Saturday"~caselessPos("DAY")       ->    6
"abc def ghi"~caselessPos("x")      ->    0
"abc def ghi"~caselessPos(" ")      ->    4
"abc def ghi"~caselessPos(" ",5)    ->    8
"abc def ghi"~caselessPos(" ",5,3)  ->    0

5.1.7.46. caselessStartsWith
 

caselessStartsWith( other )

Returns .true if the characters of the other match the characters at the start of the target string.
Returns .false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessStartsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.
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See also methods startsWith, caselessEndsWith, and caselessMatch.

5.1.7.47. caselessWordPos

caselessWordPos( phrase

, start

)

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase
contains no words or if phrase is not found. Word matches are made independent of case. Several
whitespace characters between words in either phrase or the receiving string are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Example 5.84. String class — caselessWordPos method

"now is the time"~caselessWordPos("the")              ->  3
"now is the time"~caselessWordPos("The")              ->  3
"now is the time"~caselessWordPos("IS THE")           ->  2
"now is the time"~caselessWordPos("is   the")         ->  2
"now is   the time"~caselessWordPos("is   time ")     ->  0
"To be or not to be"~caselessWordPos("BE")            ->  2
"To be or not to be"~caselessWordPos("BE",3)          ->  6

5.1.7.48. ceiling

ceiling

Returns the largest integer not less than the receiving string value. The receiving string is first rounded
according to standard Rexx rules, as though the operation receiving_string+0 had been carried
out. The ceiling is then calculated from that result and returned. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

Example 5.85. String class — ceiling method

2~ceiling             ->    2
'-2'~ceiling          ->    -2
12.3~ceiling          ->    13
'-12.3'~ceiling       ->    -12
'-0.1'~ceiling        ->    0
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Note

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.49. center/centre

center(

centre(

length

, pad

)

Returns a string of length length with the receiving string centered in it. The pad characters are added
as necessary to make up length. The length must be a positive whole number or zero. The default
pad character is blank. If the receiving string is longer than length, it is truncated at both ends to fit.
If an odd number of characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

Note

To avoid errors because of the difference between British and American spellings, this method
can be called either center or centre.

Example 5.86. String class — center method

abc~center(7)               ->    "  ABC  "
abc~CENTER(8,"-")           ->    "--ABC---"
"The blue sky"~centre(8)    ->    "e blue s"
"The blue sky"~centre(7)    ->    "e blue "

5.1.7.50. changeStr

changeStr( needle , newneedle

, count

)

Returns a copy of the receiver object in which newneedle replaces occurrences of needle.

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a non-
negative, whole number that gives the maximum number of occurrences to be replaced.

Here are some examples:
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Example 5.87. String class — changeStr method

101100~changeStr("1","")     --    "000"
101100~changeStr("1","X")    --    "X0XX00"
101100~changeStr("1","X",1)  --    "X01100"

-- a Quine: will print an exact copy of itself
-- (see https://en.wikipedia.org/wiki/Quine_%28computing%29)
r=";say'r=.'r'.'r~changeStr(.,'22'x,2)";say'r="'r'"'r~changeStr(.,'22'x,2)

5.1.7.51. compare

compare( string

, pad

)

Returns 0 if the argument string is identical to the receiving string. Otherwise, returns the position of
the first character that does not match. The shorter string is padded on the right with pad if necessary.
The default pad character is a blank.

Example 5.88. String class — compare method

"abc"~compare("abc")         ->    0
"abc"~compare("ak")          ->    2
"ab "~compare("ab")          ->    0
"ab "~compare("ab"," ")      ->    0
"ab "~compare("ab","x")      ->    3
"ab-- "~compare("ab","-")    ->    5

5.1.7.52. compareTo

compareTo( string ,

n , length

)

Performs a sort comparison of the target string to the string argument. If the two strings are equal,
0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger string.
The comparison is performed starting at character n for length characters in both strings. n must be
a positive whole number. If n is omitted, the comparison starts at the first character. length must be a
non-negative whole number. If omitted, the comparison will take place to the end of the target string.

Example 5.89. String class — compareTo method

"abc"~compareTo("abc")         ->    0
"b"~compareTo("a")             ->    1
"a"~compareTo("b")             ->   -1
"abc"~compareTo("aBc")         ->    1
"aBc"~compareTo("abc")         ->   -1
"000abc000"~compareTo(111abc111", 4, 3)  -> 0
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5.1.7.53. contains
 

contains( other ,

start , length

)

Returns .true if the receiving string contains the other string. It returns .false if other is the null
string or is not found within the receiving string.

By default, the search starts at the first character of the receiving string and continues to the end. You
can override this by specifying start, the point at which the search starts, and length, the bounding limit
for the search. If specified, start must be a positive whole number and length must be a non-negative
whole number.

See also
• method caselessContains,
• method startsWith,
• method endsWith, and
• method pos.

Example 5.90. String class — caselessContains method

say "-abcdef-"~contains("ef")         -- 1
say "-abcdef-"~contains("-", 2, 6)    -- 0

5.1.7.54. containsWord
 

containsWord( phrase

, start

)

Returns .true if phrase is found in the receiving string. Returns .false if phrase contains no
words or if phrase is not found. Multiple whitespace characters between words in either phrase or the
receiving string are treated as a single blank for the comparison, but, otherwise, the words must match
exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive whole number), the word at which the search is to be started.

See also
• method caselessContainsWord and
• method wordPos (containsWord returns .false exactly if wordPos would have returned "0".)

Example 5.91. String class — containsWord method

good = "Now is the time for all good men"
say good~containsWord("the")          -- .true
say good~containsWord("The")          -- .false
say good~containsWord("is the")       -- .true
say good~containsWord("is   the ")    -- .true
say good~containsWord("is time")      -- .false
say good~containsWord("time")         -- .true
say good~containsWord("time", 5)      -- .false
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5.1.7.55. copies

copies( n )

Returns n concatenated copies of the receiving string. The n must be a positive whole number or zero.

Example 5.92. String class — copies method

"abc"~copies(3)    ->    "abcabcabc"
"abc"~copies(0)    ->    ""

5.1.7.56. countStr

countStr( needle )

Returns a count of the occurrences of needle in the receiving string that do not overlap.

Here are some examples:

Example 5.93. String class — countStr method

"101101"~countStr("1")        ->    4
"J0KKK0"~CountStr("KK")       ->    1

5.1.7.57. d2c

d2c(

n

)

Returns a string, in character format, that is the ASCII representation of the receiving string, a decimal
number. If you specify n, it is the length of the final result in characters; leading blanks are added to
the returned string. The n must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

Example 5.94. String class — d2c method

"65"~d2c       ->   "A"      /* "41"x is an ASCII "A"    */
"65"~d2c(1)    ->   "A"
"65"~d2c(2)    ->   " A"
"65"~d2c(5)    ->   "    A"
"109"~d2c      ->   "m"      /* "6D"x  is an ASCII "m"   */
"-109"~d2c(1)  ->   "ô"      /* "93"x  is an ASCII "ô"   */
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"76"~d2c(2)    ->   " L"     /* "4C"x  is an ASCII " L"  */
"-180"~d2c(2)  ->   " L"

5.1.7.58. d2x

d2x(

n

)

Returns a string, in character format, that represents the receiving string, a decimal number converted
to hexadecimal. The returned string uses uppercase alphabetic characters for the values A-F and does
not include whitespace.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you specify n, it is the length of the final result in characters. After conversion the returned string is
sign-extended to the required length. If the number is too big to fit into n characters, it is truncated on
the left. If you specify n, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero, and the returned result has
no leading zeros.

Example 5.95. String class — d2x method

"9"~d2x        ->    "9"
"129"~d2x      ->    "81"
"129"~d2x(1)   ->    "1"
"129"~d2x(2)   ->    "81"
"129"~d2x(4)   ->    "0081"
"257"~d2x(2)   ->    "01"
"-127"~d2x(2)  ->    "81"
"-127"~d2x(4)  ->    "FF81"
"12"~d2x(0)    ->    ""

5.1.7.59. dataType

dataType(

type

)

Returns NUM if you specify no argument and the receiving string is a valid Rexx number that can be
added to 0 without error. It returns CHAR if the receiving string is not a valid number.

If you specify type, it returns .true if the receiving string matches the type. Otherwise, it returns
.false. If the receiving string is null, the method returns .false (except when the type is X or B, for
which dataType returns .true for a null string). The following are valid types. You need to specify
only the capitalized letter, or 9 for the 9Digits option. The language processor ignores all characters
following it.

Alphanumeric
returns .true if the receiving string contains only characters from the ranges a-z, A-Z, and 0-9.
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Binary
returns .true if the receiving string contains only the characters 0 or 1, or whitespace.
Whitespace characters can appear only between groups of 4 binary characters. It also returns
.true if string is a null string, which is a valid binary string.

Internal whole number
returns .true if the receiving string is a Rexx whole number that built-in functions will accept.
Rexx built-in functions internally work with NUMERIC DIGITS 9 for 32-bit systems or NUMERIC
DIGITS 18 for 64-bit systems.

Lowercase
returns .true if the receiving string contains only characters from the range a-z.

Mixed case
returns .true if the receiving string contains only characters from the ranges a-z and A-Z.

Number
returns .true if receiving_string~dataType returns NUM.

lOgical
returns .true if the receiving string is exactly 0 or 1. Otherwise it returns .false.

Symbol
returns .true if the receiving string is a valid symbol, that is, if SYMBOL(receiving_string) does
not return BAD. See also Section 1.10.4.4, “Symbols”. Note that both uppercase and lowercase
alphabetic characters are permitted.

Uppercase
returns .true if the receiving string contains only characters from the range A-Z.

Variable
returns .true if the receiving string could appear on the left-hand side of an assignment without
causing a SYNTAX condition.

Whole number
returns .true if the receiving string is a whole number under the current setting of NUMERIC
DIGITS.

heXadecimal
returns .true if the receiving string contains only characters from the ranges a-f, A-F, 0-9,
and whitespace characters (as long as whitespace characters appear only between pairs of
hexadecimal characters). Also returns .true if the receiving string is a null string.

9 Digits
returns .true if receiving_string~dataType("W") returns .true when NUMERIC DIGITS
is set to 9.

Example 5.96. String class — datatype method

" 12 "~dataType          ->   "NUM"
""~dataType              ->   "CHAR"
"123*"~dataType          ->   "CHAR"
"12.3"~dataType("N")     ->    1
"12.3"~dataType("W")     ->    0
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"Fred"~dataType("M")     ->    1
""~dataType("M")         ->    0
"Fred"~dataType("L")     ->    0
"?20K"~dataType("s")     ->    1
"BCd3"~dataType("X")     ->    1
"BC d3"~dataType("X")    ->    1
"1"~dataType("O")        ->    1
"11"~dataType("O")        ->   0

Note

The dataType method tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

5.1.7.60. decodeBase64

decodeBase64

Returns a new string containing the decoded version of the base64 encoded receiving string. If the
receiving string is not in base64 format, an error results.

Example 5.97. String class — decodeBase64 method

"YWJjZGVm"~decodeBase64       ->    "abcdef"

5.1.7.61. delStr

delStr(

n , length

)

Returns a copy of the receiving string after deleting the substring that begins at the nth character and
is of length characters. If n is omitted, it defaults to 1. If you omit length, or if length is greater than the
number of characters from n to the end of string, the method deletes the rest of string (including the
nth character). The length must be a positive whole number or zero. The n must be a positive whole
number. If n is greater than the length of the receiving string, the method returns the receiving string
unchanged.

Example 5.98. String class — delStr method

"abcd"~delStr(3)       ->    "ab"
"abcde"~delStr(3,2)    ->    "abe"
"abcde"~delStr(6)      ->    "abcde"
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5.1.7.62. delWord

delWord( n

, length

)

Returns a copy of the receiving string after deleting the substring that starts at the nth word and
is of length whitespace-delimited words. If you omit length, or if length is greater than the number
of words from n to the end of the receiving string, the method deletes the remaining words in the
receiving string (including the nth word). The length must be a positive whole number or zero. The
n must be a positive whole number. If n is greater than the number of words in the receiving string,
the method returns the receiving string unchanged. The string deleted includes any whitespace
characters following the final word involved but none of the whitespace characters preceding the first
word involved.

Example 5.99. String class — delWord method

"Now is the  time"~delWord(2,2)  ->  "Now time"
"Now is the time "~delWord(3)    ->  "Now is "
"Now is the  time"~delWord(5)    ->  "Now is the  time"
"Now is   the time"~delWord(3,1) ->  "Now is   time"

5.1.7.63. encodeBase64

encodeBase64

Returns a new string that is the base64 encoded version of the receiving string.

Example 5.100. String class — encodeBase64 method

"abcdef"~encodeBase64       ->    "YWJjZGVm"

5.1.7.64. endsWith
 

endsWith( other )

Returns .true if the characters of the other match the characters at the end of the target string.
Returns .false if the characters are not a match, or if other is the null string.

The endsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

See also methods startsWith, caselessEndsWith, and match.

5.1.7.65. equals

equals( other )
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Returns .true if the target string is strictly equal to the other string. Returns .false if the two strings
are not strictly equal. This is the same comparison performed by the "==" comparison method.

Example 5.101. String class — equals method

"3"~equals("3")          ->    1
"33"~equals("3")         ->    0
"4"~equals("3")          ->    0

5.1.7.66. floor

floor

Returns the largest integer not greater than the receiving string value. The receiving string value is first
rounded according to standard Rexx rules, as though the operation receiving_string+0 had been
carried out. The floor is then calculated from that result and returned. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

Example 5.102. String class — floor method

2~floor               ->    2
'-2'~floor            ->    -2
12.3~floor            ->    12
'-12.3'~floor         ->    -13

Note

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.67. format

format(

before

,

after

,

expp , expt

)

Returns a copy of the receiving string, a number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. If you specify no arguments the result of the method
is the same as the result of this operation. If you specify any options, the number is formatted as
described in the following.

The before and after options describe how many characters are to be used for the integer and decimal
parts of the result. If you omit either or both of them, the number of characters for that part is as
needed.
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If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

Example 5.103. String class — format method

"3"~format(4)            ->    "   3"
"1.73"~format(4,0)       ->    "   2"
"1.73"~format(4,3)       ->    "   1.730"
"-.76"~format(4,1)       ->    "  -0.8"
"3.03"~format(4)         ->    "   3.03"
" - 12.73"~format(,4)    ->    "-12.7300"
" - 12.73"~format        ->    "-12.73"
"0.000"~format           ->    "0"

expp and expt control the exponent part of the result, which, by default, is formatted according to the
current NUMERIC settings of DIGITS and FORM. expp sets the number of places for the exponent
part; the default is to use as many as needed (which can be zero). expt specifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If expp is 0, the number is not an exponential expression. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expt is 0, exponential notation is always used unless the exponent
would be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be 0 when a nonzero
expp is specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent
would be 0 and expp is not specified, the number is not an exponential expression.

Example 5.104. String class — format method

"12345.73"~format(, ,2,2)   ->    "1.234573E+04"
"12345.73"~format(,3, ,0)   ->    "1.235E+4"
"1.234573"~format(,3, ,0)   ->    "1.235"
"12345.73"~format(, ,3,6)   ->    "12345.73"
"1234567e5"~format(,3,0)    ->    "123456700000.000"

5.1.7.68. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollections such as Table, Relation,
Set, Bag, or Directory. The String hashCode method will return the same hash value for all pairs
of string instances for which the == operator is .true.

See also Object method hashCode for details.

5.1.7.69. insert
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insert( new ,

n

,

length , pad

)

Returns a copy of the receiver string with the string new, padded or truncated to length length, inserted
after the nth character. The default value for n is 0, which means insertion at the beginning of the
string. If specified, n and length must be positive whole numbers or zero. If n is greater than the length
of the receiving string, the string new is padded at the beginning. The default value for length is the
length of new. If length is less than the length of the string new, then insert truncates new to length
length. The default pad character is a blank.

Example 5.105. String class — insert method

"abc"~insert("123")            ->    "123abc"
"abcdef"~insert(" ",3)         ->    "abc def"
"abc"~insert("123",5,6)        ->    "abc  123   "
"abc"~insert("123",5,6,"+")    ->    "abc++123+++"
"abc"~insert("123", ,5,"-")    ->    "123--abc"

5.1.7.70. lastPos

lastPos( needle ,

start , length

)

Returns the position of the last occurrence of a string, needle, in the receiving string. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
string and scans backward to the beginning of the string. You can override this by specifying start, the
point at which the backward scan starts and length, the range of characters to scan. The start must
be a positive whole number and defaults to receiving_string~length if larger than that value or
omitted. The length must be a non-negative whole number and defaults to start.

See also methods pos and caselessPos.

Example 5.106. String class — lastPos method

"abc def ghi"~lastPos(" ")      ->    8
"abcdefghi"~lastPos(" ")        ->    0
"efgxyz"~lastPos("xy")          ->    4
"abc def ghi"~lastPos(" ",7)    ->    4
"abc def ghi"~lastPos(" ",7,3)  ->    0

5.1.7.71. left

left( length

, pad

)

Returns a string of length length, containing the leftmost length characters of the receiving string. The
string returned is padded with pad characters (or truncated) on the right as needed. The default pad
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character is a blank. The length must be a positive whole number or zero. The left method is exactly
equivalent to substr(1, length, pad).

Example 5.107. String class — left method

"abc d"~left(8)        ->    "abc d   "
"abc d"~left(8,".")    ->    "abc d..."
"abc  def"~left(7)     ->    "abc  de"

5.1.7.72. length

length

Returns the length of the receiving string.

Example 5.108. String class — length method

"abcdefgh"~length     ->    8
"abc defg"~length     ->    8
""~length             ->    0

5.1.7.73. lower

lower(

n , length

)

Returns a new string with the characters of the target string beginning with character n for length
characters converted to lowercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a non-
negative whole number. If length is not specified, the default is to convert the remainder of the string.

Example 5.109. String class — lower method

"Albert Einstein"~lower      ->    "albert einstein"
"ABCDEF"~lower(4)            ->    "ABCdef"
"ABCDEF"~lower(3,2)          ->    "ABcdEF"

5.1.7.74. makeArray

makeArray(

separator

)

This method returns an Array of the receiving string's strings substrings that were separated by the
separator string. separator may be any string, including the null string. If the null string is used, an
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Array containing each character of the string is returned. If the target string starts with the separator,
the first Array item will be a null string. If the string ends with a separator, no extra null string item will
be added. If separator isn't specified, any line-end indicator is honored.

Example 5.110. String class — makeArray method

string = "hello".endofline"world".endofline"this is an array."
array = string~makeArray
say "the second line is:" array[2]  /*  world  */

string = "hello*world*this is an array."
array = string~makeArray("*")
say "the third line is:" array[3]  /*  this is an array.  */

string = "hello*world*this is an array.*"
array = string~makeArray("*")     /* contains 3 items */

5.1.7.75. makeString

makeString

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns an equivalent string object. If the receiver is a string
object (not an instance of a subclass of the String class), this method returns the receiver object. See
Section 4.2.11, “Required String Values”.

5.1.7.76. match

match( start , other ,

n , length

)

Returns .true if the characters of the other match the characters of the target string beginning
at position start. Returns .false if the characters are not a match. start must be a positive whole
number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The match method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

Example 5.111. String class — match method

"Saturday"~match(6, "day")           ->    1
"Saturday"~match(6, "DAY")           ->    0
"Saturday"~match(6, "Sunday", 4, 3)  ->    1
"Saturday"~match(6, "daytime", 1, 3) ->    1
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5.1.7.77. matchChar

matchChar( n , chars )

Returns .true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The argument n
must be a positive whole number.

Example 5.112. String class — matchChar method

"a+b"~matchChar(2, "+-*/")           ->    1
"a+b"~matchChar(1, "+-*/")           ->    0
"Friday"~matchChar(3, "aeiou")       ->    1
"FRIDAY"~matchChar(3, "aeiou")       ->    0

5.1.7.78. max

max( number

,

)

Returns the largest number from among the receiver and any arguments. The number that max
returns is formatted according to the current NUMERIC settings. You can specify any number of
numbers.

Example 5.113. String class — max method

12~max(6,7,9)                                                ->    12
17.3~max(19,17.03)                                           ->    19
"-7"~max("-3","-4.3")                                        ->    -3
1~max(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)   ->    21

5.1.7.79. min

min( number

,

)

Returns the smallest number from among the receiver and any arguments. The number that min
returns is formatted according to the current NUMERIC settings. You can specify any number of
numbers.

Example 5.114. String class — min method

12~min(6,7,9)                                                ->     6
17.3~min(19,17.03)                                           ->    17.03
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"-7"~MIN("-3","-4.3")                                        ->    -7
21~min(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1)   ->     1

5.1.7.80. modulo

modulo( n )

Returns the remainder after dividing the receiving string by n. The receiving string must be a whole
number and n must be a positive whole number. The returned remainder is always in the range 0
through n minus one.

If both the receiving string and n are non-negative whole numbers, the result is the same as the result
of the remainder (//) operation.

Example 5.115. String class — modulo method 

say 10~modulo(3)    -- 1
say (-10)~modulo(3) -- 2

5.1.7.81. overlay

overlay( new ,

n

,

length , pad

)

Returns a copy of the receiving string, which, starting at the nth character, is overlaid with the string
new, padded or truncated to length length. The overlay can extend beyond the end of the receiving
string. If you specify length, it must be a positive whole number or zero. The default value for length
is the length of new. If n is greater than the length of the receiving string, padding is added before the
new string. The default pad character is a blank, and the default value for n is 1. If you specify n, it
must be a positive whole number.

Example 5.116. String class — overlay method

"abcdef"~overlay(" ",3)         ->    "ab def"
"abcdef"~overlay(".",3,2)       ->    "ab. ef"
"abcd"~overlay("qq")            ->    "qqcd"
"abcd"~overlay("qq",4)          ->    "abcqq"
"abc"~overlay("123",5,6,"+")    ->    "abc+123+++"

5.1.7.82. pos

pos( needle ,

start , length

)

Returns the position in the receiving string of another string, needle. It returns 0 if needle is the null
string or is not found or if start is greater than the length of the receiving string. By default, the search
starts at the first character of the receiving string (that is, the value of start is 1), and continues to the
end of the string. You can override this by specifying start, the point at which the search starts, and
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length, the bounding limit for the search. If specified, start must be a positive whole number and length
must be a non-negative whole number.

See also methods lastPos and caselessPos.

Example 5.117. String class — pos method

"Saturday"~pos("day")       ->    6
"abc def ghi"~pos("x")      ->    0
"abc def ghi"~pos(" ")      ->    4
"abc def ghi"~pos(" ",5)    ->    8
"abc def ghi"~pos(" ",5,3)  ->    0

5.1.7.83. replaceAt

replaceAt( new , n ,

length , pad

)

Returns a copy of the receiving string, with the characters from the nth character for length characters
replaced with new. The replacement position and length can extend beyond the end of the receiving
string. The starting position, n, is required and must be a positive whole number. The length argument
is optional and must be a positive whole number or zero. If omitted, length defaults to the length of
new.

If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank.

Example 5.118. String class — replaceAt method

"abcdef"~replaceAt(" ",3, 1)      ->    "ab def"
"abcdef"~replaceAt(" ",3, 3)      ->    "ab f"
"abc"~replaceAt("123",5,6,"+")    ->    "abc+123"

5.1.7.84. reverse

reverse

Returns a copy of the receiving string reversed.

Example 5.119. String class — reverse method

"ABc."~reverse    ->    ".cBA"
"XYZ "~reverse    ->    " ZYX"

5.1.7.85. right
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right( length

, pad

)

Returns a string of length length containing the rightmost length characters of the receiving string. The
string returned is padded with pad characters, or truncated, on the left as needed. The default pad
character is a blank. The length must be a positive whole number or zero.

Example 5.120. String class — right method

"abc  d"~right(8)     ->    "  abc  d"
"abc def"~right(5)    ->    "c def"
"12"~right(5,"0")     ->    "00012"

5.1.7.86. round

round

Returns the nearest integer to the receiving string value. Half is always rounded away from zero.
The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. The rounded value is then calculated from that result
and returned. The result is never in exponential form. If there are no nonzero digits in the result, any
minus sign is removed.

Example 5.121. String class — round method

2~round               ->    2
'-2'~round            ->    -2
2.4~round             ->    2
'-2.4'~round          ->    -2
2.5~round             ->    3
'-2.5'~round          ->    -3
'-0.1'~round          ->    0

5.1.7.87. sign

sign

Returns a number that indicates the sign of the receiving string, which is a number. The receiving
string is first rounded according to standard Rexx rules, as though the operation receiving_string
+0 had been carried out. It returns -1 if the receiving string is less than 0, 0 if it is 0, and 1 if it is
greater than 0.

Example 5.122. String class — sign method

"12.3"~sign       ->     1
" -0.307"~sign    ->    -1
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0.0~sign          ->     0

5.1.7.88. space

space(

n , pad

)

Returns a copy of receiving string, with n pad characters between each whitespace-delimited word.
If you specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are
removed. Leading and trailing whitespace characters are always removed. The default for n is 1, and
the default pad character is a blank.

Example 5.123. String class — space method

"abc  def  "~space           ->    "abc def"
"  abc def"~space(3)         ->    "abc   def"
"abc  def  "~space(1)        ->    "abc def"
"abc  def  "~space(0)        ->    "abcdef"
"abc  def  "~space(2,"+")    ->    "abc++def"

5.1.7.89. startsWith
 

startsWith( other )

Returns .true if the characters of the other match the characters at the start of the target string.
Returns .false if the characters are not a match, or if other is the null string.

The startsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

See also methods abbrev, caselessStartsWith, endsWith, and match.

5.1.7.90. strip

strip(

option , chars

)

Returns a copy of the receiving string with leading characters, trailing characters, or both, removed,
based on the option you specify. The following are valid options. (You need to specify only the first
capitalized letter; all characters following it are ignored.)

Both
Removes both leading and trailing characters. This is the default.

Leading
Removes leading characters.

Trailing
Removes trailing characters.
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The chars specifies the set of characters to be removed, and the default is to remove all whitespace
characters (spaces and horizontal tabs). If chars is a null string, then no characters are removed.
Otherwise, any occurrences of the characters in chars will be removed.

Example 5.124. String class — strip method

"  ab c  "~strip         ->    "ab c"
"  ab c  "~strip("L")    ->    "ab c  "
"  ab c  "~strip("t")    ->    "  ab c"
"12.7000"~strip(,0)      ->    "12.7"
"0012.700"~strip(,0)     ->    "12.7"
"0012.000"~strip(,".0")  ->    "12"

5.1.7.91. subChar

subChar( n )

Returns the n'th character of the receiving string. n must be a positive whole number. If n is greater
than the length of the receiving string then a zero-length string is returned.

See also methods [] and substr.

5.1.7.92. substr

substr( n ,

length , pad

)

Returns the substring of the receiving string that begins at the nth character and is of length
length, padded with pad if necessary. The n must be a positive whole number. If n is greater than
receiving_string~length, only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.

See also methods [], subChar, left, and right.

In some situations the positional (numeric) patterns of Parsing templates are more convenient for
selecting substrings, in particular if you need to extract more than one substring from a string.

Example 5.125. String class — substr method

"abc"~substr(2)          ->    "bc"
"abc"~substr(2,4)        ->    "bc  "
"abc"~substr(2,6,".")    ->    "bc...."

5.1.7.93. subWord

subWord( n

, length

)
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Returns the substring of the receiving string that starts at the nth word and is up to length whitespace-
delimited words. The n must be a positive whole number. If you omit length, it defaults to the number
of remaining words in the receiving string. The returned string never has leading or trailing whitespace,
but includes all whitespace characters between the selected words.

Example 5.126. String class — subWord method

"Now is the  time"~subWord(2,2)    ->    "is the"
"Now is the  time"~subWord(3)      ->    "the  time"
"Now is the  time"~subWord(5)      ->    ""

5.1.7.94. subWords

subWords(

n , length

)

Returns an array containing all words within the substring of the receiving string that starts at the nth
word and is up to length whitespace-delimited words. The n must be a positive whole number. If you
omit n, it defaults to 1. If you omit length, it defaults to the number of remaining words in the receiving
string. The strings in the returned array never have leading or trailing whitespace.

Example 5.127. String class — subWords method

"Now is the  time"~subWords         ->    .array~of("Now", "is", "the", "time")
"Now is the  time"~subWords(2,2)    ->    .array~of("is", "the")
"Now is the  time"~subWords(3)      ->    .array~of("the", "time")
"Now is the  time"~subWords(5)      ->    .array~new(0)

The subWords method is useful for iterating over the individual words in a string.

Example 5.128. String class — subWords method

    do word over source~subWords    -- extract all of the words to loop over
       say word
    end

5.1.7.95. translate

translate(

tableo

,

tablei

,

pad

,

n

, length

)
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Returns a copy of the receiving string with each character translated to another character or
unchanged. You can also use this method to reorder the characters in the output table. (See last
example)

The output table is tableo and the input translation table is tablei. translate searches tablei for each
character in the receiving string. If the character is found, the corresponding character in tableo is
used in the result string. If there are duplicates in tablei, the first (leftmost) occurrence is used. If the
character is not found, the original character in the receiving string is used. The result string is always
of the same length as the receiving string.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving
string is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the
entire string is translated to pad characters. tablei defaults to XRANGE("00"x,"FF"x), and tableo
defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

n is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If length is omitted, the remainder of the string from the
starting position to the end is used.

Example 5.129. String class — translate method

"abcdef"~translate                         ->    "ABCDEF"
"abcdef"~translate(, , , 3, 2)             ->    "abCDef"
"abcdef"~translate("12", "ec")             ->    "ab2d1f"
"abcdef"~translate("12", "abcd", ".")      ->    "12..ef"
"APQRV"~translate(, "PR")                  ->    "A Q V"
"APQRV"~translate(XRANGE("00"X, "Q"))      ->    "APQ  "
"4123"~translate("abcd", "1234", , 2, 2)   ->    "4ab3"
"4123"~translate("abcd", "1234")           ->    "dabc"

Note

The last example shows how to use the translate method to reorder the characters in a string.
In the example, the last character of any 4-character string specified as the first argument would
be moved to the beginning of the string.

5.1.7.96. trunc

trunc(

n

)

Returns the integer part the receiving string, which is a number, and n decimal places. The default n
is 0 and returns an integer with no decimal point. If you specify n, it must be a positive whole number
or zero. The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. This number is then truncated to n decimal places
or trailing zeros are added if needed to reach the specified length. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.
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Example 5.130. String class — trunc method

12.3~trunc            ->    12
127.09782~trunc(3)    ->    127.097
127.1~trunc(3)        ->    127.100
127~trunc(2)          ->    127.00

Note

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.97. upper

upper(

n , length

)

Returns a new string with the characters of the target string beginning with character n for length
characters converted to uppercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a non-
negative whole number. If length is not specified, the default is to convert the remainder of the string.

Example 5.131. String class — upper method

"Albert Einstein"~upper      ->    "ALBERT EINSTEIN"
"abcdef"~upper(4)            ->    "abcDEF"
"abcdef"~upper(3,2)          ->    "abCDef"

5.1.7.98. verify

verify( reference ,

"N"

option

,

start , length

)

Returns a number that, by default, indicates whether the receiving string is composed only of
characters from reference. It returns 0 if all characters in the receiving string are in reference or
returns the position of the first character in the receiving string not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify only the first
capitalized and highlighted letter; all characters following the first character are ignored)

If you specify Match, the method returns the position of the first character in the receiving string that is
in reference, or returns 0 if none of the characters are found.

210



String Class

The default for start is 1. Thus, the search starts at the first character of the receiving string. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the string from start to the end of the string. Thus, the search
proceeds to the end of the receiving string. You can override this by specifying a different length, which
must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly, if
start is greater than receiving_string~length, the method returns 0. If reference is null, the
method returns 0 if you specify Match. Otherwise, the method returns the start value.

Example 5.132. String class — verify method

"123"~verify("1234567890")             ->    0
"1Z3"~verify("1234567890")             ->    2
"AB4T"~verify("1234567890")            ->    1
"AB4T"~verify("1234567890","M")        ->    3
"AB4T"~verify("1234567890","N")        ->    1
"1P3Q4"~verify("1234567890", ,3)       ->    4
"123"~verify("",N,2)                   ->    2
"ABCDE"~verify("", ,3)                 ->    3
"AB3CD5"~verify("1234567890","M",4)    ->    6
"ABCDEF"~verify("ABC","N",2,3)         ->    4
"ABCDEF"~verify("ADEF","M",2,3)        ->    4

5.1.7.99. word

word( n )

Returns the nth whitespace-delimited word in the receiving string or the null string if the receiving
string has fewer than n words. The n must be a positive whole number. This method is exactly
equivalent to subWord(n, 1).

Example 5.133. String class — word method

"Now is the time"~word(3)    ->    "the"
"Now is the time"~word(5)    ->    ""

5.1.7.100. wordIndex

wordIndex( n )

Returns the position of the first character in the nth whitespace-delimited word in the receiving string. It
returns 0 if the receiving string has fewer than n words. The n must be a positive whole number.

Example 5.134. String class — wordIndex method

"Now is the time"~wordIndex(3)    ->    8
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"Now is the time"~wordIndex(6)    ->    0

5.1.7.101. wordLength

wordLength( n )

Returns the length of the nth whitespace-delimited word in the receiving string or 0 if the receiving
string has fewer than n words. The n must be a positive whole number.

Example 5.135. String class — wordLength method

"Now is the time"~wordLength(2)       ->    2
"Now comes the time"~wordLength(2)    ->    5
"Now is the time"~wordLength(6)       ->    0

5.1.7.102. wordPos

wordPos( phrase

, start

)

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase
contains no words or if phrase is not found. Several whitespace characters between words in either
phrase or the receiving string are treated as a single blank for the comparison, but, otherwise, the
words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Example 5.136. String class — wordPos method

"now is the time"~wordPos("the")              ->  3
"now is the time"~wordPos("The")              ->  0
"now is the time"~wordPos("is the")           ->  2
"now is the time"~wordPos("is   the")         ->  2
"now is   the time"~wordPos("is   time ")     ->  0
"To be or not to be"~wordPos("be")            ->  2
"To be or not to be"~wordPos("be",3)          ->  6

5.1.7.103. words

words

Returns the number of whitespace-delimited words in the receiving string.
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Example 5.137. String class — words method

"Now is the time"~words      ->    4
" "~words                    ->    0

5.1.7.104. x2b

x2b

Returns a string, in character format, that represents the receiving string, which is a string of
hexadecimal characters converted to binary. The receiving string can be of any length. Each
hexadecimal character is converted to a string of 4 binary digits. The receiving string can optionally
include whitespace characters (at byte boundaries only, not leading or trailing) to improve readability;
they are ignored.

The returned string has a length that is a multiple of four, and does not include any whitespace.

If the receiving string is null, the method returns a null string.

Example 5.138. String class — x2b method

"C3"~x2b        ->  "11000011"
"7"~x2b         ->  "0111"
"1 C1"~x2b      ->  "000111000001"

You can combine x2b with the methods d2x and c2x to convert numbers or character strings into
binary form.

Example 5.139. String class — x2b method with c2x

"C3"x~c2x~x2b  ->  "11000011"
"129"~d2x~x2b  ->  "10000001"
"12"~d2x~x2b   ->  "1100"

5.1.7.105. x2c

x2c

Returns a string, in character format, that represents the receiving string, which is a hexadecimal
string converted to character. The returned string is half as many bytes as the receiving string. The
receiving string can be any length. If necessary, it is padded with a leading 0 to make an even number
of hexadecimal digits.

You can optionally include whitespace in the receiving string (at byte boundaries only, not leading or
trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns a null string.
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Example 5.140. String class — x2c method

"4865 6c6c 6f"~x2c ->  "Hello"     /*  ASCII             */
"3732 73"~x2c      ->  "72s"       /*  ASCII             */

5.1.7.106. x2d

x2d(

n

)

Returns the decimal representation of the receiving string, which is a string of hexadecimal characters.
If the result cannot be expressed as a whole number, an error results. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS.

You can optionally include whitespace characters in the receiving string (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns 0.

If you do not specify n, the receiving string is processed as an unsigned binary number.

Example 5.141. String class — x2d method

"0E"~x2d        ->    14
"81"~x2d        ->    129
"F81"~x2d       ->    3969
"FF81"~x2d      ->    65409
"46 30"X~x2d    ->    240          /*  ASCII   */
"66 30"X~x2d    ->    240          /*  ASCII   */

If you specify n, the receiving string is taken as a signed number expressed in n hexadecimal digits. If
the leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negative. If n is 0, the method returns 0.

If necessary, the receiving string is padded on the left with 0 characters (note, not "sign-extended"), or
truncated on the left to n characters.

Example 5.142. String class — x2d method

"81"~x2d(2)      ->    -127
"81"~x2d(4)      ->    129
"F081"~x2d(4)    ->    -3967
"F081"~x2d(3)    ->    129
"F081"~x2d(2)    ->    -127
"F081"~x2d(1)    ->    1
"0031"~x2d(0)    ->    0

5.2. Stream Classes
This section describes the Rexx classes which implement Rexx data streams: InputStream,
OutputStream, InputOutputStream, and Stream class.
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5.2.1. InputOutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.8. InputOutputStream Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ OutputStream (Mixin Class)

Methods inherited from the OutputStream class
arrayOut close open
charIn lineIn position
charOut (Abstract Method) lineOut (Abstract Method)
chars lines

+ InputStream (Mixin Class)

Methods inherited from the InputStream class
arrayIn close open
charIn (Abstract Method) lineIn (Abstract Method) position
charOut lineOut
chars (Abstract Method) lines (Abstract Method)

InputOutputStream (Mixin Class)

(no class or instance methods)

5.2.2. InputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.9. InputStream Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

InputStream (Mixin Class)

arrayIn close open
charIn (Abstract Method) lineIn (Abstract Method) position
charOut lineOut
chars (Abstract Method) lines (Abstract Method)

5.2.2.1. arrayIn

This method is a default arrayIn implementation using lineIn to fill the array.
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5.2.2.2. charIn (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.3. charOut

This is an unsupported operation for InputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.4. chars (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.5. close

This method is a NOP by default.

5.2.2.6. lineIn (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.7. lineOut

This is an unsupported operation for InputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.8. lines (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.9. open

This method is a NOP method.

5.2.2.10. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.3. OutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.
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Table 5.10. OutputStream Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

OutputStream (Mixin Class)

arrayOut close open
charIn lineIn position
charOut (Abstract Method) lineOut (Abstract Method)
chars lines

5.2.3.1. arrayOut

This method is a default arrayOut implementation that writes all lines to the stream using lineOut.

5.2.3.2. charIn

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.3. charOut (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.3.4. chars

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.5. close

This method is a NOP by default.

5.2.3.6. lineIn

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.7. lineOut (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.3.8. lines
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This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.9. open

This method is a NOP by default.

5.2.3.10. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.4. Stream Class

A stream object allows external communication from Rexx. (See Chapter 14, Input and Output
Streams for a discussion of Rexx input and output.)

The Stream class is a subclass of the InputOutputStream class.

Table 5.11. Stream Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ OutputStream (Mixin Class)

Methods inherited from the OutputStream class
arrayOut close open
charIn lineIn position
charOut (Abstract Method) lineOut (Abstract Method)
chars lines

+ InputStream (Mixin Class)

Methods inherited from the InputStream class
arrayIn close open
charIn (Abstract Method) lineIn (Abstract Method) position
charOut lineOut
chars (Abstract Method) lines (Abstract Method)

+ InputOutputStream (Mixin Class)

Methods inherited from the InputOutputStream class
(no class or instance methods)

Stream (Mixin Class)

new (Inherited Class Method)

arrayIn flush qualify
arrayOut init query
charIn lineIn say
charOut lineOut seek
chars lines state
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close makeArray string
command open supplier
description position uninit

5.2.4.1. new (Inherited Class Method)

new( name )

Initializes a stream object for stream name, but does not open the stream. Returns the new stream
object.

name can either be a string or a File object.

5.2.4.2. arrayIn

arrayIn(

"Lines"

"Chars"

)

Returns an Array that contains the data of the receiving Stream, starting from the current read
position. If LINES is specified, the Array items returned are the Stream's lines, that were separated
with any line-end indicator. LINES is the default. If CHARS is specified, the Array items returned are the
Stream's characters.

If you have used the charIn method, the first line can be a partial line.

5.2.4.3. arrayOut

arrayOut( array

, "Lines"

"Chars"

)

Writes the data in array array to the stream. If LINES is specified, each element of the array is written
using lineOut. If CHARS is specified, each element is written using charOut. The default method is
LINES.

5.2.4.4. charIn

charIn(

start , length

)

Returns a string of up to length characters from the input stream. The stream advances the read
pointer by the number of characters read. If you omit length, it defaults to 1. If you specify start, this
positions the read pointer before reading. The start value must be a positive whole number within the
bounds of the stream. If the value is not a positive whole number, a syntax condition is raised. When
the value is past the end of the stream, the empty string is returned and the NOTREADY condition is
raised. If the stream is not already open, the stream attempts to open for reading and writing. If that
fails, the stream opens for input only.

219



Stream Class

5.2.4.5. charOut

charOut(

string , start

)

Returns the count of characters remaining after trying to write string to the output stream. The stream
also advances the write pointer.

The string can be the null string. In this case, charOut writes no characters to the stream and returns
0. If you omit string, charOut writes no characters to the stream and returns 0. The stream is also
closed.

If you specify start, this positions the write pointer before writing. If the stream is not already open, the
stream attempts to open for reading and writing. If that fails, the stream opens for for output only.

5.2.4.6. chars

chars

Returns the total number of characters remaining in the input stream. The count includes any line
separator characters, if these are defined for the stream. For persistent streams the count is the
count of characters from the current read position. (See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output.) The total number of characters remaining cannot be determined
for some streams (for example, STDIN or Windows/Unix-like system devices). For these streams, the
chars method returns 1 to indicate that data is present, or 0 if no data is present.

5.2.4.7. close

close

Closes the stream. close returns READY: if closing the stream is successful, or an appropriate error
message. If you have tried to close an unopened file, then the close method returns a null string ("").

5.2.4.8. command

command( stream_command )

Returns a string after performing the specified stream_command. The returned string depends on the
stream_command performed and can be the null string. Commands are available to:
• Open a stream for reading, writing, or both

• Close a stream at the end of an operation

• Move the line read or write position within a persistent stream (for example, a file)

• Get information about a stream

If the method is unsuccessful, it returns an error message string in the same form that the description
method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO that is set whenever one of the file system primitives returns with a -1.
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5.2.4.8.1. Command Strings
The argument stream_command can be any expression that evaluates to one of the following
command strings:

Open

BOth

Write

APpend

REPlace

REAd

OPTIONS - fragment

Close

Flush

Seek

Position
=

<

+

-

offset

Read

Write

Char

Line

Query Datetime

Exists

Handle

Seek

Position
Read

Write

Char

Line

Sys

SIze

STreamtype

Timestamp

)

OPTIONS:

SHARED

SHARERead

SHAREWrite

NOBuffer BInary

REClength length

OPEN
Opens the stream object and returns READY:. (If unsuccessful, the previous information about
return codes applies.) The default for OPEN is to open the stream for both reading and writing
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data, for example: 'OPEN BOTH'. To specify that the stream be only opened for input or output,
add READ or WRITE, to the command string.

The following is a description of the options for OPEN:

READ
Opens the stream only for reading.

WRITE
Opens the stream only for writing.

BOTH
Opens the stream for both reading and writing. (This is the default.) The stream maintains
separate read and write pointers.

APPEND
Positions the write pointer at the end of the stream. (This is the default.) The write pointer
cannot be moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance.
Use it only when data integrity is a concern, or to force interleaved output to a stream to
appear in the exact order in which it was written.

BINARY
Opens the stream in binary mode. This means that line-end characters are ignored; they
are treated like any other byte of data. This is intended to process binary data using the line
operations.

Note

Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option
in this case raises an error condition.
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RECLENGTH length
Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Example 5.143. Stream command — OPEN option

stream~command("open")
stream~command("open write")
stream~command("open read")
stream~command("open read shared")

CLOSE
closes the stream object. The command method with the CLOSE option returns READY: if the
stream is successfully closed or an appropriate error message otherwise. If an attempt to close an
unopened file occurs, then the command method with the CLOSE option returns a null string ("").

FLUSH
forces any data currently buffered for writing to be written to this stream.

SEEK offset
sets the read or write position to a given number (offset) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

Note

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this command, you must first open the stream (with the OPEN stream command described
previously or implicitly with an input or output operation). One of the following characters can
precede the offset number.

=
explicitly specifies the offset from the beginning of the stream. This is the default if you supply
no prefix. For example, an offset of 1 with the LINE option means the beginning of the stream.

<
specifies offset from the end of the stream.

+
specifies offset forward from the current read or write position.

-
specifies offset backward from the current read or write position.
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The command method with the SEEK option returns the new position in the stream if the read or
write position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ
specifies that this command sets the read position.

WRITE
specifies that this command sets the write position.

CHAR
specifies the positioning in terms of characters. This is the default.

LINE
specifies the positioning in terms of lines. For non-binary streams, this is potentially an
operation that can take a long time to complete because, in most cases, the file must be
scanned from the top to count the line-end characters. However, for binary streams with a
specified record length, the new resulting line number is simply multiplied by the record length
before character positioning. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Note

If you do line positioning in a file open only for writing, you receive an error message.

Example 5.144. Stream command — SEEK option

stream~command("seek =2 read")
stream~command("seek +15 read")
stream~command("seek -7 write line")
fromend  = 125
stream~command("seek <"fromend "read")

POSITION
is a synonym for SEEK.

QUERY
Used with these QUERY stream_commands, the command method returns specific information
about a stream. Except for QUERY HANDLE and QUERY SEEK/POSITION, the stream returns
the query information even if the stream is not open. The stream returns the null string for
nonexistent streams.

QUERY DATETIME
Returns the date and time stamps of a stream in US format. For example: 

Example 5.145. Stream command — QUERY DATETIME option

stream~command("query datetime")
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A sample output might be:

11-12-15 03:29:12

QUERY EXISTS
Returns the full path specification of the stream object, if it exists, or a null string. For example:

Example 5.146. Stream command — QUERY EXISTS option

stream~command("query exists")

A sample output might be:

c:\data\file.txt

QUERY HANDLE
Returns the handle associated with the open stream.

Example 5.147. Stream command — QUERY HANDLE option

stream~command("query handle")

A sample output might be: 3

QUERY POSITION
Returns the current read or write position for the stream, as qualified by the following options:
READ

Returns the current read position.

WRITE
Returns the current write position.

Note

If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR
Returns the position in terms of characters. This is the default.

LINE
Returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
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count the line-end characters. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Example 5.148. Stream command — QUERY POSITION WRITE option

stream~command("query position write")

A sample output might be:

247

SYS
Returns the operating system stream position in terms of characters.

QUERY SEEK
Is a synonym for QUERY POSITION.

QUERY SIZE
Returns the size, in bytes, of a persistent stream.

Example 5.149. Stream command — QUERY SIZE option

stream~command("query size")

A sample output might be:

1305

QUERY STREAMTYPE
Returns a string indicating whether the stream is PERSISTENT, TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP
Returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting date and time because it provides the full 4-digit year

Example 5.150. Stream command — QUERY TIMESTAMP option

stream~command("query timestamp")

A sample output might be:

2015-11-12 03:29:12

5.2.4.9. description

description
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Returns a descriptive string associated with the current state of the stream. The description
method is identical to the state method except that the string that description returns is followed by
a colon and, if available, additional information about ERROR or NOTREADY states.

5.2.4.10. flush

flush

Returns READY:. It forces the stream to write any buffered data to the output stream.

5.2.4.11. init

init( name )

Initializes a stream object defined by name.

name can either be a string or a File object.

5.2.4.12. lineIn

lineIn(

line , count

)

Returns the next count lines. The count must be 0 or 1. The stream advances the read pointer. If
you omit count, it defaults to 1. A line number may be given to set the read position to the start of a
specified line. This line number must be positive and within the bounds of the stream, and must not be
specified for a transient stream. A value of 1 for line refers to the first line in the stream. If the stream is
not already open, then the interpreter tries to open the stream for reading and writing. If that fails, the
stream is opened for input only.

5.2.4.13. lineOut

lineOut(

string , line

)

Returns 0 if successful in writing string to the output stream, or 1 if an error occurs while writing the
line. The stream advances the write pointer. If you specify line, this positions the write pointer before
writing. If you omit both string and line, the stream is closed. If the stream is not already open, the
stream attempts to open for reading and writing. If that fails, the stream is opened for output only.

5.2.4.14. lines

lines(

"Count"

"Normal"

)

Returns the number of lines that are available for input if no option or option Count is specified. If the
stream has already been read with charIn this can include an initial partial line. If no data remains,
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lines returns 0. For persistent streams the count starts at the current read position. As such, lines
reports whether a read action of charIn or lineIn will succeed. Option Count is the default.

If option Normal is specified, lines returns .true if at least one line remains in the stream, or
.false if no lines remain.

Note

lines("Count") determines the actual number of lines by scanning the stream starting at
the current position and counting the lines. For large streams, this can be a time-consuming
operation. Therefore, avoid the use of lines() or lines("Count") in the condition of a loop
reading a stream. It is recommended that you use lines("Normal") or the chars method
instead.

For an explanation of input and output, see Chapter 14, Input and Output Streams.

For a Queue instance, the inherited method lines returns the actual number of lines in the queue.

5.2.4.15. makeArray

makeArray(

"Line"

"Char"

)

Returns an Array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the charIn method, the first line can be a partial line.

5.2.4.16. open

open(

BOth

Write

APpend

REPlace

REAd

OPTIONS - fragment )

OPTIONS:

SHARED

SHARERead

SHAREWrite

NOBuffer BInary

REClength length

Opens the stream and returns READY:. If the method is unsuccessful, it returns an error message
string in the same form that the description method uses.
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For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO, which is set whenever one of the file system primitives returns with a -1.

By default, open opens the stream for both reading and writing data, for example: 'open BOTH'. To
specify that the stream be only opened for input or output, specify READ or WRITE.

The options for the open method are:

READ
Opens the stream for input only.

WRITE
Opens the stream for output only.

BOTH
Opens the stream for both input and output. (This is the default.) The stream maintains separate
read and write pointers.

APPEND
Positions the write pointer at the end of the stream. (This is the default.) The write pointer cannot
be moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use
it only when data integrity is a concern, or to force interleaved output to a stream to appear in the
exact order in which it was written.

BINARY
Opens the stream in binary mode. This means that line-end characters are ignored; they are
treated like any other byte of data. This is for processing binary record data using the line
operations.
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Note

Specifying the BINARY option for a stream that does not exist but is opened for writing also
requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in this
case raises an error condition.

RECLENGTH length
Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Example 5.151. Stream object — OPEN method

stream~open
stream~open("write")
stream~open("read")

5.2.4.17. position

position(

=

<

+

-

offset

Read

Write

Char

Line

)

position is a synonym for seek.

5.2.4.18. qualify

qualify

Returns the stream's fully qualified name. The stream need not be open.

5.2.4.19. query
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query( Datetime

Exists

Handle

Seek

Position
Read

Write

Char

Line

Sys

SIze

STreamtype

Timestamp

)

Used with these options, query returns specific information about a stream. Except for HANDLE and
SEEK/POSITION, the stream returns the query information even if the stream is not open. A null string
is returned for nonexistent streams.

DATETIME
returns the date and time stamps of a persistent stream in US format.

Example 5.152. Stream object — QUERY method

stream~query("datetime")

A sample output might be:

11-12-15 03:29:12

EXISTS
returns the full path specification of the stream, if it exists, or a null string. For example:

Example 5.153. Stream object — QUERY method

stream~query("exists")

A sample output might be:

c:\data\file.txt

HANDLE
returns the handle associated with the open stream.
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Example 5.154. Stream object — QUERY method

stream~query("handle")

A sample output might be:

3

POSITION
returns the current read or write position for the stream, as qualified by the following options:
READ

returns the current read position.

WRITE
returns the current write position.

Note

If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the specified position.

CHAR
returns the position in terms of characters. This is the default.

LINE
returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Example 5.155. Stream object — QUERY method

stream~query("position write")

A sample output might be:

247

SYS
returns the operating system stream position in terms of characters.

SIZE
returns the size, in bytes, of a persistent stream.
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Example 5.156. Stream object — QUERY method

stream~query("size")

A sample output might be:

1305

STREAMTYPE
returns a string indicating whether the stream object is PERSISTENT, TRANSIENT, or UNKNOWN.

TIMESTAMP
returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting the date and time because it provides the full 4-digit year.

Example 5.157. Stream object — QUERY method

stream~query("timestamp")

A sample output might be:

2015-11-12 03:29:12

5.2.4.20. say

say(

string

)

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the
line.

5.2.4.21. seek

seek(

=

<

+

-

offset

Read

Write

Char

Line

)

Sets the read or write position to a given number (offset) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.
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Note

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this method, you must first open the stream object (with the open method or implicitly with an
input or output operation). One of the following characters can precede the offset number:

=
Explicitly specifies the offset from the beginning of the stream. This is the default if you supply no
prefix. For example, an offset of 1 means the beginning of the stream.

<
Specifies offset from the end of the stream.

+
Specifies offset forward from the current read or write position.

-
Specifies offset backward from the current read or write position.

The seek method returns the new position in the stream if the read or write position is successfully
located, or an appropriate error message.

The following is a description of the options for seek:

READ
specifies that the read position be set.

WRITE
specifies that the write position be set.

CHAR
specifies that positioning be done in terms of characters. This is the default.

LINE
specifies that the positioning be done in terms of lines. For non-binary streams, this is potentially
an operation that can take a long time to complete because, in most cases, the file must be
scanned from the top to count the line-end characters. However, for binary streams with a
specified record length, the new resulting line number is simply multiplied by the record length
before character positioning. See Section 14.1.5, “Line versus Character Positioning” for a detailed
discussion of this issue.

Note

If you do line positioning in a file open only for writing, you receive an error message.
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Example 5.158. Stream object — SEEK method

stream~seek("=2 read")
stream~seek("+15 read")
stream~seek("-7 write line")
fromend  = 125
stream~seek("<"fromend read)

5.2.4.22. state

state

Returns a string indicating the current stream state.

The returned strings are as follows:

ERROR
The stream has been subject to an erroneous operation (possibly during input, output, or through
the various Stream methods). See Section 14.5, “Errors during Input and Output”. You might be
able to obtain additional information about the error with the description method.

NOTREADY
The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition. (See Section 14.5, “Errors during Input and Output”.) For
example, a simple input stream can have a defined length. An attempt to read that stream (with
charIn or lineIn, perhaps) beyond that limit can make the stream unavailable until the stream has
been closed (for example, with the close method) and then reopened.

READY
The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN
The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

5.2.4.23. string

string

Returns a string that indicates the name of the object the stream represents i.e. the name of the file.

5.2.4.24. supplier

supplier

Returns a StreamSupplier object for the stream containing the remaining stream lines and linenumber
positions for the stream.
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5.2.4.25. uninit

uninit

This method cleans up the object when it is garbage collected. It should not be invoked directly except
via an uninit method of a subclass of the Stream class.

If the Stream class is subclassed and the subclass provides an uninit method then that method
must invoke the superclass uninit method.

Example 5.159. Stream object — UNINIT method

::class CustomStream subclass Stream

...

::method uninit
/* the subclass instance cleanup code should be placed here */
super~uninit  -- this should be the last action in the method
return

5.3. Collection Classes

A Collection is an object that contains a number of items, which can be any objects. Every item
stored in a Collection has an associated index that you can use to retrieve the item from the collection
with the at or [] methods.

Each Collection defines its own acceptable index types. Rexx provides the following Collection
classes:

Array Class
A sequenced collection of objects ordered by whole-number indexes.

Bag Class
A collection where the index and the item are the same object. Bag indexes can be any object and
each index can appear more than once.

CircularQueue Class
The CircularQueue class allows for storing objects in a circular queue of a predefined size.
Once the end of the queue has been reached, new item objects are inserted from the beginning,
replacing earlier entries. The collected objects can be processed in FIFO (first-in, first-out) or in a
stack-like LIFO (last-in, first-out) order.

Directory Class
A collection with character string indexes. Index comparisons are performed using the string ==
comparison method.

IdentityTable Class
A collection with indexes that can be any object. The IdentityTable class determines index item
matches by using an object identity comparison. With object identity matches, an index will only
match the same object instance. An identity table contains no duplicate indexes.
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List Class
A sequenced collection that lets you add new items at any position in the sequence. A list
generates and returns an index value for each item placed in the list. The returned index remains
valid until the item is removed from the list.

Properties Class
A collection with character string indexes and values. Properties collections include support for
saving and loading from disk files.

Queue Class
A sequenced collection with the items ordered as a queue. You can remove items from the head
of the queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has
index 1, the item after the head item has index 2, up to the number of items in the queue.

Relation Class
A collection with indexes that can be any object. A relation can contain duplicate indexes.

Set Class
A collection where the index and the item are the same object. Set indexes can be any object and
each index is unique.

Stem Class
A collection with character string indexes constructed from one or more string segments. Index
comparisons are performed using the string == comparison method.

StringTable Class
A collection with character string indexes. Index comparisons are performed using the string ==
comparison method.

Table Class
A collection with indexes that can be any object. A table contains no duplicate indexes.

5.3.1.  Organization of the Collection Classes

The following shows the logical organization of the Collection Classes. This does not represent the
order that methods are inherited but rather the organization of the classes.

Collection Class
• MapCollection classes

Directory Class
IdentityTable Class
Properties Class
Relation Class
Stem Class
StringTable Class
Table Class

• OrderedCollection classes
Array Class
CircularQueue Class
List Class
Queue Class
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• SetCollection classes
Bag Class
Set Class

5.3.2. Collection Class

The Collection class is a MIXIN class that defines the basic set of methods implemented by all
Collections. Many of the Collection class methods are abstract and must be implemented by the
inheriting subclasses.

Table 5.12. Collection Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Collection (Mixin Class)

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

5.3.2.1. [] (Abstract Method)

[ index

,

]

Returns the item associated with the specified index or indexes. If the collection has no item
associated with the specified index or indexes, this method returns .nil. This is an abstract method
that must be implemented by a subclasses.

5.3.2.2. []= (Abstract Method)

[ index

,

] = value

Adds an item to the collection at the specified index. This is an abstract method that must be
implemented by subclasses.

5.3.2.3. allIndexes (Abstract Method)

allIndexes

Returns an array of all indexes used by this collection. This is an abstract method that must be
implemented by subclasses.
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5.3.2.4. allItems (Abstract Method)

allItems

Returns an array containing all items stored in the collection. This is an abstract method that must be
implemented by subclasses.

5.3.2.5. at (Abstract Method)

at( index

,

)

Returns the item associated with the specified index or indexes. If the collection has no item
associated with the specified index or indexes, this method returns .nil. This is an abstract method
that must be implemented by subclasses.

5.3.2.6. difference

difference( argument )

Returns a new collection (of the same class as the receiver) containing only those items from
the receiver whose indexes the argument collection does not contain. The argument can be a
Collection object or any other object that supports a makeArray method. The argument must also
allow all of the index values in the receiver collection.

5.3.2.7. disjoint

disjoint( argument )

Returns .true if the receiver collection and argument collection do not have any items in common.
.false otherwise. The argument can be a Collection object or any other object that supports a
makeArray method. The argument must also allow all of the index values in the receiver collection.

5.3.2.8. equivalent

equivalent( argument )

Returns .true if all indexes in the receiver collection are also contained in the argument collection
and both collections contain the same number of items; returns .false otherwise. The argument can
be a Collection object or any other object that supports a makeArray method. The argument must
also allow all of the index values in the receiver collection.

5.3.2.9. hasIndex

hasIndex( index

,

)
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Returns .true if the receiver collection contains an item associated with the specified index or
indexes. Returns .false otherwise.

5.3.2.10. hasItem

hasItem( item )

Returns .true if the collection contains the specified item at any index location. Returns .false
otherwise.

5.3.2.11. index (Abstract Method)

index( item )

Returns the index associated with item. If item occurs more than once in the collection, the returned
index value is undetermined. This is an abstract method which must be implemented by a subclass of
this class.

5.3.2.12. intersection

intersection( argument )

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver whose indexes are in both the receiver collection and the argument collection. The argument
can be a Collection object or any other object that supports a makeArray method. The argument
must also allow all of the index values in the receiver collection.

5.3.2.13. items

items

Returns the number of items in the collection.

5.3.2.14. makeArray

makeArray

Returns a single-dimensional Array with the same number of items as the receiver object. Any index
with no associated item is omitted from the new array. Items in the new array will have the same order
as the source array.

5.3.2.15. put (Abstract Method)

put( item , index )

Adds an item to the collection at the specified index. This is an abstract method that must be
implemented by a subclass of this class.
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5.3.2.16. subset

subset( argument )

Returns .true if all indexes in the receiver collection are also contained in the argument collection;
returns .false otherwise. The argument can be a Collection object or any other object that
supports a makeArray method. The argument must also allow all of the index values in the receiver
collection.

5.3.2.17. supplier

supplier

Returns a Supplier object for the collection. The supplier allows you to enumerate through the index/
item pairs for the collection. The supplier is created from a snapshot of the collection and is unaffected
by subsequent changes to the collection's contents.

5.3.2.18. union

union( argument )

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. This method includes an item from
argument in the new collection only if there is no item with the same associated index in the receiver
collection and the method has not already included an item with the same index. The order in which
this method selects items in argument is unspecified (the program should not rely on any order). The
argument can be a Collection object or any other object that supports a makeArray method. The
argument must also allow all of the index values in the receiver collection.

5.3.2.19. xor

xor( argument )

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all indexes that appear in both collections are removed. The
argument can be a Collection object or any other object that supports a makeArray method. The
argument must also allow all of the index values in the receiver collection.

5.3.3. MapCollection Class

The MapCollection class is a MIXIN class that defines the basic set of methods implemented by all
collections that create a mapping from an index object to a value.

This class is defined as a MIXIN class. The following classes inherit from MapCollection: Directory,
IdentityTable, Properties, Relation, Stem, StringTable, Table, and SetCollection classes Bag and
Set.

Table 5.13. MapCollection Class
Object
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Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

MapCollection (Mixin Class)

of (Class Method)

makeArray
putAll

5.3.3.1. of (Class Method)
 

of( pair

,

)

Returns a newly created MapCollection object containing the specified index/item pairs. Each pair
must be a single-dimensional Array with exactly two items: the index as the first Array item, and the
value as the second item. The pairs are processed left-to-right and added to the MapCollection object.

Example 5.160. MapCollection class — of method

iso639 = .Directory~of(.Array~of("de", "Deutsch"), .Array~of("en",
 "English"), .Array~of("fr", "fran&ccedil;ais"))
say iso639~allIndexes~makeString(, ", ")           -- de, en, fr
say iso639~allItems~makeString(, ", ")             -- Deutsch, English, fran&ccedil;ais

-- using array notation
iso639 = .Directory~of(("de", "Deutsch"), ("en", "English"), ("fr", "fran&ccedil;ais"))

5.3.3.2. makeArray

makeArray

Returns a single-dimensional Array of the index values used by the receiver object. The index objects
will not be ordered in any predictable order.

5.3.3.3. putAll

putAll( collection )
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Returns the receiving collection with all items in collection added to it. The collection argument can be
any object that supports a supplier method. Items from collection are added using the index values
returned by the supplier. The item indexes from the source collection must be strings. The items are
added in the order provided by the supplier object. If duplicate indexes exist in collection, the last item
provided by the supplier will overwrite previous items with the same index.

5.3.4. OrderedCollection Class

The OrderedCollection class is a MIXIN class that defines the basic set of methods implemented
by all collections that have an inherent index ordering.

This class is defined as a MIXIN class. The following classes inherit from OrderedCollection: Array,
CircularQueue, List, and Queue.

Table 5.14. OrderedCollection Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

OrderedCollection (Mixin Class)

append (Abstract Method) intersection sortWith
appendAll last (Abstract Method) stableSort
delete (Abstract Method) lastItem (Abstract Method) stableSortWith
difference next (Abstract Method) subset
first (Abstract Method) previous (Abstract Method) union
firstItem (Abstract Method) section (Abstract Method) xor
insert (Abstract Method) sort

5.3.4.1. append (Abstract Method)

append( item )

Append an item to the end of the collection ordering. This is an abstract method that must be
implemented by a subclass of this class.

5.3.4.2. appendAll

appendAll( collection )
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Returns the receiving collection with all items in collection appended to the end of it. The collection
may be any object that implements an allItems method.

5.3.4.3. delete (Abstract Method)

delete( index

,

)

Returns and deletes the member item with the specified index from the collection. If there is no item
with the specified index, .nil is returned and no item is deleted. All elements following the deleted
item will be moved up in the collection ordering and the size of the collection will be reduced by one
element. Depending on the nature of the collection, the indexes of the moved items may be modified
by the deletion.

5.3.4.4. difference

difference( argument )

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are not also contained in the argument collection. The argument can be a Collection
object or any other object that supports a makeArray method.

5.3.4.5. first (Abstract Method)

first

Returns the index of the first item in the collection order. Returns .nil if the collection is empty.

5.3.4.6. firstItem (Abstract Method)

firstItem

Returns the first item in the collection order. Returns .nil if the collection is empty.

5.3.4.7. insert (Abstract Method)

insert( item

, index

)

Returns a collection-supplied index for item item, which is added to the collection. The inserted item
follows an existing item with index index in the collection ordering. If index is .nil, item becomes the
first item in the ordered collection. If you omit index, the item becomes the last item in the collection.

Inserting an item in the collection at position index will cause the items in the collection after position
index to have their relative positions shifted by the collection object. Depending on the nature of the
collection, the index values for any items already in the collection may be modified by the insertion.

This is an abstract method that must be implemented by a subclass of this class.
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5.3.4.8. intersection

intersection( argument )

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are in both the receiver collection and the argument collection. The argument can be a
Collection object or any other object that supports a makeArray method.

5.3.4.9. last (Abstract Method)

last

Returns the index of the last item in the collection order. Returns .nil if the collection is empty.

5.3.4.10. lastItem (Abstract Method)

lastItem

Returns the first item in the collection order. Returns .nil if the collection is empty.

5.3.4.11. next (Abstract Method)

next

Returns the index of the item that follows the collection item having index index or returns .nil if the
item having that index is last in the collection.

5.3.4.12. previous (Abstract Method)

previous( index )

Returns the index of the item that precedes the collection item having index index or returns .nil if
the item having that index is first in the collection.

5.3.4.13. section (Abstract Method)

section( start

, items

)

Returns a new collection (of the same class as the receiver) containing selected items from the
receiver. The first item in the new collection is the item corresponding to index start in the receiver.
Subsequent items in the new collection correspond to those in the receiver, in the same sequence.
If you specify the whole number items, the new collection contains only this number of items (or the
number of subsequent items in the receiver, if this is less than items). If you do not specify items, the
new collection contains all subsequent items of the receiver. The receiver remains unchanged.

5.3.4.14. sort
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sort

Sorts the collection of Comparable items into ascending order using an algorithm that is not
guaranteed to be stable, and returns the sorted collection. See Section 5.3.19, “Sorting Ordered
Collections” for details.

5.3.4.15. sortWith

sortWith( comparator )

Sorts the collection of items into ascending order using an algorithm that is not guaranteed to be
stable, and returns the sorted collection. Ordering of elements is determined using the comparator
argument. See Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.4.16. stableSort

stableSort

Sorts the collection of Comparable items into ascending order using a stable Mergesort algorithm, and
returns the sorted collection. See Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.4.17. stableSortWith

stableSortWith( comparator )

Sorts the collection of items into ascending order using a stable Mergesort algorithm, and returns
the sorted collection. Ordering of elements is determined using the comparator argument. See
Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.4.18. subset

subset( argument )

Returns .true if all items in the receiver collection are also contained in the argument collection;
returns .false otherwise. The argument can be a Collection object or any other object that
supports a makeArray method.

5.3.4.19. union

union( argument )

Returns a new collection of the same class as the receiver that contains all the items from the
receiver collection and selected items from the argument collection. This method includes an item
from argument in the new collection only if there is no equivalent item in the receiver collection and
the method has not already included. The order in which this method selects items in argument is
unspecified (the program should not rely on any order). The argument can be a Collection object or
any other object that supports a makeArray method.
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5.3.4.20. xor

xor( argument )

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all items that appear in both collections are removed. The
argument can be a Collection object or any other object that supports a makeArray method.

5.3.5. SetCollection Class

This is a tagging MIXIN class only and does not define any methods of its own. Collections that
implement SetCollection are MapCollections that constrain the index and item to be be the same
object.

This class is defined as a MIXIN class. The following classes inherit from SetCollection: Bag and Set.

Table 5.15. SetCollection Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

SetCollection (Mixin Class)

(no class or instance methods)

5.3.6. Array Class

An Array is a possibly sparse collection with indexes that are positive whole numbers. You can
reference Array items by using one or more indexes. The number of indexes is the same as the
number of dimensions of the Array. This number is called the dimensionality of the Array.

Array items can be any valid Rexx object.

Table 5.16. Array Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)
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Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ OrderedCollection (Mixin Class)

Methods inherited from the OrderedCollection class
append (Abstract Method) intersection sortWith
appendAll last (Abstract Method) stableSort
delete (Abstract Method) lastItem (Abstract Method) stableSortWith
difference next (Abstract Method) subset
first (Abstract Method) previous (Abstract Method) union
firstItem (Abstract Method) section (Abstract Method) xor
insert (Abstract Method) sort

Array

new (Class Method)
of (Class Method)

[] firstItem previous
[]= hasIndex put
allIndexes hasItem remove
allItems index removeItem
append insert section
at isEmpty size
delete items sort
dimension last sortWith
dimensions lastItem stableSort
empty makeArray stableSortWith
fill makeString supplier
first next toString

Array objects are variable-sized. The dimensionality of an array is fixed, but the size of each
dimension is variable. When you create an array, you can specify a hint about how many elements
you expect to put into the array or the array's dimensionality. However, you do not need to specify a
size or dimensionality of an array when you are creating it. You can use any whole-number indexes to
reference items in an array.

For any array method that takes an index, the index may be specified as either individual arguments or
as an array of indexes. For example, the following are equivalent:

Example 5.161. Array class — [] method

    x = myarray[1,2,3]   -- retrieves an item from a multi-dimensional Array
    index = .array~of(1,2,3)  -- create an index list
    x = myarray[index]   -- also retrieves from "1,2,3"

Methods such as index that return index items will return a single numeric value for single-dimensional
Arrays and an array of indexes for multi-dimensional Arrays.

248



Array Class

5.3.6.1. new (Class Method)

new( size

,

)

Returns a new empty array. If you specify any size arguments, the size is taken as a hint about how
big each dimension should be. The Array class uses this only to allocate the initial array object. For
multi-dimensional Arrays, you can also specify how much space is to be allocated initially for each
dimension of the array.

Each size argument must a non-negative whole number. If it is 0, the corresponding dimension is
initially empty. The dimensions may also be specified with one single-dimensional Array of sizes. 

Example 5.162. Array class — of method

   a = .array~new()        -- create a new, empty array
   a = .array~new(3,3)     -- create a new 3x3 array
   sizes = .array~of(4,4,4)
   a = .array~new(sizes)   -- create new 4x4x4 array

5.3.6.2. of (Class Method)

of(

item

,

)

Returns a newly created single-dimensional Array containing the specified item objects. The first item
has index 1, the second has index 2, and so on.

If you use the of method and omit any argument items, the returned array does not include the
indexes corresponding to the omitted arguments. 

Example 5.163. Array class — of method

a = .array~of("Fred", "Mike", "David")

do name over a
   say name  -- displays "Fred", "Mike", and "David"
end

5.3.6.3. []

[ index

,

]

Returns the same value as the at method.

Note that the index argument may also be specified as an array of indexes.
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5.3.6.4. []=

[ index

,

] = value

This method is the same as the put method.

Note that the index argument may also be specified as an array of indexes.

5.3.6.5. allIndexes

allIndexes

Returns an array of all index positions in the array containing items. For multi-dimensional Arrays,
each returned index will be an array of index values. 

Example 5.164. Array class — allIndexes method

a = .array~of("Fred", "Mike", "David")

do name over a~allIndexes
   say name  -- displays "1", "2", and "3"
end

a~remove(2)  -- remove second item

do name over a~allIndexes
   say name  -- displays "1" and "3"
end

5.3.6.6. allItems

allItems

Returns an array of all items contained in the array. 

Example 5.165. Array class — allItems method

a = .array~of("Fred", "Mike", "David")

do name over a~allItems
   say name  -- displays "Fred", "Mike", and "David"
end

a~remove(2)  -- remove second item

do name over a~allItems
   say name  -- displays "Fred" and "David"
end

5.3.6.7. append
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append( item )

Appends an item to the array after the last item (the item with the highest index). The return value is
the index of the newly added item. The append method is only valid with single-dimensional Arrays. 

Example 5.166. Array class — append method

   a = .array~of("Mike", "Rick")
   a~append("Fred")  -- a = .array~of("Mike", "Rick", "Fred")

5.3.6.8. at

at( index

,

)

Returns the item associated with the specified index or indexes. If the array has no item associated
with the specified index or indexes, this method returns .nil.

Note that the index argument may also be specified as an array of indexes. 

Example 5.167. Array class — at method

   a = .array~of("Mike", "Rick")
   say a~at(2)  -- says: "Rick"

5.3.6.9. delete

delete( index )

Returns and deletes the member item with the specified index from the array. If there is no item with
the specified index, .nil is returned and no item is deleted. All elements following the deleted item
will be moved up in the array ordering and the item indexes will be adjusted for the deletion. The size
of the array will be reduced by one element.

The delete method is only valid with single-dimensional Arrays. The index argument may also be
specified as an array of a single index. 

Example 5.168. Array class — delete method

   a = .array~of("Fred", "Mike", "Rick", "David")
   a~delete(2)  -- removes "Mike", resulting in the array
                -- ("Fred", "Rick", "David")

5.3.6.10. dimension

dimension( n )

Returns the current size (upper bound) of dimension n (a positive whole number). If you omit n, this
method returns the dimensionality (number of dimensions) of the array. If the number of dimensions
has not been determined, 0 is returned. 

251



Array Class

Example 5.169. Array class — dimension method

a = .array~of(,"Mike", "Rick")
say a~dimension     -- says: 1 (number of dimensions in the array)
say a~dimension(1)  -- says: 3 (upper bound of dimension one)

a = .array~new~~put("Mike",1,1)~~put("Rick",1,2)
say a~dimension     -- says: 2 (number of dimensions in the array)
say a~dimension(1)  -- says: 1 (upper bound of dimension one)
say a~dimension(2)  -- says: 2 (upper bound of dimension two)

5.3.6.11. dimensions

dimensions

Returns an array containing each of the array dimension sizes. A single-dimensional Array will return
an array with a single size element.

5.3.6.12. empty

empty

Returns the receiving Array with all items removed. 

Example 5.170. Array class — empty method

a = .array~of("Mike", "Rick", "Fred", "Rick")
a~empty    -- a~items now returns "0"

5.3.6.13. fill

fill( value )

Returns the receiving Array with all index locations set to value. 

Example 5.171. Array class — fill method

a = .array~new(3,3)
a~fill(0)    -- initialize the matrix to all zeroes.

5.3.6.14. first

first

Returns the index of the first item in the array or .nil if the array is empty. For multi-dimensional
Arrays, the index is returned as an array of index values. 
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Example 5.172. Array class — first method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~first  -- says: 1
a = .array~of(,"Mike", "Rick")
say a~first  -- says: 2

5.3.6.15. firstItem

firstItem

Returns the first item in the array or .nil if the array is empty.

Example 5.173. Array class — firstItem method

musketeers=.array~of("Porthos","Athos","Aramis"") /* Creates array MUSKETEERS      */
item=musketeers~firstItem                         /* Gives first item in array     */
                                                  /* (Assigns "Porthos" to item)   */

5.3.6.16. hasIndex

hasIndex( index

,

)

Returns .true if the array contains an item associated with the specified index or indexes. Returns
.false otherwise.

Note that the index argument may also be specified as an array of indexes. 

Example 5.174. Array class — hasIndex method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~hasIndex(2)  -- says: 1
say a~hasIndex(5)  -- says: 0

5.3.6.17. hasItem

hasItem( item )

Returns .true if the array contains the specified item at any index location. Returns .false
otherwise. Item equality is determined by using the == method of item. 

Example 5.175. Array class — hasItem method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~hasItem("Rick")  -- says: 1
say a~hasItem("Mark")  -- says: 0
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5.3.6.18. index

index( item )

Returns the index of the specified item within the array. If the target item appears at more than one
index, the first located index will be returned. For multi-dimensional Arrays, the index is returned as an
array of index values. If the array does not contain the specified item, .nil is returned. Item equality
is determined by using the == method of item. 

Example 5.176. Array class — index method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~index("Rick")  -- says: 2

5.3.6.19. insert

insert( item

, index

)

Returns an Array-supplied index for item item, which is added to the Array. The inserted item follows
an existing item with index index in the Array ordering. If index is .nil, item becomes the first item in
the Array. If you omit index, the item becomes the last item in the Array.

Inserting an item in the Array at position index will cause the items in the Array after position index
to have their indexes shifted by the Array object. The index values for any items in the Array are
incremented by the insertion. 

Example 5.177. Array class — insert method

musketeers=.Array~of("Porthos","Athos","Aramis") /* Creates Array MUSKETEERS        */
                                                 /* consisting of: Porthos         */
                                                 /*                Athos           */
                                                 /*                Aramis          */
musketeers~insert("D'Artagnan",1)    /* Adds D'Artagnan after Porthos  */
                                          /* Array is now: Porthos           */
                                          /*              D'Artagnan   */
                                          /*              Athos             */
                                          /*              Aramis            */
/* Alternately, you could use */
musketeers~insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */
                                          /* Array is now:  D'Artagnan  */
                                          /*               Porthos          */
                                          /*               Athos            */
                                          /*               Aramis           */
/* Alternately, you could use */
musketeers~insert("D'Artagnan")      /* Adds D'Artagnan after Aramis   */
                                          /* Array is now:  Porthos          */
                                          /*               Athos            */
                                          /*               Aramis           */
                                          /*               D'Artagnan  */

5.3.6.20. isEmpty

254



Array Class

isEmpty

Returns .true if the array is empty. Returns .false otherwise. 

Example 5.178. Array class — isEmpty method

a = .array~new
say a~isEmpty  -- says: 1
a[1] = "1"
say a~isEmpty  -- says: 0

5.3.6.21. items

items

Returns the number of items in the array. 

Example 5.179. Array class — items method

a = .array~of("Fred", , "Mike", , "David")
say a~items  -- says: 3

5.3.6.22. last

last

Returns the index of the last item in the array or .nil if the array is empty. For multi-dimensional
Arrays, index is returned as an array of index items. 

Example 5.180. Array class — last method

a = .array~of("Fred", , "Mike", , "David")
say a~last  -- says: 5

5.3.6.23. lastItem

lastItem

Returns the last item in the array or .nil if the array is empty.

Example 5.181. Array class — lastItem method

musketeers=.array~of("Porthos","Athos","Aramis"") /* Creates array MUSKETEERS      */
item=musketeers~lastItem                          /* Gives last item in array      */
                                                  /* (Assigns "Aramis" to item)    */

5.3.6.24. makeArray
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makeArray

Returns a single-dimensional Array with the same number of items as the receiver object. Any index
with no associated item is omitted from the new array. Items in the new array will have the same order
as the source array. A multi-dimensional Array will be converted into a non-sparse single-dimensional
Array. 

Example 5.182. Array class — makeArray method

a = .array~of("Fred", , "Mike", , "David")
b = a~makeArray  -- b = .array~of("Fred", "Mike", "David")

5.3.6.25. makeString

makeString(

"Line" , separator

"Char"

)

Returns a string that contains the data of an array (one to n dimensional). The elements of the array
are treated either in line or character format, starting at the first element in the array. The line format
is the default. If the line format is used, a separator string can be specified. The separator will be used
between concatenated elements instead of the default line end separator.

See method toString (which is a synonym for this method) for examples.

5.3.6.26. next

next( index

,

)

Returns the index of the item that follows the array item having index index or returns .nil if the item
having that index is last in the array. For multi-dimensional Arrays, the same ordering as used by the
allItems method is used to determine the next position and the index is returned as an array of index
values.

Note that the index argument may also be specified as an array of indexes. 

Example 5.183. Array class — next method

a = .array~of("Fred", , "Mike", , "David")
say a~next(3)  -- says: 5

5.3.6.27. previous

previous( index

,

)
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Returns the index of the item that precedes the array item having index index or .nil if the item
having that index is first in the array. For multi-dimensional Arrays, the same ordering used by the
allItems method is used to determine the previous position and the index is returned as an array of
index values.

Note that the index argument may also be specified as an array of indexes. 

Example 5.184. Array class — previous method

a = .array~of("Fred", , "Mike", , "David")
say a~previous(3)  -- says: 1

5.3.6.28. put

put( item index

,

)

Makes the object item a member item of the array and associates it with the specified index or
indexes. This replaces any existing item associated with the specified index or indexes with the new
item. If the index for a particular dimension is greater than the current size of that dimension, the array
is expanded to the new dimension size.

Note that the index argument may also be specified as an array of indexes. 

Example 5.185. Array class — put method

a = .array~new
a~put("Fred", 1) -- a = .array~of("Fred")
a~put("Mike", 2) -- a = .array~of("Fred", "Mike")
a~put("Mike", 1) -- a = .array~of("Mike", "Mike")

do name over a
  say name
end

/* Output would be: */

Mike
Mike

5.3.6.29. remove

remove( index

,

)

Returns and removes the member item with the specified index or indexes from the array. If there is
no item with the specified index or indexes, .nil is returned and no item is removed. The index of
the removed item becomes unused and the hasIndex method for the given index will now return
.false. The size of the array is unchanged and no other indexes of the array are modified with the
removal.

Note that the index argument may also be specified as an array of indexes. 
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Example 5.186. Array class — remove method

a = .array~of("Fred", "Mike", "Mike", "David")
a~remove(2)  -- removes "Mike"

5.3.6.30. removeItem

removeItem( item )

Removes an item from the array. If the target item exists at more than one index, the first located
item is removed. Item equality is determined by using the == method of item. The return value is the
removed item. 

Example 5.187. Array class — removeItem method

a = .array~of("Fred", "Mike", "Mike", "David")
a~removeItem("Mike")  -- removes the item at index "2"

5.3.6.31. section

section( start

, items

)

Returns a new array (of the same class as the receiver) containing selected items from the receiver
array. The first item in the new array is the item corresponding to index start in the receiver array.
Subsequent items in the new array correspond to those in the receiver array (in the same sequence).
If you specify the whole number items, the new array contains only this number of items (or the
number of subsequent items in the receiver array, if this is less than items). If you do not specify
items, the new array contains all subsequent items of the receiver array. The receiver array remains
unchanged. The section method is valid only for single-dimensional Arrays.

Note that the index argument start may also be specified as an array of indexes. 

Example 5.188. Array class — section method

a = .array~of(1,2,3,4)  -- Loads the array

b = a~section(2)   -- b = .array~of(2,3,4)
c = a~section(2,2) -- c = .array~of(2,3)
d = a~section(2,0) -- d = .array~new

5.3.6.32. size

size

Returns the number of items that can be placed in the array before it needs to be extended. This value
is the same as the product of the sizes of the dimensions in the array.
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5.3.6.33. sort

sort

Sorts the Array of Comparable items into ascending order using an algorithm that is not guaranteed to
be stable, and returns the sorted Array. See Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.6.34. sortWith

sortWith( comparator )

Sorts the Array of items into ascending order using an algorithm that is not guaranteed to be stable,
and returns the sorted Array. Ordering of elements is determined using the comparator argument. See
Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.6.35. stableSort

stableSort

Sorts the Array of Comparable items into ascending order using a stable Mergesort algorithm, and
returns the sorted Array. See Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.6.36. stableSortWith

stableSortWith( comparator )

Sorts the Array of items into ascending order using a stable Mergesort algorithm, and returns the
sorted Array. Ordering of elements is determined using the comparator argument. See Section 5.3.19,
“Sorting Ordered Collections” for details.

5.3.6.37. supplier

supplier

Returns a Supplier object for the array. The supplier allows you to iterate over the index/item pairs of
the array. The supplier enumerates the array items in their sequenced order. For multi-dimensional
Arrays, the supplier index method will return the index values as an array of index numbers. 

Example 5.189. Array class — supplier method

a = .array~of("Fred", "Mike", "David")
sup = a~supplier
a~append("Joe")
do while sup~available
   say sup~item  -- displays "Fred", "Mike", and "David"
   sup~next
end

5.3.6.38. toString
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toString(

"Line" , separator

"Char"

)

Returns a string that contains the data of an array (one to n dimensional). The elements of the array
are treated either in line or character format, starting at the first element in the array. The line format
is the default. If the line format is used, a separator string can be specified. The separator will be used
between concatenated elements instead of the default line end separator.

See also method makeString for which this method is a synonym. 

Example 5.190. Array class — toString method

a = .array~of(1,2,3,4)  -- Loads the array

say a~toString  -- Produces: 1
                --           2
                --           3
                --           4

say a~toString("c")  -- Produces: 1234

say a~toString(, ", ")  -- Produces: 1, 2, 3, 4

5.3.6.39. Examples

Example 5.191. Array class — examples

array1=.array~of(1,2,3,4)  /* Loads the array */

/* Alternative way to create and load an array */
array2=.array~new(4)  /* Creates array2, containing 4 items */
do i=1 to 4                   /* Loads the array */
  array2[i]=i
end

You can produce the elements loaded into an array, for example:

Example 5.192. Array class — examples

do i=1 to 4
  say array1[i]
end

If you omit any argument values before arguments you supply, the corresponding indexes are skipped
in the returned array:

Example 5.193. Array class — examples

directions=.array~of("North","South", ,"West")
do i=1 to 4                                  /* Produces: North          */
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  say directions[i]                          /*           South          */
                                             /*           The NIL object */
end                                          /*           West           */

Here is an example using the ~~:

Example 5.194. Array class — examples

z=.array~of(1,2,3)~~put(4,4)
do i = 1 to z~size
  say z[i]              /* Produces:  1 2 3 4 */
end

5.3.7. Bag Class

A Bag is a non-sparse collection that restricts the elements to having an item that is the same as the
index. Any object can be placed in a Bag, and the same object can be placed in a Bag several times.

Table 5.17. Bag Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ SetCollection (Mixin Class)

Methods inherited from the SetCollection class
(no class or instance methods)

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll

Bag

new (Class Method)
of (Class Method)

[] hasIndex remove
[]= hasItem removeAll
allAt index removeItem
allIndex intersection subset

261



Bag Class

allIndexes isEmpty supplier
allItems items union
at makeArray uniqueIndexes
difference put xor
empty putAll

5.3.7.1. new (Class Method)
 

new(

size

)

Returns a new empty Bag object.

If you specify size, a hint how large the new Bag object is expected to grow, this is used to optimize
the initial allocation.

size must be a non-negative whole number.

5.3.7.2. of (Class Method)

of( item

,

)

Returns a newly created Bag containing the specified item objects.

5.3.7.3. []

[ index ]

Returns the item associated with index index. Returns .nil if the Bag has no item associated with
index.

Index equality is determined by using the == method of index.

This method is the same as the at method.

5.3.7.4. allAt

allAt( index )

Returns a single-dimensional Array containing all the items associated with index index.

Index equality is determined by using the == method of index.

This method has the same result as the allIndex method.

5.3.7.5. allIndex
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allIndex( item )

Returns a single-dimensional Array containing all indexes for item item.

Item equality is determined by using the == method of item.

This method has the same result as the allAt method.

5.3.7.6. allIndexes

allIndexes

Returns an Array of all indexes contained in the Bag, in an unspecified order. The returned Array will
have one index for every item stored in the Bag, including duplicates.

To retrieve the indexes without duplicates, use the uniqueIndexes method.

5.3.7.7. allItems

allItems

Returns an Array of all items contained in the Bag, in an unspecified order.

5.3.7.8. at

at( index )

Returns the item associated with index index. Returns .nil if the Bag does not contain index.

Index equality is determined by using the == method of index.

This method is the same as the [] method.

5.3.7.9. []=

[

index

] = item

Adds an item to the Bag. If specified, index must be the same object as item.

This method is the same as the put method.

5.3.7.10. difference

difference( argument )

Returns a new Bag containing only those items from the receiver that the argument collection does not
contain. The argument can be a Collection object or any other object that supports a makeArray
method.
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5.3.7.11. empty

empty

Returns the receiving Bag with all items removed.

5.3.7.12. hasIndex

hasIndex( index )

Returns .true if the Bag contains any item associated with index index, otherwise returns .false.

Index equality is determined by using the == method of index.

5.3.7.13. hasItem

hasItem( item

, index

)

Returns .true if the Bag contains the member item item, otherwise returns .false. If index is
specified, it should be the same object as index, otherwise hasItem will always return .false.

Item and index equality is determined by using the == method.

5.3.7.14. index

index( item )

Returns the index for item item if the Bag contains item, otherwise returns .false.

Item equality is determined by using the == method of item.

5.3.7.15. intersection

intersection( argument )

Returns a new Bag containing only those items from the receiver that are also in the argument
collection. The argument can be a Collection object or any other object that supports a
makeArray method.

5.3.7.16. isEmpty

isEmpty

Returns .true if the Bag is empty. Returns .false otherwise.

5.3.7.17. items
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items(

index

)

Returns the number of Bag items with index index. If you specify no index, this method returns the
total number of items in the Bag.

Index equality is determined by using the == method of index.

5.3.7.18. makeArray

makeArray

Returns a single-dimensional Array containing all Bag items, in an unspecified order.

5.3.7.19. put

put( item

, index

)

Adds an item to the Bag. If specified, index must be the same object as item.

This method is the same as the []= method.

5.3.7.20. putAll

putAll( collection )

Returns the receiving Bag with all items in collection added to it. The collection argument can be
any object that supports a supplier method. Items from collection are added using the item values
returned by the supplier.

5.3.7.21. remove

remove( index )

Returns and removes from the Bag one member item with index index. Returns .nil if the Bag does
not contain index.

Index equality is determined by using the == method of index.

5.3.7.22. removeAll

removeAll( index )

Returns and removes from the Bag all member items with index index. All removed items are returned
in an Array containing each of the removed items. If the Bag does not contain index, an empty Array is
returned.

Index equality is determined by using the == method of index.
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5.3.7.23. removeItem

removeItem( item

, index

)

Returns and removes from a Bag one member item item. Returns .nil if item is not a member of the
Bag.

If index is specified, it should be the same object as index, otherwise removeItem will always return
.nil.

5.3.7.24. subset

subset( argument )

Returns .true if all indexes in the receiver Bag are also contained in the argument collection; returns
.false otherwise. The argument can be a Collection object or any other object that supports a
makeArray method.

5.3.7.25. supplier

supplier(

index

)

Returns a Supplier object for the Bag. The supplier allows you to iterate over all index/item pairs in the
Bag at the time the supplier was created. The supplier enumerates the items in an unspecified order. If
you specify index, the supplier contains all of the items with the specified index.

5.3.7.26. union

union( argument )

Returns a new Bag that contains all the items from the receiver Bag and selected items from the
argument collection. The argument can be a Collection object or any other object that supports a
makeArray method.

5.3.7.27. uniqueIndexes

uniqueIndexes

Returns an Array of all indexes contained in the Bag, with no duplicates.

5.3.7.28. xor

xor( argument )

Returns a new Bag that contains all items from the receiver Bag and the argument collection; items
that appear in both collections are removed. The argument can be a Collection object or any other
object that supports a makeArray method.
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5.3.7.29. Examples

Example 5.195. Bag class — examples

/* Create a bag of fruit */
fruit = .bag~of("Apple", "Orange", "Apple", "Pear")
say fruit~items          /* How many pieces? (4)      */
say fruit~items("Apple") /* How many apples? (2)      */
fruit~remove("Apple")    /* Remove one of the apples. */
fruit~~put("Banana")~put("Orange") /* Add a couple.   */
say fruit~items          /* How many pieces? (5)      */

5.3.8. CircularQueue Class

The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once
the end of the queue has been reached, new item objects are inserted from the beginning, replacing
earlier entries. Any object can be placed in the queue and the same object can occupy more than one
position in the queue.

The collected objects can be processed in FIFO (first-in, first-out) or in a stack-like LIFO (last-in, first-
out) order.

Table 5.18. CircularQueue Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ OrderedCollection (Mixin Class)

Methods inherited from the OrderedCollection class
append (Abstract Method) intersection sortWith
appendAll last (Abstract Method) stableSort
delete (Abstract Method) lastItem (Abstract Method) stableSortWith
difference next (Abstract Method) subset
first (Abstract Method) previous (Abstract Method) union
firstItem (Abstract Method) section (Abstract Method) xor
insert (Abstract Method) sort

Queue

Methods inherited from the Queue class
new (Class Method)
of (Class Method)
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[] hasItem pull
[]= index push
allIndexes insert put
allItems isEmpty queue
append items remove
at last removeItem
delete lastItem section
empty makeArray size
first next supplier
firstItem peek
hasIndex previous

CircularQueue

of (Class Method)

append makeString size
init push string
insert queue supplier
intersection resize union
makeArray section xor

5.3.8.1. of (Class Method)

of(

item

,

)

Returns a newly created circular queue containing the specified item objects. The first item has index
1, the second has index 2, and so on. Any omitted item will be set to the null string. The total number
of item objects (including omitted ones) determines the size of the circular queue.

5.3.8.2. init

init( size )

Performs initialization of the circular queue. The required size argument, a non-negative whole
number, specifies the initial size of the queue.

5.3.8.3. append

append( item )

Append an item to the end of the collection ordering, returning the index of the added item. If the
circular queue is full, then the first item will be deleted, before the insertion takes place.

5.3.8.4. insert
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insert( item

, index

)

Returns a queue-supplied index for item, which is added to the queue. The inserted item follows any
existing item with index index in the queue ordering. If index is .nil, item is inserted at the head of
the queue. If you omit index, item becomes the last item in the queue.

Inserting an item in the queue at position index will cause the items in the queue after position index
to have their indexes modified by the queue object. If inserting an object causes the queue to grow
beyond the size, the last item in the queue will be removed.

5.3.8.5. intersection

intersection( argument )

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are in both the receiver collection and the argument collection. The argument can
be a Collection object or any other object that supports a makeArray method. The resulting
CircularQueue instance will be the same size as the receiver.

5.3.8.6. makeArray

makeArray(

order

)

Returns a single-dimensional Array containing the items of the circular queue in the specified order.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out order. This is the default.

Lifo
Last-in, first-out order (stack-like).

5.3.8.7. makeString
 

makeString(

delimiter , order

)

Returns a string object that concatenates the string values of the collected item objects, using the
delimiter string to delimit them, in the specified order. If the delimiter is omitted, the comma character
(",") is used as the default delimiter string.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out. This is the default
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Lifo
Last-in, first-out (stack-like)

Example 5.196. CircularQueue class — makeArray method 

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")
say .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")~makeString(, ", ")
-- five, four, three, two, one

5.3.8.8. push

push( item

, option

)

Makes the object item a member item of the circular queue, inserting the item object in front of the first
item in the queue. The pushed item object will be the new first item in the circular queue.

If the circular queue is full, then the last item stored in the circular queue will be deleted, before the
insertion takes place. In this case the deleted item will be returned, otherwise .nil will be returned.

If option is specified, it may be "Normal" or "Unique". The default is "Normal". Only the capitalized
letter is needed; all characters following it are ignored. If option is 'Unique', any matching items already
in the queue will be removed before item is added to the queue. This allows you to maintain a list like
the recent files list of an editor.

5.3.8.9. queue

queue( item

, Normal

, Unique

)

Makes the object item a member item of the circular queue, inserting the item at the end of the circular
queue.

If the circular queue is full, then the first item will be deleted, before the insertion takes place. In this
case the deleted item will be returned, otherwise .nil will be returned.

If option is specified, it may be "Normal" or "Unique". The default is "Normal". Only the capitalized
letter is needed; all characters following it are ignored. If option is 'Unique', any matching items already
in the queue will be removed before item is added to the queue. This allows you to maintain a list like
the recent files list of an editor.

5.3.8.10. resize

resize( newsize

, order

)

Resizes the circular queue object to be able to contain newSize items. If more than newSize items are
in the queue, any extra items are removed in the specified order.
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The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out. This keeps the items at the front of the queue. Item deletions occur at the end of
the queue. This is the default action.

Lifo
Last-in, first-out (stack-like). This removes items from the front of the queue.

Note:

Resizing with a value of 0 removes all items from the circular queue.

5.3.8.11. section

section( start

, items

)

Returns a new queue (of the same class as the receiver) containing selected items from the receiver.
The first item in the new queue is the item corresponding to index start in the receiver. Subsequent
items in the new queue correspond to those in the receiver (in the same sequence). If you specify the
whole number items, the new queue contains only this number of items (or the number of subsequent
items in the receiver, if this is less than items). If you do not specify items, the new queue contains all
subsequent items from the receiver. The receiver queue remains unchanged. The new queue item will
be sized to the larger of the receiver queue size or items. The selection of the items will wrap from the
end around to the beginning of the queue. For example,

q1 = .circularqueue~of("Fred", "Mike", "David")
q2 = q1~section(2)        -- effectively rotates the queue

do name over a
   say name  -- displays "Mike", "David", and "Fred"
end

returns a new queue of three items, starting with the second item, effectively rotating the order of the
contained items.

5.3.8.12. size

size

Returns the maximum number of objects that can be stored in the circular queue.

5.3.8.13. string

string(

delimiter , order

)
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Returns a string object that concatenates the string values of the collected item objects, using the
delimiter string to delimit them, in the specified order. If the delimiter is omitted, the comma character
(",") is used as the default delimiter string.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out. This is the default

Lifo
Last-in, first-out (stack-like)

5.3.8.14. supplier

supplier(

order

)

Returns a Supplier object for the collection. The supplier allows you to iterate over the items that were
in the queue at the time of the supplier's creation.

The supplier will iterate over the items in the specified order. (Only the capitalized letter is needed; all
characters following it are ignored.)

Fifo
First-in, first-out, default

Lifo
Last-in, first-out (stack-like)

5.3.8.15. union

union( argument )

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. The resulting CircularQueue object
will have a size that is the larger of the receiver's size or the union size of the two collections. This
method includes an item from argument in the new collection only if there is no equivalent item in the
receiver collection and the method has not already included. The order in which this method selects
items in argument is unspecified (the program should not rely on any order.). The argument can be a
Collection object or any other object that supports a makeArray method.

5.3.8.16. xor

xor( argument )

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all items that appear in both collections are removed. The
resulting CircularQueue object will have a size that is the larger of the receiver's size or the xor size
of the two collections. The argument can be a Collection object or any other object that supports a
makeArray method.
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5.3.8.17. Example

Example 5.197. CircularQueue class — examples

  -- create a circular buffer with five items
u=.circularQueue~of("a", "b", "c", "d", "e")
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~resize(4, "FIFO")     -- resize fifo-style (keep newest)
say "after resizing to 4 items in FIFO style (keeping the newest):"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~resize(2, "LIFO")     -- resize lifo-style (keep oldest)
say "after resizing to 2 items in LIFO style (keeping the oldest):"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~resize(0)             -- resize lifo-style (keep oldest)
say "after resizing to 0 items, thereby deleting all items:"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~resize(2)             -- resize lifo-style (keep oldest)
say "after resizing to 2, size="u~size "and items="u~items
u~~queue('x')~~queue('y')~~queue('z')
say "after queuing the three items 'x', 'y', 'z':"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~~push('1')~~push('2')~~push('3')
say "after pushing the three items '1', '2', '3':"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

Output:

content: [a,b,c,d,e], content (LIFO): [e->d->c->b->a]

after resizing to 4 items in FIFO style (keeping the newest):
content: [b,c,d,e], content (LIFO): [e->d->c->b]

after resizing to 2 items in LIFO style (keeping the oldest):
content: [b,c], content (LIFO): [c->b]

after resizing to 0 items, thereby deleting all items:
content: [], content (LIFO): []

after resizing to 2, size=2 and items=0
after queuing the three items 'x', 'y', 'z':
content: [y,z], content (LIFO): [z->y]

after pushing the three items '1', '2', '3':
content: [3,2], content (LIFO): [2->3]

5.3.9. Directory Class

A Directory is a MapCollection using unique character string indexes. The items of a Directory can
be any valid Rexx object.
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See also StringTable Class, a MapCollection similar to Directory, but without methods
setMethod and unsetMethod.

Table 5.19. Directory Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll

Directory

new (Class Method)

[] hasIndex removeEntry
[]= hasItem removeItem
allIndexes index setEntry
allItems isEmpty setMethod
at items supplier
empty makeArray unknown
entry put unsetMethod
hasEntry remove

In addition to the standard put, []=, at, and [] methods defined for Collections, Directory provides
access to items using methods. For example:

mydir = .directory~new
mydir~name = "Mike"   -- same as mydir~put("Mike", "NAME")
say mydir~name        -- same as say mydir['NAME']

5.3.9.1. new (Class Method)

new(

size

)

Returns an empty Directory object.

If you specify size, a hint how large the new Directory object is expected to grow, this is used to
optimize the initial allocation.
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size must be a non-negative whole number.

5.3.9.2. []

[ name ]

Returns the item corresponding to name. This method is the same as the at method.

5.3.9.3. []=

[ name ] = item

Adds or replaces the entry at index name. This method is the same as the put method.

5.3.9.4. allIndexes

allIndexes

Returns an array of all the directory indexes, including those of all the setMethod methods.

5.3.9.5. allItems

allItems

Returns an array of all items contained in the directory, including those returned by all setMethod
methods.

5.3.9.6. at

at( name )

Returns the item associated with index name. If a method defined using setMethod is associated
with index name, the result of running this method is returned. If the Directory has no item or method
associated with index name, .nil is returned.

Example 5.198. Directory class — at method

say .environment~at("OBJECT")   /* Produces: "The Object class" */

5.3.9.7. empty

empty

Returns the receiving Directory with all items removed. empty also removes all methods added using
setMethod.
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5.3.9.8. entry

entry( name )

Returns the directory entry with index name (translated to uppercase). If there is no such entry, name
returns the item for any method that setMethod supplied. If there is neither an entry nor a method for
name, .nil is returned.

5.3.9.9. hasEntry

hasEntry( name )

Returns .true if the directory has an entry or a method for index name (translated to uppercase), or
.false.

5.3.9.10. hasIndex

hasIndex( name )

Returns .true if the Directory contains any item associated with index name, or .false.

5.3.9.11. hasItem

hasItem( item )

Returns .true if the Directory contains the item at any index position or otherwise returns .false.
Item equality is determined by using the == method of item.

5.3.9.12. index

index( item )

Returns the index of the specified item within the directory. If the target item appears at more than one
index, the first located index will be returned. If the directory does not contain the specified item, .nil
is returned. Item equality is determined by using the == method of item.

5.3.9.13. isEmpty

isEmpty

Returns .true if the directory is empty. Returns .false otherwise.

5.3.9.14. items

items

Returns the number of items in the collection.
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5.3.9.15. makeArray

makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order. (The program
should not rely on any order.)

5.3.9.16. put

put( item , name )

Makes the object item a member item of the collection and associates it with index name. The new
item replaces any existing item or method associated with index name.

5.3.9.17. remove

remove( name )

Removes and returns the member item with index name from the directory. If a method is associated
with setMethod for index name, the method is removed and the result of running the method is
returned. If there is no item or method with index name, .nil is returned.

5.3.9.18. removeEntry
 

removeEntry( name )

Removes and returns the member item with index name (translated to uppercase) from the directory.
If a method is associated with setMethod for index name, the method is removed and the result of
running the method is returned. If there is no item or method with index name, .nil is returned.

See also setEntry, setMethod, hasEntry, and entry.

5.3.9.19. removeItem

removeItem( item )

Removes an item from the directory. If the target item exists at more than one index, the first located
item is removed. The return value is the removed item. Item equality is determined by using the ==
method of item.

5.3.9.20. setEntry

setEntry( name

, entry

)
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Sets the directory entry with index name (translated to uppercase) to the object entry, replacing any
existing entry or method for name. If you omit entry, this method removes any entry or method with
this name.

5.3.9.21. setMethod

setMethod( name

, method

)

Associates index name (translated to uppercase) with method method. Thus, the object returns the
result of running method when you access this entry. This occurs when you specify name on the [],
at, entry, or remove method. This method replaces any existing item or method for name.

You can specify "UNKNOWN" as name. Doing so supplies a method that is run whenever an at
or entry message specifies a name for which no item or method exists in the collection. This
method's first argument is the specified directory index. This method has no effect on the action of any
hasEntry, hasIndex, items, remove, or supplier message sent to the collection.

The method can be a string containing a method source line instead of a method object. Alternatively,
an array of strings containing individual method lines can be passed. In either case, an equivalent
method object is created.

If you omit method, setMethod removes the entry with the specified name.

5.3.9.22. supplier

supplier

Returns a Supplier object for the collection. The supplier allows you to iterate over the index/item pairs
in the directory at the time the supplier was created. The supplier iterates the items in an unspecified
order.

5.3.9.23. unknown

unknown( messagename , messageargs )

Runs either the entry or setEntry method, depending on whether messagename ends with an equal
sign.

If messagename does not end with an equal sign, this method runs the entry method, passing
messagename as its argument. The messageargs argument is ignored. The entry method is the
return result.

If messagename does end with an equal sign, this method runs the setEntry method, passing the
first part of messagename (up to, but not including, the final equal sign) as its first argument, and the
first item in the array messageargs as its second argument. In this case, unknown returns no result.

5.3.9.24. unsetMethod

unsetMethod( name )

Removes the association between index name (translated to uppercase) and a method.
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5.3.9.25. Examples

Example 5.199. Directory class — examples

/******************************************************************************/
/*  A Phone Book Directory program                                            */
/*  This program demonstrates use of the directory class.                     */
/******************************************************************************/

/* Define an UNKNOWN method that adds an abbreviation lookup feature.         */
/* Directories do not have to have an UNKNOWN method.                         */
book = .directory~new~~setMethod("UNKNOWN", .methods["UNKNOWN"])

book["ANN" ] = "Ann B. ....... 555-6220"
book["ann" ] = "Little annie . 555-1234"
book["JEFF"] = "Jeff G. ...... 555-5115"
book["MARK"] = "Mark C. ...... 555-5017"
book["MIKE"] = "Mike H. ...... 555-6123"
book~Rick    = "Rick M. ...... 555-5110"  /* Same as book["RICK"] = ...       */

Do i over book                 /* Iterate over the collection                 */
  Say book[i]
end i

Say ""                         /* Index lookup is case sensitive...           */
Say book~entry("Mike")         /* ENTRY method uppercases before lookup       */
Say book["ANN"]                /* Exact match                                 */
Say book~ann                   /* Message sends uppercase before lookup       */
Say book["ann"]                /* Exact match with lowercase index            */

Say ""
Say book["M"]                  /* Uses UNKNOWN method for lookup              */
Say book["Z"]
Exit

/* Define an unknown method to handle indexes not found.                      */
/* Check for abbreviations or indicate listing not found                      */
::Method unknown
  Parse arg at_index
  value = ""
  Do i over self
    If abbrev(i, at_index) then do
      If value <> "" then value = value", "
      value = value || self~at(i)
    end
  end i
  If value = "" then value = "No listing found for" at_index
  Return value

5.3.10. IdentityTable Class

An IdentityTable is a collection with indexes that can be any object. In an IdentityTable, each
item is associated with a single index, and there can be only one item for each index. Index and item
matches are made using an object identity comparison. That is, an index will only match if the same
instance is used in the collection.

Table 5.20. IdentityTable Class
Object

Methods inherited from the Object class
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Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll

IdentityTable

new (Class Method)

[] hasIndex put
[]= hasItem remove
allIndexes index removeItem
allItems isEmpty supplier
at items
empty makeArray

5.3.10.1. new (Class Method)

new(

size

)

Returns an empty IdentityTable object.

If you specify size, a hint how large the new IdentityTable object is expected to grow, this is used to
optimize the initial allocation.

size must be a non-negative whole number.

5.3.10.2. []

[ index ]

Returns the item associated with index. This method is the same as the at method.

5.3.10.3. []=

[ index ] = item
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Adds item to the table at index index. This method is the same as the put method.

5.3.10.4. allIndexes

allIndexes

Returns an array of all indices contained in the table.

5.3.10.5. allItems

allItems

Returns an array of all items contained in the table.

5.3.10.6. at

at( index )

Returns the item associated with index index. Returns .nil if the IdentityTable has no item associated
with index.

5.3.10.7. empty

empty

Returns the receiving IdentityTable with all items removed.

5.3.10.8. hasIndex

hasIndex( index )

Returns .true if the IdentityTable contains any item associated with index index, or .false.

5.3.10.9. hasItem

hasItem( item )

Returns .true if the IdentityTable contains the item at any index position or otherwise returns
.false.

5.3.10.10. index

index( item )

Returns the index of the specified item within the table. If the target item appears at more than one
index, the first located index will be returned. Returns .nil if the table does not contain the specified
item.
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5.3.10.11. isEmpty

isEmpty

Returns .true if the table is empty. Returns .false otherwise.

5.3.10.12. items

items

Returns the number of items in the collection.

5.3.10.13. makeArray

makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order.

5.3.10.14. put

put( item , index )

Makes the object item a member item of the collection and associates it with index index. The new
item replaces any existing item associated with index index.

5.3.10.15. remove

remove( index )

Returns and removes from a collection the member item with index index. Returns .nil if no item has
index index.

5.3.10.16. removeItem

removeItem( item )

Removes an item from the table. If the target item exists at more than one index, the first located item
is removed. The return value is the removed item.

5.3.10.17. supplier

supplier

Returns a Supplier object for the collection. The supplier allows you iterate over the index/item pairs
contained in the table at the time the supplier was created. The supplier iterates over the items in an
unspecified order.
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5.3.11. List Class

A List is a non-sparse sequenced collection similar to the Array class to which you can add new
items at any position in the sequence. The List creates a new index value whenever an item is added
to the List and the associated index value remains valid for that item regardless of other additions or
removals. Only indexes the List object generates are valid, i.e. the List is never a sparse list and the
List object will not modify indexes for items in the list.

Table 5.21. List Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ OrderedCollection (Mixin Class)

Methods inherited from the OrderedCollection class
append (Abstract Method) intersection sortWith
appendAll last (Abstract Method) stableSort
delete (Abstract Method) lastItem (Abstract Method) stableSortWith
difference next (Abstract Method) subset
first (Abstract Method) previous (Abstract Method) union
firstItem (Abstract Method) section (Abstract Method) xor
insert (Abstract Method) sort

List

new (Class Method)
of (Class Method)

[] firstItem makeArray
[]= hasIndex next
allIndexes hasItem previous
allItems index put
append insert remove
at isEmpty removeItem
delete items section
empty last supplier
first lastItem

5.3.11.1. new (Class Method)
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new(

size

)

Returns a new empty List object.

If you specify size, a hint how large the new List object is expected to grow, this is used to optimize the
initial allocation.

size must be a non-negative whole number.

5.3.11.2. of (Class Method)

of( item

,

)

Returns a newly created list containing the specified item objects in the order specified.

5.3.11.3. []

[ index ]

Returns the item located at index. This method is the same as the at method.

5.3.11.4. []=

[ index ] = item

Replaces the item at index with item. This method is the same as the put method.

5.3.11.5. allIndexes

allIndexes

Returns an array of all indexes contained in the list in the same order they are used in the list.

5.3.11.6. allItems

allItems

Returns an array of all items contained in the list in list iteration order.

5.3.11.7. append

append( item )

Appends item to the end of the list, returning the index associated with item.
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5.3.11.8. at

at( index )

Returns the item associated with index index. Returns .nil if the list has no item associated with
index.

5.3.11.9. delete

delete( index )

Returns and deletes the member item with the specified index from the list. If there is no item with the
specified index, .nil is returned and no item is deleted. All elements following the deleted item will
be moved up in the list ordering, but the indexes associated with the moved items will not change. The
size of the list will be reduced by one element. The delete method and the remove method produce
the same result for the list class.

5.3.11.10. empty

empty

Returns the receiving List with all items removed.

5.3.11.11. first

first

Returns the index of the first item in the list or .nil if the list is empty.

5.3.11.12. firstItem

firstItem

Returns the first item in the list or .nil if the list is empty.

Example 5.200. List class — firstItem method

musketeers=.list~of("Porthos","Athos","Aramis") /* Creates list MUSKETEERS      */
item=musketeers~firstItem                       /* Gives first item in list     */
                                                /* (Assigns "Porthos" to item)  */

5.3.11.13. hasIndex

hasIndex( index )

Returns .true if the list contains any item associated with index index, or .false.
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5.3.11.14. hasItem

hasItem( item )

Returns .true if the list contains the item at any index position or otherwise returns .false. Item
equality is determined by using the == method of item.

5.3.11.15. index

index( item )

Returns the index of the specified item within the list. If the target item appears at more than one
index, the first located index will be returned. Returns .nil if the list does not contain the specified
item. Item equality is determined by using the == method of item.

5.3.11.16. insert

insert( item

, index

)

Returns a list-supplied index for item item, which is added to the list. The inserted item follows an
existing item with index index in the list ordering. If index is .nil, item becomes the first item in the
list. If you omit index, the item becomes the last item in the list.

Inserting an item in the list at position index will cause the items in the list after position index to have
their relative positions shifted by the list object. The index values for any items in the list are not
modified by the insertion. 

Example 5.201. List class — insert method

musketeers=.list~of("Porthos","Athos","Aramis") /* Creates list MUSKETEERS        */
                                                /* consisting of: Porthos         */
                                                /*                Athos           */
                                                /*                Aramis          */
index=musketeers~first                    /* Gives index of first item      */
musketeers~insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos  */
                                          /* List is now: Porthos           */
                                          /*              D'Artagnan   */
                                          /*              Athos             */
                                          /*              Aramis            */
/* Alternately, you could use */
musketeers~insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */
                                          /* List is now:  D'Artagnan  */
                                          /*               Porthos          */
                                          /*               Athos            */
                                          /*               Aramis           */
/* Alternately, you could use */
musketeers~insert("D'Artagnan")      /* Adds D'Artagnan after Aramis   */
                                          /* List is now:  Porthos          */
                                          /*               Athos            */
                                          /*               Aramis           */
                                          /*               D'Artagnan  */
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5.3.11.17. isEmpty

isEmpty

Returns .true if the list is empty. Returns .false otherwise.

5.3.11.18. items

items

Returns the number of items in the list.

5.3.11.19. last

last

Returns the index of the last item in the list or .nil if the list is empty.

5.3.11.20. lastItem

lastItem

Returns the last item in the list or .nil if the list is empty.

5.3.11.21. makeArray

makeArray

Returns a single-dimensional Array containing the list collection items. The array indexes range from 1
to the number of items. The order in which the collection items appear in the array is the same as their
sequence in the list collection.

5.3.11.22. next

next( index )

Returns the index of the item that follows the list item having index index. Returns .nil if index is the
end of the list.

5.3.11.23. previous

previous( index )

Returns the index of the item that precedes the list item having index index. Returns .nil if index is
the beginning of the list.
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5.3.11.24. put

put( item , index )

Replaces any existing item associated with the specified index with the item. If index does not exist in
the list, an error is raised.

5.3.11.25. remove

remove( index )

Returns and removes from a collection the member item with index index. If no item has index index,
this method returns .nil and removes no item.

Removing an item from the list at position index will shift the relative position of items after position
index. The index values assigned to those items will not change.

5.3.11.26. removeItem

removeItem( item )

Removes an item from the list. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.11.27. section

section( start

, items

)

Returns a new list (of the same class as the receiver) containing selected items from the receiver list.
The first item in the new list is the item corresponding to index start in the receiver list. Subsequent
items in the new list correspond to those in the receiver list (in the same sequence). If you specify the
whole number items, the new list contains only this number of items (or the number of subsequent
items in the receiver list, if this is less than items). If you do not specify items, the new list contains all
subsequent items from the receiver list. The receiver list remains unchanged.

5.3.11.28. supplier

supplier

Returns a Supplier object for the list. The supplier allows you to iterate over the index/item pairs stored
in the list at the time the supplier is created. The iteration is in the same order as the list sequence
order.

5.3.12. Properties Class
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A Properties object is a collection with unique indexes that are character strings representing
names and items that are also restricted to character string values. Properties objects are useful for
processing bundles of application option values.

Table 5.22. Properties Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll

Directory

Methods inherited from the Directory class
new (Class Method)

[] hasIndex removeEntry
[]= hasItem removeItem
allIndexes index setEntry
allItems isEmpty setMethod
at items supplier
empty makeArray unknown
entry put unsetMethod
hasEntry remove

Properties

load (Class method)

[]= load setProperty
getLogical put setWhole
getProperty save
getWhole setLogical

5.3.12.1. load (Class method)

load( source )
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Loads a set of properties from source and returns them as a new Properties object. The load source
can be either the string name of a file, a File object, or a Stream object. Properties are read from
source as individual lines using lineIn. Blank lines and lines with a Rexx line comment ("--") as the first
non-blank characters are ignored. Otherwise, the lines are assumed to be of the form "name=value"
and are added to the receiver Properties value using name as the index for the value.

5.3.12.2. new (Class method)

new(

size

)

Returns an empty Properties object.

If you specify size, a hint how large the new Properties object is expected to grow, this is used to
optimize the initial allocation.

size must be a non-negative whole number.

5.3.12.3. []=

[ name ] = item

Adds item using the index index. This method is the same as the put method.

5.3.12.4. getLogical

getLogical( name

, default

)

Returns the value of name as either .true or .false. The raw value of the name may be either the
numeric values "0" or "1" or the string values "true" or "false". Any other value will raise a syntax error.
If the property name does not exist and default has been specified, the default value will be returned. If
default has not been specified, a syntax error is raised for missing values.

5.3.12.5. getProperty

getProperty( name

, default

)

Returns the value of name. If property name does not exist and default has been specified, the default
value will be returned. If default has not been specified, .nil is returned.

5.3.12.6. getWhole

getWhole( name

, default

)
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Returns the value of name, validated as being a Rexx whole number. If property name does not exist
and default has been specified, the default value will be returned. If default has not been specified, a
syntax error is raised for missing values.

5.3.12.7. load

load( source )

Loads a set of properties into the receiving Properties object from source. The load source can be
either the string name of a file, a File object, or a Stream object. Properties are read from the source
as individual lines using lineIn. Blank lines and lines with a Rexx line comment ("--") as the first non-
blank characters are ignored. Otherwise, the lines are assumed to be of the form "name=value" and
are added to the receiver Properties value using name as the index for the value.

Properties loaded from source that have the same names as existing items will replace the current
entries.

5.3.12.8. put

put( item , name )

Makes the object item a member item of the collection and associates it with index name. The item
value must be a character string. The new item replaces any existing item or method associated with
index name.

5.3.12.9. save

save( target )

Saves a set of properties into target. The save target can be either the string name of a file, a File
object, or a Stream object. Properties are stored as individual lines using lineOut. The lines are written
in the form "name=value". A saved Properties file can be reloaded using the Properties load method.

5.3.12.10. setLogical

setLogical( name , value )

Sets a logical value in the property bundle. The value argument must be either the numbers "0" or "1",
or the logical values .true or .false. The property value will be added with value converted in to
the appropriate "true" or "false" string value.

5.3.12.11. setProperty

setProperty( name , value )

Sets a named property in the property bundle. The value argument must be a character string value.

5.3.12.12. setWhole
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setWhole( name , value )

Sets a whole number value in the property bundle. The value argument must be a valid Rexx whole
number.

5.3.13. Queue Class

A Queue is a non-sparse sequenced collection with whole-number indexes. The indexes specify the
position of an item relative to the head (first item) of the queue. Adding or removing an item changes
the association of an index to its queue item. You can add items at either the tail or the head of the
queue.

Table 5.23. Queue Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ OrderedCollection (Mixin Class)

Methods inherited from the OrderedCollection class
append (Abstract Method) intersection sortWith
appendAll last (Abstract Method) stableSort
delete (Abstract Method) lastItem (Abstract Method) stableSortWith
difference next (Abstract Method) subset
first (Abstract Method) previous (Abstract Method) union
firstItem (Abstract Method) section (Abstract Method) xor
insert (Abstract Method) sort

Queue

new (Class Method)
of (Class Method)

[] hasItem pull
[]= index push
allIndexes insert put
allItems isEmpty queue
append items remove
at last removeItem
delete lastItem section
empty makeArray size
first next supplier
firstItem peek
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hasIndex previous

5.3.13.1. new (Class Method)

new(

size

)

Returns a new empty Queue object.

If you specify size, a hint how large the new Queue object is expected to grow, this is used to optimize
the initial allocation.

size must be a non-negative whole number.

5.3.13.2. of (Class Method)

of( item

,

)

Returns a newly created queue containing the specified item objects in the order specified.

5.3.13.3. []

[ index ]

Returns the item located at index index. This method is the same as the at method.

5.3.13.4. []=

[ index ] = item

Replaces item at index with item. This method is the same as the put method.

5.3.13.5. allIndexes

allIndexes

Returns an array of all index values for the queue.

For the Queue class, the indices are integers from 1 to items.

5.3.13.6. allItems

allItems

Returns an array of all items contained in the queue, in queue order.
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5.3.13.7. append

append( item )

Appends item to the end of the queue, returning the index of the inserted item.

5.3.13.8. at

at( index )

Returns the item associated with index index. Returns .nil if the Queue has no item associated with
index.

5.3.13.9. delete

delete( index )

Returns and deletes the member item with the specified index from the queue. If there is no item with
the specified index, .nil is returned and no item is deleted. All elements following the deleted item
will be moved up in the queue ordering and the item indexes will be adjusted for the deletion. The size
of the queue will be reduced by one element. The delete method and the remove method produce
the same result for the queue class. 

Example 5.202. Queue class — delete method

   a = .queue~of("Fred", "Mike", "Rick", "David")
   a~delete(2)  -- removes "Mike", resulting in the queue
                -- ("Fred", "Rick", "David")

5.3.13.10. empty

empty

Returns the receiving Queue with all items removed.

5.3.13.11. first

first

Returns the index of the first item in the queue or .nil if the queue is empty. The index will always be
1 for non-empty queues.

5.3.13.12. firstItem

firstItem

Returns the first item in the queue or .nil if the queue is empty.
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5.3.13.13. hasIndex

hasIndex( index )

Returns .true if the queue contains any item associated with index index, or .false.

5.3.13.14. hasItem

hasItem( item )

Returns .true if the queue contains the item at any index position or otherwise returns .false. Item
equality is determined by using the == method of item.

5.3.13.15. index

index( item )

Returns the index of the specified item within the queue. If the target item appears at more than one
index, the first located index will be returned. Returns .nil if the queue does not contain the specified
item. Item equality is determined by using the == method of item.

5.3.13.16. insert

insert( item

, index

)

Returns a queue-supplied index for item, which is added to the queue. The inserted item follows any
existing item with index index in the queue ordering. If index is .nil, item is inserted at the head of
the queue. If you omit index, item becomes the last item in the queue.

Inserting an item in the queue at position index will cause the items in the queue after position index to
have their indexes modified by the queue object. 

Example 5.203. Queue class — insert method

musketeers=.queue~of("Porthos","Athos","Aramis) /* Creates queue MUSKETEERS       */
                                                /* consisting of: Porthos         */
                                                /*                Athos           */
                                                /*                Aramis          */
index=musketeers~first                     /* Gives index of first item      */
musketeers~insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos  */
                                           /* List is now: Porthos           */
                                           /*              D'Artagnan   */
                                           /*              Athos             */
                                           /*              Aramis            */
/* Alternately, you could use */
musketeers~insert("D'Artagnan",.nil)  /* Adds D'Artagnan before Porthos */
                                           /* List is now:  D'Artagnan  */
                                           /*               Porthos          */
                                           /*               Athos            */
                                           /*               Aramis           */
/* Alternately, you could use */
musketeers~insert("D'Artagnan")       /* Adds D'Artagnan after Aramis   */
                                           /* List is now:  Porthos          */
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                                           /*               Athos            */
                                           /*               Aramis           */
                                           /*               D'Artagnan  */

5.3.13.17. isEmpty

isEmpty

Returns .true if the queue is empty. Returns .false otherwise.

5.3.13.18. items

items

Returns the number of items in the queue.

See also method size , which is a synonym for items.

5.3.13.19. last

last

Returns the index of the last item in the queue or .nil if the queue is empty.

5.3.13.20. lastItem

lastItem

Returns the last item in the queue or .nil if the queue is empty.

5.3.13.21. makeArray

makeArray

Returns a single-dimensional Array containing the receiver queue items. The array indexes range from
1 to the number of items. The order in which the queue items appear in the array is the same as their
queuing order, with the head of the queue as index 1.

5.3.13.22. next

next( index )

Returns the index of the item that follows the queue item having index index or returns .nil if the item
having that index is last in the queue.

5.3.13.23. peek
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peek

Returns the item at the head of the queue. Returns .nil if the queue is empty. The collection remains
unchanged.

5.3.13.24. previous

previous( index )

Returns the index of the item that precedes the queue item having index index or .nil if the item
having that index is first in the queue.

5.3.13.25. pull

pull

Returns and removes the item at the head of the queue. Returns .nil if the queue is empty.

5.3.13.26. push

push( item )

Adds the object item to the head of the queue.

5.3.13.27. put

put( item , index )

Replaces any existing item associated with the specified index with the new item. If the index does not
exist in the queue, an error is raised.

5.3.13.28. queue

queue( item )

Adds the object item to the tail of the queue.

5.3.13.29. remove

remove( index )

Returns and removes from a collection the member item with index index. Returns .nil if no item has
index index.

5.3.13.30. removeItem

removeItem( item )
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Removes an item from the queue. If the target item exists at more than one index, the first located
item is removed. The return value is the removed item. Item equality is determined by using the ==
method of item.

5.3.13.31. section

section( start

, items

)

Returns a new queue (of the same class as the receiver) containing selected items from the receiver.
The first item in the new queue is the item corresponding to index start in the receiver. Subsequent
items in the new queue correspond to those in the receiver (in the same sequence). If you specify the
whole number items, the new queue contains only this number of items (or the number of subsequent
items in the receiver, if this is less than items). If you do not specify items, the new queue contains all
subsequent items from the receiver. The receiver queue remains unchanged.

5.3.13.32. size  
size

Returns the size, which is the number of items in the queue.

See also method items for which this method is a synonym.

5.3.13.33. supplier

supplier

Returns a Supplier object for the queue. The supplier allows you to iterate over the index/item pair
contained in the queue at the time the supplier was created. The supplier iterates the items in their
queuing order, with the head of the queue first.

5.3.14. Relation Class

A Relation is a collection with indexes that can be any object. In a Relation, each item is associated
with a single index, but there can be more than one item with the same index (unlike a Table, which
can contain only one item for any index).

Table 5.24. Relation Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
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allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll

Relation

new (Class Method)

[] hasIndex removeAll
[]= hasItem removeItem
allAt index subset
allIndex intersection supplier
allIndexes isEmpty union
allItems items uniqueIndexes
at makeArray xor
difference put
empty remove

5.3.14.1. new (Class Method)

new(

size

)

Returns an empty Relation object.

If you specify size, a hint how large the new Relation object is expected to grow, this is used to
optimize the initial allocation.

size must be a non-negative whole number.

5.3.14.2. []

[ index ]

Returns an item associated with index. This method is the same as the at method.

5.3.14.3. []=

[ index ] = item

Adds item to the relation associated with index index. This method is the same as the put method.

5.3.14.4. allAt
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allAt( index )

Returns a single-dimensional Array containing all the items associated with index index. Items in the
array appear in an unspecified order. Index equality is determined by using the == method of index.

5.3.14.5. allIndex

allIndex( item )

Returns a single-dimensional Array containing all indexes for item item, in an unspecified order. Item
equality is determined by using the == method of item.

5.3.14.6. allIndexes

allIndexes

Returns an array of all indexes contained in the Relation. The returned array will have one index for
every item stored in the relation, including duplicates. To retrieve the indexes without duplicates, use
the uniqueIndexes method.

5.3.14.7. allItems

allItems

Returns an array of all items contained in the relation.

5.3.14.8. at

at( index )

Returns the item associated with index index. If the relation contains more than one item associated
with index index, the item returned is unspecified. (The program should not rely on any particular item
being returned.) Returns .nil if the relation has no item associated with index index. Index equality is
determined by using the == method of index.

5.3.14.9. difference

difference( argument )

Returns a new Relation containing only those items that the argument collection does not contain
(with the same associated index). The argument can be a Collection object or any other object that
supports a makeArray method.

5.3.14.10. empty

empty

Returns the receiving Relation with all items removed.
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5.3.14.11. hasIndex

hasIndex( index )

Returns .true if the Relation contains any item associated with index index, or .false. Index
equality is determined by using the == method of index.

5.3.14.12. hasItem

hasItem( item

, index

)

Returns .true if the relation contains the member item item, .false. If index is specified, hasItem
will only return .true if the relation contains the pairing of item associated with index index. Item and
index equality is determined by using the == method.

5.3.14.13. index

index( item )

Returns the index for item item. If there is more than one index associated with item item, the one
returned is not defined. Item equality is determined by using the == method of item.

5.3.14.14. intersection

intersection( argument )

Returns a new collection (of the same class as the receiver) containing only those items that are
in both the receiver collection and the argument collection with the same associated index. The
argument can be a Collection object or any other object that supports a makeArray method.

5.3.14.15. isEmpty

isEmpty

Returns .true if the relation is empty. Returns .false otherwise.

5.3.14.16. items

items(

index

)

Returns the number of relation items with index index. If you specify no index, this method returns the
total number of items associated with all indexes in the relation. Index equality is determined by using
the == method of index.
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5.3.14.17. makeArray

makeArray

Returns a single-dimensional Array containing the index objects. The collection items appear in the
array in an unspecified order.

5.3.14.18. put

put( item , index )

Makes the object item a member item of the relation and associates it with index index. If the relation
already contains any items with index index, this method adds a new member item item with the same
index, without removing any existing member items.

5.3.14.19. remove

remove( index )

Returns and removes from a relation the member item with index index. If the relation contains more
than one item associated with index index, the item returned and removed is unspecified. Returns
.nil if no item has index index. Index equality is determined by using the == method of index.

5.3.14.20. removeAll

removeAll( index )

Returns and removes from a relation all member items with index index. All removed items are
returned in an array containing each of the removed items. The order of the returned items is
unspecified. If no items have the specified index, an empty array is returned. Index equality is
determined by using the == method of index.

5.3.14.21. removeItem

removeItem( item

, index

)

If index is not specified, returns and removes from a relation the member item item. If the relation
contains item associated with more than one index, the item returned and removed is unspecified.

If index is specified, returns and removes the member item item associated with index index. If item is
the only member with index, then the index is also removed from the Relation.

Returns .nil if item is not a member item (associated with index index, if specified).

5.3.14.22. subset

subset( argument )
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Returns .true if all items in the receiver Relation are also contained in the argument collection with
the same associated index; returns .false otherwise. The argument can be a Collection object or
any other object that supports a makeArray method.

5.3.14.23. supplier

supplier(

index

)

Returns a Supplier object for the relation. The supplier allows you to iterate over all index/item pairs in
the relation at the time the supplier was created. The supplier enumerates the items in an unspecified
order. If you specify index, the supplier contains all of the items with the specified index.

5.3.14.24. union

union( argument )

Returns a new collection containing all items from the receiver collection and the argument collection.
The argument can be a Collection object or any other object that supports a makeArray method.

5.3.14.25. uniqueIndexes

uniqueIndexes

Returns an array of all indexes contained in the Relation, with no duplicates.

5.3.14.26. xor

xor( argument )

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection. All index-item pairs that appear in both collections are
removed. The argument can be a Collection object or any other object that supports a makeArray
method.

5.3.14.27. Examples

Example 5.204. Relation class — examples

/* Use a relation to express parent-child relationships */
family = .relation~new
family["Henry"] = "Peter"    /* Peter is Henry's child   */
family["Peter"] = "Bridget"  /* Bridget is Peter's child */
family["Henry"] = "Jane"     /* Jane is Henry's child    */

/* Show all children of Henry recorded in the family relation */
henrys_kids = family~allAt("Henry")
Say "Here are all the listed children of Henry:"
Do kid Over henrys_kids
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  Say " "kid
End

/* Show all parents of Bridget recorded in the family relation */
bridgets_parents = family~allIndex("Bridget")
Say "Here are all the listed parents of Bridget:"
Do parent Over bridgets_parents
  Say " "parent
End

/* Display all the grandparent relationships we know about. */
checked_for_grandkids = .set~new         /* Records those we have checked      */
Do grandparent Over family               /* Iterate for each index in family   */
  If checked_for_grandkids~hasIndex(grandparent)
    Then Iterate                         /* Already checked this one           */
  kids = family~allat(grandparent)       /* Current grandparent's children     */
  Do kid Over kids                       /* Iterate for each item in kids      */
    grandkids = family~allAt(kid)        /* Current kid's children             */
    Do grandkid Over grandkids           /* Iterate for each item in grandkids */
      Say grandparent "has a grandchild named" grandkid"."
    End
  End
  checked_for_grandkids~put(grandparent) /* Add to already-checked set         */
End

5.3.15. Set Class

A Set is a collection containing member items where the index is the same as the item (similar to a
Bag collection). Any object can be placed in a Set. There can be only one occurrence of any object in
a Set (unlike a Bag collection). Item equality is determined by using the == method.

Table 5.25. Set Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ SetCollection (Mixin Class)

Methods inherited from the SetCollection class
(no class or instance methods)

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll
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Set

new (Class Method)
of (Class Method)

[] hasItem putAll
[]= index remove
allIndexes intersection removeItem
allItems isEmpty subset
at items supplier
empty makeArray union
hasIndex put xor

5.3.15.1. of (Class Method)

of( item

,

)

Returns a newly created set containing the specified item objects.

5.3.15.2. new (Class Method)

new(

size

)

Returns an empty Set object.

If you specify size, a hint how large the new Set object is expected to grow, this is used to optimize the
initial allocation.

size must be a non-negative whole number.

5.3.15.3. []

[ index ]

Returns the item associated with index. This method is the same as the at method.

5.3.15.4. []=

[

index

] = item

Adds an item to the Set. If specified, index must be the same object as item.

This method is the same as the put method.

5.3.15.5. allIndexes
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allIndexes

Returns an array of all indexes contained in the set.

5.3.15.6. allItems

allItems

Returns an array of all items contained in the set.

5.3.15.7. at

at( index )

Returns the item associated with index index. Returns .nil if the Set has no item associated with
index.

5.3.15.8. empty

empty

Returns the receiving Set with all items removed.

5.3.15.9. hasIndex

hasIndex( index )

Returns .true if the Relation contains any item associated with index index, or .false.

5.3.15.10. hasItem

hasItem( value )

Returns .true if the Relation contains the specified item at any index location. Returns .false
otherwise.

5.3.15.11. index

index( item )

Returns the index of the specified item within the set. If the target item appears at more than one
index, the first located index will be returned. Returns .nil if the set does not contain the specified
item. Item equality is determined by using the == method of item.

5.3.15.12. intersection

intersection( argument )
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Returns a new collection (of the same class as the receiver) containing only those items from the
receiver whose indexes are in both the receiver collection and the argument collection. The argument
can be a Collection object or any other object that supports a makeArray method. The argument
must also allow all of the index values in the receiver collection.

5.3.15.13. isEmpty

isEmpty

Returns .true if the set is empty. Returns .false otherwise.

5.3.15.14. items

items

Returns the number of items in the collection.

5.3.15.15. makeArray

makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order.

5.3.15.16. put

put( item

, index

)

Adds item to the Set. If there is an equivalent item in the Set, the exiting item will be replaced by the
new instance. Item equality is determined by using the == method of item. If index is specified, it must
be the same as item.

5.3.15.17. putAll

putAll( collection )

Returns the receiving Set with all items in collection added to it. The collection argument can be any
object that supports a supplier method. Items from collection are added using the item values
returned by the supplier. If duplicate items exist in collection, the last item provided by the supplier will
overwrite previous items with the same index.

5.3.15.18. remove

remove( index )

Returns and removes the set item with index index. Returns .nil if no item has index index.
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5.3.15.19. removeItem

removeItem( item )

Removes an item from the set. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.15.20. subset

subset( argument )

Returns .true if all items in the receiver collection are also contained in the argument collection;
returns .false otherwise. The argument can be a Collection object or any other object that
supports a makeArray method. The argument must also allow all of the index values in the receiver
collection.

5.3.15.21. supplier

supplier

Returns a Supplier object for the collection. The supplier allows you iterate over the index/item pairs
contained in the table at the time the supplier was created. The supplier iterates over the items in an
unspecified order.

5.3.15.22. union

union( argument )

Returns a new Set contains all the items from the receiver collection and selected items from the
argument collection. This method includes an item from argument in the new collection only if there is
no item already in the in the receiver collection and the method has not already included a matching
item. The order in which this method selects items in argument is unspecified. The argument can be a
Collection object or any other object that supports a makeArray method. The argument must also
allow all of the index values in the receiver collection.

5.3.15.23. xor

xor( argument )

Returns a new Set that contains all items from the receiver collection and the argument collection; all
items that appear in both collections are removed. The argument can be a Collection object or any
other object that supports a makeArray method. The argument must also allow all of the index values
in the receiver collection.

5.3.16. Stem Class

A Stem object is a collection with unique indexes that are character strings.
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Table 5.26. Stem Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll

Stem

new (Class Method)

[] hasItem removeItem
[]= index request
allIndexes isEmpty supplier
allItems items toDirectory
at makeArray unknown
empty put
hasIndex remove

Stems are automatically created whenever a Rexx stem variable or Rexx compound variable is used.
For example:

Example 5.205. Stem class — examples

a.1 = 2

creates a new stem collection with the name A. and assigns it to the Rexx variable A.; it also assigns
the value 2 to entry 1 in the collection.

The value of an uninitialized stem index is the stem object NAME concatenated with the derived stem
index.

Example 5.206. Stem class — examples

say a.[1,2]  -- implicitly creates stem object with name "A."
-- displays "A.1.2"

a = .stem~new("B.")
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say a[1,2]     -- displays "B.1.2"

In addition to the items explicitly assigned to the collection indexes, a value may be assigned to all
possible stem indexes. The []= method (with no index argument) will assign the target value to all
possible stem indexes. Following assignment, a reference to any index will return the new value until
another value is assigned or the index is dropped.

The [] method (with no index specified) will retrieve any globally assigned value. By default, this
returns the stem NAME value.

In addition to the methods defined in the following, the Stem class removes the methods =, ==, \=,
\==, <>, and >< using the DEFINE method.

5.3.16.1. new (Class Method)

new(

name

)

Returns a new stem object. If you specify a string name, this value is used to create the derived name
of compound variables. The default stem name is a null string ("").

5.3.16.2. []

[

index

,

]

Returns the item associated with the specified indexes. Each index is an expression; use commas
to separate the expressions. The Stem object concatenates the index string values, separating them
with a period (.), to create a derived index. A null string ("") is used for any omitted expressions.
The resulting string is the index of the target stem item. If the stem has no item associated with the
specified final index, the stem default value is returned. If a default value has not been set, the stem
name concatenated with the final index string is returned.

If you do not specify index, the stem default value is returned. If no default value has been assigned,
the stem name is returned.

Note

You cannot use the [] method in a DROP or PROCEDURE instruction.

5.3.16.3. []=

[

index

,

] = value
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Makes value a member item of the stem collection and associates it with the specified index. The final
index is derived by concatenation of each of the index arguments together with a "." separator. If you
specify no index arguments, a new default stem value is assigned. Assigning a new default value will
re-initialize the stem and remove all existing assigned indexes.

5.3.16.4. allIndexes

allIndexes

Returns an array of all the stem tail names used in the stem.

5.3.16.5. allItems

allItems

Returns an array of all items contained in the stem.

5.3.16.6. at

at( tail )

Returns the item associated with the specified tail. .nil is returned if the stem has no item associated
with the specified tail.

5.3.16.7. empty

empty

Returns the receiving Stem object with all items removed.

5.3.16.8. hasIndex

hasIndex( tail )

Returns .true if the Stem contains any item associated with a stem tail tail, or .false.

5.3.16.9. hasItem

hasItem( value )

Returns .true if the Stem contains the value at any tail position or otherwise returns .false. Item
equality is determined by using the == method of item.

5.3.16.10. index

index( item )
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Returns the index of the specified item within the stem. Returns .nil if the stem does not contain the
specified item. Item equality is determined by using the == method of item.

5.3.16.11. isEmpty

isEmpty

Returns .true if the stem is empty. Returns .false otherwise.

5.3.16.12. items

items

Returns the number of items in the collection.

5.3.16.13. makeArray

makeArray

Returns an array of all stem indexes that currently have an associated value. The items appear in the
array in an unspecified order.

5.3.16.14. put

put( item , tail )

Replaces any existing item associated with the specified tail with the new item item.

5.3.16.15. remove

remove( tail )

Returns and removes from the stem the member item with index tail. Returns .nil if no item has
index tail.

5.3.16.16. removeItem

removeItem( item )

Removes an item from the stem. If the target item exists at more than one tail, the first located item is
removed. Item equality is determined by using the == method of item. The return value is the removed
item.

5.3.16.17. request

request( classid )
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This method requests conversion to a specific class. All conversion requests except Array are
forwarded to the stem's current stem default value. Returns the result of the Stem class makeArray
method, if the requested class is Array. For all other classes, request forwards the message to the
stem object's default value.

5.3.16.18. supplier

supplier

Returns a Supplier object for the stem. The supplier allows you to iterate though the index/item pairs
contained in the Stem object at the time the supplier was created. The supplier iterates the items in an
unspecified order.

5.3.16.19. toDirectory

toDirectory

Returns a Directory object for the stem. The directory will contain a name/value pair for each stem
index with a directly assigned value.

5.3.16.20. unknown

unknown( messagename , messageargs )

Reissues or forwards all unknown messages to the stem's current default value. For additional
information, see Section 4.2.6, “Defining an UNKNOWN Method”.

5.3.17. StringTable Class

A StringTable is a MapCollection using unique character string indexes. The items of a StringTable
can be any valid Rexx object.

See also Directory Class, a MapCollection similar to StringTable, but with additional methods
setMethod and unsetMethod.

Table 5.27. StringTable Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
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disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll

StringTable

new (Class Method)

[] hasEntry put
[]= hasIndex remove
allIndexes hasItem removeEntry
allItems index removeItem
at isEmpty setEntry
empty items supplier
entry makeArray unknown

In addition to the standard put, []=, at, and [] methods defined for Collections, StringTable provides
access to items using methods. For example:

sTable = .StringTable~new
sTable~name = "Mike"   -- same as sTable~put("Mike", "NAME")
say sTable~name        -- same as say sTable["NAME"]

Note that StringTable does not provide methods setMethod and unsetMethod as the Directory
class does.

5.3.17.1. new (Class Method)

new(

size

)

Returns an empty StringTable object.

If you specify size, a hint how large the new StringTable object is expected to grow, this is used to
optimize the initial allocation.

size must be a non-negative whole number.

5.3.17.2. []

[ name ]

Returns the item corresponding to name. This method is the same as the at method.

5.3.17.3. []=

[ name ] = item
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Adds or replaces the entry at index name. This method is the same as the put method.

5.3.17.4. allIndexes

allIndexes

Returns an array of all the StringTable indexes.

5.3.17.5. allItems

allItems

Returns an array of all items contained in the StringTable.

5.3.17.6. at

at( name )

Returns the item associated with index name. If the StringTable has no item associated with index
name, .nil is returned.

Example 5.207. StringTable class — at method

say .environment~at("OBJECT")   /* Produces: "The Object class" */

5.3.17.7. empty

empty

Returns the receiving StringTable with all items removed.

5.3.17.8. entry

entry( name )

Returns the StringTable entry with index name (translated to uppercase). If there is no entry for name,
.nil is returned.

5.3.17.9. hasEntry

hasEntry( name )

Returns .true if the StringTable has an entry for index name (translated to uppercase), or .false.

5.3.17.10. hasIndex
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hasIndex( name )

Returns .true if the StringTable contains any item associated with index name, or .false.

5.3.17.11. hasItem

hasItem( item )

Returns .true if the StringTable contains the item at any index position or otherwise returns .false.
Item equality is determined by using the == method of item.

5.3.17.12. index

index( item )

Returns the index of the specified item within the StringTable. If the target item appears at more than
one index, the first located index will be returned. If the StringTable does not contain the specified
item, .nil is returned. Item equality is determined by using the == method of item.

5.3.17.13. isEmpty

isEmpty

Returns .true if the StringTable is empty. Returns .false otherwise.

5.3.17.14. items

items

Returns the number of items in the collection.

5.3.17.15. makeArray

makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order. (The program
should not rely on any order.)

5.3.17.16. put

put( item , name )

Makes the object item a member item of the collection and associates it with index name. The new
item replaces any existing item or method associated with index name.

5.3.17.17. remove
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remove( name )

Removes and returns the member item with index name from the StringTable. If there is no item with
index name, .nil is returned.

5.3.17.18. removeEntry
 

removeEntry( name )

Removes and returns the member item with index name (translated to uppercase) from the
StringTable. If there is no item with index name, .nil is returned.

See also
• method setEntry,
• method hasEntry, and
• method entry.

5.3.17.19. removeItem

removeItem( item )

Removes an item from the StringTable. If the target item exists at more than one index, the first
located item is removed. The return value is the removed item. Item equality is determined by using
the == method of item.

5.3.17.20. setEntry

setEntry( name

, entry

)

Sets the StringTable entry with index name (translated to uppercase) to the object entry, replacing any
existing entry or method for name. If you omit entry, this method removes any entry or method with
this name.

5.3.17.21. supplier

supplier

Returns a Supplier object for the collection. The supplier allows you to iterate over the index/item
pairs in the StringTable at the time the supplier was created. The supplier iterates the items in an
unspecified order.

5.3.17.22. unknown

unknown( messagename , messageargs )

Runs either the entry or setEntry method, depending on whether messagename ends with an equal
sign.
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If messagename does not end with an equal sign, this method runs the entry method, passing
messagename as its argument. The messageargs argument is ignored. The entry method is the
return result.

If messagename does end with an equal sign, this method runs the setEntry method, passing the
first part of messagename (up to, but not including, the final equal sign) as its first argument, and the
first item in the array messageargs as its second argument. In this case, unknown returns no result.

5.3.18. Table Class

A Table is a collection with indexes that can be any object. In a Table, each item is associated with a
single index, and there can be only one item for each index (unlike a Relation, which can contain more
than one item with the same index). Index equality is determined by using the == method.

Table 5.28. Table Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class
[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset
allIndexes (Abstract Method) hasItem supplier
allItems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
of (Class Method)

makeArray
putAll

Table

new (Class Method)

[] hasIndex put
[]= hasItem remove
allIndexes index removeItem
allItems isEmpty supplier
at items
empty makeArray

5.3.18.1. new (Class Method)

new(

size

)
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Returns an empty Table object.

If you specify size, a hint how large the new Table object is expected to grow, this is used to optimize
the initial allocation.

size must be a non-negative whole number.

5.3.18.2. []

[ index ]

Returns the item associated with index. This method is the same as the at method.

5.3.18.3. []=

[ index ] = item

Adds item to the table at index index. This method is the same as the put method.

5.3.18.4. allIndexes

allIndexes

Returns an array of all indexes contained in the table.

5.3.18.5. allItems

allItems

Returns an array of all items contained in the table.

5.3.18.6. at

at( index )

Returns the item associated with index index. Returns .nil if the Table has no item associated with
index.

5.3.18.7. empty

empty

Returns the receiving Table with all items removed.

5.3.18.8. hasIndex

hasIndex( index )
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Returns .true if the Table contains any item associated with index index, or .false.

5.3.18.9. hasItem

hasItem( value )

Returns .true if the Table contains the value at any index position or otherwise returns .false. Item
equality is determined by using the == method of item.

5.3.18.10. index

index( item )

Returns the index of the specified item within the table. If the target item appears at more than one
index, the first located index will be returned. Returns .nil if the table does not contain the specified
item. Item equality is determined by using the == method of item.

5.3.18.11. isEmpty

isEmpty

Returns .true if the table is empty. Returns .false otherwise.

5.3.18.12. items

items

Returns the number of items in the collection.

5.3.18.13. makeArray

makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order.

5.3.18.14. put

put( item , index )

Makes the object item a member item of the collection and associates it with index index. The new
item replaces any existing items associated with index index.

5.3.18.15. remove

remove( index )
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Returns and removes the table item with index index. Returns .nil if no item has index index.

5.3.18.16. removeItem

removeItem( item )

Removes an item from the table. If the target item exists at more than one index, the first located item
is removed. The return value is the removed item. Item equality is determined by using the == method
of item.

5.3.18.17. supplier

supplier

Returns a Supplier object for the collection. The supplier allows you iterate over the index/item pairs
contained in the table at the time the supplier was created. The supplier iterates over the items in an
unspecified order.

5.3.19. Sorting Ordered Collections
Any ordered collection, such as non-sparse Arrays or Lists can have its elements placed into sorted
order using the sort method. The simplest sort is sorting an array of strings.

Example 5.208. Array class — sorting

myArray = .array~of("Zoe", "Fred", "Xavier", "Andy")
myArray~sort

do name over myArray
   say name
end

will display the names in the order "Andy", "Fred", "Xavier", "Zoe".

The sort method orders the strings by using the compareTo method of the String class. The
compareTo method knows how to compare one string to another, and returns the values -1 (less
than), 0 (equal), or 1 (greater than) to indicate the relative ordering of the two strings.

5.3.19.1. Sorting non-strings
Sorting is not limited to string values. Any object that inherits the Comparable MIXIN class and
implements a compareTo method can be sorted. The DateTime class and TimeSpan class are
examples of built-in Rexx classes that can be sorted. Any user-created class may also implement a
compareTo method to enable sorting. For example, consider the following simple class:

Example 5.209. Non-string sorting

::class Employee inherit Comparable

::attribute id
::attribute name
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::method init
  expose id name
  use arg id, name

::method compareTo
  expose id
  use arg other
  return id~compareTo(other~id) -- comparison performed using employee id

::method string
  expose name
  return "Employee" name

The Employee class implements its sort order using the employee identification number. When the
sort method needs to compare two Employee instances, it will call the compareTo method on one of
the instances, passing the second instance as an argument. The compareTo method tells the sort
method which of the two instances should be first.

Example 5.210. Comparison during sorting

    a = .array~new
    a[1] = .Employee~new(654321, "Fred")
    a[2] = .Employee~new(123456, "George")
    a[3] = .Employee~new(333333, "William")

    a~sort

    do employee over a
       say employee    -- sorted order is "George", "William", "Fred"
    end

5.3.19.2. Sorting with more than one order
The String class compareTo method only implements a sort ordering for an ascending sort using
a strict comparison. Frequently it is desirable to override a class-defined sort order or even to
sort items that do not implement a compareTo method. To change the sorting criteria, use the
sortWith method. The sortWith method takes a single argument, which is a Comparator object
that implements a compare method. The compare method performs comparisons between pairs of
items. Different comparators can be customized for different comparison purposes. For example, the
Rexx language provides a DescendingComparator class that will sort items into descending order:

Example 5.211. Multi-order sorting

::CLASS 'DescendingComparator' MIXINCLASS Comparator
::METHOD compare
use strict arg left, right
return -left~compareTo(right)

The DescendingComparator merely inverts the result returned by the item compareTo method. Our
previous example

Example 5.212. Descending compare sorting

myArray = .array~of("Zoe", "Fred", "Xavier", "Andy")
myArray~sortWith(.DescendingComparator~new)
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do name over myArray
   say name
end

now displays in the order "Zoe", "Xavier", "Fred", "Andy".

Custom Comparators are simple to create for any sorting purpose. The only requirement is
implementing a compare method that knows how to compare pairs of items in some particular
manner. For example, to sort our Employee class by name instead of the default employee id, we can
use the following simple comparator class:

Example 5.213. Custom compare sorting

::CLASS EmployeeNameSorter MIXINCLASS Comparator
::METHOD compare
  use strict arg left, right
  return left~name~compareTo(right~name)  -- do the comparison using the names

5.3.19.3. Builtin Comparators
Rexx includes a number of built-in Comparators for common sorting operations.

Comparator Class
Base comparator. The Comparator class just uses the compareTo method of the first argument to
generate the result. Using sortWith and a Comparator instance is equivalent to using the sort
method and no comparator.

CaselessComparator Class
Like the base comparator, but uses the caselessCompareTo method to determine order. The
String class implements caselessCompareTo, so the CaselessComparator can be used to sort
arrays of strings independent of case.

ColumnComparator Class
The ColumnComparator will sort string items using specific substrings within each string
item. If sorting is performed on multiple column positions, the stableSortWith method is
recommended to ensure the results of previous sort operations are retained.

CaselessColumnComparator Class
Like the ColumnComparator, but the substring comparisons are done independently of case.

DescendingComparator Class
The reverse of the Comparator class. The DescendingComparator can be used to sort items in
descending order.

CaselessDescendingComparator Class
The reverse of the CaselessComparator class. The CaselessDescendingComparator can be used
to sort items in descending order with comparisons done independently of case.

InvertingComparator Class
The InvertingComparator will invert the result returned by another Comparator instance. This
comparator can be combined with another comparator instance to reverse the sort order.

NumericComparator Class
Performs comparisons of strings using numeric comparison rules. Use the NumericComparator to
sort collections of numbers.
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5.3.19.4. Stable and Unstable Sorts

Note

The current implementation is using the same stable sort algorithm for both the sort and the
stableSort method of the Array class.

As such, below discussion of the difference between a stable and an unstable sort does not apply
currently.

The default sorting algorithm is an unstable sort. In an unstable sort, items are not guaranteed to
maintain their original positions if they compare equal during the sort. Consider the following simple
example:

Example 5.214. Unstable sort

a = .array~of("Fred", "George", "FRED", "Mike", "fred")
a~sortwith(.caselesscomparator~new)
do name over a
  say name
end

This example displays the 3 occurrences of Fred in the order "Fred", "fred", "FRED", even though they
compare equal using a caseless comparison.

The Array class implements a second sort algorithm that is available using the stableSort and
stableSortWith methods. These methods use a Mergesort algorithm, which is less efficient
than the default Quicksort and requires additional memory. The Mergesort is a stable algorithm
that maintains the original relative ordering of equivalent items. Our example above, sorted with
stableSortWith, would display "Fred", "FRED", "fred".

5.3.20. Concept of Set Operations

The following sections describe the concept of set operations to help you work with set operators, in
particular if the receiver collection class differs from the argument collection class.

Rexx provides the following set-operator methods:

• difference

• intersection

• subset

• union

• xor

These methods are available to instances of the following collection classes:

• The OrderedCollections Array, List, Queue, and CircularQueue
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• The MapCollections Directory, Stem, Table, IdentityTable, and Relation

• The SetCollections Set and Bag.

result = receiver~setoperator(argument)

where:

receiver
is the collection object receiving the set-operator message.

setoperator
is the set-operator method used.

argument
is the argument collection supplier supplied to the method. It can be an instance of one of the
Rexx collection classes or any object that implements a makearray method or supplier
method, depending on class of receiver.

The result object is of the same class as the receiver collection object.

5.3.20.1. Principles of Operation

A set operation is performed by iterating over the elements of the receiver collection to compare each
element of the receiver with each element of the argument collection. The element is defined as the
tuple (index, item) (see Section 5.3.20.4, “Determining the Identity of an Item”). Depending on the
set-operator method and the result of the comparison, an element of the receiver collection is, or is
not, included in the resulting collection. A receiver collection that allows for duplicate elements can,
depending on the set-operator method, also accept elements of the argument collection after they
have been coerced to the type of the receiver collection.

The following examples are to help you understand the semantics of set operations. The collections
are represented as a list of elements enclosed in curly brackets. The list elements are separated by a
comma.

5.3.20.2. Set Operations on Collections without Duplicates

Assume that the example sets are A={a,b} and B={b,c,d}. Except for subset, equivalent, and
disjoint, the result of a set operation is another set. Using the collection A and B, the different set
operators produce the following:

UNION operation
All elements of A and B are united:

A UNION B = {a,b,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first set except for those that also appear in
the second set. The system iterates over the elements of the second set and removes them from
the first set one by one.

A DIFFERENCE B = {a}
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B DIFFERENCE A = {c,d}

XOR operation
The resulting collection contains all elements of the first set that are not in the second set and all
elements of the second set that are not in the first set:

A XOR B = {a,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both sets:

A INTERSECTION B = {b}

SUBSET operation
Returns .true if the first set contains only elements that also appear in the second set, otherwise
it returns .false:

A SUBSET B = .false
B SUBSET A = .false

EQUIVALENT operation
Returns .true if the first set contains only elements that also appear in the second set and the
two sets have the same number of elements, otherwise it returns .false:

A EQUIVALENT B = .false
B EQUIVALENT A = .false

DISJOINT operation
Returns .true if there are no elements that appear in both sets, otherwise it returns .false:

A DISJOINT B = .false
B DISJOINT A = .false

5.3.20.3. Set-Like Operations on Collections with Duplicates

Assume that the example bags are A={a,b,b} and B={b,b,c,c,d}. Except for subset,
equivalent, and disjoint, the result of any set-like operation is a collection, in this case a bag.
Using the collections A and B, the different set-like operators produce the following:

UNION operation
All elements of A and B are united:

A UNION B = {a,b,b,b,b,c,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first bag except for those that also appear in
the second bag. The system iterates over the elements of the second bag and removes them from
the first bag one by one.

A DIFFERENCE B = {a}
B DIFFERENCE A = {c,c,d}
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XOR operation
The resulting collection contains all elements of the first bag that are not in the second bag and all
elements of the second bag that are not in the second bag:

A XOR B = {a,c,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both bags:

A INTERSECTION B = {b,b}

SUBSET operation
Returns .true if the first set contains only elements that also appear in the second set, otherwise
it returns .false:

A SUBSET B = .false
B SUBSET A = .false

EQUIVALENT operation
Returns .true if the first set contains only elements that also appear in the second set and the
two sets have the same number of elements, otherwise it returns .false:

A EQUIVALENT B = .false
B EQUIVALENT A = .false

DISJOINT operation
Returns .true if there are no elements that appear in both sets, otherwise it returns .false:

A DISJOINT B = .false
B DISJOINT A = .false

5.3.20.4. Determining the Identity of an Item
Set operations require the definition of the identity of an element to determine whether a certain
element exists in the receiver collection. The element of a collection is conceived as the tuple (index,
item). The index is used as the identification tag associated with the item. Depending on the collection
class, the index is an instance of a particular class, for example, the string class for a directory
element, an integer for an array, or any arbitrary class for a relation. The Array class is an exception
because it can be multi-dimensional having more than one index. However, as a collection, it is
conceptionally linearized by the set operator.

For collection classes that require unique indexes, namely the Set, IdentityTable, Table, Directory, and
Stem, an item is identified by its index. For collections of collection classes that allow several items
to have the same index, namely the Relation class, an item is identified by both its index and its item.
For the Bag and the Set subclasses, where several items can have the same index but index and item
must be identical, the item is identified by its index. For Array, List, and Queue classes, the index is
derived from an object's position within the collection's order. Items are identified using only item.

When collections with different index semantics are used in set operations, the argument collection is
coerced into a collection of the same type as the receiver, and the operation is then performed using
the converted collection. The coercion process differs based on the types of both the receiver and
the argument collection. According to this concept, an item of a collection is identified for the different
receiver categories as follows:
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Map Collection
If argument is a MapCollection, then index values are used to determine membership, and items
are inserted into the result using the index and item pairs.

If argument is an OrderedCollection or SetCollection, argument is converted into a MapCollection
using the collection items as both index and item values. Since the argument collection may
contain duplicate items, the converted collection is effectively a Relation instance.

For all other argument objects, the makearray method is used to obtain a set of values which are
used as if argument was an OrderedCollection.

Ordered Collection and Set Collection
If argument is an instance of Collection, the matching set is obtained from the allItems method.
For any other class of object, the makearray method is used. The hasItem method is used to
perform the matching operations between the two collections.

Relation
If argument is a MapCollection, then index values are used to determine membership, and items
are inserted into the result using the index and item pairs.

If argument is an OrderedCollection or SetCollection, argument is converted into a MapCollection
using the collection items as both index and item values. Since the argument collection may
contain duplicate items, the converted collection is effectively a Relation instance.

For all other argument objects, the makearray method is used to obtain a set of values which are
used as if argument was an OrderedCollection. All tests for result membership are made using
both the index and item values.

5.4. Utility Classes
This section describes
• MutableBuffer Class,
• File Class,
• Date-, time-, and timing-related classes DateTime, TimeSpan, Alarm, Ticker, and the notification

classes AlarmNotification and MessageNotification,
• the synchronization classes EventSempahore and MutexSempahore,
• Comparable class and Orderable class,
• eight Comparator classes used for sorting (Caseless)Comparator, (Caseless)ColumnComparator,

(Caseless)DescendingComparator, InvertingComparator, and NumericComparator, and
• other miscellaneous classes Buffer, Monitor, Pointer, RegularExpression, RexxContext,

RexxInfo, RexxQueue, StackFrame, StreamSupplier, Supplier, Validate, VariableReference, and
WeakReference.

5.4.1. Alarm Class

An Alarm object provides timing and notification capability by sending a notification message to a
notification target at the trigger time.

An Alarm can be cancelled before it triggers. If cancelled, an Alarm will also send a notification
message to the notification target.

Table 5.29. Alarm Class
Object
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Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Alarm

attachment canceled/cancelled scheduledTime
cancel init triggered

5.4.1.1. attachment
 

attachment

Returns the object that has been attached to the Alarm instance upon creation. Returns .nil if no
object is attached.

See also method init.

Example 5.215. Alarm class — attachment method

oneSecond = .Alarm~new(1, .Target~new, "a second has passed")
call SysSleep 1.5                      -- give Alarm time to trigger
oneSecond~cancel

::class Target inherit AlarmNotification
::method triggered                     -- called when Alarm triggers
  use arg alarm
  say alarm~attachment                 -- displays "a second has passed"

5.4.1.2. cancel

cancel

Cancels the pending Alarm request represented by the receiver. Takes no action if the specified time
has already been reached.

5.4.1.3. canceled/cancelled
 

canceled

cancelled

Returns .true if the alarm was cancelled before triggering. Returns .false otherwise.

See also method cancel.

Example 5.216. Alarm class — canceled/cancelled method

alarm = .Alarm~new(1 ,.message~new(.stdout, "SAY", "I", "Alarm went off"))
call SysSleep 0.5
alarm~cancel
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say "Alarm" alarm~cancelled~?("cancelled", "not cancelled")    -- Alarm cancelled

5.4.1.4. init

init( atime , target

, attachment

)

Sets up an Alarm for a future time atime. At this time, the Alarm sends message triggered to the
specified notification target.

The target must be an object that implements the AlarmNotification interface. It must inherit from or be
a subclass of the AlarmNotification class, or a Message object (as the Message class inherits
from AlarmNotification). If target is a Message object, the triggered  method of the Message
class will respond by simply sending the specified message.

The atime can be a DateTime, a TimeSpan, or a String object. If it is
• a DateTime object, it specifies the time when the alarm will be triggered. The specified time must

be in the future.
• a TimeSpan, the Alarm will be set to the current time plus the specified time span. The time span

must not be a negative interval.
• a String, you can specify this as a date and time (hh:mm:ss) or as a number of seconds starting

at the present time. If you use the date and time format, you can specify a date in the default format
(dd Mmm yyyy) after the time with a single blank separating the time and date. Leading and trailing
whitespace characters are not allowed in the atime. If you do not specify a date, the Alarm uses the
first future occurrence of the specified time.

If specified, attachment can be an arbitrary object that will be attached to the alarm instance, and can
later be retrieved in the event handler. See method attachment.

You can use the cancel method to cancel a pending alarm. If cancelled, the alarm sends message
cancel to the specified notification target.

The following code sets up an alarm at 5:10 p.m. on December 15, 2017. (Assume today's date/time is
prior to December 15, 2017.)

Example 5.217. Alarm class

/* Alarm Examples */

PersonalMessage = .MyMessageClass~new("Call the Bank")
msg = .Message~new(PersonalMessage, "RemindMe")

time = .DateTime~fromIsoDate("2017-12-15T17:10:00.000000")

a = .Alarm~new(time, msg)
exit

::class MyMessageClass public
::method init
  expose inmsg
  use arg inmsg

::method RemindMe
  expose inmsg
  say "It is now" time("C")". Please" inmsg
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  /* On the specified data and time, displays the following message: */
  /* "It is now 5:10pm. Please Call the Bank" */

For the following example, the user uses the same code as in the preceding example to define msg,
a message object to run at the specified time. The following code sets up an alarm to run the msg
message object in 30 seconds from the current time:

Example 5.218. Alarm class

a = .Alarm~new(30, msg)

5.4.1.5. scheduledTime
 

scheduledTime

Returns a DateTime object representing the time for which the alarm has initially been scheduled.

5.4.1.6. triggered
 

triggered

Returns .true if the alarm has triggered. Returns .false if the alarm has been cancelled or hasn't
yet triggered.

5.4.2. AlarmNotification Class  
The AlarmNotification class implements the notification interface for the Alarm and the Ticker
class.

For any Alarm or Ticker object, notifications of alarm triggering and alarm cancellation are sent to the
notification target specified when creating the Alarm or Ticker instance. The notification target must
implement this alarm notification interface. Upon alarm triggering a triggered message is sent to the
notification target, and upon alarm cancellation a cancel message is sent to the notification target.

This class is defined as a MIXIN class.

Table 5.30. AlarmNotification Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

AlarmNotification (Mixin Class)

cancel
triggered (Abstract method)

5.4.2.1. cancel  
cancel( source )
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Whenever an Alarm or Ticker is cancelled, this method of the alarm notification target will be called.
The Alarm or Ticker object that was cancelled will be provided as argument source.

It is defined as a no-op and doesn't necessarily have to be implemented by an inheriting class.

5.4.2.2. triggered (Abstract method)  
triggered( source )

Whenever an Alarm or Ticker triggers, this method of the alarm notification target will be called. The
Alarm or Ticker object which triggered will be provided as argument source.

It is an abstract method and must be implemented by an inheriting class.

For an example see Alarm class attachment method example.

5.4.3. Buffer Class

A Buffer instance is a Rexx interpreter managed block of storage. This class is designed primarily
for writing methods and functions in native code and can only be created using the native code
application programming interfaces. The new (Class Method) method will raise an error if invoked.

Table 5.31. Buffer Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Buffer

new (Class Method)

5.4.3.1. new (Class Method)

new

Creating Buffer object instances directly from Rexx code is not supported. Method new will raise an
error if invoked.

5.4.4. Comparable Class

This class is defined as a MIXIN class.

Table 5.32. Comparable Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Comparable (Mixin Class)
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compareTo

5.4.4.1. compareTo

This method compares the receiving object to the object supplied in the other argument.

This is a default implementation which compares two items based on their identityHash.

compareTo( other )

This method returns -1 if the other is larger than the receiving object, 0 if the two objects are equal,
and 1 if other is smaller than the receiving object.

Note

Classes inheriting from Comparable (like builtin classes File, DateTime, or TimeSpan) are
strongly encouraged to forward to this default implementation for comparison cases not covered
by their class-specific compareTo implementation.

5.4.5. Comparator Classes
This section describes eight Comparator classes used for sorting, (Caseless)Comparator,
(Caseless)ColumnComparator, (Caseless)DescendingComparator, InvertingComparator, and
NumericComparator.

5.4.5.1. Comparator Class

The Comparator class is the base class for implementing Comparator objects that can be used with
the sortWith or stableSortWith methods. The compare method implements some form of comparison
that determines the relative ordering of two objects. Many Comparator implementations are specific
to particular object types.

It is defined as a MIXIN class.

Table 5.33. Comparator Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Comparator (Mixin Class)

compare

5.4.5.1.1. compare

compare( first , second )

Returns -1 if second is larger than first, 0 if the two objects are equal, and 1 if second is smaller than
first.
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The default Comparator compare method assumes that first is an object that implements the
Comparable compareTo method. Subclasses may override this to implement more specific
comparisons.

Example 5.219. Comparator class 

wine = .Array~of("Strawberries", "cherries", "angel's kiss")
wine~sortWith(.Comparator~new)         -- Strawberries, angel's kiss, cherries

5.4.5.2. CaselessComparator Class

The CaselessComparator class performs caseless orderings of string objects.

It is defined as a MIXIN class.

Table 5.34. CaselessComparator Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

CaselessComparator (Mixin Class)

compare

5.4.5.2.1. compare

compare( first , second )

Returns -1 if second is larger than first, 0 if the two objects are equal, and 1 if second is smaller than
first.

The two strings are compared using a caseless comparison.

Example 5.220. CaselessComparator class 

wine = .Array~of("Strawberries", "cherries", "angel's kiss")
wine~sortWith(.CaselessComparator~new) -- angel's kiss, cherries, Strawberries

5.4.5.3. ColumnComparator Class

The ColumnComparator class performs orderings based on specific substrings of string objects.

It is defined as a MIXIN class.

Table 5.35. ColumnComparator Class
Object
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Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

ColumnComparator (Mixin Class)

compare
init

5.4.5.3.1. compare

compare( first , second )

Returns -1 if second is larger than first, 0 if the two objects are equal, and 1 if second is smaller than
first.

Only the defined columns of the strings are compared.

5.4.5.3.2. init

init( start , length )

Initializes a ColumnComparator to sort strings starting at position start for length characters.

Example 5.221. ColumnComparator class 

wine = .Array~of("1. Strawberries", "2. cherries", "3. angel's kiss")
wine~sortWith(.ColumnComparator~new(3, 100))
                                       -- 1. Strawberries, 3. angel's kiss, 2. cherries

5.4.5.4. CaselessColumnComparator Class

The CaselessColumnComparator class performs caseless orderings of specific substrings of string
objects.

It is defined as a MIXIN class.

Table 5.36. CaselessColumnComparator Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

CaselessColumnComparator (Mixin Class)
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compare
init

5.4.5.4.1. compare

compare( first , second )

Returns -1 if second is larger than first, 0 if the two objects are equal, and 1 if second is smaller than
first.

Only the defined columns of the strings are compared, using a caseless comparison.

5.4.5.4.2. init

init( start , length )

Initializes a CaselessColumnComparator to sort strings starting at position start for length
characters.

Example 5.222. CaselessColumnComparator class 

wine = .Array~of("1. Strawberries", "2. cherries", "3. angel's kiss")
wine~sortWith(.CaselessColumnComparator~new(3, 100))
                                       -- 3. angel's kiss, 2. cherries, 1. Strawberries

5.4.5.5. DescendingComparator Class

The DescendingComparator class performs string sort orderings in descending order. This is the
inverse of a Comparator sort order.

This class is defined as a MIXIN class.

Table 5.37. DescendingComparator Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

DescendingComparator (Mixin Class)

compare

5.4.5.5.1. compare

compare( first , second )
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Returns 1 if second is larger than first, 0 if the two objects are equal, and -1 if second is smaller than
first, resulting in a descending sort sequence.

The DescendingComparator assumes the first object implements the Comparable compareTo
method.

Example 5.223. DescendingComparator class 

wine = .Array~of("Strawberries", "cherries", "angel's kiss")
wine~sortWith(.DescendingComparator~new)    -- cherries, angel's kiss, Strawberries

5.4.5.6. CaselessDescendingComparator Class

The CaselessDescendingComparator class performs caseless string sort orderings in descending
order. This is the inverse of a CaselessComparator sort order.

This class is defined as a MIXIN class.

Table 5.38. CaselessDescendingComparator Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

CaselessDescendingComparator (Mixin Class)

compare

5.4.5.6.1. compare

compare( first , second )

Returns 1 if second is larger than first, 0 if the two objects are equal, and -1 if second is smaller than
first, resulting in a descending sort sequence.

The two strings are compared using a caseless comparison.

Example 5.224. CaselessDescendingComparator class 

wine = .Array~of("Strawberries", "cherries", "angel's kiss")
wine~sortWith(.CaselessDescendingComparator~new) -- Strawberries, cherries, angel's kiss

5.4.5.7. InvertingComparator Class

The InvertingComparator class inverts the comparison results of another Comparator object to
reverse the resulting sort order.

This class is defined as a MIXIN class.
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Table 5.39. InvertingComparator Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

InvertingComparator (Mixin Class)

compare
init

5.4.5.7.1. compare

compare( first , second )

The InvertingComparator will invert the ordering returned by the comparator it was initialized with.

5.4.5.7.2. init

init( comparator )

Initializes an InvertingComparator to sort strings using an inversion of the result from the
comparator compare method.

Example 5.225. InvertingComparator class 

wine = .Array~of("1. Strawberries", "2. cherries", "3. angel's kiss")
wine~sortWith(.InvertingComparator~new(.LengthComparator~new))
                                       -- 3. angel's kiss, 1. Strawberries, 2. cherries

-- compare 1. by length, 2. by standard comparison
::class LengthComparator mixinclass Comparator public
::method compare
  use strict arg left, right

  lengthDelta = left~length - right~length
  if lengthDelta = 0 then
    return left~compareTo(right)
  else
    return lengthDelta~sign

5.4.5.8. NumericComparator Class

The NumericComparator class compares strings using numeric comparison rules rather than string
comparison rules.

It is defined as a MIXIN class.

Table 5.40. NumericComparator Class
Object
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Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

NumericComparator (Mixin Class)

compare
init

5.4.5.8.1. compare

compare( first , second )

Returns -1 if second is larger than first, 0 if the two objects are equal, and 1 if second is smaller than
first.

Comparisons are performed using numeric comparison rules, so the collection strings must be valid
numeric values.

5.4.5.8.2. init

init(

digits

)

Initializes a NumericComparator to sort strings using numeric comparison rules using the
Comparator compare method. If digits is specified, the comparisons will be performed using the
provided precision. The default precision is 9.

Example 5.226. NumericComparator class 

primes = .Array~of(23, 19, 17, 13, 11, 7, 5, 3, 2)
primes~sortWith(.NumericComparator~new)  -- 2, 3, 5, 7, 11, 13, 17, 19, 23

5.4.6. DateTime Class

A DateTime instance represents a timestamp between 1 January 0001 at 00:00.000000 and 31
December 9999 at 23:59:59.999999. It has methods to allow formatting a date or time in various
formats, as well as allowing arithmetic operations between timestamps.

Note

DateTime does not support leap seconds like December 31, 2016 at 23:59:60 UTC.
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Table 5.41. DateTime Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Orderable (Mixin Class)

Methods inherited from the Orderable class
Comparison Methods = == < <= << <<= <> > >= >< >> >>= \= \== \< \<< \> \>>
compareTo

+ Comparable (Mixin Class)

Methods inherited from the Comparable class
compareTo

DateTime

new (Inherited Class Method) fromOrdinalDate (Class Method)
fromBaseDate (Class Method) fromStandardDate (Class Method)
fromCivilTime (Class Method) fromTicks (Class Method)
fromEuropeanDate (Class Method) fromUsaDate (Class Method)
fromIsoDate (Class Method) fromUtcIsoDate (Class Method)
fromLongTime (Class Method) fromWeekNumberDate (Class Method)
fromNormalDate (Class Method) maxDate (Class Method)
fromNormalTime (Class Method) minDate (Class Method)
fromOrderedDate (Class Method) today (Class Method)

Arithmetic Methods + - elapsed ordinalDate
addDays europeanDate seconds
addHours fullDate standardDate
addMicroseconds hashCode string
addMinutes hours ticks
addSeconds init timeOfDay
addWeeks isLeapYear toLocalTime
addYears isoDate toTimezone
baseDate languageDate toUtcTime
civilTime longTime usaDate
compareTo makeString utcDate
date microseconds utcIsoDate
day minutes weekDay
dayMicroseconds month weekNumber
dayMinutes monthName weekNumberDate
dayName normalDate weekNumberYear
daySeconds normalTime weeksInYear
daysInMonth offset year
daysInYear orderedDate yearDay

5.4.6.1. minDate (Class Method)

minDate

Returns a DateTime instance representing the minimum supported Rexx date, 1 January 0001 at
00:00:00.000000.
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5.4.6.2. maxDate (Class Method)

maxDate

Returns a DateTime instance representing the maximum supported Rexx date, 31 December 9999 at
23:59:59.999999.

5.4.6.3. today (Class Method)

today(

offset

)

Returns a DateTime instance for the current day, with a time value of 00:00:00.000000.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.4. fromBaseDate (Class Method)

fromBaseDate( date

, offset

)

Returns a new DateTime object, created from a string in the format returned by the Base option of
the DATE built-in function (dddddd). The time component will be set to 00:00:00.000000.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.5. fromEuropeanDate (Class Method)

fromEuropeanDate( date ,

separator , offset

)

Returns a new DateTime object, created from a string in the format returned by the European option
of the DATE built-in function (dd/mm/yy). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A slash ("/") is the default separator. The time component will
be set to 00:00:00.000000.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.6. fromNormalDate (Class Method)
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fromNormalDate( date ,

separator , offset

)

Returns a new DateTime object, created from a string in the format returned by the Normal option of
the DATE built-in function (dd mon yyyy). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A blank (" ") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.7. fromOrderedDate (Class Method)

fromOrderedDate( date ,

separator , offset

)

Returns a new DateTime object, created from a string in the format returned by the Ordered option
of the DATE built-in function (yy/mm/dd). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A slash ("/") is the default separator. The time component will
be set to 00:00:00.000000.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.8. fromOrdinalDate (Class Method)

fromOrdinalDate( date

, offset

)

Returns a new DateTime object, created from a string in ISO ordinal date format. The time
component will be set to 00:00:00.000000.

Both the basic format yyyyddd and the extended format yyyy-ddd are accepted, where ddd is the
ordinal number of a day within year yyyy. The allowed range for ddd is 1 through the number of days
in year yyyy, which is either 365 or 366. Leading zeros are required for both yyyy and ddd.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

See also method ordinalDate.

Example 5.227. DateTime class — fromOrdinalDate method 

say .DateTime~fromOrdinalDate("2020-041")    -- 2020-02-10T00:00:00.000000
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5.4.6.9. fromStandardDate (Class Method)

fromStandardDate( date ,

separator , offset

)

Returns a new DateTime object, created from a string in the format returned by the Standard option
of the DATE built-in function (yyyymmdd). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A null string ("") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.10. fromUsaDate (Class Method)

fromUsaDate( date ,

separator , offset

)

Returns a new DateTime object, created from a string in the format returned by the Usa option of the
DATE built-in function (mm/dd/yy). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A slash ("/") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.11. fromWeekNumberDate (Class Method)

fromWeekNumberDate( date

, offset

)

Returns a new DateTime object, created from a string in ISO week date format. The time component
will be set to 00:00:00.000000.

Both the basic format yyyyWwwd and the extended format yyyy-Www-d are accepted, where ww is
the ordinal number of an ISO week within year yyyy, and d is the ordinal number of the calender
day within the week. The allowed range for ww is 1 through the number of ISO weeks in year yyyy,
which is either 52 or 53. Leading zeros are required for both yyyy and ww. The allowed range for d is
1 through 7, where Monday is 1, Tuesday is 2, running through 7 for Sunday.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

See also methods weekNumberDate, weekNumberYear, and weekDay.
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Example 5.228. DateTime class — fromWeekNumberDate method 

say .DateTime~fromWeekNumberDate("2020-W07-1")    -- 2020-02-10T00:00:00.000000

5.4.6.12. fromNormalTime (Class Method)

fromNormalTime( time

, offset

)

Returns a new DateTime object, created from a string in the format returned by the Normal option of
the TIME built-in function (hh:mm:ss). The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.13. fromCivilTime (Class Method)

fromCivilTime( time

, offset

)

Returns a new DateTime object, created from a string in the format returned by the Civil option of
the TIME built-in function (hh:mmxx). The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.14. fromLongTime (Class Method)

fromLongTime( time

, offset

)

Returns a new DateTime object, created from a string in the format returned by the Long option of
the TIME built-in function (hh:mm:ss.uuuuuu). The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.15. fromTicks (Class Method)

fromTicks( time

, offset

)

Returns a new DateTime object, created from a string in the format returned by the Ticks option of
the DATE or TIME built-in functions (dddddddddddd).
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If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.16. fromIsoDate (Class Method)

fromIsoDate( date

, offset

)

Returns a new DateTime object, created from a string in extended ISO format yyyy-mm-
ddThh:mm:ss.uuuuuu.

The isoDate and the string methods return a string in extended ISO format as the string form of a
DateTime instance.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.17. fromUtcIsoDate (Class Method)

fromUtcIsoDate( date )

Returns a new DateTime object, created from a string in timezone-qualified extended ISO format
yyyy-mm-ddThh:mm:ss.uuuuuu+hh:mm.

5.4.6.18. init

init

init( fulldate

, offset

)

init( year , month , day

, offset

)

init( year , month , day , hours , minutes ,

seconds

,

microseconds , offset

)

Initializes a new DateTime instance. If no arguments are specified, the instance is set to the current
date and time. If the single fulldate argument is used, the instance is initialized to the date and time
calculated by adding fulldate microseconds to 0001-01-01T00:00:00.000000. If the year, month,
day, form is used, the instance is initialized to 00:00:00.000000 on the indicated date. Otherwise,
the instance is initialized to the year, month, day, hours, minutes, seconds, and microseconds
components. Each of these components must be a valid whole number within the acceptable range
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for the given component. For example, year must be in the range 1-9999, while minutes must be in the
range 0-59.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

Example 5.229. DateTime class

today = .DateTime~new                            -- current date and time
day = .DateTime~new(date('F', "20170630", "S"))  -- 2017-06-30T00:00:00.000000
day = .DateTime~new(2017, 6, 30)                 -- 2017-06-30T00:00:00.000000
day = .DateTime~new(2017, 6, 30, 11, 8, 50)      -- 2017-06-30T11:08:50.000000

5.4.6.19. Arithmetic Methods

arithmetic_operator ( argument )

Note

The syntax diagram above is for the non-prefix operators. For the prefix operators, omit the
parentheses and argument.

Returns the result of performing the specified arithmetic operation on the receiver DateTime instance.
Depending on the operation, the argument may be either a TimeSpan object or a DateTime instance.
See the description of the individual operations for details. The arithmetic_operator can be:

+  Addition. Adds a TimeSpan to the DateTime object, returning a new DateTime
instance. The receiver DateTime object is not changed. The TimeSpan may be
either positive or negative.

-  Subtraction. If argument is a DateTime object, the two times are subtracted, and
a TimeSpan object representing the interval between the two times is returned. If
the receiver DateTime is less than the argument argument DateTime, a negative
TimeSpan interval is returned. The receiver DateTime object is not changed.

If argument is a TimeSpan object, subtracts the TimeSpan from the DateTime
object, returning a new DateTime instance. The receiver DateTime object is not
changed. The TimeSpan may be either positive or negative.

Prefix - A prefix - operation on a DateTime object will raise a SYNTAX error condition.

Prefix + Returns a new DateTime object with the same time value.
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Note

When adding or subtracting DateTime and TimeSpan objects, leap seconds (like the one which
happened on December 31, 2016 at 23:59:60 UTC) are not taken into account.

Example 5.230. DateTime class — arithmetic 

t = .dateTime~new~timeOfDay       -- returns TimeSpan for current time
say t                             -- displays "17:30:41.482000", perhaps
d = .dateTime~new(2016, 12, 31)   -- creates new date

future = d + t                    -- adds timespan to d
say future                        -- displays "2016-12-31T17:30:41.482000"

-- does not take leap second into account
say d + .TimeSpan~new(24, 0, 1)   -- 2017-01-01T00:00:01.000000

                                  -- "real" start of next century
nextCentury = .dateTime~new(2101, 1, 1)
-- "The next century starts in 29547.07:15:42.721000 days", perhaps
say "The next century starts in" (nextCentury - .dateTime~new) "days"

5.4.6.20. compareTo

compareTo( other )

Returns -1 if the other is larger than the receiving object, 0 if the two objects are equal, and 1 if other
is smaller than the receiving object.

5.4.6.21. weekNumber

weekNumber

Returns the timestamp's ISO week number.

Any given year will have week numbers either between 1 and 52, or between 1 and 53.

See also methods weekNumberYear, weekNumberDate, and weeksInYear.

Example 5.231. DateTime class — weekNumber method 

say weekNumber(2018, 12, 31)    -- 1 2019-W01-1
say weekNumber(2019,  1,  1)    -- 1 2019-W01-2

say weekNumber(2020, 12, 31)    -- 53 2020-W53-4
say weekNumber(2021,  1,  1)    -- 53 2020-W53-5
return

weekNumber: procedure
  date = .DateTime~new(arg(1), arg(2), arg(3))
  return date~weekNumber date~weekNumberDate
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5.4.6.22. weekNumberDate

weekNumberDate

Returns the timestamp formatted as a string in extended ISO week number date format yyyy-Www-d
with leading zeros as required.

See also methods fromWeekNumberDate (Class Method) and weekNumberYear, and weekDay.

Example 5.232. DateTime class — weekNumberDate method 

say .DateTime~new(2018, 12, 31)~weekNumberDate    -- 2019-W01-1
say .DateTime~new(2019,  1,  1)~weekNumberDate    -- 2019-W01-2

say .DateTime~new(2020, 12, 31)~weekNumberDate    -- 2020-W53-4
say .DateTime~new(2021,  1,  1)~weekNumberDate    -- 2020-W53-5

5.4.6.23. weekNumberYear

weekNumberYear

Returns the year associated with this date's ISO week number. The returned year may be the next or
the previous year for dates at the beginning or end of the year.

See also methods weekNumber, weekNumberDate, and weeksInYear.

Example 5.233. DateTime class — weekNumberYear method 

say weekNumber(2018, 12, 31)    -- 2019 2019-W01-1
say weekNumber(2019,  1,  1)    -- 2019 2019-W01-2

say weekNumber(2020, 12, 31)    -- 2020 2020-W53-4
say weekNumber(2021,  1,  1)    -- 2020 2020-W53-5
return

weekNumber: procedure
  date = .DateTime~new(arg(1), arg(2), arg(3))
  return date~weekNumberYear date~weekNumberDate

5.4.6.24. weeksInYear

weeksInYear

Returns the number of weeks in this date's year according to the ISO week number rules.

There are either 52 or 53 ISO weeks in any given year.

See also methods weekNumber, weekNumberYear, and weekNumberDate.

Example 5.234. DateTime class — weeksInYear method 

do year = 2010 to 2030
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  d = .DateTime~new(year, 6, 30)
  if d~weeksInYear \= 52 then
    say year":" d~weeksinYear -- 2015: 53, 2020: 53, 2026: 53
end

5.4.6.25. year

year

Returns the timestamp year.

5.4.6.26. month

month

Returns the timestamp month.

5.4.6.27. day

day

Returns the timestamp day.

5.4.6.28. hours

hours

Returns number of whole hours in the timestamp since midnight.

5.4.6.29. minutes

minutes

Returns the minutes portion of the timestamp time-of-day.

5.4.6.30. ordinalDate

ordinalDate

Returns the timestamp formatted as a string in extended ISO ordinal date format yyyy-ddd with
leading zeros as required.

See also methods fromOrdinalDate (Class Method) and yearDay.

Example 5.235. DateTime class — ordinalDate method 

say .DateTime~new(2020, 2, 10)~ordinalDate    -- 2020-041
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5.4.6.31. seconds

seconds

Returns the seconds portion of the timestamp time-of-day.

5.4.6.32. makeString

makeString

Returns the timestamp formatted as a string in extended ISO format yyyy-mm-
ddThh:mm:ss.uuuuuu. This is an alias of the string method.

5.4.6.33. microseconds

microseconds

Returns the microseconds portion of the timestamp time-of-day.

5.4.6.34. dayMinutes

dayMinutes

Returns the number of minutes since midnight in the timestamp time-of-day.

5.4.6.35. daySeconds

daySeconds

Returns the number of seconds since midnight in the timestamp time-of-day.

5.4.6.36. dayMicroseconds

dayMicroseconds

Returns the number of microseconds since midnight in the timestamp time-of-day.

5.4.6.37. hashCode

hashCode

Returns a string value for the timestamp that is used as a hash value for a MapCollection class.

5.4.6.38. addYears

addYears( years )
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Returns a new DateTime instance with a number of years added to the timestamp. The receiving
instance is unchanged. The years value must be a valid whole number. Negative values result in years
being subtracted.

The addYears method will take leap years into account. If the addition result would fall on February
29th of a non-leap year, the day will be rolled back to the 28th.

Example 5.236. DateTime class — addYears method

date = .DateTime~new(2016, 6, 30)
say date              -- displays "2016-06-30T00:00:00.000000"
say date~addYears(1)  -- displays "2017-06-30T00:00:00.000000"

5.4.6.39. addWeeks

addWeeks( weeks )

Returns a new DateTime instance with a number of weeks added to the timestamp. The receiving
instance is unchanged. The weeks value must be a valid number, including fractional values. Negative
values result in weeks being subtracted.

5.4.6.40. addDays

addDays( days )

Returns a new DateTime instance with a number of days added to the timestamp. The receiving
instance is unchanged. The days value must be a valid number, including fractional values. Negative
values result in days being subtracted.

Example 5.237. DateTime class — addDays method

date = .DateTime~new(2016, 6, 30)
say date              -- displays "2016-06-30T00:00:00.000000"
say date~addDays(1.5) -- displays "2016-07-01T12:00:00.000000"

5.4.6.41. addHours

addHours( hours )

Returns a new DateTime instance with a number of hours added to the timestamp. The receiving
instance is unchanged. The hours value must be a valid number, including fractional values. Negative
values result in hours being subtracted.

5.4.6.42. addMinutes

addMinutes( minutes )

Returns a new DateTime instance with a number of minutes added to the timestamp. The receiving
instance is unchanged. The minutes value must be a valid number, including fractional values.
Negative values result in minutes being subtracted.
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5.4.6.43. addSeconds

addSeconds( seconds )

Returns a new DateTime instance with a number of seconds added to the timestamp. The receiving
instance is unchanged. The seconds value must be a valid number, including fractional values.
Negative values result in seconds being subtracted.

5.4.6.44. addMicroseconds

addMicroseconds( microseconds )

Returns a new DateTime instance with a number of microseconds added to the timestamp. The
receiving instance is unchanged. The microseconds value must be a valid whole number. Negative
values result in microseconds being subtracted.

5.4.6.45. isoDate

isoDate

Returns the timestamp formatted as a string in extended ISO format yyyy-mm-
ddThh:mm:ss.uuuuuu.

The string method will also return this value.

5.4.6.46. utcIsoDate

utcIsoDate

Returns the timestamp formatted as a string in extended timezone-qualified ISO format. If the
timezone offset is 0, the format is yyyy-mm-ddThh:mm:ss.uuuuuuZ. If the offset is positive, the
string is formatted as yyyy-mm-ddThh:mm:ss.uuuuuu+hh:mm. If the offset is negative, the result
will be in the format yyyy-mm-ddThh:mm:ss.uuuuuu-hh:mm.

5.4.6.47. baseDate

baseDate

Returns the number of complete days (that is, not including the timestamp day) since and including the
base date, 1 January 0001, in the format dddddd (no leading zeros or whitespace characters).

The base date of 1 January 0001 is determined by extending the current Gregorian calendar backward
(365 days each year, with an extra day every year that is divisible by 4 except century years that are
not divisible by 400). It does not take into account any errors in the calendar system that created the
Gregorian calendar originally.

5.4.6.48. yearDay

yearDay
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Returns the number of days, including the timestamp day, that have passed in the year the timestamp
represents in the format ddd (no leading zeros or blanks).

See also method ordinalDate.

Example 5.238. DateTime class — yearDay method 

say .DateTime~new(2020, 2, 10)~yearDay    -- 41

5.4.6.49. weekDay

weekDay

Returns the timestamp weekday as an integer. The values returned use the ISO convention for day
numbering. Monday is 1, Tuesday is 2, running through 7 for Sunday.

5.4.6.50. europeanDate

europeanDate(

separator

)

Returns the timestamp date formatted as a string in the format dd/mm/yy. If specified, separator
identifies the field separator character used in the returned string. The separator must be a single
character or the null string (""). A slash ("/") is the default separator.

5.4.6.51. languageDate

languageDate

Returns the timestamp date formatted as a string in an implementation- and language-dependent, or
local, date format. The format is dd month yyyy. The name of the month is according to the national
language installed on the system. If no local date format is available, the default format is returned.

Note

This format is intended to be used as a whole. Rexx programs must not make any assumptions
about the form or content of the returned string.

5.4.6.52. monthName

monthName

Returns the name of the timestamp month, in English.

5.4.6.53. dayName
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dayName

Returns the name of the timestamp weekday, in English.

5.4.6.54. normalDate

normalDate(

separator

)

Returns the timestamp date formatted as a string in the format dd mon yyyy. If specified, separator
identifies the field separator character used in the returned date. The separator must be a single
character or the null string (""). A blank (" ") is the default separator.

5.4.6.55. orderedDate

orderedDate(

separator

)

Returns the timestamp date formatted as a string in the format yy/mm/dd. If specified, separator
identifies the field separator character used in the returned date. The separator must be a single
character or the null string (""). A slash ("/") is the default separator.

5.4.6.56. standardDate

standardDate(

separator

)

Returns the timestamp date formatted as a string in the format yyyymmdd. If specified, separator
identifies the field separator character used in the returned date. The separator must be a single
character or the null string (""). A null string ("") is the default separator.

5.4.6.57. usaDate

usaDate(

separator

)

Returns the timestamp date formatted as a string in the format mm/dd/yy. If specified, separator
identifies the field separator character used in the returned date. The separator must be a single
character or the null string (""). A slash ("/") is the default separator.

5.4.6.58. civilTime

civilTime

Returns the timestamp time formatted as a string in Civil format hh:mmxx. The hours can take
the values 1 through 12, and the minutes the values 00 through 59. The minutes are followed
immediately by the letters am or pm. This distinguishes times in the morning (12 midnight through
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11:59 a.m.—appearing as 12:00am through 11:59am) from noon and afternoon (12 noon through
11:59 p.m.—appearing as 12:00pm through 11:59pm). The hour has no leading zero. The minute
field shows the current minute (rather than the nearest minute) for consistency with other TIME results.

5.4.6.59. normalTime

normalTime

Returns the timestamp time formatted as a string in the default format hh:mm:ss. The hours can have
the values 00 through 23, and minutes and seconds, 00 through 59. There are always two digits. Any
fractions of seconds are ignored (times are never rounded).

5.4.6.60. longTime

longTime

Returns the timestamp time formatted as a string in the format hh:mm:ss.uuuuuu (where uuuuuu
are microseconds).

5.4.6.61. fullDate

fullDate

Returns the timestamp's number of microseconds since 00:00:00.000000 on 1 January 0001, in the
format dddddddddddddddddd (no leading zeros or blanks).

5.4.6.62. utcDate

utcDate

Returns the timestamp converted to UTC time as the number of microseconds since 00:00:00.000000
on 1 January 0001, in the format dddddddddddddddddd (no leading zeros or blanks).

5.4.6.63. toLocalTime

toLocalTime

Returns a new DateTime instance representing the time for the local timezone.

5.4.6.64. toUtcTime

toUtcTime

Returns a new DateTime instance representing the time for the UTC timezone (offset 0).

5.4.6.65. toTimezone
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toTimeZone(

offset

)

Returns a new DateTime instance representing the time for the timezone indicated by offset.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is 0, which creates a
DateTime object for UTC.

5.4.6.66. ticks

ticks

Returns the timestamp's number of seconds since 00:00:00.000000 on 1 January 1970, in the format
dddddddddddd (no leading zeros or blanks). Times prior to 1 January 1970 are returned as a
negative value.

5.4.6.67. offset

offset

Returns the timestamp timezone as an offset in minutes from UTC. Timezones east of UTC will return
a positive offset. Timezones west of UTC will return a negative offset.

5.4.6.68. date

date

Returns a new DateTime instance for the timestamp date, with the time component set to
00:00:00.000000.

5.4.6.69. timeOfDay

timeOfDay

Returns the interval since 00:00:00.000000 of the timestamp day as a TimeSpan object.

5.4.6.70. elapsed

elapsed

Returns the difference between the current date/time and the timestamp date/time as a TimeSpan
object. The time span will be negative if the receiving instance represents a time in the future.

5.4.6.71. isLeapYear

isLeapYear
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Returns .true if the timestamp year is a leap year. Returns .false otherwise.

5.4.6.72. daysInMonth

daysInMonth

Returns the number of days in the timestamp month. For example, for dates in January, 31 is returned.
The daysInMonth method takes leap years into account, returning 28 for February in non-leap years,
and 29 for leap years.

5.4.6.73. daysInYear

daysInYear

Returns the number of days in the timestamp year. For leap years, 366 is returned, and 365 for non-
leap years.

5.4.6.74. string

string

Returns the timestamp formatted as a string in extended ISO format yyyy-mm-
ddThh:mm:ss.uuuuuu.

The isoDate method will also return this value.

5.4.7. EventSemaphore Class

An event semaphore is a synchronization mechanism that can be used to indicate to activities when a
particular condition—the event—has become true.

An event can be set by posting the event semaphore, or cleared by resetting it. An activity, a
concurrent chain of execution, can choose to get suspended while waiting for the event to become
true, at which point the activity is released and continues to execute.

Table 5.42. EventSemaphore Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

EventSemaphore

new (Class Method)

isPosted reset wait
post uninit

5.4.7.1. new (Class Method)
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new

Returns a new EventSemaphore instance. Initially the semaphore is in the cleared state.

5.4.7.2. isPosted

isPosted

Returns .true if the event semaphore is in the posted state, .false if it is currently cleared.

See also methods post and reset.

Example 5.239. EventSemaphore class — isPosted method 

sem = .EventSemaphore~new
say sem~isPosted    -- 0
sem~post
say sem~isPosted    -- 1

5.4.7.3. post

post

Sets the event semaphore to the posted state. All suspended activities waiting for this event are
released. Activities calling the wait method while the event semapahore is already in the posted state
will continue executing without getting suspended.

See also method reset.

5.4.7.4. reset

reset

Clears the event semaphore. During the time the semaphore is cleared, any activities starting a
blocking wait get suspended.

See also method post.

5.4.7.5. uninit

uninit

This method cleans up the event semaphore when it is garbage collected.
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Note

uninit should not be invoked directly except via an uninit method of a subclass of the
EventSemaphore class. Any such subclassed uninit method must forward to the superclass uninit
method.

5.4.7.6. wait

wait(

timeout

)

Returns .true if waiting for the event semaphore to get posted has been successful or the
semaphore is already in the posted state, and .false if a timeout occurred while waiting.

If timeout is specified it must be a TimeSpan instance or a valid Rexx number. If the value is negative
or if timeout is omitted, wait suspends the current activity until the semaphore gets posted.

If timeout is zero, wait immediately returns with a return value as if isPosted had been called.

If the timeout period is positive, wait suspends the current activity for timeout seconds or until the
semaphore gets posted, whatever comes first.

Any number of activities can wait for an event semaphore. When the semaphore is posted, all waiting
activities are released. The exact order in which released activities resume execution is unspecified
and should not be relied upon.

Example 5.240. EventSemaphore class — wait method 

event = .EventSemaphore~new

say "main starts tasks"
do nr = 1 to 5
  .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1

say "main posts"
event~post
say "main ends"

::class Task

::method waitFor
  reply
  use strict arg event, name
  say name "waits"
  event~wait
  say name "runs"

may output

main starts tasks
task 2 waits
task 5 waits
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task 1 waits
task 3 waits
task 4 waits
main posts
main ends
task 4 runs
task 3 runs
task 1 runs
task 2 runs
task 5 runs

5.4.8. File Class

The File class provides services which are common to all Rexx-supported filesystems. A File
object represents a path to a file or directory. The path can be relative or absolute.

If you create a File object with a relative path, the absolute path will be calculated using the current
default directory. This absolute path is memorized on the File object, and will not change if you
change the default directory.

Table 5.43. File Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Orderable (Mixin Class)

Methods inherited from the Orderable class
Comparison Methods = == < <= << <<= <> > >= >< >> >>= \= \== \< \<< \> \>>
compareTo

+ Comparable (Mixin Class)

Methods inherited from the Comparable class
compareTo

File

isCaseSensitive (Class Method) searchPath (Class Method)
listRoots (Class Method) separator (Class Method)
pathSeparator (Class Method) temporaryPath (Class Method)

absoluteFile isDirectory name
absolutePath isFile parent
canRead isHidden parentFile
canWrite lastAccessed (Attribute) path
compareTo lastModified (Attribute) pathSeparator
delete length renameTo
exists list separator
extension listFiles setReadOnly
hashCode makeDir setWritable
init makeDirs string
isCaseSensitive makeString

5.4.8.1. isCaseSensitive (Class Method)
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isCaseSensitive

Returns the case-sensitivity, .true or .false, of root ( / ) on Unix-like systems. On Windows,
returns the case-sensitivity of the Windows system directory.

See also instance method isCaseSensitive.

5.4.8.2. listRoots (Class Method)

listRoots

Returns the file system root elements, as an array of strings. On Windows, each of the drives is a root
element in the format d:\. On Unix-like systems, there is just one root ( / ).

Example 5.241. File class

say .File~listRoots~toString(, " ")   -- C:\ D:\ E:\ R:\ (e. g. on Windows)
say .File~listRoots~toString(, " ")   -- / (Unix-like system)

5.4.8.3. pathSeparator (Class Method)

pathSeparator

Returns the separator used for file search paths, ";" on Windows and ":" on Unix-like systems.

See also instance method pathSeparator.

5.4.8.4. searchPath (Class Method)

searchPath( name ,

path

)

Returns a new File instance of the file name, if it can be located along path. Returns .nil otherwise.

The name must be a valid file name without wildcard characters and may optionally include a relative
path. The path must be a String, a Collection, or any object that provides a makeArray method.
Specified path items must be valid directories separated by the platform's path separator. If omitted,
path defaults to the value of the PATH environment variable.

See also RexxUtil function SysSearchPath.

Example 5.242. File class — searchPath method 

say .File~searchPath("rexx.exe")     -- e. g. C:\Program Files\ooRexx\rexx.exe
say .File~searchPath("rexx")         -- e. g. /usr/local/bin/rexx

5.4.8.5. separator (Class Method)

separator
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Returns the file name separator used by the file system ("\" on Windows, "/" on Unix-like systems).

This query method is available as both an instance and class method.

Example 5.243. File class — separator method

file = .File~new("dir1" || .File~separator || "dir2" || .File~separator || "file")
-- "dir1/dir2/file" on Unix-like systems, "dir1\dir2\file" on Windows

5.4.8.6. temporaryPath (Class Method)

temporaryPath

Returns the full path to the user's temporary directory as a new instance of File.

On Windows this method returns the value of the environment variable TMP, TEMP or USERPROFILE,
whichever is defined in this sequence. If none of them are defined it returns the current directory. On
Unix-like systems it returns the value of the environment variable TMPDIR, or returns /tmp if TMPDIR
is undefined.

See also RexxUtil function SysTempFileName.

Example 5.244. File class — temporaryPath method 

say .File~temporaryPath    -- (Windows e.g.) C:\Users\USER~1\AppData\Local\Temp
say .File~temporaryPath    -- (Unix-like system e.g.) /tmp

5.4.8.7. absoluteFile

absoluteFile

Returns the fully qualified path as a new instance of File.

Example 5.245. File class — absoluteFile method

/* On Windows */
'cd c:\program files\oorexx'
say .File~new("my file")~absoluteFile~class        -- The File class
say .File~new("my file")~absoluteFile              -- c:\program files\oorexx\my file
say .File~new("..\my file")~absoluteFile           -- c:\program files\my file
say .File~new("..\..\my file")~absoluteFile        -- c:\my file
say .File~new("..\..\my dir\my file")~absoluteFile -- c:\my dir\my file

/* On Linux */
'cd /opt/ooRexx'
say .File~new("my file")~absoluteFile              -- /opt/ooRexx/my file
say .File~new("../my file")~absoluteFile           -- /opt/my file

5.4.8.8. absolutePath

absolutePath
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Returns the fully qualified path as a string.

Example 5.246. File class — absolutePath method

/* On Windows */
'cd c:\program files\oorexx'
say .File~new("my file")~absolutePath~class        -- The String class
say .File~new("my file")~absolutePath              -- c:\program files\oorexx\my file
say .File~new("..\my file")~absolutePath           -- c:\program files\my file
say .File~new("..\..\my file")~absolutePath        -- c:\my file
say .File~new("..\..\my dir\my file")~absolutePath -- c:\my dir\my file

/* On Linux */
'cd /opt/ooRexx'
say .File~new("my file")~absolutePath              -- /opt/ooRexx/my file
say .File~new("../my file")~absolutePath           -- /opt/my file

5.4.8.9. canRead

canRead

Returns .true if the file exists and is readable. Otherwise returns .false.

See also methods canWrite. setReadOnly. setWritable.

5.4.8.10. canWrite

canWrite

Returns .true if the file exists and is writable. Otherwise returns .false.

See also methods canRead, and setReadOnly. setWritable.

5.4.8.11. compareTo

compareTo( other )

Performs a sorting comparison of the target File object to the other File object. The comparison is
made on the absolute paths (strings) of both File objects. If the filesystem is case-sensitive then the
paths comparison is case-sensitive, otherwise the comparison is caseless. If the two paths are equal,
0 is returned. If the target path is larger, 1 is returned. -1 if the other argument is the larger path.

Example 5.247. File class — compareTo method

call directory .File~listRoots[1]
file1 = .File~new("file", "dir")
file2 = .File~new("FILE", "DIR")
file1~compareTo(file2)  -- 0 on Windows (both Files denote the same path)
file1~compareTo(file2)  -- 1 on Unix-like system ("/dir/file" is greater than "/DIR/FILE")

5.4.8.12. delete
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delete

Deletes the file or directory denoted by the absolute path of the target File object. Only empty
directories can be deleted.

Returns .true if the deletion was successful, otherwise returns .false.

5.4.8.13. exists

exists

Returns .true if the file or directory (denoted by the absolute path of the target File object) exists.
Otherwise returns .false.

5.4.8.14. extension

extension

Returns the file's extension, the portion of the file name after the last dot.

See also method name.

Example 5.248. File class — extension method 

say .File~new("/usr/local/lib/rexx.img")~extension    -- img
say .File~new("/")~name                               -- ""

5.4.8.15. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set,
Bag, and Directory.

5.4.8.16. init

init( path

, dir

)

Initializes a new File instance with the path path (after normalization).

If specified, dir is a parent path that is prepended to path. If dir is a File object then the absolute path
of dir is prepended, otherwise dir is prepended as-is (after normalization). The normalization consists
in adjusting the separators to the platform's convention and removing the final separator (if any).

Example 5.249. File class — init method

/* Windows */
file = .File~new("file")                     -- file
file = .File~new("c:\program files\")        -- c:\program files
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file = .File~new("file", "c:/program files") -- c:\program files\file
'cd c:\program files\oorexx'
samples = .File~new("samples")               -- samples
file = .File~new("file", "samples")          -- samples\file
file = .File~new("file", samples)            -- c:\program files\oorexx\samples\file

/* Unix-like system */
file = .File~new("/opt/ooRexx/")             -- /opt/ooRexx
'cd /opt/ooRexx'
samples = .File~new("samples")               -- samples
file = .File~new("file", "samples")          -- samples/file
file = .File~new("file", samples)            -- /opt/ooRexx/samples/file

5.4.8.17. isCaseSensitive

isCaseSensitive

Returns the case-sensitivity, .true or .false, of the file or directory represented by the absolute
path of the target File object. If the referenced file or directory does not exist, the case-sensitivity of the
final existing folder along the referenced absolute path is returned.

See also class method isCaseSensitive (Class Method).

5.4.8.18. isDirectory

isDirectory

Returns .true if the absolute path of the target File object references a directory. Otherwise returns
.false.

5.4.8.19. isFile

isFile

Returns .true if the absolute path of the target File object references a file. Otherwise returns
.false.

5.4.8.20. isHidden

isHidden

Returns .true if the absolute path of the target File object references an existing file or directory
which is hidden. Otherwise returns .false.

On Windows, a file or directory is hidden when its attribute FILE_ATTRIBUTE_HIDDEN is set.

On Unix-like systems, a file or directory is hidden when its name starts with a period character (".") or
when one of its parent directories has a name starting with a period character.

Example 5.250. File class — isHidden method

/* Unix-like system, when file exists */
say .File~new("/tmp/file")~isHidden             -- 0
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say .File~new("/tmp/.file")~isHidden            -- 1
say .File~new("/tmp/.dir/file")~isHidden        -- 1

5.4.8.21. lastAccessed (Attribute)
 

lastAccessed

lastAccessed = date

lastAccessed get:
Returns the last access date of the file or directory denoted by the absolute path of the receiver
object. The result is a DateTime object, or .nil if the file or directory doesn't exist or the last
access time stamp cannot be retrieved.

lastAccessed set:
If the file or directory denoted by the absolute path of the receiver object exists, this sets the last
access date of the file or directory. Otherwise it does nothing.

The date parameter must be a DateTime object.

See also method lastModified (Attribute).

Note

File last access time stamps may not be available on all file systems. Also, on Windows last
access time is not updated for NTFS volumes by default.

Example 5.251. File class — lastAccessed attribute 

say .File~new(".")~lastAccessed  -- e. g. 2020-02-06T13:03:42.143095

5.4.8.22. lastModified (Attribute)

lastModified

lastModified = date

lastModified get:
Returns the last modified date of the file or directory denoted by the absolute path of the receiver
object. The result is a DateTime object, or .nil if the file or directory doesn't exist or the last
modified time stamp cannot be retrieved.

lastModified set:
If the file or directory denoted by the absolute path of the receiver object exists, this sets the last
modified date of the file or directory. Otherwise it does nothing.

The date parameter must be a DateTime object.

See also method lastAccessed (Attribute).
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Example 5.252. File class — lastModified attribute

/* On Windows */
say .File~new("C:\Program Files")~lastModified~class  -- The DateTime class
say .File~new("C:\Program Files")~lastModified        -- e.g. 2018-06-18T11:20:17.000000
say .File~new("dummy")~lastModified                   -- e.g. The NIL object

/* A possible implementation of : touch -c -m -r referenceFile file
   -c, --no-create             do not create any files
   -m                          change only the modification time
   -r, --reference=FILE        use this file's time instead of current time
*/
parse arg referenceFilePath filePath .
file = .File~new(filePath)
if \file~exists then
  return 0         -- OK, not an error
referenceFile = .File~new(referenceFilePath)
referenceDate = referenceFile~lastModified
if referenceDate == .nil then
  return 1         -- KO
file~lastModified = referenceDate
return 0           -- OK

5.4.8.23. length

length

Returns the size in bytes of the file/directory denoted by the absolute path of the receiver object.

5.4.8.24. list

list

Returns an array of files/directories names which are immediate children of the directory denoted by
the absolute path of the receiver object. The order in which the names are returned is dependent on
the file system (not necessarily alphabetic order). The special names "." and ".." are not returned.

The result is an array of strings. If the receiver object is not a directory then the result is .nil.

Example 5.253. File class — list method

names = .File~new("c:\program files\oorexx\samples")~list
say names~toString
/* Possible output */
api
ccreply.rex
complex.rex
drives.rex
factor.rex
(etc...)

5.4.8.25. listFiles
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listFiles

Returns an array of files/directories which are immediate children of the directory denoted by the
absolute path of the receiver object. The order in which the names are returned is dependent on the
file system (not necessarily alphabetic order). The special names "." and ".." are not returned.

The result is an array of File objects. If the receiver object is not a directory then the result is .nil.

Example 5.254. File class — listFiles method

do file over deepListFiles("c:\program files\oorexx\samples")
    say file
end

-- Depth first iteration
::routine deepListFiles
use strict arg directory, accumulator=(.List~new)
files = .File~new(directory)~listFiles
if files == .nil then return accumulator
do file over files
    accumulator~append(file)
    if file~isDirectory then call deepListFiles file~absolutePath, accumulator
end
return accumulator

/* Possible output */
c:\program files\oorexx\samples\api
c:\program files\oorexx\samples\api\callrxnt
c:\program files\oorexx\samples\api\callrxnt\backward.fnc
c:\program files\oorexx\samples\api\callrxnt\callrxnt.c
c:\program files\oorexx\samples\api\callrxnt\callrxnt.exe
c:\program files\oorexx\samples\api\callrxnt\callrxnt.ico
c:\program files\oorexx\samples\api\callrxnt\callrxnt.mak
c:\program files\oorexx\samples\api\callrxwn
c:\program files\oorexx\samples\api\callrxwn\backward.fnc
(etc...)

5.4.8.26. makeDir

makeDir

Makes just the directory represented by the last name portion of the receiver object's absolute path.
Does not create any parent directories, which must all exist for a successful creation of the leaf
directory.

Returns .true if the creation was successful, otherwise returns .false. If the directory already
exists then the result is .false.

5.4.8.27. makeDirs

makeDirs

Creates the entire directory hierarchy represented by the absolute path of the receiver object.

Returns .true if the creation was successful, otherwise returns .false. If the directory already
exists then the result is .false.
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5.4.8.28. makeString

makeString

Returns the fully qualified path as a string. This is an alias of the absolutePath method.

5.4.8.29. name

name

Returns the name portion of the receiver object's absolute path. This is everything after the last path
separator. The file's extension is part of the name.

See also method extension.

Example 5.255. File class — name method

/* On Windows */
say .File~new("c:\program files\oorexx\rexx.exe")~name   -- rexx.exe
say .File~new("c:\")~name                                -- empty string

/* On Unix-like system */
say .File~new("/usr/local/lib/rexx.img")~name            -- rexx.img
say .File~new("/")~name                                  -- empty string

5.4.8.30. parent

parent

Returns the parent directory portion of the receiver object's absolute path. If no separator is found or
the absolute path ends with a separator (which means this is a root path) then returns .nil.

Example 5.256. File class — parent method

/* On Windows */
say .File~new("c:\program files\oorexx\rexx.exe")~parent   -- c:\program files\oorexx
say .File~new("c:\")~parent                                -- The NIL object
say .File~new("c:")~parent                                 -- The NIL object

/* On Unix-like system */
say .File~new("/opt/ooRexx/bin/rexx.img")~parent           -- /opt/ooRexx/bin
say .File~new("/")~parent                                  -- The NIL object

5.4.8.31. parentFile

parentFile

Returns the parent directory portion as a File object. If no separator is found or the absolute path ends
with a separator (which means this is a root path) then returns .nil.
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5.4.8.32. path

path

Returns the original path (after normalization) used to create the File object. The normalization
consists in adjusting the separators to the platform's convention and removing the final separator (if
any).

5.4.8.33. pathSeparator

pathSeparator

Returns the separator used for file search paths, ";" on Windows and ":" on Unix-like systems.

See also class method pathSeparator (Class Method).

5.4.8.34. renameTo

renameTo( dest )

Changes the name of the file/directory denoted by the absolute path of the target object. The new
name is dest.

Returns .true if the renaming was successful, otherwise returns .false.

On Windows, this method calls the MoveFile API to perform the action.

On Unix-like systems, this method calls the rename API to perform the action.

5.4.8.35. separator

separator

Returns the file name separator used by the file system ("\" on Windows, "/" on Unix-like systems).

This query method is available as both an instance and class method.

5.4.8.36. setReadOnly

setReadOnly

Sets the read-only flag of the file or directory denoted by the absolute path of the target object.

See also methods setWritable, canRead, and canWrite.

5.4.8.37. setWritable

setWritable

Clears the read-only flag of the file or directory denoted by the absolute path of the target object.
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See also methods setReadOnly. canRead, and canWrite.

5.4.8.38. string

string

Returns a string that indicates the path used to create the File object.

5.4.9. MessageNotification Class  
The MessageNotification class implements the notification interface for the Message class.

For any message, notification of completion of the message can be requested by using the notify
method of the Message class. This method requires as its argument a notification target, that
implements this message notification interface. If notification was requested, upon message
completion a messageComplete message is sent to the notification target.

This class is defined as a MIXIN class.

Table 5.44. MessageNotification Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

MessageNotification (Mixin Class)

messageComplete (Abstract Method)

5.4.9.1. messageComplete (Abstract Method)  
messageComplete( source )

Whenever a message completes processing, for which notification was requested by using the notify
method of the Message class, this method of the message notification target will be called. The
Message object which completed processing will be provided as argument source.

It is an abstract method and must be implemented in a subclass.

5.4.10. Monitor Class

The Monitor class acts as a proxy for other objects. Messages sent to the Monitor object are
forwarded to a different target object. The message target can be changed dynamically.

Table 5.45. Monitor Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Monitor
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current
destination
init
unknown

5.4.10.1. current

current

Returns the current destination object.

5.4.10.2. destination

destination(

destination

)

Returns a new destination object. If you specify destination, this becomes the new destination for
any forwarded messages. If you omit destination, the previous destination object becomes the new
destination for any forwarded messages.

5.4.10.3. init

init(

destination

)

Initializes the newly created monitor object.

5.4.10.4. unknown

unknown( messagename , messageargs )

Reissues or forwards to the current monitor destination all unknown messages sent to a monitor
object. For additional information, see Section 4.2.6, “Defining an UNKNOWN Method”.

5.4.10.5. Examples

Example 5.257. Class MONITOR

.local~setentry("output",.monitor~new(.stream~new("my.new")~~command("open nobuffer")))

/* The following sets the destination */
previous_destination=.output~destination(.stream~new("my.out")~~command("open write"))
/* The following resets the destination */
.output~destination

.output~destination(.Stdout)
current_output_destination_stream_object=.output~current
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5.4.11. MutableBuffer Class

The MutableBuffer class is a buffer on which certain string operations such as concatenation can
be performed very efficiently. Unlike String objects, MutableBuffers can be altered without requiring
a new object allocation. A MutableBuffer object can provide better performance for algorithms that
involve frequent concatenations to build up longer string objects because it creates fewer intermediate
objects.

Table 5.46. MutableBuffer Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

MutableBuffer

new (Class Method)

[] countStr setText
[]= delete / delStr space
append delWord startsWith
caselessChangeStr endsWith string
caselessContains getBufferSize subChar
caselessContainsWord insert substr
caselessCountStr lastPos subWord
caselessEndsWith length subWords
caselessLastPos lower translate
caselessMatch makeArray upper
caselessMatchChar makeString verify
caselessPos match word
caselessStartsWith matchChar wordIndex
caselessWordPos overlay wordLength
changeStr pos wordPos
contains replaceAt words
containsWord setBufferSize

5.4.11.1. new (Class Method)

new(

string , buffersize

)

Initialize the buffer, optionally assign a buffer content and a starting buffer size. The default size is 256;
the buffer size increases to the length of string if the string does not fit into the buffer.

5.4.11.2. []
 

[ n

, length

]
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Returns a substring of the receiving buffer that begins at the n'th character and is of length length. The
n must be a positive whole number. If length is omitted, it defaults to 1. If n is greater than the length of
the receiving string, a null string is returned.

See also methods substr and subChar.

Example 5.258. MutableBuffer class — [] method

s = .MutableBuffer~new(xrange("a", "z"))
say s[5]        -- "e"
say s[18, 3]    -- "rst"
say s[25,10]    -- "yz"
say s[30]       -- ""

5.4.11.3. []=
 

[ n

, length

] = new

Returns the receiving buffer with the characters from the nth character for length characters replaced
with new. The replacement position and length can extend beyond the end of the receiving string. The
starting position, n, is required and must be a positive whole number. The length is optional and must
be a positive whole number or zero. If length is omitted, it defaults to the length of new.

If n is greater than the length of the receiving string, blanks are added before the new string.

See also the similar MutableBuffer method replaceAt.

Example 5.259. MutableBuffer class — []= method

s = .MutableBuffer~new(xrange("a", "z"))
s[5] = "E"              -- "abcdEfghijklmnopqrstuvwxyz"
s[5] = "XXXX"           -- "abcdXXXXijklmnopqrstuvwxyz"
s[5] = ""               -- "abcdXXXXijklmnopqrstuvwxyz"
s[5, 1] = "="           -- "abcd=XXXijklmnopqrstuvwxyz"
s[5, 4] = "="           -- "abcd=ijklmnopqrstuvwxyz"
s[10, 2] = "REPLACE"    -- "abcd=ijklREPLACEopqrstuvwxyz"
s[4, 99] = ""           -- "abc"

5.4.11.4. append

append( string

,

)

Returns the receiving buffer with all strings appended to the buffer content. The buffer size is
increased if necessary.

5.4.11.5. caselessChangeStr
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caselessChangeStr( needle , newneedle

, count

)

Returns the receiver MutableBuffer with newneedle replacing occurrences of needle. If count is not
specified, all occurrences of needle are replaced. If count is specified, it must be a non-negative,
whole number that gives the maximum number of occurrences to be replaced. The needle searches
are performed using caseless comparisons.

5.4.11.6. caselessContains
 

caselessContains( other ,

start , length

)

Returns .true if the receiving buffer contains the other string. It returns .false if other is the null
string or is not found within the receiving buffer. The search is performed using caseless comparisons.

By default, the search starts at the first character of the receiving buffer and continues to the end of
the buffer. You can override this by specifying start, the point at which the search starts, and length,
the bounding limit for the search. If specified, start must be a positive whole number and length must
be a non-negative whole number.

See also methods contains, caselessStartsWith, caselessEndsWith, and caselessPos.

Example 5.260. MutableBuffer class — caselessContains method

say .mutablebuffer~new('-abcdef-')~caselessContains('EF')         -- 1
say .mutablebuffer~new('-abcdef-')~caselessContains('-', 2, 6)    -- 0

5.4.11.7. caselessContainsWord
 

caselessContainsWord( phrase

, start

)

Returns .true if phrase is found in the receiving buffer. Returns .false if phrase contains no
words or if phrase is not found. Word matches are made independent of case. Multiple whitespace
characters between words in either phrase or the receiving buffer are treated as a single blank for the
comparison, but, otherwise, the words must match, except for case.

By default the search starts at the first word in the receiving buffer. You can override this by specifying
start (which must be a positive whole number), the word at which the search is to be started.

See also methods containsWord and caselessWordPos (caselessContainsWord returns .false
exactly if caselessWordPos would have returned 0.)

Example 5.261. MutableBuffer class — caselessContainsWord method

good = .MutableBuffer~new("Now is the time for all good men")
good~caselessContainsWord("the")          -- .true
good~caselessContainsWord("The")          -- .true
good~caselessContainsWord("is the")       -- .true
good~caselessContainsWord("is   the ")    -- .true
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good~caselessContainsWord("is time")      -- .false
good~caselessContainsWord("time")         -- .true
good~caselessContainsWord("time", 5)      -- .false

5.4.11.8. caselessCountStr

caselessCountStr( needle )

Returns a count of the occurrences of needle in the receiving MutableBuffer that do not overlap. All
matches are made using caseless comparisons.

5.4.11.9. caselessEndsWith
 

caselessEndsWith( other )

Returns .true if the characters of the other match the characters at the end of the target buffer.
Returns .false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessEndsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target buffer.

See also methods caselessStartsWith, endsWith, and caselessMatch.

5.4.11.10. caselessLastPos

caselessLastPos( needle ,

start , length

)

Returns the position of the last occurrence of a string, needle, in the receiving buffer. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
buffer and scans backward to the beginning of the string. You can override this by specifying start,
the point at which the backward scan starts and length, the range of characters to scan. The start
must be a positive whole number and defaults to receiving_buffer~length if larger than that
value or omitted. The length must be a non-negative whole number and defaults to start. The search is
performed using caseless comparisons.

See also methods lastPos and caselessPos.

5.4.11.11. caselessMatch

caselessMatch( start , other ,

n , length

)

Returns .true if the characters of the other match the characters of the target buffer beginning at
position start. Returns .false if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.
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If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The caselessMatch method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

5.4.11.12. caselessMatchChar

caselessMatchChar( n , chars )

Returns .true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The match is made
using caseless comparisons. The argument n must be a positive whole number.

5.4.11.13. caselessPos

caselessPos( needle ,

start , length

)

Returns the position in the receiving buffer of a needle string. It returns 0 if needle is the null string or
is not found or if start is greater than the length of the receiving buffer. The search is performed using
caseless comparisons. By default, the search starts at the first character of the receiving buffer (that
is, the value of start is 1), and continues to the end of the buffer. You can override this by specifying
start, the point at which the search starts, and length, the bounding limit for the search. If specified,
start must be a positive whole number and length must be a non-negative whole number.

See also method lastPos.

5.4.11.14. caselessStartsWith
 

caselessStartsWith( other )

Returns .true if the characters of the other match the characters at the start of the target buffer.
Returns .false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessStartsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target buffer.

See also methods startsWith, caselessEndsWith, and caselessMatch.

5.4.11.15. caselessWordPos

caselessWordPos( phrase

, start

)

Returns the word number of the first word of phrase found in the receiving buffer, or 0 if phrase
contains no words or if phrase is not found. Word matches are made independent of case. Multiple
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whitespace characters between words in either phrase or the receiving buffer are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

5.4.11.16. changeStr

changeStr( needle , newneedle

, count

)

Returns the receiver MutableBuffer with newneedle replacing occurrences of needle.

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a non-
negative, whole number that gives the maximum number of occurrences to be replaced.

5.4.11.17. contains
 

contains( other ,

start , length

)

Returns .true if the receiving buffer contains the other string. It returns .false if other is the null
string or is not found within the receiving buffer.

By default, the search starts at the first character of the receiving buffer and continues to the end of
the buffer. You can override this by specifying start, the point at which the search starts, and length,
the bounding limit for the search. If specified, start must be a positive whole number and length must
be a non-negative whole number.

See also methods caselessContains, startsWith, endsWith, and pos.

Example 5.262. MutableBuffer class — caselessContains method

say .mutablebuffer~new('-abcdef-')~contains('ef')         -- 1
say .mutablebuffer~new('-abcdef-')~contains('-', 2, 6)    -- 0

5.4.11.18. containsWord
 

containsWord( phrase

, start

)

Returns .true if phrase is found in the receiving buffer. Returns .false if phrase contains no
words or if phrase is not found. Multiple whitespace characters between words in either phrase or the
receiving buffer are treated as a single blank for the comparison, but, otherwise, the words must match
exactly.

By default the search starts at the first word in the receiving buffer. You can override this by specifying
start (which must be positive whole number), the word at which the search is to be started.
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See also methods caselessContainsWord and wordPos (containsWord returns .false exactly if
wordPos would have returned 0.)

Example 5.263. MutableBuffer class — containsWord method

good = .MutableBuffer~new("Now is the time for all good men")
good~containsWord("the")          -- .true
good~containsWord("The")          -- .false
good~containsWord("is the")       -- .true
good~containsWord("is   the ")    -- .true
good~containsWord("is time")      -- .false
good~containsWord("time")         -- .true
good~containsWord("time", 5)      -- .false

5.4.11.19. countStr

countStr( needle )

Returns a count of the occurrences of needle in the receiving buffer that do not overlap.

5.4.11.20. delete / delStr

delete(

delStr(
n , length

)

Returns the receiver MutableBuffer with length characters deleted from the buffer beginning at the n'th
character. If n is omitted, it defaults to 1. If length is omitted, or if length is greater than the number of
characters from n to the end of the buffer, the method deletes the remaining buffer contents (including
the n'th character). The length must be a positive integer or zero. The n must be a positive integer. If n
is greater than the length of the buffer or length is zero, the method does not modify the buffer content.

Note

The delete method and the delStr method are identical. delStr is provided for
polymorphism with the String class.

5.4.11.21. delWord

delWord( n

, length

)

Deletes a substring from the MutableBuffer that starts at the nth word and is of length whitespace-
delimited words. If you omit length, or if length is greater than the number of words from n to the end of
the receiving buffer, the method deletes the remaining words in the receiving buffer (including the nth
word). The length must be a positive whole number or zero. The n must be a positive whole number.
If n is greater than the number of words in the receiving buffer, the method returns the receiving buffer
unchanged. The portion deleted includes any whitespace characters following the final word involved
but none of the whitespace characters preceding the first word involved.
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5.4.11.22. endsWith
 

endsWith( other )

Returns .true if the characters of the other match the characters at the end of the target buffer.
Returns .false if the characters are not a match, or if other is the null string.

The endsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target buffer.

See also methods startsWith, caselessEndsWith, and match.

5.4.11.23. getBufferSize

getBufferSize

Retrieves the current buffer size.

See also method setBufferSize.

5.4.11.24. insert

insert( new ,

n

,

length , pad

)

Returns the receiving buffer with the string new, padded or truncated to length length, inserted into
the MutableBuffer after the n'th character. The default value for n is 0, which means insertion at the
beginning of the string. If specified, n and length must be positive integers or zeros. If n is greater
than the length of the buffer contents, the string new is padded at the beginning. The default value for
length is the length of new. If length is less than the length of string new, insert truncates new to length
length. The default pad character is a blank.

5.4.11.25. lastPos

lastPos( needle ,

start , length

)

Returns the position of the last occurrence of a string, needle, in the receiving buffer. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
buffer and scans backward to the beginning of the string. You can override this by specifying start, the
point at which the backward scan starts and length, the range of characters to scan. The start must
be a positive whole number and defaults to receiving_buffer~length if larger than that value or
omitted. The length must be a non-negative whole number and defaults to start.

See also methods caselessLastPos and pos.

Example 5.264. MutableBuffer class — lastPos method

x1 = .mutablebuffer~new("abc def ghi")
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x1~lastPos(" ")      ->    8
x1 = .mutablebuffer~new("abcdefghi")
x1~lastPos(" ") -> 0
x1 = .mutablebuffer~new("efgxyz")
x1~lastPos("xy")     ->    4
x1 = .mutablebuffer~new("abc def ghi")
x1~lastPos(" ",7) -> 4

5.4.11.26. length

length

Returns length of data in buffer.

5.4.11.27. lower

lower(

n , length

)

Returns the receiving buffer with the characters of the target string beginning with character n for
length characters converted to lowercase. If n is specified, it must be a positive whole number. If n is
not specified, the case conversion will start with the first character. If length is specified, it must be a
non-negative whole number. If length is not specified, the default is to convert the remainder of the
buffer.

5.4.11.28. makeArray

makeArray(

separator

)

This method returns an Array of the receiving MutableBuffer's substrings that were separated by the
separator string. separator may be any string, including the null string. If the null string is used, an
Array containing each character of the MutableBuffer is returned. If the target MutableBuffer starts with
the separator, the first Array item will be a null string. If the MutableBuffer ends with a separator, no
extra null string item will be added. If separator isn't specified, any line-end indicator is honored.

5.4.11.29. makeString  
makeString

Returns the content of the buffer as the string representation of the receiving buffer.

See also method string.

5.4.11.30. match

match( start , other ,

n , length

)

381



MutableBuffer Class

Returns .true if the characters of the other match the characters of the target buffer beginning
at position start. Returns .false if the characters are not a match. start must be a positive whole
number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The match method is useful for efficient string parsing as it does not require new string objects be
extracted from the target buffer.

5.4.11.31. matchChar

matchChar( n , chars )

Returns .true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The argument n
must be a positive whole number.

5.4.11.32. overlay

overlay( new ,

n

,

length , pad

)

Returns the receiving buffer after overlaying it, starting at the n'th character, with the string new,
padded or truncated to length length. The overlay can extend beyond the end of the buffer. In this case
the buffer size will be increased. If you specify length, it must be a positive integer or zero. The default
value for length is the length of new. If n is greater than the length of the buffer content, padding is
added before the new string. The default pad character is a blank, and the default value for n is 1. If
you specify n, it must be a positive integer.

5.4.11.33. pos

pos( needle ,

start , length

)

Returns the position in the receiving buffer of another string, needle. It returns 0 if needle is the null
string or is not found or if start is greater than the length of the receiving buffer. By default, the search
starts at the first character of the receiving buffer (that is, the value of start is 1), and continues to the
end of the string. You can override this by specifying start, the point at which the search starts, and
length, the bounding limit for the search. If specified, start must be a positive whole number and length
must be a non-negative whole number.

See also method lastPos.
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Example 5.265. MutableBuffer class — pos method

x1 = .mutablebuffer~new("Saturday")
x1~pos("day")       ->    6
x1 = .mutablebuffer~new("abc def ghi")
x1~pos("x")         ->    0
x1~pos(" ")         ->    4
x1~pos(" ",5)       ->    8

5.4.11.34. replaceAt

replaceAt( new , n ,

length , pad

)

Returns the receiving buffer with the characters from the nth character for length characters replaced
with new. The replacement position and length can extend beyond the end of the receiving string. The
starting position, n, is required and must be a positive whole number. The length is optional and must
be a positive whole number or zero. If length is omitted, it defaults to the length of new.

If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank.

See also the similar MutableBuffer method []=.

5.4.11.35. setBufferSize

setBufferSize( n )

Returns the receiving buffer with buffer size set to n. If n is less than the length of buffer content, the
content is truncated. If n is 0, the entire content is erased and the new buffer size is the value given in
the init method.

See also method getBufferSize.

5.4.11.36. setText
 

setText( string )

Returns the receiving buffer, with the buffer contents set to string.

5.4.11.37. space

space(

n , pad

)

Returns the target MutableBuffer, with n pad characters between each whitespace-delimited word.
If you specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are
removed. Leading and trailing whitespace characters are always removed. The default for n is 1, and
the default pad character is a blank.
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5.4.11.38. startsWith
 

startsWith( other )

Returns .true if the characters of the other match the characters at the start of the target buffer.
Returns .false if the characters are not a match, or if other is the null string.

The startsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target buffer.

See also methods caselessStartsWith, endsWith, and match.

5.4.11.39. string

string

Retrieves the content of the buffer as a string.

See also method makeString .

5.4.11.40. subChar

subChar( n )

Returns the n'th character of the receiving buffer. n must be a positive whole number. If n is greater
than the length of the receiving buffer then a zero-length string is returned.

5.4.11.41. substr

substr( n ,

length , pad

)

Returns a substring from the buffer content that begins at the n'th character and is of length length,
padded with pad if necessary. The n must be a positive integer. If n is greater than the length of the
receiving buffer, only pad characters are returned. If you omit length, the remaining buffer content is
returned. The default pad character is a blank.

5.4.11.42. subWord

subWord( n

, length

)

Returns the substring of the receiving buffer that starts at the nth word and is up to length whitespace-
delimited words. The n must be a positive whole number. If you omit length, it defaults to the number
of remaining words in the receiving buffer. The returned string never has leading or trailing whitespace
characters, but includes all whitespace characters between the selected words.

5.4.11.43. subWords
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subWords(

n , length

)

Returns an array containing all words within the substring of the receiving mutablebuffer that starts at
the nth word and is up to length whitespace-delimited words. The n must be a positive whole number.
If you omit n, it defaults to 1. If you omit length, it defaults to the number of remaining words in the
receiving mutablebuffer. The strings in the returned array never have leading or trailing whitespace.

5.4.11.44. translate

translate(

tableo

,

tablei

,

pad

,

pos

, length

)

Returns the receiving buffer with each character translated to another character or unchanged.

The output table is tableo and the input translation table is tablei. translate searches tablei for each
character in the receiving buffer. If the character is found, the corresponding character in tableo is
replaces the character in the buffer. If there are duplicates in tablei, the first (leftmost) occurrence is
used. If the character is not found, the original character in the receiving buffer is unchanged.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving
string is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the
buffer translates the entire string to pad characters. tablei defaults to XRANGE('00'x, 'ff'x), and
tableo defaults to the null string and is padded with pad or truncated as necessary. The default pad is
a blank.

n is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If length is omitted, the remainder of the buffer from the
starting position to the end is used.

5.4.11.45. upper

upper(

n , length

)

Returns the receiving buffer with the characters of the target string beginning with character n for
length characters converted to uppercase. If n is specified, it must be a positive whole number. If n
is not specified, the case conversion will start with the first character. If length is specified, it must be
a non-negative whole number. If length is not specified, the default is to convert the remainder of the
buffer.

5.4.11.46. verify
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verify( reference ,

"N"

option

,

start , length

)

Returns a number that, by default, indicates whether the receiving buffer is composed only of
characters from reference. It returns 0 if all characters in the receiving buffer are in reference or
returns the position of the first character in the receiving buffer not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify only the first
capitalized and highlighted letter; all characters following the first character are ignored, which can be
in uppercase or lowercase.)

If you specify Match, the method returns the position of the first character in the receiving buffer that is
in reference, or returns 0 if none of the characters are found.

The default for start is 1. Thus, the search starts at the first character of the receiving buffer. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the buffer from start to the end of the buffer. Thus, the search
proceeds to the end of the receiving buffer. You can override this by specifying a different length,
which must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly, if
start is greater than receiving_buffer~length, the method returns 0. If reference is null, the
method returns 0 if you specify Match. Otherwise, the method returns the start value.

Example 5.266. MutableBuffer class — verify method

.mutablebuffer~new('123')~verify('1234567890')             ->    0

.mutablebuffer~new('1Z3')~verify('1234567890')             ->    2

.mutablebuffer~new('AB4T')~verify('1234567890')            ->    1

.mutablebuffer~new('AB4T')~verify('1234567890','M')        ->    3

.mutablebuffer~new('AB4T')~verify('1234567890','N')        ->    1

.mutablebuffer~new('1P3Q4')~verify('1234567890', ,3)       ->    4

.mutablebuffer~new('123')~verify("",N,2)                   ->    2

.mutablebuffer~new('ABCDE')~verify("", ,3)                 ->    3

.mutablebuffer~new('AB3CD5')~verify('1234567890','M',4)    ->    6

.mutablebuffer~new('ABCDEF')~verify('ABC',"N",2,3)         ->    4

.mutablebuffer~new('ABCDEF')~verify('ADEF',"M",2,3)        ->    4

5.4.11.47. word

word( n )

Returns the nth whitespace-delimited word in the receiving buffer or the null string if the receiving
buffer has fewer than n words. The n must be a positive whole number. This method is exactly
equivalent to receiving_buffer~subWord(n, 1).

5.4.11.48. wordIndex

wordIndex( n )
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Returns the position of the first character in the nth whitespace-delimited word in the receiving buffer. It
returns 0 if the receiving buffer has fewer than n words. The n must be a positive whole number.

5.4.11.49. wordLength

wordLength( n )

Returns the length of the nth whitespace-delimited word in the receiving buffer or 0 if the receiving
buffer has fewer than n words. The n must be a positive whole number.

5.4.11.50. wordPos

wordPos( phrase

, start

)

Returns the word number of the first word of phrase found in the receiving buffer, or 0 if phrase
contains no words or if phrase is not found. Multiple whitespace characters between words in either
phrase or the receiving buffer are treated as a single blank for the comparison, but, otherwise, the
words must match exactly.

By default the search starts at the first word in the receiving buffer. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

5.4.11.51. words

words

Returns the number of whitespace-delimited words in the receiving buffer.

5.4.12. MutexSemaphore Class

A mutex, or mutual exclusion semaphore is a synchronization mechanism which concurrent activities
can use to control access to a common resource.

Mutual exclusion is the requirement that one activity, a concurrent chain of execution, never enters its
critical section at the same time that another concurrent activity enters its own critical section.

An activity acquires the mutex semaphore before entering its critical section, and releases it after the
critical section.

See also keyword instructions GUARD ON and GUARD OFF.

Table 5.47. MutexSemaphore Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

MutexSemaphore
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new (Class Method)

acquire
release
uninit

5.4.12.1. new (Class Method)

new

Returns a new MutexSemaphore instance. Initially the mutex semaphore is in the released state.

5.4.12.2. acquire

acquire(

timeout

)

Returns .true if the current activity has already owned or has just acquired the mutex semaphore.
Returns .false if the mutex is owned by a different activity, or a timeout has occurred.

Nested acquires, from an activity already owning the mutex semaphore, are allowed, with each
acquire increasing the mutex nesting level by one. An equivalent number of calls to release are
needed to make the mutex available again to another activity.

If timeout is specified it must be a TimeSpan instance or a valid Rexx number. If the value is negative
or if timeout is omitted, acquire suspends the current activity until it can get ownership of the mutex.

If timeout is zero, acquire immediately returns .true if the mutex was acquired, or .false
otherwise.

If the timeout period is positive, acquire suspends the current activity for timeout seconds or until the
current activity can acquire the mutex, whatever comes first.

If an activity still owns mutex semaphores when it ends, these semaphores will be automatically
released by the interpreter.

See also method release.

Example 5.267. MutexSemaphore class — acquire method 

mutex = .MutexSemaphore~new
.Task~new~startWork(mutex, "work 1")
.Task~new~startWork(mutex, "work 2")
say "work tasks started"

::class Task

::method startWork unguarded
  expose mutex name
  use strict arg mutex, name
  reply
  self~doWork(1)
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::method doWork unguarded
  expose mutex name
  use strict arg level
  -- five levels of nested acquires
  if level > 5 then
    return
  mutex~acquire
  say name level
  self~doWork(level + 1)

may output

work tasks started
work 2 1
work 2 2
work 2 3
work 2 4
work 2 5
work 1 1
work 1 2
work 1 3
work 1 4
work 1 5

5.4.12.3. release

release

Returns .true if the mutex semaphore had been owned by the current activity, returns .false
otherwise.

A successful release decreases the mutex nesting level. If the nesting level has reached zero, one of
the activities, if any, waiting to acquire the mutex gets released and becomes the new owner of the
mutex.

See also method acquire.

5.4.12.4. uninit

uninit

This method cleans up the mutex semaphore when it is garbage collected.

Note

uninit should not be invoked directly except via an uninit method of a subclass of the
MutexSemaphore class. Any such subclassed uninit method must forward to the superclass
uninit method.
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5.4.13. Orderable Class

The Orderable class can be inherited by classes which wish to provide each of the comparison
operator methods without needing to implement each of the individual methods. The inheriting class
need only implement the Comparable compareTo method.

The Orderable class is defined as a MIXIN class.

Table 5.48. Orderable Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Orderable (Mixin Class)

Comparison Methods = == < <= << <<= <> > >= >< >> >>= \= \== \< \<< \> \>>
compareTo

5.4.13.1. compareTo

This method compares the receiving object to the object supplied in the other argument.

This is a default implementation which compares two items based on their identityHash.

compareTo( other )

This method returns -1 if the other is larger than the receiving object, 0 if the two objects are equal,
and 1 if other is smaller than the receiving object.

Note

Classes inheriting from Orderable (like builtin classes File, DateTime, or TimeSpan) are
strongly encouraged to forward to this default implementation for comparison cases not covered
by their class-specific compareTo implementation.

5.4.13.2. Comparison Methods

comparison_operator( argument )

Returns .true or .false, the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared.

The comparison operators you can use in a message are:

=  .true if the terms are equal

\=, ><, <>      .true if the terms are not equal (inverse of =)

>  Greater than

<  Less than
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>=  Greater than or equal to

\<  Not less than

<=  Less than or equal to

\>  Not greater than

All strict comparison operations have one of the characters doubled that define the operator. The
Orderable strict comparison operators produce the same results as the non-strict comparisons.

The strict comparison operators you can use in a message are:

==  .true if terms are strictly equal

\==  .true if the terms are NOT strictly equal (inverse of ==)

>>  Strictly greater than

<<  Strictly less than

>>=  Strictly greater than or equal to

\<<  Strictly NOT less than

<<=  Strictly less than or equal to

\>>  Strictly NOT greater than

5.4.14. Pointer Class

A Pointer instance is a wrapper around a native pointer value. This class is designed primarily
for writing methods and functions in native code and can only be created using the native code
application programming interfaces. The Pointer class new method will raise an error if invoked.

Table 5.49. Pointer Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Pointer

new (Class Method)

Comparison Methods = == \= \==
isNull

5.4.14.1. new (Class Method)

new

Creating Pointer object instances directly from Rexx code is not supported. The Pointer class new
method will raise an error if invoked.

5.4.14.2. Comparison Methods
comparison_operator( argument )
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Returns .true or .false, the result of performing a specified comparison operation.

For the Pointer class, the argument object must be a pointer object instance and the wrappered
pointer value must be the same.

The comparison operators you can use in a message are:

=, ==    .true if the wrappered pointer values are the same.

\=, ><, <>, \==
       

.true if the wrappered pointer values are not the same.

5.4.14.3. isNull

isNull

Returns .true if the wrappered pointer value is a NULL pointer (0) value. Returns .false if the
pointer value is non-zero.

5.4.15. RegularExpression Class

This class provides support for regular expressions. A regular expression is a pattern you can use to
match strings.

Note

The RegularExpression class is not a built-in class and is not preloaded. Use ::requires
"rxregexp.cls" to activate its functionality.

Table 5.50. RegularExpression Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

RegularExpression

new (Class Method)

match pos
parse position

Here is a description of the syntax:

| OR operator between the left and right expression

? Matches any single character

* Matches the previous expression zero or more times

+ Matches the previous expression one or more times
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\ "Escape" symbol: use the next character literally

(…) Expression in parenthesis (use where needed)

{n} Matches previous expression n times (n > 1)

[…] Set definition: matches any single character out of the defined set.

A "^" right after the opening bracket means that none of the following characters
should be matched.

A "-" (if not used with "\") defines a range between the last specified character and
the one following "-". If it is the first character in the set definition, it is used literally.

The following symbolic names (they must start and end with ":") can be used to abbreviate common
sets:

:alpha: Characters in the range A-Z and a-z

:lower: Characters in the range a-z

:upper: Characters in the range A-Z

:digit: Characters in the range 0-9

:alnum: Characters in :digit: and :alpha:

:xdigit: Characters in :digit:, A-F and a-f

:blank: Space and tab characters

:space: Characters '09'x to '0d'x and space

:cntrl: Characters '00'x to '1f'x and '7f'x

:print: Characters in the range '20'x to '7e'x

:graph: Characters in :print: without space

:punct: All :print: characters without space and not in :alnum:

Example 5.268. RegularExpression class

::requires "rxregexp.cls"

     "(Hi|Hello) World"      Matches "Hi World" and
                             "Hello World".
     "file.???"              Matches any file with three
                             characters after "."
     "file.?{3}"             Same as above.
     "a *b"                  Matches all strings that begin with
                             "a" and end with "b" and have an
                             arbitrary number of spaces in between
                             both.
     "a +b"                  Same as above, but at least one space
                             must be present.
     "file.[bd]at"           Matches "file.bat" and "file.dat".
     "[A-Za-z]+"             Matches any string containing only
                             letters.
     "[:alpha:]+"            Same as above, using symbolic names.
     "[^0-9]*"               Matches any string containing no
                             numbers, including the empty string.
     "[:digit::lower:]"      A single character, either a digit or
                             a lower case character.
     "This is (very )+nice." Matches all strings with one or more
                             occurrences of "very " between

393



RegularExpression Class

                             "This is " and "nice.".

5.4.15.1. new (Class Method)

new(

pattern

,

"MAXIMAL"

"MINIMAL"

)

Instantiates a RegularExpression instance. Use the optional parameter pattern to define a regular
expression pattern that will be used to match strings. You can select the type of regular expression
matching to be “greedy” by specifying option MAXIMAL, or to be “lazy” by specifying option MINIMAL.
Option MAXIMAL is the default.

Both pattern and match type can be changed with the parse method.

Important

RegularExpression defines its own init method. Any subclass which also defines its own
init method, must forward to its superclass to complete object initialization. For details see
Section 4.2.9, “Initialization”.

Example 5.269. RegularExpression class — new method

re1 = .RegularExpression~new
re2 = .RegularExpression~new("Hello?*")

5.4.15.2. match

match( string )

This method tries to match string to the regular expression set by calls to the new or parse method.

With option MAXIMAL in effect, it will successfully match only if the whole string matches. With option
MINIMAL in effect, any successful match will always start at the first character of string, but doesn't
necessarily have to cover the full string. Thus a match will always be a leading part of string.

Method match returns 0 for an unsuccessful match and 1 for a successful match.

Example 5.270. RegularExpression class — match method

str = "<p>Paragraph 1</p><p>Paragraph 2</p>"
re1 = .RegularExpression~new("<p>?*</p>", "MINIMAL")
re1~match(str)
re2 = .RegularExpression~new("<p>?*</p>", "MAXIMAL")
re2~match(str)

say "re1 (minimal) matched" str~substr(1, re1~position)
say "re2 (maximal) matched" str~substr(1, re2~position)
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::requires "rxregexp.cls"

Output:

re1 (minimal) matched <p>Paragraph 1</p>
re2 (maximal) matched <p>Paragraph 1</p><p>Paragraph 2</p>

5.4.15.3. parse

parse( pattern ,

"CURRENT"

"MAXIMAL"

"MINIMAL"

)

Returns 0 after setting and successfully parsing the regular expression pattern. The new pattern will
be used to match strings specified with methods match or pos. Returns an error code otherwise.

The type of regular expression matching can be set to “greedy” by specifying option MAXIMAL, or to
“lazy” by specifying option MINIMAL. The default is to use the current matching type.

Return values:

0
Regular expression was parsed successfully.

1
An unexpected symbol was met during parsing.

2
A missing ')' was found.

3
An illegal set was defined.

4
The regular expression ended unexpectedly.

5
An illegal number was specified.

6
An undefined symbolic set name was specified.

Example 5.271. RegularExpression class — parse method

patterns = "A [:alpha:]{4} fl?*.", -
           "?*[l|e]?*e?*[r|g]?*", -
           "[invalid"
texts = "A nice flower.", -
        "A yellow flower.", -
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        "A blue flag."

re = .RegularExpression~new
do pattern over patterns
  code = re~parse(pattern)
  if code == 0 then
    do text over texts
      say text~left(16) -
       re~match(text)~?("matches", "doesn't match") "regex" pattern
    end
  else
    say "error" code "parsing pattern" pattern
  say
end

::requires rxregexp.cls

Output:

A nice flower.   matches regex A [:alpha:]{4} fl?*.
A yellow flower. doesn't match regex A [:alpha:]{4} fl?*.
A blue flag.     matches regex A [:alpha:]{4} fl?*.

A nice flower.   matches regex ?*[l|e]?*e?*[r|g]?*
A yellow flower. matches regex ?*[l|e]?*e?*[r|g]?*
A blue flag.     matches regex ?*[l|e]?*e?*[r|g]?*

error 3 parsing pattern [invalid

Example 5.272. RegularExpression class — parse method

nrs = 1, 42, 0, 5436412, "1A", "f43g"
re = .RegularExpression~new("[1-9][0-9]*")
do nr over nrs
  say nr "is" re~match(nr)~?("a valid", "an invalid") "number"
end
say

-- allow hexadecimal numbers and a single 0
re~parse("0|([1-9a-fA-F][:xdigit:]*)")
do nr over nrs
  say nr "is" re~match(nr)~?("a valid", "an invalid") "number"
end

::requires rxregexp.cls

Output:

1 is a valid number
42 is a valid number
0 is an invalid number
5436412 is a valid number
1A is an invalid number
f43g is an invalid number

1 is a valid number
42 is a valid number
0 is a valid number
5436412 is a valid number
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1A is a valid number
f43g is an invalid number

5.4.15.4. pos

pos( haystack )

This method tries to locate the regular expression set by calls to the new or parse method in the given
haystack string.

Method pos returns 0 for an unsuccessful match, or the starting position for a successful match. The
end position of the match can be retrieved with the position method.

Example 5.273. RegularExpression class — haystack method

text = "It's the year 2016!"
re = .RegularExpression~new("[1-9][0-9]*")
begin = re~pos(text)
if begin > 0 then
  do
    year = text~substr(begin, re~position - begin + 1)
    say "Found the number" year "in this sentence."
  end

::requires rxregexp.cls

Output:

Found the number 2016 in this sentence.

5.4.15.5. position

position

Returns the character position at which the last parse, pos, or match method ended.

Example 5.274. RegularExpression class — position method

re = .RegularExpression~new
re~parse("[abc")                    -- illegal set definition
say re~position                     -- will be 4

re = .RegularExpression~new("[abc]12")
re~match("c12")
say re~position                     -- will be 3

re~match("a13")                     -- unsuccessful match
say re~position                     -- will be 2 (failure to match)

::requires "rxregexp.cls"

5.4.16. RexxContext Class
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The RexxContext class gives access to context information about the currently executing Rexx
code. Instances of the RexxContext class can only be obtained via the .CONTEXT environment
symbol. They cannot be directly created by the user. It is a subclass of the Object class.

Table 5.51. RexxContext Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

RexxContext

args form package
condition fuzz rs
digits line stackFrames
executable name variables

5.4.16.1. args

args

Returns the arguments used to invoke the current context as an array. This is equivalent to using the
ARG(1, 'A') built-in function.

5.4.16.2. condition

condition

Returns the current context condition object, or .nil if the context does not currently have a trapped
condition. This is equivalent to using the CONDITION('O') built-in function.

5.4.16.3. digits

digits

Returns the current context digits setting. This is equivalent to using the DIGITS built-in function.

5.4.16.4. executable

executable

Returns the current executable object for the current context. The executable will be either a Routine
object or a Method object, depending on the type of the active context.

5.4.16.5. form

form

Returns the current context form setting. This is equivalent to using the FORM built-in function.
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5.4.16.6. fuzz

fuzz

Returns the current context fuzz setting. This is equivalent to using the FUZZ built-in function.

5.4.16.7. line

line

Returns the context current execution line. This is equivalent to using the .LINE environment symbol.

5.4.16.8. name

name

Returns the name used to invoke the current context. If the current context is a method, name is the
message name used to invoke the method. If the current context is a routine invoked as an external
call, name is the name used to call the routine. If the current context is an internal routine call, name is
the name of the label used to invoke the call. If the context is the main part of the program, name will
be the package name.

5.4.16.9. package

package

Returns the Package object associated with the current executable object.

5.4.16.10. rs

rs

Returns the context current return status value. If no host commands have been issued in the current
context, .nil is returned. This is equivalent to using the .RS environment symbol.

5.4.16.11. stackFrames

stackFrames

Returns an Array of StackFrame objects representing the current call stack. The first item will
represent the current Rexx context and subsequent elements are earlier elements in the call stack.

5.4.16.12. variables

variables

Returns a directory object containing all of the variables in the current execution context. The directory
keys will be the variable names and the mapped values are the values of the variables. The directory
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will only contain simple variables and stem variables, but no compound variables. Compound variable
values may be accessed by using the stem objects that are returned for the stem variable names.

See also Rexx Utility function SysDumpVariables.

Example 5.275. RexxContext class — variables method

a = 2
b.1 = a
c. = .stem~new
c.[] = 1
c.["one"] = 11
dir = .Directory~new
dir["item"] = "index"
array = .Array~of("a", "e", "i")

say "SysDumpVariables:"
call SysDumpVariables
drop result

say ".context~variables:"
variables = .context~variables
do name over variables
  say "Name="name"," "Value='"variables[name]"'"
  if name~right(1) = ".", variables[name]~isA(.Stem) then
    do tail over variables[name]
      say "Name="name||tail"," "Value='"variables[name][tail]"'"
    end
end

will output

SysDumpVariables:
Name=C.one, Value='11'
Name=DIR, Value='a Directory'
Name=B.1, Value='2'
Name=ARRAY, Value='an Array'
Name=A, Value='2'
.context~variables:
Name=ARRAY, Value='an Array'
Name=B., Value='B.'
Name=B.1, Value='2'
Name=A, Value='2'
Name=DIR, Value='a Directory'
Name=C., Value='1'
Name=C.one, Value='11'

5.4.17. RexxInfo Class
The RexxInfo class   gives access to Rexx language information and other platform-specific
information in a single place. Only one instance of the RexxInfo class can be obtained via the
.REXXINFO environment symbol, other instances cannot be created or copied.

RexxInfo provides read-only attribute methods to get
• the default settings for NUMERIC digits, fuzz, and form,
• internalMaxNumber, internalMinNumber, and internalDigits, the allowed maximum, minimum, and

the number of digits of internal whole numbers used e. g. as arguments to built-in functions, as the
right-hand operand of the power (**) operator, or as the values of exprr and exprf in a DO or LOOP
instruction,
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• maxExponent and minExponent, the maximum and minimum allowed exponent values of numbers
in scientific notation,

• the language processor version and its sub-components majorVersion, release, and modification,
and supplemental to that, the source code version control system's revision,

• the language processor's descriptive name, its languageLevel, and release date,
• the interpreter's debug, platform, addressing mode of its architecture, full executable path, shared/

dynamic libraryPath, and whether the interpreter is a debug version,
• and the platform-specific values for endofline, pathSeparator, directorySeparator,

caseSensitiveFiles, maxPathLength, and maxArraySize.

Table 5.52. RexxInfo Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

RexxInfo

architecture internalDigits modification
caseSensitiveFiles internalMaxNumber name
date internalMinNumber package
debug languageLevel pathSeparator
digits libraryPath platform
directorySeparator majorVersion release
endofline maxArraySize revision
executable maxExponent version
form maxPathLength
fuzz minExponent

5.4.17.1. architecture
 

architecture

Returns the interpreter's addressing mode, specified as a number in bits.

See also method name.

Example 5.276. RexxInfo class — architecture method

say .RexxInfo~architecture    -- 32 /* ooRexx 32-bit */
say .RexxInfo~architecture    -- 64 /* ooRexx 64-bit */

5.4.17.2. caseSensitiveFiles
 

caseSensitiveFiles

Returns .true if the file system is case-sensitive. Otherwise returns .false.

On Unix-like systems where both case-sensitive and case-insensitive file systems may be mounted,
this method returns .true if the file system root "/" is case-sensitive, and otherwise .false.
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See also File class method isCaseSensitive which returns the same information.

Example 5.277. RexxInfo class — caseSensitiveFiles method

say .RexxInfo~caseSensitiveFiles    -- 0 /* e. g. Windows */
say .RexxInfo~caseSensitiveFiles    -- 1 /* e. g. Unix-like system */

5.4.17.3. date
 

date

Returns the language processor release date as a string in the default format of the DATE built-in
function.

See also
• method name and
• keyword instruction PARSE VERSION,

which both also return this date as the third to fifth token of their result.

Example 5.278. RexxInfo class — date method

say .RexxInfo~date    -- 9 Dec 2016 /* e. g. */

5.4.17.4. debug
 

debug

Returns .true if the interpreter is a debug version, .false if it is a release version.

Example 5.279. RexxInfo class — debug method

say .RexxInfo~debug    -- 0 /* release version */, 1 /* debug version */

5.4.17.5. digits
 

digits

Returns the language processor default for the NUMERIC DIGITS setting.

See also
• Package method digits,
• RexxContext method digits, and
• built-in function DIGITS.

Example 5.280. RexxInfo class — digits method

say .RexxInfo~digits    -- 9
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5.4.17.6. directorySeparator
 

directorySeparator

Returns the platform-specific directory separator used by the file system, "\" on Windows, and "/" on
Unix-like systems.

See also File method separator, which provides the same information.

Example 5.281. RexxInfo class — directorySeparator method

say .RexxInfo~directorySeparator    -- "\" /* Windows */
say .RexxInfo~directorySeparator    -- "/" /* Unix-like system */

5.4.17.7. endofline
 

endofline

Returns a platform-specific string representing the line-end characters. It returns '0d 0a'x (carriage-
return, line-feed) on Windows, and '0a'x (line-feed) on Unix-like systems.

See also the environment symbol .ENDOFLINE, which provides the same information.

Example 5.282. RexxInfo class — endofline method

say .RexxInfo~endofline    -- '0d 0a'x /* Windows */
say .RexxInfo~endofline    -- '0a'x /* Unix-like system */

5.4.17.8. executable

executable

Returns a new File instance of the full path of the currently executing interpreter.

See also method libraryPath.

Example 5.283. RexxInfo class — executable method 

say .RexxInfo~executable    -- (Windows e.g.) C:\Program Files\ooRexx\rexx.exe
say .RexxInfo~executable    -- (Unix-like system e.g.) /usr/local/bin/rexx

5.4.17.9. form
 

form

Returns the language processor default for the NUMERIC FORM setting.
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See also
• Package method form,
• RexxContext method form, and
• built-in function FORM.

Example 5.284. RexxInfo class — form method

say .RexxInfo~form    -- SCIENTIFIC

5.4.17.10. fuzz
 

fuzz

Returns the language processor default for the NUMERIC FUZZ setting.

See also
• Package method fuzz,
• RexxContext method fuzz, and
• built-in function FUZZ.

Example 5.285. RexxInfo class — fuzz method

say .RexxInfo~fuzz    -- 0

5.4.17.11. internalDigits
 

internalDigits

Returns the NUMERIC DIGITS setting that the built-in functions use internally, which is 9 digits, when
running in 32-bit addressing mode, and 18 digits, when running in a 64-bit addressing mode.

See also method name.

Example 5.286. RexxInfo class — internalDigits method

say .RexxInfo~internalDigits    -- 9  /* 32-bit addressing mode */
say .RexxInfo~internalDigits    -- 18 /* 64-bit addressing mode */

5.4.17.12. internalMaxNumber
 

internalMaxNumber

Returns the maximum allowed value for internal whole numbers used e. g. as arguments to built-in
functions, as the right-hand operand of the power (**) operator, or as the values of exprr and exprf in
a DO or LOOP instruction.

See also methods internalMinNumber and internalDigits.
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Example 5.287. RexxInfo class — internalMaxNumber method 

say .RexxInfo~internalMaxNumber  -- 999999999          /* 32-bit addressing mode */
say .RexxInfo~internalMaxNumber  -- 999999999999999999 /* 64-bit addressing mode */

5.4.17.13. internalMinNumber
 

internalMinNumber

Returns the minimum allowed value for internal whole numbers used e. g. as arguments to built-in
functions, as the right-hand operand of the power (**) operator, or as the values of exprr, and exprf, in
a DO or LOOP instruction.

See also methods internalMaxNumber and internalDigits.

Example 5.288. RexxInfo class — internalMinNumber method 

say .RexxInfo~internalMinNumber  -- -999999999          /* 32-bit addressing mode */
say .RexxInfo~internalMinNumber  -- -999999999999999999 /* 64-bit addressing mode */

5.4.17.14. languageLevel
 

languageLevel

Returns the language processor's language level as a decimal number.

See also
• method name and
• keyword instruction PARSE VERSION,

which both also return the language level as the second token of their result.

Example 5.289. RexxInfo class — languageLevel method

say .RexxInfo~languageLevel    -- 6.05 /* e. g. ooRexx 5.0.0 */

5.4.17.15. libraryPath

libraryPath

Returns a new File instance of the path of the shared or dynamic libraries for the currently running
Rexx interpreter.

See also method executable.

Example 5.290. RexxInfo class — libraryPath method 

say .RexxInfo~libraryPath    -- (Windows e.g.) C:\Program Files\ooRexx
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say .RexxInfo~libraryPath    -- (Unix-like systems e.g.) /usr/local/lib/

5.4.17.16. majorVersion
 

majorVersion

Returns the major version number of the language processor. The major version number is the first
part of the language processor version.

See also
• methods release and modification, and
• keyword instruction PARSE VERSION.

Example 5.291. RexxInfo class — majorVersion method

say .RexxInfo~majorVersion    -- 5 /* e. g. ooRexx 5.0.0 */

5.4.17.17. maxArraySize
 

maxArraySize

Returns the implementation-defined maximum allocation size allowed for Array and Queue.

Example 5.292. RexxInfo class — maxArraySize method 

say .RexxInfo~maxArraySize  -- 100000000          /* 32-bit addressing mode */
say .RexxInfo~maxArraySize  -- 100000000000000000 /* 64-bit addressing mode */

5.4.17.18. maxExponent
 

maxExponent

Returns the maximum allowed exponent value of a number in scientific notation.

See also method minExponent.

Example 5.293. RexxInfo class — maxExponent method 

say .RexxInfo~maxExponent    -- 999999999

5.4.17.19. maxPathLength
 

maxPathLength

Returns the maximum allowed file system path length of a fully qualified path including any filename
portion.
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Example 5.294. RexxInfo class — maxPathLength method 

say .RexxInfo~maxPathLength    -- 259  /* e. g. on Windows */
say .RexxInfo~maxPathLength    -- 4096 /* e. g. on Linux */

5.4.17.20. minExponent
 

minExponent

Returns the minimum allowed exponent value of a number in scientific notation.

See also method maxExponent.

Example 5.295. RexxInfo class — minExponent method 

say .RexxInfo~minExponent    -- -999999999

5.4.17.21. modification
 

modification

Returns the modification number of the language processor. The modification number is the third part
of the language processor version string.

See also
• methods majorVersion and release, and
• keyword instruction PARSE VERSION.

Example 5.296. RexxInfo class — modification method

say .RexxInfo~modification    -- 0 /* e. g. ooRexx 5.0.0 */

5.4.17.22. name
 

name

Returns the language processor's descriptive name in the format that is also returned by PARSE
VERSION, which is
• an interpreter identification string (that includes version and architecture),
• the interpreter languageLevel and
• the interpreter build date.

See also methods version and languageLevel, and keyword instruction PARSE VERSION.

Example 5.297. RexxInfo class — name method

say .RexxInfo~name    -- REXX-ooRexx_5.0.0(MT)_64-bit 6.05 22 Dec 2018 /* e. g. */
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5.4.17.23. package
 

package

Returns a Package instance of all Rexx-defined (namespace "REXX") classes.

See Package class.

Example 5.298. RexxInfo class — package method

say .RexxInfo~package~publicClasses~items -
 "Rexx-defined public classes"   -- 56 Rexx-defined public classes /* e. g. */

5.4.17.24. pathSeparator
 

pathSeparator

Returns the platform-specific path separator used used for file search paths, ";" on Windows, and ":"
on Unix-like systems.

See also File method pathSeparator.

Example 5.299. RexxInfo class — pathSeparator method

say .RexxInfo~pathSeparator    -- ";" (Windows)
say .RexxInfo~pathSeparator    -- ":" (Unix-like system)

5.4.17.25. platform
 

platform

Returns the name of the interpreter operating system as a string, e. g. WindowsNT for a Windows, or
LINUX for a Linux system.

See also keyword instruction PARSE SOURCE, which returns the same information as its first token.

Example 5.300. RexxInfo class — platform method

say .RexxInfo~platform    -- WindowsNT
say .RexxInfo~platform    -- LINUX

5.4.17.26. release
 

release

Returns the release number of the language processor. The release number is the second part of the
language processor version string.
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See also
• methods majorVersion and modification, and
• keyword instruction PARSE VERSION.

Example 5.301. RexxInfo class — release method

say .RexxInfo~release    -- 0 /* e. g. ooRexx 5.0.0 */

5.4.17.27. revision
 

revision

Returns the source code version control system's revision from which this language processor was
built. Rexx code should not rely on the format returned.

See also keyword instruction PARSE VERSION.

Example 5.302. RexxInfo class — revision method

say .RexxInfo~revision    -- 11636 /* e. g. */

5.4.17.28. version
 

version

Returns the version number of the language processor. The version number consists of the
majorVersion, followed by a decimal point, the release, followed by another decimal point, and the
modification.

Example 5.303. RexxInfo class — version method

say .RexxInfo~version    -- 5.0.0 /* e. g. */

5.4.18. RexxQueue Class

The RexxQueue class provides object-style access to Rexx external data queues.

Table 5.53. RexxQueue Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

RexxQueue

new (Inherited Class Method)
create (Class Method)
delete (Class Method)
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exists (Class Method)
open (Class Method)

delete lineOut queued
empty makeArray say
get pull set
init push
lineIn queue

5.4.18.1. new

new(

name

)

Returns a new RexxQueue instance associated with the Rexx external data queue named name.

If name is omitted, the SESSION queue is used. If name is specified as .nil the new RexxQueue
instance is associated with a newly created Rexx external data queue with a system-generated name.
If name is specified and an external data queue named name exists, it is opened. If such a data queue
does not exist, it is created.

Example 5.304. RexxQueue class — new method 

q = .RexxQueue~new
q~queue("line")
q~push("header")
say q~queued q~pull    -- 2 header
q~delete

5.4.18.2. create (Class Method)

create(

name

)

Returns the name of a newly created Rexx external data queue, which will be either name if no
external data queue named name already exists, or, a system-generated name if name is omitted or
the external data queue name already exists.

See also method open (Class Method).

Example 5.305. RexxQueue class — create method 

-- no MYQUEUE queue exists
say .RexxQueue~create("myqueue")    -- MYQUEUE
-- MYQUEUE queue already exists
say .RexxQueue~create("myqueue")    -- S0000000000004B48Q000001E1BEE66F20 (e. g.)

5.4.18.3. delete (Class Method)

delete( name )
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Returns 0 if the external Rexx named queue named name was successfully deleted. Non-zero results
are the error codes from the RexxDeleteQueue() programming interface.

5.4.18.4. exists (Class Method)

exists( name )

Returns .true if the external data queue name currently exists, otherwise returns .false.

Example 5.306. RexxQueue class — exists method 

say .RexxQueue~exists("SESSION")    -- 1

5.4.18.5. open (Class Method)

open( name )

Returns 0 if the external Rexx named queue name exists, or, if it doesn't exist, can be successfully
created. Non-zero results are the error codes from the RexxOpenQueue() programming interface.

5.4.18.6. delete

delete

Returns 0 if the external Rexx named queue associated with this RexxQueue instance was
successfully deleted. Non-zero results are the error codes from the RexxDeleteQueue() programming
interface.

Calling the lineOut, pull, push, queue, or say method of a RexxQueue instance with a deleted external
data queue will result in an error.

5.4.18.7. empty

empty

Removes all items from the Rexx external queue associated with this RexxQueue instance. Returns
0 upon success, non-zero results are the error codes from the RexxClearQueue() programming
interface.

5.4.18.8. get

get

Returns the name of the Rexx external queue associated with this instance.

5.4.18.9. init
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init(

name

)

Important

RexxQueue defines its own init method. Any subclass which also defines its own init
method, must forward to its superclass to complete object initialization. For details see
Section 4.2.9, “Initialization”.

5.4.18.10. lineIn

lineIn

Reads a single line from the Rexx external queue. If the queue is empty, lineIn will wait until a line is
added to the queue.

5.4.18.11. lineOut

lineOut(

line

)

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.18.12. makeArray

makeArray

Returns a single-index array with the same number of items as the receiver object. Items in the new
array will have the same order as the items in the external queue. The external queue is emptied.

5.4.18.13. pull

pull

Reads a line from the Rexx external queue. If the queue is currently empty, this method will
immediately return .nil without waiting for lines to be added to the queue.

5.4.18.14. push

push(

line

)

Adds a line to the Rexx external queue in last-in-last-out (LIFO) order. If line is not specified, a null
string ("") is added.
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5.4.18.15. queue

queue(

line

)

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.18.16. queued

queued

Returns the count of lines currently in the Rexx external queue.

5.4.18.17. say

say(

line

)

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.18.18. set

set( name )

Switches the Rexx external queue associated with the RexxQueue instance. The new queue must
have been previously created. The method return value is the name of current queue being used by
the instance.

5.4.19. Singleton Class (Metaclass)

The Singleton class is a metaclass (a subclass of the ooRexx metaclass Class) which can be used
for any ooRexx class, if the programmer wishes only a single instance of a class to be created. In this
case the class directive needs to denote Singleton in its METACLASS option.

This class is defined as a MXIN class.

Table 5.54. Singleton Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Singleton

new (Class Method)
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5.4.19.1. new (Class Method)

This metaclass makes sure that only a single instance of a class can be created, a singleton. After a
singleton got created each time a NEW message gets sent to the class will cause that singleton to be
returned. The metaclass Singleton makes also sure that the singleton object will return itself upon
receiving the COPY message by defining a proper COPY method for the singleton.

Example 5.307. Employing the Singleton (meta)class
The following program defines a class TEST which makes sure that each instance has a unique
number in its instance attribute nr. The TESTSINGLETON subclass uses the METACLASS
Singleton option to make sure that it only creates a single instance, a singleton. The program will
loop over the classes TEST and TESTSINGLETON, creates three instances of each and displays the
value of the instance attribute nr and the identityHash value of each instance, which uniquely
identifies each each instance of a class (cf. the MAKESTRING definition).

#!/usr/bin/env rexx
do clz over .test, .testSingleton   -- iterate over the two classes
   rounds=3
   say "creating" rounds "objects of type:" clz
   do i=1 to rounds
      say "   round #" i":" clz~new -- create new instance
   end
   say
end

/* ========================================================================= */
/** This Test class counts the number of instances that get created for it.  */
::class Test
/* ------------- class method and class attribute definitions -------------- */
::method init class  -- class constructor
  expose counter
  counter=0          -- make sure attribute is initialized to 0

::attribute counter get private class  -- getter method that increases counter
  expose counter     -- access attribute
  counter+=1         -- increase counter by 1
  return counter     -- return new counter value
/* ------------- instance method and instance attribute definitions -------- */
::attribute nr get   -- getter method

::method init        -- constructor that sets the value of attribute nr
  expose nr          -- expose attribute
  nr=self~class~counter -- new instance: fetch new counter from class and save it

::method makestring  -- a string representation of the object
  expose nr          -- expose attribute
                     -- return a string representation
  return "a" self~class~id"[nr="nr",identityHash="self~identityHash"]"

/* ========================================================================= */
/** This class makes sure that only a single instance of it gets created by
*   using Singleton as its metaclass.
*/
::class TestSingleton subclass Test metaclass Singleton

Output of running the above program (the hash values may differ on each run):

creating 3 objects of type: The TEST class
   round # 1: a TEST[nr=1,identityHash=-49085937]
   round # 2: a TEST[nr=2,identityHash=-49089489]
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   round # 3: a TEST[nr=3,identityHash=-49093009]

creating 3 objects of type: The TESTSINGLETON class
   round # 1: a TESTSINGLETON[nr=1,identityHash=-49114993]
   round # 2: a TESTSINGLETON[nr=1,identityHash=-49114993]
   round # 3: a TESTSINGLETON[nr=1,identityHash=-49114993]

As can be seen from the output there are three distinct instances of the class TEST, however the three
instances of the class TESTSINGLETON are identical (cf. the values of nr and identityHash).

5.4.20. StackFrame Class

The StackFrame class gives access to execution information about an executing Rexx activity.
Instances of the StackFrame class can be obtained via the .CONTEXT environment symbol or from a
condition object created for a trapped condition. A StackFrame instance represents an instance of an
execution unit on the current activity's call stack. It provides information on code location, arguments,
etc. that are useful for debugging and problem determination. StackFrame instances cannot be directly
created by the user.

Table 5.55. StackFrame Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

StackFrame

arguments makeString target
executable name traceLine
line string type

5.4.20.1. arguments

arguments

Returns the arguments used to invoke the execution frame represented by the StackFrame instance.

5.4.20.2. executable

executable

Returns the executable object for the StackFrame context. The executable will be either a Routine
object or a Method object, depending on the type of the StackFrame element.

5.4.20.3. line

line

Returns the current line number of the StackFrame context. If the frame instance is not Rexx code (e.
g. compiled native code), .nil is returned.
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5.4.20.4. makeString

makeString

Returns the frame traceLine value as the object's string value.

5.4.20.5. name

name

Returns the name associated with the stack frame context. The name meaning depends on the type of
context.
• If the stack frame context is a method invocation, name is the message name used to invoke the

method.

• If the stack frame context is a routine invocation, name is the routine.

• If the stack frame context is an internal routine invocation, name is the label name used to invoke
the internal routine.

• If the stack frame context is the initial main part of a Rexx program, name is the name of the file
containing the program.

• If the stack frame context is an INTERPRET instruction, a zero-length string is returned.

5.4.20.6. string

string

Returns the frame traceLine value as the object's string value.

5.4.20.7. target

target

Returns the object the method was invoked against, if the StackFrame type is METHOD. Returns .nil
for all other StackFrame types.

5.4.20.8. traceLine

traceLine

Returns the trace back line that would be displayed for error message trace. When possible, this will
be the source line of the Rexx code in the call stack. If source is not available, the trace back will
identify the method or routine belonging to the stack frame.

5.4.20.9. type

type
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Returns the type of invocation for this stack frame. Possible values are:
PROGRAM

The stack frame is the top level of a program.

METHOD
The stack frame is a method invocation.

ROUTINE
The stack frame is a routine invocation.

INTERPRET
The stack frame is code created by an INTERPRET instruction.

INTERNALCALL
The stack frame is a subroutine or function call to an internal label.

COMPILE
The stack frame for compiling Rexx code for execution. Many syntax errors will be reported by a
COMPILE frame.

Example 5.308. StackFrame class — type method 

interpret "call level2" 21

::routine level2
  call level3 31, 32
  return

  level3: procedure
    signal on syntax
    .Method~new("", "~~")
    return

    syntax:
    do f over condition("o")["STACKFRAMES"]
      say (f~type f~name"("f~arguments~makeString(, ",")")")~left(27) f~line":" -
       f~traceLine~strip
    end

may output

COMPILE ()                  1: 1 *-* ~~
METHOD NEW(,~~)             The NIL object: *-* Compiled method "NEW" with scope "Method".
INTERNALCALL LEVEL3(31,32)  9: 9 *-*   .Method~new("", "~~")
ROUTINE LEVEL2(21)          4: 4 *-* call level3 31, 32
INTERPRET ()                1: 1 *-*   call level2 21
PROGRAM C:\stackFrame.rex() 1: 1 *-* interpret "call level2" 21

5.4.21. StreamSupplier Class

A subclass of the Supplier Class that provides stream lines using supplier semantics. This allows the
programmer to iterate over the remaining lines in a stream. A StreamSupplier object provides a
snapshot of the stream at the point in time it is created, including the current line read position. In
general, the iteration is not affected by later changes to the read and write positioning of the stream.
However, forces external to the iteration may change the content of the remaining lines as the iteration
progresses.
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Table 5.56. StreamSupplier Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Supplier

Methods inherited from the Supplier class
new (Class Method)

allIndexes index supplier
allItems item
available next

StreamSupplier

available init next
index item

5.4.21.1. available

available

Returns .true if an item is available from the supplier (that is, if the item method would return a
value). It returns .false if the collection is empty or the supplier has already enumerated the entire
collection.

5.4.21.2. index

index

Returns the index of the current item in the collection. If no item is available, that is, if available
would return .false, the supplier raises an error.

5.4.21.3. init

init

Initializes the object instance.

5.4.21.4. item

item

Returns the current item in the collection. If no item is available, that is, if available would return
.false, the supplier raises an error.

5.4.21.5. next
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next

Moves to the next item in the collection. By repeatedly sending next to the supplier (as long as
available returns .true), you can enumerate all items in the collection. If no item is available, that
is, if available would return .false, the supplier raises an error.

5.4.22. Supplier Class

A Supplier object is an iterator that allows the enumeration of an items Collection together with an
indexes Collection. All objects inheriting from Collection Class provide a supplier method, that returns
a snapshot of the Collection as a Supplier object, which allows iteration using the DO/LOOP WITH
instruction. The iteration results are not affected by later changes to the source Collection object.

Table 5.57. Supplier Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Supplier

new (Class Method)

allIndexes index supplier
allItems item
available next

5.4.22.1. new (Class Method)

new( items , indexes )

Returns a new supplier object. The items argument must be an array of objects over which the
supplier iterates. The indexes argument is an array of index values with a one-to-one correspondence
to the objects contained in the items array. The created supplier iterates over the arrays, returning
elements of the values array in response to items messages, and elements of the indexes array in
response to index messages. The supplier iterates for the number of items contained in the values
array, returning .nil for any nonexistent items in either array.

5.4.22.2. allIndexes

allIndexes

Returns an array of all index values from the current supplier position to the end of the supplier. Once
allIndexes is called, no additional items can be retrieved from the supplier. Calls to available will
return .false.

5.4.22.3. allItems

allItems
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Returns an array of all items from the current supplier position to the end of the supplier. Once
allItems is called, no additional items can be retrieved from the supplier. Calls to available will
return .false.

5.4.22.4. available

available

Returns .true if an item is available from the supplier (that is, if the item method would return a
value). It returns .false if the collection is empty or the supplier has already enumerated the entire
collection.

5.4.22.5. index

index

Returns the index of the current item in the collection. If no item is available, that is, if available
would return .false, the supplier raises an error.

5.4.22.6. item

item

Returns the current item in the collection. If no item is available, that is, if available would return
.false, the supplier raises an error.

5.4.22.7. next

next

Moves to the next item in the collection. By repeatedly sending next to the supplier (as long as
available returns .true), you can enumerate all items in the collection. If no item is available, that
is, if available would return .false, the supplier raises an error.

5.4.22.8. Examples

Example 5.309. Supplier class

desserts=.array~of(apples, peaches, pumpkins, 3.14159) /* Creates array */
say "The desserts we have are:"
baker=desserts~supplier             /* Creates supplier object named BAKER */
do while baker~available            /* Array suppliers are sequenced       */
  if baker~index=4
  then say baker~item "is pi, not pie!!!"
  else say baker~item
  baker~next
end

/* Produces: */
/* The desserts we have are: */
/* APPLES                    */
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/* PEACHES                   */
/* PUMPKINS                  */
/* 3.14159 is pi, not pie!!! */

5.4.22.9. supplier

supplier

Returns the target supplier as a result. This method allows an existing supplier to be passed to
methods that expect an object that implements a supplier method as an argument.

5.4.23. Ticker Class  
The Ticker class provides a repeating notification capability by sending a notification message to a
notification target each trigger interval.

A Ticker object can be cancelled any time. If cancelled, a cancel notification message will be sent to
the notification target.

Table 5.58. Ticker Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Ticker

attachment canceled/cancelled interval
cancel init

5.4.23.1. attachment  
attachment

Returns the object that has been attached to the Ticker instance upon creation. Returns .nil if no
object is attached.

See method init .

Example 5.310. Ticker class — attachment method 

eachSecond = .Ticker~new(1, .Target~new, "once each second")
call SysSleep 1.5                      -- will trigger once
eachSecond~cancel

::class Target inherit AlarmNotification
::method triggered                     -- called each interval
  use arg ticker
  say ticker~attachment                -- displays "once each second"

5.4.23.2. cancel  
cancel
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Cancels the Ticker represented by the receiver.

See also method canceled/cancelled .

Example 5.311. Ticker class — cancel method 

twiceASecond = .Ticker~new(0.5, .Target~new)
call SysSleep 0.25                     -- too short for Ticker
twiceASecond~cancel                    -- "ticker cancelled"

::class Target inherit AlarmNotification
::method triggered                     -- called each interval
  say "ticker triggered"
::method cancel                        -- called when cancelled
  say "ticker cancelled"

5.4.23.3. canceled/cancelled  
canceled

cancelled

Returns .true if the ticker has been cancelled. Returns .false otherwise.

See also method cancel .

Example 5.312. Ticker class — canceled/cancelled method 

tick = .Ticker~new(0.5 ,.message~new(.stdout, "SAY", "I", "knock, knock"))
call SysSleep 0.75                                           -- knock, knock
say "Ticker" tick~cancelled~?("cancelled", "not cancelled")  -- Ticker not cancelled
call SysSleep 0.5                                            -- knock, knock
tick~cancel
say "Ticker" tick~cancelled~?("cancelled", "not cancelled")  -- Ticker cancelled

5.4.23.4. init  
init( interval , target

, attachment

)

Sets up a Ticker with a specified interval. After each interval, the Ticker sends a message triggered
to the specified notification target.

The target must be an object that implements the AlarmNotification interface. It must inherit from or
be a subclass of the AlarmNotification class, or a Message object (as the Message class inherits
from AlarmNotification). If target is a Message object, the triggered  method of the Message class will
respond by simply sending the specified message.

The interval can be a TimeSpan or a String object. If it is
• a TimeSpan, it must be of a non-negative length, which specifies the interval time length.
• a String, it must be a non-negative number which specifies the interval time length in seconds.

If specified, attachment can be an arbitrary object that will be attached to the Ticker instance, and can
later be retrieved in the event handler. See method attachment .
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You can use the cancel  method at any time to cancel a Ticker. If cancelled, the Ticker sends message
cancel to the specified notification target.

The following code uses a Ticker to display progress information during a long-running task.

Example 5.313. Ticker class — init method 

.Progress~new(0.5)~monitor(.Task~new, "tenSeconds")

-- defines tasks together with their "progress" methods
::class Task

-- long-running task
::method tenSeconds unguarded
  expose m n
  n = 1000
  do m = 1 to n                        -- long-running task
    call SysSleep 0.01
  end
  return

-- returns running value to be displayed as progress
::method "tenSeconds-progress" unguarded
  expose m n
  return m"/"n "steps done"

-- runs task while displaying progress text at each interval
::class Progress inherit AlarmNotification

-- set progress interval
::method init unguarded
  expose interval
  use strict arg interval = 1

-- starts ticker, runs task, and returns task result
-- (requires names of task and progress methods)
::method monitor
  expose interval object progress
  use strict arg object, task, progress = (task"-progress")
  tick = .Ticker~new(interval, self)
  object~send(task)
  tick~cancel

-- displays progress text at each ticker interval
::method triggered unguarded
  expose object progress
  .stdout~charOut(object~send(progress) '0d'x)

5.4.23.5. interval  
interval

Returns a TimeSpan object representing the interval to which the Ticker has been set.

See also method init .

Example 5.314. Ticker class — interval method 

say .Ticker~new(.TimeSpan~fromSeconds(60), -
 .Message~new(.stdout, "say", "i", -
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 "another minute has passed"))~interval      -- 00:01:00.000000

5.4.24. TimeSpan Class

A TimeSpan object represents a time interval with microsecond resolution. The interval may be
positive or negative, with a maximum duration of 3652059 days less one microsecond (which
approximately equals 9999 years less one microsecond). A TimeSpan object has methods to allow
retrieving components like days or seconds, adding to components, as well as allowing arithmetic
operations between TimeSpan objects.

Table 5.59. TimeSpan Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Orderable (Mixin Class)

Methods inherited from the Orderable class
Comparison Methods = == < <= << <<= <> > >= >< >> >>= \= \== \< \<< \> \>>
compareTo

+ Comparable (Mixin Class)

Methods inherited from the Comparable class
compareTo

TimeSpan

new (Inherited Class Method) fromMicroseconds (Class Method)
fromCivilTime (Class Method) fromMinutes (Class Method)
fromDays (Class Method) fromNormalTime (Class Method)
fromHours (Class Method) fromSeconds (Class Method)
fromLongTime (Class Method) fromStringFormat (Class Method)

Arithmetic Methods + - * / // % days seconds
addDays duration sign
addHours hashCode string
addMicroseconds hours totalDays
addMinutes init totalHours
addSeconds makeString totalMicroseconds
addWeeks microseconds totalMinutes
compareTo minutes totalSeconds

5.4.24.1. fromDays (Class Method)

fromDays( days )

Creates a TimeSpan object from a number of days. The days argument must be a valid Rexx number.

5.4.24.2. fromHours (Class Method)
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fromHours( hours )

Creates a TimeSpan object from a number of hours. The hours argument must be a valid Rexx
number.

5.4.24.3. fromMinutes (Class Method)

fromMinutes( minutes )

Creates a TimeSpan object from a number of minutes. The minutes argument must be a valid Rexx
number.

5.4.24.4. fromSeconds (Class Method)

fromSeconds( seconds )

Creates a TimeSpan object from a number of seconds. The seconds argument must be a valid Rexx
number.

5.4.24.5. fromMicroseconds (Class Method)

fromMicroseconds( microseconds )

Creates a TimeSpan object from a number of microseconds. The microseconds argument must be a
valid Rexx number.

5.4.24.6. fromNormalTime (Class Method)

fromNormalTime( time )

Creates a TimeSpan object from a string returned by the Normal option of the TIME built-in function
(hh:mm:ss). The TimeSpan will contain an interval equal to the time of day represented by the string.

5.4.24.7. fromCivilTime (Class Method)

fromCivilTime( time )

Creates a TimeSpan object from a string returned by the Civil option of the TIME built-in function
(hh:mmxx). The TimeSpan will contain an interval equal to the time of day represented by the string.

5.4.24.8. fromLongTime (Class Method)

fromLongTime( time )

Creates a TimeSpan object from a string returned by the Long option of the TIME built-in function
(hh:mm:ss.uuuuuu). The TimeSpan will contain an interval equal to the time of day represented by the
string.
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5.4.24.9. fromStringFormat (Class Method)

fromStringFormat( time )

Creates a TimeSpan object from a string in the format returned by the TimeSpan string method.

5.4.24.10. init

init( fullDate )

init( hours , minutes

, seconds

)

init( days , hours , minutes , seconds

, microseconds

)

Initializes a new TimeSpan instance. If the single fulldate argument is used, the TimeSpan argument
is initialized to the time span fulldate microseconds. Otherwise, the TimeSpan instance is initialized
to either the hours, minutes, and seconds or the days, hours, minutes, seconds, and microseconds
components. Each of these components must be a valid whole number within the acceptable range
for the given component. For example, hours must be in the range 0-23, while minutes must be in the
range 0-59.

Example 5.315. TimeSpan class

span = .TimeSpan~new(time('F', "15:37:30", "N"))  -- 15:37:30.000000
span = .TimeSpan~new(15, 37, 30)                  -- 15:37:30.000000
span = .TimeSpan~new(6, 4, 33, 15, 100)           -- 6.04:33:15.000100

5.4.24.11. Arithmetic Methods

arithmetic_operator ( argument )

Note

The syntax diagram above is for the non-prefix operators. For the prefix operators, omit the
parentheses and argument.

Returns the result of performing the specified arithmetic operation on the receiver TimeSpan object.
Depending on the operation, the argument be either a TimeSpan object, a DateTime object, or a
number. See the description of the individual operations for details. The arithmetic_operator can be:

+  Addition. If argument is a DateTime object, the TimeSpan is added to the DateTime
object, returning a new DateTime instance. Neither the receiver TimeSpan or the
argument DateTime object is altered by this operation. The TimeSpan may be
either positive or negative.
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If argument is a TimeSpan object, the two TimeSpans are added together, and a
new TimeSpan instance is returned. Neither the TimeSpan object is altered by this
operation.

-  Subtraction. The argument must be a TimeSpan object. The argument TimeSpan is
subtracted from the receiver TimeSpan and a new TimeSpan instance is returned.
Neither the TimeSpan object is altered by this operation.

*  Multiplication. The argument must be a valid Rexx number. The TimeSpan is
multiplied by the argument value, and a new TimeSpan instance is returned. The
receiver TimeSpan object is not altered by this operation.

/  Division. The argument must be a valid Rexx number. The TimeSpan is divided
by the argument value, and a new TimeSpan instance is returned. The receiver
TimeSpan object is not altered by this operation. The / operator and % produce the
same result.

%  Integer Division. The argument must be a valid Rexx number. The TimeSpan is
divided by the argument value, and a new TimeSpan instance is returned. The
receiver TimeSpan object is not altered by this operation. The / operator and %
produce the same result.

//  Remainder Division. The argument must be a valid Rexx number. The TimeSpan
is divided by the argument value and the division remainder is returned as a new
TimeSpan instance. The receiver TimeSpan object is not altered by this operation.

Prefix - The TimeSpan is negated, returning a new TimeSpan instance. The receiver
TimeSpan is not altered by this operation.

Prefix + Returns a new instance of the TimeSpan object with the same time value.

Example 5.316. TimeSpan class

t1 = .timespan~fromHours(1)
t2 = t1 * 2
-- displays "01:00:00.000000 02:00:00.000000 03:00:00.000000"
say t1 t2 (t1 + t2)

5.4.24.12. compareTo

compareTo( other )

This method returns -1 if the other is larger than the receiving object, 0 if the two objects are equal,
and 1 if other is smaller than the receiving object.

5.4.24.13. duration

duration

Returns a new TimeSpan object containing the absolute value of the receiver TimeSpan object.

5.4.24.14. days
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days

Returns the number of whole days in the TimeSpan, as a positive number.

5.4.24.15. hours

hours

Returns the hours component of the TimeSpan, as a positive number.

5.4.24.16. minutes

minutes

Returns the minutes component of the TimeSpan, as a positive number.

5.4.24.17. seconds

seconds

Returns the seconds component of the TimeSpan, as a positive number.

5.4.24.18. makeString

makeString

Returns the time span formatted as a string in the format -dddddddd.hh:mm:ss.uuuuuu. This is an
alias of the string method.

5.4.24.19. microseconds

microseconds

Returns the microseconds component of the TimeSpan, as a positive number.

5.4.24.20. totalDays

totalDays

Returns the time span expressed as a number of days. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.24.21. totalHours

totalHours
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Returns the time span expressed as a number of hours. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.24.22. totalMinutes

totalMinutes

Returns the time span expressed as a number of minutes. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.24.23. totalSeconds

totalSeconds

Returns the time span expressed as a number of seconds. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.24.24. totalMicroseconds

totalMicroseconds

Returns the time span expressed as a number of microseconds. The result retains the sign of the
receiver TimeSpan.

5.4.24.25. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set,
Bag, and Directory.

5.4.24.26. addWeeks

addWeeks( weeks )

Adds weeks to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The weeks value must be a valid number, including fractional values. Negative
values result in week being subtracted from the TimeSpan value.

5.4.24.27. addDays

addDays( days )

Adds days to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan object
is unchanged. The days value must be a valid number, including fractional values. Negative values
result in days being subtracted from the TimeSpan value.
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5.4.24.28. addHours

addHours( hours )

Adds hours to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The hours value must be a valid number, including fractional values. Negative
values result in hours being subtracted from the TimeSpan value.

5.4.24.29. addMinutes

addMinutes( minutes )

Adds minutes to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The minutes value must be a valid number, including fractional values. Negative
values result in minutes being subtracted from the TimeSpan value.

5.4.24.30. addSeconds

addSeconds( seconds )

Adds seconds to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The seconds value must be a valid number, including fractional values. Negative
values result in seconds being subtracted from the TimeSpan value.

5.4.24.31. addMicroseconds

addMicroseconds( microseconds )

Adds microseconds to the TimeSpan object, returning a new TimeSpan instance. The receiver
TimeSpan object is unchanged. The microseconds value must be a valid whole number. Negative
values result in microseconds being subtracted from the TimeSpan value.

5.4.24.32. sign

sign

Returns -1 if the TimeSpan duration is negative, 1 if it is positive, and 0 if it is zero.

See also method duration.

5.4.24.33. string

string

Returns TimeSpan formatted as a string. The string value is in the format -
dddddddd.hh:mm:ss.uuuuuu. If the TimeSpan is positive or zero, the sign is omitted. The days
field will be formatted without leading zeros or blanks. If the TimeSpan duration is less than a day, the
days field and the period separator will be omitted.

430



Validate Class

5.4.25. Validate Class

The Validate class provides class methods helping with validating arguments being of correct class,
logical or numeric type, or within a numeric range.

Table 5.60. Validate Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Validate

classType (Class Method) position (Class Method)
length (Class Method) positiveNumber (Class Method)
logical (Class Method) positiveWholeNumber (Class Method)
nonNegativeNumber (Class Method) requestClassType (Class Method)
nonNegativeWholeNumber (Class Method) wholeNumber (Class Method)
number (Class Method) wholeNumberRange (Class Method)
numberRange (Class Method)

5.4.25.1. classType (Class Method)

classType( name , object , class )

Validates that object is an instance of class class.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method requestClassType (Class Method).

5.4.25.2. length (Class Method)

length( name , number ,

digits

)

Validates that number is zero or a positive whole number under NUMERIC DIGITS digits. If digits is
not specfied, it defaults to internalDigits.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods position and nonNegativeWholeNumber.

5.4.25.3. logical (Class Method)

logical( name , number )

Validates that number is either .true or .false.

Raises a syntax error for argument name if the validation fails, else returns with no result.
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5.4.25.4. nonNegativeNumber (Class Method)

nonNegativeNumber( name , number ,

digits

)

Validates that number is zero or a positive Rexx number under NUMERIC DIGITS digits. If digits is not
specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods positiveNumber and nonNegativeWholeNumber.

5.4.25.5. nonNegativeWholeNumber (Class Method)

nonNegativeWholeNumber( name , number ,

digits

)

Validates that number is zero or a positive whole number under NUMERIC DIGITS digits. If digits is
not specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods positiveWholeNumber and nonNegativeNumber.

5.4.25.6. number (Class Method)

number( name , number )

Validates that number is a valid Rexx number.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method wholeNumber.

5.4.25.7. numberRange (Class Method)

numberRange( name , number , min , max ,

digits

)

Validates that number is a valid Rexx number in the range min to max, with comparisons done under
NUMERIC DIGITS digits. If digits is not specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method wholeNumberRange.

5.4.25.8. position (Class Method)
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position( name , number ,

digits

)

Validates that number is a positive whole number under NUMERIC DIGITS digits. If digits is not
specfied, it defaults to internalDigits.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods length and positiveWholeNumber.

5.4.25.9. positiveNumber (Class Method)

positiveNumber( name , number ,

digits

)

Validates that number is a positive Rexx number under NUMERIC DIGITS digits. If digits is not
specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods nonNegativeNumber and positiveWholeNumber.

5.4.25.10. requestClassType (Class Method)

requestClassType( name , object , class )

Validates that object can be converted to an instance of class class by sending it a request
message.

If successful, it returns the converted object, otherwise it raises a syntax error for argument name.

See also method classType (Class Method).

5.4.25.11. positiveWholeNumber (Class Method)

positiveWholeNumber( name , number ,

digits

)

Validates that number is a positive whole number under NUMERIC DIGITS digits. If digits is not
specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods nonNegativeWholeNumber and positiveNumber.

5.4.25.12. wholeNumber (Class Method)
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wholeNumber( name , number ,

digits

)

Validates that number is a whole number under NUMERIC DIGITS digits. If digits is not specfied, it
defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method number.

5.4.25.13. wholeNumberRange (Class Method)

wholeNumberRange( name , number , min , max ,

digits

)

Validates that number is a valid whole number in the range min to max, with comparisons done under
NUMERIC DIGITS digits. If digits is not specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method numberRange.

5.4.26. VariableReference Class

A VariableReference instance maintains a reference to another object. It can only be created
using a Variable Reference Term. Calling the new method to create a VariableReference instance is
not allowed.

Table 5.61. VariableReference Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

VariableReference

name unknown
request value (Attribute)

5.4.26.1. name

name

Returns the name of the variable referenced.

See also method value (Attribute).

Example 5.317. VariableReference class — name method 

variable = 123
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say >variable~name    -- VARIABLE

5.4.26.2. request

request( classid )

Forwards to the request method of the referenced variable.

5.4.26.3. unknown

unknown

Forwards to the unknown method of the referenced variable.

5.4.26.4. value (Attribute)

value

value = object

value get:
Returns the current value of the referenced variable.

value set:
Sets the value of the referenced variable to object.

See also method name.

Example 5.318. VariableReference class — value method 

array = 1, 2, 3

say >array~class~id                  -- VariableReference
say >array~value~class~id            -- Array

say >array~value~toString(, ", ")    -- 1, 2, 3
-- this also works because we have an UNKNOWN method
say >array~toString(, ", ")          -- 1, 2, 3

5.4.27. WeakReference Class

A WeakReference instance maintains a non-pinning reference to another object. A non-pinning
reference does not prevent an object from getting garbage collected or having its uninit method run
when there are no longer normal references maintained to the object. Once the referenced object is
eligible for garbage collection, the reference inside the WeakReference instance will be cleared and
the value method will return .nil on all subsequent calls. WeakReferences are useful for maintaining
caches of objects without preventing the objects from being reclaimed by the garbage collector when
needed.
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Table 5.62. WeakReference Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

WeakReference

new (Class Method)

value

5.4.27.1. new (Class Method)

new( object )

Returns a new WeakReference instance containing a reference to object.

5.4.27.2. value

value

Returns the referenced object. If the object has been garbage collected, .nil is returned.
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Rexx Runtime Objects
In addition to the class objects described in the previous chapter, the Rexx runtime environment also
provides objects that are accessible via environment symbols.

6.1. The Environment Directory (.ENVIRONMENT)

The Environment object is a directory of public objects that are always accessible. The Environment
object is automatically searched when environment symbols are used, or the Environment object may
be directly accessed using the .ENVIRONMENT symbol. Entries stored in the Environment use the
same name as the corresponding environment symbol, but without a leading period. For example:

say .true                   -- Displays "1"
say .environment~true       -- Also displays "1"
say .environment["TRUE"]    -- "1"
say .environment["true"]    -- The NIL object

The Environment object directory contains all of the Rexx built-in classes (Array, etc.), the special
Rexx constants .NIL, .TRUE, .FALSE, .ENDOFLINE, and the .RexxInfo object.

6.1.1. The ENDOFLINE Constant (.ENDOFLINE)

The ENDOFLINE object is a string constant representing the line-end characters. It is '0d 0a'x
(carriage-return, line-feed) on Windows, and '0a'x (line-feed) on Unix-like systems.

6.1.2. The FALSE Constant (.FALSE)

The FALSE object is the constant "0" representing a FALSE result for logical and comparison
operations.

6.1.3. The NIL Object (.NIL)

The Nil object is a special object that does not contain data. It usually represents the absence of an
object, as a null string represents a string with no characters. It has only the methods of the Object
class. Note that you use the Nil object (rather than the null string ("")) to test for the absence of data in
an array or other Collection class entry:

if .nil = board[row,col]   /* .NIL rather than "" */
then ...

6.1.4. The RexxInfo Object (.RexxInfo)
   The RexxInfo object returns the only instance of the RexxInfo class and gives access to Rexx
language information and other platform-specific information in a single place.

say .RexxInfo~name    -- REXX-ooRexx_5.0.0(MT)_64-bit 6.05 1 Sep 2016 /* e. g. */
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6.1.5. The TRUE Constant (.TRUE)

The TRUE object is the constant "1", representing a true result for logical and comparison operations.

6.2. The Local Directory (.LOCAL)

The Local environment object is a directory of interpreter instance objects that are always accessible.
You can access objects in the Local environment object in the same way as objects in the
Environment object. The Local object contains
• the .INPUT, .OUTPUT, .ERROR, .DEBUGINPUT, and .TRACEOUTPUT Monitor objects used for

console I/O,
• the .STDIN, .STDOUT, and .STDERR output streams that are the default I/O targets,
• the .STDQUE RexxQueue instance used for Rexx external queue operations,
• and the .SYSCARGS array of program command line options.

Because both .ENVIRONMENT and .LOCAL are Directory objects, you can place objects into, or
retrieve objects from, these environments by using any of the Directory methods [], []=, put, at,
setEntry, entry, or setMethod). To avoid potential name clashes with built-in objects and public
objects that Rexx provides, each object that your programs add to these environments should have a
period in its index.

Example 6.1. .LOCAL

/* .LOCAL example--places something in the Local environment directory */
.local~my.alarm = theAlarm
/* To retrieve it                                                      */
say .local~my.alarm

/* Another .LOCAL example (Windows) */
.environment["MYAPP.PASSWORD"] = "topsecret"
.environment["MYAPP.UID"] = 200

/* Create a local directory for my stuff */
.local["MYAPP.LOCAL"] = .directory~new

/* Add log file for my local directory                                 */
.myapp.local["LOG"] = .stream~new("myapp.log")
say .myapp.password                    /* Displays "topsecret"         */
say .myapp.uid                         /* Displays "200"               */

/* Write a line to the log file */
.myapp.local~log~lineout("Logon at "time()" on "date())

/* Redirect SAY lines into a file:  */
.output~destination(.stream~new("SAY_REDIRECT.TXT"))
say "This goes into a file, and not onto the screen!"

/* .LOCAL example--get the individual command line arguments */
cmdargs = .local~syscargs
do carg over cmdargs
   say carg
end
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6.3. The Debug Input Monitor (.DEBUGINPUT)

This Monitor object holds the default interactive debug input stream object (see Chapter 14, Input and
Output Streams). This input stream is the source for all input for interactive debug mode.

The default for this object's initial source is the .INPUT monitor.

6.4. The Error Monitor (.ERROR)

This Monitor object holds the error stream object. You can redirect the trace output in the same way as
with the output object in the Monitor class example.

The default for this object's initial destination is the .STDERR stream.

6.5. The Input Monitor (.INPUT)

This Monitor object holds the default input stream object (see Chapter 14, Input and Output Streams).
This input stream is the source for the PARSE LINEIN instruction, the LINEIN method of the Stream
class, and, if you specify no stream name, the LINEIN built-in function. It is also the source for the
PULL and PARSE PULL instructions if the external data queue is empty.

The default for this object's initial source is the .STDIN stream.

6.6. The Output Monitor (.OUTPUT)

This Monitor object holds the default output stream object (see Chapter 14, Input and Output
Streams). This is the destination for output from the SAY instruction, the LINEOUT method
(.OUTPUT~LINEOUT), and, if you specify no stream name, the LINEOUT built-in function. You can
replace this object in the environment to direct such output elsewhere (for example, to a transcript
window).

The default for this object's initial destination is the .STDOUT stream.

6.7. The Trace Output Monitor (.TRACEOUTPUT)

This Monitor object holds the trace output target object. You can redirect the trace output in the same
way as with the output object in the Monitor class example.

The default for this object's initial destination is the .ERROR monitor.

6.8. The STDERR Stream (.STDERR)

This Stream object is the default stream used for trace and error message output.

6.9. The STDIN Stream (.STDIN)

This Stream object is representing the standard input file of a process. It is the startup default stream
for the .INPUT object.
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6.10. The STDOUT Stream (.STDOUT)

This Stream object is representing the standard output file of a process. It is the startup default stream
for the .OUTPUT object.

6.11. The STDQUE Queue (.STDQUE)

This RexxQueue object is the destination for the PUSH and QUEUE instruction, and the source for
queue lines for the PULL and PARSE PULL instructions.

6.12. The SYSCARGS Array (.SYSCARGS)

The .SysCArgs object is an Array of all command-line arguments supplied to the program. Normally
all command-line arguments are combined into a single string and passed to the Rexx program as an
argument retrievable via the ARG (Argument) built-in function. .SYSCARGS is a direct collection of the
individual C arguments passed to the program.

Example:

Example 6.2. SysCArgs Array

say .SysCArgs~items "SysCArgs" .SysCArgs~makeString(, ",")
say arg() "ARGs" arg(1, "A")~makeString(, ",")

/* when called with command line parameters 1 "2 3" 4, displays:
3 SysCArgs 1,2 3,4
1 ARGs 1 "2 3" 4
*/

Note

.SysCArgs may not be available in all situations, e. g. in program code that gets run via "rexx -e".

6.13. The Rexx Context (.CONTEXT)

The .CONTEXT environment symbol accesses a RexxContext instance for the currently active Rexx
execution environment. The returned context object is only active until the current method call, routine
call, or program terminates. Once the context object is deactivated, an error will be raised if any of the
RexxContext methods are called.

6.14. The Line Number (.LINE)

.LINE is set to the line number of the instruction currently being executed. If the current instruction is
defined within an INTERPRET instruction, the line number of INTERPRET instruction is returned.
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6.15. The METHODS StringTable (.METHODS)

The .METHODS environment symbol identifies a StringTable of methods that ::ATTRIBUTE,
::CONSTANT, or ::METHOD directives in the currently running program define. The StringTable
indexes are the method names. The StringTable values are the method objects.

Only methods or attributes that are not preceded by a ::CLASS directive are in the .METHODS
StringTable. These are known as floating methods. If there are no such methods, the .METHODS
symbol has the default value of .METHODS.

Example 6.3. .METHODS

/* .methods contains one entry with the index (method name) "TALK" */
o=.object~enhanced(.methods)  /* create object, enhance it with methods */
o~talk("echo this text")  /* test "TALK" method */
::method talk  /* floating method by the name of "TALK" */
  use arg text  /* retrieve the argument */
  say text  /* display received argument */

6.16. The ROUTINES StringTable (.ROUTINES)

The .ROUTINES environment symbol identifies a StringTable of routines that ::ROUTINE directives in
the currently running program define. The StringTable indexes are the routine names. The StringTable
values are the routine objects.

If there are no ::ROUTINE directives, the .ROUTINES symbol has the default value of .ROUTINES.

Example 6.4. .ROUTINES

/* .routines contains one entry with the index (routine name) "TALK" */
.routines~talk~call("echo this text")  /* test talk routine */
::routine talk  /* floating routine by the name of "TALK" */
  use arg text  /* retrieve the argument */
  say text  /* display received argument */

6.17. The RESOURCES StringTable (.RESOURCES)

The .RESOURCES environment symbol identifies a StringTable of data resources that ::RESOURCE
directives in the currently running program define. The StringTable indexes are the resource names,
the StringTable values are arrays of individual resource data lines.

If there are no ::RESOURCE directives, the .RESOURCES symbol has the default value of
.RESOURCES.

Example 6.5. .RESOURCE

do name over .resources
  say name":" .resources[name]~items "lines"
  say .resources[name]~makeString
end

::resource greyCat end "-"
La nuit, tous les chats sont gris
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---------------------------------

::resource "brown fox"
The quick brown fox jumps over the lazy dog
::END

::resource nollop end ANONYMOUS
     The wicked peon quivered,
then gazed balefully at the judges
         who examined him.
ANONYMOUS TYPESETTER

/* Displays:
GREYCAT: 1 lines
La nuit, tous les chats sont gris
BROWN FOX: 1 lines
The quick brown fox jumps over the lazy dog
NOLLOP: 3 lines
     The wicked peon quivered,
then gazed balefully at the judges
         who examined him.
*/

6.18. The Return Status (.RS)

.RS is set to the return status from any executed command (including those submitted with the
ADDRESS instruction). The .RS environment symbol has a value of -1 when a command returns a
FAILURE condition, a value of 1 when a command returns an ERROR condition, and a value of 0
when a command indicates successful completion. The value of .RS is also available after trapping the
ERROR or FAILURE condition.

Note

Commands executed manually during interactive tracing do not change the value of .RS. The
initial value of .RS is .RS.
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Functions
A function is an internal, built-in, or external routine that returns a single result object. (A subroutine is
a function that is an internal, built-in, or external routine that might return a result and is called with the
CALL instruction.) 

7.1. Syntax
A function call is a term in an expression calling a routine that carries out some procedures and
returns an object. This object replaces the function call in the continuing evaluation of the expression.
You can include function calls to internal and external routines in an expression anywhere that a data
term (such as a string) would be valid, using the following notation:

function_name (

expression

,

)

The function_name is a literal string or a single symbol, which is taken to be a constant.

There can be any number of expressions, separated by commas,     between the  parentheses. These
expressions are called the arguments to the function. Each argument expression can include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no whitespace
characters in between. (A blank operator would be assumed at this point instead.) Only a comment
can appear between the name and the left parenthesis.

The arguments   are evaluated in turn from left to right and the resulting objects are then all passed
to the function. This function then runs some operation (usually dependent on the argument objects
passed, though arguments are not mandatory) and eventually returns a single object. This object is
then included in the original expression as though the entire function reference had been replaced by
the name of a variable whose value is the returned object.

For example, the function SUBSTR is built into the language processor and could be used as:

N1="abcdefghijk"
Z1="Part of N1 is: "substr(N1,2,7)
/* Sets Z1 to "Part of N1 is: bcdefgh" */

A function can have a variable number of arguments. You need to specify only those required. For
example, SUBSTR("ABCDEF",4) would return DEF.

7.2. Functions and Subroutines
Functions and subroutines are called in the same way. The only difference between functions and
subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:

Internal  
If the routine name exists as a label in the program, the current processing status is saved for a
later return to the point of invocation to resume execution. Control is then passed to the first label
in the program that matches the name. As with a routine called by the CALL instruction, status
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information, such as TRACE and NUMERIC settings, is saved too. See the CALL instruction for
details.

If you call an internal routine as a function, you must specify an expression in any RETURN
instruction so that the routine can return. This is not necessary if it is called as a subroutine.

Example 7.1. Recursive internal function execution

arg x
say x"! =" factorial(x)
exit
factorial: procedure   /* Calculate factorial by    */
  arg n                /*   recursive invocation.   */
  if n=0 then return 1
  return  factorial(n-1) * n

FACTORIAL is unusual in that it calls  itself (this is recursive invocation). The PROCEDURE
instruction ensures that a new variable n is created for each invocation.

Built-in
These functions are always available and are defined in Section 7.4, “Built-in Functions”.

External   
You can write or use functions that are external to your program and to the language processor.
An external routine can be written in any language, including Rexx, that supports the system-
dependent interfaces the language processor uses to call it. You can call a Rexx program as a
function and, in this case, pass more than one argument string. The ARG, PARSE ARG, or USE
ARG instruction or the ARG built-in function can retrieve these argument strings. When called as a
function, a program must return data to the caller. 

Notes:

1. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller's variables are hidden. To leave the called Rexx program,
you can use either EXIT or RETURN. In either case, you must specify an expression.

2. You can use the INTERPRET instruction to process a function with a variable function name.
However, avoid this if possible because it reduces the clarity of the program.

7.2.1. Search Order

Functions are searched in the following sequence: internal routines, built-in functions, external
functions.

Function calls or subroutines may use a name that is specified as a symbol or a literal string. For
example, these calls are equivalent:

    call MyProcedure
    call 'MYPROCEDURE'

Note that the name value when specified as a symbol is the symbol name translated to upper case.
Both of the calls above will search for a routine named "MYPROCEDURE". When the name is
specified as a literal string, then the literal string value is used as-is. Thus the following two calls are
not equivalent:
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    call MyProcedure    -- calls "MYPROCEDURE"
    call 'MyProcedure'  -- calls "MyProcedure"

Some steps of the function and subroutine search order are case sensitive, so some care may need to
be exercised that the correct name form is used:

• Internal routines. Normally, labels are specified as a symbol followed by a ":". These labels have
a name value that's all uppercase. Since unquoted (symbol) names also have uppercase values,
these will match easily. It is also possible to use literal strings for label names. If these labels contain
lowercase characters, they will not be located using normal call mechanisms

• Built-in functions. The built-in function names are all uppercase, so using a mixed-case literal string
built-in function name will fail to locate the function.

    x = wordPos(needle, haystack)     -- calls "WORDPOS", which works
    x = "wordPos"(needle, haystack)   -- calls "wordPos", which will fail

• External routines. Some steps of the external function search order may be case sensitive,
depending on the system. This may occasionally require a function or subroutine name to be
specified as a mixed case literal string to be located.

If the call or function invocation uses a literal string, then the search for internal label is bypassed. This
bypass mechanism allows you to extend the capabilities of an existing internal function, for example,
and call it as a built-in function or external routine under the same name as the existing internal
function. To call the target built-in or external routine from inside your internal routine, you must use a
literal string for the function name.

Example 7.2. DATE function — overriding

/* This internal DATE function modifies the          */
/* default for the DATE function to standard date.   */
date: procedure
  arg in
  if in="" then in="Standard"
  -- This calls the DATE built-in function rather than recursively
  -- calling the DATE: internal routine.  Note that the name needs to
  -- be all uppercase because built-in functions have uppercase names.
  return "DATE"(in)

Since built-in functions have uppercase names the literal string must also be in uppercase for the
search to succeed.

External functions and subroutines have a system-defined search order.

The search order for external functions is as follows:

1. Functions defined on ::ROUTINE directives within the program.

2. Public functions defined on ::ROUTINE directives of programs referenced with ::REQUIRES.

3. Functions that have been loaded into the macrospace for preorder execution. (See the Open
Object Rexx: Application Programming Interfaces for details.)

4. Functions that are part of a function package or library package. (See the Open Object Rexx:
Application Programming Interfaces for details.)

5. Rexx functions located in an external file. See below for how these external files are located.
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6. Functions that have been loaded into the macrospace for postorder execution.

7.2.1.1. Locating External Rexx Files
Rexx uses an extensive search procedure for locating program files. The first element of the search
procedure is the locations that will be checked for files. The locations, in order of checking, are:

1. The same directory the program invoking the external routine is located. If this is an initial program
execution or the calling program was loaded from the macrospace, this location is skipped.
Checking in this directory allows related program files to be called without requiring the directory
be added to the search path.

2. The current filesystem directory.

3. Some applications using Rexx as a scripting language may define an extension path used to
locate called programs. If the Rexx program was invoked directly from the system command line,
then no extension path is defined.

4. Any directories specified via the REXX_PATH environment variable.

5. Any directories specified via the PATH environment variable.

The second element of the search process is the file extension. If the routine name contains at least
one period, then this routine is extension qualified. The search locations above will be checked for
the target file unchanged, and no additional steps will be taken. If the routine name is not extension
qualified, then additional searches will be performed by adding file extensions to the name. All
directory locations will be checked for a given extension before moving to the next potential extension.
The following extensions may be used:

1. If the searched file is requested by a ::REQUIRES directive without a LIBRARY option, or the
Package methods new and loadPackage when only the name argument is specified, an attempt
to locate a file using the extension .cls is made.

2. If the calling program has a file extension, then the interpreter will attempt to locate a file using the
same extension as the caller.

3. Some applications using Rexx as a scripting language may define additional extension types. For
example, an editor might define a preferred extension that should be used for editor macros. This
extension would be searched next.

4. The default system extension, which is .REX on Windows, and both .rex and .REX on Unix-like
systems.

5. If the target file has not been located using any of the above extensions, the file name is tried
without an added extension.

There are some file system considerations involved when searching for files. Windows file systems
typically are case insensitive, so files can be located regardless of how the call is specified. Unix-like
systems typically have a case sensitive file system, so files must be exact case matches in order to
be located. For these systems, each time a file name probe is attempted, the name will be tried in the
case specified and also as a lower case name. The check is not performed on the very last step that
uses the file name without an extension to avoid unintentional conflicts with other executable files.

Note that for function or subroutine calls using an unquoted name, the target name is the string
value of the name symbol, which will be an uppercase value. Thus calls to myfunc(), MyFunc(), and
myFUNC() all trigger a search for a function named "MYFUNC". Calls specified as a quoted string will
maintain the original string case. Thus 'myfunc'() and 'MyFunc'() would search for different names.
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Figure 7.1. Function and Routine Resolution and Execution
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Figure 7.2. Function and Routine External File Resolution

7.2.2. Errors during Execution

If an external or built-in function detects an error, the language processor is informed, and a syntax
error results. Syntax errors can be trapped in the caller using SIGNAL ON SYNTAX and recovery
might be possible. If the error is not trapped, the program is ended.

7.3. Return Values
A function usually returns a value that is substituted for the function call when the expression is
evaluated.

How the value returned by a function (or any Rexx routine) is handled depends on whether it is called
by a function call or as a subroutine with the CALL instruction.

• A routine called as a subroutine: If the routine returns a value, that value is stored in the special
variable named RESULT. Otherwise, the RESULT    variable is dropped, and its value is the string
RESULT.

• A routine called as a function: If the function returns a value, that value is substituted in the
expression at the position where the function was called. Otherwise, the language processor stops
with an error message.

Here are some examples of how to call a Rexx procedure:
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Example 7.3. How to call Rexx procedures

call Beep 500, 100         /* Example 1: a subroutine call */

The built-in function BEEP is called as a Rexx subroutine. The return value from BEEP is placed in
the Rexx special variable RESULT.

bc = Beep(500, 100)        /* Example 2: a function call   */

BEEP is called as a Rexx function. The return value from the function is substituted for the function
call. The clause itself is an assignment instruction; the return value from the BEEP function is
placed in the variable bc.

Beep(500, 100)             /* Example 3: result passed as  */
                           /*            a command         */

The BEEP function is processed and its return value is substituted in the expression for the function
call, like in the preceding example. In this case, however, the clause as a whole evaluates to a
single expression. Therefore, the evaluated expression is passed to the current default environment
as a command.

Note

Many other languages, such as C, throw away the return value of a function if it is not assigned
to a variable. In Rexx, however, a value returned like in the third example is passed on to the
current environment or subcommand handler. If that environment is the default, the operating
system performs a disk search for what seems to be a command.

7.4. Built-in Functions

Rexx provides a set of built-in functions, including character manipulation, conversion,  and
information functions. The following are general notes on the built-in functions:

• The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no whitespace in between.

• The built-in functions internally work with NUMERIC DIGITS 9 for 32-bit systems or NUMERIC
DIGITS 18 for 64-bit systems, and NUMERIC FUZZ 0 and are unaffected by changes to the
NUMERIC settings, except where stated. Any argument named as a number is rounded, if
necessary, according to the current setting of NUMERIC DIGITS (as though the number had
been added to 0) and checked for validity before use. This occurs in the following functions: ABS,
FORMAT, MAX, MIN, SIGN, and TRUNC, and for certain options of DATATYPE.

• Any argument named as a string can be a null string.

• If an argument specifies a length, it must be a positive whole number or zero. If it specifies a start
character or word in a string, it must be a positive whole number, unless otherwise stated.
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• If the last argument is optional, you can always include a comma to indicate that you have omitted it.
For example, DATATYPE(1,), like DATATYPE(1), would return NUM. You can include any number
of trailing commas; they are ignored. If there are actual parameters, the default values apply.

• If you specify a pad  character, it must be exactly one character long. A pad character extends a
string, usually on the right. For an example, see the LEFT built-in function.

• If a function has an option that you can select by specifying the first character of a string, that
character can be in uppercase or lowercase.

• Many of the built-in functions invoke methods of the String class. For the functions ABBREV,
ABS, BITAND, BITOR, BITXOR, B2X, CENTER, CENTRE, CHANGESTR, COMPARE, COPIES,
COUNTSTR, C2D, C2X, DATATYPE, DELSTR, DELWORD, D2C, D2X, FORMAT, LEFT,
LENGTH, LOWER, MAX, MIN, REVERSE, RIGHT, SIGN, SPACE, STRIP, SUBSTR, SUBWORD,
TRANSLATE, TRUNC, UPPER, VERIFY, WORD, WORDINDEX, WORDLENGTH, WORDS,
X2B, X2C, and X2D, the first argument to the built-in function is used as the receiver object for
the message sent, and the remaining arguments are used in the same order as the message
arguments. For example, SUBSTR("abcde", 3, 2) is equivalent to "abcde"~substr(3, 2).

For the functions INSERT, LASTPOS, OVERLAY, POS, and WORDPOS, the second argument to
the built-in functions is used as the receiver object for the message sent, and the other arguments
are used in the same order as the message arguments. For example, POS("a", "Haystack",3)
is equivalent to "Haystack"~pos("a", 3).

• The language processor evaluates all built-in function arguments to produce character strings.

7.4.1. ABBREV (Abbreviation)

ABBREV( information , info

, length

)

Returns 1 if info is equal to the leading characters of information and the length of info is not less than
length. It returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Here are some examples:  

Example 7.4. Builtin function ABBREV examples

ABBREV("Print","Pri")      ->    1
ABBREV("PRINT","Pri")      ->    0
ABBREV("PRINT","PRI",4)    ->    0
ABBREV("PRINT","PRY")      ->    0
ABBREV("PRINT","")         ->    1
ABBREV("PRINT","",1)       ->    0
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Note

A null string always matches if a length of 0, or the default, is used. This allows a default keyword
to be selected automatically if desired; for example:

Example 7.5. Builtin function ABBREV example

say "Enter option:";   pull option .
select  /* keyword1 is to be the default */
  when abbrev("keyword1",option) then ...
  when abbrev("keyword2",option) then ...
  ...
  otherwise nop;
end;

7.4.2. ABS (Absolute Value)

ABS( number )

Returns the absolute value of number. The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:  

Example 7.6. Builtin function ABS

ABS("12.3")       ->    12.3
ABS(" -0.307")    ->    0.307

7.4.3. ADDRESS

ADDRESS()

Returns the name of the environment   to which commands are currently submitted. Trailing
whitespace characters are removed from the result.

Here is an example:  

Example 7.7. Builtin function ADDRESS

ADDRESS()    ->    "CMD"   // default for Windows

ADDRESS()    ->    "sh"    // default for Unix-like systems

7.4.4. ARG (Argument)
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ARG()

ARG( n

, option

)

Returns one or more arguments, or information about the arguments to a program, internal routine, or
method.

If you do not specify any argument, the number of arguments passed to the program or internal routine
is returned.

If you specify only n, the nth argument object is returned. If the argument object does not exist, the null
string is returned. n must be a positive whole number.

If you specify option, the value returned depends on the value of option. The following are valid
options. (Only the capitalized letter is needed; all characters following it are ignored.)

Array
returns a single-index array containing the arguments, starting with the nth argument. The array
indexes correspond to the argument positions, so that the nth argument is at index 1, the following
argument at index 2, and so on. If any arguments are omitted, their corresponding indexes are
absent.

Exists
returns 1 if the nth argument exists; that is, if it was explicitly specified when the routine was
called. Otherwise, it returns 0.

Normal
returns the nth argument, if it exists, or a null string.

Omitted
returns 1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Otherwise, it returns 0.

Here are some examples:  

Example 7.8. Builtin function ARG

/*  following "Call name;" (no arguments) */
ARG()         ->    0
ARG(1)        ->    ""
ARG(2)        ->    ""
ARG(1,"e")    ->    0
ARG(1,"O")    ->    1
ARG(1,"a")    ->    .array~of()

/*  following "Call name 'a', ,'b';" */
ARG()         ->    3
ARG(1)        ->    "a"
ARG(2)        ->    ""
ARG(3)        ->    "b"
ARG(n)        ->    ""    /* for n>=4 */
ARG(1,"e")    ->    1
ARG(2,"E")    ->    0
ARG(2,"O")    ->    1
ARG(3,"o")    ->    0
ARG(4,"o")    ->    1
ARG(1,"A")    ->    .array~of(a, ,b)
ARG(3,"a")    ->    .array~of(b)
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Notes:

1. The number of argument strings is the largest number n for which ARG(n,"e") returns 1 or 0
if there are no explicit argument strings. That is, it is the position of the last explicitly specified
argument string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0
argument strings if it is called with the name only and has 1 argument string if anything else
(including whitespace characters) is included in the command.

3. Programs called by the RexxStart entry point can have several argument strings. (See the Open
Object Rexx: Application Programming Interfaces for information about RexxStart.)

4. You can access the argument objects of a program with the USE instruction.

5. You can retrieve and directly parse the argument strings of a program or internal routine with the
ARG or PARSE ARG instructions.

7.4.5. B2X (Binary to Hexadecimal)

B2X( binary_string )

Returns a string, in character format, that represents binary_string converted to hexadecimal.

The binary_string is a string of binary (0 or 1) digits. It can be of any length. You can optionally include
whitespace characters in binary_string (at 4-digit boundaries only, not leading or trailing) to improve
readability; they are ignored.

The returned string uses uppercase alphabetical characters for the values A-F, and does not include
blanks or horizontal tabs.

If binary_string is the null string, B2X returns a null string. If the number of binary digits in binary_string
is not a multiple of 4, then up to three 0 digits are added on the left before the conversion to make a
total that is a multiple of 4.

Here are some examples:  

Example 7.9. Builtin function B2X

B2X("11000011")    ->   "C3"
B2X("10111")       ->   "17"
B2X("101")         ->   "5"
B2X("1 1111 0000") ->   "1F0"

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms.
For example:

Example 7.10. Builtin function B2X combined with X2D function

X2D(B2X("10111"))  ->   "23"   /* decimal 23 */

7.4.6. BEEP

453



BITAND (Bit by Bit AND)

BEEP( frequency , duration )

Sounds the speaker at frequency Hertz for duration milliseconds. The frequency can be any whole
number in the range 37 to 32767 Hertz. The duration can be any whole number in the range 0 to
60000 milliseconds.

This routine is most useful when called as a subroutine. A null string is returned.

Notes

On Unix-like systems, to sound the speaker at a specified frequency, a console with ioctl
KDMKTONE support must be available, which typically requires root access. If there is no
console with KDMKTONE support (e. g. on BSD or Darwin), a bell character is sent to the
console instead.

On Windows beeps may have been deactivated. To check the status of the Windows beep
service, use the Service Control Manager command sc qc beep. To permanently enable the
system beep service, run the command sc config beep start= auto in a Command
window with Administrator rights, and then reboot your system.

Here is an example for Windows:  

Example 7.11. Builtin function BEEP

-- C scale
note.1 = 262    -- Do,  middle C
note.2 = 294    -- Re,  D
note.3 = 330    -- Mi,  E
note.4 = 349    -- Fa,  F
note.5 = 392    -- Sol, G
note.6 = 440    -- La,  A
note.7 = 494    -- Si,  B, H
note.8 = 523    -- Do,  C

do i = 1 to 8
  call beep note.i, 250 -- hold each note for 1/4 second
end

7.4.7. BITAND (Bit by Bit AND)

BITAND( string1 ,

string2 , pad

)

Returns a string composed of the two input strings logically ANDed, bit by bit. (The encodings of the
strings are used in the logical operation.) The length of the result is the length of the longer of the two
strings. If no pad character is provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string2 is the zero-length (null) string.

Here are some examples:  

454



BITOR (Bit by Bit OR)

Example 7.12. Builtin function BITAND

BITAND("12"x)                  ->    "12"x
BITAND("73"x,"27"x)            ->    "23"x
BITAND("13"x,"5555"x)          ->    "1155"x
BITAND("13"x,"5555"x,"74"x)    ->    "1154"x
BITAND("pQrS", ,"DF"x)         ->    "PQRS"      /* ASCII   */

7.4.8. BITOR (Bit by Bit OR)

BITOR( string1 ,

string2 , pad

)

Returns a string composed of the two input strings logically inclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of
the two strings. If no pad character is provided, the OR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to the partial result.
If pad is provided, it extends the shorter of the two strings on the right before carrying out the logical
operation. The default for string2 is the zero-length (null) string.

Here are some examples:  

Example 7.13. Builtin function BITOR

BITOR("12"x)                  ->    "12"x
BITOR("15"x,"24"x)            ->    "35"x
BITOR("15"x,"2456"x)          ->    "3556"x
BITOR("15"x,"2456"x,"F0"x)    ->    "35F6"x
BITOR("1111"x, ,"4D"x)        ->    "5D5D"x
BITOR("pQrS", ,"20"x)         ->    "pqrs" /* ASCII   */

7.4.9. BITXOR (Bit by Bit Exclusive OR)

BITXOR( string1 ,

string2 , pad

)

Returns a string composed of the two input strings logically eXclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of
the two strings. If no pad character is provided, the XOR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to the partial result.
If pad is provided, it extends the shorter of the two strings on the right before carrying out the logical
operation. The default for string2 is the zero-length (null) string.

Here are some examples:  

Example 7.14. Builtin function BITXOR

BITXOR("12"x)                     ->  "12"x
BITXOR("12"x,"22"x)               ->  "30"x
BITXOR("1211"x,"22"x)             ->  "3011"x
BITXOR("1111"x,"444444"x)         ->  "555544"x
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BITXOR("1111"x,"444444"x,"40"x)   ->  "555504"x
BITXOR("1111"x, ,"4D"x)           ->  "5C5C"x
BITXOR("C711"x,"222222"x," ")     ->  "E53302"x  /* ASCII  */

7.4.10. C2D (Character to Decimal)

C2D( string

, n

)

Returns the decimal value of the binary representation of string. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do not specify n, string
is processed as an unsigned binary number.

If string is null, 0 is returned.

Here are some examples:  

Example 7.15. Builtin function C2D

C2D("09"X)      ->        9
C2D("81"X)      ->      129
C2D("FF81"X)    ->    65409
C2D("")         ->        0
C2D("a")        ->       97     /*  ASCII   */

If you specify n, the string is taken as a signed number expressed in n characters. The number is
positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to
a whole number, which can be negative. The string is padded on the left with "00"x characters (not
"sign-extended"), or truncated on the left to n characters. This padding or truncation is as though
RIGHT(string, n,"00"x) had been processed. If n is 0, C2D always returns 0.

Here are some examples:

Example 7.16. Builtin function C2D

C2D("81"X,1)      ->     -127
C2D("81"X,2)      ->      129
C2D("FF81"X,2)    ->     -127
C2D("FF81"X,1)    ->     -127
C2D("FF7F"X,1)    ->      127
C2D("F081"X,2)    ->    -3967
C2D("F081"X,1)    ->     -127
C2D("0031"X,0)    ->        0

7.4.11. C2X (Character to Hexadecimal)

C2X( string )

Returns a string, in character format, that represents string converted to hexadecimal. The returned
string contains twice as many bytes as the input string. On an ASCII system, C2X(1) returns 31
because the ASCII representation of the character 1 is "31"X.
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The string returned uses uppercase alphabetical characters for the values A-F and does not include
whitespace characters. The string can be of any length. If string is null, a null string is returned.

Here are some examples:  

Example 7.17. Builtin function C2X

C2X("0123"X)    ->    "0123"   /* "30313233"X     in ASCII */
C2X("ZD8")      ->    "5A4438" /* "354134343338"X in ASCII */

7.4.12. CENTER (or CENTRE)

CENTER(

CENTRE(

string , length

, pad

)

Returns a string of length length with string centered in it and with pad characters added as necessary
to make up length. The length must be a positive whole number or zero. The default pad character
is blank. If the string is longer than length, it is truncated at both ends to fit. If an odd number of
characters is truncated or added, the right-hand end loses or gains one more character than the left-
hand end.

Here are some examples:    

Example 7.18. Builtin function CENTER

CENTER(abc,7)               ->    "  ABC  "
CENTER(abc,8,"-")           ->    "--ABC---"
CENTRE("The blue sky",8)    ->    "e blue s"
CENTRE("The blue sky",7)    ->    "e blue "

Note

To avoid errors because of the difference between British and American spellings, this function
can be called either CENTRE or CENTER.

7.4.13. CHANGESTR

CHANGESTR( needle , haystack , newneedle

, count

)

Returns a copy of haystack in which newneedle replaces occurrences of needle. If count is not
specified, all occurrences of needle are replaced. If count is specified, it must be a non-negative,
whole number that gives the maximum number of occurrences to be replaced.

Here are some examples:  
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Example 7.19. Builtin function CHANGESTR

CHANGESTR("1","101100","")     ->    "000"
CHANGESTR("1","101100","X")    ->    "X0XX00"
CHANGESTR("1","101100","X", 1) ->    "X01100"

7.4.14. CHARIN (Character Input)

CHARIN(

name

,

start , length

)

Returns a string of up to length characters read from the character input stream name. (To understand
the input and output functions, see Chapter 14, Input and Output Streams.) If you omit name,
characters are read from STDIN, which is the default input stream. The default length is 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream
starts at the current read position by default. When the language processor completes reading, the
read position is increased by the number of characters read. You can give a start value to specify an
explicit read position. This read position must be a positive whole number and within the bounds of
the stream, and must not be specified for a transient stream. A value of 1 for start refers to the first
character in the stream. If start is not a positive whole number the appropriate syntax condition is
raised. When the read position is past the bounds of the stream, the empty string is returned and the
NOTREADY condition is raised.

If you specify a length of 0, then the read position is set to the value of start, but no characters are
read and the null string is returned.

In a transient stream, if there are fewer than length characters available, the execution of the program
generally stops until sufficient characters become available. If, however, it is impossible for those
characters to become available because of an error or another problem, the NOTREADY condition is
raised (see Section 14.5, “Errors during Input and Output”) and CHARIN returns with fewer than the
requested number of characters.

Here are some examples:  

Example 7.20. Builtin function CHARIN

CHARIN(myfile,1,3)   ->   "MFC"    /* the first 3        */
                                   /* characters         */
CHARIN(myfile,1,0)   ->   ""       /* now at start       */
CHARIN(myfile)       ->   "M"      /* after last call    */
CHARIN(myfile, ,2)   ->   "FC"     /* after last call    */

/* Reading from the default input (here, the keyboard)   */
/* User types "abcd efg"                                 */
CHARIN()             ->   "a"      /* default is         */
                                   /* 1 character        */
CHARIN(, ,5)         ->   "bcd e"

Notes:

1. CHARIN returns all characters that appear in the stream, including control characters such as line-
end and end-of-file.
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2. When CHARIN reads from the keyboard, program execution stops until you press the Enter key.

7.4.15. CHAROUT (Character Output)

CHAROUT(

name

,

string , start

)

Returns the count of characters remaining after attempting to write string to the character output
stream name. (To understand the input and output functions, see Chapter 14, Input and Output
Streams.) If you omit name, characters in string are written to STDOUT (generally the display), which
is the default output stream. The string can be a null string, in which case no characters are written to
the stream, and 0 is always returned.

For persistent streams, a write position is maintained for each stream. Any write to the stream starts
at the current write position by default. When the language processor completes writing, the write
position is increased by the number of characters written. When the stream is first opened, the write
position is at the end of the stream so that calls to CHAROUT append characters to the end of the
stream.

You can give a start value to specify an explicit write position for a persistent stream. This write
position must be a positive whole number. A value of 1 for start refers to the first character in the
stream.

You can omit the string for persistent streams. In this case, the write position is set to the value of start
that was given, no characters are written to the stream, and 0 is returned. If you do not specify start or
string, the stream is closed and 0 is returned.

Execution of the program usually stops until the output operation is complete.

For example, when data is sent to a printer, the system accepts the data and returns control to
Rexx, even though the output data might not have been printed. Rexx considers this to be complete,
even though the data has not been printed. If, however, it is impossible for all the characters to be
written, the NOTREADY condition is raised (see Section 14.5, “Errors during Input and Output”) and
CHAROUT returns with the number of characters that could not be written (the residual count).

Here are some examples:  

Example 7.21. Builtin function CHAROUT

CHAROUT(myfile,"Hi")     ->   0   /* typically        */
CHAROUT(myfile,"Hi",5)   ->   0   /* typically        */
CHAROUT(myfile, ,6)      ->   0   /* now at char 6    */
CHAROUT(myfile)          ->   0   /* at end of stream */
CHAROUT(,"Hi")           ->   0   /* typically        */
CHAROUT(,"Hello")        ->   2   /* maybe            */

Note

This routine is often best called as a subroutine. The residual count is then available in the
variable RESULT.
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For example:

Example 7.22. Builtin function CHAROUT

Call CHAROUT myfile,"Hello"
Call CHAROUT myfile,"Hi",6
Call CHAROUT myfile

7.4.16. CHARS (Characters Remaining)
   

CHARS(

name

)

Returns the total number of characters remaining in the character input stream name. The count
includes any line separator characters, if these are defined for the stream. In the case of persistent
streams, it is the count of characters from the current read position. (See Chapter 14, Input and Output
Streams for a discussion of Rexx input and output.) If you omit name, the number of characters
available in the default input stream (STDIN) is returned.

The total number of characters remaining cannot be determined for some streams (for example,
STDIN or Windows/Unix-like system devices). For these streams, the CHARS function returns 1 to
indicate that data is present, or 0 if no data is present.  

Example 7.23. Builtin function CHARS

CHARS(myfile)     ->   42   /* perhaps */
CHARS(nonfile)    ->   0
CHARS()           ->   1    /* perhaps */

7.4.17. COMPARE
    

COMPARE( string1 , string2

, pad

)

Returns 0 if the strings string1 and string2 are identical. Otherwise, it returns the position of the first
character that does not match. The shorter string is padded on the right with pad if necessary. The
default pad character is a blank.  

Example 7.24. Builtin function COMPARE

COMPARE("abc","abc")         ->    0
COMPARE("abc","ak")          ->    2
COMPARE("ab ","ab")          ->    0
COMPARE("ab ","ab"," ")      ->    0
COMPARE("ab ","ab","x")      ->    3
COMPARE("ab-- ","ab","-")    ->    5

7.4.18. CONDITION
     

460



CONDITION

CONDITION(

option

)

Returns the condition information associated with the current trapped condition. (See Chapter 11,
Conditions and Condition Traps for a description of condition traps.) You can request the following
pieces of information:

• The name of the current trapped condition

• Any descriptive string associated with that condition

• Any condition-specific information associated with the current trapped condition

• The instruction processed as a result of the condition trap (CALL or SIGNAL)

• The status of the trapped condition

In addition, you can request a condition object containing all of the preceding information.

To select the information to be returned, use the following options. (Only the capitalized letter is
needed; all characters following it are ignored.)
Additional

returns any additional object information associated with the current trapped condition. See
Section 11.3.2, “Additional Object Information” for a list of possible values. If no additional object
information is available or no condition has been trapped, the language processor returns .nil.

Condition name
returns the name of the current trapped condition. For user conditions, the returned string is
a concatenation of the word USER and the user condition name, separated by a whitespace
character.

Description
returns any descriptive string associated with the current trapped condition. See Section 11.3.1,
“Descriptive Strings” for the list of possible values. If no description is available or no condition has
been trapped, it returns a null string.

Extra
returns the Rexx error subcode associated with a trapped SYNTAX condition. If no SYNTAX
condition has been trapped, it returns a null string.

Instruction
returns either CALL or SIGNAL, the keyword for the instruction processed when the current
condition was trapped. This is the default if you omit option. If no condition has been trapped, it
returns a null string.

Object
returns an object that contains all the information about the current trapped condition. See
Section 11.3.5, “Condition Object” for more information. If no condition has been trapped, it returns
.nil.

Reset
resets any currently trapped condition and returns the null string. After a reset, all CONDITION
options will return their default values, as if no condition has been trapped.
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Status
returns the status of the current trapped condition. This can change during processing, and is one
of the following:

• ON - the condition is enabled

• OFF - the condition is disabled

• DELAY - any new occurrence of the condition is delayed or ignored

If no condition has been trapped, a null string is returned.  

Example 7.25. Builtin function CONDITION

CONDITION()            ->    "CALL"        /* perhaps */
CONDITION("C")         ->    "FAILURE"
CONDITION("I")         ->    "CALL"
CONDITION("D")         ->    "FailureTest"
CONDITION("S")         ->    "OFF"        /* perhaps */

Note

The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine
called with CALL ON trapname has returned, the current trapped condition reverts to the
condition that was current before the CALL took place (which can be none). CONDITION returns
the values it returned before the condition was trapped.

7.4.19. COPIES
      

COPIES( string , n )

Returns n concatenated copies of string. The n must be a positive whole number or zero.  

Example 7.26. Builtin function COPIES

COPIES("abc",3)    ->    "abcabcabc"
COPIES("abc",0)    ->    ""

7.4.20. COUNTSTR
  

COUNTSTR( needle , haystack )

Returns a count of the occurrences of needle in haystack that do not overlap.  

Example 7.27. Builtin function COUNTSTR

COUNTSTR("1","101101")        ->    4
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COUNTSTR("KK","J0KKK0")       ->    1

7.4.21. D2C (Decimal to Character)
    

D2C( wholenumber

, n

)

Returns a string, in character format, that is the ASCII representation of the decimal number. If you
specify n, it is the length of the final result in characters; leading "00"x (for a positive wholenumber) or
"FF"x (for a negative wholenumber) characters are added to the result string as necessary. n must be
a positive whole number or zero.

Wholenumber must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, wholenumber must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.  

Example 7.28. Builtin function D2C

D2C(65)      ->   "A"      /* "41"x is an ASCII "A"               */
D2C(65,1)    ->   "A"
D2C(65,2)    ->   " A"     /* the leading character is a "00"x    */
D2C(65,5)    ->   "    A"  /* the leading characters are "00"x    */
D2C(109)     ->   "m"      /* "6D"x  is an ASCII "m"              */
D2C(-109,1)  ->   "ô"      /* "93"x is an ASCII "ô"   */
D2C(76,2)    ->   " L"     /* "4C"x  is an ASCII "L"              */
D2C(-180,2)  ->   " L"     /* the leading character is a "FF"x    */

7.4.22. D2X (Decimal to Hexadecimal)
    

D2X( wholenumber

, n

)

Returns a string, in character format, that represents wholenumber, a decimal number, converted to
hexadecimal. The returned string uses uppercase alphabetics for the values A-F and does not include
whitespace characters.

Wholenumber must not have more digits than the current setting of NUMERIC DIGITS.

If you specify n, it is the length of the final result in characters. After conversion the input string is sign-
extended to the required length. If the number is too big to fit n characters, it is truncated on the left. n
must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the returned result has no
leading zeros.  

Example 7.29. Builtin function D2X

D2X(9)         ->    "9"
D2X(129)       ->    "81"
D2X(129,1)     ->    "1"
D2X(129,2)     ->    "81"
D2X(129,4)     ->    "0081"
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D2X(257,2)     ->    "01"
D2X(-127,2)    ->    "81"
D2X(-127,4)    ->    "FF81"
D2X(12,0)      ->    ""

7.4.23. DATATYPE
         

DATATYPE( string

, type

)

Returns NUM if you specify only string and if string is a valid Rexx number that can be added to 0
without error; returns CHAR if string is not a valid number.

If you specify type, it returns 1 if string matches the type. Otherwise, it returns 0. If string is null, the
function returns 0 (except when the type is X or B, for which DATATYPE returns 1 for a null string).
The following are valid types. (Only the capitalized letter, or 9 for the 9Digits option, is needed; all
characters following it are ignored. For example, for the heXadecimal option, you must start your
string specifying the name of the option with X rather than H.)

Alphanumeric
returns 1 if string contains only characters from the ranges a-z, A-Z, and 0-9.

Binary
returns 1 if string contains only the characters 0 or 1, or whitespace. Whitespace characters can
appear only between groups of 4 binary characters. It also returns 1 if string is a null string, which
is a valid binary string.

Internal whole number
returns 1 if string is a Rexx whole number that built-in functions will accept. Rexx built-in functions
internally work with NUMERIC DIGITS 9 for 32-bit systems or NUMERIC DIGITS 18 for 64-bit
systems.

Lowercase
returns 1 if string contains only characters from the range a-z.

Mixed case
returns 1 if string contains only characters from the ranges a-z and A-Z.

Number
returns 1 if DATATYPE(string) returns NUM.

lOgical
returns 1 if the string is exactly "0" or "1". Otherwise it returns 0.

Symbol
returns 1 if string is a valid symbol, that is, if SYMBOL(string) does not return BAD. (See
Section 1.10.4.4, “Symbols”.) Note that both uppercase and lowercase alphabetics are permitted.

Uppercase
returns 1 if string contains only characters from the range A-Z.

Variable
returns 1 if string could appear on the left-hand side of an assignment without causing a SYNTAX
condition.

464



DATE

Whole number
returns 1 if string is a Rexx whole number under the current setting of NUMERIC DIGITS.

heXadecimal
returns 1 if string contains only characters from the ranges a-f, A-F, 0-9, and whitespace (as
long as the whitespace characters appear only between pairs of hexadecimal characters). It also
returns 1 if string is a null string, which is a valid hexadecimal string.

9 digits
returns 1 if DATATYPE(string,"W") returns 1 when NUMERIC DIGITS is set to 9.

Here are some examples:  

Example 7.30. Builtin function DATATYPE

DATATYPE(" 12 ")         ->   "NUM"
DATATYPE("")             ->   "CHAR"
DATATYPE("123*")         ->   "CHAR"
DATATYPE("12.3","N")     ->    1
DATATYPE("12.3","W")     ->    0
DATATYPE("Fred","M")     ->    1
DATATYPE("Fred","U")     ->    0
DATATYPE("Fred","L")     ->    0
DATATYPE("?20K","s")     ->    1
DATATYPE("BCd3","X")     ->    1
DATATYPE("BC d3","X")    ->    1
DATATYPE("1","O")        ->    1
DATATYPE("11,"O")        ->    0

Note

The DATATYPE function tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

7.4.24. DATE
  

DATE(

"N"

option

, ,

string ,

"N"

option2

,

osep

, isep

)

Returns, by default, the local date in the format: dd mon yyyy (day month year—for example, 14 May
2017), with no leading zero or blank on the day. The first three characters of the English name of the
month are used.
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You can use the following options to obtain specific formats. (Only the capitalized letter is needed; all
characters following it are ignored.)

Base 
returns the number of complete days (that is, not including the current day) since and including
the base date, 1 January 0001, in the format: dddddd (no leading zeros or whitespace). The
expression DATE("B")//7 returns a number in the range 0-6 that corresponds to the current day
of the week, where 0 is Monday and 6 is Sunday.

Note

The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

Days 
returns the number of days, including the current day, that have passed this year in the format ddd
(no leading zeros or whitespace).

European 
returns the date in the format dd/mm/yy.

Full 
returns the number of microseconds since 00:00:00.000000 on 1 January 0001, in the format:
dddddddddddddddddd (no leading zeros or whitespace).

Notes

The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

The value returned by Date('F') can be used to calculate the interval between any two dates.
Note, however, that values returned generally contain more digits than the default NUMERIC
DIGITS setting. The NUMERIC DIGITS setting should be increased to a minimum value of 18
when performing timestamp arithmetic.

ISO 
Returns the date according to the format specified by ISO 8601. The format is yyyy-mm-dd with
leading zeroes if required.

Language 
returns the date in an implementation- and language-dependent, or local, date format. The format
is dd month yyyy. The name of the month is according to the national language installed on the
system. If no local date format is available, the default format is returned.
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Note

This format is intended to be used as a whole; Rexx programs must not make any
assumptions about the form or content of the returned string.

Month 
returns the full English name of the current month, for example, August.

Normal 
returns the date in the format dd mon yyyy. This is the default.

Ordered 
returns the date in the format yy/mm/dd (suitable for sorting, for example).

Standard 
returns the date in the format yyyymmdd (suitable for sorting, for example).

Ticks 
returns the number of seconds since 00:00:00.000000 on 1 January 1970, in the format:
dddddddddddd (no leading zeros or whitespace).

The value returned by Date('T') can be used to calculate the interval between any two dates.
Note, however, that values returned generally contain more digits than the default NUMERIC
DIGITS setting. The NUMERIC DIGITS setting should be increased to a minimum value of 12
when performing timestamp arithmetic.

Date('T') will return a negative number for dates prior to 1 January 1970.

Usa 
returns the date in the format mm/dd/yy.

Weekday 
returns the English name for the day of the week, in mixed case, for example, Tuesday.

Here are some examples, assuming today is 24 Nov 2016:  

Example 7.31. Builtin function DATE

DATE()       -- 24 Nov 2016
DATE("B")    -- 736291
DATE("D")    -- 329
DATE("E")    -- 24/11/16
DATE("F")    -- 63615600688459000
DATE("I")    -- 2016-11-24
DATE("L")    -- 24 November 2016
DATE("M")    -- November
DATE("N")    -- 24 Nov 2016
DATE("O")    -- 16/11/24
DATE("S")    -- 20161124
DATE("T")    -- 1480003888
DATE("U")    -- 11/24/16
DATE("W")    -- Thursday
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Note

The first call to DATE or TIME in one clause causes a time stamp to be made that is then used
for all calls to these functions in that clause. Therefore, several calls to any of the DATE or TIME
functions, or both, in a single expression or clause are consistent with each other.

If you specify string, DATE returns the date corresponding to string in the format option. The string
must be supplied in the format option2. The option2 format must specify day, month, and year (that is,
not "D", "L", "M", or "W"). The default for option2 is "N", so you need to specify option2 if string is not in
the Normal format. Here are some examples:

Example 7.32. Builtin function DATE set

DATE("O", "13 Feb 1923")            -->    "23/02/13"
DATE("O", "06/01/50", "U")          -->    "50/06/01"
DATE("N", "63630372300000000", "f") -->    "14 May 2017"

If you specify an output separator character osep, the days, month, and year returned are separated
by this character. Any nonalphanumeric character or an empty string can be used. A separator
character is only valid for the formats "E", "I", "N", "O", "S", and "U". Here are some examples:

Example 7.33. Builtin function DATE set

DATE("S", "13 Feb 2017", "N", "-")  -->    "2017-02-13"
DATE("N", "13 Feb 2017", "N", "")   -->    "13Feb2017"
DATE("N", "13 Feb 2017", "N", "-")  -->    "13-Feb-2017"
DATE("O", "06/01/50", "U","")       -->    "500601"
DATE("E", "02/13/17", "U",".")      -->    "13.02.17"
DATE("N", , ,"_")                   -->    "14_May_2017"  (today)

In this way, formats can be created that are derived from their respective default format, which is the
format associated with option using its default separator character. The default separator character for
each of these formats is:

Option Default separator

European "/"

ISO "-"

Normal " "

Ordered "/"

Standard "" (empty string)

Usa "/"

If you specify a string containing a separator that is different from the default separator character of
option2, you must also specify isep to indicate which separator character is valid for string. Basically,
any date format that can be generated with any valid separator character can be used as input date
string as long as its format has the generalized form specified by option2 and its separator character
matches the character specified by isep.

468



DELSTR (Delete String)

Here are some examples:

Example 7.34. Builtin function DATE set

DATE("S", "2017-11-13", "S", "", "-")  -->    "20171113"
DATE("S", "13-Nov-2017", "N", "", "-") -->    "20171113"
DATE("O", "06*01*50","U", "", "*")     -->    "500601"
DATE("U", "13.Feb.2017", "N", , ".")   -->    "02/13/17"

You can determine the number of days between two dates; for example:

Example 7.35. Builtin function DATE days

say date("B", "12/25/17", "USA") - date("B") "shopping days till Christmas!"

If string does not include the century but option defines that the century be returned as part of the
date, the century is determined depending on whether the year to be returned is within the past 50
years or the next 49 years. Assume, for example, that you specify 10/15/61 for string and today's date
is 10/27/2016. In this case, 1961 would be 55 years ago and 2061 would be 45 years in the future. So,
10/15/2061 would be the returned date.

Note

This rule is suitable for dates that are close to today's date. However, when working with birth
dates, it is recommended that you explicitly provide the century.

When requesting dates to be converted to Full format or Ticks format, a time value of
"00:00:00.000000" is used for the conversion. A time stamp for a time and date combination can be
created by combining a value from Time() for the time of day.

Example 7.36. Builtin function DATE timestamp

numeric digits 18  -- needed to add the timestamps
timestamp = date("f", "20170123", "S") + time("f", "08:14:22", "N")

7.4.25. DELSTR (Delete String)
    

DELSTR( string ,

n , length

)

Returns string after deleting the substring that begins at the nth character and is of length characters.
If n is omitted, it defaults to 1. If you omit length, or if length is greater than the number of characters
from n to the end of string, the function deletes the rest of string (including the nth character). The
length must be a positive whole number or zero. n must be a positive whole number. If n is greater
than the length of string, the function returns string unchanged.  

469



DELWORD (Delete Word)

Example 7.37. Builtin function DELSTR

DELSTR("abcd",3)       ->    "ab"
DELSTR("abcde",3,2)    ->    "abe"
DELSTR("abcde",6)      ->    "abcde"

7.4.26. DELWORD (Delete Word)
    

DELWORD( string , n

, length

)

Returns string after deleting the substring that starts at the nth word and is of length whitespace-
delimited words. If you omit length, or if length is greater than the number of words from n to the
end of string, the function deletes the remaining words in string (including the nth word). The length
must be a positive whole number or zero. n must be a positive whole number. If n is greater than the
number of words in string, the function returns string unchanged. The string deleted includes any
whitespace characters following the final word involved but none of the whitespace preceding the first
word involved.  

Example 7.38. Builtin function DELWORD

DELWORD("Now is the  time",2,2)  ->  "Now time"
DELWORD("Now is the time ",3)    ->  "Now is "
DELWORD("Now is the  time",5)    ->  "Now is the  time"
DELWORD("Now is   the time",3,1) ->  "Now is   time"
DELWORD("Now is the  time",2,2)  ->  "Now time"

7.4.27. DIGITS
  

DIGITS()

Returns the current setting of NUMERIC DIGITS.  

Example 7.39. Builtin function DIGITS

DIGITS()    ->    9      /* by default */

7.4.28. DIRECTORY
  

DIRECTORY(

newdirectory

)

Returns the current directory, first changing it to newdirectory if an argument is supplied and the
named directory exists. If newdirectory is not specified, the name of the current directory is returned.
Otherwise, an attempt is made to change to the specified newdirectory. If successful, the name of the
newdirectory is returned; if an error occurred, null is returned.
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On Windows the returned string includes a drive letter prefix as the first two characters of the directory
name. Specifying a drive letter prefix as part of newdirectory causes the specified drive to become the
current drive. If a drive letter is not specified, the current drive remains unchanged

For example, the following program fragment saves the current directory and switches to a new
directory; it performs an operation there, and then returns to the former directory.  

Example 7.40. Builtin function DIRECTORY

/* get current directory      */
curdir = directory()
/* go play a game             */
newdir = directory("/usr/games")    /* Linux type subdirectory */
if newdir = "/usr/games" then
  do
  fortune   /* tell a fortune */
/* return to former directory */
  call directory curdir
end
else
  say "Can't find /usr/games"

7.4.29. ENDLOCAL (Linux only)
  

ENDLOCAL()

Restores the directory and environment variables in effect before the last SETLOCAL function was
run. If ENDLOCAL is not included in a procedure, the initial environment saved by SETLOCAL is
restored upon exiting the procedure.

ENDLOCAL returns a value of 1 if the initial environment is successfully restored and a value of 0 if no
SETLOCAL was issued or the action is otherwise unsuccessful.  

Example 7.41. Builtin function ENDLOCAL

n = SETLOCAL()                   /* saves the current environment */
          /*
          The program can now change environment variables
          (with the VALUE function) and then work in the
          changed environment.
          */
n = ENDLOCAL()                   /* restores the initial environment */

For additional examples, see Section 7.4.56, “SETLOCAL (Linux only)”.

7.4.30. ERRORTEXT
  

ERRORTEXT( n )

Returns the Rexx error message associated with error number n. n must be in the range 0-99.
It returns the null string if n is in the allowed range but is not a defined Rexx error number. See
Appendix C, Error Numbers and Messages for a complete description of error numbers and
messages.  
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Example 7.42. Builtin function ERRORTEXT

ERRORTEXT(16)    ->    "Label not found."
ERRORTEXT(60)    ->    ""

7.4.31. FILESPEC
  

FILESPEC( option , filespec )

Returns a selected element of filespec, given file specification, identified by one of the following option
strings. Only the capitalized option letter is needed; all characters following it are ignored.

Drive
On Windows, returns the drive letter of the given filespec. On Unix-like systems, returns a null
string ("").

Path
Returns the directory path of the given filespec.

Location
Returns the full location portion of the given filespec. On Windows, this will include both the Drive
and Path information. On other platforms, this returns the same result as the Path option.

Name
Returns the file name of the given filespec.

Extension
Returns the extension portion of the filespec file name.

If filespec does not contain the requested information, FILESPEC returns a null string ("").  

Example 7.43. Builtin function FILESPEC

thisfile = "C:\WINDOWS\UTIL\SYSTEM.INI"
say FILESPEC("drive",thisfile)     /* says "C:"              */
say FILESPEC("path",thisfile)      /* says "\WINDOWS\UTIL\"  */
say FILESPEC("location",thisfile)  /* says "C:\WINDOWS\UTIL\"  */
say FILESPEC("name",thisfile)      /* says "SYSTEM.INI"      */
say FILESPEC("extension",thisfile) /* says "INI"      */
part = "name"
say FILESPEC(part,thisfile)        /* says "SYSTEM.INI"      */

7.4.32. FORM
  

FORM()

Returns the current setting of NUMERIC FORM.  

472



FORMAT

Example 7.44. Builtin function FORM

FORM()    ->    "SCIENTIFIC"  /* by default */

7.4.33. FORMAT
      

FORMAT( number ,

before

,

after

,

expp , expt

)

Returns number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation number+0 had
been carried out. The result is precisely that of this operation if you specify only number. If you specify
any other options, the number is formatted as described in the following.

The before and after options describe how many characters are used for the integer and decimal parts
of the result, respectively. If you omit either or both of them, the number of characters used for that
part is as needed.

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to an integer.  

Example 7.45. Builtin function FORMAT

FORMAT("3",4)            ->    "   3"
FORMAT("1.73",4,0)       ->    "   2"
FORMAT("1.73",4,3)       ->    "   1.730"
FORMAT("-.76",4,1)       ->    "  -0.8"
FORMAT("3.03",4)         ->    "   3.03"
FORMAT(" - 12.73", ,4)   ->    "-12.7300"
FORMAT(" - 12.73")       ->    "-12.73"
FORMAT("0.000")          ->    "0"

The first three arguments are as described previously. In addition, expp and expt control the exponent
part of the result, which, by default, is formatted according to the current NUMERIC settings of DIGITS
and FORM. expp sets the number of places for the exponent part; the default is to use as many as
needed (which can be zero). expt specifies when the exponential expression is used. The default is
the current setting of NUMERIC DIGITS.

If expp is 0, the number is not in exponential notation. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
the exponential notation is used. If expt is 0, the exponential notation is always used unless the
exponent would be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be 0 when
a nonzero expp is specified, then expp+2 blanks are supplied for the exponent part of the result. If the
exponent would be 0 and expp is not specified, the number is not an exponential expression.
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Example 7.46. Builtin function FORMAT

FORMAT("12345.73", , ,2,2)  ->    "1.234573E+04"
FORMAT("12345.73", ,3, ,0)  ->    "1.235E+4"
FORMAT("1.234573", ,3, ,0)  ->    "1.235"
FORMAT("12345.73", , ,3,6)  ->    "12345.73"
FORMAT("1234567e5", ,3,0)   ->    "123456700000.000"

7.4.34. FUZZ
  

FUZZ()

Returns the current setting of NUMERIC FUZZ.  

Example 7.47. Builtin function FUZZ

FUZZ()    ->    0     /* by default */

7.4.35. INSERT

INSERT( new , target ,

n

,

length , pad

)

Inserts the string new, padded or truncated to length length, into the string target after the nth
character. The default value for n is 0, which means insertion before the beginning of the string. If
specified, n and length must be positive whole numbers or zero. If n is greater than the length of the
target string, the string new is padded at the beginning. The default value for length is the length of
new. If length is less than the length of the string new, then INSERT truncates new to length length.
The default pad character is a blank.

Here are some examples:  

Example 7.48. Builtin function INSERT

INSERT(" ","abcdef",3)         ->    "abc def"
INSERT("123","abc",5,6)        ->    "abc  123   "
INSERT("123","abc",5,6,"+")    ->    "abc++123+++"
INSERT("123","abc")            ->    "123abc"
INSERT("123","abc", ,5,"-")    ->    "123--abc"

7.4.36. LASTPOS (Last Position)

LASTPOS( needle , haystack ,

start , length

)

Returns the position of the last occurrence of one string, needle, in another, haystack. It returns 0
if needle is a null string or not found. By default, the search starts at the last character of haystack
and scans backward to the beginning of the string. You can override this by specifying start, the point
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at which the backward scan starts and length, the range of characters to scan. The start must be a
positive whole number and defaults to the length of haystack if larger than that value or omitted. The
length must be a non-negative whole number and defaults to start.

See also POS built-in function.

Here are some examples:  

Example 7.49. Builtin function LASTPOS

LASTPOS(" ","abc def ghi")      ->    8
LASTPOS(" ","abcdefghi")        ->    0
LASTPOS("xy","efgxyz")          ->    4
LASTPOS(" ","abc def ghi",7)    ->    4
LASTPOS(" ","abc def ghi",7,3)  ->    0

7.4.37. LEFT

LEFT( string , length

, pad

)

Returns a string of length length, containing the leftmost length characters of string. The string
returned is padded with pad characters, or truncated, on the right as needed. The default pad
character is a blank. length must be a positive whole number or zero. The LEFT function is equivalent
to SUBSTR(string, 1,  length [,  pad]).

Here are some examples:  

Example 7.50. Builtin function LEFT

LEFT("abc d",8)        ->    "abc d   "
LEFT("abc d",8,".")    ->    "abc d..."
LEFT("abc  def",7)     ->    "abc  de"

7.4.38. LENGTH

LENGTH( string )

Returns the length of string.

Here are some examples:  

Example 7.51. Builtin function LENGTH

LENGTH("abcdefgh")    ->    8
LENGTH("abc defg")    ->    8
LENGTH("")            ->    0

7.4.39. LINEIN (Line Input)
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LINEIN(

name

,

line , count

)

Returns count lines read from the character input stream name. The count must be 1 or 0 (To
understand the input and output functions, see Chapter 14, Input and Output Streams.) If you omit
name, the line is read from the default input stream, STDIN. The default count is 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts
at the current read position by default. Under certain circumstances, a call to LINEIN returns a partial
line. This can happen if the stream has already been read with the CHARIN function, and part but
not all of a line (and its termination, if any) has already been read. When the language processor
completes reading, the read position is moved to the beginning of the next line.

A line number may be given to set the read position to the start of a specified line. This line number
must be positive and within the bounds of the stream, and must not be specified for a transient stream.
The read position can be set to the beginning of the stream by giving line a value of 1.

If you give a count of 0, then no characters are read and a null string is returned.

For transient streams, if a complete line is not available in the stream, then execution of the program
usually stops until the line is complete. If, however, it is impossible for a line to be completed because
of an error or another problem, the NOTREADY condition is raised (see Section 14.5, “Errors during
Input and Output”) and LINEIN returns whatever characters are available.

Here are some examples:  

Example 7.52. Builtin function LINEIN

LINEIN()                             /* Reads one line from the    */
                                     /* default input stream;      */
                                     /* usually this is an entry   */
                                     /* typed at the keyboard      */
myfile = "ANYFILE.TXT"
LINEIN(myfile)     -> "Current line" /* Reads one line from        */
                                     /* ANYFILE.TXT, beginning     */
                                     /* at the current read        */
                                     /* position. (If first call,  */
                                     /* file is opened and the     */
                                     /* first line is read.)       */

LINEIN(myfile,1,1) ->  "first line"  /* Opens and reads the first  */
                                     /* line of ANYFILE.TXT (if    */
                                     /* the file is already open,  */
                                     /* reads first line); sets    */
                                     /* read position on the       */
                                     /* second line.               */

LINEIN(myfile,1,0) ->  ""            /* No read; opens ANYFILE.TXT */
                                     /* (if file is already open,  */
                                     /* sets the read position to  */
                                     /* the first line).           */

LINEIN(myfile, ,0)  ->  ""           /* No read; opens ANYFILE.TXT */
                                     /* (no action if the file is  */
                                     /* already open).             */

LINEIN("QUEUE:")   ->  "Queue line" /* Read a line from the queue. */
                                    /* If the queue is empty, the  */
                                    /* program waits until a line  */
                                    /* is put on the queue.        */
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Note

If you want to read complete lines from the default input stream, as in a dialog with a user, use
the PULL or PARSE PULL instruction.

The PARSE LINEIN instruction is also useful in certain cases.

7.4.40. LINEOUT (Line Output)

LINEOUT(

name

,

string , line

)

Returns 0 if successful in writing string to the character output stream name, or 1 if an error occurs
while writing the line. (To understand the input and output functions, see Chapter 14, Input and Output
Streams.) If you specify line, this positions the write pointer before writing. If you omit both string and
line, the stream is closed. LINEOUT adds platform-specific line-end characters to the end of string.

If you omit name, the line is written to the default output stream STDOUT (usually the display).

For persistent streams, a write position is maintained for each stream. Any write to the stream starts
at the current write position by default. (Under certain circumstances the characters written by a call to
LINEOUT can be added to a partial line previously written to the stream with the CHAROUT routine.
LINEOUT stops a line at the end of each call.) When the language processor completes writing, the
write position is set to the beginning of the line following the one just written. When the stream is first
opened, the write position is at the end of the stream, so that calls to LINEOUT append lines to the
end of the stream.

You can specify a line number to set the write position to the start of a particular line in a persistent
stream. This line number must be positive and within the bounds of the stream unless it is a binary
stream (though it can specify the line number immediately after the end of the stream). A value of 1
for line refers to the first line in the stream. Note that, unlike CHAROUT, you cannot specify a position
beyond the end of the stream for non-binary streams.

You can omit the string for persistent streams. If you specify line, the write position is set to the start
of the line that was given, nothing is written to the stream, and the function returns 0. If you specify
neither line nor string, the stream is closed. Again, the function returns 0.

Execution of the program usually stops until the output operation is effectively complete. For example,
when data is sent to a printer, the system accepts the data and returns control to Rexx, even though
the output data might not have been printed. Rexx considers this to be complete, even though the data
has not been printed. If, however, it is impossible for a line to be written, the NOTREADY condition is
raised (see Section 14.5, “Errors during Input and Output”), and LINEOUT returns a result of 1, that is,
the residual count of lines written.

Here are some examples:  

Example 7.53. Builtin function LINEOUT

LINEOUT(,"Display this")          /* Writes string to the default   */
                                  /* output stream (usually, the    */
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                                  /* display); returns 0 if         */
                                  /* successful                     */

myfile = "ANYFILE.TXT"
LINEOUT(myfile,"A new line")      /* Opens the file ANYFILE.TXT and */
                                  /* appends the string to the end. */
                                  /* If the file is already open,   */
                                  /* the string is written at the   */
                                  /* current write position.        */
                                  /* Returns 0 if successful.       */

LINEOUT(myfile,"A new start",1)   /* Opens the file (if not already */
                                  /* open); overwrites first line   */
                                  /* with a new line.               */
                                  /* Returns 0 if successful.       */

LINEOUT(myfile, ,1)               /* Opens the file (if not already */
                                  /* open). No write; sets write    */
                                  /* position at first character.   */

LINEOUT(myfile)                   /* Closes ANYFILE.TXT             */

LINEOUT is often most useful when called as a subroutine. The return value is then available in the
variable RESULT. For example:

Example 7.54. Builtin function LINEOUT call

Call LINEOUT "A:rexx.bat","Shell",1
Call LINEOUT ,"Hello"

Note

If the lines are to be written to the default output stream without the possibility of error, use the
SAY instruction instead.

7.4.41. LINES (Lines Remaining)

LINES(

name , "Normal"

, "Count"

)

Returns 1 if any data remains between the current read position and the end of the character input
stream name, and no option or option Normal is specified. It returns 0 if no data remains. As such,
LINES reports whether a read action that CHARIN or LINEIN performs will succeed. Option Normal is
the default.

If option Count is specified, LINES returns the actual number of lines remaining in the stream,
irrespective of how long this operation takes.

For an explanation of input and output, see Chapter 14, Input and Output Streams.

Here are some examples:  
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Example 7.55. Builtin function LINES

LINES(myfile)    ->    0    /* at end of the file   */
LINES()          ->    1    /* data remains in the  */
                            /* default input stream */
                            /* STDIN:               */

Note

The CHARS function returns the number of characters in a persistent stream or the presence of
data in a transient stream.

7.4.42. LOWER

LOWER( string ,

n , length

)

Returns a new string with the characters of string beginning with character n for length characters
converted to lowercase. If n is specified, it must be a positive whole number. If n is not specified, the
case conversion will start with the first character. If length is specified, it must be a non-negative whole
number. If length is not specified, the default is to convert the remainder of the string.

Here are some examples: 

Example 7.56. Builtin function LOWER

lower("Albert Einstein")      ->    "albert einstein"
lower("ABCDEF", 4)            ->    "ABCdef"
lower("ABCDEF", 3, 2)         ->    "ABcdEF"

7.4.43. MAX (Maximum)

MAX( number

,

)

Returns the largest number of the list specified, formatted according to the current NUMERIC settings.
You can specify any number of numbers.

Here are some examples:  

Example 7.57. Builtin function MAX

MAX(12,6,7,9)                                                ->    12
MAX(17.3,19,17.03)                                           ->    19
MAX(-7,-3,-4.3)                                              ->    -3
MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)   ->    21
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7.4.44. MIN (Minimum)

MIN( number

,

)

Returns the smallest number of the list specified, formatted according to the current NUMERIC
settings. You can specify any number of numbers.

Here are some examples:  

Example 7.58. Builtin function MIN

MIN(12,6,7,9)                                                ->   6
MIN(17.3,19,17.03)                                           ->  17.03
MIN(-7,-3,-4.3)                                              ->  -7
MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1)   ->   1

7.4.45. OVERLAY

OVERLAY( new , target ,

n

,

length , pad

)

Returns the string target, which, starting at the nth character, is overlaid with the string new, padded or
truncated to length length. The overlay may extend beyond the end of the original target string. If you
specify length, it must be a positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the target string, the string new is padded at the beginning. The
default pad character is a blank, and the default value for n is 1. If you specify n, it must be a positive
whole number.

Here are some examples:  

Example 7.59. Builtin function OVERLAY

OVERLAY(" ","abcdef",3)         ->    "ab def"
OVERLAY(".","abcdef",3,2)       ->    "ab. ef"
OVERLAY("qq","abcd")            ->    "qqcd"
OVERLAY("qq","abcd",4)          ->    "abcqq"
OVERLAY("123","abc",5,6,"+")    ->    "abc+123+++"

7.4.46. POS (Position)

POS( needle , haystack ,

start , length

)

Returns the position of one string, needle, in another, haystack. It returns 0 if needle is a null string
or not found or if start is greater than the length of haystack. By default, the search starts at the first
character of the receiving string (that is, the value of start is 1), and continues to the end of the string.
You can override this by specifying start, the point at which the search starts, and length, the bounding
limit for the search. If specified, start must be a positive whole number and length must be a non-
negative whole number.
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See also LASTPOS built-in function.

Here are some examples:  

Example 7.60. Builtin function POS

POS("day","Saturday")       ->    6
POS("x","abc def ghi")      ->    0
POS(" ","abc def ghi")      ->    4
POS(" ","abc def ghi",5)    ->    8
POS(" ","abc def ghi",5,3)  ->    0

7.4.47. QUALIFY

QUALIFY( name )

Returns the fully qualified path for name by expanding the file name into a path with absolute directory
information. The file does not need to exist to generate the full name.

7.4.48. QUEUED

QUEUED()

Returns the number of lines remaining in the external data queue when the function is called. (See
Chapter 14, Input and Output Streams for a discussion of Rexx input and output.)

Here is an example:  

Example 7.61. Builtin function QUEUED

QUEUED()    ->    5    /* Perhaps */

7.4.49. RANDOM

RANDOM( max

min

,

max , seed

)

Returns a quasi-random whole number in the range min to max inclusive. If you specify max or
min,max, then max minus min cannot exceed 999999999. min and max default to 0 and 999,
respectively. To start a repeatable sequence of results, use a specific seed as the third argument. This
seed must be a whole number from 0 to 999999999.

Here are some examples:  

Example 7.62. Builtin function RANDOM

RANDOM()            -- 305  /* 0 to 999     */
RANDOM(5, 8)        --   7  /* 5 to 8       */
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RANDOM(2)           --   0  /* 0 to 2       */
RANDOM(, , 3257)    -- 123  /* reproducible */
RANDOM(-5, 5)       --  -3

Notes:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a number of times, but
specify a seed only the first time. For example, to simulate 40 throws of a 6-sided, unbiased die:

Example 7.63. Builtin function RANDOM with seed

sequence = RANDOM(1,6,12345)  /* any number would */
                              /* do for a seed    */
do 39
  sequence = sequence RANDOM(1,6)
end
say sequence

The numbers are generated mathematically, using the initial seed, so that as far as possible they
appear to be random. Running the program again produces the same sequence; using a different
initial seed almost certainly produces a different sequence. If you do not supply a seed, the first
time RANDOM is called, an arbitrary seed is used. Hence, your program usually gives different
results each time it is run.

2. The random number generator is global for an entire program; the current seed is not saved
across internal routine calls.

7.4.50. REVERSE

REVERSE( string )

Returns string reversed.

Here are some examples:  

Example 7.64. Builtin function REVERSE

REVERSE("ABc.")    ->    ".cBA"
REVERSE("XYZ ")    ->    " ZYX"

7.4.51. RIGHT

RIGHT( string , length

, pad

)

Returns a string of length length containing the rightmost length characters of string. The string
returned is padded with pad character, or truncated, on the left as needed. The default pad character
is a blank. The length must be a positive whole number or zero.

Here are some examples:  
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Example 7.65. Builtin function RIGHT

RIGHT("abc  d",8)     ->    "  abc  d"
RIGHT("abc def",5)    ->    "c def"
RIGHT("12",5,"0")     ->    "00012"

7.4.52. RXFUNCADD

RxFuncAdd( name , module

, procedure

)

Registers the function, making it available to Rexx procedures. The module is the name of an external
library where the native function is located. In some environments, such as Unix-like systems,
the library name is case sensitive. The procedure is the name of the exported procedure inside of
module. If procedure is not specified, it defaults to name. The procedure is generally case-sensitive.
RxFuncAdd will attempt to resolve the procedure address using the name as specified and if that
attempt fails, will retry using an uppercased name.

A return value 0 signifies successful registration and that the registered function has been located in
the specified module. A return value 1 signifies that the function could not be resolved.

Example 7.66. Builtin function RXFUNCADD

// 0 if rxcalcsqrt can be located, else 1
rxfuncadd("rxcalcsqrt", "rxmath", "rxcalcsqrt")

7.4.53. RXFUNCDROP

RxFuncDrop( name )

Removes (deregisters) the function name from the list of available functions. A zero return value
signifies successful removal.  

Example 7.67. Builtin function RXFUNCDROP

rxfuncdrop("SysLoadFuncs")         -> 0 /* if successfully removed   */

7.4.54. RXFUNCQUERY

RxFuncQuery( name )

Queries the list of available functions for the function name. It returns a value of 0 if the function is
registered, and a value of 1 if it is not.  
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Example 7.68. Builtin function RXFUNCQUERY

rxfuncquery("SysLoadFuncs")        -> 0 /* if registered             */

7.4.55. RXQUEUE

RXQUEUE( "Create"

, queuename

"Delete" , queuename

"Exist" , queuename

"Get"

"Open" , queuename

"Set" , newqueuename

)

Creates and deletes external data queues. It also sets and queries their names.

Create
creates a queue with the name queuename if you specify queuename and if no queue of that
name exists already. You must not use SESSION as a queuename. If you specify no queuename,
then the language processor provides a name. The name of the queue is returned in either case.

The maximum length of queuename can be 250 characters.

Many queues can exist at the same time, and most systems have sufficient resources available
to support several hundred queues at a time. If a queue with the specified name exists already,
a queue is still created with a name assigned by the language processor. The assigned name is
then returned to you.

Delete
deletes the named queue. It returns 0 if successful or a nonzero number if an error occurs.
Possible return values are:
0

Queue has been deleted.

5
Not a valid queue name or tried to delete queue named "SESSION".

9
Specified queue does not exist.

10
Queue is busy; wait is active.

12
A memory failure has occurred.

1002
Failure in memory manager.
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Get
returns the name of the queue currently in use.

Exist
returns .true if the specified queuename exists. Returns .false otherwise.

Open
tests if the specified queuename exists and creates if it does not.

Set
sets the name of the current queue to newqueuename and returns the previously active queue
name.

The first parameter determines the function. Only the first character of the first parameter is significant.
The parameter can be entered in any case. The syntax for a valid queue name is the same as for a
valid Rexx symbol.

The second parameter specified for Create, Set, and Delete must follow the same syntax rules as the
Rexx variable names. There is no connection, however, between queue names and variable names.
A program can have a variable and a queue with the same name. The actual name of the queue is the
uppercase value of the name requested.

Named queues prevent different Rexx programs that are running in a single session from interfering
with each other. They allow Rexx programs running in different sessions to synchronize execution and
pass data. LINEIN("QUEUE:") is especially useful because the calling program stops running until
another program places a line on the queue.  

Example 7.69. Builtin function RXQUEUE

/* default queue                                    */
rxqueue("Get")             -> "SESSION"
/* assuming FRED does not already exist             */
rxqueue("Create", "Fred")  -> "FRED"
/* assuming SESSION had been active                 */
rxqueue("Set", "Fred")     -> "SESSION"
/* assuming FRED exists                             */
rxqueue("delete", "Fred")  -> "0"

7.4.56. SETLOCAL (Linux only)

SETLOCAL()

Saves the current working directory and the current values of the environment variables that are local
to the current process.

For example, SETLOCAL can be used to save the current environment before changing selected
settings with the VALUE function. To restore the directory and environment, use the ENDLOCAL
function.

SETLOCAL returns a value of 1 if the initial directory and environment are successfully saved and a
value of 0 if unsuccessful. If SETLOCAL is not followed by an ENDLOCAL function in a procedure, the
initial environment saved by SETLOCAL is restored upon exiting the procedure.

Here is an example:  
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Example 7.70. Builtin function SETLOCAL

/* Current path is "user/bin" */
n = SETLOCAL()           /* saves all environment settings */
/* Now use the VALUE function to change the PATH variable */
p = VALUE("Path","home/user/bin"."ENVIRONMENT")
/* Programs in directory home/user/bin can now be run */
n = ENDLOCAL()           /* restores initial environment including */
                         /* the changed PATH variable, which is    */
                         /* "user/bin"                             */

7.4.57. SIGN

SIGN( number )

Returns a number that indicates the sign of number. The number is first rounded according to
standard Rexx rules, as though the operation number+0 had been carried out. It returns -1 if number
is less than 0, 0 if it is 0, and 1 if it is greater than 0.

Here are some examples:  

Example 7.71. Builtin function SIGN

SIGN("12.3")       ->     1
SIGN(" -0.307")    ->    -1
SIGN(0.0)          ->     0

7.4.58. SOURCELINE

SOURCELINE(

n

)

Returns the line number of the final line in the program if you omit n. If you specify n, returns the nth
line in the program if available at the time of execution. Otherwise, it returns a null string. If specified,
n must be a positive whole number and must not exceed the number that a call to SOURCELINE with
no arguments returns.

If the Rexx program is in translated format, this function returns 0 if n is omitted, and raises an error for
all attempts to retrieve a line of the program.

Here are some examples:  

Example 7.72. Builtin function SOURCELINE

SOURCELINE()    ->   10
SOURCELINE(1)   ->   "/* This is a 10-line Rexx program */"

7.4.59. SPACE
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SPACE( string ,

n , pad

)

Returns the whitespace-delimited words in string with n pad characters between each word. If you
specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are removed.
Leading and trailing whitespace characters are always removed. The default for n is 1, and the default
pad character is a blank.

Here are some examples:  

Example 7.73. Builtin function SPACE

SPACE("abc  def  ")          ->    "abc def"
SPACE("  abc def",3)         ->    "abc   def"
SPACE("abc  def  ",1)        ->    "abc def"
SPACE("abc  def  ",0)        ->    "abcdef"
SPACE("abc  def  ",2,"+")    ->    "abc++def"

7.4.60. STREAM

STREAM( name ,

"State"

"Command" , stream_command

"Description"

)

Returns a string describing the state of, or the result of an operation upon, the character stream name.
The result may depend on characteristics of the stream that you have specified in other uses of the
STREAM function. (To understand the input and output functions, see Chapter 14, Input and Output
Streams.) This function requests information on the state of an input or output stream or carries out
some specific operation on the stream.

The first argument, name, specifies the stream to be accessed. The second argument can be one of
the following strings that describe the action to be carried out. (Only the capitalized letter is needed; all
characters following it are ignored.)

Command
an operation (specified by the stream_command given as the third argument) is applied to the
selected input or output stream. The string that is returned depends on the command performed
and can be a null string. The possible input strings for the stream_command argument are
described later.

Description
returns any descriptive string associated with the current state of the specified stream. It is
identical to the State operation, except that the returned string is followed by a colon and, if
available, additional information about the ERROR or NOTREADY states.

State
returns a string that indicates the current state of the specified stream. This is the default
operation.

The returned strings are as described in Stream class method state.
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Note

The state (and operation) of an input or output stream is global to a Rexx program; it is not saved
and restored across internal function and subroutine calls (including those calls that a CALL ON
condition trap causes).

7.4.60.1. Stream Commands

The following stream commands are used to:

• Open a stream for reading, writing, or both.

• Close a stream at the end of an operation.

• Position the read or write position within a persistent stream (for example, a file).

• Get information about a stream (its existence, size, and last edit date).

The stream_command argument must be used when—and only when--you select the operation C
(command). The syntax is:

STREAM( name , "Command" , stream_command )

In this form, the STREAM function itself returns a string corresponding to the given stream_command
if the command is successful. If the command is unsuccessful, STREAM returns an error message
string in the same form as the D (Description) operation supplies.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO that is set whenever one of the file system primitives returns with a -1.

7.4.60.1.1. Command Strings

The argument stream_command can be any expression that the language processor evaluates to a
command string that corresponds to the following diagram:
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OPTIONS: 

SHARED

SHARERead

SHAREWrite

NOBuffer BInary

REClength length

OPEN
opens the named stream. The default for OPEN is to open the stream for both reading and writing
data, for example, "OPEN BOTH".

The STREAM function itself returns a description string similar to the one that the D option
provides, for example, "READY:" if the named stream is successfully opened, or "ERROR:2" if the
named stream is not found.
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The following is a description of the options for OPEN:

READ
opens the stream for reading only.

WRITE
opens the stream for writing only.

BOTH
opens the stream for both reading and writing. (This is the default.) Separate read and write
pointers are maintained.

APPEND
positions the write pointer at the end of the stream. (This is the default.) The write pointer
cannot be moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
turns off buffering of the stream. Thus, all data written to the stream is flushed immediately
to the operating system for writing. This option can severely affect output performance.
Therefore, use it only when data integrity is a concern, or to force interleaved output to a
stream to appear in the exact order in which it was written.

BINARY
causes the stream to be opened in binary mode. This means that line-end characters are
ignored and treated as data. This is intended to force file operations that are compatible with
other Rexx language processors that run on record-based systems, or to process binary data
using the line operations.

Note

Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option
in this case raises an error condition.

RECLENGTH length
allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
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operations on binary-mode files operate on the entire file (for example, as if the RECLENGTH
option were specified with a length equal to that of the file). length must be 1 or greater.

Here are some examples:  

Example 7.74. Builtin function STREAM

stream(strout,"c","open")
stream(strout,"c","open write")
stream(strinp,"c","open read")
stream(strinp,"c","open read shared")

CLOSE
closes the named stream. The STREAM function itself returns READY: if the named stream is
successfully closed, or an appropriate error message. If an attempt is made to close an unopened
file, STREAM returns a null string ("").

Example 7.75. Builtin function STREAM on unopened file

stream("STRM.TXT","c","close")

FLUSH
forces any data currently buffered for writing to be written to this stream.

SEEK offset
sets the read or write position within a persistent stream. If the stream is opened for both reading
and writing and no SEEK option is specified, both the read and write positions are set.

Note

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this command, the named stream must first be opened with the OPEN stream command or
implicitly with an input or output operation. One of the following characters can precede the offset
number:

=
explicitly specifies the offset from the beginning of the stream. This is the default if no prefix is
supplied. Line Offset=1 means the beginning of stream.

<
specifies offset from the end of the stream.

+
specifies offset forward from the current read or write position.

-
specifies offset backward from the current read or write position.
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The STREAM function itself returns the new position in the stream if the read or write position is
successfully located or an appropriate error message otherwise.

The following is a description of the options for SEEK:

READ
specifies that the read position is to be set by this command.

WRITE
specifies that the write position is to be set by this command.

CHAR
specifies that the positioning is to be done in terms of characters. This is the default.

LINE
specifies that the positioning is to be done in terms of lines. For non-binary streams, this is
an operation that can take a long time to complete, because, in most cases, the file must
be scanned from the top to count line-end characters. However, for binary streams with a
specified record length, this results in a simple multiplication of the new resulting line number
by the record length, and then a simple character positioning. See Section 14.1.5, “Line
versus Character Positioning” for a detailed discussion of this issue.

Note

If you do line positioning in a file open only for writing, you receive an error message.

Example 7.76. Builtin function STREAM examples

stream(name,"c","seek =2 read")
stream(name,"c","seek +15 read")
stream(name,"c","seek -7 write line")
fromend  = 125
stream(name,"c","seek <"fromend read)

POSITION
is a synonym for SEEK.

7.4.60.1.2. QUERY Stream Commands

Used with these stream commands, the STREAM function returns specific information about a stream.
Except for QUERY HANDLE and QUERY SEEK/POSITION, the language processor returns the query
information even if the stream is not open. The language processor returns UNKNOWN for QUERY
STREAMTYPE and the null string for nonexistent streams.

Note that technically although a directory is persistent, it is not a stream. If the directory exists, the
date / time queries return the time stamp of the directory, QUERY SIZE returns 0, and QUERY
STREAMTYPE returns UNKNOWN. The other commands return the null string.
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QUERY DATETIME
returns the date and time stamps of a stream in US format.

Example 7.77. Builtin function STREAM QUERY examples

stream("..\file.txt","c","query datetime")

A sample output might be:

11-12-98 03:29:12

QUERY EXISTS
returns the full path specification of the named stream, if it exists, or a null string.

Example 7.78. Builtin function STREAM QUERY EXISTS examples

stream("..\file.txt","c","query exists")

A sample output might be:

c:\data\file.txt

QUERY HANDLE
returns the handle associated with the open stream.

Example 7.79. Builtin function STREAM QUERY HANDLE examples

stream("..\file.txt","c","query handle")

A sample output might be:

3

QUERY POSITION
returns the current read or write position for the stream, as qualified by the following options:
READ

returns the current read position.

WRITE
returns the current write position.

Note

If the stream is open for both reading and writing, the default is to return the read
position. Otherwise, it returns the appropriate position by default.
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CHAR
returns the position in terms of characters. This is the default.

LINE
returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete, because the language processor starts tracking the current line number if
not already doing so. Thus, it might require a scan of the stream from the top to count line-end
characters. See Section 14.1.5, “Line versus Character Positioning” for a detailed discussion
of this issue.

Example 7.80. Builtin function STREAM QUERY POSITION examples

stream("myfile","c","query position write")

A sample output might be:

247

SYS
returns the operating-system stream position in terms of characters.

QUERY SIZE
returns the size, in bytes, of a persistent stream.

Example 7.81. Builtin function STREAM QUERY SIZE examples

stream("..\file.txt","c","query size")

A sample output might be:

1305

QUERY STREAMTYPE
returns a string indicating whether the stream is PERSISTENT, TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP
returns the date and time stamps of a stream in an international format. This is the preferred
method of getting the date and time because it provides the full 4-digit year.

Example 7.82. Builtin function STREAM QUERY TIMESTAMP examples

stream("..\file.txt","c","query timestamp")

A sample output might be:

2016-11-12 03:29:12

7.4.61. STRIP
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STRIP( string ,

"B"

option

, chars

)

Returns string with leading characters, trailing characters, or both, removed, based on the option you
specify. The following are valid options. (Only the capitalized letter is needed; all characters following it
are ignored.)

Both
removes both leading and trailing characters from string. This is the default.

Leading
removes leading characters from string.

Trailing
removes trailing characters from string.

The third argument, chars, specifies the set of characters to be removed, and the default is to remove
all whitespace characters (spaces and horizontal tabs). If chars is a null string, then no characters are
removed. Otherwise, any occurrences of the characters in chars will be removed.

Here are some examples:  

Example 7.83. Builtin function STRIP

STRIP("  ab c  ")        ->    "ab c"
STRIP("  ab c  ","L")    ->    "ab c  "
STRIP("  ab c  ","t")    ->    "  ab c"
STRIP("12.7000", ,0)     ->    "12.7"
STRIP("0012.700", ,0)    ->    "12.7"
STRIP("12.0000", "T", '.0') -> "12"

7.4.62. SUBSTR (Substring)

SUBSTR( string , n ,

length , pad

)

Returns the substring of string that begins at the nth character and is of length length, padded with
pad if necessary. n must be a positive whole number. If n is greater than LENGTH(string), only pad
characters are returned.

See also LEFT and RIGHT builtin-functions.

If you omit length, the rest of the string is returned. The default pad character is a blank.

Here are some examples:  

Example 7.84. Builtin function SUBSTR

SUBSTR("abc",2)          ->    "bc"
SUBSTR("abc",2,4)        ->    "bc  "
SUBSTR("abc",2,6,".")    ->    "bc...."

495



SUBWORD

Note

In some situations the positional (numeric) patterns of parsing templates are more convenient for
selecting substrings, especially if more than one substring is to be extracted from a string.

7.4.63. SUBWORD

SUBWORD( string , n

, length

)

Returns the substring of string that starts at the nth word, and is up to length whitespace-delimited
words. n must be a positive whole number. If you omit length, it defaults to the number of remaining
words in string. The returned string never has leading or trailing whitespace, but includes all
whitespace characters between the selected words.

Here are some examples:  

Example 7.85. Builtin function SUBWORD

SUBWORD("Now is the  time",2,2)    ->    "is the"
SUBWORD("Now is the  time",3)      ->    "the  time"
SUBWORD("Now is the  time",5)      ->    ""

7.4.64. SYMBOL

SYMBOL( name )

Returns the state of the symbol named by name. It returns BAD if name is not a valid Rexx symbol. It
returns VAR if it is the name of a variable, that is, a symbol that has been assigned a value. Otherwise,
it returns LIT, indicating that it is either a constant symbol or a symbol that has not yet been assigned
a value, that is, a literal.

As with symbols in Rexx expressions, lowercase characters in name are translated to uppercase and
substitution in a compound name occurs if possible.

Note

You should specify name as a literal string, or it should be derived from an expression, to prevent
substitution before it is passed to the function.

Here are some examples:  

Example 7.86. Builtin function SYMBOL

/* following: Drop A.3;  J=3 */
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SYMBOL("J")      ->   "VAR"
SYMBOL(J)        ->   "LIT" /* has tested "3"     */
SYMBOL("a.j")    ->   "LIT" /* has tested A.3     */
SYMBOL(2)        ->   "LIT" /* a constant symbol  */
SYMBOL("*")      ->   "BAD" /* not a valid symbol */

7.4.65. TIME

TIME(

"N"

option

, string ,

"N"

option2

)

Returns the local time in the 24-hour clock format hh:mm:ss (hours, minutes, and seconds) by default,
for example, 04:41:37.

You can use the following options to obtain alternative formats, or to gain access to the elapsed-time
clock. (Only the capitalized letter is needed; all characters following it are ignored.)

Civil
returns the time in Civil format hh:mmxx. The hours can take the values 1 through 12, and the
minutes the values 00 through 59. The minutes are followed immediately by the letters am or pm.
This distinguishes times in the morning (12 midnight through 11:59 a.m.--appearing as 12:00am
through 11:59am) from noon and afternoon (12 noon through 11:59 p.m.--appearing as 12:00pm
through 11:59pm). The hour has no leading zero. The minute field shows the current minute
(rather than the nearest minute) for consistency with other TIME results.

Elapsed
returns sssssssss.uuuuuu, the number of seconds and microseconds since the elapsed-time clock
(described later) was started or reset. The returned number has no leading zeros or whitespace,
and the setting of NUMERIC DIGITS does not affect it.

The language processor calculates elapsed time by subtracting the time at which the elapsed-
time clock was started or reset from the current time. It is possible to change the system time clock
while the system is running. This means that the calculated elapsed time value might not be a true
elapsed time. If the time is changed so that the system time is earlier than when the Rexx elapsed-
time clock was started (so that the elapsed time would appear negative), the language processor
raises an error and disables the elapsed-time clock. To restart the elapsed-time clock, trap the
error through SIGNAL ON SYNTAX.

The clock can also be changed by programs on the system. Many LAN-attached programs
synchronize the system time clock with the system time clock of the server during startup. This
causes the Rexx elapsed time function to be unreliable during LAN initialization.

Full 
returns the number of microseconds since 00:00:00.000000 on 1 January 0001, in the format:
dddddddddddddddddd (no leading zeros or whitespace).
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Notes

The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

The value returned by Time('F') can be used to calculate the interval between any two times.
Note, however, that values returned generally contain more digits than the default NUMERIC
DIGITS setting. The NUMERIC DIGITS setting should be increased to a minimum value of 18
when performing timestamp arithmetic.

Hours 
returns up to two characters giving the number of hours since midnight in the format hh (no
leading zeros or whitespace, except for a result of 0).

Long
returns time in the format hh:mm:ss.uuuuuu (where uuuuuu are microseconds).

Minutes 
returns up to four characters giving the number of minutes since midnight in the format mmmm (no
leading zeros or whitespace, except for a result of 0).

Normal
returns the time in the default format hh:mm:ss. The hours can have the values 00 through 23,
and minutes and seconds, 00 through 59. There are always two digits. Any fractions of seconds
are ignored (times are never rounded). This is the default.

Offset
returns the offset of the local time from UTC in microseconds. The offset value will be negative for
timezones west of the Prime Meridian and positive for timezones east of Prime Meridian. The local
time('F') value can be converted to UTC by subtracting the time('O') value.

Reset
returns sssssssss.uuuuuu, the number of seconds and microseconds since the elapsed-time clock
(described later) was started or reset and also resets the elapsed-time clock to zero. The returned
number has no leading zeros or whitespace, and the setting of NUMERIC DIGITS does not affect
it.

See the Elapsed option for more information on resetting the system time clock.

Seconds 
returns up to five characters giving the number of seconds since midnight in the format sssss (no
leading zeros or whitespace, except for a result of 0).

Ticks 
returns the number of seconds since 00:00:00.000000 on 1 January 1970, in the format:
dddddddddddd (no leading zeros or whitespace).
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Notes

The base date of 1 January 1970 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

The value returned by Time('T') can be used to calculate the interval between any two times.
Note, however, that values returned generally contain more digits than the default NUMERIC
DIGITS setting. The NUMERIC DIGITS setting should be increased to a minimum value of 12
when performing timestamp arithmetic.

Time('T') will return a negative number for dates prior to 1 January 1970.

Here are some examples, assuming that the time is 4:54 p.m.:  

Example 7.87. Builtin function TIME

TIME()       ->   "16:54:22"
TIME("C")    ->   "4:54pm"
TIME("H")    ->   "16"
TIME("L")    ->   "16:54:22.120000"   /* Perhaps */
TIME("M")    ->   "1014"           /* 54 + 60*16 */
TIME("N")    ->   "16:54:22"
TIME("S")    ->   "60862"  /* 22 + 60*(54+60*16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On the first call in a program
to TIME("E") or TIME("R"), the elapsed-time clock is started, and either call returns 0. From then
on, calls to TIME("E") and TIME("R") return the elapsed time since that first call or since the last
call to TIME("R").

The clock is saved across internal routine calls, which means that an internal routine inherits the time
clock that its caller started. Any timing the caller is doing is not affected, even if an internal routine
resets the clock. An example of the elapsed-time clock:  

Example 7.88. Builtin function TIME elapsed

time("E")    ->    0          /* The first call */
                  /* pause of one second here */
time("E")    ->    1.020000   /* or thereabouts */
                  /* pause of one second here */
time("R")    ->    2.030000   /* or thereabouts */
                  /* pause of one second here */
time("R")    ->    1.050000   /* or thereabouts */
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Note

The elapsed-time clock is synchronized with the other calls to TIME and DATE, so several calls
to the elapsed-time clock in a single clause always return the same result. For this reason, the
interval between two usual TIME/DATE results can be calculated exactly using the elapsed-time
clock.

If you specify string, TIME returns the time corresponding to string in the format option. The string
must be supplied in the format option2. The default for option2 is "N". So you need to specify option2
only if string is not in the Normal format. option2 must specify the current time, for example, not "E" or
"R". Here are some examples:

Example 7.89. Builtin function TIME formatting

time("C","11:27:21")    ->    11:27am
time("N","11:27am","C") ->    11:27:00
time("N", "63326132161828000", "F")   ->   08:16:01

You can determine the difference between two times; for example:

Example 7.90. Builtin function TIME difference

If TIME("M","5:00pm","C")-TIME("M")<=0
then say "Time to go home"
else say "Keep working"

The TIME returned is the earliest time consistent with string. For example, if the result requires
components that are not specified in the source format, then those components of the result are zero.
If the source has components that the result does not need, then those components of the source are
ignored.

When requesting times be converted to Full or Ticks format, a date value of 1 January 0001 is used
for the conversion. A time stamp for a time and date combination can be created by combining a value
from Date('F') for the time of day.

Example 7.91. Builtin function TIME with F option

numeric digits 18  -- needed to add the timestamps
timestamp = date("f", "20170123", "S") + time("f", "08:14:22", "N")

Implementation maximum:  If the number of seconds in the elapsed time exceeds nine digits
(equivalent to over 31.6 years), an error results.

7.4.66. TRACE
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TRACE(

option

)

Returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be the valid prefix ?, one of the alphabetic
character options associated with the TRACE instruction (that is, starting with A, C, E, F, I, L, N, O,
or R), or both. (See the TRACE instruction in Section 2.29.1, “Trace Alphabetic Character (Word)
Options” for full details.)

Unlike the TRACE instruction, the TRACE function alters the trace action even if interactive debugging
is active. Also unlike the TRACE instruction, option cannot be a number.

Here are some examples:  

Example 7.92. Builtin function TRACE

TRACE()       ->   "?R" /* maybe */
TRACE("O")    ->   "?R" /* also sets tracing off */
TRACE("?I")   ->   "O"  /* now in interactive debugging */

7.4.67. TRANSLATE

TRANSLATE( string ,

tableo

,

tablei

,

pad

,

pos

, length

)

Returns string with each character translated to another character or unchanged. You can also use
this function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE searches tablei for
each character in string. If the character is found, the corresponding character in tableo is used in the
result string; if there are duplicates in tablei, the first (leftmost) occurrence is used. If the character is
not found, the original character in string is used. The result string is always the same length as string.

The tables can be of any length. If you specify neither table and omit pad, string is simply translated to
uppercase (that is, lowercase a-z to uppercase A-Z), but, if you include pad, the language processor
translates the entire string to pad characters. tablei defaults to XRANGE("00"x,"FF"x), and tableo
defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

pos is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If length is omitted, the remainder of the string from the
starting position to the end is used.

Here are some examples:  

Example 7.93. Builtin function TRANSLATE

TRANSLATE("abcdef")                        ->    "ABCDEF"
TRANSLATE("abcdef", , , , 2, 3)            ->    "aBCDef"
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TRANSLATE("abcdef", "12", "ec")            ->    "ab2d1f"
TRANSLATE("abcdef", "12", "abcd", ".")     ->    "12..ef"
TRANSLATE("APQRV", , "PR")                 ->    "A Q V"
TRANSLATE("APQRV", XRANGE("00"X, "Q"))     ->    "APQ  "
TRANSLATE("4123", "abcd", "1234", , 2, 2)  ->    "4ab3"
TRANSLATE("4123", "abcd", "1234")          ->    "dabc"

Note

The last example shows how to use the TRANSLATE function to reorder the characters in a
string. The last character of any four-character string specified as the second argument is moved
to the beginning of the string.

7.4.68. TRUNC (Truncate)

TRUNC( number

, n

)

Returns the integer part of number and n decimal places. The default n is 0 and returns an integer with
no decimal point. If you specify n, it must be a positive whole number or zero. The number is rounded
according to standard Rexx rules, as though the operation number+0 had been carried out. Then it
is truncated to n decimal places or trailing zeros are added to reach the specified length. The result is
never in exponential form. If there are no nonzero digits in the result, any minus sign is removed.

Here are some examples:  

Example 7.94. Builtin function TRUNC

TRUNC(12.3)           ->    12
TRUNC(127.09782,3)    ->    127.097
TRUNC(127.1,3)        ->    127.100
TRUNC(127,2)          ->    127.00

Note

The number is rounded according to the current setting of NUMERIC DIGITS, if necessary,
before the function processes it.

7.4.69. UPPER

UPPER( string ,

n , length

)

Returns a new string with the characters of string beginning with character n for length characters
converted to uppercase. If n is specified, it must be a positive whole number. If n is not specified, the
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case conversion will start with the first character. If length is specified, it must be a non-negative whole
number. If length is not specified, the default is to convert the remainder of the string. 

Example 7.95. Builtin function UPPER

upper("Albert Einstein")      ->    "ALBERT EINSTEIN"
upper("abcdef", 4)            ->    "abcDEF"
upper("abcdef", 3, 2)         ->    "abCDef"

7.4.70. USERID

USERID()

The return value is the active user identification.

7.4.71. VALUE

VALUE( name ,

newvalue , selector

)

Returns the value of the symbol that name (often constructed dynamically) represents and optionally
assigns a new value to it. By default, VALUE refers to the current Rexx-variables environment,
but other, external collections of variables can be selected. If you use the function to refer to Rexx
variables, name must be a valid Rexx symbol. (You can confirm this by using the SYMBOL function.)
Lowercase characters in name are translated to uppercase for the local environment. For the global
environment lowercase characters are not translated because the global environment supports mixed-
case identifiers. Substitution in a compound name (see Section 1.13.5, “Compound Symbols”) occurs
if possible.

If you specify newvalue, the named variable is assigned this new value. This does not affect the result
returned; that is, the function returns the value of name as it was before the new assignment.

Here are some examples:  

Example 7.96. Builtin function VALUE

/* After: Drop A3; A33=7; K=3; fred="K"; list.5="Hi" */
VALUE("a"k)     ->  "A3" /* looks up A3                */
VALUE("a"k||k)  ->  "7"
VALUE("fred")   ->  "K"  /* looks up FRED              */
VALUE(fred)     ->  "3"  /* looks up K                 */
VALUE(fred,5)   ->  "3"  /* looks up K and             */
                         /* then sets K=5              */
VALUE(fred)     ->  "5"  /* looks up K                 */
VALUE("LIST."k) ->  "Hi" /* looks up LIST.5            */

Notes:

1. If the VALUE function refers to an uninitialized Rexx variable, the default value of the variable is
always returned. The NOVALUE condition  is not raised.

2. The VALUE function is used when a variable contains the name of another variable, or when
a name is constructed dynamically. If you specify name as a single literal string and omit

503



VALUE

newvalue and selector, the symbol is a constant and the string between the quotation marks can
usually replace the whole function call. For example, fred=VALUE("k"); is identical with the
assignment fred=k;, unless the NOVALUE condition is trapped. See Chapter 11, Conditions and
Condition Traps.

7.4.71.1. Operating System environment variables
To use VALUE to manipulate Windows or Unix-like system environment variables, selector must
be ENVIRONMENT. In this case, the variable name need not be a valid Rexx symbol. On Unix-like
systems environment variable names are case-sensitive.

VALUE returns the null string for undefined environment variables. You cannot determine whether an
environment variable is undefined or has been set to the null string.

Environment variables set by VALUE are not kept after program termination.

Restriction

The values assigned to the variables must not contain any character that is a hexadecimal zero
("00"X). For example:

Call VALUE "MYVAR", "FIRST" || "00"X || "SECOND", "ENVIRONMENT"

sets MYVAR to "FIRST", truncating "00"x and "SECOND".

Here are some more examples:

Example 7.97. Builtin function VALUE

/* Given that an external variable FRED has a value of 4         */
share = "ENVIRONMENT"
say VALUE("fred",7,share)      /* says "4" and assigns           */
                               /* FRED a new value of 7          */

say VALUE("fred", ,share)      /* says "7"                       */

/* Accessing and changing Windows environment entries            */
env = "ENVIRONMENT"
new = "C:\EDIT\DOCS;"
say value("PATH",new,env)   /* says "C:\WINDOWS" (perhaps)       */
                            /* and sets PATH = "C:\EDIT\DOCS;"   */

say value("PATH", ,env)     /* says "C:\EDIT\DOCS;"              */

To delete an environment variable use .nil as the newvalue. To delete the environment variable
"MYVAR" specify: value("MYVAR", .NIL, "ENVIRONMENT"). If you specify an empty string as the
newvalue like in value("MYVAR", "", "ENVIRONMENT") the value of the external environment variable
is set to an empty string which on Windows and Unix-like systems is not the same as deleting the
environment variable.
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Note

Any changes to Windows or Unix-like system environment variables are not kept after program
termination.

7.4.71.2. Global environment variables
You can use the VALUE function to return a value from the Rexx global environment directory. To do
so, omit newvalue and specify selector as the null string. The language processor sends the message
name (without arguments) to the current environment object. The environment returns the object
identified by name. If there is no such object, it returns, by default, the string name with an added initial
period (an environment symbol - see Section 1.13.6, “Environment Symbols”).

Here are some examples:  

Example 7.98. Builtin function VALUE

-- assume the environment name MYNAME identifies the string "Simon"
name = value("MYNAME", , "")       -- sends MYNAME message to the environment
say "Hello," name                  -- "Hello, Simon"

-- Assume the environment name NONAME does not exist
name = value("NONAME", , "")       -- sends NONAME message to the environment
say "Hello," name                  -- "Hello, .NONAME"

You can use the VALUE function to change a value in the global environment directory. Include a
newvalue and specify selector as the null string. The language processor sends the message name
(with = appended) and the single argument newvalue to the environment object. After receiving this
message, the environment identifies the object newvalue by the name name.

Here is an example:

Example 7.99. Builtin function VALUE

call value "MYNAME", "David", ""   -- sends MYNAME=("David") message to the environment
say "Hello," value("MYNAME", , "") -- "Hello, David"

7.4.72. VAR

VAR( name )

Returns 1 if name is the name of a variable (that is, a symbol that has been assigned a value), or 0.

Here are some examples:  

Example 7.100. Builtin function VAR

/* Following: DROP A.3; J=3  */
VAR("J")       -> 1
VAR(J)         -> 0  /* has tested "3"    */
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VAR("a.j")     -> 0  /* has tested "A.3"  */
VAR(2)         -> 0  /* a constant symbol */
VAR("*")       -> 0  /* an invalid symbol */

7.4.73. VERIFY

VERIFY( string , reference ,

"N"

option

,

start , length

)

Returns a number that, by default, indicates whether string is composed only of characters from
reference. It returns 0 if all characters in string are in reference, or returns the position of the first
character in string that is not in reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized and highlighted letter
is needed. All characters following it are ignored, and it can be in uppercase or lowercase characters.)
If you specify Match, the function returns the position of the first character in the string that is in
reference, or returns 0 if none of the characters are found.

The default for start is 1; thus, the search starts at the first character of string. You can override this by
specifying a different start point, which must be a positive whole number.

The default for length is the length of the string from start to the end of the string. Thus, the search
proceeds to the end of the receiving string. You can override this by specifying a different length, which
must be a non-negative whole number.

If string is null, the function returns 0, regardless of the value of the third argument. Similarly, if start is
greater than LENGTH(string), the function returns 0. If reference is null, the function returns 0 if you
specify Match; otherwise, the function returns the start value.

Here are some examples:  

Example 7.101. Builtin function VERIFY

VERIFY("123","1234567890")             ->    0
VERIFY("1Z3","1234567890")             ->    2
VERIFY("AB4T","1234567890")            ->    1
VERIFY("AB4T","1234567890","M")        ->    3
VERIFY("AB4T","1234567890","N")        ->    1
VERIFY("1P3Q4","1234567890", ,3)       ->    4
VERIFY("123","",N,2)                   ->    2
VERIFY("ABCDE","", ,3)                 ->    3
VERIFY("AB3CD5","1234567890","M",4)    ->    6
VERIFY("ABCDEF","ABC","N",2,3)         ->    4
VERIFY("ABCDEF","ADEF","M",2,3)        ->    4

7.4.74. WORD

WORD( string , n )
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Returns the nth whitespace-delimited word in string or returns the null string if less than n words are in
string. n must be a positive whole number. This function is equivalent to SUBWORD(string,  n, 1).

Here are some examples:  

Example 7.102. Builtin function WORD

WORD("Now is the time",3)    ->    "the"
WORD("Now is the time",5)    ->    ""

7.4.75. WORDINDEX

WORDINDEX( string , n )

Returns the position of the first character in the nth whitespace-delimited word in string or returns 0 if
less than n words are in string. n must be a positive whole number.

Here are some examples:  

Example 7.103. Builtin function WORDINDEX

WORDINDEX("Now is the time",3)    ->    8
WORDINDEX("Now is the time",6)    ->    0

7.4.76. WORDLENGTH

WORDLENGTH( string , n )

Returns the length of the nth whitespace-delimited word in the string or returns 0 if less than n words
are in the string. n must be a positive whole number.

Here are some examples:  

Example 7.104. Builtin function WORDLENGTH

WORDLENGTH("Now is the time",2)       ->    2
WORDLENGTH("Now comes the time",2)    ->    5
WORDLENGTH("Now is the time",6)       ->    0

7.4.77. WORDPOS (Word Position)

WORDPOS( phrase , string

, start

)

Returns the word number of the first word of phrase found in string or returns 0 if phrase contains
no words or if phrase is not found. Several whitespace characters between words in either phrase or
string are treated as a single blank for the comparison, but otherwise the words must match exactly.

By default, the search starts at the first word in string. You can override this by specifying start (which
must be positive), the word at which to start the search.
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Here are some examples:  

Example 7.105. Builtin function WORDPOS

WORDPOS("the","now is the time")              ->  3
WORDPOS("The","now is the time")              ->  0
WORDPOS("is the","now is the time")           ->  2
WORDPOS("is   the","now is the time")         ->  2
WORDPOS("is   time ","now is   the time")     ->  0
WORDPOS("be","To be or not to be")            ->  2
WORDPOS("be","To be or not to be",3)          ->  6

7.4.78. WORDS

WORDS( string )

Returns the number of whitespace-delimited words in string.

Here are some examples:  

Example 7.106. Builtin function WORDS

WORDS("Now is the time")    ->    4
WORDS(" ")                  ->    0

7.4.79. X2B (Hexadecimal to Binary)

X2B( hexstring )

Returns a string, in character format, that represents hexstring converted to binary. The hexstring is
a string of hexadecimal characters. It can be of any length. Each hexadecimal character is converted
to a string of 4 binary digits. You can optionally include whitespace characters in hexstring (at byte
boundaries only, not leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of 4, and does not include any whitespace.

If hexstring is null, the function returns a null string.

Here are some examples:  

Example 7.107. Builtin function X2B

X2B("C3")        ->  "11000011"
X2B("7")         ->  "0111"
X2B("1 C1")      ->  "000111000001"

You can combine X2B with the functions D2X and C2X to convert numbers or character strings into
binary form.

Here are some examples:
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Example 7.108. Builtin function X2B

X2B(C2X("C3"x))  ->  "11000011"
X2B(D2X("129"))  ->  "10000001"
X2B(D2X("12"))   ->  "1100"

7.4.80. X2C (Hexadecimal to Character)

X2C( hexstring )

Returns a string, in character format, that represents hexstring converted to character. The returned
string has half as many bytes as the original hexstring. hexstring can be of any length. If necessary, it
is padded with a leading zero to make an even number of hexadecimal digits.

You can optionally include whitespace characters in hexstring (at byte boundaries only, not leading or
trailing) to improve readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:  

Example 7.109. Builtin function X2C

X2C("4865 6c6c 6f") ->  "Hello"     /*  ASCII             */
X2C("3732 73")      ->  "72s"       /*  ASCII             */

7.4.81. X2D (Hexadecimal to Decimal)

X2D( hexstring

, n

)

Returns the decimal representation of hexstring. The hexstring is a string of hexadecimal characters.
If the result cannot be expressed as a whole number, an error occurs. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS.

You can optionally include whitespace characters in hexstring (at byte boundaries only, not leading or
trailing) to aid readability; they are ignored.

If hexstring is null, the function returns 0.

If you do not specify n, the hexstring is processed as an unsigned binary number.

Here are some examples:  

Example 7.110. Builtin function X2D

X2D("0E")        ->    14
X2D("81")        ->    129
X2D("F81")       ->    3969
X2D("FF81")      ->    65409
X2D("46 30"X)    ->    240          /*  ASCII   */
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X2D("66 30"X)    ->    240          /*  ASCII   */

If you specify n, the string is taken as a signed number expressed in n hexadecimal digits. If the
leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negative. If n is 0, the function returns 0.

If necessary, hexstring is padded on the left with 0 characters (not "sign-extended"), or truncated on
the left to n characters.

Here are some examples:  

Example 7.111. Builtin function X2D

X2D("81",2)      ->    -127
X2D("81",4)      ->    129
X2D("F081",4)    ->    -3967
X2D("F081",3)    ->    129
X2D("F081",2)    ->    -127
X2D("F081",1)    ->    1
X2D("0031",0)    ->    0

7.4.82. XRANGE (Hexadecimal Range)

XRANGE(

start

,

end

ALNUM

ALPHA

BLANK

CNTRL

DIGIT

GRAPH

LOWER

PRINT

PUNCT

SPACE

UPPER

XDIGIT

,

)

Returns a string of all valid 1-byte encodings (in ascending order) between and including the values
start and end, or a character sequence representing a POSIX character class name. Any number of
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start / end bytes and character class names can be specified, and all resulting sequences are returned
as a concatenated string.

The default value for start is '00'x, and the default value for end is 'ff'x. If start is greater than end,
the values wrap from 'ff'x to '00'x. If specified, start and end must be single characters.

The characters in a sequence representing a POSIX character class name are returned in ascending
order. The following POSIX character class names can be specified:

Name Description Returned sequence

ALNUM Alphanumeric characters 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

ALPHA Alphabetic characters ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

BLANK Space and tab '09 20'x

CNTRL Control characters '00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D
0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
1D 1E 1F 7F'x

DIGIT Digits 0123456789

GRAPH Visible characters !"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

LOWER Lowercase letters abcdefghijklmnopqrstuvwxyz

PRINT Visible characters and space
character

 !"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

PUNCT Punctuation characters !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

SPACE Whitespace characters '09 0A 0B 0C 0D 20'x

UPPER Uppercase letters ABCDEFGHIJKLMNOPQRSTUVWXYZ

XDIGIT Hexadecimal digits 0123456789ABCDEFabcdef

Here are some examples:  

Example 7.112. Builtin function XRANGE

XRANGE("a", "f")                     --> "abcdef"
XRANGE('03'x, '07'x)                 --> '0304050607'x
XRANGE(, '04'x)                      --> '0001020304'x
XRANGE('FE'x, '02'x)                 --> 'FEFF000102'x
XRANGE("t", "t", "h", "i", "r", "t") --> "thirst"
XRANGE('xdigit')                     --> "0123456789ABCDEFabcdef"
XRANGE("a", "f", "A", "F", "digit")  --> "abcdefABCDEF0123456789"

511



Chapter 8.

Rexx Utilities (RexxUtil)
RexxUtil is a function package for Windows and Unix-like systems. It contains functions to:

• Manipulate operating system files and directories

• Manipulate Windows classes and objects

• Perform text screen input and output

All of the RexxUtil functions are registered by the Rexx interpreter on startup so there is no need to
manually register the functions.

8.1. A Note on Error Codes

Some of the RexxUtil functions return operating system error codes on failure. The SysGetErrorText
function can be used to retrieve the description of a system error code.

On Windows, the meaning of these error return codes can be looked up in the Windows System Error
Codes documentation provided by Microsoft, currently at https://docs.microsoft.com/en-us/windows/
win32/debug/system-error-codes.

8.2. List of Rexx Utility Functions

The following table lists all of the RexxUtil functions and the platforms on which they are available.

Table 8.1. Rexx Utility Library Functions
Exists on PlatformFunction Name

Windows Unix-like

Remarks

RxMessageBox (Windows only) Yes No  

RxWinExec (Windows only) Yes No  

SysAddRexxMacro Yes Yes  

SysBootDrive (Windows only) Yes No  

SysClearRexxMacroSpace Yes Yes  

SysCls Yes Yes  

SysCreatePipe (Unix-like systems only) No Yes  

SysCurPos (Windows only) Yes No  

SysCurState (Windows only) Yes No  

SysDriveInfo (Windows only) Yes No  

SysDriveMap (Windows only) Yes No  

SysDropRexxMacro Yes Yes  

SysDumpVariables Yes Yes  

SysFileCopy Yes Yes  

SysFileDelete Yes Yes  

SysFileExists Yes Yes  

SysFileMove Yes Yes  
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Exists on PlatformFunction Name

Windows Unix-like

Remarks

SysFileSearch Yes Yes  

SysFileSystemType (Windows only) Yes No  

SysFileTree Yes Yes Works differently

SysFork (Unix-like systems only) No Yes  

SysFormatMessage Yes Yes  

SysFromUnicode (Windows only) Yes No  

SysGetErrorText Yes Yes  

SysGetFileDateTime Yes Yes  

SysGetKey Yes Yes  

SysGetLongPathName (Windows only) Yes No  

SysGetMessage (Unix-like systems only) No Yes  

SysGetMessageX (Unix-like systems only) No Yes  

SysGetShortPathName (Windows only) Yes No  

SysIni (Windows only) Yes No  

SysIsFile Yes Yes  

SysIsFileCompressed (Windows only) Yes No  

SysIsFileDirectory Yes Yes  

SysIsFileEncrypted (Windows only) Yes No  

SysIsFileLink Yes Yes  

SysIsFileNotContentIndexed (Windows only) Yes No  

SysIsFileOffline (Windows only) Yes No  

SysIsFileSparse (Windows only) Yes No  

SysIsFileTemporary (Windows only) Yes No  

SysLinVer (Linux Only) No No* *) Linux only

SysLoadRexxMacroSpace Yes Yes  

SysMkDir Yes Yes  

SysQueryProcess Yes Yes Works differently

SysQueryRexxMacro Yes Yes  

SysReorderRexxMacro Yes Yes  

SysRmDir Yes Yes  

SysSaveRexxMacroSpace Yes Yes  

SysSearchPath Yes Yes  

SysSetFileDateTime Yes Yes  

SysSetPriority Yes Yes  

SysShutdownSystem (Windows only) Yes No  

SysSleep Yes Yes  

SysStemCopy Yes Yes  
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Exists on PlatformFunction Name

Windows Unix-like

Remarks

SysStemDelete Yes Yes  

SysStemInsert Yes Yes  

SysStemSort Yes Yes  

SysSwitchSession (Windows only) Yes No  

SysSystemDirectory (Windows only) Yes No  

SysTempFileName Yes Yes  

SysTextScreenRead (Windows only) Yes No  

SysTextScreenSize (Windows only) Yes No  

SysToUnicode (Windows only) Yes No  

SysUtilVersion Yes Yes  

SysVersion Yes Yes  

SysVolumeLabel (Windows only) Yes No  

SysWait (Unix-like systems only) No Yes  

SysWaitNamedPipe (Windows only) Yes No  

SysWinDecryptFile (Windows only) Yes No  

SysWinEncryptFile (Windows only) Yes No  

SysWinGetPrinters (Windows only) Yes No  

SysWinGetDefaultPrinter (Windows only) Yes No  

SysWinSetDefaultPrinter (Windows only) Yes No  

SysWinVer (Windows only) Yes No  

8.3. RxMessageBox (Windows only)

RxMessageBox( text ,

title

,

button

,

icon

,

options

)

Displays a modal dialog box with a title, a message text, an optional icon, and a set of buttons. The
dialog box is displayed using the Windows MessageBox() function.

RxMessageBox returns one of the following integer values indicating which button the user clicked.

1
The OK button was pressed

2
The Cancel button was pressed

3
The Abort button was pressed

514



RxMessageBox (Windows only)

4
The Retry button was pressed

5
The Ignore button was pressed

6
The Yes button was pressed

7
The No button was pressed

10
The Try Again button was pressed

11
The Continue button was pressed

If a message box has a Cancel button, the function returns the value 2 if either the ESC key is
pressed or the Cancel button is selected. If the message box has no Cancel button, pressing ESC will
have no effect unless an OK button is present. If an OK is displayed and the user presses ESC, the
return value will be 1.

If the Windows MessageBox() function fails, the return value is zero.

text
The message box text.

title
The message box title. The default title is Error.

button
The message box push button style.
OK

The message box contains one push button: OK. This is the default.

OKCANCEL
The message box contains two push buttons: OK and Cancel.

RETRYCANCEL
The message box contains two push buttons: Retry and Cancel.

ABORTRETRYIGNORE
The message box contains three push buttons: Abort, Retry, and Ignore.

CANCELTRYCONTINUE
The message box contains three push buttons: Cancel, Try Again, and Continue. Use this
message box button style instead of ABORTRETRYIGNORE.

YESNO
The message box contains two push buttons: Yes and No.

YESNOCANCEL
The message box contains three push buttons: Yes, No, and Cancel.
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icon
The message box icon. The default is NONE. Allowed icons are:
NONE

No icon is displayed.

INFORMATION, ASTERISK
A stop-sign icon appears in the message box.

WARNING, EXCLAMATION
An exclamation-point icon appears in the message box.

ERROR, HAND, STOP
An icon consisting of a lowercase letter i in a circle appears in the message box.

QUESTION, QUERY
A question-mark icon appears in the message box. This icon is no longer recommended.

option
More than one of the following options may be specified. If neither DEFBUTTON2, DEFBUTTON3,
nor DEFBUTTON4 is specified, the first button is the default button. Allowed options are:
DEFBUTTON2

The second button is the default button.

DEFBUTTON3
The third button is the default button.

DEFBUTTON4
The fourth button is the default button.

RIGHT
The message box text is right-justified.

TOPMOST
The message box is placed above all non-topmost windows and stays above them, even
when the window is deactivated.

Example 8.1. RexxUtil — RxMessageBox

-- Give option to quit
if RxMessageBox("Shall we continue?", "", "YesNo", "Question") = 7
  then exit  -- "No" button clicked, exit

8.4. RxWinExec (Windows only)

RxWinExec( cmdline

, cmdshow

)

Starts (executes) the application as specified in cmdline.

Parameters:
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cmdline
A string containing a file name and optional parameters for the application to be executed. If the
name of the executable file in cmdline does not contain a directory path, RxWinExec searches for
the executable file in this sequence:
1

The directory from which ooRexx was loaded.

2
The current directory.

3
The Windows system directory.

4
The Windows directory.

5
The directories listed in the PATH environment variable.

cmdshow
Specifies how a Windows-based application window is to be shown. For a non-Windows-based
application, the PIF file, if any, for the application determines the window state.
SHOWNORMAL

Activates and displays a window.

SHOWNOACTIVATE
Displays the window while the current active window remains active.

SHOWMINNOACTIVE
Displays the window as a minimized window, the current active window remains active.

SHOWMINIMIZED
Activates the window and displays it as a minimized window.

SHOWMAXIMIZED
Activates the window and displays it as a maximized window.

HIDE
Hides the window and activates another window.

MINIMIZE
Minimizes the specified window and activates the next top-level window in the Z order.

Return codes:

If the application is started successfully, the process id (PID) is returned. If an error occurs the
returned value is less than 32.

Error return codes correspond to a Windows System Error code. If the Windows system error code is
greater than 32 it is negated. This is to prevent confusion between a legitimate error code and a PID.

Some common error returns for this function are as follows.

2
The specified file was not found.
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3
The specified path was not found.

11
The EXE file is invalid.

-53
The network path is invalid.

8.5. SysAddRexxMacro

SysAddRexxMacro( name , file

, order

)

Adds a routine to the Rexx macrospace. SysAddRexxMacro returns the RexxAddMacro return code.

Parameters:

name
The name of the function added to the macrospace.

file
The file containing the Rexx program.

order
The macrospace search order. The order can be "B" (Before), which is default, or "A" (After).

8.6. SysBootDrive (Windows only)

SysBootDrive()

Returns the drive used to boot Windows, for example, "C:".

8.7. SysClearRexxMacroSpace

SysClearRexxMacroSpace()

Clears the Rexx macrospace. SysClearRexxMacroSpace returns the RexxClearMacroSpace return
code.

8.8. SysCls

SysCls()

Clears the screen.

Example 8.2. RexxUtil — SysCls

call SysCls
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8.9. SysCreatePipe (Unix-like systems only)

SysCreatePipe()

Creates an unnamed pipe.

Returns:

Returns a string like "handle handle" where the first handle is for read and the second handle for
write.

8.10. SysCurPos (Windows only)

SysCurPos(

row , column

)

Returns the cursor position in the form row col and optionally moves the cursor to a new location.

Parameters:

row
The row to move to.

col
The column to move to.

Note

Position (0,0) is the upper left corner.

You can call SysCurPos without a column and row position to obtain the cursor position without
moving the cursor.

Example 8.3. RexxUtil — SysCurPos

say SysCurPos() -- (e. g.) 10 0

8.11. SysCurState (Windows only)

SysCurState( state )

Hides or displays the cursor.

Parameter:

state
The new cursor state. Allowed states are:
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"ON"
Display the cursor

"OFF"
Hide the cursor

8.12. SysDriveInfo (Windows only)

SysDriveInfo(

drive

)

Returns drive information in the form drive free total label, where drive is the drive
identifier, free is the total number of unused bytes, total is the total size in bytes, and label is the
volume label of the specified drive. Returns the null string if the drive is not accessible.

If drive is omitted, the current drive is used.

Parameter:

drive
A drive specification like d:\ or \\share\path.

Example 8.4. RexxUtil — SysDriveInfo

say SysDriveInfo() -- e. g. C: 23989809152 254721126400 Windows

8.13. SysDriveMap (Windows only)

SysDriveInfo(

drive , opt

)

Returns a string listing accessible drives (separated by blanks) in the form: C: D: ....

Parameters:

drive
The first drive letter of the drive map. The default is "C:".

opt
The drivemap option. This can be:
"USED"

returns the drives that are accessible or in use, including all local and remote drives. This is
the default.

"FREE"
returns drives that are free or not in use.

"LOCAL"
returns only local drives.
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"REMOTE"
returns only remote drives, such as redirected LAN resources or installable file system (IFS)
attached drives.

"REMOVABLE"
returns removable drives.

"CDROM"
returns CD-ROM drives.

"RAMDISK"
returns drives assigned from RAM.

Example 8.5. RexxUtil — SysDriveMap

say SysDriveMap("C:", "USED") -- C: M: N: O: P: R: Z:

8.14. SysDropRexxMacro

SysDropRexxMacro( name )

Removes a routine from the Rexx macrospace. SysDropRexxMacro returns the RexxDropMacro
return code.

Parameter:

name
The name of the function removed from the macrospace.

8.15. SysDumpVariables

SysDumpVariables(

filename

)

Dumps all variables in the current scope either to the specified file filename (new data is appended) or
to STDOUT if you omit filename. The format of the data is, with one variable per line:

Name=MYVAR, Value='This is the content of MYVAR'

Parameter:

filename
The name of the file to which variables are appended. The dump is written to STDOUT if you omit
this parameter.

Return codes:

0
Dump completed successfully.
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-1
Dump failed.

See also RexxContext method variables.

Example 8.6. RexxUtil — SysDumpVariables

Call SysDumpVariables "MyVars.Lst" /* append vars to file */
Call SysDumpVariables              /* list vars on STDOUT */

8.16. SysFileCopy

SysFileCopy( source , target )

Copies a file from one location to another. Wildcard file specifications are not allowed.

Parameter:

source
The path/name of the file to be copied. The source and the target path does not support wildcard
characters. On Unix-like systems, if the first character is a ~ (tilde) character optionally followed by
a username, it is replaced by the current or specified user's home directory.

target
The path/name of the target location where the file is to be copied.

Return codes:

0
File copied successfully.

Other
A Windows System Error code.

Example 8.7. RexxUtil — SysFileCopy

call SysFileCopy "c:\temp\myfile.txt", "d:\myfolder\myCopy.txt"
call SysFileCopy "/tmp/myfile.txt", "~/myCopy.txt"

8.17. SysFileDelete

SysFileDelete( file )

Deletes a file.

Parameter:
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file
The name of the file to be deleted. The name does not support wildcard characters. On Unix-
like systems, if the first character is a ~ (tilde) character optionally followed by a username, it is
replaced by the current or specified user's home directory.

Return codes:

0
File deleted successfully.

Other
An operating system error code. On Windows, this may be one of the following, but could be
others.

2
File not found.

3
Path not found.

5
Access denied or busy.

26
Not DOS disk.

32
Sharing violation.

36
Sharing buffer exceeded.

87
Does not exist.

206
File name exceeds range error.

Example 8.8. RexxUtil — SysFileDelete

parse arg InputFile OutputFile
call SysFileDelete OutputFile  -- unconditionally erase output file

8.18. SysFileExists

SysFileExists( filename )

Checks for the existence of a file. Returns 1 if any file system entity with the given name exists. In
particular, this will return 1 for both regular files and directories.

Parameters:
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filename
The name of the file to check for the existence of. The name does not support wildcard characters.
On Unix-like systems, if the first character is a ~ (tilde) character optionally followed by a
username, it is replaced by the current or specified user's home directory.

Returns:

0
The file does not exist.

1
The file exists.

Example 8.9. RexxUtil — SysFileExists

if SysFileExists(InputFile) then say "File Exists!"
else say "File does not exist."

8.19. SysFileMove

SysFileMove( source , target )

Moves a file from one location to another. Wildcard file specifications are not allowed.

Parameter:

source
The path/name of the file to be moved. The filename does not support wildcard characters. On
Unix-like systems, if the first character is a ~ (tilde) character optionally followed by a username, it
is replaced by the current or specified user's home directory.

target
The path of the target location where the file is to be moved.

Return codes:

0
File copied successfully.

Other
An operating system error code.

Example 8.10. RexxUtil — SysFileMove

call SysFileMove "c:\temp\myfile.txt", "d:\myfolder\myCopy.txt"
call SysFileMove "/tmp/myfile.txt", "~/myCopy.txt"

8.20. SysFileSearch
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SysFileSearch( target , file , stemarray

, options

)

Returns a list of all file lines containing the target string.

Parameters:

target
The target search string.

file
The searched file.

stemarray
A Rexx stem or array variable for the returned lines. If a stem variable, stem.0 is set to n, the
number of lines returned, and the lines are returned in stem.1 to stem.n.

options
Any combination of the following one-character options:
C

Conducts a case-sensitive search.

I
Conducts a case-insensitive search.

N
Prepends file line numbers to any returned lines.

The default is a case-insensitive search without line numbers.

Return codes:

0
Successful.

2
Not enough memory.

3
Error opening file.

Example 8.11. RexxUtil — SysFileSearch

/* Find DEVICE statements in CONFIG.SYS */
call SysFileSearch "DEVICE", "C:\CONFIG.SYS", "file."
do i=1 to file.0
say file.i
end

/* Output */
DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1 H:5
DEVICE=C:\SB16\DRV\CTMMSYS.SYS
rem ****    DOS SCSI CDROM device drivers ***
DEVICE=C:\SCSI\ASPI8DOS.SYS /D
DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0
rem **** IDE CDROM device drivers
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DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001  /P:1f0,14
DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
DEVICE=C:\WINDOWS\IFSHLP.SYS

/* Find DEVICE statements in CONFIG.SYS (along with */
/* line numbers)                                    */
call SysFileSearch "DEVICE", "C:\CONFIG.SYS", "file.", "N"
do i=1 to file.0
say file.i
end

/* Output */
1 DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1
H:5
2 DEVICE=C:\SB16\DRV\CTMMSYS.SYS
4 rem ****    DOS SCSI CDROM device drivers ***
5 DEVICE=C:\SCSI\ASPI8DOS.SYS /D
6 DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0
8 rem **** IDE CDROM device drivers
9 DEVICE=C:\DOS\HIMEM.SYS
10 DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001  /P:1f0,14
13 DEVICE=C:\DOS\SETVER.EXE
16 DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
17 DEVICE=C:\WINDOWS\IFSHLP.SYS

8.21. SysFileSystemType (Windows only)

SysFileSystemType(

drive

)

Returns the type of file system (e. g. FAT or NTFS) used on a drive. Returns the null string if the drive
is not accessible.

Parameter:

drive
A drive specification like d:\ or \\share\path. If omitted, the current drive is used.

Example 8.12. RexxUtil — SysFileSystemType

say SysFileSystemType("C:\")    -- NTFS

8.22. SysFileTree

SysFileTree( filespec , stemarray ,

options

,

tattrib

,

nattrib

)

526



SysFileTree

Returns a list of all files that match a file specification. SysFileTree can return file information like date,
time, size, attributes, and file name. The default format for date and time is platform specific.

SysFileTree uses operating system APIs to find the files. The found files are placed in the returned list
in the order they are found by the operating system. No specific order can be assumed.

Parameters:

filespec [required]
The search pattern, the search file specification. This can not be the empty string.

The search pattern can be a full or partial path with wildcard characters in the last part of the path
information, e. g. *.bat, or ../../*.sh, or c:\temp. Windows supports wildcard characters
* and ?, Unix-like systems additionally support character classes in [ ] brackets, including - for
ranges and ! for negation.

stemarray [required]
A Rexx stem or array variable for the returned matches. If a stem variable, stem.0 is set to n,
the number of matches returned, and the matching files or directories are returned in stem.1 to
stem.n.

options [optional]
A string with any combination of the following. If this argument is omitted, it defaults to B.

B
Search for both files and directories. This is the default.

D
Search for directories only.

F
Search for files only.

H
Returns correct file sizes for files larger than 9999999999 bytes (approx. 10 GB). Without this
option, the maximum file size returned is 9999999999, even if the file is larger than this.

I
Perform a case-insensitive search for file names or directories. This option is only used on
system that support case-sensitive file names and is ignored on systems like Windows where
the file system is case-insensitive by default.

L
Returns the file date and time in the form YYYY-MM-DD HH:MM:SS.

O
Returns only the fully-qualified file name.

S
Search subdirectories recursively.

T
Returns the file date and time in the form YY/MM/DD/HH/MM. If the L option is also specified
then this option will be ignored.
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tattrib [optional] [Windows only]
The target attribute mask for file specification matches. Only files that match the target mask are
returned. The default mask is *****. This returns all files regardless of the settings (clear or set)
of the Archive, Directory, Hidden, Read-Only, and System attributes. The target mask attributes
must appear in the order ADHRS. This argument is Windows only. It is allowed but ignored on Unix-
like systems.

Target Mask Options

*
The file attribute may be any state.

+
The file attribute must be set.

-
The file attribute must be cleared.

Target Mask Examples

***+*
Find all files with the Read-Only attribute set.

+**+*
Find all files with the Read-Only and Archive attributes set.

*++**
Find all hidden subdirectories.

---+-
Find all files with only the Read-Only attribute set.

nattrib [optional] [Windows only]
The new attribute mask for setting the attributes of each matching file. The default mask is *****.
This means not to change the Archive, Directory, Hidden, Read-Only, and System attributes.
The target mask attributes must appear in the order ADHRS. This argument is Windows only. It is
allowed but ignored on Unix-like operating systems.

New Attribute Mask Options

*
Do not change the file attribute.

+
Set the file attribute.

-
Clear the file attribute.

New Attribute Mask Examples

***+*
Set the Read-Only attribute on all files.

-**+*
Set the Read-Only attribute and clear the Archive attribute of each file.
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+*+++
Set all file attributes, except the directory attribute.

-----
Clear all attributes on all files.

Note

You cannot set the directory attribute on non-directory files. SysFileTree returns the file
attribute settings after the new attribute mask has been applied.

Return codes:

0
Successful.

2
Not enough memory.

other
On Windows, the return code may be any System Error Code returned by the operating system.

Example 8.13. RexxUtil — SysFileTree

/* Find all subdirectories on C: */
call SysFileTree "c:\*.*", "file", "SD"

/* Find all executable (.exe) files under Program Files*/
ret = SysFileTree('C:\Program Files\*.exe', f, 'FS')

/* Find all Read-Only files */
call SysFileTree "c:\*.*", "file", "S", "***+*"

/* Clear Archive and Read-Only attributes of files that have them set */
call SysFileTree "c:\*.*", "file", "S", "+**+*", "-**-*"

/****<< Sample Code and Output Example.>>********/

call SysFileTree "c:\win*", file., "b"
do i = 1 to file.0
  say file.i   -- 3/12/21   1:56p           0  -D---  c:\Windows
end

8.23. SysFork (Unix-like systems only)

SysFork()

Returns

Returns the process id to the parent process.

Returns 0 to the spawned process.
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Example:

This is a complete working example. It can be cut and pasted into a file and executed on a Unix-like
system.

Example 8.14. RexxUtil — SysFork

/* Example SysFork() and SysWait() */

  pid = SysFork()

  if pid == 0 then do
    say "I am the child."
    code = executeChild()
    say "Child : done with execution, will exit with" code
    exit code
  end
  else do
    say 'I am the parent, child pid is:' pid
    code = executeParent()
    say 'Parent: going to wait for child.'
    code = SysWait()
    say 'Parent: back from waiting. Child exit code:' code
  end

  say 'Operating system version:' SysVersion()

::routine executeChild

    say 'Child : will sleep 1 second.'
    j = SysSleep(1)
    say 'Child : done sleeping 1. Will do some calculations.'

    total = 0
    do 786
      total += 3
    end
    say 'Child : 3 * 786 is:' total

    say 'Child : will sleep 2 seconds.'
    j = SysSleep(2)
    say 'Child : done sleeping 2. Will do some calculations.'

    total = 0
    do 1865
      total += 7
    end
    say 'Child : 7 * 1865 is:' total

    say 'Child : will sleep 2 seconds.'
    j = SysSleep(2)
    say 'Child : done sleeping 2.'
    say 'Child : done executing, will return 0.'
    return 0

::routine executeParent

    say 'Parent: 3 * 786 is:' (3 * 786)
    j = SysSleep(2)
    say 'Parent: 7 * 1865 is:' (7 * 1865)
    return 0
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8.24. SysFormatMessage

SysFormatMessage( message , substitutions )

Formats and returns a message text, replacing placeholders &n with specified message inserts.
SysFormatMessage can replace up to nine placeholders.

message
The message text. This string may include up to nine placeholders &1, &2 … &9 in any order.

substitutions
Text inserts for message placeholders. This can a be a single string, an Array of strings, or any
other object supporting a makeArray method. The first array item is used to replace the &1
placeholder, the second item replaces &2, up to a maximum of nine items.

Example 8.15. RexxUtil — SysFormatMessage   

s = .Stream~new("xyzzy")
if \s~open("read")~startsWith("READY") then
  -- Cannot read file 'xyzzy': ERROR:2 No such file or directory
  say SysFormatMessage("Cannot read file '&1': &2", (s~string, s~description))

8.25. SysFromUnicode (Windows only)

SysFromUnicode( string ,

codepage

,

mappingflags

,

defaultchar

, outstem )

Maps a Unicode character string to an ASCII character string. The new character string and additional
information is returned in the outstem.

Parameters:

string
A string containing the Unicode characters to be mapped.

codepage
Specifies the code page used to perform the conversion. This parameter can be the value of any
code page that is installed or available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

ACP
ANSI code page.

OEMCP
OEM code page.

SYMBOL
symbol code page.
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THREAD_ACP 
current thread's ANSI code page.

UTF7
translate using UTF-7.

UTF8
translate using UTF-8. When this is set, mappingflags must be set.

mappingflags
Specifies the handling of unmapped characters. The function performs more quickly when none of
these flags is set.

The following flags can be used:

COMPOSITECHECK
Converts composite characters to precomposed characters.

SEPCHARS
Generates separate characters during conversion. This is the default conversion behavior.

DISCARDNS
Discards nonspacing characters during conversion.

DEFAULTCHAR
Replaces non-convertible characters with the default character during conversion.

When compositecheck is specified, the function converts composite characters to precomposed
characters. A composite character consists of a base character and a nonspacing character,
each having different character values. A precomposed character has a single character value
for a combination of a base and a nonspacing character. In the character è, the "e" is the base
character, and the "grave" accent mark is the nonspacing character.

When compositecheck is specified, it can use the last three flags in this list (discardns,
sepchars, and defaultchar) to customize the conversion to precomposed characters. These
flags determine the function's behavior when there is no precomposed mapping for a combination
of a base and a nonspace character in a Unicode character string. These last three flags can
be used only if the compositecheck flag is set. The function's default behavior is to generate
separate characters (sepchars) for unmapped composite characters.

defaultchar
Character to be used if a Unicode character cannot be represented in the specified code page. If
this parameter is NULL, a system default value is used. The function is faster when defaultchar
is not used.

outstem
The name of the stem variable that will contain the converted result. If the conversion was
successful the stem will be composed of the following value(s):

outstem.!USEDDEFAULTchar
This variable will be set to "1" if the defaultchar was used during the conversion and "0" if it
was not.

outstem.!TEXT
This variable will contain the converted string.
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Return codes:

0
No errors.

Other
An operating system error code. On Windows, this may be one of the following, but could be
others.

87
Incorrect code page or codepage value.

1004
Invalid mapping flags.

8.26. SysGetErrorText

SysGetErrorText( errornumber )

Obtains a string describing the system error identified by the error number.

Returns a string with the description of the error, or an empty string if no description is available.

Parameter:

errornumber
The error number for which a description is to be retrieved. Note that both the error number and
the descriptive text are operating-system specific.

  

Example 8.16. RexxUtil — SysGetErrorText

-- Windows: Cannot create a file when that file already exists.
say SysGetErrorText(SysMkDir("\Users"))

-- Unix-like system: File exists
say SysGetErrorText(SysMkDir("/usr"))

8.27. SysGetFileDateTime

SysGetFileDateTime( filename

, timesel

)

Returns a file timestamp.

Parameters

filename
The name of a file or directory for which a timestamp should be returned. The name does not
support wildcard characters. On Unix-like systems, if the first character is a ~ (tilde) character
optionally followed by a username, it is replaced by the current or specified user's home directory.

533



SysGetKey

timesel
An optional selector specifying the type of timestamp to be returned. Depending on the operating
system and the file system, one of the following timestamps may be selected (only the first letter is
required):
ACCESS

The date and time when the file was last accessed. Not available on FAT file systems.

CREATE
The creation date and time. Not available on Unix-like systems or on FAT file systems.

WRITE
The date and time the file was last modified. This is the default if timesel is omitted.

Returns

The file timestamp in the format yyyy-mm-dd hh:mm:ss, or -1 to indicate that the timestamp is
unavailable or could not be retrieved.

See also File methods lastAccessed (Attribute) and lastModified (Attribute), and Rexxutil
SysSetFileDateTime.   

Example 8.17. RexxUtil — SysGetFileDateTime

say SysGetFileDateTime(".")           -- (e. g.) 2020-04-01 17:45:20
say SysGetFileDateTime("main.c", "w") -- (e. g.) 2020-02-11 05:00:00

8.28. SysGetKey

SysGetKey(

opt

)

Reads and returns the next key from the keyboard buffer. If the keyboard buffer is empty, SysGetKey
waits until a key is pressed. Unlike the CHARIN built-in function, SysGetKey does not wait until the
Enter key is pressed.

Parameter:

opt
An option controlling screen echoing. Allowed values are:
"ECHO"

Echo the pressed key to the screen. This is the default.

"NOECHO"
Do not echo the pressed key.

8.29. SysGetLongPathName (Windows only)

SysGetLongPathName( path )

Returns the long version of the specified path.

Parameter:
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path
A relative or a fully qualified path of an existing file or directory.

Returns:

The long version of path, or the null string, if path doesn't exist or the call to the Windows API
GetLongPathName fails for any other reason.   

Example 8.18. RexxUtil — SysGetLongPathName

say SysGetLongPathName("C:\progra~1")            -- C:\Program Files
say SysGetLongPathName("\windows\explorer.exe")  -- \Windows\explorer.exe

8.30. SysGetMessage (Unix-like systems only)

SysGetMessage( num ,

filename

, str

Returns a message retrieved from a Unix message catalog, with placeholders replaced with specified
message inserts.

SysGetMessage is implemented on Unix-like systems only. It always retrieves messages from the
catalog's message set 1. To retrieve messages from a specified message set, use SysGetMessageX
(Unix-like systems only).

To create a Unix message catalog use the gencat command.

Parameters:

num
The message number.

filename
The name of the catalog file containing the message. If filename is omitted or specified as
rexx.cat the internal Rexx message catalog is searched. Otherwise the Unix message catalog
is located using the absolute filename path or searched along the NLSPATH environment variable.

str
Zero to nine replacement strings for placeholders in the message. The first replacement string is
for placeholder &1, the second for &2, up to placeholder &9. If a placeholder has no replacement
string specified, it is replaced by the null string. Any unused replacement string is ignored. Other
placeholders like %s are not replaced and are returned unchanged with the message.

Example 8.19. RexxUtil — SysGetMessage

say SysGetMessage(485, "rexx.cat", "foo") -- Class "foo" not found.

8.31. SysGetMessageX (Unix-like systems only)
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SysGetMessage( set , num ,

filename

, str

Returns a message retrieved from a Unix message catalog, with placeholders replaced with specified
message inserts.

SysGetMessageX is implemented on Unix-like systems only.

To create a Unix message catalog use the gencat command.

Parameters:

set
The message set.

num
The message number.

filename
The name of the catalog file containing the message. If filename is omitted or specified as
rexx.cat the internal Rexx message catalog is searched. Otherwise the Unix message catalog
is located using the absolute filename path or searched along the NLSPATH environment variable.

str
Zero to nine replacement strings for placeholders in the message. The first replacement string is
for placeholder &1, the second for &2, up to placeholder &9. If a placeholder has no replacement
string specified, it is replaced by the null string. Any unused replacement string is ignored. Other
placeholders like %s are not replaced and are returned unchanged with the message.

Example 8.20. RexxUtil — SysGetMessageX

say SysGetMessageX(1, 485, "rexx.cat", "foo") -- Class "foo" not found.

8.32. SysGetShortPathName (Windows only)

SysGetShortPathName( path )

Returns the short version of the specified path.

Parameter:

path
A relative or a fully qualified path of an existing file or directory.

Returns:

The short version of path, or the null string, if path doesn't exist or the call to the Windows API
GetShortPathName fails for any other reason.   

Example 8.21. RexxUtil — SysGetShortPathName

say SysGetShortPathName("C:\Program Files")       -- C:\PROGRA~1
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say SysGetShortPathName("\windows\explorer.exe")  -- \windows\explorer.exe

8.33. SysIni (Windows only)

Allows limited access to INI file variables. Variables are stored in the INI file under Application
Names and their associated key names or keywords. You can use SysIni to share variables between
applications or as a way of implementing GLOBALV in the Windows operating system. Be careful
when changing application profile information.

Note

SysIni works on all types of data stored in an INI file (text, numeric, or binary).

When SysIni successfully sets or deletes key values, it returns "". For a successful query, it returns the
value of the specified application keyword.

SysIni may return the string ERROR: when an error occurs. Possible error conditions include:

• An attempt was made to query or delete an application/key pair that does not exist.

• An error opening the profile file occurred. You may have specified the current user or system INI file
with a relative file specification. Make sure to use the full file specification (specify drive, path, and
file name).

Parameters:

inifile
The name of the INI file with which you would like to work. The default is WIN.INI.

Note

If this argument does not contain a fully qualified file name, the Windows operating system
searches for the file in the Windows directory. Therefore to work with a file outside of the
Windows directory, specify the full path name of the file.

app
The application name or some other meaningful value with which you want to store keywords
(some sort of data).

key
The name of a keyword to hold data.

val
The value to associate with the keyword of the specified application. This can be "DELETE:" or
"ALL:".
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stemarray
A Rexx stem or array variable for the returned names. If a stem variable, stem.0 is set to n, the
number of names returned, and the names are returned in stem.1 to stem.n.

SysIni has six modes. The modes and the syntax variations are as follows:

SysIni(

inifile

, app , key , val )

Sets a single key value.

SysIni(

inifile

, app , key )

Queries a single key value.

SysIni(

inifile

, app , key , "DELETE:" )

Deletes a single key.

SysIni(

inifile

, app , "DELETE:" )

Deletes an application and all associated keys.

SysIni(

inifile

, app , "ALL:" , stemarray )

Queries names of all keys associated with a certain application.

SysIni(

inifile

, "ALL:" , stemarray )

Queries the names of all applications.

Example 8.22. RexxUtil — SysIni

/***  Save the user entered name under the key "NAME" of *****
****  the application "MYAPP".                           ****/
pull name .
call SysIni , "MYAPP", "NAME", name /* Save the value        */
say  SysIni(, "MYAPP", "NAME")      /* Query the value       */
call SysIni , "MYAPP"               /* Delete all MYAPP info */
exit

Example 8.23. RexxUtil — SysIni

/****  Type all WIN.INI file information to the screen  *****/
call SysIni "WIN.INI", "All:", "Apps."
if Result \= "ERROR:" then
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do i = 1 to Apps.0
call SysIni "WIN.INI", Apps.i, "All:", "Keys"
if Result \= "ERROR:" then
do j=1 to Keys.0
val = SysIni("WIN.INI", Apps.i, Keys.j)
say left(Apps.i, 20) left(Keys.j, 20),
"Len=x"Left(d2x(length(val)),4) left(val, 20)
end
end
exit

8.34. SysIsFile

SysIsFile( filename )

Checks for the existence of a file.

On Unix-like systems block devices are also considered to be regular files by this function.

Parameters:

filename
The name of the file to check for the existence of. The name does not support wildcard characters.
On Unix-like systems, if the first character is a ~ (tilde) character optionally followed by a
username, it is replaced by the current or specified user's home directory.

Returns:

0
The file does not exist.

1
The file exists.

Example 8.24. RexxUtil — SysIsFile

if SysIsFile(InputFile) then say "File Exists!"
else say "File does not exist."

8.35. SysIsFileCompressed (Windows only)

SysIsFileCompressed( filename )

Checks if a file is compressed. This function does not support wildcard specifications.

Parameters:

filename
The name of the file to check.

Returns:

0
The file is not compressed or does not exist.
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1
The file is compressed.

Example 8.25. RexxUtil — SysIsFileCompressed

if SysIsFileCompressed(InputFile) then say "File is compressed!"
else say "File is not compressed or does not exist."

8.36. SysIsFileDirectory

SysIsFileDirectory( dirname )

Checks for the existence of a subdirectory.

Parameters:

dirname
The name of the subdirectory to check for the existence of. The directory name does not support
wildcard characters. On Unix-like systems, if the first character is a ~ (tilde) character optionally
followed by a username, it is replaced by the current or specified user's home directory.

Returns:

0
The subdirectory does not exist.

1
The subdirectory exists.

Example 8.26. RexxUtil — SysIsFileDirectory

if SysIsFileDirectory(InputFile) then say "Subdirectory Exists!"
else say "Subdirectory does not exist."

8.37. SysIsFileEncrypted (Windows only)

SysIsFileEncrypted( filename )

Checks if a file is encrypted. This function does not support wildcard specifications.

Parameters:

filename
The name of the file to check.

Returns:

0
The file is not encrypted or does not exist.

1
The file is encrypted.
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Example 8.27. RexxUtil — SysIsFileEncrypted

if SysIsFileEncrypted(InputFile) then say "File is encrypted!"
else say "File is not encrypted or does not exist."

8.38. SysIsFileLink

SysIsFileLink( linkname )

Checks for the existence of a link.

Parameters:

linkname
The name of the link to check for the existence of. The name does not support wildcard
characters. On Unix-like systems, if the first character is a ~ (tilde) character optionally followed by
a username, it is replaced by the current or specified user's home directory.

Returns:

0
The link does not exist or it is not a link.

1
The link exists.

Example 8.28. RexxUtil — SysIsFileLink

if SysIsFileLink(InputFile) then say "Link Exists!"
else say "Link does not exist."

8.39. SysIsFileNotContentIndexed (Windows only)

SysIsFileNotContentIndexed( filename )

Checks if a file is flagged to be indexed by the Index Service. This function does not support wildcard
specifications.

Parameters:

filename
The name of the file to check.

Returns:

0
The file is not flagged to be Indexed or does not exist.

1
The file is flagged to be Indexed.
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Example 8.29. RexxUtil — SysIsFileNotContentIndexed

if SysIsFileNotContentIndexed(InputFile) then say "File is flagged to be Indexed!"
else say "File is not flagged to be Indexed."

8.40. SysIsFileOffline (Windows only)

SysIsFileOffline( filename )

Checks if a file is flagged as Offline. This function does not support wildcard specifications.

Parameters:

filename
The name of the file to check.

Returns:

0
The file is not flagged as Offline or does not exist.

1
The file is flagged as Offline.

Example 8.30. RexxUtil — SysIsFileOffline

if SysIsFileOffline(InputFile) then say "File is flagged as Offline!"
else say "File is not flagged as Offline."

8.41. SysIsFileSparse (Windows only)

SysIsFileSparse( filename )

Checks if a file is flagged as Sparse. This function does not support wildcard specifications.

Parameters:

filename
The name of the file, subdirectory or link to check.

Returns:

0
The file is not flagged as Sparse or does not exist.

1
The file is flagged as Sparse.

Example 8.31. RexxUtil — SysIsFileSparse

if SysIsFileSparse(InputFile) then say "File is Sparse!"
else say "File is not Sparse."
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8.42. SysIsFileTemporary (Windows only)

SysIsFileTemporary( filename )

Checks if a file is flagged as Temporary. This function does not support wildcard specifications.

Parameters:

filename
The name of the file, subdirectory or link to check.

Returns:

0
The file is not flagged as Temporary or does not exist.

1
The file is flagged as Temporary.

Example 8.32. RexxUtil — SysIsFileTemporary

if SysIsFileTemporary(InputFile) then say "File is Temporary!"
else say "File is not Temporary."

8.43. SysLinVer (Linux Only)

SysLinVer()

Returns a string identifying the Linux system version. The first word of the returned string is Linux
and the remaining part of the string identifies the version. Rexx code should not rely on the exact
format returned.

Possible output might be:

Example 8.33. RexxUtil — SysLinVer

-- CentOS 7
say SysVersion() -- Linux 3.10.0-957.10.1.el7.x86_64
-- Ubuntu 16.04
say SysVersion() -- Linux 4.4.0-154-generic
-- Raspbian
say SysVersion() -- Linux 4.14.70-v7+
-- SLES/390
say SysVersion() -- Linux 3.12.74-60.64.40-default

See also functions SysVersion and SysWinVer (Windows only).

8.44. SysLoadRexxMacroSpace

SysLoadRexxMacroSpace( file )
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Loads functions from a saved macrospace file. SysLoadRexxMacroSpace returns the
RexxLoadMacroSpace return code.

Parameter:

file
The file used to load functions into the Rexx macrospace. SysSaveRexxMacroSpace must have
created the file.

8.45. SysMkDir

Windows:

SysMkDir( dirspec )

Unix-like systems:

SysMkDir( dirspec

, mode

)

Creates the specified directory. This function will only create the final directory in the path, all
intermediate directories must already exist.

Parameter:

dirspec
The directory to be created. The directory name does not support wildcard characters. On Unix-
like systems, if the first character is a ~ (tilde) character optionally followed by a username, it is
replaced by the current or specified user's home directory.

mode (Unix-like systems only)
The file permission bits of the new directory as a decimal number between 0 (octal 000) and 511
(octal 777). If not specified, mode defaults to 511 (octal 777).

Any mode restrictions specified by umask will always be taken into account.

Return codes:

0
Directory creation was successful.

Other
An operating system error code. On Windows, this may be one of the following, but could be
others.

2
File not found.

3
Path not found.

5
Access denied.

26
Not a DOS disk.
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87
Invalid parameter.

108
Drive locked.

183
Directory already exists.

206
File name exceeds range.

Example 8.34. RexxUtil — SysMkDir

call SysMkDir "backup"

8.46. SysQueryProcess

Windows

SysQueryProcess(

"PID"

"TID"

"PPRIO"

"TPRIO"

"PTIME"

"TTIME"

)

Unix-like systems

SysQueryProcess(

"PID"

"PPID"

"PPRIO"

"PTIME"

"PMEM"

"PSWAPS"

"PRCVDSIG"

)

Retrieves information about the current process or Windows thread.
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Parameter:

info
The kind of information requested:
PID

Returns the process ID of the current process.

PPID
Returns the parent process ID of the current process.

TID
Returns the thread ID of the current thread.

PPRIO
Returns the priority class of the current process.

TPRIO
Returns the relative priority of the current thread.

PTIME
Returns time information on the current process.

TTIME
Returns time information on the current thread.

PMEM
Returns the maximum memory (RSS) used by the current process.

PRCVDSIG
Returns the number of signals that have been received by the process.

Return codes:

• For PID, PPID or TID: an ID

• For Windows PPRIO: "IDLE", "NORMAL", "HIGH", "REALTIME", or "UNKNOWN"

• For Unix-like systems PPRIO: a number from -20 to +20.

• For TPRIO: "IDLE", "LOWEST", "BELOW_NORMAL", "NORMAL", "ABOVE_NORMAL",
"HIGHEST", "TIME_CRITICAL", or "UNKNOWN"

• For Windows PTIME or TTIME: the creation date and time, the amount of time that the process
executed in kernel mode, and the amount of time that the process executed in user mode

• For Unix-like systems PTIME: the summary and the duration that the process executed in kernel
mode, and the duration that the process executed in user mode

8.47. SysQueryRexxMacro

SysQueryRexxMacro( name )

Queries the existence of a macrospace function. SysQueryRexxMacro returns the placement order of
the macrospace function or a null string ("") if the function does not exist in the macrospace.

Parameter:
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name
The name of a function in the Rexx macrospace.

8.48. SysReorderRexxMacro

SysReorderRexxMacro( name , order )

Reorders a routine loaded in the Rexx macrospace. SysReorderRexxMacro returns the
RexxReorderMacro return code.

Parameters:

name
The name of a function in the macrospace.

order
The new macro search order. The order can be "B" (Before) or "A" (After).

8.49. SysRmDir

SysRmDir( dirspec )

Deletes a specified file directory without your confirmation.

Parameter:

dirspec
The directory that should be deleted. The name does not support wildcard characters. On Unix-
like systems, if the first character is a ~ (tilde) character optionally followed by a username, it is
replaced by the current or specified user's home directory.

Return codes:

0
Directory removal was successful.

Other
An operating system error code. On Windows, this may be one of the following, but could be
others.

2
File not found.

3
Path not found.

5
Access denied or busy.

16
Current directory.

26
Not a DOS disk.
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32
Sharing violation.

108
Drive locked.

123
Invalid name.

145
Directory not empty.

146
Is Subst Path.

147
Is Join Path.

206
File name exceeds range.

Example 8.35. RexxUtil — SysRmDir

call SysRmDir "backup"

8.50. SysSaveRexxMacroSpace

SysSaveRexxMacroSpace( file )

Saves the Rexx macrospace. SysSaveRexxMacroSpace returns the RexxSaveMacroSpace return
code.

Parameter:

file
The file used to save the functions in the Rexx macrospace.

8.51. SysSearchPath

SysSearchPath( path , filename

, option

)

Returns the absolute path of filename if it can be found along any of the paths specified in
environment variable path. Returns the null string otherwise.

Parameters

path
An environment variable name. The environment variable must contain a list of paths, like in
PATH.
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filename
The name of the file to be searched. The name can optionally include a relative or an absolute
path, but the name part must be a file, not a directory. If the name specified with an absolute
path, it is returned without searching along the environment variable's paths. The name does not
support wildcard characters. On Unix-like systems, if the first character is a ~ (tilde) character
optionally followed by a username, it is replaced by the current or specified user's home directory.

option
Specifies where the search starts.
C

Starts the search at the current directory and then along the specified path. This is the default.

N
Only searches along path.

See also File method searchPath (Class Method).   

Example 8.36. RexxUtil — SysSearchPath

say SysSearchPath("PATH", "rexx")      -- (Unix e.g.) /usr/local/bin/rexx
say SysSearchPath("PATH", "rexx.exe")  -- (Windows e.g.) C:\Program Files\ooRexx\rexx.exe

8.52. SysSetFileDateTime

SysSetFileDateTime( filename

,

newdate , newtime

)

Sets the last-modified timestamp of a file.

If both newdate and newtime are omitted, the last-modified timestamp is set to the current date and
time, similar to what the touch command on Unix-like systems does.

If only one of the newdate and newtime arguments is supplied, the respective other last-modified date/
time portion stays unchanged.

Parameters

filename
The name of a file or directory for which the last-modified timestamp should be updated. The
name does not support wildcard characters. On Unix-like systems, if the first character is a ~
(tilde) character optionally followed by a username, it is replaced by the current or specified user's
home directory.

newdate
An optional new date in the format yyyy-mm-dd. On Windows yyyy must be greater than or
equal to 1800.

newtime
An optional new time in the format hh:mm:ss (24-hour format).

Return codes
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0
The file date and/or time were updated successfully.

-1
The timestamp update failed.

See also File methods lastModified (Attribute) and lastModified (Attribute), and Rexxutil
SysGetFileDateTime.   

Example 8.37. RexxUtil — SysSetFileDateTime

call SysSetFileDateTime "."                       -- touch current directory
call SysSetFileDateTime "main.c", , "05:00:00"    -- change file time only

8.53. SysSetPriority

SysSetPriority( class , delta )

Changes the priority of the current process. A return code of 0 indicates no error.

Parameters:

class
The new process priority class. The allowed classes are:
0 or "IDLE"

Idle time priority

1 or "NORMAL"
Regular priority

2 or "HIGH"
High or time-critical priority

3 or "REALTIME"
Real-time priority

delta
The change applied to the process priority level. delta must be in the range -15 to +15. It can also
be a symbolic name:
• "IDLE" for -15

• "LOWEST" for -2

• "BELOW_NORMAL" for -1

• "NORMAL" for 0

• "ABOVE_NORMAL" for 1

• "HIGHEST" for 2

• "TIME_CRITICAL" for 15

0
No errors.
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Other
An operating system error code. On Windows, this may be one of the following, but could be
others.

307
Invalid priority class.

8.54. SysShutdownSystem (Windows only)

SysShutdownSystem(

computer

,

message

,

timeout

,

force

,

reboot

)

Warning

Once this function has been called, the initiated shutdown cannot be aborted—data loss may
occur!

Provides an interface to the InitiateSystemShutdown() API on Windows. If the user has
sufficient privileges, this function can be used to shut down the local machine or a remote system. In
general all users have sufficient privileges to shut down the local machine and only Administrators
have sufficient privileges to shut down remote machines.

The user of this function is strongly encouraged to read the Microsoft documentation for
InitiateSystemShutdown() to understand the finer points to using this function. The
documentation is freely available online. A Google search using InitiateSystemShutdown MSDN will
provide a link to the documentation. In particular, this function can be used to force a shut down of a
system while users are logged on and applications have unsaved data.

If the timeout argument is not 0, a shut down dialog is displayed on the machine being shut down,
naming the user who initiated the shut down, a timer counting down the seconds until the machine is
shut down, and prompting the user to log off. This dialog can be moved but it can not be closed and
remains on top of all other windows on the system.

If any open application has unsaved data, the operating system gives the application a chance to
prompt the user to save and close the application. If the force argument is false, the shut down will
be delayed until the user responds, and ultimately the user could cancel the shut down. If the force
argument is true the system will force the application closed whether the data gets saved or not. The
application is still given a chance to prompt the user to save the data, but the user only has a few
seconds to respond before the system forcibly closing the application.

The implications of the preceding two paragraphs are this, if the timeout argument is 0 and the force
argument is true, the system immediately shuts down and any unsaved data is forever lost. This is
why the user of this function is encouraged to fully understand this function before using it.

Parameters:
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computer
Indicates which system to shut down. If omitted or the empty string, the local machine is shut
down. Otherwise this should be the network name of the remote machine.

message
An additional message that is added to the shut down dialog. If omitted, no additional message is
added.

timeout
The time, in seconds, before the system is shut down. If this value is 0, the system is immediately
shut down and no shut down dialog is displayed. The shut down can not be aborted. If omitted the
default time out is 30 seconds.

force
If this argument is true, applications with unsaved data will be forced close by the system whether
the data is saved or not. If false, the shut down is delayed until applications with unsaved data
responds. If an application does not respond, the user will be prompted by the system to end the
application. At this point, if the user chooses not to forcibly end the application, the shut down will
be aborted.

Please note some consequences of this argument as described by Microsoft. If this argument is
false, i.e. applications are not forced to close, and an application with unsaved changes is running
on the console session, the shutdown will remain in progress until the user logged into the console
session aborts the shutdown, saves changes, closes the application, or forces the application
to close. During this period, the shutdown may not be aborted except by the console user, and
another shutdown may not be initiated. Using true for this argument prevents that situation. But,
using true can also result in unsaved data being lost.

reboot
If this argument is true, the system is rebooted after the shut down. If it is false, the system is shut
down. The default if omitted is false.

Returns:

Returns 0 for success or a Windows System Error code for failure. For instance a return of 1300
would indicate the user does not have sufficient privileges to shut down the named system. Use
SysGetErrorText to get a generic text description for any Windows System Error code. For example,
the description for error code 1300 is Not all privileges referenced are assigned to the caller.

8.55. SysSleep

SysSleep( delay )

Pauses a Rexx program for a specified time interval.

Parameter:

delay
The number of seconds for which the program is to be paused, which must be in the range 0 to
2147483 for Windows, and 0 to 999999999 for Unix-like systems.
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Example 8.38. RexxUtil — SysSleep

Say "Now paused for 2 seconds ..."
Call SysSleep 2
Say "Now paused for 0.1234567 seconds ..."
Call SysSleep 0.1234567

8.56. SysStemCopy

SysStemCopy( fromstem , tostrm

,

from ,

to ,

count , "I"

"O"

)

Copies items from the source stem to the target stem. Items in the source stem are copied starting at
the from index (default is 1) into the target stem beginning at the to  index (default is 1). The number of
items to be copied to the target stem can be specified with the count. The default is to copy all items in
the source stem.

You can also specify that the items are to be inserted into the target stem at the position and the
existing items are shifted to the end.

This function operates only on stem arrays that specify the number of items in stem.0 and all items
must be numbered from 1 to n without omitting an index.

Parameters:

fromstem
The name of the source stem.

tostem
The name of the target stem.

from
The first index in the source stem to be copied.

to
The position at which the items are to be inserted in the target stem.

count
The number of items to be copied or inserted.

insert
Either of the following values:
I

Insert items.
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O
Overwrite items.

Return codes:

0
The stem was copied successfully.

-1
Copying the stem failed.

Example 8.39. RexxUtil — SysStemCopy

Source.0 = 3
Source.1 = "Hello"
Source.2 = "from"
Source.3 = "Rexx"
Call SysStemCopy "Source.", "Target."

Call SysStemCopy "Source.", "Target.", 1, 5, 2, "I"

8.57. SysStemDelete

SysStemDelete( stem , startitem

, itemcount

)

Deletes the specified item at the index startitem in the stem. If more than one item is to be deleted the
itemcount must be specified. After deleting the requested items the stem is compacted, which means
that items following the deleted items are moved to the vacant positions.

This function operates only on stem arrays that specify the number of items in stem.0 and all items
must be numbered from 1 to n without omitting an index.

Parameters:

stem
The name of the stem from which the item is to be deleted.

startitem
The index of the item to be deleted.

itemcount
The number of items to be deleted if more than one.

Return codes:

0
Deleting was successful.

-1
Deleting failed.
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Example 8.40. RexxUtil — SysStemDelete

Call SysStemDelete "MyStem.", 5
Call SysStemDelete "MyStem.", 5, 4

8.58. SysStemInsert

SysStemInsert( stem , position , value )

Inserts a new item at position in the stem. All items in the stem following this position are shifted down
by one position.

This function operates only on stem arrays that specify the number of items in stem.0 and all items
must be numbered from 1 to n without omitting an index.

Parameters:

stem
The name of the stem in which an item is to be inserted.

position
The index at which the new item is to be inserted.

value
The value of the new item.

Return codes:

0
Inserting was successful.

-1
Inserting failed.

Example 8.41. RexxUtil — SysStemInsert

Call SysStemInsert "MyStem.", 5, "New value for item 5"

8.59. SysStemSort

SysStemSort( stem , "A"

"D"

, "C"

"I"

, "1"

start

, end ,

"1"

firstcol

, lastcol )

Sorts all or the specified items in the stem. The items can be sorted in ascending or descending
order and the case of the strings being compared can be respected or ignored. Sorting can be
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further narrowed by specifying the first and last item to be sorted or the columns used as sort keys.
Because the sort uses a quick-sort algorithm, the order of sorted items according to the sort key is
undetermined.

This function operates only on stems that specify the number of items in stem.0 and all items must be
numbered from 1 to n without omitting an index. A value of 0 in stem.0 is also valid but no sort will be
performed.

Parameters:

stem
The name of the stem to be sorted.

order
Either "A" for ascending or "D" for descending. The default is "A".

type
The type of comparison: either "C" for case or "I" for ignore. The default is "C".

start
The index at which the sort is to start. The default is 1.

end
The index at which the sort is to end. The default is the last item.

firstcol
The first column to be used as sort key. The default is 1.

lastcol
The last column to be used as sort key. The default is the last column.

Return codes:

0
The sort was successful.

-1
The sort failed.

Example 8.42. RexxUtil — SysStemSort

/* sort all elements descending, use cols 5 to 10 as key */
Call SysStemSort "MyStem.", "D", , , ,5, 10

/* sort all elements ascending, ignore the case */
Call SysStemSort "MyStem.", "A", "I"

/* sort elements 10 to 20 ascending, use cols 1 to 10 as key */
Call SysStemSort "MyStem.", , ,10, 20, 1, 10

8.60. SysSwitchSession (Windows only)

SysSwitchSession( name )
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Brings the named window to the foreground. Modern versions of Windows do not always allow a
window to be brought to the foreground programmatically. Instead, the icon for the window on the task
bar is set to flashing.

Parameter:

name
The name of the window you want to be the foreground window. The name of the window must
exactly match the title of the window, but is not case sensitive. The title of a window is the text
displayed in its title bar.

0 is returned on success and a Windows System Error code on failure.

8.61. SysSystemDirectory (Windows only)

SysSystemDirectory()

Returns the Windows system directory.

8.62. SysTempFileName

SysTempFileName( template

, filler

)

Returns a unique name for a file or directory that does not currently exist. If an error occurs
or SysTempFileName cannot create a unique name from the template, it returns a null string.
SysTempFileName is useful when a program requires a temporary file.

Parameters:

template
The template is a valid file or directory specification including a path, with between one and nine
filler characters.

SysTempFileName generates filler character replacements with a random number algorithm. If the
resulting file or directory already exists, SysTempFileName increments the replacement value until
all possibilities have been exhausted.

The file path and name of the template can be of any length. If the template contains no or more
than nine filler characters, SysTempFileName returns a null string. Filler characters are allowed
both in the path and the name part of template. The unique name is created solely by substituting
a random numeric digit for each filler character. If there is a directory name part of the template in
addition to the file name part, and the directory name part contains a non-existent directory, the
function will succeed. However, the temporary file will not be writable unless the user first creates
the non-existent directory, or directories.

filler
The filler character used in template. SysTempFileName replaces each filler character in template
with a random numeric digit. The resulting string represents a file or directory that does not exist.
The default filler character is ?.

See also File method temporaryPath (Class Method).
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Example 8.43. RexxUtil — SysTempFileName

say SysTempFileName("file???")                -- (e. g.) C:\Users\User1\file392
                                              -- (e. g.) /home/user1/file384
say SysTempFileName("/temp/myfile.***", "*")  -- (e. g.) C:\temp\myfile.938
                                              -- (e. g.) /temp/myfile.341

8.63. SysTextScreenRead (Windows only)

SysTextScreenRead( row , column

, len

)

Returns characters from a specified console screen buffer location.

Parameters:

row
The row from which to start reading. Console screen buffer rows are numbered from top to bottom
starting with 0.

col
The column from which to start reading. Console screen buffer columns are numbered from left to
right starting with 0.

len
The number of characters to read. The default is to read to the end of the console screen buffer.

Limitation

This function reads in only screen characters and does not consider the color attributes of each
character read. When restoring a character string to the screen with SAY or the CHAROUT built-
in function, the previous color settings are lost.

Note

The Windows API used by function is not recommended any more.

Example 8.44. RexxUtil — SysTextScreenRead

// read the entire console screen buffer
screen = SysTextScreenRead(0, 0)

// read one screen buffer line
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parse value SysTextScreenSize() with rows columns
line = SysTextScreenRead(2, 0, columns)

8.64. SysTextScreenSize (Windows only)

SysTextScreenSize(

BUFFERSIZE , rows , columns

WINDOWRECT

, top , left , bottom , right

MAXWINDOWSIZE

)

Returns or sets the size of the console screen buffer, returns or sets the position of the current console
window rectangle, or returns the maximum possible console window size.

Parameters:

option
Specifies which size or position is to be returned or set.

BUFFERSIZE
Returns or sets the size of the current console buffer. This is the default.

If a size is returned, it is a string of the form rows columns, where rows is the height and
columns is the width in terms of character cells. If no character-mode console is attached, the
string 0 0 is returned.

rows, columns
If both optional rows and columns are specified, the console buffer size is changed to
the height and width given by rows and columns. The buffer size cannot be smaller than
the size of the current console window. If the function succeeds, it returns 0, otherwise a
Windows System Error code is returned.

WINDOWRECT
Returns or sets the position of the current console window rectangle.

If a position is returned, it is a string of the form top left bottom right, where (top, left)
and (bottom, right) are absolute character-cell coordinates in the current console buffer, with
the origin (0, 0) at the upper-left corner. If no character-mode console is attached, the string 0
0 0 0 is returned.

top, left, bottom, right
If all optional arguments top, left, bottom, and right are specified, the position of the
current console window rectangle is changed to the given (top, left) and (bottom, right)
positions. Both positions must be within the boundaries of the current console buffer. If the
function succeeds, it returns 0, otherwise a Windows System Error code is returned.

MAXWINDOWSIZE
Returns the maximum possible console window size, considering the size of the current
console screen buffer, the chosen window font, and the screen size.
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The size is returned as a string of the form rows columns, where rows is the height and
columns is the width in terms of character cells. If no character-mode console is attached, the
string 0 0 is returned.

Example 8.45. RexxUtil — SysTextScreenSize

parse value SysTextScreenSize() with rows columns
parse value SysTextScreenSize("windowrect") with top left bottom right
say "current console buffer is" rows "rows by" columns "columns"
say "current window rectangle is ("top"," left") ("bottom"," right")"

8.65. SysToUnicode (Windows only)

SysToUnicode( string ,

codepage

,

translateflags

, outstem )

Maps a character string to a Unicode string.

Parameters:

string
A string that should be mapped to Unicode characters.

codepage
Specifies the code page used to perform the conversion. This parameter can be the value of any
code page that is installed or available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

ACP
ANSI code page.

OEMCP
OEM code page.

SYMBOL
symbol code page.

THREAD_ACP 
current thread's ANSI code page.

UTF7
translate using UTF-7.

UTF8
translate using UTF-8. When this is set, translateflags must be set.

translateflags
Indicates whether to translate to precomposed or composite-wide characters (if a composite form
exists), whether to use glyph characters in place of control characters, and how to deal with invalid
characters.
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You can specify a combination of the following flags:

PRECOMPOSED
Always use precomposed characters, that is, characters in which a base character and a
nonspacing character have a single character value. This is the default translation option.
Cannot be used with COMPOSITE.

COMPOSITE
Always use composite characters, that is, characters in which a base character and a
nonspacing character have different character values. Cannot be used with PRECOMPOSED.

ERR_INVALID_CHARS
If the function encounters an invalid input character, it fails and returns "1113".

USEGLYPHCHARS
Use glyph characters instead of control characters.

A composite character consists of a base character and a nonspacing character, each having
different character values. A precomposed character has a single character value for a base-
nonspacing character combination. In the character è, the "e" is the base character and the
"grave" accent mark is the nonspacing character. The function's default behavior is to translate to
the precomposed form. If a precomposed form does not exist, the function attempts to translate to
a composite form.

The flags PRECOMPOSED and COMPOSITE are mutually exclusive. The USEGLYPHCHARS
flag and the ERR_INVALID_CHARS can be set regardless of the state of the other flags.

outstem
The name of the stem variable that will contain the converted result. If the conversion was
successful the stem will be composed of the following value(s):

outstem.!TEXT
This variable will contain the converted string.

Return codes:

0
No errors.

Other
An error occurred. A Windows System Error code is returned. This may be one of the following,
but could be others.

87
Incorrect code page or codepage value.

1004
Invalid translate flags.

1113
No mapping for the Unicode character exists in the target code page.

8.66. SysUtilVersion
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SysUtilVersion()

Returns a version number that identifies the current level of the Rexx Utilities package.

Return code: The RexxUtil version number in the format n.m.l.

8.67. SysVersion

SysVersion()

Returns a string to identify the operating system and version. The first word of the returned string
contains the identifier for the operating system and the rest of the string contains an operating system
specific version string. Rexx code should not rely on the exact format returned.

Possible output may be:

Example 8.46. RexxUtil — SysVersion

-- CentOS 7
say SysVersion() -- Linux 3.10.0-957.10.1.el7.x86_64
-- Ubuntu 16.04
say SysVersion() -- Linux 4.4.0-154-generic
-- macOS 10.13
say SysVersion() -- Darwin 18.7.0
-- Raspbian
say SysVersion() -- Linux 4.14.70-v7+
-- SLES/390
say SysVersion() -- Linux 3.12.74-60.64.40-default
-- Windows 10
say SysVersion() -- Windows 10.0.18363

See also functions SysWinVer (Windows only) and SysLinVer (Linux Only).

8.68. SysVolumeLabel (Windows only)

SysVolumeLabel(

drive

)

Returns the volume label for the specified drive.

Parameter:

drive
A drive specification like d:\ or \\share\path. If omitted, the current drive is used.

8.69. SysWait (Unix-like systems only)

SysWait()

Waits for all child processes to end.

Returns:
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The exit code from the child process.

Example:

SysFork (Unix-like systems only) has an example that uses wait().

8.70. SysWaitNamedPipe (Windows only)

SysWaitNamedPipe( name

, timeout

)

Performs a timed wait on a named pipe and returns the WaitNamedPipe return code.

Parameters:

name
The name of the pipe in the form "\\servername\pipe\pipename."

timeout
The number of microseconds to be waited. If you omit timeout or specify 0, SysWaitNamedPipe
uses the default timeout value. To wait until the pipe is no longer busy, you can use a value of -1.

Returns 0 on success. A Windows System Error code is returned on error.

8.71. SysWinDecryptFile (Windows only)

SysWinDecryptFile( filename )

Decrypts a given file.

Parameter:

filename
The file to be decrypted.

Return codes:

0
Decryption was successful.

Other
A Windows System Error code. This may be one of the following, but could be others.

2
File not found.

4
Cannot open file.

5
Access denied.

82
Cannot decrypt.
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8.72. SysWinEncryptFile (Windows only)

SysWinEncryptFile( filename )

Encrypts a given file.

Parameter:

filename
The file to be encrypted.

Return codes:

0
Encryption was successful.

Other
A Windows System Error code. This may be one of the following, but could be others.

2
File not found.

4
Cannot open file.

5
Access denied.

82
Cannot encrypt.

8.73. SysWinGetDefaultPrinter (Windows only)

SysWinGetDefaultPrinter()

Returns the current default printer in the form "Printername,Drivername,Portname".

8.74. SysWinGetPrinters (Windows only)

SysWinGetPrinters( stemarray )

Returns a list of available printer descriptions.

Parameters:

stemarray
A Rexx stem or array variable for the returned printers. If a stem variable, stem.0 is set to n, the
number of printers returned, and the printers are returned in stem.1 to stem.n.

Each entry is of the form "Printername,Drivername,Portname".

Return codes:
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0
Success

1
Failure

8.75. SysWinSetDefaultPrinter (Windows only)

SysWinSetDefaultPrinter( description )

Sets the default printer.

Parameter:

description
A string identifying the printer. This can be either just the printer name, or be of the form
"Printername,Drivername,Portname".

Note

Either form of the description string is accepted. However, using just the printer name is
the preferred method. Using the "Printername,Drivername,Portname" form will invoke an
outdated Windows API that Microsoft has deprecated.

Return codes:

0
Success

non-zero
A Windows System Error code. You can use SysGetErrorText to get a description of the error.

Example 8.47. RexxUtil — SysWinGetPrinters and SysWinGetDefaultPrinter

/* set default printer */

default = SysWinGetDefaultPrinter()
parse var default default",".
say 'The Default printer is:' default
say

if SysWinGetPrinters(list.) == 0 then do
  say "List of available printers (* = default):"
  do i=1 to list.0
    parse var list.i pname",".
    if pname == default then
      say i list.i "*"
    else
      say i list.i
  end
  say
  say "Please enter number of new default printer (0 = keep default)"

565



SysWinVer (Windows only)

  pull i

  numberOk = .false

  if i~datatype('W') then do
    if 0 <= i & i <= list.0 then do
      numberOK = .true

      if i > 0 then do
        parse var list.i pname",".
        ret = SysWinSetDefaultPrinter(pname)
        if ret <> 0 then do
          say "Error setting default printer ("ret"):" SysGetErrorText(ret)
        end
        else do
          say "The new default printer is:" pname
        end
      end
    end
  end

  if \ numberOk then do
    say "You did not enter a valid printer number."
  end
end
else do
  say "Failed to get a list of the available printers."
end

8.76. SysWinVer (Windows only)

SysWinVer()

Returns a string specifying the Windows operating system version information. Rexx code should not
rely on the exact format returned.

Possible output might be:

Example 8.48. RexxUtil — SysWinVer

-- Windows 7
say SysWinVer()  -- Windows 6.01.7601
-- Windows 10
say SysWinVer()  -- Windows 10.0.18363

See also functions SysVersion and SysLinVer (Linux Only).
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Parsing
The parsing instructions are ARG, PARSE, and PULL.

The data to be parsed is a source string.   Parsing splits the data in a source string and assigns pieces
of it to the variables named in a template. A template is a model specifying how to split the source
string. The simplest kind of template consists of a list of variable names. Here is an example:

variable1 variable2 variable3

This kind of template parses the source string into whitespace-delimited words. More complicated
templates contain patterns in addition to variable names:

String patterns   
Match the characters in the source string to specify where it is to be split. (See Section 9.2,
“Templates Containing String Patterns” for details.)

Positional patterns   
Indicate the character positions at which the source string is to be split. (See Section 9.3,
“Templates Containing Positional (Numeric) Patterns” for details.)

Parsing is essentially a two-step process:

1. Parse the source string into appropriate substrings using patterns.

2. Parse each substring into words.

9.1. Simple Templates for Parsing into Words
Here is a parsing instruction:

Example 9.1. Parsing templates

parse value "time and tide" with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to be parsed is between the keywords
PARSE VALUE and the keyword WITH, the source string time and tide. Parsing divides the source
string into whitespace-delimited words and assigns them to the variables named in the template as
follows:

var1="time"
var2="and"
var3="tide"

In this example, the source string to be parsed is a literal string, time and tide. In the next
example, the source string is a variable.

Example 9.2. Parse value

/* PARSE VALUE using a variable as the source string to parse    */
string="time and tide"
parse value string with var1 var2 var3           /* same results */
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PARSE VALUE does not convert lowercase a-z in the source string to uppercase A-Z. If you want
to convert characters to uppercase, use PARSE UPPER VALUE. See Section 9.5, “Using UPPER,
LOWER, and CASELESS” for a summary of the effect of parsing instructions on the case.

Note that if you specify the CASELESS option on a PARSE instruction, the string comparisons during
the scanning operation are made independently of the alphabetic case. That is, a letter in uppercase is
equal to the same letter in lowercase.

All of the parsing instructions assign the parts of a source string to the variables named in a
template. There are various parsing instructions because of the differences in the nature or origin of
source strings. For a summary of all the parsing instructions, see Section 9.6, “Parsing Instructions
Summary”.

The PARSE VAR instruction is similar to PARSE VALUE except that the source string to be parsed
is always a variable. In PARSE VAR, the name of the variable containing the source string follows
the keywords PARSE VAR. In the next example, the variable stars contains the source string. The
template is star1 star2 star3.

Example 9.3. Parse var

/* PARSE VAR example                                             */
stars="Sirius Polaris Rigil"
parse var stars star1 star2 star3             /* star1="Sirius"  */
/* star2="Polaris" */
/* star3="Rigil"   */

All variables in a template receive new values. If there are more variables in the template than words
in the source string, the leftover variables receive null (empty) values. This is true for the entire
parsing: for parsing into words with simple templates and for parsing with templates containing
patterns. Here is an example of parsing into words:

/* More variables in template than (words in) the source string  */
satellite="moon"
parse var satellite Earth Mercury               /* Earth="moon"  */
/* Mercury=""    */

If there are more words in the source string than variables in the template, the last variable in the
template receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template  */
satellites="moon Io Europa Callisto..."
parse var satellites Earth Jupiter              /* Earth="moon"  */
/* Jupiter="Io Europa Callisto..."*/

Parsing     into words removes leading and trailing whitespace characters from each word before
it is assigned to a variable. The exception to this is the word or group of words assigned to the last
variable. The last variable in a template receives leftover data, preserving extra leading and trailing
whitespace characters. Here is an example:

Example 9.4. Parse var

/* Preserving extra blanks                                       */
solar5="Mercury Venus  Earth   Mars     Jupiter  "
parse var solar5 var1 var2 var3 var4
/* var1  ="Mercury"                                              */
/* var2  ="Venus"                                                */
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/* var3  ="Earth"                                                */
/* var4  ="  Mars     Jupiter  "                                 */

In the source string,  Earth has two leading blanks. Parsing removes both of them (the word-
separator blank and the extra blank) before assigning var3="Earth". Mars has three leading
blanks. Parsing removes one word-separator blank and keeps the other two leading blanks. It also
keeps all five blanks between Mars and Jupiter and both trailing blanks after Jupiter.

Parsing removes no whitespace characters if the template contains only one variable. For example:

parse value "   Pluto   " with var1        /* var1="   Pluto   "*/

9.1.1. Message Term Assignments
In addition to assigning values to variables, the PARSE instruction also allows any message term
value that can be used on the left side of an assignment instruction (See Section 1.13, “Assignments
and Symbols”). For example:

Example 9.5. Parse with Message Terms Assignments

string = "1 one two 3 4"
a = .Array~new
d = .Directory~new
parse var string n a[n] a[n + 1] d~three d~four
-- a[1] = one
-- a[2] = two
-- d~three = 3
-- d~four = 4

9.1.2. The Period as a Placeholder

A period in a template is a placeholder. It is used instead of a variable name, but it receives no data. It
is useful as a "dummy variable" in a list of variables or to collect unwanted information at the end of a
string. And it saves the overhead of unneeded variables.

The period in the first example is a placeholder. Be sure to separate adjacent periods with whitespace;
otherwise, an error results.

Example 9.6. Period placeholder

/* Period as a placeholder                                       */
stars="Arcturus Betelgeuse Sirius Rigil"
parse var stars . . brightest .            /* brightest="Sirius" */

/* Alternative to period as placeholder                          */
stars="Arcturus Betelgeuse Sirius Rigil"
parse var stars drop junk brightest rest   /* brightest="Sirius" */

9.2. Templates Containing String Patterns
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A string pattern matches characters in the source string to indicate where to split it. A string pattern
can be either of the following:

Literal string pattern
One or more characters within quotation marks.

Variable string pattern
A variable within parentheses with no plus (+), minus (-), or equal sign (=) before the left
parenthesis. (See Section 9.4, “Parsing with Variable Patterns” for details.)

Here are two templates, a simple template and a template containing a literal string pattern:

var1 var2          /* simple template                            */
var1 ", " var2     /* template with literal string pattern       */

The literal string pattern is: ", ". This template puts characters:

• From the start of the source string up to (but not including) the first character of the match (the
comma) into var1

• Starting with the character after the last character of the match (the character after the blank that
follows the comma) and ending with the end of the string into var2

A template with a string pattern can omit some of the data in a source string when assigning data to
variables. The next two examples contrast simple templates with templates containing literal string
patterns.

Example 9.7. Template string patterns

/* Simple template                                               */
name="Smith, John"
parse var name ln fn                     /* Assigns: ln="Smith," */
/*          fn="John"   */

Notice that the comma remains (the variable ln contains "Smith,"). In the next example the
template is ln ", " fn. This removes the comma.

Example 9.8. Template string patterns

/* Template with literal string pattern                          */
name="Smith, John"
parse var name ln ", " fn                /* Assigns: ln="Smith"  */
                                         /*          fn="John"   */

First, the language processor scans the source string for ", ". It splits the source string at that point.
The variable ln receives data starting with the first character of the source string and ending with the
last character before the match. The variable fn receives data starting with the first character after the
match and ending with the end of string.

A template with a string pattern omits data in the source string that matches the pattern. (There is a
special case (see Section 9.8.2, “Combining String and Positional Patterns”) in which a template with
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a string pattern does not omit matching data in the source string.) The pattern ", " (with a blank)
is used instead of "," (no blank) because, without the blank in the pattern, the variable fn receives
" John" (including a blank).

If the source string does not contain a match for a string pattern, any variables preceding the
unmatched string pattern get all the data in question. Any variables after that pattern receive the null
string.

A null string is never found. It always matches the end of the source string.

9.3. Templates Containing Positional (Numeric) Patterns

A positional pattern is a number that identifies the character position at which the data in the source
string is to be split. The number must be a whole number.

An absolute positional pattern is:

• A number with no plus (+) or minus (-) sign preceding it or with an equal sign (=)  preceding it.

• An expression in parentheses with an equal sign before the left parenthesis. (See Section 9.4,
“Parsing with Variable Patterns” for details on variable positional patterns.)

The number specifies the absolute character position at which the source string is to be split.

Here is a template with absolute positional patterns:

variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers to the 11th position in
the input string, 21 to the 21st position. This template puts characters:

• 1 through 10 of the source string into variable1

• 11 through 20 into variable2

• 21 to the end into variable3

Positional patterns are probably most useful for working with a file of records, such as:

The following example uses this record structure:

Example 9.9. Parsing stems

/* Parsing with absolute positional patterns in template         */
record.1="Clemens   Samuel    Mark Twain          "
record.2="Evans     Mary Ann  George Eliot        "
record.3="Munro     H.H.      Saki                "
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do n=1 to 3
  parse var record.n lastname 11 firstname 21 pseudonym
  If lastname="Evans" & firstname="Mary Ann" then say "By George!"
end                         /* Says "By George!" after record 2  */

The source string is split at character position 11 and at position 21. The language processor assigns
characters 1 to 10 to lastname, characters 11 to 20 to firstname, and characters 21 to 40 to
pseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

lastname 11 firstname 21 pseudonym

Specifying 1 is optional.

Optionally, you can put an equal sign  before a number in a template. An equal sign is the same as no
sign before a number in a template. The number refers to a particular character position in the source
string. These two templates are equal:

lastname  11 first  21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern    is a number with a plus (+) or minus (-) sign preceding it. It can also
be a variable within parentheses, with a plus (+) or minus (-) sign preceding the left parenthesis; for
details see Section 9.4, “Parsing with Variable Patterns”.

The number specifies the relative character position at which the source string is to be split. The plus
or minus indicates movement right or left, respectively, from the start of the string (for the first pattern)
or from the position of the last match. The position of the last match is the first character of the last
match. Here is the same example as for absolute positional patterns done with relative positional
patterns:

Example 9.10. Parsing with relative positional patterns

/* Parsing with relative positional patterns in template         */
record.1="Clemens   Samuel    Mark Twain          "
record.2="Evans     Mary Ann  George Eliot        "
record.3="Munro     H.H.      Saki                "
do n=1 to 3
  parse var record.n lastname +10 firstname + 10 pseudonym
  If lastname="Evans" & firstname="Mary Ann" then say "By George!"
end                                             /* same results  */

Whitespace characters between the sign and the number are insignificant. Therefore, +10 and + 10
have the same meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable except in the special case (see
Section 9.8.2, “Combining String and Positional Patterns”) when a string pattern precedes a variable
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name and a positional pattern follows the variable name. The templates from the examples of absolute
and relative positional patterns give the same results.

With positional patterns, a matching operation can back up to an earlier position in the source string.
Here is an example using absolute positional patterns:

/* Backing up to an earlier position (with absolute positional)  */
string="astronomers"
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string "study" var1||var2||var3||var4
/* Displays: "astronomers study stars"                           */

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an earlier position.
Here is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional)  */
string="astronomers"
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string "study" var1||var2||var3||var4      /* same results   */

In the previous example, the relative positional pattern -3 backs up to the first character in the source
string.

The templates in the previous two examples are equivalent.

You can use templates with positional patterns to make several assignments:

/* Making several assignments                                    */
books="Silas Marner, Felix Holt, Daniel Deronda, Middlemarch"
parse var books 1 Eliot 1 Evans
/* Assigns the (entire) value of books to Eliot and to Evans.    */

A length positional pattern    is a number with a (>) or (<) preceding it. It can also be an expression
within parentheses, with a (>) or (<) preceding the left parenthesis; for details see Section 9.4,
“Parsing with Variable Patterns”.
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The number specifies the length at which the source string is to be split, relative to the current
position.. The > or < indicates movement right or left, respectively, from the start of the string (for the
first pattern) or from the position of the last match. The position of the last match is the first character
of the last match. Here is the same example as for relative positional patterns done with length
positional patterns:

Example 9.11. Parsing with relative positional patterns

/* Parsing with relative positional patterns in template         */
record.1="Clemens   Samuel    Mark Twain          "
record.2="Evans     Mary Ann  George Eliot        "
record.3="Munro     H.H.      Saki                "
do n=1 to 3
  parse var record.n lastname >10 firstname >10 pseudonym
  If lastname="Evans" & firstname="Mary Ann" then say "By George!"
end                                             /* same results  */

Whitespace characters between the trigger and the number are insignificant. Therefore, >10 and
> 10 have the same meaning. Note that >0 <0 and are valid length positional pattern.

The > length pattern and the + relative positional pattern are interchangeable except in the special
case of the value 0. A >0 pattern will split the string into a null string and leave the match position
unchanged. This is particularly useful for parsing off length-qualified fields from a string.

Example 9.12. Parsing with length patterns

/* Parsing with length patterns in template         */
line = "04Mark0005Twain"
parse var line len +2 first >(len) len +2 middle >(len) len +2 last >(len)
say '"'first'" "'middle'" "'last'"'  -- displays "Mark" "" "Twain"

/* parsing with relative patterns only */
parse var line len +2 first +(len) len +2 middle +(len) len +2 last +(len)
say '"'first'" "'middle'" "'last'"'  -- displays "Mark" "05Twain" "Twain"

The < length pattern will move the position the indicated position to the left, and split the string
between the original position and the movement position. At of the operation, the current position
is returned to the original position. This movement is equivalent to using a negative relative pattern
followed by a positive relative pattern for the same length. This operation allows for easy extraction of
characters that precede a string match.

Example 9.13. Parsing with length patterns

/* Parsing with length patterns in template         */
parse value '12345.6789' with '.' digit <1    -- digit -> "5"

/* parsing with relative patterns only */
parse value '12345.6789' with '.' -1 digit +1    -- digit -> "5"

9.3.1. Combining Patterns and Parsing into Words

If a template contains patterns that divide the source string into sections containing several words,
string and positional patterns divide the source string into substrings. The language processor then
applies a section of the template to each substring, following the rules for parsing into words.  
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Example 9.14. Combining string patterns

/* Combining string pattern and parsing into words               */
name="    John      Q.   Public"
parse var name fn init "." ln        /* Assigns: fn="John"       */
/*          init="     Q"                                        */
/*          ln="   Public"                                       */

The pattern divides the template into two sections:
• fn init
• ln

The matching pattern splits the source string into two substrings:
• "    John      Q"
• "   Public"

The language processor parses these substrings into words based on the appropriate template
section.

John has three leading blanks. All are removed because parsing into words removes leading and
trailing blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the rest because
init is the last variable in that section of the template.

For the substring "   Public", parsing assigns the entire string into ln without removing any
blanks. This is because ln is the only variable in this section of the template. (For details about
treatment of whitespace characters, see Section 9.1, “Simple Templates for Parsing into Words”.)  

Example 9.15. Combining positional patterns

/* Combining positional patterns with parsing into words         */
string="R E X X"
parse var string var1 var2 4 var3 6 var4   /* Assigns: var1="R"  */
/*          var2="E"                                             */
/*          var3=" X"                                            */
/*          var4=" X"                                            */

The pattern divides the template into three sections:

• var1 var2
• var3
• var4

The matching patterns split the source string into three substrings that are individually parsed into
words:

• "R E"
• " X"
• " X"

The variable var1 receives "R"; var2 receives "E". Both var3 and var4 receive " X" (with a blank
before the X) because each is the only variable in its section of the template. (For details on treatment
of whitespace characters, see Section 9.1, “Simple Templates for Parsing into Words”.)
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9.4. Parsing with Variable Patterns

You might want to specify a pattern by using the value of a variable or expression instead of a fixed
string or number. You do this by placing an expression in parentheses. This is a variable reference.
Whitespace characters are not necessary inside or outside the parentheses, but you can add them if
you wish.

The template in the next parsing instruction contains the following literal string pattern ". ".

parse var name fn  init ". " ln

Here is how to specify that pattern as a variable string pattern: 

strngptrn=". "
parse var name fn init (strngptrn) ln

If no equal, plus sign, minus sign, >, or < precedes the parenthesis that is before the variable name,
the character string value of the variable is then treated as a string pattern. The expression can
reference variables that have been set earlier in the same template.   

Example 9.16. Combining variables in patterns

/* Using a variable as a string pattern                          */
/*  The variable (delim) is set in the same template             */
SAY "Enter a date (mm/dd/yy format). =====> " /* assume 11/15/98 */
pull date
parse var date month 3 delim +1 day +2 (delim) year
/* Sets: month="11"; delim="/"; day="15"; year="98"  */

If an equal, a plus, a minus sign, > or < precedes the left parenthesis, the value of the expression is
treated as an absolute, relative positional, or length positional pattern. The value of the expression
must be a positive whole number or zero.

The expression can reference variables that have has been set earlier in the same template. In the
following example, the first two fields specify the starting-character positions of the last two fields.      

Example 9.17. Combining variables and positional patterns

/* Using a variable as a positional pattern                      */
dataline = "12 26 .....Samuel ClemensMark Twain"
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/* Assigns: realname="Samuel Clemens"; pseudonym="Mark Twain"    */

The positional pattern 6 is needed in the template for the following reason: Word parsing occurs
after the language processor divides the source string into substrings using patterns. Therefore, the
positional pattern =(pos1) cannot be correctly interpreted as =12 until after the language processor
has split the string at column 6 and assigned the whitespace-delimited words 12 and 26 to pos1 and
pos2, respectively.

9.5. Using UPPER, LOWER, and CASELESS
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Parsing Instructions Summary

Specifying UPPER  on any of the PARSE instructions converts lowercase a-z to uppercase A-Z before
parsing.

The ARG instruction is a short form of PARSE UPPER ARG. The PULL instruction is a short form of
PARSE UPPER PULL. If you do not desire uppercase translation, use PARSE ARG instead of ARG or
PARSE UPPER ARG, and PARSE PULL instead of PULL or PARSE UPPER PULL.

Specifying LOWER on any of the PARSE instructions converts uppercase A-Z to lowercase a-z before
parsing.

Specifying CASELESS means the comparisons during parsing are independent of the case—that is, a
letter in uppercase is equal to the same letter in lowercase.

9.6. Parsing Instructions Summary

All parsing instructions assign parts of the source string to the variables named in the template. The
following table summarizes where the source string comes from.

Table 9.1. Parsing Source Strings
Instruction Where the source string comes from

ARG Arguments you list when you call the program or arguments in the call to a
subroutine or function.

PARSE ARG Arguments you list when you call the program or arguments in the call to a
subroutine or function.

PARSE LINEIN Next line in the default input stream.

PULL The string at the head of the external data queue. (If the queue is empty, it
uses default input, typically the terminal.)

PARSE PULL The string at the head of the external data queue. (If the queue is empty, it
uses default input, typically the terminal.)

PARSE SOURCE System-supplied string giving information about the executing program.

PARSE VALUE Expression between the keywords VALUE and WITH in the instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION System-supplied string specifying the language, language level, and
(three-word) date.

9.7. Parsing Instructions Examples

All examples in this section parse source strings into words.

ARG

Example 9.18. ARG with source string named in Rexx program invocation

/* ARG with source string named in Rexx program invocation       */
/*  Program name is PALETTE.  Specify 2 primary colors (yellow,  */
/*   red, blue) on call.   Assume call is: palette red blue      */
arg var1 var2                /* Assigns: var1="RED"; var2="BLUE" */
If var1<>"RED" & var1<>"YELLOW" & var1<>"BLUE" then signal err
If var2<>"RED" & var2<>"YELLOW" & var2<>"BLUE" then signal err
total=length(var1)+length(var2)
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SELECT;
  When total=7 then new="purple"
  When total=9 then new="orange"
  When total=10 then new="green"
Otherwise new=var1                         /* entered duplicates */
END
Say new; exit                              /* Displays: "purple" */

Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of ARG with the
arguments in the CALL to a subroutine is in Section 9.8.1, “Parsing Several Strings”.

PARSE ARG is similar to ARG except that PARSE ARG does not convert alphabetic characters to
uppercase before parsing.

PARSE LINEIN

Example 9.19. PARSE LINEIN

parse linein "a=" num1 "c=" num2     /* Assume: 8 and 9          */
sum=num1+num2                        /* Enter: a=8 b=9 as input  */
say sum                              /*  Displays: "17"          */

PARSE PULL

Example 9.20. PARSE PULL

PUSH "80 7"                /* Puts data on queue                 */
parse pull fourscore seven /* Assigns: fourscore="80"; seven="7" */
SAY fourscore+seven        /* Displays: "87"                     */

PARSE SOURCE

Example 9.21. PARSE SOURCE

parse source sysname .
Say sysname                         /* Possibly Displays:        */
                                    /* "Windows"                 */

PARSE VAR examples are throughout the chapter, starting with Chapter 9, Parsing.

PARSE VERSION

Example 9.22. PARSE VERSION

parse version . level .
say level                /* Displays: "6.02" */

PULL is similar to PARSE PULL except that PULL converts alphabetic characters to uppercase before
parsing.
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Advanced Topics in Parsing

9.8. Advanced Topics in Parsing

This section includes parsing several strings and flow charts illustrating a conceptual view of parsing.

9.8.1. Parsing Several Strings

Only ARG and PARSE ARG can have more than one source string. To parse several strings, you can
specify several comma-separated templates. Here is an example:

parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated templates. For an
ARG instruction, the source strings to be parsed come from arguments you specify when you call a
program or CALL a subroutine or function. Each comma is an instruction to the parser to move on to
the next string.

Example:

Example 9.23. Parsing variable strings

/* Parsing several strings in a subroutine                       */
num="3"
musketeers="Porthos Athos Aramis D'Artagnan"
CALL Sub num,musketeers  /* Passes num and musketeers to sub     */
SAY total; say fourth /* Displays: "4" and " D'Artagnan"         */
EXIT

Sub:
  parse arg subtotal, . . . fourth
  total=subtotal+1
  RETURN

Note that when a Rexx program is started as a command, only one argument string is recognized. You
can pass several argument strings for parsing if:

• One Rexx program calls another Rexx program with the CALL instruction or a function call

• Programs written in other languages start a Rexx program

If there are more templates than source strings, each variable in a leftover template receives a null
string. If there are more source strings than templates, the language processor ignores leftover source
strings. If a template is empty (two subsequent commas) or contains no variable names, parsing
proceeds to the next template and source string.

9.8.2. Combining String and Positional Patterns

There is a special case in which absolute and relative positional patterns do not work identically.
Parsing with a template containing a string pattern skips the data in the source string that matches
the pattern (see Section 9.2, “Templates Containing String Patterns”). But a template containing the
sequence string pattern, variable name, and relative position pattern does not skip the matching data.
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Conceptual Overview of Parsing

A relative positional pattern moves relative to the first character matching a string pattern. As a result,
assignment includes the data in the source string that matches the string pattern.

Example 9.24. Combining string and positional patterns

/* Template containing string pattern, then variable name, then  */
/*  relative positional pattern does not skip any data.          */
string="REstructured eXtended eXecutor"
parse var string var1 3 junk "X" var2 +1 junk "X" var3 +1 junk
say var1||var2||var3 /* Concatenates variables; displays: "REXX" */

Here is how this template works:

9.8.3. Conceptual Overview of Parsing

The following figures are to help you understand the concept of parsing.

The figures include the following terms:

string start
is the beginning of the source string (or substring).

string end
is the end of the source string (or substring).

length
is the length of the source string.

match start
is in the source string and is the first character of the match.

match end
is in the source string. For a string pattern, it is the first character after the end of the match. For a
positional pattern, it is the same as match start.

match position
is in the source string. For a string pattern, it is the first matching character. For a positional
pattern, it is the position of the matching character.
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Conceptual Overview of Parsing

token
is a distinct syntactic element in a template, such as a variable, a period, a pattern, or a comma.

value
is the numeric value of a positional pattern. This can be either a constant or the resolved value of
a variable.

Figure 9.1. Conceptual Overview of Parsing
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Figure 9.2. Conceptual View of Finding Next Pattern
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Conceptual Overview of Parsing

Figure 9.3. Conceptual View of Word Parsing

Note

The figures do not include error cases.
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Chapter 10.

Numbers and Arithmetic
This chapter gives an overview of the arithmetic facilities of the Rexx language.

Numbers can be expressed flexibly. Leading and trailing whitespace characters are permitted, and
exponential notation can be used. Valid numbers are, for example:

Example 10.1. Numbers

12             /* a whole number                      */
"-76"          /* a signed whole number               */
12.76          /* decimal places                      */
" +  0.003 "   /* blanks around the sign and so forth */
17.            /* same as 17                          */
.5             /* same as 0.5                         */
4E9            /* exponential notation                */
0.73e-7        /* exponential notation                */

Ignoring Exponential Notation, a number in Rexx is defined as follows:

whitespace sign

whitespace

digits

digits . digits

. digits

digits .

whitespace

whitespace
are one or more blanks or horizontal tab characters.

sign
is either + or -.

digits
are one or more of the decimal digits 0-9.

Note that a single period alone is not a valid number.

The arithmetic operators   include addition (+), subtraction (-), multiplication (*), power (**), division
(/), prefix plus (+), and prefix minus (-). In addition, it includes integer divide (%),  which divides and
returns the integer part, and remainder (//), which divides and returns the remainder. For examples of
the arithmetic operators, see Section 10.2.4, “Operator Examples”.

The result of an arithmetic operation is formatted as a character string according to specific rules. The
most important rules are:

• Results are calculated up to a maximum number of significant digits. The default is 9, but can be
overridden on a source-file basis with the ::OPTIONS directive. The default setting can be altered
with the NUMERIC DIGITS instruction.  Thus, with NUMERIC DIGITS 9, if a result requires more
than 9 digits, it is rounded to 9 digits. For example, the division of 2 by 3 results in 0.666666667.

• Except for division and power, trailing zeros are preserved. For example:
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Precision

Example 10.2. Arithmetic

2.40 + 2    ->    4.40
2.40 - 2    ->    0.40
2.40 * 2    ->    4.80
2.40 / 2    ->    1.2

If necessary, you can remove trailing zeros with the String strip method, the STRIP built-in
function, or by division by 1.

• A zero result is always expressed as the single digit 0.

• Exponential form is used for a result depending on its value and the setting of NUMERIC DIGITS.
If the number of places needed before the decimal point exceeds the NUMERIC DIGITS setting,
or the number of places after the point exceeds twice the NUMERIC DIGITS setting, the number is
expressed in exponential notation:

Example 10.3. Arithmetic

1e6 * 1e6    ->    1E+12           /* not 1000000000000 */
1 / 3E10     ->    3.33333333E-11  /* not 0.0000000000333333333 */

10.1. Precision

Precision is the maximum number of significant digits that can result from an operation. This is
controlled by the instruction:

NUMERIC DIGITS

expression

The expression is evaluated and must result in a positive whole number. This defines the precision
(number of significant digits) of a calculation. Results are rounded to that precision, if necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS instruction has been
processed since the start of a program, the default precision is used. The Rexx standard for the
default precision is 9. The default may be overridden on a source-file basis using the ::OPTIONS
directive.

NUMERIC DIGITS can set values smaller than nine. However, use small values with care because the
loss of precision and rounding affects all Rexx computations, including, for example, the computation
of new values for the control variable in DO loops.

10.2. Arithmetic Operators

Rexx arithmetic is performed by the operators +,  -,  *,  /,  %,  //, and  **  (add, subtract, multiply,
divide, integer divide, remainder, and power).

Before every arithmetic operation, the terms operated upon have leading zeros removed (noting the
position of any decimal point, and leaving only one zero if all the digits in the number are zeros). They
are then truncated, if necessary, to DIGITS + 1 significant digits before being used in the computation.
The extra digit improves accuracy because it is inspected at the end of an operation, when a number
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is rounded to the required precision. When a number is truncated, the LOSTDIGITS condition is raised
if a SIGNAL ON LOSTDIGITS condition trap is active. The operation is then carried out under up to
double that precision. When the operation is completed, the result is rounded, if necessary, to the
precision specified by the NUMERIC DIGITS instruction.

The values are rounded as follows: 5 through 9 are rounded up, and 0 through 4 are rounded down.

10.2.1. Power

The ** (power) operator raises a number to a power, which can be positive, negative, or 0. The power
must be a whole number. The second term in the operation must be a whole number and is rounded
to DIGITS digits, if necessary, as described in Section 10.5, “Limits and Errors when Rexx Uses
Numbers Directly”. If negative, the absolute value of the power is used, and the result is inverted (that
is, the number 1 is divided by the result). For calculating the power, the number is multiplied by itself
for the number of times expressed by the power. Trailing zeros are then removed as though the result
were divided by 1.

10.2.2. Integer Division

The % (integer divide) operator divides two numbers and returns the integer part of the result. The
result is calculated by repeatedly subtracting the divisor from the dividend as long as the dividend is
larger than the divisor. During this subtraction, the absolute values of both the dividend and the divisor
are used: the sign of the final result is the same as that which would result from regular division.

If the result cannot be expressed as a whole number, the operation is in error and fails—that is,
the result must not have more digits than the current setting of NUMERIC DIGITS. For example,
10000000000%3 requires 10 digits for the result (3333333333) and would, therefore, fail if NUMERIC
DIGITS 9 were in effect.

10.2.3. Remainder

The // (remainder) operator returns the remainder from an integer division and is defined to be the
residue of the dividend after integer division. The sign of the remainder, if nonzero, is the same as that
of the original dividend.

This operation fails under the same conditions as integer division, that is, if integer division on the
same two terms fails, the remainder cannot be calculated.

10.2.4. Operator Examples

Example 10.4. Operators

/* With:  NUMERIC DIGITS 5 */
12+7.00     ->    19.00
1.3-1.07    ->     0.23
1.3-2.07    ->    -0.77
1.20*3      ->     3.60
7*3         ->    21
0.9*0.8     ->     0.72
1/3         ->     0.33333
2/3         ->     0.66667
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Exponential Notation

5/2         ->     2.5
1/10        ->     0.1
12/12       ->     1
8.0/2       ->     4
2**3        ->     8
2**-3       ->     0.125
1.7**8      ->    69.758
2%3         ->     0
2.1//3      ->     2.1
10%3        ->     3
10//3       ->     1
-10//3      ->    -1
10.2//1     ->     0.2
10//0.3     ->     0.1
3.6//1.3    ->     1.0

10.3. Exponential Notation

For both large and small numbers, an exponential notation can be useful. For example:

numeric digits 5
say 54321*54321

would display 2950800000 in the long form. Because this is misleading, the result is expressed as
2.9508E+9 instead.

The definition of numbers is, therefore, extended as follows:

whitespace sign

whitespace

digits

digits . digits

. digits

digits .

E

sign

digits whitespace

The integer following the E represents a power of ten that is to be applied to the number. The E can be
in uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be numeric, such as 0E123
(0 times 10 raised to the power of 123) and 1E342 (1 times 10 raised to the power of 342). Also, a
comparison such as 0E123=0E567 gives a true result of 1 (0 is equal to 0). To prevent problems
when comparing nonnumeric strings, use the strict comparison operators.

Here are some examples:

Example 10.5. Exponential notation

12E7   =    120000000           /* Displays "1" */
12E-5  =    0.00012             /* Displays "1" */
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-12e4  =    -120000             /* Displays "1" */
0e123  =    0e456               /* Displays "1" */
0e123  ==   0e456               /* Displays "0" */

The results of calculations are returned in either conventional or exponential form, depending on
the setting of  NUMERIC DIGITS. If the number of places needed before the decimal point exceeds
DIGITS, or the number of places after the point exceeds twice DIGITS, the exponential form is used.
The exponential form the language processor generates always has a sign following the E to improve
readability. If the exponent is 0, the exponential part is omitted—that is, an exponential part of E+0 is
not generated.

You can explicitly convert numbers to exponential form, or force them to be displayed in the long form,
by using the FORMAT built-in function.

Scientific notation is a form of exponential notation that adjusts the power of ten so that the number
contains only one nonzero digit before the decimal point. Engineering notation is a form of exponential
notation in which up to three digits appear before the decimal point, and the power of ten is always a
multiple of three. The integer part can, therefore, range from 1 through 999. You can control whether
scientific or engineering notation  is used with the following instruction: 

NUMERIC FORM

SCIENTIFIC

ENGINEERING

VALUE

expression

Scientific notation is the default.

Example 10.6. Scientific notation

/* after the instruction */
Numeric form scientific

123.45 * 1e11     ->     1.2345E+13

/* after the instruction */
Numeric form engineering

123.45  * 1e11    ->    12.345E+12

10.4. Numeric Comparisons

The comparison operators are listed in Section 1.11.2.3, “Comparison”. You can use any of them for
comparing numeric strings. However, you should not use ==,  \==,  ¬==,  >>, \>>, ¬>>, <<, \<<, and
¬<< for comparing numbers because leading and trailing whitespace characters and leading zeros are
significant with these operators.

Numeric values are compared by subtracting the two numbers (calculating the difference) and then
comparing the result with 0. That is, the operation:

A ? Z
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where ? is any numeric comparison operator, is identical with:

(A - Z) ? "0"

It is, therefore, the difference between two numbers, when subtracted under Rexx subtraction rules,
that determines their equality.

Fuzz affects the comparison of two numbers. It controls how much two numbers can differ and still be
considered equal in a comparison. The FUZZ value is set by the following instruction:

NUMERIC FUZZ

expression

expression must result in a positive whole number or zero. The default is 0.

Fuzz is to temporarily reduce the value of DIGITS. That is, the numbers are subtracted with a
precision of DIGITS minus FUZZ digits during the comparison. The FUZZ setting must always be less
than DIGITS.

If, for example, DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant digits, just as
though NUMERIC DIGITS 8 had been put in effect for the duration of the operation.

Example 10.7. Comparison

Numeric digits 5
Numeric fuzz 0
say  4.9999 = 5     /* Displays "0"    */
say  4.9999 < 5     /* Displays "1"    */
Numeric fuzz 1
say  4.9999 = 5     /* Displays "1"    */
say  4.9999 < 5     /* Displays "0"    */

10.5. Limits and Errors when Rexx Uses Numbers Directly

When Rexx uses numbers directly, that is, numbers that have not been involved in an arithmetic
operation, they are rounded, if necessary, according to the setting of NUMERIC DIGITS. The normal
whole number limit depends on the default NUMERIC DIGITS setting. The default setting is 9, making
the normal whole number limit 999999999.

The following table shows which numbers must be whole numbers and what their limits are:

Table 10.1. Whole Number Limits
Power values (right-hand operand of the power
operator)

The platform whole number limit.

Values of exprr and exprf in the DO instruction The platform whole number limit

Values given for DIGITS or FUZZ in the
NUMERIC instruction 

The platform whole number limits (Note: FUZZ
must always be less than DIGITS.)

Positional patterns in parsing templates The platform whole number limit

Number given for option in the TRACE
instruction

The platform whole number limit
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Limits and Errors when Rexx Uses Numbers Directly

When Rexx uses numbers directly, the following types of errors can occur:

• Overflow or underflow.    

This error occurs if the exponential part of a result exceeds the range that the language processor
can handle, when the result is formatted according to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default precision. Because the default
precision is 9, you can use exponents in the range -999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated as a syntax error.

• Insufficient storage.

Storage is needed for calculations and intermediate results, and if an arithmetic operation fails
because of lack of storage. This is considered as a terminating error.
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Chapter 11.

Conditions and Condition Traps
A condition is an event or state that CALL ON or SIGNAL ON can trap. A condition trap can modify
the flow of execution in a Rexx program. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions.

CALL ON ANY

ERROR

FAILURE

HALT

NOTREADY

USER usercondition

NAME trapname

CALL OFF ANY

ERROR

FAILURE

HALT

NOTREADY

USER usercondition

SIGNAL ON ANY

ERROR

FAILURE

HALT

LOSTDIGITS

NOMETHOD

NOSTRING

NOTREADY

NOVALUE

SYNTAX

USER usercondition

NAME trapname
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SIGNAL OFF ANY

ERROR

FAILURE

HALT

LOSTDIGITS

NOMETHOD

NOSTRING

NOTREADY

NOVALUE

SYNTAX

USER usercondition

condition, usercondition, and trapname are single symbols that are taken as constants. Following one
of these instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The initial setting
for all condition traps is OFF.

If a condition trap is enabled and the specified condition or usercondition occurs, control passes to the
routine or label trapname if you have specified trapname. Otherwise, control passes to the routine or
label usercondition or condition. CALL or  SIGNAL is used, depending on whether the most recent trap
for the condition was set using CALL ON or SIGNAL ON, respectively.

If you use CALL, the trapname can be an internal label, a built-in function, or an external routine.
When calling trapname, the current Condition Object is supplied as an argument.

If you use SIGNAL, the trapname can only be an internal label.

The conditions and their corresponding events that can be trapped are:

ANY    
traps any condition that a more specific condition trap does not trap. For example, if NOVALUE is
raised and there is no NOVALUE trap enabled, but there is a SIGNAL ON ANY trap, the ANY trap
is called for the NOVALUE condition. For example, a CALL ON ANY trap is ignored if NOVALUE is
raised because CALL ON NOVALUE is not allowed.

ERROR    
raised if a command indicates an error condition upon return. It is  also raised if any command
indicates failure and none of the following is active:
• CALL ON FAILURE

• SIGNAL ON FAILURE

• CALL ON ANY

• SIGNAL ON ANY

The condition is raised at the end of the clause that called the command but is ignored if the
ERROR condition trap is already in the delayed state.  The delayed state is the state of a condition
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trap when the condition has been raised but the trap has not yet been reset to the enabled (ON) or
disabled (OFF) state.

If the package contains an ::OPTIONS ERROR SYNTAX directive and ERROR is not trapped with
CALL/SIGNAL ON/OFF ERROR/ANY, a SYNTAX condition is raised instead.

FAILURE   
raised if a command indicates a failure condition upon return. The condition is raised at the end of
the clause that called the command but is ignored if the FAILURE condition trap is already in the
delayed state.

An attempt to enter a command to an unknown subcommand environment also raises a FAILURE
condition.

If the package contains an ::OPTIONS FAILURE SYNTAX directive and FAILURE is not trapped
with CALL/SIGNAL ON/OFF FAILURE/ANY, a SYNTAX condition is raised instead.

HALT    
raised if an external attempt is made to interrupt and end execution of the program. The condition
is usually raised at the end of the clause that was processed when the external interruption
occurred. When a Rexx program is running in a full-screen or command prompt session, the
Ctrl+Break key combination raises the halt condition. However, if Ctrl+Break is pressed while a
command or non-Rexx external function is processing, the command or function ends.

Notes:

1. Application programs that use the Rexx language processor might use the RXHLT exit or the
RexxStart programming interface to halt the execution of a Rexx macro. (See the Open Object
Rexx: Application Programming Interfaces for details about exits.)

2. Only SIGNAL ON HALT or CALL ON HALT can trap error 4, described in Appendix C, Error
Numbers and Messages.

LOSTDIGITS  
raised if a number used in an arithmetic operation has more digits than the current setting of
NUMERIC DIGITS. Leading zeros are not counted in this comparison. You can specify the
LOSTDIGITS condition only for SIGNAL ON.

If the package contains an ::OPTIONS LOSTDIGITS SYNTAX directive and LOSTDIGITS is not
trapped with SIGNAL ON/OFF LOSTDIGITS/ANY, a SYNTAX condition is raised instead.

NOMETHOD  
raised if an object receives a message for which it has no method defined, and the object does not
have an UNKNOWN method. You can specify the NOMETHOD condition only for SIGNAL ON.

NOSTRING  
raised when the language processor requires a string value from an object and the object does not
directly provide a string value. See Section 4.2.11, “Required String Values” for more information.
You can specify the NOSTRING condition only for SIGNAL ON.

If the package contains an ::OPTIONS NOSTRING SYNTAX directive and NOSTRING is not
trapped with SIGNAL ON/OFF NOSTRING/ANY, a SYNTAX condition is raised instead.

NOTREADY  
raised if an error occurs during an input or output operation. See Section 14.5, “Errors during Input
and Output”. This condition is ignored if the NOTREADY condition trap is already in the delayed
state.

593



If the package contains an ::OPTIONS NOTREADY SYNTAX directive and NOTREADY is not
trapped with CALL/SIGNAL ON/OFF NOTREADY/ANY, a SYNTAX condition is raised instead.

NOVALUE  
raised if an uninitialized variable is used as:
• A term in an expression

• The name following the VAR subkeyword of a PARSE instruction

• A variable reference in a parsing template, an EXPOSE instruction, a PROCEDURE instruction,
or a DROP instruction

• A method selection override specifier in a message term

Notes:

NOVALUE is not raised for any uninitialized variables in tails in compound variables.

If the package contains an ::OPTIONS NOVALUE SYNTAX directive and NOVALUE is not trapped
with SIGNAL ON/OFF NOVALUE/ANY, a SYNTAX condition is raised instead.

Example 11.1. NOVALUE not raised for stems

/* The following does not raise NOVALUE. */
signal on novalue
a.=0
say a.z
say "NOVALUE is not raised."
exit

novalue:
say "NOVALUE is raised."

You can specify this condition only for SIGNAL ON.

SYNTAX  
raised if any language-processing error is detected while the program is running. This includes all
kinds of processing errors:
• True syntax errors

• "Run-time" errors (such as attempting an arithmetic operation on nonnumeric terms)

• Syntax errors propagated from higher call or method invocation levels

• Untrapped HALT conditions

• Untrapped NOMETHOD conditions

You can specify this condition only for SIGNAL ON.

Notes:

1. SIGNAL ON SYNTAX cannot trap the errors 3 and 5.

2. SIGNAL ON SYNTAX can trap the errors 6 and 30 only if they occur during the execution of
an INTERPRET instruction.

For information on these errors, refer to Appendix C, Error Numbers and Messages.
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USER   
raised if a condition specified on the USER option of CALL ON or SIGNAL ON occurs. USER
conditions are raised by a RAISE instruction that specifies a USER option with the same
usercondition name. The specified usercondition can be any symbol, including those specified as
possible values for condition.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, or DELAY, and
any  trapname) of that condition trap. Thus, a CALL ON HALT replaces any current SIGNAL ON HALT
(and a SIGNAL ON HALT replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a
new trap name replaces any previous trap name, and any OFF reference disables the trap for CALL or
SIGNAL.

11.1. Action Taken when a Condition Is Not Trapped

When a condition trap is currently disabled (OFF) and the specified condition occurs, the default action
depends on the condition:

• For HALT and NOMETHOD, a SYNTAX condition is raised with the appropriate Rexx error number.

• For SYNTAX conditions, the clause in error is terminated, and a SYNTAX condition is propagated
to each CALL instruction, INTERPRET instruction, message instruction, or clause with function or
message invocations active at the time of the error, terminating each instruction if a SYNTAX trap is
not active at the instruction level. If the SYNTAX condition is not trapped at any of the higher levels,
processing stops, and a message (see Appendix C, Error Numbers and Messages) describing the
nature of the event that occurred usually indicates the condition.

• For all other conditions, the condition is ignored and its state remains OFF.

11.2. Action Taken when a Condition Is Trapped

When a condition trap is currently enabled (ON) and the specified condition occurs, a CALL trapname
or SIGNAL trapname instruction is processed automatically. You can specify the trapname after the
NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do not specify a trapname, the
name of the condition itself (for example, ERROR or FAILURE) is used.

For example, the instruction call on error enables the condition trap for the ERROR condition.
If the condition occurred, then a call to the routine identified by the name ERROR is made. The
instruction call on error name commanderror would enable the trap and call the routine
COMMANDERROR if the condition occurred, and the caller usually receives an indication of failure.

The sequence of events, after a condition has been trapped, varies depending on whether a SIGNAL
or CALL is processed:

• If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the
condition is disabled (set to OFF), and SIGNAL proceeds as usually.

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction
for the condition is required to re-enable it when the label is reached. For example, if SIGNAL ON
SYNTAX is enabled when a SYNTAX condition occurs, a usual syntax error termination occurs if the
SIGNAL ON SYNTAX label name is not found.

• If the action taken is a CALL, the CALL trapname proceeds in the usual way when the instruction
completes. The call does not affect the special variable RESULT. If the routine should RETURN any
data, that data is ignored.
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When the condition is raised, and before the CALL is made, the condition trap is put into a delayed
state. This state persists until the RETURN from the CALL, or until an explicit CALL (or SIGNAL)
ON (or OFF) is made for the condition. This delayed state prevents a premature condition trap at the
start of the routine called to process a condition trap. When a condition trap is in the delayed state, it
remains enabled, but if the condition is raised again, it is either ignored (for ERROR and FAILURE)
or (for the other conditions) any action (including the updating of the condition information) is
delayed until one of the following events occurs:
1. A CALL ON or SIGNAL ON for the delayed condition is processed. In this case, a CALL or

SIGNAL takes place immediately after the new CALL ON or SIGNAL ON instruction has been
processed.

2. A CALL OFF or SIGNAL OFF for the delayed condition is processed. In this case, the condition
trap is disabled and the default action for the condition occurs at the end of the CALL OFF or
SIGNAL OFF instruction.

3. A RETURN is made from the subroutine. In this case, the condition trap is no longer delayed
and the subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed, that is, the flow is not
affected by the CALL.

Notes:

1. In all cases, the condition is raised immediately upon detection. If SIGNAL ON traps the
condition, the current instruction is ended, if necessary. Therefore, the instruction during which
an event occurs can only be partly processed. For example, if SYNTAX is raised during the
evaluation of the expression in an assignment, the assignment does not take place. Note that
the CALL for traps for which CALL ON is enabled can only occur at clause boundaries. If these
conditions arise in the middle of an INTERPRET instruction, execution of INTERPRET can be
interrupted and resumed later. Similarly, other instructions, for example DO or SELECT, can be
temporarily interrupted by a CALL at a clause boundary.

2. The state (ON, OFF, or DELAY, and any trapname) of each condition trap is saved on entry to a
subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL
ON, and SIGNAL OFF can be used in a subroutine without affecting the conditions set up by the
caller. See Section 2.3, “CALL” for details of other information that is saved during a subroutine
call.

3. The state of condition traps is not affected when an external routine is called by a CALL, even if
the external routine is a Rexx program. On entry to any Rexx program, all condition traps have
an initial setting of OFF.

4. While user input is processed during interactive tracing, all condition traps are temporarily
set OFF. This prevents any unexpected transfer of control—for example, should the user
accidentally use an uninitialized variable while SIGNAL ON NOVALUE is active. For the same
reason, a syntax error during interactive tracing does not cause the exit from the program but is
trapped specially and then ignored after a message is given.

5. The system interface detects certain execution errors either before the execution of the program
starts or after the program has ended. SIGNAL ON SYNTAX cannot trap these errors.

Note that a label is a clause consisting of a single symbol followed by a colon. Any number of
successive clauses can be labels; therefore, several labels are allowed before another type of
clause.
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11.3. Condition Information

When a condition is trapped and causes a SIGNAL or CALL, this becomes the current trapped
condition, and certain condition information associated with it is recorded. You can inspect this
information by using the CONDITION built-in function.

The condition information includes:

• The name of the current trapped condition

• The name of the instruction processed as a result of the condition trap (CALL or SIGNAL)

• The status of the trapped condition

• A descriptive string (see Section 11.3.1, “Descriptive Strings”) associated with that condition

• Optional additional object information (see Section 11.3.2, “Additional Object Information”)

The current condition information is replaced when control is passed to a label as the result of
a condition trap (CALL ON or SIGNAL ON). Condition information is saved and restored across
subroutine or function calls, including one because of a CALL ON trap and across method invocations.
Therefore, a routine called by CALL ON can access the appropriate condition information. Any
previous condition information is still available after the routine returns.

11.3.1. Descriptive Strings
The descriptive string varies, depending on the condition trapped:

ERROR  
The string that was processed and resulted in the error condition.

FAILURE  
The string that was processed and resulted in the failure condition.

HALT  
Any string associated with the halt request. This can be the null string if no string was provided.

LOSTDIGITS  
The number with excessive digits that caused the LOSTDIGITS condition.

NOMETHOD 
The name of the method that could not be found.

NOSTRING 
The readable string representation of the object causing the NOSTRING condition.

NOTREADY  
The name of the stream being manipulated when the error occurred and the NOTREADY
condition was raised. If the stream was a default stream with no defined name, then the null string
might be returned.

NOVALUE 
The derived name of the variable whose attempted reference caused the NOVALUE condition.
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SYNTAX 
Any string the language processor associated with the error. This can be the null string if you did
not provide a specific string. Note that the special variables RC and SIGL provide information on
the nature and position of the processing error. You can enable the SYNTAX condition trap only by
using SIGNAL ON.

USER  
Any string specified by the DESCRIPTION option of the RAISE instruction that raised the
condition. If a description string was not specified, a null string is used.

11.3.2. Additional Object Information
The language processor can provide additional information, depending on the condition trapped:

NOMETHOD
The object that raised the NOMETHOD condition.

NOSTRING
The object that caused the NOSTRING condition.

NOTREADY
The stream object that raised the NOTREADY condition.

SYNTAX
An array containing the objects substituted into the secondary error message (if any) for the
syntax error. If the message did not contain substitution values, a zero element array is used.

USER
Any object specified by an ADDITIONAL or ARRAY option of the RAISE instruction that raised the
condition.

11.3.3. The Special Variable RC

When an ERROR or FAILURE condition is trapped, the Rexx special variable RC is set to the
command return code before control is transferred to the target label (whether by CALL or by
SIGNAL).

Similarly, when SIGNAL ON SYNTAX traps a SYNTAX condition, the special variable RC is set to the
syntax error number before control is transferred to the target label.

11.3.4. The Special Variable SIGL

Following any transfer of control because of a CALL or SIGNAL, the program line number of the
clause causing the transfer of control is stored in the special variable SIGL. If the transfer of control
is because of a condition trap, the line number assigned to SIGL is that of the last clause processed
(at the current subroutine level) before the CALL or SIGNAL took place. The setting of SIGL is
especially useful after a SIGNAL ON SYNTAX trap when the number of the line in error can be used,
for example, to control a text editor. Typically, code following the SYNTAX label can PARSE SOURCE
to find the source of the data and then call an editor to edit the source file, positioned at the line in
error. Note that in this case you might have to run the program again before any changes made in the
editor can take effect.

Alternatively, SIGL can help determine the cause of an error (such as the occasional failure of a
function call) as in the following example:
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Example 11.2. SIGL

signal on syntax
a = a + 1      /* This is to create a syntax error */
say "SYNTAX error not raised"
exit

/* Standard handler for SIGNAL ON SYNTAX */
syntax:
say "Rexx error" rc "in line" sigl":" "ERRORTEXT"(rc)
say "SOURCELINE"(sigl)
trace ?r; nop

This code first displays the error code, line number, and error message. It then displays the line in
error, and finally drops into debug mode to let you inspect the values of the variables used at the line
in error.

11.3.5. Condition Object
A condition object is a Directory returned by the Object option of the CONDITION built-in function.
This directory contains all information currently available on a trapped condition. The information
varies with the trapped condition. .nil is returned for any entry not available to the condition. The
following entries can be found in a condition object:

ADDITIONAL
The additional information object associated with the condition. This is the same object that the
Additional option of the CONDITION built-in function returns. The ADDITIONAL information may
be specified with the ADDITIONAL or ARRAY options of the RAISE instruction.

DESCRIPTION
The string describing the condition. The Description option of the CONDITION built-in function also
returns this value.

INSTRUCTION
The keyword for the instruction executed when the condition was trapped, either CALL or SIGNAL.
The Instruction option of the CONDITION built-in function also returns this value.

CONDITION
The name of the trapped condition. The Condition name option of the CONDITION built-in function
also returns this value.

RESULT
Any result specified on the RETURN or EXIT options of a RAISE instruction.

RC 
The major Rexx error number for a SYNTAX condition. This is the same error number assigned to
the special variable RC.

CODE
The detailed identification of the error that caused a SYNTAX condition. This number is a
nonnegative number in the form nn.nnn. The integer portion is the Rexx major error number (the
same value as the RC entry). The fractional portion is a subcode that gives a precise indication of
the error that occurred.
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ERRORTEXT
The primary error message for a SYNTAX condition. This is the same message available from the
ERRORTEXT built-in function.

MESSAGE
The secondary error message for a SYNTAX condition. The message also contains the content of
the ADDITIONAL information.

PACKAGE
The Package object associated with the program where a condition was raised.

POSITION
The line number in source code at which a condition was raised.

PROGRAM
The name of the program where a condition was raised.

STACKFRAMES
A single-index list of StackFrame instances.

TRACEBACK
A single-index list of formatted traceback lines.

PROPAGATED
.false if the condition was raised at the same level as the condition trap or the value .true if
the condition was reraised with RAISE PROPAGATE.
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Chapter 12.

Concurrency
Conceptually, each Rexx object is like a small computer with its own processor to run its methods,
its memory for object and method variables, and its communication links to other objects for sending
and receiving messages. This is object-based concurrency. It lets more than one method run at the
same time. Any number of objects can be active (running) at the same time, exchanging messages to
communicate with, and synchronize, each other.

12.1. Early Reply

Early reply provides concurrent processing. A running method returns control, and possibly a result, to
the point from which it was called; meanwhile it continues running. The following figure illustrates this
concept.

Figure 12.1. Early Reply

Method A includes a call to Method B. Method B contains a REPLY instruction. This returns control
and a result to method A, which continues processing with the line after the call to Method B.
Meanwhile, Method B also continues running.

The chains of execution represented by method A and method B are called activities.   An activity is a
thread of execution that can run methods concurrently with methods on other activities.

An activity contains a stack of invocations that represent the Rexx programs running on the activity.
An invocation can be a main program invocation, an internal function or subroutine call, an external
function or subroutine call, an INTERPRET instruction, or a message invocation. An invocation is
activated when an executable unit is invoked and removed (popped) when execution completes. In
Figure 12.1, “Early Reply”, the programs begins with a single activity. The activity contains a single
invocation, method A. When method A invokes method B, a second invocation is added to the activity.

When method B issues a REPLY, a new activity is created (activity 2). Method B's invocation is
removed from activity 1, and pushed on to activity 2. Because activities can execute concurrently, both
method A and method B continue processing. The following figures illustrate this concept.
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Figure 12.2. Before REPLY

Figure 12.3. After REPLY

Here is an example of using early reply to run methods concurrently.

Example 12.1. REPLY instruction

/* Example of early reply */

object1 = .example~new
object2 = .example~new

say object1~repeat(10, "Object 1 running")
say object2~repeat(10, "Object 2 running")
say "Main ended."
exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
  say msg
end

602



Message Objects

12.2. Message Objects

A Message object is an intermediary between two objects that enables concurrent processing. All
objects inherit the start method from the Object class. To obtain a message object, an object sends a
start message to the object to which the message object will convey a message. The message is an
argument to the start message as in the following example:

a=p~start("REVERSE")

This line of code creates a message object, A, and sends it a start message. The message object
then sends the REVERSE message to object P. Object P receives the message, performs any needed
processing, and returns a result to message object A. Meanwhile the object that obtained message
object A continues its processing. When message object A returns, it does not interrupt the object that
obtained it. It waits until this object requests the information. Here is an example of using a message
object to run methods concurrently.

Example 12.2. Message object usage

/* Example of using a message object */

object1 = .example~new
object2 = .example~new

a = object1~start("REPEAT",10,"Object 1 running")
b = object2~start("REPEAT",10,"Object 2 running")

say a~result
say b~result
say "Main ended."
exit

::class example
::method repeat
use arg reps,msg
do reps
  say msg
end
return "Repeated" msg"," reps "times."

12.3. Default Concurrency

The instance methods of a class use the EXPOSE instruction to define a set of object variables. This
collection of variables belonging to an object is called its object variable pool. The methods a class
defines and the variables these methods can access is called a scope. Rexx's default concurrency
exploits the idea of scope.  The object variable pool is a set of object subpools, each representing the
set of variables at each scope of the inheritance chain of the class from which the object was created.
Only methods at the same scope can access object variables at any particular scope. This prevents
any name conflicts between classes and subclasses, because the object variables for each class are
in different scopes.

If you do not change the defaults, only one method of a given scope can run on a single object at
a time. Once a method is running on an object, the language processor blocks other methods on
other activities from running in the same object at the same scope until the method that is running
completes. Thus, if different activities send several messages within a single scope to an object the
methods run sequentially.
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The next example shows how the default concurrency works.

Example 12.3. Default concurrency for methods

/* Example of default concurrency for methods of different scopes */

object1 = .subexample~new

say object1~repeat(8, "Object 1 running call 1")   /* These calls run */
say object1~repeater(8, "Object 1 running call 2") /*   concurrently  */
say "Main ended."
exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
  say msg
end

::class subexample subclass example
::method repeater
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
  say msg
end

The preceding example produces output such as the following:

Repeating Object 1 running call 1, 8 times.
Object 1 running call 1
Repeating Object 1 running call 2, 8 times.
Object 1 running call 1
Object 1 running call 2
Main ended.

Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 2

The following example shows that methods of the same scope do not run concurrently by default.

Example 12.4. Default concurrency for methods

/* Example of methods with the same scope not running concurrently*/

object1 = .example~new

say object1~repeat(10,"Object 1 running call 1") /* These calls   */
say object1~repeat(10,"Object 1 running call 2") /* cannot run    */
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say "Main ended."                                /* concurrently. */
exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
  say msg
end

The REPEAT method includes a REPLY instruction, but the methods for the two REPEAT messages
in the example cannot run concurrently. This is because REPEAT is called twice at the same scope
and requires exclusive access to the object variable pool. The REPLY instruction causes the first
REPEAT message to transfer its exclusive access to the object variable pool to a new activity and
continue execution. The second REPLY message also requires exclusive access and waits until the
first method completes.

If the original activity has more than one method active (nested method calls) with exclusive variable
access, the first REPLY instruction is unable to transfer its exclusive access to the new activity and
must wait until the exclusive access is again available. This may allow another method on the same
object to run while the first method waits for exclusive access.

12.3.1. Sending Messages within an Activity
Whenever a message is invoked on an object, the activity acquires exclusive access (a lock) for the
object's scope. Other activities that send messages to the same object that required the locked scope
waits until the first activity releases the lock.

Suppose object A is running method Y, which includes:

self~z

Sequential processing does not allow method Z to begin until method Y has completed. However,
method Y cannot complete until method Z runs. A similar situation occurs when a subclass's overriding
method does some processing and passes a message to its superclasses' overriding method. Both
cases require a special provision: If an invocation running on an activity sends another message to the
same object, this method is allowed to run because the activity has already acquired the lock for the
scope. This allows nested, nonconcurrent method invocations on a single activity without causing a
deadlock situation. The language processor regards these additional messages as subroutine calls.

Here is an example showing the special treatment of single activity messages. The REPEATER and
REPEAT methods have the same scope. REPEAT runs on the same object at the same time as the
REPEATER method because a message to SELF runs the REPEAT method. The language processor
treats this as a subroutine call rather than as concurrently running two methods.

Example 12.5. Sending a message to SELF

/* Example of sending message to SELF */

object1 = .example~new
object2 = .example~new

say object1~repeater(10, "Object 1 running")
say object2~repeater(10, "Object 2 running")

say "Main ended."
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exit

::class example
::method repeater
use arg reps,msg
reply "Entered repeater."
say self~repeat(reps,msg)
::method repeat
use arg reps,msg
do reps
  say msg
end
return "Repeated" msg"," reps "times."

The activity locking rules also allow indirect object recursion. The following figure illustrates indirect
object recursion.

Figure 12.4. Indirect Object Recursion

Method M in object A sends object B a message to run method N. Method N sends a message to
object A, asking it to run method O. Meanwhile, method M is still running in object A and waiting for
a result from method N. A deadlock would result. Because the methods are all running on the same
activity, no deadlock occurs.

12.4. Using Additional Concurrency Mechanisms
Rexx has additional concurrency mechanisms that can add full concurrency so that more than one
method of a given scope can run in an object at a time:

• The SETUNGUARDED method of the Method class and the UNGUARDED option of the METHOD
directive provide unconditional concurrency

• GUARD OFF and GUARD ON control a method's exclusive access to an object's scope

12.4.1. SETUNGUARDED Method and UNGUARDED Option

The SETUNGUARDED method of the Method class and the UNGUARDED option of the ::METHOD
directive control locking of an object's scope when a method is invoked. Both let a method run even if
another method is active on the same object.

Use the SETUNGUARDED method or UNGUARDED option only for methods that do not need
exclusive use of their object variable pool, that is, methods whose execution can interleave with
another method's execution without affecting the object's integrity. Otherwise, concurrent methods can
produce unexpected results.

To use the SETUNGUARDED method for a method you have created with the NEW method of the
Method class, you specify:
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methodname~SETUNGUARDED

(See Section 5.1.3.19, “setUnguarded” for details about SETUNGUARDED.)

Alternately, you can define a method with the ::METHOD directive, specifying the UNGUARDED
option:

::METHOD methodname UNGUARDED

12.4.2. GUARD ON and GUARD OFF

You might not be able to use the SETUNGUARDED method or UNGUARDED option in all cases. A
method might need exclusive use of its object variables, then allow methods on other activities to run,
and perhaps later need exclusive use again. You can use GUARD ON and GUARD OFF to alternate
between exclusive use of an object's scope and allowing other activities to use the scope.

By default, a method must wait until a currently running method is finished before it begins. GUARD
OFF lets another method (running on a different activity) that needs exclusive use of the same object
variables become active on the same object. See Section 2.9, “GUARD” for more information.

12.4.3. Guarded Methods

Concurrency requires the activities of concurrently running methods to be synchronized. Critical data
must be safeguarded so diverse methods on other activities do not perform concurrent updates.
Guarded methods satisfy both these needs.

A guarded method combines  the UNGUARDED option of the ::METHOD directive or the
SETUNGUARDED method of the Method class with the GUARD instruction.

The UNGUARDED option and the SETUNGUARDED method both provide unconditional concurrency.
Including a GUARD instruction in a method makes concurrency conditional:

GUARD ON WHEN expression

If the expression on the GUARD instruction evaluates to .true, the method continues to run. If the
expression on the GUARD instruction evaluates to .false, the method does not continue running.
GUARD reevaluates the expression whenever the value of an exposed object variable changes. When
the expression evaluates to 1, the method resumes running. You can use GUARD to block running
any method when proceeding is not safe. (See Section 2.9, “GUARD” for details about GUARD.)

Note

It is important to ensure that you use an expression that can be fulfilled. If the condition
expression cannot be met, GUARD ON WHEN puts the program in a continuous wait condition.
This can occur in particular when several activities run concurrently. In this case, a second activity
can make the condition expression invalid before GUARD ON WHEN can use it.
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To avoid this, ensure that the GUARD ON WHEN statement is executed before the condition is set to
true. Keep in mind that the sequence of running activities is not determined by the calling sequence,
so it is important to use a logic that is independent of the activity sequence.

12.4.4. Additional Examples
The following example uses REPLY in a method for a write-back cache.

Example 12.6. Method Write_Back

/* Method Write_Back                                 */
use arg data           /* Save data to be written    */
reply 0                /* Tell the sender all was OK */
self~disk_write(data)  /* Now write the data         */

The REPLY instruction returns control to the point at which method Write_Back was called, returning
the result 0. The caller of method Write_Back continues processing from this point; meanwhile,
method Write_Back also continues processing.

The following example uses a message object. It reads a line asynchronously into the variable
nextline:

Example 12.7. Message to INFILE

mymsg = infile~start("READLINE") /* Gets message object to carry    */
/* message to INFILE                                                */
/* do other work */
nextline=mymsg~result            /* Gets result from message object */

This creates a message object that waits for the read to finish while the sender continues with other
work. When the line is read, the mymsg message object obtains the result and holds it until the sender
requests it.

Semaphores and monitors (bounded buffers) synchronize concurrency processes. Giving readers
and writers concurrent access is a typical concurrency problem. The following sections show how to
use guarded methods to code semaphore and monitor mechanisms and to provide concurrency for
readers and writers.

12.4.4.1. Semaphores

A semaphore is a mechanism that controls access to resources, for example, preventing simultaneous
access. Synchronization often uses semaphores. Here is an example of a semaphore class:

Example 12.8. Example of a Rexx Semaphore Class

/*******************************************************************************/
/*  A Rexx Semaphore Class.                                                    */
/*                                                                             */
/* This file implements a semaphore class in Rexx.  The class is defined to    */
/* the Global Rexx Environment.  The following methods are defined for         */
/* this class:                                                                 */
/*   init - Initializes a new semaphore.  Accepts the following positional     */
/*          parameters:                                                        */
/*                             'name' - global name for this semaphore         */
/*                                if named default to set name in              */
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/*                                the class semDirectory                       */
/*                             noshare -  do not define named semaphore        */
/*                                in class semDirectory                        */
/*                             Initial state (0 or 1)                          */
/*   setInitialState - Allow for subclass to have some post-initialization,    */
/*     and do setup based on initial state of semaphore                        */
/*   Waiting  - Is the number of objects waiting on this semaphore.            */
/*   Shared   - Is this semaphore shared (Global).                             */
/*   Named    - Is this semaphore named.                                       */
/*   Name     - Is the name of a named semaphore.                              */
/*   setSem   - Sets the semaphore and returns previous state.                 */
/*   resetSem - Sets state to unSet.                                           */
/*   querySem - Returns current state of semaphore.                            */
/*                                                                             */
/* SemaphoreMeta - Is the metaclass for the semaphore classes.  This class is  */
/*   set up so that when a namedSemaphore is shared, it maintains these        */
/*   named/shared semaphores as part of its state.  These semaphores are       */
/*   maintained in a directory, and an UNKNOWN method is installed on the      */
/*   class to forward unknown messages to the directory.  In this way the      */
/*   class can function as a class and "like" a directory, so [] syntax can    */
/*   be used to retrieve a semaphore from the class.                           */
/*                                                                             */
/*                                                                             */
/* The following are in the subclass EventSemaphore.                           */
/*                                                                             */
/*   Post  - Posts this semaphore.                                             */
/*   Query - Queries the number of posts since the last reset.                 */
/*   Reset - Resets the semaphore.                                             */
/*   Wait  - Waits on this semaphore.                                          */
/*                                                                             */
/*                                                                             */
/* The following are in the subclass MutexSemaphore                            */
/*                                                                             */
/*   requestMutex - Gets exclusive use of semaphore.                           */
/*   releaseMutex - Releases to allow someone else to use semaphore.           */
/*        NOTE: Currently anyone can issue a release (need not be the owner).  */
/*******************************************************************************/
/* ============================================================================ */
/* ===         Start of Semaphore class.                                  ===== */
/* ============================================================================ */
::class SemaphoreMeta subclass class
::method init
  expose semDict
                                            /* Be sure to initialize parent     */
  .message~new(self, .array~of("INIT", super), "a", arg(1,"a"))~send
  semDict = .directory~new

::method unknown
  expose semDict
  use arg msgName, args
                                            /* Forward all unknown messages     */
                                            /* to the semaphore dictionary      */
  .message~new(semDict, msgName, "a", args)~send
  if var("RESULT") then
    return result
  else
    return

::class Semaphore subclass object metaclass SemaphoreMeta

::method init
  expose sem waits shared name
  use arg semname, shr, state

  waits = 0                                 /* No one waiting                   */
  name = ""                                 /* Assume unnamed                   */
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  shared = 0                                /* Assume not shared                */
  sem = 0                                   /* Default to not posted            */

  if state = 1 Then                         /* Should initial state be set?     */
    sem = 1
                                            /* Was a name specified?            */
  if VAR("SEMNAME") & semname \= "" Then Do
    name = semname                          /* Yes, so set the name             */

    if shr \= "NOSHARE" Then Do             /* Do we want to share this sem?    */
      shared = 1                            /* Yes, mark it shared              */
                                            /* Shared add to semDict            */
      self~class[name] = self
    End

  End
  self~setInitialState(sem)                 /* Initialize initial state         */

::method setInitialState
                                            /* This method intended to be       */
nop                                         /* overridden by subclasses         */
::method setSem
expose sem
oldState = sem
sem = 1                                     /* Set new state to 1               */
return oldState

::method resetSem
expose sem
sem = 0
return 0

::method querySem
expose sem
return sem

::method shared
expose shared
return shared                               /* Return .true or .false           */

::method named
expose name
                                            /* Does semaphore have a name?      */
if name = "" Then return 0                  /* No, not named                    */
Else return 1                               /* Yes, it is named                 */

::method name
expose name
return name                                 /* Return name or ""                */

::method incWaits
expose waits
waits = waits + 1                           /* One more object waiting          */

::method decWaits
expose Waits
waits = waits - 1                           /* One object less waiting          */

::method Waiting
expose Waits
return waits                                /* Return number of objects waiting */
/* ========================================================================== */
/* ===         Start of EventSemaphore class.                             === */
/* ========================================================================== */
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::class EventSemaphore subclass Semaphore public
::method setInitialState
  expose posted posts
  use arg posted

  if posted  then posts = 1
  else posts = 0
::method post
  expose posts posted

  self~setSem                        /* Set semaphore state            */
  posted = 1                         /* Mark as posted                 */
  reply
  posts = posts + 1                  /* Increase the number of posts   */

::method wait
  expose posted

  self~incWaits                      /* Increment number waiting       */
  guard off
  guard on when posted               /* Now wait until posted          */
  reply                              /* Return to caller               */
  self~decWaits                      /* Cleanup, 1 less waiting        */

::method reset
  expose posts posted

  posted = self~resetSem             /* Reset semaphore                */
  reply                              /* Do an early reply              */
  posts = 0                          /* Reset number of posts          */

::method query
  expose posts
                                     /* Return number of times         */
  return posts                       /* Semaphore has been posted      */
/* ========================================================================== */
/* ===         Start of MutexSemaphore class.                             === */
/* ========================================================================== */

::class MutexSemaphore subclass Semaphore public

::method setInitialState
  expose owned
  use arg owned

::method requestMutex
  expose Owned

  Do forever                                /* Do until we get the semaphore  */
    owned = self~setSem
    if Owned = 0                            /* Was semaphore already set?     */
      Then leave                            /* Wasn't owned; we now have it   */
    else Do
      self~incWaits
      guard off                             /* Turn off guard status to let   */
                                            /* others come in                 */
      guard on when \Owned                  /* Wait until not owned and get   */
                                            /* guard                          */
      self~decWaits                         /* One less waiting for MUTEX     */
    End
                                            /* Go up and see if we can get it */
  End

::method releaseMutex
  expose owned
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  owned = self~resetSem                     /* Reset semaphore                */

Note

See also semaphore classes EventSemaphore Class and MutexSemaphore Class.

12.4.4.2. Monitors (Bounded Buffer)

A monitor object consists of a number of client methods, WAIT and SIGNAL methods for client
methods to use, and one or more condition variables. Guarded methods provide the functionality of
monitors. Do not confuse this with the Monitor class (see Section 5.4.10, “Monitor Class”).

Example 12.9. Example of a Rexx Monitor Class

::method init
/* Initialize the bounded buffer */
expose size in out n
use arg size
in = 1
out = 1
n = 0

::method append unguarded
/* Add to the bounded buffer if not full */
expose n size b. in
guard on when n < size
use arg b.in
in = in//size+1
n = n+1

::method take
/* Remove from the bounded buffer if not empty */
expose n b. out size
guard on when n > 0
reply b.out
out = out//size+1
n = n-1

12.4.4.3. Readers and Writers
The concurrency problem of the readers and writers requires that writers exclude writers and
readers, whereas readers exclude only writers. The UNGUARDED option is required to allow several
concurrent readers.

Example 12.10. Example of a Rexx Readers and Writers

::method init
expose readers writers
readers = 0
writers = 0

::method read unguarded
/* Read if no one is writing */
expose writers readers
guard on when writers = 0
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readers = readers + 1
guard off

/* Read the data */
say "Reading (writers:" writers", readers:" readers")."
guard on
readers = readers - 1

::method write unguarded
/* Write if no-one is writing or reading */
expose writers readers
guard on when writers + readers = 0
writers = writers + 1

/* Write the data */
say "Writing (writers:" writers", readers:" readers")."
writers = writers - 1
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Chapter 13.

The Security Manager
The security manager provides a special environment that is safe even if agent programs try to
perform unexpected actions. The security manager is called if an agent program tries to:

• Call an external function

• Use a host command

• Use the ::REQUIRES directive

• Access the .LOCAL directory

• Access the .ENVIRONMENT directory

• Use a stream name in the input and output built-in functions (CHARIN, CHAROUT, CHARS, LINEIN,
LINEOUT, LINES, and STREAM)

• Send a message for a protected method to an object

13.1. Calls to the Security Manager

When the language processor reaches any of the defined security checkpoints, it sends a message
to the security manager for the particular checkpoint. The message has a single argument, a directory
of information that pertains to the checkpoint. If the security manager chooses to handle the action
instead of the language processor, the security manager uses the checkpoint information directory to
pass information back to the language processor.

Security manager methods must return a value of either .false or .true to the language processor.
A value of .false indicates that the program is authorized to perform the indicated action. In this
case, processing continues as usual. A value of .true indicates that the security manager performed
the action itself. The security manager sets entries in the information directory to pass results for the
action back to the language processor. The security manager can also use the RAISE instruction to
raise a program error for a prohibited access. Error message 98.948 indicates authorization failures.

The defined checkpoints, with their arguments and return values, are:

CALL 
sent for all external function calls. The information directory contains the following entries:
NAME

The name of the invoked function.

ARGUMENTS
An array of the function arguments.

When the CALL method returns .false, indicating that it handled the external call, the entry
RESULT (if any) in the information directory is used as the function call result.

COMMAND
sent for all host command instructions. The information directory contains the following entries:
COMMAND

The string that represents the host command.

ADDRESS
The name of the target ADDRESS environment for the command.
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When the COMMAND method returns .false, indicating that it handled the command, the
security manager uses the following information directory entries to return the command results:
RC

The command return code. If the entry is not set, a return code of .true is used.

FAILURE
If a FAILURE entry is added to the information directory, a Rexx FAILURE condition is raised.

ERROR
If an ERROR entry is added to the information directory, a Rexx ERROR condition is raised.
The ERROR condition is raised only if the FAILURE entry is not set.

REQUIRES
sent whenever a ::REQUIRES directive in the file is processed. The information directory contains
the following entry:
NAME

The name of the file specified on the ::REQUIRES directive.

When the REQUIRES method returns .false, indicating that it handled the request, the
entry NAME in the information directory is used as the actual file to load for the request. The
REQUIRES method can also provide a security manager to be used for the program loaded by
the ::REQUIRES directive by setting the information directory entry SECURITYMANAGER to the
desired security manager object.

LOCAL
sent whenever Rexx is going to access an entry in the .LOCAL directory as part of the resolution
of the environment symbol name. The information directory contains the following entry:
NAME

The name of the target directory entry.

When the LOCAL method returns .false, indicating that it handled the request, the information
directory entry RESULT contains the directory entry. When RESULT is not set and the method
returns .false, this is the same as a failure to find an entry in the .LOCAL directory. Rexx
continues with the next step in the name resolution.

ENVIRONMENT
sent whenever Rexx is going to access an entry in the .ENVIRONMENT directory as part of the
resolution of the environment symbol name. The information directory contains the following entry:
NAME

The name of the target directory entry.

When the ENVIRONMENT method returns .false, indicating that it handled the request, the
information directory entry RESULT contains the directory entry. When RESULT is not set and
the method returns .false, this is the same as a failure to find an entry in the .ENVIRONMENT
directory. Rexx continues with the next step in the name resolution.

STREAM
sent whenever one of the Rexx input and output built-in functions (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, or STREAM) needs to resolve a stream name. The information
directory contains the following entry:
NAME

The name of the target stream.
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When the STREAM method returns .false, indicating that it handled the request, the information
directory entry STREAM must be set to an object to be used as the stream target. This should be
a stream object or another object that supports the Stream class methods.

METHOD
sent whenever a secure program attempts to send a message for a protected method (see
the ::METHOD directive Section 3.5, “::METHOD”) to an object. The information directory contains
the following entries:
OBJECT

The object the protected method is issued against.

NAME
The name of the protected method.

ARGUMENTS
An array containing the method arguments.

When the METHOD method returns .false, indicating that it handled the request, the entry
RESULT (if any) in the information directory is used as the method result.

13.1.1. Example
The following agent program includes all the actions for which the security manager defines
checkpoints (for example, by calling an external function).

Example 13.1. Agent Program

/* Agent */
"echo Hello There"
call rxfuncadd "rxcalcsqrt", "rxmath", "rxcalcsqrt"
say result
say syssleep(1)
say linein("./profile")
say .methods
.json~define("")
::requires json.cls

The following server implements the security manager with three levels of security. For each action the
security manager must check (for example, by calling an external routine):

1. The audit manager (Dumper class) writes a record of the event but then permits the action.

2. The closed cell manager (noWay class) does not permit the action to take place and raises an
error.

3. The replacement execution environment (Replacer class, a subclass of the noWay class) replaces
the prohibited action with a different action.

Example 13.2. Example of Server Implementing Security Manager

/* Server implements security manager */
parse arg program
routine = .Routine~newFile(program)
say "Calling program" program "with an audit manager:"
pull
routine~setSecurityManager(.Dumper~new(.stderr))
routine~call
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say "Calling program" program "with a function replacement execution environment:"
pull
routine~setSecurityManager(.Replacer~new)
routine~call
say "Calling program" program "with a closed cell manager:"
pull
routine~setSecurityManager(.noWay~new)
signal on syntax
routine~call
exit

syntax:
  say "Agent program terminated with an authorization failure"
  say condition("additional")
  exit

-- A Security Manager that keeps an audit record, and permits the request to run
::class Dumper public
::method init
  -- save our target stream for output
  expose stream
  use arg stream

-- unknown will trap all Security Manager checkpoints
::method unknown
  expose stream                  -- we write to our target stream
  use arg name, args             -- actual message name and arguments
  -- write an audit record
  stream~lineout(.DateTime~new "Called for event" name)
  info = args[1]                 -- info directory is the first arg
  do name over info              -- write the info directory contents
    stream~lineout(.DateTime~new "Info item" name":" info[name])
  end
return 0                         -- allow this to proceed

-- A closed cell Security Manager blocking all requests
::class noWay
-- unknown will trap all Security Manager checkpoints
::method unknown
  -- raise an error for each checkpoint
  raise syntax 98.948 array(arg(1) "blocked by Security manager")

-- A Security Manager that replaces prohibited actions with a different one
::class Replacer subclass noWay  -- inherit restrictive UNKNOWN method
-- command checkpoint
::method command
  use arg info
  info~rc = 1234                 -- replace the command return code
  info~failure = .true           -- raise a FAILURE condition
  return 1 -- we handled this

-- external call checkpoint
::method call
  use arg info
  info~result = "blocked"
  return 1 -- we handled this

-- STREAM checkpoint
::method stream
  use arg info
  -- always replace with a different stream
  info~stream = .stream~new("SecurityManager.txt")
  return 1 -- we handled this

-- .local variable lookup
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::method local
  return 1 -- handle. but return no value

-- .environment variable lookup
::method environment
  return 1 -- handle. but return no value

-- protected method invocation
::method method
  use arg info
  info~result = "blocked"
  return 1 -- we handled this

-- ::REQUIRES directive
::method requires
  use arg info
  info~name = "SecurityManager.cls"
  info~securitymanager = self -- load under this authority
  return 1 -- we handled this
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Input and Output Streams
Rexx defines Stream class methods to handle input and output and maintains the I/O functions for
input and output externals. Using a mixture of Rexx I/O methods and Rexx I/O functions can cause
unpredictable results. For example, using the LINEOUT method and the LINEOUT function on the
same persistent stream object can cause overlays.

When a Rexx I/O function creates a stream object, the language processor maintains the stream
object. When a Rexx I/O method creates a stream object, it is returned to the program to be
maintained. Because of this, when Rexx I/O methods and Rexx I/O functions referring to the same
stream are in the same program, there are two separate stream objects with different read and write
pointers. The program needs to synchronize the read and write pointers of both stream objects, or
overlays occur.

To obtain a stream object (for example, MYFIL), you could use:

Example 14.1. Obtaining a stream object

MyStream = .stream~new("MYFIL")

You can manipulate stream objects with character or line methods:

Example 14.2. Performing input on a stream object

nextchar = MyStream~charin()
nextline = MyStream~linein()

In addition to stream objects, the language processor defines an external data queue object for
interprogram communication. This queue object understands line functions only.

A stream object can have a variety of sources or destinations including files, serial interfaces, displays,
or networks. It can be  transient or dynamic, for example, data sent or received over a serial interface,
or persistent in a static form, for example, a disk file.

Housekeeping for stream objects (opening and closing files, for example) is not explicitly part of
the language definition. However, Rexx provides methods, such as CHARIN and LINEIN, that are
independent of the operating system and include housekeeping. The COMMAND  method provides
the stream_command argument for those situations that require more granular access to operating
system interfaces.

14.1. The Input and Output Model

The model of input and output for Rexx consists of the following logically distinct parts:

• One or more input stream objects

• One or more output stream objects

• One or more external data queue objects

The Rexx methods, instructions, and built-in routines manipulate these elements as follows.
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14.1.1. Input Streams

Input to Rexx programs is in the form of a serial character stream generated by user interaction or
has the characteristics of one generated this way. You can add characters to the end of some stream
objects asynchronously; other stream objects might be static or synchronous.

The methods and instructions you can use on input stream objects are:

• CHARIN  method—reads input stream objects as characters.

• LINEIN  method—reads input stream objects as lines.

• PARSE PULL and PULL instructions—read the default input stream object   (.INPUT), if the
external data queue is empty. PULL is the same as PARSE UPPER PULL.

• PARSE LINEIN instruction—reads lines from the default input stream  object regardless of the state
of the external data queue. Usually, you can use PULL or PARSE PULL to read the default input
stream object.

In a persistent stream object, the Rexx language processor maintains a current read position.  For a
persistent stream:

• The CHARS  method returns the number of characters currently available in an input stream object
from the read position through the end of the stream (including any line-end characters).

• The LINES  method determines if any data remains between the current read position and the end
of the input stream object.

• You can move the read position to an arbitrary point in the stream object with:
• The SEEK or POSITION method of the Stream class

• The COMMAND method's SEEK or POSITION argument

• The start argument of the CHARIN method

• The line argument of the LINEIN method

When the stream object is opened, this position is the start of the stream.

In a transient stream, no read position is available. For a transient stream:

• The CHARS and LINES methods attempt to determine if data is present in the input stream object.
These methods return the value 1 for a device if data is waiting to be read or a determination cannot
be made. Otherwise, these methods return 0.

• The SEEK and POSITION methods of the Stream class and the COMMAND method's SEEK and
POSITION arguments are not applicable to transient streams.

14.1.2. Output Streams

Output stream methods provide for output from a Rexx program. Output stream methods are:

• SAY instruction—writes  to the default output stream object (.OUTPUT).

• CHAROUT  method—writes in character form to either the default or a specified output stream
object.
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• LINEOUT  method—writes in lines to either the default or a specified output stream object.

LINEOUT and SAY write line-end characters at the end of each line. Depending on the operating
system or hardware, other modifications or formatting can be applied; however, the output data
remains a single logical line.

The Rexx language processor maintains the current write position in a stream. It is separate from
the current read position. Write positioning is usually at the end of the stream (for example, when the
stream object is first opened), so that data can be appended to the end of the stream. For persistent
stream objects, you can set the write position to the beginning of the stream to overwrite existing data
by giving a value of 1 for the CHAROUT start argument or the LINEOUT line argument. You can also
use the CHAROUT start argument, the LINEOUT line argument, the SEEK or POSITION method, or
the COMMAND method's SEEK or POSITION stream_command to direct sequential output to some
arbitrary point in the stream.

Note

Once data is in a transient output stream object (for example, a network or serial link), it is no
longer accessible to Rexx.

14.1.3. External Data Queue

Rexx provides queuing services entirely separate from interprocess communications queues.

The external data queue is a list of character strings that only line operations can access. It is external
to Rexx programs in that other Rexx programs can have access to the queue.

The external data queue forms a Rexx-defined channel of communication between programs. Data in
the queue is arbitrary; no characters have any special meaning or effect.

Apart from the explicit Rexx operations described here, no detectable change to the queue occurs
while a Rexx program is running, except when control leaves the program and is manipulated by
external means (such as when an external command or routine is called).

There are two kinds of queues in Rexx. Both kinds are accessed and processed by name.

14.1.3.1. Unnamed Queues

One unnamed queue is automatically provided for each Rexx program in operation. Its name is always
"QUEUE:", and the language processor creates it when Rexx is called and no queue is currently
available. All processes that are children of the process that created the queue can access it as
long as the process that created it is still running. However, other processes cannot share the same
unnamed queue. The queue is deleted when the process that created it ends.

14.1.3.2. Named Queues

Your program creates (and deletes) named queues. You can name the queue yourself or leave the
naming to the language processor. Your program must know the name of the queue to use a named
queue. To obtain the name of the queue, use the RXQUEUE function:
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previous_queue=rxqueue("set",newqueuename)

This sets the new queue name and returns the name of the previous queue.

The following Rexx instructions manipulate the queue:

• PULL or PARSE PULL—reads a string from the head of the queue. If the queue is empty, these
instructions take input from .INPUT.

• PUSH—stacks a line on top of the queue (LIFO).

• QUEUE—adds a string to the tail of the queue (FIFO).

Rexx functions that manipulate QUEUE: as a device name are:

• LINEIN("QUEUE:")--reads a string from the head of the queue. If the queue is empty the program
waits for an entry to be placed on the queue.

• LINEOUT("QUEUE:","string")--adds a string to the tail of the queue (FIFO).

• QUEUED—returns  the number of items remaining in the queue.

Here is an example of using a queue:

Example 14.3. Sample Rexx Procedure Using a Queue

/*                                                                            */
/* push/pull WITHOUT multiprogramming support                                 */
/*                                                                            */
push date() time()                                /* push date and time       */
do 1000                                           /* let's pass some time     */
  nop                                             /* doing nothing            */
end                                               /* end of loop              */
pull a b                                          /* pull them                */
say "Pushed at " a b ", Pulled at " date() time() /* say now and then         */

/*                                                                            */
/*              push/pull WITH multiprogramming support                       */
/*        (no error recovery, or unsupported environment tests)               */
/*                                                                            */
newq = RXQUEUE("Create")                          /* create a unique queue    */
oq = RXQUEUE("Set",newq)                          /* establish new queue      */
push date() time()                                /* push date and time       */
do 1000                                           /* let's spend some time    */
  nop                                             /* doing nothing            */
end                                               /* end of loop              */
pull a b                                          /* get pushed information   */
say "Pushed at " a b ", Pulled at " date() time() /* tell user                */
call RXQUEUE "Delete",newq                   /* destroy unique queue created  */
call RXQUEUE "Set",oq               /* reset to default queue (not required)  */

Special considerations:

• External programs that must communicate with a Rexx procedure through defined data queues
can use the Rexx-provided queue or the queue that QUEUE: references (if the external program
runs in a child process), or they can receive the data queue name through some interprocess
communication technique, including argument passing, placement on a prearranged logical queue,
or the use of usual interprocess communication mechanisms (for example, pipes, shared memory,
or IPC queues).
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• Named queues are available across the entire system. Therefore, the names of queues must be
unique within the system. If a queue named anyque exists, using the following function:

newqueue = RXQUEUE("Create", "ANYQUE")

results in an error.

14.1.3.3. Multiprogramming Considerations
The top-level Rexx program in a process tree owns an unnamed queue. However, any child process
can modify the queue at any time. No specific process or user owns a named queue. The operations
that affect the queue are atomic—the subsystem serializes the resource so that no data integrity
problems can occur. However, you are responsible for the synchronization of requests so that two
processes accessing the same queue get the data in the order it was placed on the queue.

A specific process owns (creates) an unnamed queue. When that process ends, the
language processor deletes the queue. Conversely, the named queues created with
RxQueue("Create", queuename) exist until you explicitly delete them. The end of a program or
procedure that created a named queue does not force the deletion of the private queue. When the
process that created a queue ends, any data on the queue remains until the data is read or the queue
is deleted. (The function call RxQueue("Delete", queuename) deletes a queue.)

If a data queue is deleted by its creator, a procedure, or a program, the items in the queue are also
deleted.

14.1.4. Default Stream Names

A stream name can be a file, a queue, a pipe, or any device that supports character-based input and
output. If the stream is a file or device, the name can be any valid file specification.

Windows and Unix-like systems define three default streams:

• stdin (file descriptor 0) - standard input

• stdout (file descriptor 1) - standard output

• stderr (file descriptor 2) - standard error (output)

Rexx provides .INPUT and .OUTPUT public objects. They default to the default input and output
streams of the operating system. The appropriate default stream object is used when the call to a
Rexx I/O function includes no stream name. The following Rexx statements write a line to the default
output stream of the operating system:

Lineout(,"Hello World")
.Output~lineout("Hello World")

Rexx reserves the names STDIN, STDOUT, and STDERR to allow Rexx functions to refer to these
stream objects. The checks for these names are not case-sensitive; for example, STDIN, stdin,
and sTdIn all refer to the standard input stream object. If you need to access a file with one of these
names, qualify the name with a directory specification, for example, \stdin.

Rexx also provides access to arbitrary file descriptors that are already open when Rexx is called. The
stream name used to access the stream object is HANDLE:x. x is the number of the file descriptor
you wish to use. You can use HANDLE:x as any other stream name; it can be the receiver of a Stream
class method. If the value of x is not a valid file descriptor, the first I/O operation to that object fails.
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Notes:

1. Once you close a HANDLE:x stream object, you cannot reopen it.

2. HANDLE:x is reserved. If you wish to access a file or device with this name, include a directory
specification before the name. For example, \HANDLE:x accesses the file HANDLE:x in the
current directory.

3. Programs that use the .INPUT and .OUTPUT public objects are independent of the operating
environment.

14.1.5. Line versus Character Positioning

Rexx lets you move the read or write position of a persistent stream object to any location within the
stream. You can specify this location in terms of characters or lines.

Character positioning is based upon the view of a stream as a simple collection of bytes of data. No
special meaning is given to any single character. Character positioning alone can move the stream
pointer. For example:

MyStream~charin(10,0)

moves the stream pointer so that the tenth character in MyStream is the next character read. But this
does not return any data. If MyStream is opened for reading or writing, any output that was previously
written but is still buffered is eliminated. Moving the write position always causes any buffered output
to be written.

Line positioning views a stream as a collection of lines of data. There are two ways of positioning by
lines. If you open a stream in binary mode and specify a record length of x on the open, a line break
occurs every x characters. Line positioning in this case is an extension of character positioning. For
example, if you open a stream in binary mode with record length 80, then the following two lines are
exactly equivalent.

MyStream~command(position 5 read line)
MyStream~command(position 321 read char)

Remember that streams and other Rexx objects are indexed starting with one rather than zero.

The second way of positioning by lines is for non-binary streams. Line-end characters separate lines
in non-binary streams. Because the line separator is contained within the stream, ensure accurate
line positioning. For example, it is possible to change the line number of the current read position
by writing extra line-end characters ahead of the read position or by overwriting existing line-end
characters. Thus, line positioning in a non-binary stream object has the following characteristics:

• To do line positioning, it is necessary to read the stream in circumstances such as switching from
character methods to line methods or positioning from the end of the stream.

• If you rewrite a stream at a point prior to the read position, the line number of the current read
position could become inaccurate.

Note that for both character and line positioning, the index starts with one rather than zero. Thus,
character position 1 and line position 1 are equivalent, and both point to the top of the persistent
stream object. The Rexx I/O processing uses certain optimizations for positioning. These require that
no other process is writing to the stream concurrently and no other program uses or manipulates the
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same low-level drive, directory specification, and file name that the language processor uses to open
the file. If you need to work with a stream in these circumstances, use the system I/O functions.

14.2. Implementation

Usually, the dialog between a Rexx program and you as the user takes place on a line-by-
line basis and is, therefore, carried out with the SAY, PULL, or PARSE PULL instructions. This
technique considerably enhances the usability of many programs, because they can be converted to
programmable dialogs by using the external data queue to provide the input you generally type. Use
the PARSE LINEIN instruction only when it is necessary to bypass the external data queue.

When a dialog is not on a line-by-line basis, use the serial interfaces the CHARIN and CHAROUT
methods provide. These methods are important for input and output in transient stream objects, such
as keyboards, printers, or network environments.

Opening and closing of persistent stream objects, such as files, is largely automatic. Generally the first
CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, or LINES message sent to a stream object opens
that stream object. It remains open until you explicitly close it with a CHAROUT or LINEOUT or until
the program ends. Using the LINEOUT method with only the name of a stream object (and no output
string or line) closes the named stream object. The Stream class also provides OPEN and CLOSE
methods and the COMMAND method, which can explicitly open or close a stream object.

If you open a stream with the CHARIN, CHAROUT, LINEIN, or LINEOUT methods, it is opened for
both reading and writing, if possible. You can use the OPEN method or the COMMAND method to
open a stream for read-only or write-only operations.

14.3. Operating System Specifics
The COMMAND method of the Stream class determines the state of an input or output stream object
and carries out specific operations (see Section 5.2.4.8, “command”). It allows Rexx programs to open
and close selected stream objects for read-only, write-only, or read and write operations, to move the
read and write position within a stream object, to control the locking and buffering characteristics, and
to obtain information (such as the size and the date of the last update).

14.4. Examples of Input and Output
In most circumstances, communication with a user running a Rexx program uses the default input and
output stream objects. For a question and answer dialog, the recommended technique is to use the
SAY and PULL instructions on the .INPUT and .OUTPUT objects. (You can use PARSE PULL if case-
sensitive input is needed.)

It is generally necessary to write to, or read from, stream objects other than the default. For example,
the following program copies the contents of one stream to another.

Example 14.4. FILECOPY program

/* FILECOPY.CMD */
/* This routine copies, as lines, the stream or     */
/* file that the first argument names to the stream */
/* or file the second argument names. It is assumed */
/* that the name is not an object, as it could be   */
/* if it is passed from another Rexx program.       */
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parse arg inputname, outputname

inputobject = .stream~new(inputname)
outputobject = .stream~new(outputname)

signal on notready

do forever
  outputobject~lineout(inputobject~linein)
end
exit

notready:
return

As long as lines remain in the named input stream, a line is read and is then immediately written to the
named output stream. This program is easy to change so that it filters the lines before writing them.

The following example illustrates how character and line operations can be mixed in a communications
program. It converts a character stream into lines.

Example 14.5. COLLECT program

/* COLLECT.CMD */
/* This routine collects characters from the stream */
/* the first argument names until a line is         */
/* complete, and then places the line on the        */
/* external data queue.                             */
/* The second argument is a single character that   */
/* identifies the end of a line.                    */
parse arg inputname, lineendchar
inputobject = .stream~new(inputname)

buffer=""      /* zero-length character accumulator */
do forever
  nextchar=inputobject~charin
  if nextchar=lineendchar then leave
  buffer=buffer||nextchar          /* add to buffer */
  end
queue buffer /* place it on the external data queue */

Here each line is built up in a variable called BUFFER. When the line is complete (for example, when
the user presses the Enter key) the loop ends and the language processor places the contents of
BUFFER on the external data queue. The program then ends.

14.5. Errors during Input and Output

The Rexx language offers considerable flexibility in handling errors during input or output. This is
provided in the form of a NOTREADY condition that the CALL ON and SIGNAL ON instructions can
trap. The STATE and DESCRIPTION methods can elicit further information.

When an error occurs during an input or output operation, the function or method called usually
continues without interruption (the output method returns a nonzero count). Depending on the nature
of the operation, a program has the option of raising the NOTREADY condition. The NOTREADY
condition is similar to the ERROR and FAILURE conditions associated with commands in that it does
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not cause a terminating error if the condition is raised but is not trapped. After NOTREADY has been
raised, the following possibilities exist:

• If the NOTREADY condition is not trapped, processing continues without interruption. The
NOTREADY condition remains in the OFF state.

• If SIGNAL ON NOTREADY traps the NOTREADY condition, the NOTREADY condition is raised.
Processing of the current clause stops immediately, and the SIGNAL takes place as usual for
condition traps.

• If CALL ON NOTREADY traps the NOTREADY condition, the NOTREADY condition is raised, but
execution of the current clause is not halted. The NOTREADY condition is put into the delayed
state,  and processing continues until the end of the current clause. While processing continues,
input methods that refer to the same stream can return the null string and output methods can
return an appropriate count, depending on the form and timing of the error. At the end of the current
clause, the CALL takes place as usual for condition traps.

• If the NOTREADY condition is in the DELAY state (CALL ON NOTREADY traps the NOTREADY
condition, which has already been raised), processing continues, and the NOTREADY condition
remains in the DELAY state.

After the NOTREADY condition has been raised and is in DELAY state, the "O" option of the
CONDITION function returns the stream object being processed when the stream error occurred.

The STATE method of the Stream  class returns the stream object state as ERROR, NOTREADY, or
UNKNOWN. You can obtain additional information by using the DESCRIPTION method of the Stream
class.

Note

SAY .OUTPUT and PULL .INPUT never raise the NOTREADY condition. However, the STATE
and DESCRIPTION methods can return NOTREADY.

14.6. Summary of Rexx I/O Instructions and Methods
The following lists Rexx I/O instructions and methods:

• Stream method charIn
• Stream method charOut
• Stream method chars
• Stream method close
• Stream method command
• Stream method description
• Stream method flush
• Stream method lineIn
• Stream method lineOut
• Stream method lines
• Stream method makeArray
• Stream method open
• instruction PARSE LINEIN
• instruction PARSE PULL
• Stream method position
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• instruction PULL
• instruction PUSH
• Stream method qualify
• Stream method query
• instruction QUEUE
• built-in function QUEUED
• instruction SAY
• Stream method seek
• Stream method state
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Chapter 15.

Debugging Aids
In addition to the TRACE instruction there are the following debugging aids.

15.1. Interactive Debugging of Programs

The debug facility permits interactively controlled execution of a program. Adding the prefix
character ? to the TRACE instruction, the TRACE function, or TRACE keyword of the ::OPTIONS
directive. For example, TRACE ?I, TRACE(?I), or ::OPTIONS TRACE ?I) turns on interactive
debugging and indicates to the user that interactive debugging is active. Further TRACE instructions
in the program are ignored, and the language processor pauses after nearly all instructions that are
traced at the console (see Section 15.2, “Debugging Aids” for the exceptions). When the language
processor pauses, the following debug actions are available:

• Entering a null line causes the language processor to continue with the execution until the next
pause for debugging input. Repeatedly entering a null line, therefore, steps from pause point to
pause point. For TRACE ?A, for example, this is equivalent to single-stepping through the program.

• Entering an equal sign (=)  with no surrounding whitespace causes the language processor to
reexecute the clause last traced. For example, if an IF clause is about to take the wrong branch, you
can change the value of the variables on which it depends, and then reexecute it.

Once the clause has been reexecuted, the language processor pauses again.

• Anything else entered is treated as a line of one or more clauses, and processed immediately
(that is, as though DO; line; END; had been inserted in the program). The same rules apply
as for the INTERPRET instruction (for example, DO-END constructs must be complete). If an
instruction contains a syntax error, a standard message is displayed and you are prompted for input
again. Similarly, all other SIGNAL conditions are disabled while the string is processed to prevent
unintentional transfer of control.

During   interpretation of the string, no tracing takes place, except that nonzero return codes from
commands are displayed. The special variable RC and the environment symbol .RS are not set by
commands executed from the string. Once the string has been processed, the language processor
pauses again for further debugging input.

Interactive debug is turned off in either of the following cases:

• A TRACE instruction uses the ? prefix while interactive debug is in effect

• At any time, if TRACE O or TRACE with no options is entered

15.2. Debugging Aids
The numeric form of the TRACE instruction can be used to allow sections of the program to be
executed without pause for debugging input. TRACE n (that is, a positive result) allows execution to
continue, skipping the next n pauses (when interactive debugging is or becomes active). TRACE -n
(that is, a negative result) allows execution to continue without pause and with tracing inhibited for n
clauses that would otherwise be traced. The trace action a TRACE instruction selects is saved and
restored across subroutine calls. This means that if you are stepping through a program (for example,
after using TRACE ?R to trace results) and then enter a subroutine in which you have no interest,
you can enter TRACE O to turn off tracing. No further instructions in the subroutine are traced, but on
return to the caller, tracing is restored.
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Similarly, if you are interested only in a subroutine, you can put a TRACE ?R instruction at its start.
Having traced the routine, the original status of tracing is restored and, if tracing was off on entry to the
subroutine, tracing and interactive debugging are turned off until the next entry to the subroutine.

Because any instructions can be executed in interactive debugging you have considerable control over
the execution.

The following are some examples:

Example 15.1. Character inout and output

Say expr     /* displays the result of evaluating the         */
             /* expression                                    */

name=expr    /* alters the value of a variable                */

Trace O      /* (or Trace with no options) turns off          */
             /* interactive debugging and all tracing         */

Trace ?A     /* turns off interactive debugging but           */
             /* continues tracing all clauses                 */

exit         /* terminates execution of the program           */

do i=1 to 10; say stem.i; end
             /* displays ten elements of the array stem.      */

Exceptions: Some clauses cannot safely be reexecuted, and therefore the language processor does
not pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop.

• All END clauses.

• All THEN, ELSE, OTHERWISE, or null clauses.

• All RETURN and EXIT clauses.

• All SIGNAL clauses (but the language processor pauses after the target label is traced).

• Any clause that causes a syntax error. They can be trapped by SIGNAL ON SYNTAX, but cannot be
reexecuted.

A pause occurs after a REPLY instruction, but the REPLY instruction cannot be reexecuted.

15.3. RXTRACE Variable

When the interpreter starts, it checks the setting of the special environment variable, RXTRACE. If
RXTRACE has been set to ON (not case-sensitive), each time when starting a new Rexx procedure,
the interpreter starts in interactive debug mode as if the Rexx instruction TRACE '?R' had been the
first interpretable instruction. All other settings of RXTRACE are ignored. RXTRACE is only checked
when starting a new Rexx interpreter, it is not checked each time when starting a new Rexx procedure.

Use the SET command to set or query an environment variable or query all environment variables. To
delete an environment variable, use SET variable=.
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Chapter 16.

Reserved Keywords
Keywords can be used as ordinary symbols in many unambiguous situations. The precise rules are
given in this chapter.

The free syntax of Rexx implies that some symbols are reserved for use by the language processor in
certain contexts.

Within particular instructions, some symbols can be reserved to separate the parts of the instruction.
These symbols are referred to as keywords. Examples of Rexx keywords are the WHILE keyword in a
DO instruction and the THEN keyword, which acts as a clause terminator in this case, following an IF
or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and that are not
followed by an "=" or ":" are checked to see if they are instruction keywords. The symbols can be freely
used elsewhere in clauses without being understood as keywords.

Be careful with host commands or subcommands with the same name as Rexx keywords. To avoid
problems, enclose at least the command or subcommand in quotation marks. For example:

"DELETE" Fn"."Ext

You can then also use the SIGNAL ON NOVALUE condition to check the integrity of an executable.

Alternatively, you can precede such command strings with two adjacent quotation marks to
concatenate the null string to the beginning. For example:

""Erase Fn"."Ext

A third option is to enclose the entire expression, or the first symbol, in parentheses. For example:

(Erase Fn"."Ext)
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Chapter 17.

Special Variables
A special variable can be set automatically during processing of a Rexx program. There are five
special variables:

RC    
is set to the return code from any executed command (including those submitted with the
ADDRESS instruction). After the trapping of ERROR or FAILURE conditions, it is also set to the
command return code. When the SYNTAX condition is trapped, RC is set to the syntax error
number (1-99). RC is unchanged when any other condition is trapped.

Note

Commands executed manually during interactive tracing do not change the value of RC.

RESULT   
is set by a RETURN instruction in a subroutine that has been called, or a method that was
activated by a message instruction, if the RETURN instruction specifies an expression. If the
RETURN instruction has no expression, RESULT is dropped (becomes uninitialized). Note that an
EXIT or REPLY instruction also sets RESULT.

SELF   
is set when a method is activated. Its value is the object that forms the execution context for the
method (that is, the receiver object of the activating message). You can use SELF to:
• Run a method in an object in which a method is already running. For example, a Find_Clues

method is running in an object called Mystery_Novel. When Find_Clues finds a clue, it sends a
Read_Last_Page message to Mystery_Novel:

self~Read_Last_Page

• Pass references about an object to the methods of other objects. For example, a Sing method is
running in object Song. The code Singer2~Duet(self) would give the Duet method access
to the same Song.

SIGL   
is set to the line number of the last instruction that caused a transfer of control to a label (that is,
any SIGNAL, CALL, internal function call, or trapped condition). See Section 11.3.4, “The Special
Variable SIGL”.

SUPER   
is set when a method is activated. Its value is the class object that is the usual starting point for
a superclass method lookup for the SELF object. This is the first immediate superclass of the
class that defined the method currently running. (See Section 1.7, “Classes and Instances”.) If the
current method was defined by a class in the direct inheritance chain, SUPER will always refer
to the immediate superclass of that class. If the current method is defined by a mixin class, the
SUPER variable will always be the superclass of the mixin class.

The special variable SUPER lets you call a method in the superclass of an object. For example,
the following Savings class has INIT methods that the Savings class, Account class, and Object
class define.
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Example 17.1. Using the SUPER variable

::class Account

::method INIT
expose balance
use arg balance
self~init:super          /* Forwards to the Object INIT method  */

::method TYPE
return "an account"

::method name attribute

::class Savings subclass Account

::method INIT
expose interest_rate
use arg balance, interest_rate
self~init:super(balance) /* Forwards to the Account INIT method */

::method type
return "a savings account"

When the INIT method of the Savings class is called, the variable SUPER is set to the Account
class object. The instruction:

self~init:super(balance) /* Forwards to the Account INIT method */

calls the INIT method of the Account class rather than recursively calling the INIT method of
the Savings class. When the INIT method of the Account class is called, the variable SUPER is
assigned to the Object class.

Example 17.2. Forwarding an event

self~init:super          /* Forwards to the Object INIT method  */

calls the INIT method that the Object class defines.

You can alter these variables like any other variable, but the language processor continues to set RC,
RESULT, and SIGL automatically when appropriate. The EXPOSE, PROCEDURE, USE and DROP
instructions also affect these variables.

Rexx also supplies functions that indirectly affect the execution of a program. An example is the name
that the program was called by and the source of the program (which are available using the PARSE
SOURCE instruction). In addition, PARSE VERSION makes available the language version and date
of Rexx implementation that is running. The built-in functions ADDRESS, DIGITS, FUZZ, FORM, and
TRACE return other settings that affect the execution of a program.
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Chapter 18.

Useful Services
The following section describes useful commands and services.

18.1. Windows Commands
COPY

copies files.

DELETE
deletes files.

DIR
displays disk directories.

ERASE
erases files.

MODE
controls input and output device characteristics.

PATH
defines or displays the search path for commands and Rexx programs. See also Section 7.2.1,
“Search Order”.

SET
displays or changes Windows environment variables. See also Section 7.4.71, “VALUE”.

18.2. Linux Commands
Most Commonly used commands are:

cp
copies files and directories.

mv
moves files and directories.

rm
removes files and directories.

ls
displays files and directories.

echo $path
defines or displays the search path for commands and Rexx programs. See also Section 7.2.1,
“Search Order”.

env
displays or changes Linux environment variables.

Any other Linux command can be used. For a description of these commands, see the respective
Linux documentation (for example, man-pages).
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18.3. Subcommand Handler Services
For a complete subcommand handler description, see the Open Object Rexx: Application
Programming Interfaces.

18.3.1. The RXSUBCOM Command

The RXSUBCOM command registers, drops, and queries Rexx subcommand handlers. A Rexx
procedure or script file can use RXSUBCOM to register dynamic-link library subcommand handlers.
Once the subcommand handler is registered, a Rexx program can send commands to the
subcommand handler with the Rexx ADDRESS instruction. For example, Rexx Dialog Manager
programs use RXSUBCOM to register the ISPCIR subcommand handler.

Example 18.1. Command RXSUBCOM — REGISTER option

"RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR"
Address ispcir

See Section 2.1, “ADDRESS” for details of the ADDRESS instruction.

18.3.1.1. RXSUBCOM REGISTER

RXSUBCOM REGISTER registers a dynamic-link library subcommand handler. This command makes
a command environment available to Rexx.

RXSUBCOM REGISTER envname dllname procname

Parameters:

envname
The subcommand handler name. The Rexx ADDRESS instruction uses envname to send
commands to the subcommand handler.

dllname
The name of the dynamic-link library file containing the subcommand handler routine.

procname
The name of the dynamic-link library procedure within dllname that Rexx calls as a subcommand
handler.

Return codes:

0
The command environment has been registered.

10
A duplicate registration has occurred. An envname subcommand handler in a different dynamic-
link library has already been registered. Both the new subcommand handler and the existing
subcommand handler can be used.

30
The registration has failed. Subcommand handler envname in library dllname is already
registered.
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1002
RXSUBCOM was unable to obtain the memory necessary to register the subcommand handler.

-1
A parameter is missing or incorrectly specified.

18.3.1.2. RXSUBCOM DROP

RXSUBCOM DROP deregisters a subcommand handler.

RXSUBCOM DROP envname

dllname

Parameters:

envname
The name of the subcommand handler.

dllname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0
The subcommand handler was successfully deregistered.

30
The subcommand handler does not exist.

40
The environment was registered by a different process as RXSUBCOM_NONDROP.

-1
A parameter is missing or specified incorrectly.

18.3.1.3. RXSUBCOM QUERY

RXSUBCOM QUERY checks the existence of a subcommand handler. The query result is returned.

RXSUBCOM QUERY envname

dllname

Parameters:

envname
The name of the subcommand handler.

dllname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0
The subcommand handler is registered.

636



The RXQUEUE Filter

30
The subcommand handler is not registered.

-1
A parameter is missing or specified incorrectly.

18.3.1.4. RXSUBCOM LOAD

RXSUBCOM LOAD loads a subcommand handler dynamic-link library.

RXSUBCOM LOAD envname

dllname

Parameters:

envname
The name of the subcommand handler.

dllname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0
The dynamic-link library was located and loaded successfully.

50
The dynamic-link library was not located or could not be loaded.

-1
A parameter is missing or incorrectly specified.

18.4. The RXQUEUE Filter

RXQUEUE

SESSION

queuename

/FIFO

/LIFO

/CLEAR

The RXQUEUE filter usually operates on the default queue named SESSION. However, if an
environment variable named RXQUEUE exists, the RXQUEUE value is used for the queue name.

For a full description of Rexx queue services for applications programming, see Section 14.1.3,
“External Data Queue”.

Parameters:

queuename
The name of the named Rexx queue to stack or queue items to. If no queuename is given,
SESSION is used.
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/FIFO
queues items from STDIN first in, first out (FIFO) on the Rexx queue. This is the default.

/LIFO
stacks items from STDIN last in, first out (LIFO) on the Rexx queue.

/CLEAR
removes all lines from the Rexx queue.

RXQUEUE takes output lines from another program and places them on a Rexx queue. There is
currently a limit of 65472 characters for a single line. If a line contains more characters than the limit,
those characters are discarded.

A Rexx procedure can use RXQUEUE to capture operating system command and program output for
processing. RXQUEUE can direct output to any Rexx queue, either FIFO (first in, first out) or LIFO
(last in, first out).

RXQUEUE uses the environment variable RXQUEUE for the default queue name. When RXQUEUE
does not have a value, RXQUEUE uses SESSION for the queue name.

The following example obtains the Windows version number with RXQUEUE:

Example 18.2. Command RXQUEUE

/* Sample program to show simple use of RXQUEUE */
/* Find out the Windows version number, using the  */
/* VER command.  VER produces two lines of      */
/* output; one blank line, and one line with the*/
/* format "The Windows Version is n.nn"            */

"VER |RXQUEUE"         /* Put the data on the Queue      */
pull .                 /* Get and discard the blank line */
Pull . "VERSION" number "]" /* The bracket is required for
Windows 95, not for Windows NT */
Say "We are running on Windows Version" number

Note that the syntax of the version string that is returned by Windows can vary, so the parsing syntax
for retrieving the version number may be different.

The following example processes output from the DIR command:

Example 18.3. Command RXQUEUE

/* Sample program to show how to use the RXQUEUE filter */
/* This program filters the output from a DIR command,  */
/* ignoring small files.  It displays a list of the     */
/* large files, and the total of the sizes of the large */
/* files.                                               */

size_limit = 10000            /* The dividing line      */
/* between large and small*/
size_total = 0                /* Sum of large file sizes*/
NUMERIC DIGITS 12             /* Set up to handle very  */
/* large numbers          */

/* Create a new queue so that this program cannot       */
/* interfere with data placed on the queue by another   */
/* program.                                             */

638



Distributing Programs without Source

queue_name = rxqueue("Create")
Call rxqueue "Set", queue_name

"DIR /N | RXQUEUE" queue_name

/* DIR output starts with five header lines             */
Do 5
Pull .                     /* discard header line    */
End

/* Now all the lines are file or directory lines,       */
/* except for one at the end.                           */

Do queued() - 1               /* loop for lines we want */
Parse Pull . . size . name ./* get one name and size */
/* If the size field says "<DIR>", we ignore this    */
/* line.                                             */
If size <> "<DIR>" Then
/* Now check size, and display                    */
If size > size_limit Then Do
Say format(size,12) name
size_total = size_total + size
End
End

Say "The total size of those files is" size_total

/* Now we are done with the queue.  We delete it, which */
/* discards the line remaining in it.                   */

Call rxqueue "DELETE", queue_name

18.5. Distributing Programs without Source

Open Object Rexx comes with a utility called rexxc. You can use this utility to produce versions of
your programs that do not include the original program source. You can use these programs to replace
any Rexx program file that includes the source, with the following restrictions:

1. The SOURCELINE built-in function returns 0 for the number of lines in the program and raises an
error for all attempts to retrieve a line.

2. A sourceless program may not be traced. The TRACE instruction runs without error, but no tracing
of instruction lines, expression results, or intermediate expression values occurs.

The syntax of the rexxc utility is:

rexxc inputfile

outputfile -s -e

If you specify the outputfile, the language processor processes the inputfile and writes the executable
version of the program to the outputfile. If the outputfile already exists, it is replaced.

If the language processor detects a syntax error while processing the program, it reports the error and
stops processing without creating a new output file. If you omit the outputfile, the language processor
performs a syntax check on the program without writing the executable version to a file.

You can use the -s option to suppress the display of the information about the interpreter used, and
the -e option to create the outputfile in base64-encoded format, suitable when a 7-bit encoding is
required.

639



Distributing Programs without Source

On Windows, the -s and -e options can alternatively be specified as /s and /e.

Note

You can use the in-storage capabilities of the RexxStart programming interface to process the file
image of the output file.
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Appendix A. Using DO and LOOP
This appendix provides you with additional information about the DO and LOOP keyword instructions.

A.1. Simple DO Group

If you specify neither repetitor nor conditional, the DO construct only groups a number of instructions
together. They are processed once. For example:

Example A.1. Simple DO block

/* The two instructions between DO and END are both  */
/* processed if A has the value "3".                 */
If a=3 then Do
   a=a+2
   Say "Smile!"
End

A.2. Repetitive Loops

If a DO or LOOP instruction has a repetitor phrase, a conditional phrase, or both, the group of
instructions forms a repetitive loop. The instructions are processed according to the repetitor phrase,
optionally modified by the conditional phrase. (See Section A.3, “Conditional Phrases (WHILE and
UNTIL)”.)

A.2.1. Simple Repetitive Loops

A simple repetitive loop is a repetitive loop in which the repetitor phrase is an expression that
evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the group of instructions
is processed until the condition is satisfied or a Rexx instruction ends the loop (for example, LEAVE).

In the simple form of a repetitive loop, exprr is evaluated immediately (and must result in a positive
whole number or zero), and the loop is then processed that many times.

Example A.2. Simple LOOP block

/* This displays "Hello" five times */
Loop 5
say "Hello"
end

Note that, similar to the distinction between a command and an assignment, if the first token of exprr is
a symbol and the second token is (or starts with) =, the controlled form of repetitor is expected.

A.2.2. Controlled Repetitive Loops

The controlled form specifies control1, a control variable     that is assigned an initial value (the result
of expri, formatted as though 0 had been added) before the first execution of the instruction list. The
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variable is then stepped by adding the result of exprb before the second and subsequent times that
the instruction list is processed.

The instruction list is processed repeatedly as long as the end condition (determined by the result
of exprt) is not met. If exprb is positive or 0, the loop is ended when control1 is greater than exprt. If
negative, the loop is ended when control1 is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated only once, before the
loop begins and before the control variable is set to its initial value. The default value for exprb is 1. If
exprt is omitted, the loop runs infinitely unless some other condition stops it.

Example A.3. Simple LOOP block with conditions

Loop I=3 to -2 by -1      /* Displays:   */
  say i                   /*      3      */
end                       /*      2      */
                          /*      1      */
                          /*      0      */
                          /*     -1      */
                          /*     -2      */

The numbers do not have to be whole numbers:

Example A.4. Simple LOOP block with conditions

I=0.3                     /* Displays:   */
Do Y=I to I+4 by 0.7      /*     0.3     */
  say Y                   /*     1.0     */
end                       /*     1.7     */
                          /*     2.4     */
                          /*     3.1     */
                          /*     3.8     */

The control variable can be altered within the loop, and this can affect the iteration of the loop. Altering
the value of the control variable is not considered good programming practice, though it can be
appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the control variable is
stepped, on the second and subsequent iterations). Therefore, if the end condition is met immediately,
the group of instructions can be skipped entirely. Note also that the control variable is referred to by
name. If, for example, the compound name A.I is used for the control variable, altering I within the
loop causes a change in the control variable.

The execution of a controlled loop can be limited further by a FOR phrase. In this case, you must
specify exprf, and it must evaluate to a positive whole number or zero. This acts like the repetition
count in a simple repetitive loop, and sets a limit to the number of iterations around the loop if no other
condition stops it. Like the TO and BY expressions, it is evaluated only once—when the instruction is
first processed and before the control variable receives its initial value. Like the TO condition, the FOR
condition is checked at the start of each iteration.

Example A.5. Simple LOOP block with limits

Loop Y=0.3 to 4.3 by 0.7 for 3  /* Displays:    */
  say Y                         /*     0.3      */
end                             /*     1.0      */
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Repetitive Loops over Collections

                                /*     1.7      */

In a controlled loop, the control1 name describing the control variable can be specified on the END
clause. This name must match control1 in the DO or LOOP clause in all respects except the case
(note that no substitution for compound variables is carried out). Otherwise, a syntax error results. This
enables the nesting of loops to be checked automatically, with minimal overhead.

Example A.6. Simple LOOP block with limits

Loop K=1 to 10
...
...
End k  /* Checks that this is the END for K loop */

Note

The NUMERIC settings can affect the successive values of the control variable because Rexx
arithmetic rules apply to the computation of stepping the control variable.

A.2.3. Repetitive Loops over Collections

A collection loop specifies a control variable, control2, which receives a different value on each
repetition of the loop. (For more information on control2, see Section 2.4, “DO”.) These different
values are taken from successive values of collection. The collection is any expression that evaluates
to an object that provides a makeArray method, including stem variables. The collection returned
determines the set of values and their order. Array, List, and Queue items return an array with the
items in the appropriate order, as do Streams. Tables, Stems, Directories, etc. are not ordered so the
items get placed in the array in no particular order.

If the collection is a stem variable, the values are the tail names that have been explicitly assigned to
the given stem. The order of the tail names is unspecified, and a program should not rely on any order.

For other collection objects, the makeArray method of the specific collection class determines the
values assigned to the control variable.

All values for the loop iteration are obtained at the beginning of the loop. Therefore, changes to the
target collection object do not affect the loop iteration. For example, using DROP to change the set
of tails associated with a stem or using a new value as a tail does not change the number of loop
iterations or the values over which the loop iterates.

As with controlled repetition, you can specify the symbol that describes the control variable on the
END clause. The control variable is referenced by name, and you can change it within the loop
(although this would not usually be useful). You can also specify the control variable name on an
ITERATE or LEAVE instruction.

Example A.7. Simple LOOP block over a collection

Astem.=0
Astem.3="CCC"
Astem.24="XXX"
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Repetitive Loops over Suppliers

loop k over Astem.
   say k Astem.k
end k

This example can produce:

3 CCC
24 XXX

or:

24 XXX
3 CCC

See Figure A.1, “Concept of a Loop” for a diagram.

A.2.4. Repetitive Loops over Suppliers

A supplier loop specifies one or two control variables, index, and item, which receive a different value
on each repetition of the loop. (For more information on index and item, see Section 2.4, “DO”.) These
different values are taken from successive values of supplier. The supplier is any expression that
evaluates to an object that provides a supplier method. The supplier returned determines the set of
values and their order.

All values for the loop iteration are obtained at the beginning of the loop. Therefore, changes to the
target object do not affect the loop iteration.

If you want to specify a name on the END clause or on an ITERATE or LEAVE instruction, you have to
specify the LABEL keyword.

Example A.8. LOOP WITH over a supplier

loop with index name item method over .numericComparator~methods(.nil)
  say name method~isPrivate method~isProtected method~isGuarded
end

This example can produce:

COMPARE 0 0 1
INIT 0 0 1

A.3. Conditional Phrases (WHILE and UNTIL)

A conditional phrase can modify the iteration of a repetitive loop. It can cause the termination of a loop.
It can follow any of the forms of repetitor (none, FOREVER, simple, controlled, OVER, or WITH). If you
specify WHILE or UNTIL, exprw or expru, respectively, is evaluated after each loop using the latest
values of all variables, and the loop is ended if exprw evaluates to 0 or expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions. For an UNTIL loop,
the condition is evaluated at the bottom—before the control variable has been stepped.
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Example A.9. Simple LOOP block with conditions

Loop I=1 to 10 by 2 until i>6
   say i
end
/* Displays: "1" "3" "5" "7" */

Note

Using the LEAVE or ITERATE instructions can also modify the execution of repetitive loops.

A.4. LABEL Phrase

The LABEL phrase may be used to specify a name for the DO or LOOP. The label can optionally be
used for

• a LEAVE instruction to identify the block to be left

• an ITERATE instruction to identify the loop to be iterated

• the END clause of the block, for additional checking.

Example A.10. Simple LOOP block with label

Loop label outer I=1 to 10 by 2
   ...
   if i > 5 then do label inner
      ...
      if a = b then leave inner
      ...
      if c = b then iterate outer
   end inner
   ...
   say i
end outer
/* Displays: "1" "3" "5" "7" */

In this example, the LEAVE instruction will exit the inner DO block. The ITERATE instruction will iterate
the out LOOP instruction.

If a LABEL phrase is used on a DO or LOOP, it overrides any name derived from any control variable
name. That is, if label is used, the control variable cannot be used on a LEAVE, ITERATE, or END
instruction to identify the block. Only the label name is valid.

A.5. COUNTER Phrase

The COUNTER phrase may be used on repetitive DO or LOOP instructions to specify a ctr variable
that provides a count value for each repetition. ctr starts with 1 and increases by 1 for each repetition.
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COUNTER Phrase

After the loop finishes, ctr will have the count value of the last repetition, or, if the loop had zero
repetitions, ctr will be 0.

Example A.11. Controlled DO loop with COUNTER

do counter ct x = -0.3 to 0.4 by 0.2
  say ct x
end
/* Displays: 1 -0.3, 2 -0.1, 3 0.1, 4 0.3 */

646



Conceptual Model of Loops

A.6. Conceptual Model of Loops

Figure A.1. Concept of a Loop
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Conceptual Model of Loops

Figure A.2. Concept of Repetitive Loop over Collection
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Appendix B. Migration
This appendix lists some differences between Open Object Rexx 5.0 and earlier versions of Open
Object Rexx.

B.1. Incompatible ooRexx features
Functions or features which have been changed in ooRexx 5.0 in a way that will lead to
incompatibilities with prior versions.

B.1.1. RexxUtil SysTempFileName
SysTempFileName on Unix-like platforms now behaves identically to SysTempFileName on Windows.
It no longer uses only the first five characters of the file name part of the template, appending a
random string to make it unique. It also no more prepends an operating system-chosen writable path if
no path is given in the template. Instead it now uses the same filler-based mechanism as the Windows
version does.

Existing ooRexx programs using SysTempFileName on Unix-like platforms will need to be amended.

B.2. Deprecated Rexx features
In exceptional circumstances, ooRexx may deprecate functions or features, which means the use
of these functions is discouraged, documentation is no longer provided, and bug reports against
deprecated functions will not be accepted. Reasons for deprecation include broken functionality,
features that were never officially documented, or functions no longer required.

Although existing code using deprecated functions is expected to continue to work as-is, you are
strongly encouraged to migrate to the replacement functionality, as these functions may be removed
from future releases of the interpreter.

B.2.1. RexxUtil Semaphore functions
The following RexxUtil functions related to semaphore-processing have been deprecated.
SysCloseEventSem SysPostEventSem
SysCloseMutexSem SysPulseEventSem
SysCreateEventSem SysReleaseMutexSem
SysCreateMutexSem SysRequestMutexSem
SysOpenEventSem SysResetEventSem
SysOpenMutexSem SysWaitEventSem

They have been superseded by the new EventSemaphore Class and MutexSemaphore Class.

B.2.2. RexxUtil SysLoadFuncs/SysDropFuncs
The RexxUtil functions SysLoadFuncs and SysDropFuncs have been deprecated. Since ooRexx 4.0.0
these functions do nothing.

B.2.3. ::OPTIONS NOVALUE ERROR directive
The ::OPTIONS NOVALUE ERROR directive has been deprecated. It was renamed to ::OPTIONS
NOVALUE SYNTAX.
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Class ArgUtil

B.2.4. Class ArgUtil
The ArgUtil class and all of it methods have been deprecated. It has been superseded by Validate
Class.

650



Appendix C. Error Numbers and
Messages
The error numbers produced by syntax errors during the processing of Rexx programs are all in the
range 1 to 99. Errors are raised in response to conditions, for example, SYNTAX, NOMETHOD, and
PROPAGATE. When the condition is SYNTAX, the value of the error number is placed in the variable
RC when SIGNAL ON SYNTAX is trapped.

You can use the ERRORTEXT built-in function to return the text of an error message.

Some errors have associated subcodes. A subcode is a one- to three-digit decimal extension to the
error number, for example, 115 in 40.115. When an error subcode is available, additional information
that further defines the source of the error is given. The ERRORTEXT built-in function cannot retrieve
the secondary message, but it is available from the condition object created when SIGNAL ON
SYNTAX traps an error.

C.1. Error List

C.1.1. Error 3 - Failure during initialization.
Explanation:

The REXX program could not be read from the disk.

The associated subcodes are:

001
Failure during initialization: File "filename" is unreadable.

900
message.

901
Failure during initialization: Program "program" was not found.

902
Error writing output file "file".

903
Program "program_name" cannot be run by this version of the REXX interpreter.

905
Encoded compiled program "program_name" cannot be decoded.

C.1.2. Error 4 - Program interrupted.
Explanation:

The system interrupted the execution of your program because of an error or a user request.

The associated subcodes are:

001
Program interrupted with condition condition.
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Error 5 - System resources exhausted.

900
message.

C.1.3. Error 5 - System resources exhausted.
Explanation:

While trying to execute a program, the language processor was unable to get the resources it needed
to continue. For example, it could not get the space needed for its work areas or variables. The
program that called the language processor might itself have already used up most of the available
storage. Or a request for storage might have been for more than the implementation maximum.

The associated subcodes are:

900
message.

C.1.4. Error 6 - Unmatched "/*" or quote.
Explanation:

A comment or literal string was started but never finished. This could be because the language
processor detected:
• The end of the program (or the end of the string in an INTERPRET instruction) without finding the

ending "*/" for a comment or the ending quotation mark for a literal string

• The end of the line for a literal string.

The associated subcodes are:

001
Unmatched comment delimiter ("/*") on line line_number.

002
Unmatched single quote (').

003
Unmatched double quote (").

900
message.

C.1.5. Error 7 - WHEN or OTHERWISE expected.
Explanation:

At least one WHEN construct (and possibly an OTHERWISE clause) is expected within a SELECT
instruction. This message is issued if any other instruction is found or there is no WHEN construct
before the OTHERWISE or all WHEN expressions are false and an OTHERWISE is not present. A
common cause of this error is if you forget the DO and END around the list of instructions following a
WHEN. For example:

WRONG                  RIGHT

Select                 Select
When a=c then          When a=c then DO
Say 'A equals C'       Say 'A equals C'
exit                   exit
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Error 8 - Unexpected THEN or ELSE.

Otherwise nop            end
end                    Otherwise nop
end

The associated subcodes are:

001
SELECT on line line_number requires WHEN.

002
SELECT on line line_number requires WHEN, OTHERWISE, or END.

003
All WHEN expressions of SELECT are false; OTHERWISE expected.

C.1.6. Error 8 - Unexpected THEN or ELSE.
Explanation:

A THEN or an ELSE clause was found that does not match a corresponding IF or WHEN clause. This
often occurs because of a missing END or DO...END in the THEN part of a complex IF...THEN...ELSE
construction. For example:

WRONG                     RIGHT

if a = b then do          if a = b then do
  say "equals"              say "equals"
  exit                      exit
else                      end
  say "not equals"        else
                            say "not equals"

The associated subcodes are:

001
THEN has no corresponding IF or WHEN clause.

002
ELSE has no corresponding THEN clause.

C.1.7. Error 9 - Unexpected WHEN or OTHERWISE.
Explanation:

A WHEN or OTHERWISE was found outside of a SELECT construction. You might have accidentally
enclosed the instruction in a DO...END construction by leaving out an END, or you might have tried to
branch to it with a SIGNAL instruction (which does not work because the SELECT is then ended).

The associated subcodes are:

001
WHEN has no corresponding SELECT.

002
OTHERWISE has no corresponding SELECT.

C.1.8. Error 10 - Unexpected or unmatched END.
Explanation:
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Error 11 - Control stack full.

More ENDs were found in your program than DO, LOOP, or SELECT instructions, or the ENDs did not
match the DO, LOOP, or SELECT instructions. This message also occurs if you try to transfer control
into the middle of a loop using SIGNAL. In this case, the language processor does not expect the END
because it did not process the previous DO instruction. Remember also that SIGNAL deactivates any
current loops, so it cannot transfer control from one place inside a loop to another.

Another cause for this message is placing an END immediately after a THEN or ELSE subkeyword or
specifying a name on the END keyword that does not match the name following DO or LOOP. Putting
the name of the control variable on ENDs that close repetitive loops can also help locate this kind of
error.

The associated subcodes are:

001
END has no corresponding DO, LOOP, or SELECT.

002
Symbol following END ("symbol") must match block specification name ("control_variable") on line
line_number or be omitted.

003
END corresponding to block on line symbol must not have a symbol following it because there is
no LABEL or control variable; found "line_number".

004
Symbol following END ("symbol") must match LABEL of SELECT specification ("control_variable")
on line line_number or be omitted.

005
END must not immediately follow THEN.

006
END must not immediately follow ELSE.

007
END corresponding to SELECT on line symbol must not have a symbol following it because there
is no LABEL; found "line_number".

C.1.9. Error 11 - Control stack full.
Explanation:

Your program exceeds the nesting level limit for control structures (for example, DO...END and
IF...THEN...ELSE). This could be because of a looping INTERPRET instruction, such as:

    
      line='INTERPRET line'
      INTERPRET line

These lines loop until they exceed the nesting level limit and the language processor issues this
message. Similarly, a recursive subroutine or internal function that does not end correctly can loop
until it causes this message.

The associated subcodes are:

001
Insufficient control stack space; cannot continue execution.
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Error 13 - Invalid character in program.

900
message.

C.1.10. Error 13 - Invalid character in program.
Explanation:

A character was found outside a literal (quoted) string that is not a whitespace character or one of the
valid alphanumeric and special characters.

The associated subcodes are:

001
Incorrect character in program "character" ('hex_character'X).

900
message.

C.1.11. Error 14 - Incomplete DO/LOOP/SELECT/IF.
Explanation:

At the end of the program or the string for an INTERPRET instruction, a DO, LOOP, or SELECT
instruction was found without a matching END or an IF clause that is not followed by a THEN clause.
Putting the name of the control variable on each END closing a controlled loop can help locate this
kind of error.

The associated subcodes are:

001
DO instruction on line line_number requires matching END.

002
SELECT instruction on line line_number requires matching END.

003
THEN on line line_number must be followed by an instruction.

004
ELSE on line line_number must be followed by an instruction.

005
DO or LOOP instruction on line line_number requires matching END.

901
OTHERWISE on line line_number requires matching END.

C.1.12. Error 15 - Invalid hexadecimal or binary string.
Explanation:

Hexadecimal strings must not have leading or trailing whitespace characters and whitespace can
only be embedded at byte boundaries. Only the digits 0-9 and the letters a-f and A-F are allowed. The
following are valid hexadecimal strings:

    
        '13'x
        'A3C2 1c34'x
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Error 16 - Label not found.

        '1de8'x

Binary strings can have whitespace only at the boundaries of groups of four binary digits. Only the
digits 0 and 1 are allowed. These are valid binary strings:

    
        '1011'b
        '110 1101'b
        '101101 11010011'b

You might have mistyped one of the digits, for example, typing a letter O instead of the number 0. Or
you might have used the one-character symbol X or B (the name of the variable X or B, respectively)
after a literal string when the string is not intended as a hexadecimal or binary specification. In this
case, use the explicit concatenation operator (||) to concatenate the string to the value of the symbol.

The associated subcodes are:

001
Incorrect location of whitespace character in position position in hexadecimal string.

002
Incorrect location of whitespace character in position position in binary string.

003
Only 0-9, a-f, A-F, and whitespace characters are valid in a hexadecimal string; found "character".

004
Only 0, 1, and whitespace characters are valid in a binary string; found "character".

005
Hexadecimal strings must be grouped in units that are multiples of two characters.

006
Binary strings must be grouped in units that are multiples of four characters.

C.1.13. Error 16 - Label not found.
Explanation:

A SIGNAL instruction has been executed or an event for which a trap was set with SIGNAL ON has
occurred, and the language processor could not find the label specified. You might have mistyped the
label or forgotten to include it.

The associated subcodes are:

001
Label "label_name" not found.

C.1.14. Error 17 - Unexpected PROCEDURE.
Explanation:

A PROCEDURE instruction was encountered at an incorrect position. This could occur because
no internal routines are active or because the PROCEDURE instruction was not the first instruction
processed after the CALL instruction or function call. One cause for this error is dropping through to an
internal routine, rather than calling it with a CALL instruction or a function call.

The associated subcodes are:
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Error 18 - THEN expected.

001
PROCEDURE is valid only when it is the first instruction executed after an internal CALL or
function invocation.

901
INTERPRET data must not contain PROCEDURE.

C.1.15. Error 18 - THEN expected.
Explanation:

A THEN clause must follow each REXX IF or WHEN clause. The language processor found another
clause before it found a THEN clause.

The associated subcodes are:

001
IF instruction on line line_number requires matching THEN clause.

002
WHEN instruction on line line_number requires matching THEN clause.

C.1.16. Error 19 - String or symbol expected.
Explanation:

A symbol or string was expected after the CALL or SIGNAL keywords but none was found. You might
have omitted the string or symbol or inserted a special character (such as a parenthesis).

The associated subcodes are:

001
String or symbol expected after ADDRESS keyword.

002
String or symbol expected after CALL keyword.

003
String or symbol expected after NAME keyword.

004
String or symbol expected after SIGNAL keyword.

006
String or symbol expected after TRACE keyword.

007
String or symbol expected after PARSE keyword.

900
message.

901
String or symbol expected after ::CLASS keyword.

902
String or symbol expected after ::METHOD keyword.
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Error 19 - String or symbol expected.

903
String or symbol expected after ::ROUTINE keyword.

904
String or symbol expected after ::REQUIRES keyword.

905
String expected after EXTERNAL keyword.

906
String or symbol expected after METACLASS keyword.

907
String or symbol expected after SUBCLASS keyword.

908
String or symbol expected after INHERIT keyword.

909
String or symbol expected after tilde (~).

911
String or symbol expected after superclass colon (:).

912
String or symbol expected after STREAM keyword.

913
String or symbol expected after MIXINCLASS keyword.

914
String or symbol expected as ::ATTRIBUTE directive name.

915
String or symbol expected as ::CONSTANT directive name.

916
String or symbol expected as ::CONSTANT value.

917
String or symbol expected as DIGITS value.

918
String or symbol expected as FUZZ value.

919
String or symbol expected as TRACE value.

920
String or symbol expected as ::RESOURCE directive name.

921
String or symbol expected after ::RESOURCE END keyword.

922
String or symbol expected after keyword keyword.
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Error 20 - Symbol expected.

923
Symbol or string expected as ::ANNOTATE attribute value; found "name".

924
Symbol or string expected as ::ANNOTATE attribute value.

925
Symbol or string expected after directive keyword keyword.

C.1.17. Error 20 - Symbol expected.
Explanation:

A symbol is expected after CALL ON, CALL OFF, END, ITERATE, LEAVE, NUMERIC, PARSE,
SIGNAL ON, or SIGNAL OFF. Also, a list of symbols or variable references is expected after DROP,
EXPOSE, and PROCEDURE EXPOSE. Either there was no symbol when one was required or the
language processor found another token.

The associated subcodes are:

900
message.

901
Symbol expected after DROP keyword.

902
Symbol expected after EXPOSE keyword.

903
Symbol expected after PARSE keyword.

904
Symbol expected after PARSE VAR.

905
NUMERIC must be followed by one of the keywords DIGITS, FORM, or FUZZ; found "symbol".

906
Symbol expected after "(" of a variable reference.

907
Symbol expected after LEAVE keyword.

908
Symbol expected after ITERATE keyword.

909
Symbol expected after END keyword.

911
Symbol expected after ON keyword.

912
Symbol expected after OFF keyword.

659



Error 20 - Symbol expected.

913
Symbol expected after USE ARG.

914
Symbol expected after RAISE keyword.

915
Symbol expected after USER keyword.

916
Symbol expected after ::.

917
Symbol expected after superclass colon (:).

918
Symbol expected after LABEL keyword.

919
Symbol expected as ::ANNOTATE attribute name; found "name".

920
Symbol expected after NAMESPACE keyword.

921
Symbol expected as a class name of qualified class name.

922
Symbol expected as a routine name of qualified CALL instruction.

923
Symbol expected as a name of namespace-qualified symbol.

924
Symbol expected for the ::ANNOTATE type.

925
Symbol expected after the FORM keyword.

926
Symbol expected after the DELEGATE keyword.

927
Symbol expected after USE LOCAL.

928
Symbol expected as an indirect variable name; found "token".

929
Symbol expected after keyword keyword.

930
Simple variable or stem symbol expected after > or < prefix operator; found token.

931
Simple variable or stem symbol expected after > or < USE ARG reference operator; found token.
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Error 21 - Invalid data on end of clause.

932
Stem symbol expected after STEM keyword.

933
Symbol expected after WITH keyword.

934
Symbol expected after COUNTER keyword.

C.1.18. Error 21 - Invalid data on end of clause.
Explanation:

A clause such as SELECT or NOP is followed by a token other than a comment.

The associated subcodes are:

900
message.

901
Data must not follow the NOP keyword; found "data".

902
Data must not follow the SELECT keyword; found "data".

903
Data must not follow the NAME keyword; found "data".

904
Data must not follow the condition name; found "data".

905
Data must not follow the SIGNAL label name; found "data".

906
Data must not follow the TRACE setting; found "data".

907
Data must not follow the LEAVE control variable name; found "data".

908
Data must not follow the ITERATE control variable name; found "data".

909
Data must not follow the END control variable name; found "data".

911
Data must not follow the NUMERIC FORM specification; found "data".

912
Data must not follow the GUARD OFF specification; found "data".

913
Data must not follow the ::CONSTANT value; found "data".
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Error 22 - Invalid character string.

914
Data must not follow the ::RESOURCE directive; found "data".

C.1.19. Error 22 - Invalid character string.
Explanation:

A literal string contains character codes that are not valid. This might be because some characters
are not possible, or because the character set is extended and certain character combinations are not
allowed.

The associated subcodes are:

001
Incorrect character string "character_string" ('hex_string'X).

900
message.

901
Incorrect double-byte character.

C.1.20. Error 23 - Invalid data string.
Explanation:

A data string (that is, the result of an expression) contains character codes that are not valid. This
might be because some characters are not possible, or because the character set is extended and
certain character combinations are not allowed.

The associated subcodes are:

001
Incorrect data string "string" ('hex_string'X).

900
message.

C.1.21. Error 24 - Invalid TRACE request.
Explanation:

This message is issued when:
• The option on a TRACE instruction or the argument to the built-in function does not start with A, C,

E, F, I, L, N, O, or R.

• In interactive debugging, you entered a number that is not a whole number.

The associated subcodes are:

001
TRACE request letter must be one of "ACEFILNOR"; found "value".

901
Numeric TRACE requests are valid only from interactive debugging.
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Error 25 - Invalid subkeyword found.

C.1.22. Error 25 - Invalid subkeyword found.
Explanation:

An unexpected token was found at his position of an instruction where a particular subkeyword was
expected. For example, in a NUMERIC instruction, the second token must be DIGITS, FUZZ, or
FORM.

The associated subcodes are:

001
CALL ON must be followed by one of the keywords ERROR, FAILURE, HALT, NOTREADY,
USER, or ANY; found "word".

002
CALL OFF must be followed by one of the keywords ERROR, FAILURE, HALT, NOTREADY,
USER, or ANY; found "word".

003
SIGNAL ON must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOTREADY, NOMETHOD, NOSTRING, NOVALUE, SYNTAX, USER, or ANY; found "word".

004
SIGNAL OFF must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOTREADY, NOMETHOD, NOSTRING, NOVALUE, SYNTAX, USER, or ANY; found "word".

011
NUMERIC FORM must be followed by one of the keywords SCIENTIFIC or ENGINEERING; found
"word".

012
PARSE must be followed by optional keywords LOWER or UPPER, by an optional keyword
CASELESS, and by one of the keywords ARG, LINEIN, PULL, SOURCE, VALUE, VAR, or
VERSION; found "word".

015
NUMERIC must be followed by one of the keywords DIGITS, FORM, or FUZZ; found "word".

017
PROCEDURE must be followed by the keyword EXPOSE or nothing; found "word".

900
message.

901
Unknown keyword on ::CLASS directive; found "word".

902
Unknown keyword on ::METHOD directive; found "word".

903
Unknown keyword on ::ROUTINE directive; found "word".

904
Unknown keyword on ::REQUIRES directive; found "word".
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Error 25 - Invalid subkeyword found.

905
USE must be followed by the keyword ARG, LOCAL or STRICT; found "word".

906
RAISE must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOMETHOD, NOSTRING, NOTREADY, NOVALUE, PROPAGATE, SYNTAX, or USER; found
"word".

907
Unknown keyword on RAISE instruction; found "word".

908
Duplicate DESCRIPTION keyword found.

909
Duplicate ADDITIONAL or ARRAY keyword found.

911
Duplicate RETURN or EXIT keyword found.

912
GUARD ON or GUARD OFF must be followed by the keyword WHEN; found "word".

913
GUARD must be followed by the keyword ON or OFF; found "word".

914
CALL ON condition must be followed by the keyword NAME; found "word".

915
SIGNAL ON condition must be followed by the keyword NAME; found "word".

916
Unknown keyword on FORWARD instruction; found "keyword".

917
Duplicate TO keyword found.

918
Duplicate ARGUMENTS or ARRAY keyword found.

919
Duplicate RETURN or CONTINUE keyword found.

921
Duplicate CLASS keyword found.

922
Duplicate MESSAGE keyword found.

923
SELECT must be followed by the keyword LABEL or CASE; found "word".

924
Unknown keyword on ::OPTIONS directive; found "word".

664



Error 26 - Invalid whole number.

925
Unknown keyword on ::ATTRIBUTE directive; found "word".

926
Unknown keyword on ::RESOURCE directive; found "word".

927
Unknown keyword following "keyword"; found "word".

928
Unknown keyword on ::ANNOTATE directive; found "word".

929
USE STRICT must be followed by the keyword ARG; found "word".

930
Duplicate INPUT keyword found.

931
Duplicate OUTPUT keyword found.

932
Duplicate ERROR keyword found.

933
Acceptable ADDRESS WITH I/O types are NORMAL, STEM, STREAM, and USING; found
"word".

934
WITH must be followed by one of the keywords INPUT, OUTPUT, or ERROR; found "word".

C.1.23. Error 26 - Invalid whole number.
Explanation:

An expression was found that did not evaluate to a whole number or is greater than the limit (the
default is 999,999,999 for 32-bit system and 999,999,999,999,999,999 for 64-bit systems):
• The positional patterns in parsing templates (including variable positional patterns)

• The operand to the right of the power operator

• The values of exprr and exprf in the DO and LOOP instructions

• The values given for DIGITS or FUZZ in the NUMERIC instruction

• The number used in the option of the TRACE setting

• This error is also raised if the value is not permitted (for example, a negative repetition count in a
DO instruction), or the division performed during an integer divide or remainder operation does not
result in a whole number.

The associated subcodes are:

002
Value of repetition count expression in DO or LOOP instruction must be zero or a positive whole
number; found "value".
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Error 27 - Invalid DO or LOOP syntax.

003
Value of FOR expression in DO or LOOP instruction must be zero or a positive whole number;
found "value".

004
Positional pattern of PARSE template must be a whole number; found "value".

005
DIGITS value must be a positive whole number; found "value".

006
FUZZ value must be zero or a positive whole number; found "value".

007
Number used in TRACE setting must be a whole number; found "value".

008
Operand to the right of the power operator (**) must be a whole number; found "value".

011
Result of % operation did not result in a whole number.

012
Result of // operation did not result in a whole number.

900
message.

901
Result of a method call did not result in a whole number; found "value".

902
Result of a COMPARETO method call did not result in a whole number; found "value".

903
Result of a COMPARE method call did not result in a whole number; found "value".

904
Stem "stem" element 0 is not a whole number; found "count".

C.1.24. Error 27 - Invalid DO or LOOP syntax.
Explanation:

A syntax error was found in a DO or LOOP instruction. You probably used BY, TO, FOR, WHILE, or
UNTIL twice, used a WHILE and an UNTIL, or used BY, TO, or FOR when there is no control variable
specified.

The associated subcodes are:

001
Only one WHILE or UNTIL condition can be used on the same loop.

901
Incorrect data following FOREVER keyword on the loop; found "data".
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Error 28 - Invalid LEAVE or ITERATE.

902
DO or LOOP keyword keyword can be specified only once.

903
No INDEX or ITEM control variable specified on a WITH loop.

904
OVER keyword expected for a WITH loop.

905
COUNTER keyword not allowed on a simple DO instruction.

C.1.25. Error 28 - Invalid LEAVE or ITERATE.
Explanation:

A LEAVE or ITERATE instruction was found at an incorrect position. Either no loop was active, or
the name specified on the instruction did not match the control variable of any active loop. Note
that internal routine calls and the INTERPRET instruction protect loops by making them inactive.
Therefore, for example, a LEAVE instruction in a subroutine cannot affect a DO loop in the calling
routine. You probably tried to use the SIGNAL instruction to transfer control within or into a loop.
Because a SIGNAL instruction ends all active loops, any ITERATE or LEAVE instruction causes this
message.

The associated subcodes are:

001
LEAVE is valid only within a repetitive loop or labeled block instruction.

002
ITERATE is valid only within a repetitive loop.

003
Symbol following LEAVE ("symbol") must either match the label of a current loop or block
instruction.

004
Symbol following ITERATE ("symbol") must either match the label of a current loop or be omitted.

005
Symbol following ITERATE ("symbol") does not match a repetitive block instruction.

C.1.26. Error 29 - Environment name too long.
Explanation:

The environment name specified on the ADDRESS instruction is longer than permitted for the system
under which the interpreter is running.

The associated subcodes are:

001
Environment name exceeds limit characters; found "environment_name".

C.1.27. Error 30 - Name or symbol too long.
Explanation:
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Error 31 - Name starts with number or ".".

A variable name, label name, or symbol has exceeded the allowed limit of 250 characters.

The associated subcodes are:

001
Name or symbol exceeds 250 characters: "name".

900
message.

C.1.28. Error 31 - Name starts with number or ".".
Explanation:

A variable was found whose name begins with a numeric digit or a period. You cannot assign a value
to such a variable because you could then redefine numeric constants.

The associated subcodes are:

001
A value cannot be assigned to a number; found "number".

002
Variable symbol must not start with a number; found "symbol".

003
Variable symbol must not start with a "."; found "symbol".

900
message.

C.1.29. Error 33 - Invalid expression result.
Explanation:

The result of an expression was found not to be valid in the context in which it was used.

The associated subcodes are:

001
Value of NUMERIC DIGITS ("value") must exceed value of NUMERIC FUZZ ("value").

002
Value of NUMERIC DIGITS ("value") must not exceed value.

900
message.

901
Incorrect expression result following VALUE keyword of ADDRESS instruction.

902
Incorrect expression result following VALUE keyword of SIGNAL instruction.

903
Incorrect expression result following VALUE keyword of TRACE instruction.
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Error 34 - Logical value not 0 or 1.

904
Incorrect expression result following SYNTAX keyword of RAISE instruction.

C.1.30. Error 34 - Logical value not 0 or 1.
Explanation:

An expression was found in an IF, WHEN, WHILE, or UNTIL phrase that did not result in a 0 or 1. Any
value operated on by a logical operator must result in a 0 or 1. For example, the phrase "If result then
exit rc" fails if result has a value other than 0 or 1.

The associated subcodes are:

001
Value of expression following IF keyword must be exactly "0" or "1"; found "value".

002
Value of expression following WHEN keyword must be exactly "0" or "1"; found "value".

003
Value of expression following WHILE keyword must be exactly "0" or "1"; found "value".

004
Value of expression following UNTIL keyword must be exactly "0" or "1"; found "value".

005
Value of expression to the left of the logical operator "operator" must be exactly "0" or "1"; found
"value".

006
Value of logical list expression element must be exactly "0" or "1"; found "value".

900
message.

901
Logical value must be exactly "0" or "1"; found "value".

902
Value of expression following GUARD keyword must be exactly "0" or "1"; found "value".

903
Authorization return value must be exactly "0" or "1"; found "value".

904
Property logical value must be exactly "0", "1", "true", or "false"; found "value".

905
SELECT CASE comparison result must be exactly "0" or "1"; found "value".

906
Supplier AVAILABLE method did not return exactly "0" or "1"; found "value".

C.1.31. Error 35 - Invalid expression.
Explanation:
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Error 35 - Invalid expression.

An expression contains a grammatical error. Possible causes:
• An expression is missing when one is required

• You ended an expression with an operator

• You specified, in an expression, two operators next to one another with nothing in between them

• You did not specify a right parenthesis when one was required

• You used special characters (such as operators) in an intended character expression without
enclosing them in quotation marks

The associated subcodes are:

001
Incorrect expression detected at "token".

900
message.

901
Prefix operator "operator" is not followed by an expression term.

902
Missing conditional expression following IF keyword.

903
Missing conditional expression following WHEN keyword.

904
Missing initial expression for DO or LOOP control variable.

905
Missing expression following BY keyword.

906
Missing expression following TO keyword.

907
Missing expression following FOR keyword.

908
Missing expression following WHILE keyword.

909
Missing expression following UNTIL keyword.

911
Missing expression following OVER keyword.

912
Missing expression following INTERPRET keyword.

913
Missing expression following OPTIONS keyword.
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Error 35 - Invalid expression.

914
Missing expression following VALUE keyword of an ADDRESS instruction.

915
Missing expression following VALUE keyword of a SIGNAL instruction.

916
Missing expression following VALUE keyword of a TRACE instruction.

917
Missing expression following VALUE keyword of a NUMERIC FORM instruction.

918
Missing expression following assignment instruction.

919
Operator "operator" is not followed by an expression term.

921
Missing expression following GUARD keyword.

922
Missing expression following DESCRIPTION keyword of a RAISE instruction.

923
Missing expression following ADDITIONAL keyword of a RAISE instruction.

924
Missing "(" on expression list of the ARRAY keyword.

925
Missing expression following TO keyword of a FORWARD instruction.

926
Missing expression following ARGUMENTS keyword of a FORWARD instruction.

927
Missing expression following MESSAGE keyword of a FORWARD instruction.

928
Missing expression following CLASS keyword of a FORWARD instruction.

929
Missing expression in logical expression list.

930
Invalid or missing expression following "=" token of a USE ARG instruction.

931
Missing expression following "(" of parse template.

932
Missing expression for calculated CALL name.

933
Missing expression following CASE keyword of a SELECT instruction.
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Error 36 - Unmatched "(" or "[" in expression.

934
Missing expression in WHEN case expression list.

935
Missing expression following keyword keyword of a instruction instruction.

936
Missing expression on ::CONSTANT directive.

C.1.32. Error 36 - Unmatched "(" or "[" in expression.
Explanation:

A matched parenthesis or bracket was found within an expression. There are more left parentheses
than right parentheses or more left brackets than right brackets. To include a single parenthesis in a
command, enclose it in quotation marks.

The associated subcodes are:

900
message.

901
Left parenthesis "(" in position position on line line_number requires a corresponding right
parenthesis ")".

902
Square bracket "[" in position position on line line_number requires a corresponding right square
bracket "]".

C.1.33. Error 37 - Unexpected ",", ")", or "]".
Explanation:

Either a comma was found outside a function invocation, or there are too many right parentheses or
right square brackets in an expression. To include a comma in a character expression, enclose it in
quotation marks. For example, write the instruction:

       Say Enter A, B, or C

as follows:

       Say 'Enter A, B, or C'

The associated subcodes are:

001
Unexpected ",".

002
Unmatched ")" in expression.

900
message.

901
Unexpected "]".
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Error 38 - Invalid template or pattern.

C.1.34. Error 38 - Invalid template or pattern.
Explanation:

A special character that is not allowed within a parsing template (for example, "%") has been found, or
the syntax of a variable pattern is incorrect (that is, no symbol was found after a left parenthesis). This
message is also issued if you omit the WITH subkeyword in a PARSE VALUE instruction.

The associated subcodes are:

001
Incorrect PARSE template detected at "column_position".

002
Incorrect PARSE position detected at "column_position".

003
PARSE VALUE instruction requires WITH keyword.

900
message.

901
Missing PARSE relative position.

C.1.35. Error 39 - Evaluation stack overflow.
Explanation:

The expression is too complex to be evaluated by the language processor.

C.1.36. Error 40 - Incorrect call to routine.
Explanation:

An incorrect call to a routine was found. Possible causes:
• You passed incorrect data (arguments) to the built-in or external routine.

• You passed too many arguments to the built-in, external, or internal routine.

• The external routine called was not compatible with the language processor.

If you did not try to call a routine, you might have a symbol or a string adjacent to a "(" when you
meant it to be separated by a blank or other operator. The language processor would treat this as a
function call. For example, write TIME(4+5) as follows: TIME*(4+5)

The associated subcodes are:

001
External routine "routine" failed.

003
Not enough arguments in invocation of routine; minimum expected is number.

004
Too many arguments in invocation of routine; maximum expected is number.

005
Missing argument in invocation of routine; argument argument_number is required.
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Error 40 - Incorrect call to routine.

011
function_name argument argument_number must be a number; found "value".

012
function_name argument argument_number must be a whole number; found "value".

013
function_name argument argument_number must be zero or positive; found "value".

014
function_name argument argument_number must be positive; found "value".

019
function_name argument 2, "value", is not in the format described by argument 3, "value".

021
function_name argument argument_number must not be a null string.

022
function_name argument argument_number must be a single character or null; found "value".

023
function_name argument argument_number must be a single character; found "value".

024
function_name argument argument_number must be a binary string; found "value".

025
function_name argument argument_number must be a hexadecimal string; found "value".

026
function_name argument argument_number must be a valid symbol; found "value".

027
function_name argument 1 must be a valid stream name; found "value".

028
function_name argument argument_number must be a character class name or a single character;
found "value".

029
function_name conversion to format "value" is not allowed.

032
RANDOM difference between argument 1 ("value") and argument 2 ("value") must not exceed
999,999,999.

033
RANDOM argument 1 ("argument") must be less than or equal to argument 2 ("argument").

034
SOURCELINE argument 1 ("argument") must be less than or equal to the number of lines in the
program (argument).

035
X2D argument 1 cannot be expressed as a whole number; found "value".
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Error 40 - Incorrect call to routine.

043
function_name argument number must be a single non-alphanumeric character or the null string;
found "value".

044
function_name argument number, "value", is a format incompatible with the separator specified in
argument number.

900
message.

901
Result returned by routine is longer than length: "value".

902
function_name argument argument_number must not exceed the whole number limit.

903
function_name argument argument_number must be in the range 0-99; found "value".

904
function_name argument argument_number must be one of values; found "value".

905
TRACE setting letter must be one of "ACEFILNOR"; found "value".

912
function_name argument argument_number must be a single-dimensional array; found "value".

913
function_name argument argument_number must have a string value; found "value".

914
Unknown VALUE function variable environment selector; found "value".

915
function_name cannot be used with QUEUE:.

916
Cannot read from a write-only property.

917
Cannot write to a read-only property or typelib element.

918
Invalid native function signature specification.

919
Argument argument must have a stem object or stem name value; found "value".

920
function_name argument name must be one of "option"; found "value".

921
Argument first option ("first value") must be greater than argument second option ("second value").
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Error 41 - Bad arithmetic conversion.

922
Stem argument does not have a valid count for element 0.

923
The operation is outside the size of the stem array ("value").

924
Stem element at position "position" is not set.

925
Argument argument must be an array object, a stem object, or a stem name value; found "value".

C.1.37. Error 41 - Bad arithmetic conversion.
Explanation:

A term in an arithmetic expression is not a valid number or has an exponent outside the allowed range
of whole number range.

You might have mistyped a variable name, or included an arithmetic operator in a character
expression without putting it in quotation marks.

The associated subcodes are:

001
Nonnumeric value ("value") used in arithmetic operation.

003
Nonnumeric value ("value") used with prefix operator.

004
Value of TO expression of DO or LOOP instruction must be numeric; found "value".

005
Value of BY expression of DO or LOOP instruction must be numeric; found "value".

006
Value of control variable expression of DO or LOOP instruction must be numeric; found "value".

007
Exponent exceeds number digits; found "value".

900
message.

901
Value of RAISE instruction SYNTAX expression must be numeric; found "value".

C.1.38. Error 42 - Arithmetic overflow/underflow.
Explanation:

The result of an arithmetic operation requires an exponent that is greater than the platform limit of nine
digits.

This error can occur during the evaluation of an expression (often as a result of trying to divide a
number by 0) or while stepping a loop control variable.
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Error 43 - Routine not found.

The associated subcodes are:

001
Arithmetic overflow detected at: "value operator value".

002
Arithmetic underflow detected at: "value operator value".

003
Arithmetic overflow; divisor must not be zero.

900
message.

901
Arithmetic overflow; exponent ("exponent") exceeds number digits.

902
Arithmetic underflow; exponent ("exponent") exceeds number digits.

903
Arithmetic underflow; zero raised to a negative power.

C.1.39. Error 43 - Routine not found.
Explanation:

A function has been invoked within an expression or a subroutine has been invoked by a CALL, but it
cannot be found. Possible reasons:
• The specified label is not in the program

• It is not the name of a built-in function

• The language processor could not locate it externally

Check if you mistyped the name.

If you did not try to call a routine, you might have put a symbol or string adjacent to a "(" when you
meant it to be separated by a blank or another operator. The language processor then treats it as a
function call. For example, write the string 3(4+5) as 3*(4+5).

The associated subcodes are:

001
Could not find routine "routine".

900
message.

901
Could not find file "file" for ::REQUIRES.

902
Routine "routineName" not found in namespace "namespace".

C.1.40. Error 44 - Function or message did not return data.
Explanation:
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Error 45 - No data specified on function RETURN.

The language processor called an external routine within an expression. The routine seemed to end
without error, but it did not return data for use in the expression.

You might have specified the name of a program that is not intended for use as a REXX function. Call
it as a command or subroutine instead.

The associated subcodes are:

001
No data returned from function "function".

900
message.

C.1.41. Error 45 - No data specified on function RETURN.
Explanation:

A REXX program has been called as a function, but returned without passing back any data.

The associated subcodes are:

001
Data expected on RETURN instruction because routine "routine" was called as a function.

C.1.42. Error 46 - Invalid variable reference.
Explanation:

Within an ARG, DROP, EXPOSE, PARSE, PULL, or PROCEDURE instruction, the syntax of a variable
reference (a variable whose value is to be used, indicated by its name being enclosed in parentheses)
is incorrect. The right parenthesis that must immediately follow the variable name might be missing or
the variable name might be misspelled.

The associated subcodes are:

001
Extra token ("token") found in variable reference list; ")" expected.

900
message.

901
Missing ")" in variable reference.

902
Extra token ("token") found in USE ARG variable reference; "," or end of instruction expected.

C.1.43. Error 47 - Unexpected label.
Explanation:

A label was used in the expression being evaluated for an INTERPRET instruction or in an expression
entered during interactive debugging.

The associated subcodes are:

001
INTERPRET data must not contain labels; found "label".
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Error 48 - Failure in system service.

C.1.44. Error 48 - Failure in system service.
Explanation:

The language processor stopped processing the program because a system service, such as stream
input or output or the manipulation of the external data queue, has failed to work correctly.

The associated subcodes are:

001
Failure in system service: service.

900
message.

C.1.45. Error 49 - Interpretation error.
Explanation:

A severe error was detected in the language processor or execution process during internal self-
consistency checks.

The associated subcodes are:

001
Interpretation error: unexpected failure initializing the interpreter.

002
Interpretation error: unmatched type number.

900
message.

C.1.46. Error 88 - Invalid argument.
Explanation:

An argument passed to a method, function, or routine was not valid.

The associated subcodes are:

900
message.

901
Missing argument; argument argument is required.

902
The argument argument must be a number; found "value".

903
The argument argument must be a whole number; found "value".

904
The argument argument must be zero or a positive whole number; found "value".

905
Argument argument must be a positive whole number; found "value".

679



Error 88 - Invalid argument.

906
Argument argument must not exceed limit; found "value".

907
Argument argument must be in the range min to max; found "value".

908
Argument argument must not be a null string.

909
Argument argument must have a string value.

910
Argument argument is an invalid pad or character argument; found "value".

911
Argument argument is an invalid length value; found "value".

912
Argument argument is an invalid position value; found "value".

913
Argument argument must be a single-dimensional array.

914
Argument argument must be an instance of the class class.

915
Argument argument could not be converted to a type type.

916
Argument argument must be one of values; found "value".

917
Argument argument reason.

918
Argument argument is not in a valid format; found "value".

919
Argument argument is not in valid pointer format; found "value".

920
Argument argument must be a stem object or stem name; found "value".

921
Argument argument must be a valid double value; found "value".

922
Too many arguments in invocation; number expected.

923
name argument argument_number must be a single-dimensional array; found "value".

924
name argument argument_number must be an array with exactly count items.
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Error 89 - Variable or message term expected.

925
The argument argument must be zero or a positive number; found "value".

926
The argument argument must be a positive number; found "value".

927
The argument argument must be exactly "0" or "1"; found "value".

928
The argument argument must be a VariableReference instance; found "value".

929
The argument argument must be a VariableReference for a Stem variable; found "value".

930
The argument argument must be a VariableReference for a simple variable; found "value".

931
Argument argument was omitted. A VariableReference argument is required.

932
Date template template contains an invalid pattern; found "value".

933
Unable to parse date "date" with template "template".

C.1.47. Error 89 - Variable or message term expected.
Explanation:

An instruction was expecting either a single Rexx variable symbol or a message term to be used for an
assignment.

The associated subcodes are:

001
The USE instruction requires a comma-separated list of variables or assignment message terms.

002
The PARSE instruction was expecting a variable or a message term.

C.1.48. Error 90 - External name not found.
Explanation:

An external method or routine (specified with the EXTERNAL option on an ::ATTRIBUTE,
a ::METHOD, or a ::ROUTINE directive) cannot be found.

The associated subcodes are:

900
message.

997
Unable to find external class "class".
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Error 91 - No result object.

998
Unable to find external method "method".

999
Unable to find external routine "routine".

C.1.49. Error 91 - No result object.
Explanation:

A message term requires a result object, but the method did not return one.

The associated subcodes are:

900
message.

999
Message "message" did not return a result.

C.1.50. Error 92 - OLE error.
The associated subcodes are:

900
message.

901
An unknown OLE error occurred (HRESULT=hresult).

902
Cannot convert OLE VARIANT to REXX object: The conversion of the VARIANT type varianttype
into a REXX object failed.

903
Cannot convert REXX object to OLE VARIANT: The conversion of rexx_object into a VARIANT
failed.

904
The number of elements provided to the method or property is different from the number of
parameters accepted by it.

905
One of the parameters is not a valid VARIANT type.

906
OLE exception: exc_name.

907
The requested method does not exist, or you tried to set the value of a read-only property.

908
One of the parameters could not be coerced to the desired type.

909
One or more of the parameters could not be coerced to the desired type. The first parameter with
incorrect type is argument index.
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Error 93 - Incorrect call to method.

910
A required parameter was omitted.

911
Could not create OLE instance.

912
The object invoked has disconnected from its clients.

C.1.51. Error 93 - Incorrect call to method.
Explanation:

The specified method, built-in function, or external routine exists, but you used it incorrectly.

The associated subcodes are:

900
message.

901
Not enough arguments for method; number expected.

902
Too many arguments in invocation of method; number expected.

903
Missing argument in method; argument argument is required.

904
Method argument argument must be a number; found "value".

905
Method argument argument must be a whole number; found "value".

906
Method argument argument must be zero or a positive whole number; found "value".

907
Method argument argument must be a positive whole number; found "value".

908
Method argument argument must not exceed limit; found "value".

909
Method argument argument must be in the range 0-99; found "value".

911
Method argument argument must not be null.

912
Method argument argument must be a hexadecimal string; found "value".

913
Method argument argument must be a valid symbol; found "value".
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Error 93 - Incorrect call to method.

914
Method argument argument must be one of arguments; found "value".

915
Method option must be one of "arguments"; found "value".

917
Method method does not exist.

918
Incorrect list index "index".

919
Incorrect array position "position".

921
Argument missing on binary operator.

922
Incorrect pad or character argument specified; found "value".

923
Invalid length argument specified; found "value".

924
Invalid position argument specified; found "value".

925
Not enough subscripts for array; number expected.

926
Too many subscripts for array; number expected.

927
Length must be specified to convert a negative value.

928
D2X value must be a valid whole number; found "value".

929
D2C value must be a valid whole number; found "value".

931
Incorrect location of whitespace character in position position in hexadecimal string.

932
Incorrect location of whitespace character in position position in binary string.

933
Only 0-9, a-f, A-F, and whitespace characters are valid in a hexadecimal string; character found
"character".

934
Only 0, 1, and whitespace characters are valid in a binary string; character found "character".
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Error 93 - Incorrect call to method.

935
X2D result is not a valid whole number with NUMERIC DIGITS digits.

936
C2D result is not a valid whole number with NUMERIC DIGITS digits.

937
No more supplier items available.

938
Method argument argument must have a string value.

939
Method argument argument must have a single-dimensional array value.

940
method method target must be a whole number; found "value".

941
Exponent of "exponent" is too large for number spaces.

942
Integer part of "integer" is too large for number spaces.

943
method method target must be a number; found "value".

944
Method argument argument must be a message object.

945
Missing argument in message array; argument argument is required.

946
A message array must be a single-dimensional array with 2 elements.

947
Method SECTION can be used only on single-dimensional arrays.

948
Method argument argument must be of the class class.

949
The value and index objects must be the same for PUT to an index-only collection.

951
Incorrect alarm time; found "time".

952
Method argument argument is an array and does not contain all string values.

953
Method argument argument could not be converted to type type.

954
Method "method" can be used only on a single-dimensional array.
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Error 93 - Incorrect call to method.

956
Element element of the array must be a string.

957
Target object "object" is not a subclass of the message override scope (scope).

958
Positioning of transient streams is not valid.

959
An array cannot contain more than size elements.

961
The argument argument must be a string or array object.

962
Invalid Base64 encoded string.

963
Call to unsupported or unimplemented method.

964
Application error: message.

965
Method name is ABSTRACT and cannot be directly invoked.

966
Incorrect queue index "index".

967
NEW method is not supported for the name class.

968
Invalid native method signature specification.

969
Method argument argument must have a stem object value; found "value".

970
COPY method is not supported for object object.

971
Method argument argument cannot have more than a single dimension.

972
A message name argument must be a string or an array with 2 elements; found "value".

973
ORDERABLE comparison method "method" argument cannot be .nil.

974
The argument argument must be a string, array, or method object.

975
Invalid option value; found "value".
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Error 97 - Object method not found.

976
Hexadecimal strings must be grouped in units that are multiples of two characters.

977
Binary strings must be grouped in units that are multiples of four characters.

978
Method argument argument could not be converted to type type; found "value".

C.1.52. Error 97 - Object method not found.
Explanation:

The object does not have a method with the given name. A frequent cause of this error is an
uninitialized variable.

The associated subcodes are:

001
Object "object" does not understand message "message".

002
Object "object" cannot accept private message "message" from this context.

003
Object "object" cannot accept package scope message "message" from a different package caller.

004
Constant "name" of object "object" has not been initialized.

005
An unhandled NOMETHOD condition has been raised.

900
message.

C.1.53. Error 98 - Execution error.
Explanation:

The language processor detected a specific error during execution. The associated error gives the
reason for the error.

The associated subcodes are:

900
message.

901
Object "object" was not correctly initialized.

902
Unable to convert object "object" to a double-float value.

903
Unable to load library "name".
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Error 98 - Execution error.

904
Abnormal termination occurred.

905
Deadlock detected on a guarded method.

906
Incorrect object reference detected.

907
Object of type "type" was required.

908
Metaclass "metaclass" not found.

909
Class "class" not found.

911
Cyclic inheritance in program "program".

913
Unable to convert object "object" to a single-dimensional array value.

914
Unable to convert object "object" to a string value.

915
A message object that was sent a START message cannot be sent another START, SEND, or
REPLY message.

916
Message object "object" received an error from message "message".

917
Incorrect condition object received for RAISE OBJECT; found "value".

918
No active condition available for PROPAGATE.

919
Unable to convert object "object" to a method.

920
Unable to open file "file" for writing; open result was "error".

921
Address environment "address" does not support input/output redirection.

922
REPLACE or APPEND cannot be specified with a RexxQueue object USING target.

923
Address command redirection failed (oserror).
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Error 98 - Execution error.

924
Object "object" is not a valid ADDRESS WITH INPUT source.

935
REPLY can be issued only once per method invocation.

936
RETURN cannot return a value after a REPLY.

937
EXIT cannot return a value after a REPLY.

938
Message search overrides can be used only from methods of the target object.

939
Additional information for SYNTAX errors must be a single-dimensional array of values.

941
Unknown error number specified on RAISE SYNTAX; found "number".

942
Class "class" must be a MIXINCLASS for INHERIT.

943
Class "class" is not a subclass of "class" base class "class".

944
Class "class" cannot inherit from itself, a superclass, or a subclass ("class").

945
Class "class" has not inherited class "class".

946
FORWARD arguments must be a single-dimensional array of values.

947
FORWARD can only be issued in an object method invocation.

948
Authorization failure: value.

951
Concurrency not supported.

952
Circular ::REQUIRES references detected with name.

970
External command "command" ended with return code rc.

971
External command "command" failed with return code rc.

972
Number number has more digits than the current precision.
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Error 98 - Execution error.

973
Object "object" does not have a string representation.

974
Stream "object" is not ready.

975
Missing array element at position position.

976
Stem object default value cannot be another stem object.

978
Unable to load method "name" from library "library".

979
Unable to load routine "name" from library "library".

980
Unable to load native routine "name".

981
Target RexxContext is no longer active.

982
Library "name" is not compatible with current interpreter version.

983
Execution thread does not match API thread context.

984
User additions are not allowed to the REXX package.

985
User additions are not allowed to the REXX language classes.

986
Reference to unassigned variable "name".

987
Namespace "namespace" not found in package "package".

988
Class "className" not found in namespace "namespace".

989
Class name is ABSTRACT and cannot be directly created.

990
Class name is a metaclass and cannot be made ABSTRACT.

991
Method name may only be invoked from a method of the same object or one of its classes.

992
The EXPOSE instruction may only be used from method invocations.

690



Error 99 - Translation error.

993
The USE LOCAL instruction may only be used from method invocations.

994
Unable to convert object "object" to a supplier object.

995
Unable to reference variable "object"; it must be an uninitialized local variable.

996
Object "object" is not a valid ADDRESS WITH OUTPUT or ERROR target.

997
REPLACE or APPEND cannot be specified with a Stream object USING target.

998
Stem "object" does not contain a size count in element 0.

999
Unable to open file "file" for reading; open result was "error".

C.1.54. Error 99 - Translation error.
Explanation:

An error was detected in the language syntax. The associated error subcode identifies the syntax
error.

The associated subcodes are:

900
message.

901
Duplicate ::CLASS directive instruction.

902
Duplicate ::METHOD directive instruction.

903
Duplicate ::ROUTINE directive instruction.

904
Duplicate ::REQUIRES directive instruction.

905
CLASS keyword on ::METHOD directive requires a matching ::CLASS directive.

906
A ::CONSTANT directive with an expression requires a matching ::CLASS directive.

907
EXPOSE must be the first instruction executed after a method invocation.

908
INTERPRET data must not contain EXPOSE.
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Error 99 - Translation error.

909
GUARD must be the first instruction executed after EXPOSE or USE.

910
USE LOCAL must be the first instruction executed after a method invocation.

911
GUARD can only be issued in an object method invocation.

912
INTERPRET data must not contain GUARD.

913
GUARD instruction did not include references to exposed variables.

914
INTERPRET data must not contain directive instructions.

915
INTERPRET data must not contain USE LOCAL.

916
Unrecognized directive instruction.

917
Incorrect external name specification "name".

918
USE ARG requires a "," between variable names; found "token".

919
REPLY can only be issued in an object method invocation.

921
Incorrect program line in method source array.

922
::REQUIRES directives must appear before other directive instructions.

923
INTERPRET data must not contain FORWARD.

924
INTERPRET data must not contain REPLY.

925
An ATTRIBUTE method name must be a valid variable name; found "name".

926
Incorrect class external; too many parameters.

927
"classname" is not a valid metaclass.

928
Incorrect class external; class name missing or invalid.
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Error 99 - Translation error.

929
Incorrect class external; invalid class server "servername".

930
The "..." argument marker can only appear at the end of the argument list.

931
Duplicate ::ATTRIBUTE directive instruction.

932
Duplicate ::CONSTANT directive instruction.

933
Abstract methods cannot have a method body.

934
Attribute methods cannot have a method body.

935
External attributes cannot have a method body.

936
External methods cannot have a method body.

937
Attribute methods without a SET or GET designation cannot have a method body.

938
Constant methods cannot have a method body.

939
External routines cannot have a code body.

940
Abstract attributes cannot have a method body.

941
Method or routine code may not contain directive instructions.

942
Duplicate ::RESOURCE directive instruction.

943
Missing ::RESOURCE end marker "endmarker" for resource "resourcename".

944
The REXX name is reserved for the language-provided namespace.

945
::ANNOTATE target type "name" not found.

946
Delegate methods cannot have a method body.

947
Delegate attributes cannot have a method body.
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RXSUBCOM Utility Program

948
USE LOCAL cannot process compound variables; found "variable".

949
"classname" is not a valid class.

950
A USE ARG default value is not allowed for variable references.

C.2. RXSUBCOM Utility Program
RXSUBCOM issues the following errors:

C.2.1. Error 116 - The RXSUBCOM REGISTER parameters are
incorrect.
Explanation:

RXSUBCOM REGISTER requires the following parameters:

RXSUBCOM REGISTER envname dllname procname
 envname

is the name of the subcommand handler.

 . dllname
is the name of the file containing the subcommand handler routine.

 . procname
is the name of the procedure that REXX calls as a subcommand handler.

C.2.2. Error 117 - The RXSUBCOM DROP parameters are incorrect.
Explanation:

RXSUBCOM DROP requires the environment name be specified.

RXSUBCOM DROP envname [dllname]
 envname

is the name of the subcommand handler.

 . dllname
is the name of the file containing the subcommand handler routine (optional).

C.2.3. Error 118 - The RXSUBCOM LOAD parameters are incorrect.
Explanation:

RXSUBCOM LOAD requires the environment name be specified.

RXSUBCOM LOAD envname [dllname]
 envname

is the name of the subcommand handler.

 . dllname
is the name of the file containing the subcommand handler routine (optional).
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Error 125 - The RXSUBCOM QUERY parameters are incorrect.

C.2.4. Error 125 - The RXSUBCOM QUERY parameters are incorrect.
Explanation:

RXSUBCOM QUERY requires the environment name be specified.

RXSUBCOM QUERY envname [dllname]
 envname

is the name of the subcommand handler.

 dllname
is the name of the file containing the subcommand handler routine (optional).

C.3. RXQUEUE Utility Program
RXQUEUE issues the following errors:

C.3.1. Error 119 - The REXX rxapi queuing system is not available.

C.3.2. Error 120 - The size of the data is incorrect.
Explanation:

The data supplied to the RXQUEUE command is too long. The RXQUEUE program accepts data
records containing 0 - 65472 bytes. A record exceeded the allowable limits.

C.3.3. Error 121 - Storage for data queues is exhausted.
Explanation:

The queuing system is out of memory. No more storage is available to store queued data.

C.3.4. Error 122 - The name %1 is not a valid queue name.
Explanation:

The queue name contains an invalid character. Only the following characters can appear in queue
names:

        
           'A' .. 'Z', '0' .. '9', '.', '!', '?', '_'

C.3.5. Error 123 - The queue access mode is not correct.
Explanation:

An internal error occurred in RXQUEUE. The RXQUEUE program tried to access a queue with an
incorrect access mode. Correct access modes are LIFO and FIFO.

C.3.6. Error 124 - The queue %1 does not exist.
Explanation:

The command attempted to access a nonexistent queue.
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Error 131 - The syntax of the command is incorrect.

C.3.7. Error 131 - The syntax of the command is incorrect.

C.3.8. Error 132 - System error occurred while processing the
command.

C.4. rexxc Utility Program
When rexxc encounters a syntax error in a Rexx program while translating or syntax checking it, it
returns the negated ooRexx error code. In addition, rexxc issues the following errors:

C.4.1. Error 127 - The rexxc command parameters are incorrect.
Explanation:

The rexxc utility was invoked with zero or more than two parameters. rexxc accepts the following
parameters:
• To check the syntax of a REXX program: rexxc inputfile [-s]

• To translate a REXX program into a sourceless executable file: rexxc inputfile outputfile [-s] [-e]

• The -s option suppresses the copyright banner and the -e option generates the outputfile in base64-
encoded format.

• On Windows the -s and -e options can alternatively be specified as /s and /e.

C.4.2. Error 128 - Output file name must be different from input file
name.

C.4.3. Error 129 - SYNTAX: rexxc inputfile [outputfile] [-s] [-e]

C.4.4. Error 130 - Without outputfile rexxc only performs a syntax
check.
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Appendix D. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

D.1. Trademarks
Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.
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Source Code For This Document

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

D.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix E, Common Public
License Version 1.0. The source code is available at https://sourceforge.net/p/oorexx/code-0/HEAD/
tree/docs/.

The source code for this document is maintained in DocBook SGML/XML format.

The railroad diagrams were generated with the help of "Railroad Diagram Generator" located at http://
bottlecaps.de/rr/ui. Special thanks to Gunther Rademacher for creating and maintaining this tool.
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Appendix E. Common Public License
Version 1.0
THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

E.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution 'originates' from a Contributor if it was added to the Program
by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

E.2. Grant of Rights
1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,

worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement
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Requirements

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

E.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

E.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified
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No Warranty

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

E.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

E.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE
OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

E.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
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General

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.
The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify
this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve
as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will
be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

702



Appendix F. Revision History
Revision 0-0 Aug 2016

Initial creation for 5.0
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Symbols
% (integer division operator), 19, 585
% method, 174, 427
& (AND logical operator) operator, 21
& method, 176
&& (exclusive OR operator), 21
&& method, 176
* (multiplication operator), 19, 585
* method, 174, 427
** (power operator), 585
** method, 174
*-* tracing flag, 84
+ (addition operator), 19, 585
+ method, 174, 346, 426
+++ tracing flag, 85
, (comma)

as a special character, 15
as continuation character, 16
in CALL instruction, 48
in function calls, 443
in parsing template list, 46, 579
separator of arguments, 48, 443

- (subtraction operator), 19, 585
- method, 174, 346, 427
. (period)

as placeholder in parsing, 569
causing substitution in variable names, 33
in numbers, 584

.CONTEXT, 440

.DEBUGINPUT object, 439

.ENDOFLINE object, 437

.ENVIRONMENT object, 437

.ERROR object, 439

.FALSE object, 437

.INPUT object, 439

.LINE object, 440

.LOCAL object, 438

.METHODS StringTable, 441

.nil object, 437

.OUTPUT object, 439

.RESOURCES StringTable, 441

.RexxInfo object, 437

.ROUTINES StringTable, 441

.RS (return code)
not set during interactive debug, 629

.RS object, 442

.STDERR object, 439

.STDIN object, 439

.STDOUT object, 440

.STDQUE object, 440

.SYSCARGS object, 440

.TRACEOUTPUT object, 439

.TRUE object, 438
/ (division operator), 19, 585
/ method, 174, 427
// (remainder operator), 585
// method, 174, 427
: (colon)

as a special character, 15
in a label, 27

::ANNOTATE directive, 90
::ATTRIBUTE directive, 91
::CLASS directive, 94
::CONSTANT directive, 96
::METHOD directive, 97
::OPTIONS directive, 100

ALL option, 101
DIGITS option, 101
ERROR option, 101
FAILURE option, 101
FORM option, 101
FUZZ option, 101
LOSTDIGITS option, 101
NOPROLOG option, 102
NOSTRING option, 101
NOTREADY option, 101
NOVALUE option, 101
PROLOG option, 102
TRACE option, 102

::REQUIRES directive, 102
::RESOURCE directive, 103
::ROUTINE directive, 104
; semicolon

as a special character, 15
< (less than operator), 20
< method, 175, 390
<< (strictly less than operator), 20, 20
<< method, 175, 391
<<= (strictly less than or equal operator), 20
<<= method, 175, 391
<= (less than or equal operator), 20
<= method, 175, 391
<> (less than or greater than operator), 20
<> method

of Class class, 122
of Object class, 148
of Orderable class, 390
of Pointer class, 392
of String class, 174

= (equal sign)
assignment operator, 28
equal operator, 20
immediate debug command, 629
in DO instruction, 50
in LOOP instruction, 63
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in parsing template, 572
= method

of Class class, 122
of Object class, 148
of Orderable class, 390
of Pointer class, 392
of String class, 174

== (strictly equal operator), 20, 20, 588
== method

of Class class, 122
of Object class, 148
of Orderable class, 391
of Pointer class, 392
of String class, 175

> (greater than operator), 20
> method, 174, 390
>.> tracing flag, 85
>< (greater than or less than operator), 20
>< method

of Class class, 122
of Object class, 148
of Orderable class, 390, 390
of Pointer class, 392
of String class, 174, 174

>= (greater than or equal operator), 20
>= method, 175, 391
>=> tracing flag, 85
>> (strictly greater than operator), 20, 20
>> method, 175, 391
>>= (strictly greater than or equal operator), 20
>>= method, 175, 391
>>> tracing flag, 85
>A> tracing flag, 85
>C> tracing flag, 85
>E> tracing flag, 85
>F> tracing flag, 85
>I> tracing flag, 85
>K> tracing flag, 85
>L> tracing flag, 85
>M> tracing flag, 85
>N> tracing flag, 85
>O> tracing flag, 85
>P> tracing flag, 86
>R> tracing flag, 86
>V> tracing flag, 86
? method

of String class, 177
? prefix on TRACE option, 83
[] method

of Array class, 249
of Bag class, 262
of Collection class, 238
of Directory class, 275
of IdentityTable class, 280

of List class, 284
of MutableBuffer class, 373
of Queue class, 293
of Relation class, 299
of Routine class, 168
of Set class, 305
of Stem class, 310
of String class, 177
of StringTable class, 314
of Table class, 319

[]= method
of Array class, 250
of Bag class, 263
of Collection class, 238
of Directory class, 275
of IdentityTable class, 280
of List class, 284
of MutableBuffer class, 374
of Properties class, 290
of Queue class, 293
of Relation class, 299
of Set class, 305
of Stem class, 310
of StringTable class, 314
of Table class, 319

\ (NOT operator), 21
\ method, 176
\< (not less than operator), 20
\< method, 175, 391
\<< (strictly not less than operator), 20
\<< method, 175, 391
\= (not equal operator), 20
\= method

of Class class, 122
of Object class, 148
of Pointer class, 392

\== (not strictly equal operator), 20, 20, 588
\== method, 175, 391

of Class class, 122
of Object class, 148
of Pointer class, 392

\> (not greater than operator), 20
\> method, 175, 391
\>> (strictly not greater than operator), 20
\>> method, 176, 391
| inclusive OR operator, 21
| method, 176
|| concatenation operator, 19
|| method, 148, 177
~ (tilde or twiddle), 4, 24
~~, 24
¬ (NOT operator), 21
¬< (not less than operator), 20
¬<< (strictly not less than operator), 20
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¬= (not equal operator), 20
¬== (not strictly equal operator), 20, 20, 588
¬> (not greater than operator), 20
¬>> (strictly not greater than operator), 20

A
ABBREV function

description, 450
example, 450
using to select a default, 451

abbrev method
of String class, 178

abbreviations with ABBREV function, 450
ABS function

description, 451
example, 451

abs method
of String class, 178

absolute value
finding using the ABS function, 451
finding using the abs method, 178
used with power, 586

absoluteFile method
of File class, 362

absolutePath method
of File class, 362

abstract class, definition, 108
ABSTRACT subkeyword

in a CLASS directive, 94
in a METHOD directive, 97
in an ATTRIBUTE directive, 91

abuttal, 19
acquire method

of MutexSemaphore class, 388
action taken when a condition is not trapped, 595
action taken when a condition is trapped, 592,
595
activate method

of Class class, 122
active blocks, 62
activity, 601
add external function, 483
addClass method

of Package class, 158
addDays method

of DateTime class, 351
of TimeSpan class, 429

addHours method
of DateTime class, 351
of TimeSpan class, 430

addition operator, 19
ADDITIONAL subkeyword

in a RAISE instruction, 73
addMicroseconds method

of DateTime class, 352
of TimeSpan class, 430

addMinutes method
of DateTime class, 351
of TimeSpan class, 430

addPackage method
of Package class, 158

addPublicClass method
of Package class, 159

addPublicRoutine method
of Package class, 159

ADDRESS function
description, 451
determining current environment, 451
example, 451

ADDRESS instruction
description, 42
example, 45
issuing commands to, 42
settings saved during subroutine calls, 50

address setting, 46, 50
addRoutine method

of Package class, 159
addSeconds method

of DateTime class, 352
of TimeSpan class, 430

addWeeks method
of DateTime class, 351
of TimeSpan class, 429

addYears method
of DateTime class, 350

Alarm class, 328
AlarmNotification class, 331
algebraic precedence, 21
allAt method

of Bag class, 262
of Relation class, 299

allIndex method
of Bag class, 262
of Relation class, 300

allIndexes method
of Array class, 250
of Bag class, 263
of Collection class, 238
of Directory class, 275
of IdentityTable class, 281
of List class, 284
of Queue class, 293
of Relation class, 300
of Set class, 305
of Stem class, 311
of StringTable class, 315
of Supplier class, 419
of Table class, 319
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allItems method
of Array class, 250
of Bag class, 263
of Collection class, 239
of Directory class, 275
of IdentityTable class, 281
of List class, 284
of Queue class, 293
of Relation class, 300
of Set class, 306
of Stem class, 311
of StringTable class, 315
of Supplier class, 419
of Table class, 319

alnum method
of String class, 170

alpha method
of String class, 171

alphabetical character word options in TRACE,
82
alphabetics

checking with dataType, 193
checking with DATATYPE, 464
used in symbols, 13

alphanumerics
checking with dataType, 193
checking with DATATYPE, 464

altering
flow within a repetitive loop, 61
special variables, 38
TRACE setting, 500

alternating exclusive scope access, 607
AND, logical operator, 21
ANDing character strings, 179, 454
annotation

creation, 90
annotation method

of Class class, 122
of Method class, 143
of Package class, 159
of Routine class, 168

annotations method
of Class class, 123
of Method class, 143
of Package class, 159
of Routine class, 168

ANY subkeyword
in a CALL instruction, 47, 592
in a SIGNAL instruction, 79, 592

append method
of Array class, 250
of CircularQueue class, 268
of List class, 284
of MutableBuffer class, 374

of OrderedCollection class, 243
of Queue class, 294
of String class, 179

APPEND subkeyword
in an ADDRESS instruction, 42

appendAll method
of OrderedCollection class, 243

architecture method
of RexxInfo class, 401

ARG function
description, 451
example, 452

ARG instruction
description, 46
example, 46

ARG option of PARSE instruction, 67
ARG subkeyword

in a PARSE instruction, 46, 66, 577
in a USE instruction, 86

args method
of RexxContext class, 398

arguments
checking with ARG function, 451
of functions, 46, 443
of programs, 46
of subroutines, 46
passing in messages, 24
passing to functions, 443, 444
retrieving with ARG function, 451
retrieving with ARG instruction, 46
retrieving with PARSE ARG instruction, 67

arguments method
of Message class, 134
of StackFrame class, 415

ARGUMENTS subkeyword
in a FORWARD instruction, 55

arithmetic
basic operator examples, 586
comparisons, 588
errors, 589
exponential notation, 587

examples, 587
numeric comparisons example

examples, 589
NUMERIC setting, 64
operator examples, 586
operators, 18, 584, 585
overflow, 590
precision, 585
underflow, 590

array
initialization, 30
setting up, 33

Array class, 247
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ARRAY subkeyword
in a FORWARD instruction, 55
in a RAISE instruction, 73

array term, 25, 26
arrayIn method

of InputStream class, 215
of Stream class, 219

arrayOut method
of OutputStream class, 217
of Stream class, 219

assigning data to variables, 66
assignment

description, 28, 29
indicator (=), 28
of compound variables, 33
of stems variables, 30
several assignments, 576

associative storage, 33
at method

of Array class, 251
of Bag class, 263
of Collection class, 239
of Directory class, 275
of IdentityTable class, 281
of List class, 285
of Queue class, 294
of Relation class, 300
of Set class, 306
of Stem class, 311
of StringTable class, 315
of Table class, 319

attachment method
of Alarm class, 329
of Ticker class, 421

attribute
creation, 91, 96

ATTRIBUTE subkeyword
in a METHOD directive, 97
in an ANNOTATE directive, 90

available method
of StreamSupplier class, 418
of Supplier class, 420

B
B2X function

description, 453
example, 453

b2x method
of String class, 179

backslash, use of, 15, 21
Bag class, 261
base class for mixins, 108
Base option of DATE function, 466
base64

decodeBase64 method, 195
encodeBase64 method, 196

baseClass method
of Class class, 123

baseDate method
of DateTime class, 352

basic operator examples, 586
BEEP function

description, 453
example, 454

binary
digits, 12
strings

description, 12
implementation maximum, 13
nibbles, 12

to hexadecimal conversion, 179, 453
BITAND function

description, 454
example, 454

bitAnd method
of String class, 179

BITOR function
description, 455
example, 455

bitOr method
of String class, 180

bits checked using DATATYPE function, 464
bits checked using dataType method, 193
BITXOR function

description, 455
example, 455

bitXor method
of String class, 180

blank method
of String class, 171

blanks, 19
adjacent to special character, 8
in parsing, treatment of, 568
removal with STRIP function, 494
removal with strip method, 206

boolean operations, 21
bottom of program reached during execution , 54
bounded buffer, 612
Buffer class, 332
built-in functions

ABBREV, 450
ABS, 451
ADDRESS, 451
ARG, 451
B2X, 453
BEEP, 453
BITAND, 454
BITOR, 455
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BITXOR, 455
C2D, 456
C2X, 456
calling, 48
CENTER, 457
CENTRE, 457
CHANGESTR, 457
CHARIN, 458
CHAROUT, 459
CHARS, 460
COMPARE, 460
CONDITION, 460
COPIES, 462
COUNTSTR, 462
D2C, 463
D2X, 463
DATATYPE, 464
DATE, 465
definition, 48
DELSTR, 469
DELWORD, 470
DIGITS, 470
DIRECTORY, 470
ENDLOCAL, 471
ERRORTEXT, 471
FILESPEC, 472
FORM, 472
FORMAT, 473
FUZZ, 474
INSERT, 474
LASTPOS, 474
LEFT, 475
LENGTH, 475
LINEIN, 475
LINEOUT, 477
LINES, 478
LOWER, 479
MAX, 479
MIN, 480
OVERLAY, 480
POS, 480
QUALIFY, 481
QUEUED, 481
RANDOM, 481
REVERSE, 482
RIGHT, 482
RXFUNCADD, 483
RXFUNCDROP, 483
RXFUNCQUERY, 483
RXQUEUE, 484
SETLOCAL, 485
SIGN, 486
SOURCELINE, 486
SPACE, 486

STREAM, 487
STRIP, 494
SUBSTR, 495
SUBWORD, 496
SYMBOL, 496
TIME, 497
TRACE, 500
TRANSLATE, 501
TRUNC, 502
UPPER, 502
USERID, 503
VALUE, 503
VAR, 505
VERIFY, 506
WORD, 506
WORDINDEX, 507
WORDLENGTH, 507
WORDPOS, 507
WORDS, 508
X2B, 508
X2C, 509
X2D, 509
XRANGE, 510

built-in object
.CONTEXT object, 440
.DEBUGINPUT object, 439
.ENDOFLINE object, 437
.ENVIRONMENT object, 437
.ERROR object, 439
.FALSE object, 437
.INPUT object, 439
.LINE object, 440
.LOCAL object, 438
.METHODS object, 441
.nil object, 437
.OUTPUT object, 439
.RESOURCES object, 441
.RexxInfo object, 437
.ROUTINES object, 441
.RS object, 442
.STDERR object, 439
.STDIN object, 439
.STDOUT object, 440
.STDQUE object, 440
.SYSCARGS object, 440
.TRACEOUTPUT object, 439
.TRUE object, 438

BY phrase of DO instruction, 51
BY subkeyword

in a DO instruction, 50, 641
in a LOOP instruction, 63, 641

C
C2D function
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description, 456
example, 456

c2d method
of String class, 181

C2X function
description, 456
example, 457

c2x method
of String class, 181

CALL instruction
description, 47
example, 49

call method
of Routine class, 168

call, recursive, 49
calls to the Security Manager, 614
callWith method

of Routine class, 168
cancel method

of Alarm class, 329
of AlarmNotification class, 331
of Ticker class, 421

canceled/cancelled method
of Alarm class, 329
of Ticker class, 422

canRead method
of File class, 363

canWrite method
of File class, 363

CASE subkeyword
in a SELECT instruction, 77

CASELESS subkeyword
in a PARSE instruction, 66, 576

caselessAbbrev method
of String class, 182

caselessChangeStr method
of MutableBuffer class, 374
of String class, 183

CaselessColumnComparator class, 335
CaselessComparator class, 334
caselessCompare method

of String class, 183
caselessCompareTo method

of String class, 183, 183
caselessContains method

of MutableBuffer class, 375
of String class, 184

caselessContainsWord method
of MutableBuffer class, 375
of String class, 184

caselessCountStr method
of MutableBuffer class, 376, 376
of String class, 185, 185

CaselessDescendingComparator class, 337

caselessEndsWith method
of MutableBuffer class, 376
of String class, 185

caselessEquals method
of String class, 185, 185

caselessLastPos method
of MutableBuffer class, 376, 376
of String class, 186, 186

caselessMatch method
of MutableBuffer class, 376, 376
of String class, 186, 186

caselessMatchChar method
of MutableBuffer class, 377, 377
of String class, 187, 187

caselessPos method
of MutableBuffer class, 377, 377
of String class, 187, 187

caselessStartsWith method
of MutableBuffer class, 377
of String class, 187

caselessWordPos method
of MutableBuffer class, 377
of String class, 188

caseSensitiveFiles method
of RexxInfo class, 401

ceiling method
of String class, 188

CENTER function
description, 457
example, 457

center method
of String class, 189

centering a string
CENTER, 457
CENTRE, 457

CENTRE function
description, 457
example, 457

centre method
of String class, 189

CHANGESTR function
description, 457
example, 457

changeStr method
of MutableBuffer class, 378
of String class, 189

changing destination of commands, 42
changing the search order for methods, 114
character

definition, 8
lowercasing using LOWER function, 479
removal with STRIP function, 495
removal with strip method, 206
strings, ANDing, 179, 454
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strings, exclusive-ORing, 180, 455
strings, ORing, 180, 455
to decimal conversion, 181, 456
to hexadecimal conversion, 181, 456
uppercasing using UPPER function, 502

character input and output, 619, 630
character input streams, 620
character output streams, 620
CHARIN function

description, 458
example, 458

charIn method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 219

CHARIN method
role in input and output, 620

CHAROUT function
description, 459
example, 459

charOut method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 220

CHAROUT method
role in input and output, 620

CHARS function
description, 460
example, 460

chars method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 220

CHARS method
role in input and output, 620

checking arguments with ARG function, 451
CircularQueue class, 267
civilTime method

of DateTime class, 354
class

Alarm class, 328
AlarmNotification class, 331
Array class, 247
Bag class, 261
Buffer class, 332
CaselessColumnComparator class, 335
CaselessComparator class, 334
CaselessDescendingComparator class, 337
CircularQueue class, 267
Class class, 121
ColumnComparator class, 334
Comparable class, 332
Comparator class, 333
DateTime class, 339

definition, 5
DescendingComparator class, 336
Directory class, 273
EventSemaphore class, 357
File class, 360
IdentityTable class, 279
InputOutputStream class, 215
InputStream class, 215
InvertingComparator class, 337
List class, 283
Message class, 132
MessageNotification class, 371
Method class, 142
Monitor class, 371
MutableBuffer class, 373
MutexSemaphore class, 387
NumericComparator class, 338
Object class, 147
Orderable class, 390
OutputStream class, 216
Package class, 157
Pointer class, 391
Properties class, 288
Queue class, 292
RegularExpression class, 392
Relation class, 298
RexxContext class, 397
RexxInfo class, 400
RexxQueue class, 409
Routine class, 166
Set class, 304
Singleton class, 413
StackFrame class, 415
Stem class, 308
Stream class, 218
StreamSupplier class, 417
String class, 169
StringTable class, 313
subclasses, 7
superclasses, 7
Supplier class, 419
Table class, 318
Ticker class, 421
TimeSpan class, 424
types

abstract, 108
metaclass, 108
mixin, 108
object, 107

Validate class, 431
VariableReference class, 434
WeakReference class, 435

Class class, 121
class method
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of Object class, 148
class methods, 107
CLASS subkeyword

in a FORWARD instruction, 55
in a METHOD directive, 97
in an ANNOTATE directive, 90
in an ATTRIBUTE directive, 91

classes method
of Package class, 159

classType method
of Validate class, 431

clauses
assignment, 27, 28
commands, 28
continuation of, 16
description, 8, 28, 29
directives, 27
extended assignment, 29
instructions, 27
keyword instructions, 28
labels, 27
message instructions, 28
null, 26

close method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 220

CMD command environment, 45
cntrl method

of String class, 171
code page, 9
codes, error, 651
collating sequence using XRANGE, 510
Collection class, 238

organization, 237
Collection classes, 236
COLLECTOR example program, 626
colon

as a special character, 15
as label terminators, 27
in a label, 27

ColumnComparator class, 334
combining string and positional patterns, 579
comma

as a special character, 15
as continuation character, 16
in CALL instruction, 48
in function calls, 443
in parsing template list, 46, 579
separator of arguments, 48, 443

command
alternative destinations, 38
clause, 28
destination of, 42

errors, trapping, 592
issuing to host, 38

command method
of Stream class, 220

COMMAND method, 619
comments, 9

line comment, 9
standard comment, 9

Common Public License, 699
Comparable class, 332
Comparator class, 333
COMPARE function

description, 460
example, 460

compare method
of CaselessColumnComparator class, 336
of CaselessComparator class, 334
of CaselessDescendingComparator class, 337
of ColumnComparator class, 335
of Comparator class, 333
of DescendingComparator class, 336
of InvertingComparator class, 338
of NumericComparator class, 339
of String class, 190

compareTo method
of Comparable class, 333
of DateTime class, 347
of File class, 363
of Orderable class, 390
of String class, 190
of TimeSpan class, 427

comparisons
description, 20
numeric, example, 589
of numbers, 20, 588
of strings, 20, 183, 190, 190, 460

completed method
of Message class, 134

compound
symbols, 33
variable

description, 33
setting new value, 31

concatenation
abuttal, 19
as concatenation operator, 19
blank, 19
of strings, 18
operator

||, 15, 19
conceptual overview of parsing, 567
concurrency

alternating exclusive scope access, 607
conditional, 607
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default, 603
early reply, 601
GUARD instruction, 57, 607
guarded methods, 607
isGuarded method, 144
message objects, 603
object based, 601
setGuarded method, 146
setUnguarded method, 146
SETUNGUARDED method, 607
UNGUARDED option, 607

condition
action taken when not trapped, 595
action taken when trapped, 595
ANY, 592
definition, 592
ERROR, 592
FAILURE, 593
HALT, 593
information, 50

described, 597
LOSTDIGITS, 593
NOMETHOD, 593
NOSTRING, 593
NOTREADY, 593
NOVALUE, 594
saved, 50
saved during subroutine calls, 50
SYNTAX, 594
trap information using CONDITION, 460
trapping of, 591
traps, notes, 595
USER, 595

CONDITION function
description, 460
example, 462

condition method
of RexxContext class, 398

conditional
loops, 50, 63
phrase, 644

conditional concurrency, 607
conditions

raising of, 73
console

reading from with PULL, 71
writing to with SAY, 76

CONSTANT subkeyword
in an ANNOTATE directive, 90

constant symbols, 30
contains method

of MutableBuffer class, 378
of String class, 191

containsWord method

of MutableBuffer class, 378
of String class, 191

content addressable storage, 33
continuation

character, 16
clauses, 16
example, 17
of data for display, 76

CONTINUE subkeyword
in a FORWARD instruction, 55

control variable, 641
controlled loops, 641
conversion

binary to hexadecimal, 179, 453
character to decimal, 181, 456
character to hexadecimal, 181, 456
conversion functions, 449
decimal to character, 192, 463
decimal to hexadecimal, 193, 463
formatting numbers, 197, 473
hexadecimal to binary, 213, 508
hexadecimal to character, 213, 509
hexadecimal to decimal, 214, 509

COPIES function
description, 462
example, 462

copies method
of String class, 192

copy method
of Object class, 148

copying a string using copies, 192
copying a string using COPIES, 462
count from stream, 459
COUNTER subkeyword

in a DO instruction, 50, 645
in a LOOP instruction, 63, 645

counting
words in a mutable buffer, 387
words in a string, 212, 508

COUNTSTR function
description, 462
example, 462

countStr method
of MutableBuffer class, 379
of String class, 192

CPL, 699
cr method

of String class, 171
create external data queue, 484
create method

of RexxQueue class, 410
current method

of Monitor class, 372
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D
D2C function

description, 463
example, 463

d2c method
of String class, 192

D2X function
description, 463
example, 463

d2x method
of String class, 193

data
abstraction, 5
encapsulation, 4
modularization, 1
objects, 17
terms, 17

DATATYPE function
description, 464
example, 465

dataType method
of String class, 193

date and version of the language processor, 69
DATE function

description, 465
example, 467

date method
of DateTime class, 356
of RexxInfo class, 402

DateTime class, 339
day method

of DateTime class, 349
dayMicroseconds method

of DateTime class, 350
dayMinutes method

of DateTime class, 350
dayName method

of DateTime class, 353
days method

of TimeSpan class, 427
Days option of DATE function, 466
daySeconds method

of DateTime class, 350
daysInMonth method

of DateTime class, 357
daysInYear method

of DateTime class, 357
debug input object, 439
debug interactive, 81
debug method

of RexxInfo class, 402
decimal

integer, 584

to character conversion, 192, 463
to hexadecimal conversion, 193, 463

decodeBase64 method
of String class, 195

default
character streams, 619
concurrency, 603
environment, 37
search order for methods, 113
selecting with ABBREV function, 450
selecting with abbrev method, 178
selecting with caselessAbbrev method, 182

defaultName method
of Class class, 123
of Object class, 149

define method
of Class class, 123

definedMethods method
of Package class, 160

defineMethods method
of Class class, 124

delayed state
description, 592
of NOTREADY condition, 627

DELEGATE subkeyword
in a METHOD directive, 97
in an ATTRIBUTE directive, 91

delete class method
of RexxQueue class, 410

delete method
of Array class, 251
of Class class, 125
of File class, 363
of List class, 285
of MutableBuffer class, 379
of OrderedCollection class, 244
of Queue class, 294
of RexxQueue class, 411

deleting
part of a string, 195, 469
words from a mutablebuffer, 379
words from a string, 196, 470

DELSTR function
description, 469
example, 469

delStr method
of MutableBuffer class, 379
of String class, 195

DELWORD function
description, 470
example, 470

delWord method
of MutableBuffer class, 379
of String class, 196
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derived names of variables, 33
DescendingComparator class, 336
description method

of Stream class, 226
DESCRIPTION subkeyword

in a RAISE instruction, 73
destination method

of Monitor class, 372
difference method

of Bag class, 263
of Collection class, 239
of IdentityTable class, 281
of OrderedCollection class, 244
of Relation class, 300
of Set class, 306
of Table class, 319

digit method
of String class, 171

DIGITS function
description, 470
example, 470

digits method
of Package class, 160
of RexxContext class, 398
of RexxInfo class, 402

DIGITS option of NUMERIC instruction, 584
DIGITS subkeyword

in a NUMERIC instruction, 64, 585
dimension method

of Array class, 251
dimensions method

of Array class, 252
directives

::ANNOTATE, 90
::ATTRIBUTE, 91
::CLASS, 94
::CONSTANT, 96
::METHOD, 97
::OPTIONS, 100
::REQUIRES, 102
::RESOURCE, 103
::ROUTINE, 104

Directory class, 273
DIRECTORY function

description, 470
example, 471

directorySeparator method
of RexxInfo class, 403

disjoint method
of Collection class, 239

division operator, 19
DO instruction

description, 50
example, 641

drop external function, 483
DROP instruction

description, 52
example, 53

DROP keyword
in a RXSUBCOM command, 636

duration method
of TimeSpan class, 427

dyadic operators, 18

E
early reply, 75, 601
elapsed method

of DateTime class, 356
elapsed-time clock

measuring intervals with, 497
saved during subroutine calls, 50

ELSE
as free standing clause, 42

ELSE subkeyword
in an IF instruction, 58

empty method
of Array class, 252
of Bag class, 264
of Directory class, 275
of List class, 285
of Queue class, 294
of Relation class, 300
of RexxQueue class, 411
of Stem class, 311
of StringTable class, 315

encapsulation of data, 4
encodeBase64 method

of String class, 196
END

as free standing clause, 42
END clause

specifying control variable, 641
END subkeyword

in a DO instruction, 50
in a LOOP instruction, 63
in a SELECT instruction, 77

ENDLOCAL function
description, 471
example, 471

endofline method
of RexxInfo class, 403

endsWith method
of MutableBuffer class, 380
of String class, 196

engineering notation, 588
ENGINEERING subkeyword

in a NUMERIC instruction, 64
enhanced method
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of Class class, 125
entry method

of Directory class, 276
of StringTable class, 315

environment, 42
addressing of, 43
default, 46
determining current using ADDRESS function,
451

equal
operator, 20
sign

in parsing templates, 571, 572
to indicate assignment, 15, 28

equality, testing of, 20
equals method

of String class, 196
equivalent method

of Collection class, 239
error

definition, 38
during execution of functions, 448
during stream input and output, 626
from commands, 38
messages

list, 651
retrieving with ERRORTEXT, 651

syntax, 651
traceback after, 82
trapping, 592

error codes, 651
error messages and codes, 651
ERROR subkeyword

in a CALL instruction, 47, 592, 597
in a RAISE instruction, 73
in a SIGNAL instruction, 79, 592, 597
in an ADDRESS instruction, 42

errorCondition method
of Message class, 134

ERRORTEXT function
description, 471
example, 471

European option of DATE function, 466
europeanDate method

of DateTime class, 353
evaluation of expressions, 18
EventSemaphore class, 357
examples

::ANNOTATE directive, 90
::ATTRIBUTE directive

EXTERNAL option, 93
::CLASS directive, 95
::METHOD directive

EXTERNAL option, 99

::RESOURCE directive, 103
::ROUTINE directive, 104

EXTERNAL option, 105
ABBREV function, 450
abbrev method, 178, 182
ABS function, 451
abs method, 178
acquire method, 388
ADDRESS function, 451
ADDRESS instruction, 45
allIndexes method, 250
allItems method, 250
append method, 251
ARG function, 452
ARG instruction, 46
arithmetic methods of DateTime class, 347,
427
arithmetic methods of String class, 174
at method, 251
attachment method, 421
B2X function, 453
b2x method, 179
basic operator examples, 586
BEEP function, 454
BITAND function, 454
bitAnd method, 180
BITOR function, 455
bitOr method, 180
BITXOR function, 455
bitXor method, 180
C2D function, 456
c2d method, 181
C2X function, 457
c2x method, 182
CALL instruction, 49
cancel method, 422
canceled/cancelled method, 422
caselessChangeStr method, 183
CaselessColumnComparator class, 336
CaselessComparator class, 334
caselessCompareTo method, 184
CaselessDescendingComparator class, 337
caselessEquals method, 185
caselessLastPos method, 186
caselessMatch method, 186
caselessMatchChar method, 187
caselessPos method, 187
ceiling method, 188
CENTER function, 457
center method, 189
CENTRE function, 457
centre method, 189
CHANGESTR function, 457
changeStr method, 189
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CHARIN function, 458
CHAROUT function, 459
CHARS function, 460
COLLECTOR program, 626
ColumnComparator class, 335
combining positional pattern and parsing into
words, 575
combining string and positional patterns, 580
combining string pattern and parsing into
words, 574
command method

OPEN option, 223
QUERY DATETIME option, 224
QUERY EXISTS option, 225
QUERY HANDLE option, 225
SEEK option, 224

Comparator class, 334
COMPARE function, 460
compare method, 183, 190
compareTo method, 190
comparison methods of String class, 175
concatenation methods of String class, 177
CONDITION function, 462
continuation, 17
COPIES function, 462
copies method, 192
copy method, 148
COUNTSTR function, 462
countStr method, 185, 192
create method, 410
D2C function, 463
d2c method, 192
D2X function, 463
d2x method, 193
DATATYPE function, 465
dataType method, 194
DATE function, 467
decodeBase64 method, 195
defaultName method, 123
define method, 124
delete method, 125, 251, 294
DELSTR function, 469
delStr method, 195
DELWORD function, 470
delWord method, 196, 196
DescendingComparator class, 337
DIGITS function, 470
dimension method, 251
DIRECTORY function, 471
DO instruction, 641
DROP instruction, 53
empty method, 252
encodeBase64 method, 196
ENDLOCAL function, 471

enhanced method, 125
equals method, 197
ERRORTEXT function, 471
executable method, 403
exists method, 411
EXIT instruction, 53
exponential notation, 587
EXPOSE instruction, 54
expressions, 22
extension method, 364
FILECOPY program, 625
FILESPEC function, 472
fill method, 252
first method, 252
floor method, 197
FORM function, 472
FORMAT function, 473
format method, 198
FORWARD instruction, 56
fromOrdinalDate method, 342
fromWeekNumberDate method, 344
FUZZ function, 474
GUARD instruction, 57
halt method, 134
hasIndex method, 253
hasItem method, 253
id method, 126
IF instruction, 58
index method, 254
inherit method, 126
init method, 423
INSERT function, 474
insert method

of Array class, 254
of List class, 286
of Queue class, 295
of String class, 199

instanceMethods method, 151
internalMaxNumber method, 405
internalMinNumber method, 405
INTERPRET instruction, 60, 60
interval method, 423
InvertingComparator class, 338
isEmpty method, 255
isNil method, 152
isPosted method, 358
items method, 255
ITERATE instruction, 61
last method, 255
lastAccessed attribute, 366
LASTPOS function, 475
lastPos method, 199, 380
LEAVE instruction, 62
LEFT function, 475
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left method, 200
LENGTH function, 475
length method, 200
libraryPath method, 405
line comments, 9
LINEIN function, 476
LINEOUT function, 477
LINES function, 478
logical methods of String class, 176
LOOP instruction, 641
lower function, 479
lower method, 200
makeArray method, 256, 270
match method, 201
matchChar method, 202
MAX function, 479
max method, 202
maxArraySize method, 406
maxExponent method, 406
maxPathLength method, 407
message instructions, 36
messageComplete method, 136
metaclass, 109
method method, 128
methods method, 129
MIN function, 480
min method, 202
minExponent method, 407
mixinClass method, 129
modulo method, 203
name method, 434
new method, 130, 410
next method, 256
NOP instruction, 64
notify method, 136
numeric comparisons, 589
NumericComparator class, 339
objectName= method, 152
of Alarm class, 330
of Array class, 260
of Bag class, 267
of CircularQueue class, 273
of Directory class, 279
of Message class, 140
of method, 249, 249
of Monitor class, 372
of program, 625
of Relation class, 303
of Supplier class, 420
open method, 230
operator examples, 586
ordinalDate method, 349
OVERLAY function, 480
overlay method, 203

PARSE instruction, 68
parsing instructions, 577
parsing multiple strings in a subroutine, 579
period as a placeholder, 569
POS function, 481
pos method, 204, 382
previous method, 257
PROCEDURE instruction, 69
PULL instruction, 72
PUSH instruction, 72
put method, 257
query method, 231
QUEUE instruction, 72
QUEUED function, 481
RAISE instruction, 74
RANDOM function, 481
RegularExpression class, 393, 394, 395, 396
remove method, 257
removeItem method, 258
replaceAt method, 204
REPLY instruction, 75
REVERSE function, 482
reverse method, 204
RIGHT function, 482
right method, 205
round method, 205
RXFUNCADD function, 483
RXFUNCDROP function, 483
RXFUNCQUERY function, 483
RXFUNCQUEUE function, 485
RxMessageBox, 516
SAY instruction, 77
searchPath method, 361
section method, 258
seek method, 234
SELECT instruction, 78
set operations

concepts, 324
eliminating duplicates, 325
principals, 325
with duplicates, 326

SETLOCAL function, 485
SIGL, special variable, 599
SIGN function, 486
sign method, 205
SIGNAL instruction, 81
simple templates, parsing, 567
SOURCELINE function, 486
SPACE function, 487
space method, 206
special characters, 16
standard comments, 10
start method, 140
STREAM function, 491, 492
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STRIP function, 495
strip method, 207
subclass method, 131
SUBSTR function, 495
subStr method, 207
SUBWORD function, 496
subWord method, 208
subWords method, 208
superClass method, 131
superClasses method, 132
supplier method, 259
SYMBOL function, 496
SysCArgs Array, 440
SysCurPos, 519
SysDriveInfo, 520
SysDriveMap, 521
SysDumpVariables, 522
SysFileCopy, 522
SysFileDelete, 523
SysFileMove, 524
SysFileSearch, 525
SysFileSystemType, 526
SysFileTree, 529
SysFormatMessage, 531
SysGetErrorText, 533
SysGetFileDateTime, 534
SysGetLongPathName, 535
SysGetMessage, 535
SysGetMessageX, 536
SysGetShortPathName, 536
SysIni, 538
SysMkDir, 545
SysRmDir, 548
SysSearchPath, 549
SysSetDefaultPrinter, 565
SysSetFileDateTime, 550
SysSleep, 552
SysStemCopy, 554
SysStemDelete, 554
SysStemSort, 556
SysTempFileName, 558
SysTextScreenRead, 558
SysTextScreenSize, 560
SysWinGetDefaultPrinter, 565
SysWinGetPrinters, 565
templates containing positional patterns, 571
templates containing string patterns, 570
temporaryPath method, 362
TIME function, 499, 499
toString method, 260
TRACE function, 501
TRACE instruction, 84
TRANSLATE function, 501
translate method, 209

triggered method, 141
TRUNC function, 502
trunc method, 209
type method, 417
uninherit method, 132
upper function, 503
upper method, 210
USE instruction, 87
USE LOCAL instruction, 89
using a variable as a string pattern, 576
using an expression as a positional pattern,
576
VALUE function, 503, 505
value method, 435
VAR function, 505
VERIFY function, 506
verify method, 211, 386
wait method, 359
weekNumber method, 347
weekNumberDate method, 348
weekNumberYear method, 348
weeksInYear method, 348
WORD function, 507
word method, 211
WORDINDEX function, 507
wordIndex method, 211
WORDLENGTH function, 507
wordLength method, 212
WORDPOS function, 508
wordPos method, 188, 212
WORDS function, 508
words method, 212
X2B function, 508
x2b method, 213
X2C function, 509
x2c method, 213
X2D function, 509, 510
x2d method, 214
XRANGE function, 511
yearDay method, 353

exception conditions saved during subroutine
calls , 50
exclusive OR operator, 21
exclusive-ORing character strings together, 180,
455
executable method

of RexxContext class, 398
of RexxInfo class, 403
of StackFrame class, 415

execution
by language processor, 1
of data, 59

exists method
of File class, 364
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of RexxQueue class, 411
EXIT instruction

description, 53
example, 53

EXIT subkeyword
in a RAISE instruction, 73

exponential notation
description, 587
example, 14, 587

exponentiation
description, 587
operator, 19

EXPOSE instruction
description, 54
example, 54

EXPOSE option of PROCEDURE instruction, 69
EXPOSE subkeyword

in a PROCEDURE instruction, 69
exposed variable, 69
expressions

evaluation, 18
examples, 22
parsing of, 68
results of, 18
tracing results of, 83

extended assignments, 29
extension method

of File class, 364
external character streams, 619
external data queue

counting lines in, 481
creating and deleting queues, 484
description, 621
naming and querying queues, 484
reading from with PULL, 71
RXQUEUE function, 484
writing to with PUSH, 72
writing to with QUEUE, 72

external functions
description, 444
functions

description, 443
search order, 444

external routine, 48
EXTERNAL subkeyword

in a METHOD directive, 97
in a ROUTINE directive, 104

LIBRARY routine, 104
REGISTERED routine, 104

in an ATTRIBUTE directive, 91
external subroutines, 444
external variables

access with VALUE function, 503
extracting

substring, 207, 495
word from a mutable buffer, 386
word from a string, 211, 506
words from a mutable buffer, 387
words from a string, 212, 508

extracting words with subWord, 207, 384
extracting words with subWords, 208, 384

F
FAILURE subkeyword

in a CALL instruction, 47, 593, 597
in a RAISE instruction, 73
in a SIGNAL instruction, 79, 593, 597

failure, definition, 38
FIFO (first-in/first-out) stacking, 72
File class, 360
file name, extension, path of program, 68
FILECOPY example program, 625
files, 619
FILESPEC function

description, 472
example, 472

fill method
of Array class, 252

findClass method
of Package class, 160

finding
mismatch using caselessCompare, 183
mismatch using compare, 190
mismatch using COMPARE, 460
mismatch using compareTo, 190
string in a MutableBuffer, 382
string in another string, 203, 480
string length, 200, 475
word length, 212, 387, 507

findNamespace method
of Package class, 160

findProgram method
of Package class, 161

findPublicClass method
of Package class, 161

findPublicRoutine method
of Package class, 161

findRoutine method
of Package class, 161

first method
of Array class, 252
of List class, 285
of OrderedCollection class, 244
of Queue class, 294

firstItem method
of Array class, 253
of List class, 285
of OrderedCollection class, 244

720



of Queue class, 294
flag, tracing

*-*, 84
+++, 85
>.>, 85
>=>, 85
>>>, 85
>A>, 85
>C>, 85
>E>, 85
>F>, 85
>I>, 85
>K>, 85
>L>, 85
>M>, 85
>N>, 85
>O>, 85
>P>, 86
>R>, 86
>V>, 86

floor method
of String class, 197

flow of control
unusual, with CALL, 591
unusual, with SIGNAL, 591
with CALL and RETURN construct, 47
with DO construct, 50
with IF construct, 58
with LOOP construct, 63
with SELECT construct, 77

flush method
of Stream class, 227

FOR phrase of DO instruction, 51
FOR subkeyword

in a DO instruction, 50
in a LOOP instruction, 63

FOREVER phrase of DO instruction, 50
FOREVER phrase of LOOP instruction, 63
FOREVER repetitor on DO instruction, 52
FOREVER subkeyword

in a DO instruction, 50, 641, 644
in a LOOP instruction, 63, 641, 644

FORM function
description, 472
example, 472

form method
of Package class, 162
of RexxContext class, 398
of RexxInfo class, 403

FORM option of NUMERIC instruction, 65
FORM subkeyword

in a NUMERIC instruction, 64, 588
FORMAT function

description, 473

example, 473
format method

of String class, 197
formatting

numbers for display, 197, 473
numbers with ceiling, 188
numbers with floor, 197
numbers with round, 205
numbers with trunc, 209
numbers with TRUNC, 502
of output during tracing, 84
text centering, 189, 457
text left justification, 199, 475
text right justification, 204, 482
text spacing, 206, 383, 486

FORWARD instruction
description, 55
example, 56

fromBaseDate method
of DateTime class, 341

fromCivilTime method
of DateTime class, 344
of TimeSpan class, 425

fromDays method
of TimeSpan class, 424

fromEuropeanDate method
of DateTime class, 341

fromHours method
of TimeSpan class, 424

fromIsoDate method
of DateTime class, 345

fromLongTime method
of DateTime class, 344
of TimeSpan class, 425

fromMicroseconds method
of TimeSpan class, 425

fromMinutes method
of TimeSpan class, 425

fromNormalDate method
of DateTime class, 341

fromNormalTime method
of DateTime class, 344
of TimeSpan class, 425

fromOrderedDate method
of DateTime class, 342

fromOrdinalDate method
of DateTime class, 342

fromSeconds method
of TimeSpan class, 425

fromStandardDate method
of DateTime class, 343

fromStringFormat method
of TimeSpan class, 426

fromTicks method
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of DateTime class, 344
fromUsaDate method

of DateTime class, 343
fromUtcIsoDate method

of DateTime class, 345
fromWeekNumberDate method

of DateTime class, 343
Full option of DATE function, 466
Full option of Time function, 497
fullDate method

of DateTime class, 355
functions, 443

ABBREV, 450
ABS, 451
ADDRESS, 451
ARG, 451
B2X, 453
BEEP, 453
BITAND, 454
BITOR, 455
BITXOR, 455
built-in, 449
built-in, description, 450
C2D, 456
C2X, 456
call, definition, 443
calling, 443
CENTER, 457
CENTRE, 457
CHANGESTR, 457
CHARIN, 458
CHAROUT, 459
CHARS, 460
COMPARE, 460
CONDITION, 460
COPIES, 462
COUNTSTR, 462
D2C, 463
D2X, 463
DATATYPE, 464
DATE, 465
definition, 443
DELSTR, 469
DELWORD, 470
description, 443
DIGITS, 470
DIRECTORY, 470
ENDLOCAL, 471
ERRORTEXT, 471
external, 444
FILESPEC, 472
forcing built-in or external reference, 444
FORM, 472
FORMAT, 473

FUZZ, 474
INSERT, 474
internal, 443
LASTPOS, 474
LEFT, 475
LENGTH, 475
LINEIN, 475
LINEOUT, 477
LINES, 478
logical bit operations, 454, 455, 455
LOWER, 479
MAX, 479
MIN, 480
numeric arguments of, 589
OVERLAY, 480
POS, 480
QUALIFY, 481
QUEUED, 481
RANDOM, 481
return from, 76
REVERSE, 482
RIGHT, 482
RXFUNCADD, 483
RXFUNCDROP, 483
RXFUNCQUERY, 483
RXQUEUE, 484
SETLOCAL, 485
SIGN, 486
SOURCELINE, 486
SPACE, 486
STREAM, 487
STRIP, 494
SUBSTR, 495
SUBWORD, 496
SYMBOL, 496
TIME, 497
TRACE, 500
TRANSLATE, 501
TRUNC, 502
UPPER, 502
USERID, 503
VALUE, 503
VAR, 505
variables in, 69
VERIFY, 506
WORD, 506
WORDINDEX, 507
WORDLENGTH, 507
WORDPOS, 507
WORDS, 508
X2B, 508
X2C, 509
X2D, 509
XRANGE, 510
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FUZZ
controlling numeric comparison, 589
instruction, 589

FUZZ function
description, 474
example, 474

fuzz method
of Package class, 162
of RexxContext class, 399
of RexxInfo class, 404

FUZZ option of NUMERIC instruction, 65
FUZZ subkeyword

in a NUMERIC instruction, 64, 589

G
general concepts, 1, 42
get method

of RexxQueue class, 411
GET subkeyword

in an ATTRIBUTE directive, 91
getBufferSize method

of MutableBuffer class, 380
getLogical method

of Properties class, 290
getProperty method

of Properties class, 290
getting value with VALUE, 503
getWhole method

of Properties class, 290
global variables

access with VALUE function, 504
GOTO, unusual, 591
graph method

of String class, 171
greater than operator, 20
greater than operator (>), 20
greater than or equal operator, 20
greater than or equal to operator (>=), 20
greater than or less than operator, 20
greater than or less than operator (><), 20
group, DO, 641
grouping instructions to run repetitively, 50, 63
GUARD instruction

description, 57
example, 57

guarded methods, 607
GUARDED subkeyword

in a METHOD directive, 97
in an ATTRIBUTE directive, 91

H
halt method

of Message class, 134

HALT subkeyword
in a CALL instruction, 47, 593, 597
in a SIGNAL instruction, 79, 593, 597

halt, trapping, 593
hasEntry method

of Directory class, 276
of StringTable class, 315

hasError method
of Message class, 135

hashbang, 40
hashCode method

of DateTime class, 350
of File class, 364
of Object class, 149
of String class, 198
of TimeSpan class, 429

hasIndex method
of Array class, 253
of Bag class, 264
of Collection class, 239
of Directory class, 276
of IdentityTable class, 281
of List class, 285
of Queue class, 295
of Relation class, 301
of Set class, 306
of Stem class, 311
of StringTable class, 315
of Table class, 319

hasItem method
of Array class, 253
of Bag class, 264
of Collection class, 240
of Directory class, 276
of IdentityTable class, 281
of List class, 286
of Queue class, 295
of Relation class, 301
of Set class, 306
of Stem class, 311
of StringTable class, 316
of Table class, 320

hasMethod method
of Object class, 149

hasResult method
of Message class, 135

hexadecimal
checking with dataType, 193
checking with DATATYPE, 464
digits, 12
strings

description, 12
implementation maximum, 12

to binary, converting with X2B, 213, 508

723



to character, converting with X2C, 213, 509
to decimal, converting with X2D, 214, 509

host commands
issuing commands to underlying operating
system, 38

hours calculated from midnight, 498
hours method

of DateTime class, 349
of TimeSpan class, 428

I
id method

of Class class, 126
identityHash method

of Object class, 150
IdentityTable class, 279
IF instruction

description, 58
example, 58

implementation maximum
binary strings, 13
hexadecimal strings, 12
literal strings, 12
numbers, 14
TIME function, 500

implied semicolons, 16
importedClasses method

of Package class, 162
importedPackages method

of Package class, 162
importedRoutines method

of Package class, 162
imprecise numeric comparison, 588
inclusive OR operator, 21
indentation during tracing, 84
index method

of Array class, 254
of Bag class, 264
of Collection class, 240
of Directory class, 276
of IdentityTable class, 281
of List class, 286
of Queue class, 295
of Relation class, 301
of Set class, 306
of Stem class, 311
of StreamSupplier class, 418
of StringTable class, 316
of Supplier class, 420
of Table class, 320

INDEX phrase of DO instruction, 50, 51
INDEX phrase of LOOP instruction, 63
INDEX subkeyword

in a DO instruction, 50, 644

in a LOOP instruction, 63, 644
indirect evaluation of data, 59
inequality, testing of, 20
infinite loops, 50, 63, 641
information hiding, 4
inherit method

of Class class, 126
INHERIT subkeyword

in a CLASS directive, 94
inheritance, 7
init method

of Alarm class, 330
of CaselessColumnComparator class, 336
of CircularQueue class, 268
of ColumnComparator class, 335
of DateTime class, 345
of File class, 364
of InvertingComparator class, 338
of Monitor class, 372
of NumericComparator class, 339
of Object class, 150
of RexxQueue class, 411
of Stream class, 227
of StreamSupplier class, 418
of Ticker class, 422
of TimeSpan class, 426

initialization
of arrays, 31
of compound variables, 31

input and output
functions

CHARIN, 458
CHAROUT, 459
CHARS, 460
LINEIN, 475
LINEOUT, 477
LINES, 478
STREAM, 487

model, 619
streams, 619

input from the user, 619
input object, 439
input streams, 620
INPUT subkeyword

in an ADDRESS instruction, 42
input to PULL from STDIN, 71
input to PULL from the keyboard, 71
input, errors during, 626
InputOutputStream class, 215
InputStream class, 215
INSERT function

description, 474
example, 474

insert method
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of Array class, 254
of CircularQueue class, 268
of List class, 286
of MutableBuffer class, 380
of OrderedCollection class, 244
of Queue class, 295
of String class, 198

inserting a string into another, 198, 474
instance methods, 107
instanceMethod method

of Object class, 150
instanceMethods method

of Object class, 150
instances

definition, 5
instructions

ADDRESS, 42
ARG, 46
CALL, 47
definition, 27
DO, 50
DROP, 52
EXIT, 53
EXPOSE, 54
FORWARD, 55
GUARD, 57, 607
IF, 58
INTERPRET, 59
ITERATE, 61
keyword, 28

description, 42
LEAVE, 62
LOOP, 63
message, 28, 36
NOP, 64
NUMERIC, 64
OPTIONS, 66
PARSE, 66
parsing, summary, 577
PROCEDURE, 69
PULL, 71
PUSH, 72
QUEUE, 72
RAISE, 73
REPLY, 75
RETURN, 76
SAY, 76
SELECT, 77
SIGNAL, 79
TRACE, 81
USE, 86

integer
arithmetic, 584
division

description>, 584, 586
integer division operator, 19
interactive debug, 81
internal

functions
return from, 76
variables in, 69

routine, 47
internalDigits method

of RexxInfo class, 404
internalMaxNumber method

of RexxInfo class, 404
internalMinNumber method

of RexxInfo class, 405
INTERPRET instruction

description, 59
example, 60, 60

interpretive execution of data, 59
intersection method

of Bag class, 264
of CircularQueue class, 269
of Collection class, 240
of OrderedCollection class, 245
of Relation class, 301
of Set class, 306

interval method
of Ticker class, 423

InvertingComparator class, 337
invoking

built-in functions, 47
routines, 47

isA method
of Object class, 151

isAbstract method
of Class class, 127
of Method class, 143

isAttribute method
of Method class, 144

isCaseSensitive method
of File class, 360, 365

isConstant method
of Method class, 144

isDirectory method
of File class, 365

isEmpty method
of Array class, 254
of Bag class, 264
of Directory class, 276
of IdentityTable class, 282
of List class, 287
of Queue class, 296
of Relation class, 301
of Set class, 307
of Stem class, 312
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of StringTable class, 316
of Table class, 320

isFile method
of File class, 365

isGuarded method
of Method class, 144

isHidden method
of File class, 365

isInstanceOf method
of Object class, 151

isLeapYear method
of DateTime class, 356

isMetaclass method
of Class class, 127

isNil method
of Object class, 152

isNull method
of Pointer class, 392

ISO option of DATE function, 466
isoDate method

of DateTime class, 352
isPackage method

of Method class, 144
isPosted method

of EventSemaphore class, 358
isPrivate method

of Method class, 145
isProtected method

of Method class, 145
isSubclassOf method

of Class class, 127
item method

of StreamSupplier class, 418
of Supplier class, 420

ITEM phrase of DO instruction, 50, 51
ITEM phrase of LOOP instruction, 63
ITEM subkeyword

in a DO instruction, 50, 644
in a LOOP instruction, 63, 644

items method
of Array class, 255
of Bag class, 264
of Collection class, 240
of Directory class, 276
of IdentityTable class, 282
of List class, 287
of Queue class, 296
of Relation class, 301
of Set class, 307
of Stem class, 312
of StringTable class, 316
of Table class, 320

ITERATE instruction
description, 61

example, 61

J
justification, text right, RIGHT function, 482
justification, text right, RIGHT method, 204

K
keyword

conflict with commands, 631
description, 42
mixed case, 42
reservation of, 631

L
label

as target of CALL, 47
as target of SIGNAL, 79
description, 27
duplicate, 81
in INTERPRET instruction, 59
search algorithm, 79

LABEL subkeyword
in a DO instruction, 50, 645
in a LOOP instruction, 63, 645

language
processor date and version, 69
processor execution, 1
structure and syntax, 8

Language (local) option of DATE function, 466
languageDate method

of DateTime class, 353
languageLevel method

of RexxInfo class, 405
last method

of Array class, 255
of List class, 287
of OrderedCollection class, 245
of Queue class, 296

lastAccessed attribute
of File class, 366

lastItem method
of Array class, 255
of List class, 287
of OrderedCollection class, 245
of Queue class, 296

lastModified attribute
of File class, 366

LASTPOS function
description, 474
example, 475

lastPos method
of MutableBuffer class, 380
of String class, 199
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leading
leading whitespace removal with STRIP
function, 494
whitespace removal with strip method, 206
zeros

adding with RIGHT function, 482
adding with right method, 204
removing with STRIP function, 494
removing with strip method, 206

LEAVE instruction
description, 62
example, 62

leaving your program, 53, 53
LEFT function

description, 475
example, 475

left method
of String class, 199

LENGTH function
description, 475
example, 475

length method
of File class, 367
of MutableBuffer class, 381
of String class, 200
of Validate class, 431

length positional pattern
positional patterns

length, 573
less than operator (<), 20
less than or equal to operator (<=), 20
less than or greater than operator (<>), 20
LIBRARY subkeyword

in a REQUIRES directive, 102
in a RESOURCE directive, 103

libraryPath method
of RexxInfo class, 405

License, Common Public, 699
License, Open Object Rexx, 699
LIFO (last-in, first-out) stacking, 72
line input and output, 619
line method

of RexxContext class, 399
of StackFrame class, 415

LINEIN function
description, 475
example, 476

lineIn method
of InputStream class, 216
of OutputStream class, 217
of RexxQueue class, 412
of Stream class, 227

LINEIN method
role in input and output, 620

LINEIN option of PARSE instruction, 67
LINEIN subkeyword

in a PARSE instruction, 66, 577
LINEOUT function

description, 477
example, 477

lineOut method
of InputStream class, 216
of OutputStream class, 217
of RexxQueue class, 412
of Stream class, 227

LINEOUT method
role in input and output, 621

lines
from a program retrieved with SOURCELINE,
486
from stream, 67

LINES function
description, 478
example, 478
from stream, 475
remaining in stream, 478

lines method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 227

LINES method
role in input and output, 620

List class, 283
list method

of File class, 367
listFiles method

of File class, 367
listRoots method

of File class, 361
literal

description, 11
implementation maximum, 12
patterns, 570

LOAD keyword
in a RXSUBCOM command, 637

load method
of Properties class, 289, 291

loadExternalMethod method
of Method class, 143

loadExternalRoutine method
of Routine class, 167

loadLibrary method
of Package class, 162

loadPackage method
of Package class, 163

local method
of Package class, 163

LOCAL subkeyword
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in a USE instruction, 88
locating

string in a MutableBuffer, 382
string in another string, 203, 480
word in another mutable buffer, 386
word in another string, 211, 506

logical
operations, 21

logical bit operations
BITAND, 454
BITOR, 455
BITXOR, 455

logical method
of Validate class, 431

logical NOT character, 15
logical OR operator, 15
longTime method

of DateTime class, 355
LOOP instruction

description, 63
example, 641

loops
active, 62
execution model, 647, 648
modification of, 61
over collections, 643
over suppliers, 644
repetitive, 641
termination of, 62

LOSTDIGITS subkeyword
in a CALL instruction, 597
in a SIGNAL instruction, 79, 593, 597

LOWER function
description, 479

lower method
of MutableBuffer class, 381
of String class, 172, 200

LOWER subkeyword
in a PARSE instruction, 66, 576

lowercase translation
with PARSE LOWER, 67

M
majorVersion method

of RexxInfo class, 406
makeArray method

of Array class, 255
of Bag class, 265
of CircularQueue class, 269
of Collection class, 240
of Directory class, 277
of IdentityTable class, 282
of List class, 287
of MapCollection class, 242

of MutableBuffer class, 381
of Queue class, 296
of Relation class, 302
of RexxQueue class, 412
of Set class, 307
of Stem class, 312
of Stream class, 228
of String class, 200
of StringTable class, 316
of Table class, 320

makeDir method
of File class, 368

makeDirs method
of File class, 368

makeString method
of Array class, 256
of CircularQueue class, 269
of DateTime class, 350
of File class, 369
of MutableBuffer class, 381
of StackFrame class, 416
of String class, 201
of TimeSpan class, 428

Map Collection classes
Directory class, 273
IdentityTable class, 279
Properties class, 288
Relation class, 298
Stem class, 308
StringTable class, 313
Table class, 318

MapCollection class, 241
match method

of MutableBuffer class, 381
of RegularExpression class, 394
of String class, 201

matchChar method
of MutableBuffer class, 382
of String class, 202

MAX function
description, 479
example, 479

max method
of String class, 202

maxArraySize method
of RexxInfo class, 406

maxDate method
of DateTime class, 341

maxExponent method
of RexxInfo class, 406

maxPathLength method
of RexxInfo class, 406

Message class, 132
message instructions, 28, 36
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message sequence instructions, 36
MESSAGE subkeyword

in a FORWARD instruction, 55
message-send operator (~), 4
messageComplete method

of Message class, 135
of MessageNotification class, 371

messageName method
of Message class, 136

MessageNotification class, 371
messages, 4
messages to objects

operator as message, 18
~, using, 24
~~, using, 24

messages, error, 651
metaclass

Class class, 121
Singleton class, 413

metaClass method
of Class class, 127

METACLASS subkeyword
in a CLASS directive, 94

metaclasses, 108
method

%, 174, 427
&, 176
&&, 176
*, 174, 427
**, 174
+, 174, 346, 426
-, 174, 346, 427
/, 174, 427
//, 174, 427
<, 175, 390
<<, 175, 391
<<=, 175, 391
<=, 175, 391
<>

of Class class, 122
of Object class, 148
of Orderable class, 390
of Pointer class, 392
of String class, 174

=
of Class class, 122
of Object class, 148
of Orderable class, 390
of Pointer class, 392
of String class, 174

==
of Class class, 122
of Object class, 148
of Orderable class, 391

of Pointer class, 392
of String class, 175

>, 174, 390
><

of Class class, 122
of Object class, 148
of Orderable class, 390
of Pointer class, 392
of String class, 174

>=, 175, 391
>>, 175, 391
>>=, 175, 391
? method

of String class, 177
abbrev method

of String class, 178
abs method

of String class, 178
absoluteFile method

of File class, 362
absolutePath method

of File class, 362
acquire method

of MutexSemaphore class, 388
activate method

of Class class, 122
addClass method

of Package class, 158
addDays method

of DateTime class, 351
of TimeSpan class, 429

addHours method
of DateTime class, 351
of TimeSpan class, 430

addMicroseconds method
of DateTime class, 352
of TimeSpan class, 430

addMinutes method
of DateTime class, 351
of TimeSpan class, 430

addPackage method
of Package class, 158

addPublicClass method
of Package class, 159

addPublicRoutine method
of Package class, 159

addRoutine method
of Package class, 159

addSeconds method
of DateTime class, 352
of TimeSpan class, 430

addWeeks method
of DateTime class, 351
of TimeSpan class, 429
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addYears method
of DateTime class, 350

allAt method
of Bag class, 262
of Relation class, 299

allIndex method
of Bag class, 262
of Relation class, 300

allIndexes method
of Array class, 250
of Bag class, 263
of Collection class, 238
of Directory class, 275
of IdentityTable class, 281
of List class, 284
of Queue class, 293
of Relation class, 300
of Set class, 305
of Stem class, 311
of StringTable class, 315
of Supplier class, 419
of Table class, 319

allItems method
of Array class, 250
of Bag class, 263
of Collection class, 239
of Directory class, 275
of IdentityTable class, 281
of List class, 284
of Queue class, 293
of Relation class, 300
of Set class, 306
of Stem class, 311
of StringTable class, 315
of Supplier class, 419
of Table class, 319

alnum method
of String class, 170

alpha method
of String class, 171

annotation method
of Class class, 122
of Method class, 143
of Package class, 159
of Routine class, 168

annotations method
of Class class, 123
of Method class, 143
of Package class, 159
of Routine class, 168

append method
of Array class, 250
of CircularQueue class, 268
of List class, 284

of MutableBuffer class, 374
of OrderedCollection class, 243
of Queue class, 294
of String class, 179

appendAll method
of OrderedCollection class, 243

architecture method
of RexxInfo class, 401

args method
of RexxContext class, 398

arguments method
of Message class, 134
of StackFrame class, 415

arithmetic methods
of DateTime class, 346
of String class, 173
of TimeSpan class, 426

arrayIn method
of InputStream class, 215
of Stream class, 219

arrayOut method
of OutputStream class, 217
of Stream class, 219

at method
of Array class, 251
of Bag class, 263
of Collection class, 239
of Directory class, 275
of IdentityTable class, 281
of List class, 285
of Queue class, 294
of Relation class, 300
of Set class, 306
of Stem class, 311
of StringTable class, 315
of Table class, 319

attachment method
of Alarm class, 329
of Ticker class, 421

available method
of StreamSupplier class, 418
of Supplier class, 420

b2x method
of String class, 179

baseClass method
of Class class, 123

baseDate method
of DateTime class, 352

bitAnd method
of String class, 179

bitOr method
of String class, 180

bitXor method
of String class, 180
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blank method
of String class, 171

c2d method
of String class, 181

c2x method
of String class, 181

call method
of Routine class, 168

callWith method
of Routine class, 168

cancel method
of Alarm class, 329
of AlarmNotification class, 331
of Ticker class, 421

canceled/cancelled method
of Alarm class, 329
of Ticker class, 422

canRead method
of File class, 363

canWrite method
of File class, 363

caselessAbbrev method
of String class, 182

caselessChangeStr method
of MutableBuffer class, 374
of String class, 183

caselessCompareTo method
of String class, 183, 183

caselessContains method
of MutableBuffer class, 375
of String class, 184

caselessContainsWord method
of MutableBuffer class, 375
of String class, 184

caselessCountStr method
of MutableBuffer class, 376, 376
of String class, 185, 185

caselessEndsWith method
of MutableBuffer class, 376
of String class, 185

caselessEquals method
of String class, 185, 185

caselessLastPos method
of MutableBuffer class, 376, 376
of String class, 186, 186

caselessMatch method
of MutableBuffer class, 376, 376
of String class, 186, 186

caselessMatchChar method
of MutableBuffer class, 377, 377
of String class, 187, 187

caselessPos method
of MutableBuffer class, 377, 377
of String class, 187, 187

caselessStartsWith method
of MutableBuffer class, 377
of String class, 187

caseSensitiveFiles method
of RexxInfo class, 401

ceiling method
of String class, 188

center method
of String class, 189

centre method
of String class, 189

changeStr method
of MutableBuffer class, 378
of String class, 189

charIn method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 219

charOut method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 220

chars method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 220

civilTime method
of DateTime class, 354

class method
of Object class, 148

classes method
of Package class, 159

classType method
of Validate class, 431

close method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 220

cntrl method
of String class, 171

command method
of Stream class, 220

compare method
of CaselessColumnComparator class, 336
of CaselessComparator class, 334
of CaselessDescendingComparator class,
337
of ColumnComparator class, 335
of Comparator class, 333
of DescendingComparator class, 336
of InvertingComparator class, 338
of NumericComparator class, 339
of String class, 183, 190

compareTo method
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of Comparable class, 333
of DateTime class, 347
of File class, 363
of Orderable class, 390
of String class, 190
of TimeSpan class, 427

comparison methods
of Class class, 122
of Object class, 147
of Orderable class, 390
of String class, 174

completed method
of Message class, 134

concatenation methods
of Object class, 148
of String class, 176

condition method
of RexxContext class, 398

contains method
of MutableBuffer class, 378
of String class, 191

containsWord method
of MutableBuffer class, 378
of String class, 191

copies method
of String class, 192

copy method
of Object class, 148

countStr method
of MutableBuffer class, 379
of String class, 192

cr method
of String class, 171

create method
of RexxQueue class, 410

creation, 97
current method

of Monitor class, 372
d2c method

of String class, 192
d2x method

of String class, 193
dataType method

of String class, 193
date method

of DateTime class, 356
of RexxInfo class, 402

day method
of DateTime class, 349

dayMicroseconds method
of DateTime class, 350

dayMinutes method
of DateTime class, 350

dayName method

of DateTime class, 353
days method

of TimeSpan class, 427
daySeconds method

of DateTime class, 350
daysInMonth method

of DateTime class, 357
daysInYear method

of DateTime class, 357
debug method

of RexxInfo class, 402
decodeBase64 method

of String class, 195
defaultName method

of Class class, 123
of Object class, 149

define method
of Class class, 123

definedMethods method
of Package class, 160

defineMethods method
of Class class, 124

definition, 4
delete class method

of RexxQueue class, 410
delete method

of Array class, 251
of Class class, 125
of File class, 363
of List class, 285
of MutableBuffer class, 379
of OrderedCollection class, 244
of Queue class, 294
of RexxQueue class, 411

delStr method
of MutableBuffer class, 379
of String class, 195

delWord method
of MutableBuffer class, 379
of String class, 196

description method
of Stream class, 226

destination method
of Monitor class, 372

difference method
of Bag class, 263
of Collection class, 239
of OrderedCollection class, 244
of Relation class, 300

digit method
of String class, 171

digits method
of Package class, 160
of RexxContext class, 398
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of RexxInfo class, 402
dimension method

of Array class, 251
dimensions method

of Array class, 252
directorySeparator method

of RexxInfo class, 403
disjoint method

of Collection class, 239
duration method

of TimeSpan class, 427
elapsed method

of DateTime class, 356
empty method

of Array class, 252
of Bag class, 264
of Directory class, 275
of IdentityTable class, 281
of List class, 285
of Queue class, 294
of Relation class, 300
of RexxQueue class, 411
of Set class, 306
of Stem class, 311
of StringTable class, 315
of Table class, 319

encodeBase64 method
of String class, 196

endofline method
of RexxInfo class, 403

endsWith method
of MutableBuffer class, 380
of String class, 196

enhanced method
of Class class, 125

entry method
of Directory class, 276
of StringTable class, 315

equals method
of String class, 196

equivalent method
of Collection class, 239

errorCondition method
of Message class, 134

europeanDate method
of DateTime class, 353

executable method
of RexxContext class, 398
of RexxInfo class, 403
of StackFrame class, 415

exists method
of File class, 364
of RexxQueue class, 411

extension method

of File class, 364
fill method

of Array class, 252
findClass method

of Package class, 160
findNamespace method

of Package class, 160
findProgram method

of Package class, 161
findPublicClass method

of Package class, 161
findPublicRoutine method

of Package class, 161
findRoutine method

of Package class, 161
first method

of Array class, 252
of List class, 285
of OrderedCollection class, 244
of Queue class, 294

firstItem method
of Array class, 253
of List class, 285
of OrderedCollection class, 244
of Queue class, 294

floor method
of String class, 197

flush method
of Stream class, 227

form method
of Package class, 162
of RexxContext class, 398
of RexxInfo class, 403

format method
of String class, 197

fromBaseDate method
of DateTime class, 341

fromCivilTime method
of DateTime class, 344
of TimeSpan class, 425

fromDays method
of TimeSpan class, 424

fromEuropeanDate method
of DateTime class, 341

fromHours method
of TimeSpan class, 424

fromIsoDate method
of DateTime class, 345

fromLongTime method
of DateTime class, 344
of TimeSpan class, 425

fromMicroseconds method
of TimeSpan class, 425

fromMinutes method
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of TimeSpan class, 425
fromNormalDate method

of DateTime class, 341
fromNormalTime method

of DateTime class, 344
of TimeSpan class, 425

fromOrderedDate method
of DateTime class, 342

fromOrdinalDate method
of DateTime class, 342

fromSeconds method
of TimeSpan class, 425

fromStandardDate method
of DateTime class, 343

fromStringFormat method
of TimeSpan class, 426

fromTicks method
of DateTime class, 344

fromUsaDate method
of DateTime class, 343

fromUtcIsoDate method
of DateTime class, 345

fromWeekNumberDate method
of DateTime class, 343

fullDate method
of DateTime class, 355

fuzz method
of Package class, 162
of RexxContext class, 399
of RexxInfo class, 404

get method
of RexxQueue class, 411

getBufferSize method
of MutableBuffer class, 380

getLogical method
of Properties class, 290

getProperty method
of Properties class, 290

getWhole method
of Properties class, 290

graph method
of String class, 171

halt method
of Message class, 134

hasEntry method
of Directory class, 276
of StringTable class, 315

hasError method
of Message class, 135

hashCode method
of DateTime class, 350
of File class, 364
of Object class, 149
of String class, 198

of TimeSpan class, 429
hasIndex method

of Array class, 253
of Bag class, 264
of Collection class, 239
of Directory class, 276
of IdentityTable class, 281
of List class, 285
of Queue class, 295
of Relation class, 301
of Set class, 306
of Stem class, 311
of StringTable class, 315
of Table class, 319

hasItem method
of Array class, 253
of Bag class, 264
of Collection class, 240
of Directory class, 276
of IdentityTable class, 281
of List class, 286
of Queue class, 295
of Relation class, 301
of Set class, 306
of Stem class, 311
of StringTable class, 316
of Table class, 320

hasMethod method
of Object class, 149

hasResult method
of Message class, 135

hours method
of DateTime class, 349
of TimeSpan class, 428

id method
of Class class, 126

identityHash method
of Object class, 150

importedClasses method
of Package class, 162

importedPackages method
of Package class, 162

importedRoutines method
of Package class, 162

index method
of Array class, 254
of Bag class, 264
of Collection class, 240
of Directory class, 276
of IdentityTable class, 281
of List class, 286
of Queue class, 295
of Relation class, 301
of Set class, 306
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of Stem class, 311
of StreamSupplier class, 418
of StringTable class, 316
of Supplier class, 420
of Table class, 320

inherit method
of Class class, 126

init method
of Alarm class, 330
of CaselessColumnComparator class, 336
of CircularQueue class, 268
of ColumnComparator class, 335
of DateTime class, 345
of File class, 364
of InvertingComparator class, 338
of Monitor class, 372
of NumericComparator class, 339
of Object class, 150
of RexxQueue class, 411
of Stream class, 227
of StreamSupplier class, 418
of Ticker class, 422
of TimeSpan class, 426

insert method
of Array class, 254
of CircularQueue class, 268
of List class, 286
of MutableBuffer class, 380
of OrderedCollection class, 244
of Queue class, 295
of String class, 198

instanceMethod method
of Object class, 150

instanceMethods method
of Object class, 150

internalDigits method
of RexxInfo class, 404

internalMaxNumber method
of RexxInfo class, 404

internalMinNumber method
of RexxInfo class, 405

intersection method
of Bag class, 264
of CircularQueue class, 269
of Collection class, 240
of OrderedCollection class, 245
of Relation class, 301
of Set class, 306

interval method
of Ticker class, 423

isA method
of Object class, 151

isAbstract method
of Class class, 127

of Method class, 143
isAttribute method

of Method class, 144
isCaseSensitive method

of File class, 360, 365
isConstant method

of Method class, 144
isDirectory method

of File class, 365
isEmpty method

of Array class, 254
of Bag class, 264
of Directory class, 276
of IdentityTable class, 282
of List class, 287
of Queue class, 296
of Relation class, 301
of Set class, 307
of Stem class, 312
of StringTable class, 316
of Table class, 320

isFile method
of File class, 365

isGuarded method
of Method class, 144

isHidden method
of File class, 365

isInstanceOf method
of Object class, 151

isLeapYear method
of DateTime class, 356

isMetaclass method
of Class class, 127

isNil method
of Object class, 152

isNull method
of Pointer class, 392

isoDate method
of DateTime class, 352

isPackage method
of Method class, 144

isPosted method
of EventSemaphore class, 358

isPrivate method
of Method class, 145

isProtected method
of Method class, 145

isSubclassOf method
of Class class, 127

item method
of StreamSupplier class, 418
of Supplier class, 420

items method
of Array class, 255
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of Bag class, 264
of Collection class, 240
of Directory class, 276
of IdentityTable class, 282
of List class, 287
of Queue class, 296
of Relation class, 301
of Set class, 307
of Stem class, 312
of StringTable class, 316
of Table class, 320

languageDate method
of DateTime class, 353

languageLevel method
of RexxInfo class, 405

last method
of Array class, 255
of List class, 287
of OrderedCollection class, 245
of Queue class, 296

lastAccessed attribute
of File class, 366

lastItem method
of Array class, 255
of List class, 287
of OrderedCollection class, 245
of Queue class, 296

lastModified attribute
of File class, 366

lastPos method
of MutableBuffer class, 380
of String class, 199

left method
of String class, 199

length method
of File class, 367
of MutableBuffer class, 381
of String class, 200
of Validate class, 431

libraryPath method
of RexxInfo class, 405

line method
of RexxContext class, 399
of StackFrame class, 415

lineIn method
of InputStream class, 216
of OutputStream class, 217
of RexxQueue class, 412
of Stream class, 227

lineOut method
of InputStream class, 216
of OutputStream class, 217
of RexxQueue class, 412
of Stream class, 227

lines method
of InputStream class, 216
of OutputStream class, 217
of Stream class, 227

list method
of File class, 367

listFiles method
of File class, 367

listRoots method
of File class, 361

load method
of Properties class, 289, 291

loadExternalMethod method
of Method class, 143

loadExternalRoutine method
of Routine class, 167

loadLibrary method
of Package class, 162

loadPackage method
of Package class, 163

local method
of Package class, 163

logical method
of Validate class, 431

logical methods
of String class, 176

longTime method
of DateTime class, 355

lower method
of MutableBuffer class, 381
of String class, 172, 200

majorVersion method
of RexxInfo class, 406

makeArray method
of Array class, 255
of Bag class, 265
of CircularQueue class, 269
of Collection class, 240
of Directory class, 277
of IdentityTable class, 282
of List class, 287
of MapCollection class, 242
of MutableBuffer class, 381
of Queue class, 296
of Relation class, 302
of RexxQueue class, 412
of Set class, 307
of Stem class, 312
of Stream class, 228
of String class, 200
of StringTable class, 316
of Table class, 320

makeDir method
of File class, 368
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makeDirs method
of File class, 368

makeString method
of Array class, 256
of CircularQueue class, 269
of DateTime class, 350
of File class, 369
of MutableBuffer class, 381
of StackFrame class, 416
of String class, 201
of TimeSpan class, 428

match method
of MutableBuffer class, 381
of RegularExpression class, 394
of String class, 201

matchChar method
of MutableBuffer class, 382
of String class, 202

max method
of String class, 202

maxArraySize method
of RexxInfo class, 406

maxDate method
of DateTime class, 341

maxExponent method
of RexxInfo class, 406

maxPathLength method
of RexxInfo class, 406

messageComplete method
of Message class, 135
of MessageNotification class, 371

messageName method
of Message class, 136

metaClass method
of Class class, 127

method method
of Class class, 128

methods method
of Class class, 128

microseconds method
of DateTime class, 350
of TimeSpan class, 428

min method
of String class, 202

minDate method
of DateTime class, 340

minExponent method
of RexxInfo class, 407

minutes method
of DateTime class, 349
of TimeSpan class, 428

mixinClass method
of Class class, 129

modification method

of RexxInfo class, 407
modulo method

of String class, 203
month method

of DateTime class, 349
monthName method

of DateTime class, 353
name method

of File class, 369
of Package class, 163
of RexxContext class, 399
of RexxInfo class, 407
of StackFrame class, 416
of VariableReference class, 434

namespaces method
of Package class, 163

new method
of Array class, 249
of Bag class, 262
of Buffer class, 332
of Class class, 129
of Directory class, 274
of EventSemaphore class, 357
of IdentityTable class, 280
of List class, 283
of Message class, 133
of Method class, 142
of MutableBuffer class, 373
of MutexSemaphore class, 388
of Object class, 147
of Package class, 158
of Pointer class, 391
of Properties class, 290
of Queue class, 293
of RegularExpression class, 394
of Relation class, 299
of RexxQueue class, 410
of Routine class, 167
of Set class, 305
of Singleton class, 414
of Stem class, 310
of Stream class, 219
of String class, 170
of StringTable class, 314
of Supplier class, 419
of Table class, 318
of WeakReference class, 436

newFile method
of Method class, 142
of Routine class, 167

next method
of Array class, 256
of List class, 287
of OrderedCollection class, 245
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of Queue class, 296
of StreamSupplier class, 418
of Supplier class, 420

nl method
of String class, 172

nonNegativeNumber method
of Validate class, 432

nonNegativeWholeNumber method
of Validate class, 432

normalDate method
of DateTime class, 354

normalTime method
of DateTime class, 355

notify method
of Message class, 136

null method
of String class, 172

number method
of Validate class, 432

numberRange method
of Validate class, 432

objectName method
of Object class, 152

objectName= method
of Object class, 152

of method
of Array class, 249
of Bag class, 262
of CircularQueue class, 268
of List class, 284
of MapCollection class, 242
of Queue class, 293
of Set class, 305

offset method
of DateTime class, 356

open method
of InputStream class, 216
of OutputStream class, 218
of RexxQueue class, 411
of Stream class, 228

orderedDate method
of DateTime class, 354

ordinalDate method
of DateTime class, 349

overlay method
of MutableBuffer class, 382
of String class, 203

package method
of Class class, 130
of Method class, 145
of RexxContext class, 399
of RexxInfo class, 408
of Routine class, 169

package-scope, 115

parent method
of File class, 369

parentFile method
of File class, 369

parse method
of RegularExpression class, 395

path method
of File class, 370

pathSeparator method
of File class, 361, 370
of RexxInfo class, 408

peek method
of Queue class, 296

platform method
of RexxInfo class, 408

pos method
of MutableBuffer class, 382
of RegularExpression class, 397
of String class, 203

position method
of InputStream class, 216
of OutputStream class, 218
of RegularExpression class, 397
of Stream class, 230
of Validate class, 432

positiveNumber method
of Validate class, 433

positiveWholeNumber method
of Validate class, 433

post method
of EventSemaphore class, 358

prefix +, 174, 346, 427
prefix -, 174, 346, 427
previous method

of Array class, 256
of List class, 287
of OrderedCollection class, 245
of Queue class, 297

print method
of String class, 172

private, 115
prolog method

of Package class, 164
public, 115
publicClasses method

of Package class, 164
publicRoutines method

of Package class, 164
pull method

of Queue class, 297
of RexxQueue class, 412

punct method
of String class, 172

push method
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of CircularQueue class, 270
of Queue class, 297
of RexxQueue class, 412

put method
of Array class, 257
of Bag class, 265
of Collection class, 240
of Directory class, 277
of IdentityTable class, 282
of List class, 288
of Properties class, 291
of Queue class, 297
of Relation class, 302
of Set class, 307
of Stem class, 312
of StringTable class, 316
of Table class, 320

putAll method
of Bag class, 265
of MapCollection class, 242
of Set class, 307

qualify method
of Stream class, 230

query
of Stream class, 230

queryMixinClass method
of Class class, 130

queue method
of CircularQueue class, 270
of Queue class, 297
of RexxQueue class, 413

queued method
of RexxQueue class, 413

release method
of MutexSemaphore class, 389
of RexxInfo class, 408

remove method
of Array class, 257
of Bag class, 265
of Directory class, 277
of IdentityTable class, 282
of List class, 288
of Queue class, 297
of Relation class, 302
of Set class, 307
of Stem class, 312
of StringTable class, 316
of Table class, 320

removeAll method
of Bag class, 265
of Relation class, 302

removeEntry method
of Directory class, 277
of StringTable class, 317

removeItem method
of Array class, 258
of Bag class, 266
of Directory class, 277
of IdentityTable class, 282
of List class, 288
of Queue class, 297
of Relation class, 302
of Set class, 308
of Stem class, 312
of StringTable class, 317
of Table class, 321

renameTo method
of File class, 370

replaceAt method
of MutableBuffer class, 383
of String class, 204

reply method
of Message class, 137

replyWith method
of Message class, 137

request method
of Object class, 152
of Stem class, 312
of VariableReference class, 435

requestClassType method
of Validate class, 433

reset method
of EventSemaphore class, 358

resize method
of CircularQueue class, 270

resource method
of Package class, 165

resources method
of Package class, 165

result method
of Message class, 138

reverse method
of String class, 204

revision method
of RexxInfo class, 409

right method
of String class, 204

round method
of String class, 205

routines method
of Package class, 165

rs method
of RexxContext class, 399

run method
of Object class, 153

save method
of Properties class, 291

say method
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of RexxQueue class, 413
of Stream class, 233

scheduledTime method
of Alarm class, 331

scope, 113
scope method

of Method class, 145
search order

changing, 113
searchPath method

of File class, 361
seconds method

of DateTime class, 350
of TimeSpan class, 428

section method
of Array class, 258
of CircularQueue class, 271
of List class, 288
of OrderedCollection class, 245
of Queue class, 298

seek method
of Stream class, 233

selection
search order, 113

send method
of Message class, 138
of Object class, 153

sendWith method
of Message class, 139
of Object class, 154

separator method
of File class, 361, 370

set method
of RexxQueue class, 413

setBufferSize method
of MutableBuffer class, 383

setEntry method
of Directory class, 277
of StringTable class, 317

setGuarded method
of Method class, 146

setLogical method, 291
setMethod method

of Directory class, 278
of Object class, 155

setPrivate method
of Method class, 146

setProperty method
of Properties class, 291

setProtected method
of Method class, 146

setReadOnly method
of File class, 370

setSecurityManager method

of Method class, 146
of Package class, 166
of Routine class, 169

setText method
of MutableBuffer class, 383

setUnguarded method
of Method class, 146

setWhole method
of Properties class, 291

setWritable method
of File class, 370

sign method
of String class, 205
of TimeSpan class, 430

size method
of Array class, 258
of CircularQueue class, 271
of Queue class, 298

sort method
of Array class, 259
of OrderedCollection class, 245

sortWith method
of Array class, 259
of OrderedCollection class, 246

source method
of Method class, 146
of Package class, 166
of Routine class, 169

sourceLine method
of Package class, 166

sourceSize method
of Package class, 166

space method
of MutableBuffer class, 383
of String class, 173, 206

stableSort method
of Array class, 259
of OrderedCollection class, 246

stableSortWith method, 259
of OrderedCollection class, 246

stackFrames method
of RexxContext class, 399

standardDate method
of DateTime class, 354

start method
of Message class, 139
of Object class, 155

startsWith method
of MutableBuffer class, 384
of String class, 206

startWith method
of Message class, 140
of Object class, 156

state method
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of Stream class, 235
string method

of CircularQueue class, 271
of DateTime class, 357
of File class, 371
of MutableBuffer class, 384
of Object class, 156
of StackFrame class, 416
of Stream class, 235
of TimeSpan class, 430

strip method
of String class, 206

subchar method
of String, 207

subChar method
of MutableBuffer class, 384

subclass method
of Class class, 130

subclasses method
of Class class, 131

subset method
of Bag class, 266
of Collection class, 241
of OrderedCollection class, 246
of Relation class, 302
of Set class, 308

substr method
of MutableBuffer class, 384
of String class, 207

subWord method
of MutableBuffer class, 384
of String class, 207

subWords method
of MutableBuffer class, 384
of String class, 208

superClass method
of Class class, 131

superClasses method
of Class class, 131

supplier method
of Array class, 259
of Bag class, 266
of CircularQueue class, 272
of Collection class, 241
of Directory class, 278
of IdentityTable class, 282
of List class, 288
of Queue class, 298
of Relation class, 303
of Set class, 308
of Stem class, 313
of Stream class, 235
of StringTable class, 317
of Supplier class, 421

of Table class, 321
tab method

of String class, 173
target method

of Message class, 141
of StackFrame class, 416

temporaryPath method
of File class, 362

ticks method
of DateTime class, 356

timeOfDay method
of DateTime class, 356

today method
of DateTime class, 341

toDirectory method
of Stem class, 313

toLocalTime method
of DateTime class, 355

toString method
of Array class, 259

totalDays method
of TimeSpan class, 428

totalHours method
of TimeSpan class, 428

totalMicroseconds method
of TimeSpan class, 429

totalMinutes method
of TimeSpan class, 429

totalSeconds method
of TimeSpan class, 429

toTimezone method
of DateTime class, 355

toUtcTime method
of DateTime class, 355

trace method
of Package class, 166

traceLine method
of StackFrame class, 416

translate method
of MutableBuffer class, 385
of String class, 208

triggered method
of Alarm class, 331
of AlarmNotification class, 332
of Message class, 141

trunc method
of String class, 209

type method
of StackFrame class, 416

uninherit method
of Class class, 132

uninit method
of EventSemaphore class, 358
of MutexSemaphore class, 389
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of Stream class, 236
union method

of Bag class, 266
of CircularQueue class, 272
of Collection class, 241
of OrderedCollection class, 246
of Relation class, 303
of Set class, 308

uniqueIndexes method
of Bag class, 266
of Relation class, 303

unknown method
of Directory class, 278
of Monitor class, 372
of Stem class, 313
of StringTable class, 317
of VariableReference class, 435

unsetMethod method
of Directory class, 278
of Object class, 157

upper method
of MutableBuffer class, 385
of String class, 173, 210

usaDate method
of DateTime class, 354

utcDate method
of DateTime class, 355

utcIsoDate method
of DateTime class, 352

value method
of VariableReference class, 435
of WeakReference class, 436

variables method
of RexxContext class, 399

verify method
of MutableBuffer class, 385
of String class, 210

version method
of RexxInfo class, 409

wait method
of Message class, 142

Wait method
of EventSemaphore class, 359

weekDay method
of DateTime class, 353

weekNumber method
of DateTime class, 347

weekNumberDate method
of DateTime class, 348

weekNumberYear method
of DateTime class, 348

weeksInYear method
of DateTime class, 348

wholeNumber method

of Validate class, 433
wholeNumberRange method

of Validate class, 434
word method

of MutableBuffer class, 386
of String class, 211

wordIndex method
of MutableBuffer class, 386
of String class, 211

wordLength method
of MutableBuffer class, 387
of String class, 212

wordPos method
of MutableBuffer class, 377, 387
of String class, 188, 212

words method
of MutableBuffer class, 387
of String class, 212

x2b method
of String class, 213

x2c method
of String class, 213

x2d method
of String class, 214

xdigit method
of String class, 173

xor method
of Bag class, 266
of CircularQueue class, 272
of Collection class, 241
of OrderedCollection class, 247
of Relation class, 303
of Set class, 308

year method
of DateTime class, 349

yearDay method
of DateTime class, 352

[] method
of Array class, 249
of Bag class, 262
of Collection class, 238
of Directory class, 275
of IdentityTable class, 280
of List class, 284
of MutableBuffer class, 373
of Queue class, 293
of Relation class, 299
of Routine class, 168
of Set class, 305
of Stem class, 310
of String class, 177
of StringTable class, 314
of Table class, 319

[]= method
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of Array class, 250
of Bag class, 263
of Collection class, 238
of Directory class, 275
of IdentityTable class, 280
of List class, 284
of MutableBuffer class, 374
of Properties class, 290
of Queue class, 293
of Relation class, 299
of Set class, 305
of Stem class, 310
of StringTable class, 314
of Table class, 319

\, 176
\<, 175, 391
\<<, 175, 391
\=

of Class class, 122
of Object class, 148
of Orderable class, 390
of Pointer class, 392
of String class, 174

\==
of Class class, 122
of Object class, 148
of Orderable class, 391
of Pointer class, 392
of String class, 175

\>, 175, 391
\>>, 176, 391
|, 176
||, 148, 177

Method class, 142
method method

of Class class, 128
METHOD subkeyword

in an ANNOTATE directive, 90
methods method

of Class class, 128
microseconds method

of DateTime class, 350
of TimeSpan class, 428

MIN function
description, 480
example, 480

min method
of String class, 202

minDate method
of DateTime class, 340

minExponent method
of RexxInfo class, 407

minutes calculated from midnight, 498
minutes method

of DateTime class, 349
of TimeSpan class, 428

mixin classes, 108
mixinClass method

of Class class, 129
MIXINCLASS subkeyword

in a CLASS directive, 94
model of input and output, 619
modification method

of RexxInfo class, 407
modularizing data, 1
modulo method

of String class, 203
monitor, 612
Monitor class, 371
month method

of DateTime class, 349
Month option of DATE function, 467
monthName method

of DateTime class, 353
multiple inheritance, 7
multiplication operator, 19
MutableBuffer class, 373
MutexSemaphore class, 387

N
name method

of File class, 369
of Package class, 163
of RexxContext class, 399
of RexxInfo class, 407
of StackFrame class, 416
of VariableReference class, 434

NAME subkeyword
in a CALL instruction, 47
in a SIGNAL instruction, 79

name, definition, 42
names

of functions, 443
of programs, 68
of subroutines, 47
of variables, 13

namespace, 35
namespaces method

of Package class, 163
negation

of logical values, 21
new method

of Array class, 249
of Bag class, 262
of Buffer class, 332
of Class class, 129
of Directory class, 274
of EventSemaphore class, 357
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of IdentityTable class, 280
of List class, 283
of Message class, 133
of Method class, 142
of MutableBuffer class, 373
of MutexSemaphore class, 388
of Object class, 147
of Package class, 158
of Pointer class, 391
of Properties class, 290
of Queue class, 293
of RegularExpression class, 394
of Relation class, 299
of RexxQueue class, 410
of Routine class, 167
of Set class, 305
of Singleton class, 414
of Stem class, 310
of Stream class, 219
of String class, 170
of StringTable class, 314
of Supplier class, 419
of Table class, 318
of WeakReference class, 436

newFile method
of Method class, 142
of Routine class, 167

next method
of Array class, 256
of List class, 287
of OrderedCollection class, 245
of Queue class, 296
of StreamSupplier class, 418
of Supplier class, 420

nibbles, 12
nl method

of String class, 172
NOMETHOD subkeyword

in a SIGNAL instruction, 79, 593, 597
nonNegativeNumber method

of Validate class, 432
nonNegativeWholeNumber method

of Validate class, 432
NOP instruction

description, 64
example, 64

Normal option of DATE function, 467
NORMAL subkeyword

in an ADDRESS instruction, 42
normalDate method

of DateTime class, 354
normalTime method

of DateTime class, 355
NOSTRING subkeyword

in a SIGNAL instruction, 79, 593, 597
not equal operator, 20
not greater than operator, 20
not less than operator, 20
NOT operator, 15, 21
notation

engineering, 587
exponential, example, 587
scientific, 587

Notices, 697
notify method

of Message class, 136
NOTREADY condition

condition trapping, 626
raised by stream errors, 626

NOTREADY subkeyword
in a CALL instruction, 47, 597
in a SIGNAL instruction, 79, 593, 597

NOVALUE condition
not raised by VALUE function, 503
use of, 631

NOVALUE subkeyword
in a SIGNAL instruction, 79, 594, 597

null
clauses, 26
strings, 11

null method
of String class, 172

number method
of Validate class, 432

numberRange method
of Validate class, 432

numbers
arithmetic on, 19, 584, 585
checking with dataType, 193
checking with DATATYPE, 464
comparison of, 20, 588
description, 14, 584
formatting for display, 197, 473
implementation maximum, 14
in DO instruction, 51
truncating, 209, 502
use in the language, 589

numbers for display, 197, 473
numeric

comparisons, example, 589
options in TRACE, 84

NUMERIC instruction
description, 64, 64
DIGITS option, 65
FORM option, 65, 588
FUZZ option, 65
settings saved during subroutine calls, 49

NumericComparator class, 338
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O
object, 17

as data value, 18
definition, 3
kinds of, 3

Object class, 147
object classes, 7, 107
object method, 107
object variable pool, 54, 603
object-based concurrency, 601
object-oriented programming, 1
objectName method

of Object class, 152
objectName= method

of Object class, 152
of method

of Array class, 249
of Bag class, 262
of CircularQueue class, 268
of List class, 284
of MapCollection class, 242
of Queue class, 293
of Set class, 305

OFF subkeyword
in a CALL instruction, 47
in a GUARD instruction, 57
in a SIGNAL instruction, 79

offset method
of DateTime class, 356

ON subkeyword
in a CALL instruction, 47
in a GUARD instruction, 57
in a SIGNAL instruction, 79

ooRexx License, 699
open method

of InputStream class, 216
of OutputStream class, 218
of RexxQueue class, 411
of Stream class, 228

Open Object Rexx License, 699
operations

tracing results, 81
operator

arithmetic
description, 18, 584, 585
list, 19

as message, 18
as special characters, 15
characters, 15
comparison, 19, 588
concatenation, 18
examples, 587
logical, 21

precedence (priorities) of, 21
options

alphabetical character word options, 82
numeric in TRACE, 84

OPTIONS instruction
description, 66

OR, logical, 21
Orderable class, 390
Ordered collection classes

Array class, 247
CircularQueue class, 267
List class, 283
Queue class, 292

Ordered option of DATE function, 467
OrderedCollection class, 243
orderedDate method

of DateTime class, 354
ordinalDate method

of DateTime class, 349
ORing character together, 180, 455
OTHERWISE

as free standing clause, 42
OTHERWISE subkeyword

in a SELECT instruction, 77
output

errors during, 626
object, 439
to the user, 619

OUTPUT subkeyword
in an ADDRESS instruction, 42

OutputStream class, 216
OVER phrase of DO instruction, 50
OVER phrase of LOOP instruction, 63
OVER subkeyword

in a DO instruction, 50, 643, 644
in a LOOP instruction, 63, 643, 644

overflow, arithmetic, 590
OVERLAY function

description, 480
example, 480

overlay method
of MutableBuffer class, 382
of String class, 203

overlaying a string onto another, 203, 480
overview of parsing, 581

P
Package class, 157
package method

of Class class, 130
of Method class, 145
of RexxContext class, 399
of RexxInfo class, 408
of Routine class, 169
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PACKAGE subkeyword
in a METHOD directive, 97
in an ANNOTATE directive, 90
in an ATTRIBUTE directive, 91

package-scope method, 115
packing a string with X2C, 213, 509
pad character, definition, 450
page, code, 9
parent method

of File class, 369
parentFile method

of File class, 369
parentheses

adjacent to whitespace, 15
in expressions, 21
in function calls, 443
in parsing templates, 576

PARSE instruction
description, 66
example, 68

PARSE LINEIN method
role in input and output, 620

parse method
of RegularExpression class, 395

PARSE PULL method
role in input and output, 620

parsing, 572, 573
advanced topics, 579
combining patterns and parsing into words

string, 574
combining string and positional patterns, 579
conceptual overview, 580
description, 567, 581
equal sign, 572
examples

combining positional patterns with parsing
into words, 575
combining string and positional patterns,
580
combining string pattern and parsing into
words, 574
parsing instructions, 577
parsing multiple strings in a subroutine, 579
period as a placeholder, 569
simple template, 567
templates containing positional patterns,
571
templates containing string patterns, 570
using a variable as a string pattern, 576
using an expression as a positional pattern,
576

into words, 567
patterns

positional, 567, 571

string, 567, 569
word parsing, conceptual overview, 583

period as placeholder, 569
positional patterns, 567

absolute, 571
variable, 576

selecting words, 567
several assignments, 576
several strings, 579
source string, 567
special case, 579
steps, 581
string patterns, 567

literal string patterns, 569
variable string patterns, 576

summary of instructions, 577
templates

in ARG instruction, 46
in PARSE instruction, 67
in PULL instruction, 71

treatment of blanks, 568
treatment of whitespace, 568
UPPER, use of, 577
variable patterns

string, 576
word parsing

conceptual overview, 583
description and examples, 567

path method
of File class, 370

pathSeparator method
of File class, 361, 370
of RexxInfo class, 408

patterns in parsing
combined with parsing into words, 574
conceptual overview, 581, 582, 583
positional, 567, 571
string, 567, 569

peek method
of Queue class, 296

period
as placeholder in parsing, 569
causing substitution in variable names, 33
in numbers, 584

permanent command destination change, 42
persistent input and output, 619
platform method

of RexxInfo class, 408
Pointer class, 391
polymorphism, 7
POS function

description, 480
example, 481

pos method
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of MutableBuffer class, 382
of RegularExpression class, 397
of String class, 203

position
last occurrence of a string, 199, 380, 474

position method
of InputStream class, 216
of OutputStream class, 218
of RegularExpression class, 397
of Stream class, 230
of Validate class, 432

positional patterns
absolute, 569
description, 567
length, 573
relative, 572
variable, 576

positiveNumber method
of Validate class, 433

positiveWholeNumber method
of Validate class, 433

post method
of EventSemaphore class, 358

power operator, 19
powers of ten in numbers, 14
precedence of operators, 21
prefix + method, 177
prefix + operator, 19
prefix - method, 177
prefix - operator, 19
prefix \ operator, 20, 21
presumed command destinations, 42
previous method

of Array class, 256
of List class, 287
of OrderedCollection class, 245
of Queue class, 297

print method
of String class, 172

private method, 115
PRIVATE subkeyword

in a CLASS directive, 94
in a METHOD directive, 97
in a ROUTINE directive, 104
in an ATTRIBUTE directive, 91

PROCEDURE instruction
description, 69
example, 69

programming restrictions, 1
programs

arguments to, 46
examples, 626
retrieving lines with SOURCELINE, 486
retrieving name of, 68

programs without source, 639
prolog method

of Package class, 164
PROPAGATE subkeyword

in a RAISE instruction, 73
Properties class, 288
PROTECTED subkeyword

in a METHOD directive, 97
in an ATTRIBUTE directive, 91

protecting variables, 69
pseudo random number RANDOM function, 481
public method, 115
public object

.CONTEXT object, 440

.DEBUGINPUT object, 439

.ENDOFLINE object, 437

.ERROR object, 439

.FALSE object, 437

.INPUT object, 439

.LINE object, 440

.LOCAL object, 438

.METHODS object, 441

.nil object, 437

.OUTPUT object, 439

.RESOURCES object, 441

.RexxInfo object, 437

.ROUTINES object, 441

.RS object, 442

.STDERR object, 439

.STDIN object, 439

.STDOUT object, 440

.STDQUE object, 440

.SYSCARGS object, 440

.TRACEOUPUT object, 439

.TRUE object, 438
PUBLIC subkeyword

in a CLASS directive, 94
in a METHOD directive, 97
in a ROUTINE directive, 104
in an ATTRIBUTE directive, 91

publicClasses method
of Package class, 164

publicRoutines method
of Package class, 164

PULL instruction
description, 71
example, 72

pull method
of Queue class, 297
of RexxQueue class, 412

PULL method
role in input and output, 620

PULL option of PARSE instruction, 67
PULL subkeyword

747



in a PARSE instruction, 66, 71, 577
punct method

of String class, 172
PUSH instruction

description, 72
example, 72

push method
of CircularQueue class, 270
of Queue class, 297
of RexxQueue class, 412

put method
of Array class, 257
of Bag class, 265
of Collection class, 240
of Directory class, 277
of IdentityTable class, 282
of List class, 288
of Properties class, 291
of Queue class, 297
of Relation class, 302
of Set class, 307
of Stem class, 312
of StringTable class, 316
of Table class, 320

putAll method
of Bag class, 265
of MapCollection class, 242
of Set class, 307, 308

Q
QUALIFY function

description, 481
qualify method

of Stream class, 230
query external function, 483
QUERY keyword

in a RXSUBCOM command, 636
query method

of Stream class, 230
queryMixinClass method

of Class class, 130
queue

creating and deleting queues, 484
named, 621
naming and querying, 484
RXQUEUE function, 484
session, 621
unnamed, 621

Queue class, 292
QUEUE instruction

description, 72
example, 72
role in input and output, 621

Queue interface from Rexx programs, 484

queue method
of CircularQueue class, 270
of Queue class, 297
of RexxQueue class, 413

QUEUED function
description, 481
example, 481
role in input and output, 622

queued method
of RexxQueue class, 413

R
RAISE instruction

description, 73
example, 74

RANDOM function
description, 481
example, 481

random number RANDOM function, 481
RC (return code)

not set during interactive debug, 629
set by commands, 38
special variable, 599, 632

RC special variable
description, 632

read position in a stream, 620
recursive call, 49, 444
register external functions, 483
REGISTER keyword

in a RXSUBCOM command, 635
RegularExpression class, 392
Relation class, 298
relative positional pattern

positional patterns
relative, 572

release method
of MutexSemaphore class, 389
of RexxInfo class, 408

remainder
description>, 586

remainder operator, 19
remove method

of Array class, 257
of Bag class, 265
of Directory class, 277
of IdentityTable class, 282
of List class, 288
of Queue class, 297
of Relation class, 302
of Set class, 307
of Stem class, 312
of StringTable class, 316
of Table class, 320

removeAll method
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of Bag class, 265
of Relation class, 302

removeEntry method
of Directory class, 277
of StringTable class, 317

removeItem method
of Array class, 258
of Bag class, 266
of Directory class, 277
of IdentityTable class, 282
of List class, 288
of Queue class, 297
of Relation class, 302
of Set class, 308
of Stem class, 312
of StringTable class, 317
of Table class, 321

renameTo method
of File class, 370

reordering data, 208, 385, 501
repeating a string with COPIES, 462
repeating s string with copies, 192
repetitive loops

altering flow, 62
controlled repetitive loops, 641
exiting, 62
simple DO group, 641

REPLACE subkeyword
in an ADDRESS instruction, 42

replaceAt method
of MutableBuffer class, 383
of String class, 204

replacing characters within a string, 204, 383
REPLY instruction

description, 75
example, 75

reply method
of Message class, 137

replyWith method
of Message class, 137

request method
of Object class, 152
of Stem class, 312
of VariableReference class, 435

requestClassType method
of Validate class, 433

reservation of keywords, 631
reset method

of EventSemaphore class, 358
resize method

of CircularQueue class, 270
resource method

of Package class, 165
resources method

of Package class, 165
restrictions

embedded in numbers, 14
first character of variable name, 28
in programming, 1

result method
of Message class, 138

RESULT special variable
description, 632
return value from a routine, 448
set by RETURN instruction, 49, 76

retrieving
argument strings with ARG, 46
arguments with ARG function, 451
lines with SOURCELINE, 486

return
code

as set by commands, 38
setting on exit, 53

string
setting on exit, 53

RETURN instruction
description, 76

RETURN subkeyword
in a RAISE instruction, 73

returning control from Rexx program, 76
REVERSE function

description, 482
example, 482

reverse method
of String class, 204

revision method
of RexxInfo class, 409

RexxContext class, 397
RexxInfo class, 400
RexxQueue class, 409
rexxutil functions, 512

RxMessageBox, 514
example, 516

RxWinExec, 516
SysAddRexxMacro, 518
SysBootDrive, 518
SysClearRexxMacroSpace, 518
SysCls, 518
SysCreatePipe, 519
SysCurPos, 519

example, 519
SysCurState, 519
SysDriveInfo, 520

example, 520
SysDriveMap, 520

example, 521
SysDropRexxMacro, 521
SysDumpVariables, 521
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example, 522
SysFileCopy, 522

example, 522
SysFileDelete, 522

example, 523
SysFileExists, 523
SysFileMove, 524

example, 524
SysFileSearch, 524

example, 525
SysFileSystemType, 526

example, 526
SysFileTree, 526

example, 529
SysFork, 529
SysFormatMessage, 531

example, 531
SysFromUnicode, 531
SysGetErrorText, 533

example, 533
SysGetFileDateTime, 533

example, 534
SysGetKey, 534
SysGetLongPathName, 534

example, 535
SysGetMessage, 535

example, 535
SysGetMessageX, 535

example, 536
SysGetShortPathName, 536

example, 536
SysIni, 537

example, 538
SysIsFile, 539
SysIsFileCompressed, 539
SysIsFileDirectory, 540
SysIsFileEncrypted, 540
SysIsFileLink, 541
SysIsFileNotContentIndexed, 541
SysIsFileOffline, 542
SysIsFileSparse, 542
SysIsFileTemporary, 543
SysLinVer, 543
SysLoadRexxMacroSpace, 543
SysMkDir, 544

example, 545
SysQueryProcess, 545
SysQueryRexxMacro, 546
SysReorderRexxMacro, 547
SysRmDir, 547

example, 548
SysSaveRexxMacroSpace, 548
SysSearchPath, 548

example, 549

SysSetFileDateTime, 549
example, 550

SysSetPriority, 550
SysShutdownSystem, 551
SysSleep, 552

example, 552
SysStemCopy, 553

example, 554
SysStemDelete, 554

example, 554
SysStemInsert, 555
SysStemSort, 555

example, 556
SysSwitchSession, 556
SysSystemDirectory, 557
SysTempFileName, 557

example, 558
SysTextScreenRead, 558

example, 558
SysTextScreenSize, 559

example, 560
SysToUnicode, 560
SysUtilVersion, 561
SysVersion, 562
SysVolumeLabel, 562
SysWait, 562
SysWaitNamedPipe, 563
SysWinDecryptFile, 563
SysWinEncryptFile, 564
SysWinGetDefaultPrinter, 564

example, 565
SysWinGetPrinters, 564

example, 565
SysWinSetDefaultPrinter, 565

example, 565
SysWinVer, 566

RIGHT function
description, 482
example, 482

right method
of String class, 204

round method
of String class, 205

rounding
using a character string as a number, 14

Routine class, 166
ROUTINE subkeyword

in an ANNOTATE directive, 90
routines method

of Package class, 165
rs method

of RexxContext class, 399
run method

of Object class, 153
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running off the end of a program, 76
RXFUNCADD function

description, 483
example, 483

RXFUNCDROP function
description, 483
example, 483

RXFUNCQUERY function
description, 483
example, 483

RXFUNCQUEUE function
example, 485

RxMessageBox, 514
example, 516

RXQUEUE filter, 637
RXQUEUE function

description, 484
RXSUBCOM command, 635
RXTRACE environment variable, 630
RxWinExec, 516

S
save method

of Properties class, 291
SAY instruction

description, 76
displaying data, 76
example, 77
role in output, 620

say method
of RexxQueue class, 413
of Stream class, 233

scheduledTime method
of Alarm class, 331

scientific notation, 587
SCIENTIFIC subkeyword

in a NUMERIC instruction, 64
scope

alternating exclusive access, 607
description, 113

scope method
of Method class, 145

search order
external functions, 444
for functions, 444
for methods

changing, 114
default, 113

for subroutines, 48
searchPath method

of File class, 361
seconds calculated from midnight, 498
seconds method

of DateTime class, 350

of TimeSpan class, 428
section method

of Array class, 258
of CircularQueue class, 271
of List class, 288
of OrderedCollection class, 245
of Queue class, 298

Security Manager, 614
calls to, 614

seek method
of Stream class, 233

SELECT instruction
description, 77
example, 78

selecting a default with ABBREV function, 450
selecting a default with abbrev method, 178
selecting a default with caselessAbbrev method,
182
SELF special variable

description, 632
semaphore, 608
semicolons

implied, 16
omission of, 42
within a clause, 8

send method
of Message class, 138
of Object class, 153

sendWith method
of Message class, 139
of Object class, 154

separator method
of File class, 361, 370

sequence, collating using XRANGE, 510
serial input and output, 619
Set class, 304
Set Collection classes

Bag class, 261
Set class, 304

set method
of RexxQueue class, 413

SET subkeyword
in an ATTRIBUTE directive, 91

set-operator methods, 324
setBufferSize method

of MutableBuffer class, 383
SetCollection class, 247
setEntry method

of Directory class, 277
of StringTable class, 317

setGuarded method
of Method class, 146

SETLOCAL function
description, 485
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example, 485
setLogical method

of Properties class, 291
setMethod method

of Directory class, 278
of Object class, 155

setPrivate method
of Method class, 146

setProperty method
of Properties class, 291

setProtected method
of Method class, 146

setReadOnly method
of File class, 370

setSecurityManager method
of Method class, 146
of Package class, 166
of Routine class, 169

setText method
of MutableBuffer class, 383

setUnguarded method
of Method class, 146

SETUNGUARDED method, 606
setWhole method

of Properties class, 291
setWritable method

of File class, 370
sh command environment, 45
shebang, 40
SIGL

in CALL instruction, 49
in condition trapping, 598
in SIGNAL instruction, 81

SIGL special variable
description, 632

SIGN function
description, 486
example, 486

sign method
of String class, 205
of TimeSpan class, 430

SIGNAL instruction
description, 79
example, 81
execution of in subroutines, 50

significant digits in arithmetic, 585
simple

repetitive loops, 641
symbols, 30

Singleton class, 413
size method

of Array class, 258
of CircularQueue class, 271
of Queue class, 298

sort method
of Array class, 259
of OrderedCollection class, 245

sortWith method
of Array class, 259
of OrderedCollection class, 246

source
of program and retrieval of information, 68
string, 567

source method
of Method class, 146
of Package class, 166
of Routine class, 169

SOURCE option of PARSE instruction, 68
SOURCE subkeyword

in a PARSE instruction, 66, 577
sourceless programs, 639
SOURCELINE function

description, 486
example, 486

sourceLine method
of Package class, 166

sourceSize method
of Package class, 166

SPACE function
description, 486
example, 487

space method
of MutableBuffer class, 383
of String class, 173, 206

spacing, formatting, SPACE function, 486
spacing, formatting, space method, 206, 383
special

characters and example, 15
parsing case, 579
variable

RC, 632
RESULT, 49, 76, 448, 632
SELF, 632
SIGL, 49, 632
SUPER, 632

variables
RC, 38, 598, 632
RESULT, 76, 448, 632
SELF, 632
SIGL, 598, 632
SUPER, 632

stableSort method
of Array class, 259
of OrderedCollection class, 246

stableSortWith method
of Array class, 259
of OrderedCollection class, 246

StackFrame class, 415
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stackFrames method
of RexxContext class, 399

standard input and output, 623
Standard option of DATE function, 467
standardDate method

of DateTime class, 354
start method

of Message class, 139
of Object class, 155

startsWith method
of MutableBuffer class, 384
of String class, 206

startWith method
of Message class, 140
of Object class, 156

state method
of Stream class, 235

State method, 627
Stem class, 308
stem of a variable

assignment to, 31
description, 33
used in DROP instruction, 53
used in PROCEDURE instruction, 70

STEM subkeyword
in an ADDRESS instruction, 42

steps in parsing, 580
stream, 619

character positioning, 624
function overview, 625
line positioning, 624

Stream class, 218
stream errors, 626
STREAM function

command options, 488
command strings, 488
description, 487
example, 491, 492
options, 489
query options, 492

STREAM subkeyword
in an ADDRESS instruction, 42

StreamSupplier class, 417
strict comparison, 20, 20
STRICT subkeyword

in a USE instruction, 86
strictly equal operator, 20, 20
strictly greater than operator, 20, 20
strictly greater than or equal operator, 20
strictly less than operator, 20, 20
strictly not equal operator, 20, 20
strictly not greater than operator, 20
strictly not less than operator, 20
string

as literal constant, 11
as name of function, 11
as name of subroutine, 47
binary specification of, 12
centering using center function, 189
centering using CENTER method, 457
centering using centre function, 189
centering using CENTRE method, 457
comparison of, 20
concatenation of, 18
copying using copies, 192
copying using COPIES, 462
decodeBase64 method, 195
deleting part, DELSTR function, 469
deleting part, delStr method, 195
description, 11
encodeBase64 method, 196
extracting using SUBSTR function, 495
extracting using substr method, 207
extracting words with SUBWORD, 496
from stream, 458
hexadecimal specification of, 12
interpretation of, 59
lowercasing using LOWER function, 479
null, 11
patterns

description, 567
literal, 570
variable, 576

quotations marks in, 11
repeating using copies, 192
repeating using COPIES, 462
uppercasing using UPPER function, 502
verifying contents of, 210, 385, 506

String class, 169
string method

of CircularQueue class, 271
of daysInMonth class, 357, 430
of File class, 371
of MutableBuffer class, 384
of Object class, 156
of StackFrame class, 416
of Stream class, 235

StringTable class, 313
STRIP function

description, 494
example, 495

strip method
of String class, 206

structure and syntax, 8
subchar method

of String class, 207
subChar method

of MutableBuffer class, 384
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subclass method
of Class class, 130

SUBCLASS subkeyword
in a CLASS directive, 94

subclasses, 7
subclasses method

of Class class, 131
subexpression, 18
subkeyword, 28
subroutines

calling of, 47
definition, 443
forcing built-in or external reference, 48
naming of, 47
passing back values from, 76
return from, 76
use of labels, 47
variables in, 69

subset method
of Bag class, 266
of Collection class, 241
of OrderedCollection class, 246
of Relation class, 302

subsidiary list, 52, 54, 69
substitution

in variable names, 33
SUBSTR function

description, 495
example, 495

substr method
of MutableBuffer class, 384
of String class, 207

subtraction operator, 19
SUBWORD function

description, 496
example, 496

subWord method
of MutableBuffer class, 384
of String class, 207

subWords method
of MutableBuffer class, 384
of String class, 208

summary
parsing instructions, 577

SUPER special variable
description, 632

superClass method
of Class class, 131

superclasses, 7
superClasses method

of Class class, 131
Supplier class, 419
supplier method

of Array class, 259

of Bag class, 266
of CircularQueue class, 272
of Collection class, 241
of Directory class, 278
of IdentityTable class, 282
of List class, 288
of Queue class, 298
of Relation class, 303
of Set class, 308
of Stem class, 313
of Stream class, 235
of StringTable class, 317
of Supplier class, 421
of Table class, 321

symbol
assigning values to, 28, 29
classifying, 29
compound, 33
constant, 29
description, 13
simple, 28
uppercase translation, 13
use of, 28, 29
valid names, 13

SYMBOL function
description, 496
example, 496

symbols
environment, 34
namespace, 35

syntax
error

traceback after, 86
trapping with SIGNAL instruction, 592

general, 8
SYNTAX subkeyword

in a RAISE instruction, 73
in a SIGNAL instruction, 79, 594, 598

SysAddBootDrive, 518
SysAddRexxMacro, 518
SysClearRexxMacroSpace, 518
SysCls, 518
SysCreatePipe, 519
SysCurPos, 519

example, 519
SysCurState, 519
SysDriveInfo, 520

example, 520
SysDriveMap, 520

example, 521
SysDropRexxMacro, 521
SysDumpVariables, 521

example, 522
SysFileCopy, 522
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example, 522
SysFileDelete, 522

example, 523
SysFileExists, 523
SysFileMove, 524

example, 524
SysFileSearch, 524

example, 525
SysFileSystemType, 526

example, 526
SysFileTree, 526

example, 529
SysFork, 529
SysFormatMessage, 531

example, 531
SysFromUnicode, 531
SysGetErrorText, 533

example, 533
SysGetFileDateTime, 533

example, 534
SysGetKey, 534
SysGetLongPathName

example, 535
SysGetLongPathNamey, 534
SysGetMessage, 535

example, 535
SysGetMessageX, 535

example, 536
SysGetShortPathName

example, 536
SysGetShortPathNamey, 536
SysIni, 537

example, 538
SysIsFile, 539
SysIsFileCompressed, 539
SysIsFileDirectory, 540
SysIsFileEncrypted, 540
SysIsFileLink, 541
SysIsFileNotContentIndexed, 541
SysIsFileOffline, 542
SysIsFileSparse, 542
SysIsFileTemporary, 543
SysLinVer, 543
SysLoadRexxMacroSpace, 543
SysMkDir, 544

example, 545
SysQueryProcess, 545
SysQueryRexxMacro, 546
SysReorderRexxmacro, 547
SysRmDir, 547

example, 548
SysSaveRexxMacroSpace, 548
SysSearchPath, 548

example, 549

SysSetFileDateTime, 549
example, 550

SysSetPriority, 550
SysShutdownSystem, 551
SysSleep, 552

example, 552
SysStemCopy, 553

example, 554
SysStemDelete, 554

example, 554
SysStemInsert, 555
SysStemSort, 555

example, 556
SysSwitchSession, 556
SysSystemDirectory, 557
SysTempFileName, 557

example, 558
SysTextScreenRead, 558

example, 558
SysTextScreenSize, 559

example, 560
SysToUnicode, 560
SysUtilVersion, 561
SysVersion, 562
SysVolumeLabel, 562
SysWait, 562
SysWaitNamedPipe, 563
SysWinDecryptFile, 563
SysWinEncryptFile, 564
SysWinGetDefaultPrinter, 564

example, 565
SysWinGetPrinters, 564

example, 565
SysWinSetDefaultPrinter, 565

example, 565
SysWinVer, 566

T
tab method

of String class, 173
Table class, 318
tail, 33
target method

of Message class, 141
of StackFrame class, 416

template
definition, 567
list

ARG instruction, 46
PARSE instruction, 66
PULL instruction, 71

temporary change of, 42
temporary command destination change, 42
temporaryPath method
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of File class, 362
ten, powers of, 587
terminal

reading from with PULL, 71
writing to with SAY, 76

terms and data, 17
testing, 450, 496

abbreviations with abbrev method, 178
abbreviations with caselessAbbrev method,
182

THEN
as free standing clause, 42
following IF clause, 58
following WHEN clause, 77

THEN subkeyword
in a SELECT instruction, 77
in an IF instruction, 58

thread, 532, 545, 560, 601
Ticker class, 421
ticks method

of DateTime class, 356
Ticks option of DATE function, 467
Ticks option of Time function, 498
tilde (~), 4
TIME function

description, 497
example, 499, 499
implementation maximum, 500

timeOfDay method
of DateTime class, 356

TimeSpan class, 424
tips, tracing, 84
TO phrase of DO instruction, 51
TO subkeyword

in a DO instruction, 50, 641
in a FORWARD instruction, 55
in a LOOP instruction, 63, 641

today method
of DateTime class, 341

toDirectory method
of Stem class, 313

tokens
binary strings, 12
description, 11
hexadecimal strings, 12
literal strings, 11
numbers, 14
operator characters, 15
special characters, 15
symbols, 13

toLocalTime method
of DateTime class, 355

toString method
of Array class, 259

totalDays method
of TimeSpan class, 428

totalHours method
of TimeSpan class, 428

totalMicroseconds method
of TimeSpan class, 429

totalMinutes method
of TimeSpan class, 429

totalSeconds method
of TimeSpan class, 429

toTimezone method
of DateTime class, 355

toUtcTime method
of DateTime class, 355

TRACE function
description, 500
example, 501

TRACE instruction
alphabetical character word options, 82
description, 81
example, 84

trace method
of Package class, 166

TRACE setting
altering with TRACE function, 500
altering with TRACE instruction, 81
querying, 500

traceback, on syntax error, 86
traceLine method

of StackFrame class, 416
tracing

action saved during subroutine calls, 50
by interactive debug, 629
data identifiers, 84
execution of programs, 81
tips, 84

tracing flag
*-*, 84
+++, 85
=>>, 85
>.>, 85
>>>, 85
>A>, 85
>C>, 85
>E>, 85
>F>, 85
>I>, 85
>K>, 85
>L>, 85
>M>, 85
>N>, 85
>O>, 85
>P>, 86
>R>, 86
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>V>, 86
trailing

whitespace removed using STRIP function,
494
whitespace removed using strip method, 206

transient input and output, 619
TRANSLATE function

description, 501
example, 501

translate method
of MutableBuffer class, 385
of String class, 208

translation
with TRANSLATE function, 501
with translate method, 208, 385

trap conditions
explanation, 591
how to, 591
information about trapped conditions, 460
using CONDITION function, 460

trapname, 595
triggered method

of Alarm class, 331
of AlarmNotification class, 332
of Message class, 141

TRUNC function
description, 502
example, 502

trunc method
of String class, 209

truncating numbers, 209, 502
twiddle (~), 4
type method

of StackFrame class, 416
type of data, checking with DataType, 193
type of data, checking with DATATYPE, 464
typewriter input and output, 619

U
unassigning variables, 52
unconditionally leaving your program, 53
underflow, arithmetic, 590
UNGUARDED option of ::ATTRIBUTE, 94
UNGUARDED option of ::METHOD, 99, 606
UNGUARDED subkeyword

in a METHOD directive, 97
in an ATTRIBUTE directive, 91

uninherit method
of Class class, 132

uninit method
of EventSemaphore class, 358
of MutexSemaphore class, 389
of Stream class, 236

uninitialized variable, 29

union method
of Bag class, 266
of CircularQueue class, 272
of Collection class, 241
of OrderedCollection class, 246
of Relation class, 303
of Set class, 308

uniqueIndexes method
of Bag class, 266
of Relation class, 303

unknown method
of Directory class, 278
of Monitor class, 372
of Stem class, 313
of StringTable class, 317
of VariableReference class, 435

unpacking a string
with b2x, 179
with B2X, 453
with c2x, 181
with C2X, 456

UNPROTECTED subkeyword
in a METHOD directive, 97
in an ATTRIBUTE directive, 91

unsetMethod method
of Directory class, 278
of Object class, 157

UNTIL phrase of DO instruction, 51
UNTIL phrase of LOOP instruction, 63
UNTIL subkeyword

in a DO instruction, 50, 644
in a LOOP instruction, 63, 644

unusual change in flow of control, 591
UPPER function

description, 502
upper method

of MutableBuffer class, 385
of String class, 173, 210

UPPER subkeyword
in a PARSE instruction, 46, 66, 71, 576

uppercase translation
during ARG instruction, 46
during PULL instruction, 71
of symbols, 13
with PARSE UPPER, 67
with TRANSLATE function, 501
with translate method, 208, 385

Usa option of DATE function, 467
usaDate method

of DateTime class, 354
USE instruction

description, 86
example, 87

USE LOCAL instruction
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example, 89
user input and output, 619, 629
USER subkeyword

in a CALL instruction, 47, 595, 598
in a RAISE instruction, 73
in a SIGNAL instruction, 79, 595, 598

USERID function
description, 503

USING subkeyword
in an ADDRESS instruction, 42

utcDate method
of DateTime class, 355

utcIsoDate method
of DateTime class, 352

V
Validate class, 431
value, 17
VALUE function

description, 503
example, 503, 505

value method
of VariableReference class, 435
of WeakReference class, 436

VALUE option of PARSE instruction, 68
VALUE subkeyword

in a NUMERIC instruction, 64
in a PARSE instruction, 66, 577
in a SIGNAL instruction, 79
in a TRACE instruction, 81
in an ADDRESS instruction, 42

VAR function
description, 505
example, 505

VAR option of PARSE instruction, 68
VAR subkeyword

in a PARSE instruction, 66, 577
variable

access with VALUE function, 503
checking name, 505
compound, 33
controlling loops, 641
description, 28, 29
dropping of, 52
exposing to caller, 69
external collections, 504
global, 504
in internal functions, 69
in subroutines, 69
names, 13
new level of, 69
parsing of, 68
patterns, parsing with

string, 576

patterns, parsing with positional, 576
positional patterns, 576
reference, 576
resetting of, 52
setting a new value, 28, 29
SIGL, 598
simple, 30
special

RC, 38
SIGL, 49, 598

string patterns, 576
testing for initialization, 496
valid names, 28

variable initialization, 496
VariableReference class, 434
variables

aquiring, 7, 8
in objects, 4

variables method
of RexxContext class, 399

VERIFY function
description, 506
example, 506

verify method
of MutableBuffer class, 385
of String class, 210

verifying contents of a buffer, 385
verifying contents of a string, 210, 506
version method

of RexxInfo class, 409
VERSION option of PARSE instruction, 69
VERSION subkeyword

in a PARSE instruction, 66, 577

W
wait method

of Message class, 142
Wait method

of EventSemaphore class, 359
WeakReference class, 435
weekDay method

of DateTime class, 353
Weekday option of DATE function, 467
weekNumber method

of DateTime class, 347
weekNumberDate method

of DateTime class, 348
weekNumberYear method

of DateTime class, 348
weeksInYear method

of DateTime class, 348
WHEN

as free standing clause, 42
WHEN subkeyword
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in a GUARD instruction, 57
in a SELECT instruction, 77

WHILE phrase of DO instruction, 51
WHILE phrase of LOOP instruction, 63
WHILE subkeyword

in a DO instruction, 50, 644
in a LOOP instruction, 63, 644

whitespace, 9
adjacent to special character, 8
in parsing, treatment of, 568
removal with STRIP function, 494
removal with strip method, 206

whole numbers
checking with dataType, 193
checking with DATATYPE, 464
description, 14

wholeNumber method
of Validate class, 433

wholeNumberRange method
of Validate class, 434

Windows System Error Codes, 512
WITH phrase of DO instruction, 50
WITH phrase of LOOP instruction, 63
WITH subkeyword

in a DO instruction, 50, 644
in a LOOP instruction, 63, 644
in a PARSE instruction, 66
in an ADDRESS instruction, 42

word
alphabetical character options in TRACE, 82
counting in a mutable buffer, 387
counting in a string, 212, 508
deleting from a mutablebuffer, 379
deleting from a string, 196, 470
extracting from a mutable buffer, 387
extracting from a string, 207, 208, 212, 384,
384, 496, 508
finding length of, 200, 475
in parsing, 567
locating in a mutable buffer, 387
locating in a string, 188, 212, 377, 507
parsing

conceptual view, 583
examples, 567

WORD function
description, 506
example, 507

word method
of MutableBuffer class, 386
of String class, 211

WORDINDEX function
description, 507
example, 507

wordIndex method

of MutableBuffer class, 386
of String class, 211

WORDLENGTH function
description, 507
example, 507

wordLength method
of MutableBuffer class, 387
of String class, 212

WORDPOS function
description, 507
example, 508

wordPos method
of MutableBuffer class, 387
of String class, 212

WORDS function
description, 508
example, 508

words method
of MutableBuffer class, 387
of String class, 212

write position in a stream, 620
writing to external data queue

with PUSH, 72
with QUEUE, 72

X
X2B function

description, 508
example, 508

x2b method
of String class, 213

X2C function
description, 509
example, 509

x2c method
of String class, 213

X2D function
description, 509
example, 509, 510

x2d method
of String class, 214

xdigit method
of String class, 173

xor method
of Bag class, 266
of CircularQueue class, 272
of Collection class, 241
of OrderedCollection class, 247
of Relation class, 303
of Set class, 308

XOR, logical, 21
XORing character strings together, 180, 455
XRANGE function

description, 510
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example, 511

Y
year method

of DateTime class, 349
yearDay method

of DateTime class, 352

Z
zeros

added on left with RIGHT function, 482
added on left with right method, 204
removal with STRIP function, 494
removal with strip method, 206
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