
z/VM
Version 7 Release 1

REXX/VM User's Guide

IBM

SC24-6315-00

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
187.

This edition applies to version 7, release 1, modification 0 of IBM® z/VM® (product number 5741-A09) and to all
subsequent releases and modifications until otherwise indicated in new editions.

Last updated: 2018-09-11
© Copyright International Business Machines Corporation 1991, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

List of Figures... ix
List of Tables...xiii

About This Document...xv
Intended Audience... xv
Syntax, Message, and Response Conventions...xv
Where to Find More Information... xviii

Links to Other Documents and Websites...xviii
How to Send Your Comments to IBM..xix
Summary of Changes for z/VM REXX/VM User's Guide.. xx

SC24-6315-00, z/VM Version 7 Release 1..xx

Chapter 1. Introduction... 1
What is REXX?.. 1

Features of REXX.. 1
REXX and z/VM... 2

About Programming... 2
The Reading Plan... 2

If You Have Never Written a Computer Program….. 3
If You Are Already Familiar with Another Language…... 3
Exercises and Examples...3
The REXX Reference...3

Chapter 2. Starting Out with REXX... 5
How a Program Works..5
Conversations...6

Typing in a Program.. 6
Running a Program... 7
Stopping a Program.. 8
Test Yourself….. 8

What Goes into a Program... 8
Comments in Programs.. 8
Keyword Instructions... 9
Literal Strings..9
Clauses... 10
Syntax Errors.. 11
Test Yourself….. 12
Substitution Rules.. 14

Repeated Substitution... 14
The VALUE() Function..14
Compound Symbols... 15
The INTERPRET Instruction...15

Chapter 3. Variables.. 17
What Are Variables?...17

Names and Values..18
Assignments...18

Displaying a Variable's Value... 19
Choosing Names for Variables... 20
Example: Setting Variables.. 20

 iii

Test Yourself….. 21
Other Assignments...21

Variables as Symbols...23
Constants and Variables...23

Compound Symbols...24
Stems and Tails.. 24
Derived Names... 24
Creating an Array..25
Test Yourself….. 27

Avoiding Duplicate Names...29
How Much Should You Tell Your Subroutine?... 30

The PROCEDURE Instruction... 30
The PROCEDURE EXPOSE Instruction...31

The Existence of Variable Names.. 32
The SYMBOL() Function...32
The DROP Instruction...32

Arrays with More Than One Dimension...33

Chapter 4. Expressions.. 35
Operators... 35

Operators and Terms..36
Order of Evaluation...36
Parentheses..37
Test Yourself….. 37
Tracing.. 38
Data Types.. 39
Prefix Operators... 40
Priority of Operators...40
Using Parentheses..41
Test Yourself….. 41

True and False..42
Comparisons...42
Using True and False.. 42
The Equal Sign (=).. 43
The AND (&) Operator.. 43
The OR (|) Operator.. 43
Test Yourself….. 43
Logical Operators... 44
Test Yourself….. 45

Functions..46
The Idea of a Function..46
Built-in Functions... 47
User-Written Functions.. 47
Test Yourself….. 47
Writing Your Own Functions...48
ARG Instruction.. 48
The ARG() Function... 48
RETURN Instruction... 49
Test Yourself….. 50
A Square Root Function..51
Internal Functions.. 52
Functions Written in Assembler Language.. 53

Loops.. 53
The DO Instruction... 53
A DO UNTIL Loop..53
Getting Out of Loops...54
Test Yourself….. 55

iv

Arithmetic...56
Numbers... 56
Checking Your Input...57
Addition, Subtraction, Multiplication... 58
Division... 58
Range of Numbers..59
Exponential Notation..59
Test Yourself….. 60
Formatting Numeric Output... 61
Specifying Conventional (Fixed Point) Notation.. 62
Specifying Exponential (Floating Point) Notation..62
Test Yourself….. 62
Exponentiation... 63
The NUMERIC DIGITS Instruction...64
The SIGN() Function.. 64
Rounding and Truncation... 64
Test Yourself….. 65

Groups of Instructions...66
Text...66

Concatenation.. 67
The SUBSTR() Function... 67
The LENGTH() Function... 67
The COPIES() Function..68
The LEFT() Function...68
The RIGHT() Function..68
Arranging Your Output in Columns.. 68
Test Yourself….. 69
Using a Subroutine to Simplify Tabulation...69
The POS() Function..71
Example.. 71
Words..72
The WORDPOS() Function... 73
Providing Help.. 73
Test Yourself….. 74
The OVERLAY() Function... 75
The WORDS() and WORD() Functions.. 76

Comparisons.. 78
General... 79
Numbers... 79
Characters.. 79
Test Yourself….. 80
The COMPARE() Function.. 80
The ABBREV() Function...81
Test Yourself….. 81
Exact Comparisons...82
Fuzzy Arithmetical Comparisons... 82

Translation... 83
Hexadecimal...83
Conversion..83
Character Sets.. 85
The VERIFY() Function.. 86

Chapter 5. Conversations...87
The SAY Instruction... 87
The PULL Instruction... 88

The UPPER Instruction...88
Test Yourself….. 89

 v

Parsing Words...90
The Period as a Placeholder...91
Test Yourself….. 91

Getting Data from the Command Line...92
Mixed Case..92
Recognizing Options...93
String Patterns..93
Parsing Variables and Expressions.. 93
Test Yourself….. 94
Parsing Using Patterns... 95

Chapter 6. Commands... 97
Issuing Commands to CMS and CP... 97

Clauses That Become Commands... 97
When to Use Quotation Marks... 99
CP Commands.. 99
Summary.. 100
Return Codes..100
Special Variables.. 101
Test Yourself….. 101
Debugging Individual Commands..102
Debugging Execs That Contain Commands...102
Making a Common Routine for Handling Return Codes..102
Getting Messages from a Repository File.. 103
How to Suppress Messages Issued by CMS Commands.. 104
A Useful Subroutine... 105
Test Yourself….. 105

Using the Program Stack... 107
Definitions.. 108
Buffers.. 109
How to Use the Program Stack.. 110
Example: A CMS Command That Puts Data onto the Program Stack...111
Example: A CMS Command That Requires Data from the Program Stack....................................... 112

CP Commands..112
How to Suppress Messages Issued by CP Commands... 112
How to Obtain the Response from a CP Command...113

The COMMAND Environment.. 116

Chapter 7. XEDIT...119
XEDIT Subcommands and Macros..119

XEDIT Macros...120
Naming of XEDIT Macros... 120
Example: Changing the Settings of the Scroll Keys...120
Return Codes..120
Messages..121

The EXTRACT Subcommand... 121
The Current Line...122
An Example: Moving through a File a Paragraph at a Time...123

Your XEDIT Profile... 124
Menus Using XEDIT... 124

Chapter 8. Control... 127
Selection.. 127

The IF Instruction.. 128
The ELSE Keyword..129
The Dangling ELSE... 130
Test Yourself….. 131

vi

The SELECT Instruction... 131
Example..133
The NOP Instruction.. 133
Test Yourself….. 134

Loops..135
Simple Repetitive Loops.. 136
Using a Control Variable...137
The BY Expression... 138
Test Yourself….. 139
Conditional Loops: The LEAVE Instruction..140
Conditional Loops: The DO WHILE Instruction... 140
Conditional Loops: The DO UNTIL Instruction.. 141
Conditional Loops: The Choice.. 142
Test Yourself….. 142
Compound DO Instructions... 143
Leaving a Specified Loop..143
The ITERATE Instruction..144

The EXIT Instruction... 145
Subroutines..146

The Idea of a Subroutine..146
The CALL Instruction..148
The ARG Instruction...149
The RETURN Instruction..149
Example..149
When to Leave Out the Arguments.. 150
Test Yourself….. 150
Subroutines and Functions.. 151
Using a Call of the Other Kind.. 152
Parsing the Arguments...153
External Subroutines..153

Jumps...154
The SIGNAL Instruction... 154
Abnormal Changes of Control..154

Conditions and Condition Traps.. 155
The CALL ON Condition.. 155
The SIGNAL ON Condition... 155
Action Taken When a Condition is Trapped...157

The CONDITION Function... 157

Chapter 9. Input and Output.. 159
A Stream of Information..159
File Processing...160

Writing Data to a Stream.. 160
LINEOUT (Line Output) Function... 160
CHAROUT (Character Output) Function.. 162
Reading Data from a Stream..163
LINEIN (Line Input) Function...163
CHARIN (Character Input) Function..164
Counting the Data Remaining.. 165
LINES (Lines Remaining) Function.. 165
CHARS (Characters Remaining) Function..166

Handling Streams.. 166
Opening and Closing Files..167

To Summarize.. 167
Additional Stream I/O Information... 169

More about Data Streams.. 169
Default Streams..169

 vii

Performing Stream Tasks.. 171
STREAM Function...171
Accessing Data within a Stream.. 174

Techniques For Using REXX I/O Functions... 175
To Open or not To Open... 175
REXX I/O and CMS... 175
Error Handling.. 176
Alternate Techniques... 176

Chapter 10. Programming Style and Techniques... 177
Consider the Data.. 177

Test Yourself….. 178
Happy Hour.. 178
Designing a Program..180

Methods for Designing Loops...181
The Conclusion...181
What Do We Have So Far?..181
Stepwise Refinement: An Example... 182
Reconsider the Data...182

Correcting Your Program... 182
Modifying Your Program...183
Tracing Your Program...183

Coding Style... 184
Notices..187

Programming Interface Information...188
Trademarks.. 188
Terms and Conditions for Product Documentation.. 188
IBM Online Privacy Statement.. 189

Bibliography.. 191
Where to Get z/VM Information.. 191
z/VM Base Library..191
z/VM Facilities and Features... 193
Prerequisite Products.. 194
REXX Compiler...194

Index.. 195

viii

List of Figures

1. HELLO EXEC...6
2. SHAGGY EXEC... 10
3. RAH EXEC.. 11
4. HELLO2 EXEC with a syntax error... 12
5. ERRAND EXEC... 14
6. VENTS EXEC.. 15
7. MATH EXEC..15
8. TWOPLUS3 EXEC...17
9. ADD2NUM EXEC.. 18
10. ASSIGN EXEC.. 19
11. NOASSIGN EXEC... 20
12. MCDONALD EXEC..20
13. ADD EXEC.. 22
14. AREAS EXEC.. 22
15. TWELVDAY EXEC... 25
16. GAME EXEC (Part 1 of 2)... 26
17. GAME EXEC (Part 2 of 2)... 27
18. MESSY EXEC..29
19. COUNT Used for Two Different Purposes...31
20. TICKETS EXEC...32
21. CHECKERS EXEC... 34
22. TTRACE EXEC.. 38
23. RTRACE EXEC..39
24. DICEY EXEC...40
25. SQUARE EXEC... 49
26. HALF EXEC...50
27. SQRT EXEC.. 52
28. ROOTS EXEC..53
29. DOZEN EXEC... 54
30. NEVER EXEC.. 54
31. ABRACADA EXEC...55
32. WHATDAY EXEC...55
33. VALNUM EXEC... 57
34. SHARE EXEC..59
35. INVOICE EXEC...61
36. ACCURATE EXEC... 64
37. TTRUNC EXEC... 65
38. TABLE1 EXEC...68
39. TABLE2 EXEC...70

 ix

40. TABLE3 EXEC...70
41. VALIDFN EXEC...72
42. REVERE EXEC.. 73
43. MYPROG EXEC...74
44. ORDCHARS EXEC.. 76
45. XE EXEC (Part 1 of 2)...77
46. XE EXEC (Part 2 of 2)...78
47. Comparing Character by Character.. 79
48. YEP EXEC...81
49. NOFUZZ EXEC... 82
50. FUZZ EXEC...82
51. NOPUNCT EXEC.. 86
52. DIGITS EXEC... 86
53. CHITCHAT EXEC..88
54. WHATDAY2 EXEC.. 88
55. PARSWORD EXEC..90
56. FUSSY EXEC.. 91
57. MIX EXEC...92
58. TAKE EXEC...93
59. PARSING EXEC..94
60. MYPROG2 EXEC.. 94
61. CHANGE EXEC...95
62. ERASER EXEC..98
63. ELIST EXEC..98
64. BACKUP EXEC... 99
65. LINKHELP EXEC.. 100
66. Example Subroutine..105
67. PAIRS EXEC (Part 1 of 2).. 106
68. PAIRS EXEC (Part 2 of 2).. 107
69. A Stack Using Push and Pull... 108
70. A Stack Using Queue and Pull.. 108
71. A Stack Using Queue, Push, and Pull... 109
72. NEARFULL EXEC... 111
73. LEFT7 EXEC...112
74. TDISK EXEC (Part 1 of 3).. 114
75. TDISK EXEC (Part 2 of 3).. 115
76. TDISK EXEC (Part 3 of 3).. 116
77. TEN XEDIT...120
78. PAGE XEDIT...120
79. DENTAL XEDIT.. 121
80. HALF XEDIT...122
81. PARA XEDIT.. 123
82. PROFILE XEDIT...124

x

83. TESTMENU EXEC...125
84. SAMPMENU XEDIT (Part 1 of 2)... 125
85. SAMPMENU XEDIT (Part 2 of 2)... 126
86. CENSUS EXEC... 133
87. PILOT EXEC... 134
88. TRUCKER EXEC... 134
89. HANDOUTS EXEC..136
90. RECTANGL EXEC... 137
91. TRIANGLE EXEC..138
92. SUM EXEC..140
93. POSN EXEC..143
94. FADE EXEC.. 146
95. CHEER EXEC..148
96. EDDY EXEC.. 161
97. CHAROUT1 EXEC.. 163
98. SHOLIN1 EXEC..164
99. SHOCHAR1 EXEC.. 165
100. SHOLIN2 EXEC..166
101. SHOLIN3 EXEC..170
102. SHOLIN4 EXEC..170
103. STREAM EXEC... 172
104. STREAMLP EXEC...172
105. QRYFILE1 EXEC.. 173
106. QRYFILE2 EXEC.. 173
107. CHAROUT2 EXEC.. 175
108. CATMOUSE EXEC (Part 1 of 2)..179
109. CATMOUSE EXEC (Part 2 of 2)..180
110. ROTATE EXEC..183

 xi

xii

List of Tables

1. Examples of Syntax Diagram Conventions...xvi
2. Results from the REFORMAT EXEC...63
3. Inputs and Outputs of Hexadecimal Functions..84
4. Keywords Used in Programming Languages.. 109
5. Read and Write Functions... 168

 xiii

xiv

About This Document

If you would like to be able to write programs, this document is for you. You will need a terminal with
access to IBM® z/VM®, and you should be reasonably familiar with z/VM, but you need not have had any
previous programming experience.

The programming language described by this document is called the REstructured eXtended eXecutor
language (sometimes abbreviated REXX). The document also describes how the z/VM REXX/VM language
processor (shortened, hereafter, to the language processor) processes or interprets the REstructured
eXtended eXecutor language.

You will learn about:

• Contents of a REXX program, rules of syntax and substitution, and the use of variables
• How to write expressions, use conversations, enter CMS and CP commands, control your program, and

construct and design your REXX programs
• Examples of REXX programs, and tailoring XEDIT through REXX programs.

Intended Audience
You should read this document if:

• You want to learn how to write programs but do not have any previous programming experience
• You are familiar with other programming languages but want to learn how to use REXX
• You have had some experience with the REXX language but want to gain more knowledge of practical

examples.

As you can see, this document is not intended for any particular user possessing any particular title. REXX
is a very powerful, yet adaptable language suited to fit many varying programming needs.

Before reading this document, it is important for you to consider the following items:

• If you are not familiar with CMS or SFS, read z/VM: CMS Primer first.
• You will need a VM user ID and logon password.
• If you are using REXX in the GCS environment, see z/VM: REXX/VM Reference.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

© Copyright IBM Corp. 1991, 2018 xv

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xvi.

Table 1: Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or constant in
uppercase letters, lowercase letters, or any combination.
However, some applications may have additional
conventions for using all-uppercase or all-lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

xvi About This Document

Table 1: Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is on
the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

About This Document xvii

Table 1: Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
You can find more information about VM and REXX in the publications listed in the back of this book. See
“Bibliography” on page 191.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xviii z/VM: REXX/VM User's Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem

Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (www.ibm.com/vm/service).
• Go to IBM Support Portal (www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1991, 2018 xix

http://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
http://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
http://www.ibm.com/vm/service/
http://www.ibm.com/support/entry/portal/Overview/

Summary of Changes for z/VM REXX/VM User's Guide

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

SC24-6315-00, z/VM Version 7 Release 1
This edition supports the general availability of z/VM V7.1.

xx z/VM: REXX/VM User's Guide

Chapter 1. Introduction

We'll begin each chapter with a brief description of its contents.

In this chapter:

• What is REXX?
• Features of REXX
• REXX and z/VM
• How to use the reading plan.

What is REXX?
The REstructured eXtended eXecutor language, or REXX language, is a versatile, easy to use structured
programming language that is an integral part of z/VM. Its simplicity and free format make it a good first
language for beginners. For more experienced users and computer professionals, REXX offers powerful
functions, extensive mathematical capabilities, and the ability to send commands to multiple
environments.

REXX is an adaptation of the CMS (Conversational Monitor System) EXEC 2 language; however, REXX
instructions are quite different and easier to use. If you are a newcomer to programming, you will find that
it is fairly easy to learn and write programs in REXX.

On the other hand, if you are an experienced programmer, you will find that REXX somewhat resembles
PL/I. There are a number of differences, but the main difference is that a REXX program is interpreted (the
language processor operates on the program directly as it runs). In PL/I, the program is compiled
(translated into machine language) first, then run.

Using the REXX Compiler (which runs under CMS on z/VM), you can improve performance, maintain code
security, and improve your program's documentation. The REXX Compiler translates REXX source
programs into compiled programs, which run faster because they do not have to be translated while
running. For additional information on the benefits of using the REXX Compiler, see the CMS REXX
Compiler General Information manual.

Features of REXX
Ease of use: The REXX language is easy to learn and use because many instructions are meaningful
English words. Unlike some programming languages that use abbreviations, REXX instructions are
common words, such as SAY, PULL, IF...THEN...ELSE, DO...END, and EXIT.
Free format: REXX has few rules about format. A single instruction might span many lines or multiple
instructions may be entered on a single line. Instructions need not begin in a particular column; you
can skip spaces in a line or skip entire lines. You can type instructions in upper, lower, or mixed case.
And there is no line numbering.
Interpreted: When a REXX program runs, its language processor reads each language statement from
the source file and runs it, one statement at a time. Languages that are not interpreted must be
compiled into machine language (in separate files) before they can be run.
Built-in functions: REXX supplies built-in functions that perform various processing, searching, and
comparison operations for both text and numbers. Other built-in functions provide formatting
capabilities and arithmetic calculations.
Parsing capabilities: REXX includes extensive capabilities for manipulating character strings. This
lets your programs read and separate characters, numbers, and mixed input.
Debugging: When a REXX program contains an error, messages with meaningful explanations are
displayed on the screen. In addition, the TRACE instruction provides a powerful debugging tool.

Introduction

© Copyright IBM Corp. 1991, 2018 1

REXX and z/VM
By far, the most vital role REXX plays is as a procedural language for z/VM. That means a REXX program
can be a kind of script for z/VM to follow. By using REXX, you can reduce long or complex or repetitious
tasks to a single command or program that can be run from CMS.

REXX is a built-in feature of z/VM, so there is no installation process or separate environment. Any REXX
program can call CMS and CP commands.

Note: In an XA or XC virtual machine, REXX execs and XEDIT macros can reside in storage above the
16MB line.

About Programming
Think of a program as a list of directions, like a recipe.

• First of all, the directions have a basic sequence: you cannot mix an omelet until you have broken the
eggs.

• In a recipe, there are some instructions that indicate actions: chopping and mixing, for example.
• Other directions simply specify the ingredients and their proportions or measurements: a pound of

almonds, two cups of flour.
• Then there are directions to tell you how to carry out other directions.

– Some are iterative; that is, they specify repetitious actions, like stirring and kneading.
– Some are conditional; they indicate when an action should begin or end: "bake for 30 minutes or until

brown."

And that is all a program is: a list of directions and some directions about directions.

Now, you may think of programming as a skill practiced only by computer experts, but that is not true. You
need not know how a computer works to write a program any more than you have to know chemistry to
bake a souffle—although even a little knowledge helps when you are troubleshooting.

You will have to take care to be very precise—in your typing as well as your thinking—because computers
are extremely literal. They simply cannot overlook minor errors the way people can. Even so, by solving a
program's errors, you are sure to learn more about the job you want your program to perform. And that is
useful, too.

Anyone can write a program, and anyone who uses a computer eventually finds a good reason to do so.
With even a little programming know-how, you can reduce a long or repetitious series of commands into a
single command. Or you can customize z/VM and other programs to work more the way you want them to.

You will see that programming helps you let the computer do the work it does best. That is what REXX
was meant for, and this book should make REXX itself that much easier.

The Reading Plan
To assist beginners and less-experienced programmers, each subject is dealt with at three levels: Reading
1, Reading 2, and Reading 3.
Reading 1

The first reading introduces you to all the basic concepts of REXX. You will learn these concepts by
writing programs suggested in the text. We expect you will also write some programs for your own
use.

Reading 2
The second reading expands your knowledge of the first reading's information and teaches you the
main body of the REXX language. You will also write, copy, and modify more programs.

Introduction

2 z/VM: REXX/VM User's Guide

Reading 3
The third reading contains information on features that are not often used or that are specific for
special kinds of programs.

To guide you through these readings, there are headings (like the one following) at the top of each page
that tell you what reading level you are on.

Reading 1

In addition, there are reminders in reverse printing at the beginning of each reading. These reminders
will tell you where a particular reading begins. Following is an example.

 Reading 1

There are also bold type reminders at the end of each reading. These reminders will tell you where the
reading ends and where you should go next.

The three-level reading scheme should help maintain your interest while you build up your knowledge and
skill.

If You Have Never Written a Computer Program…
If you are a newcomer to programming, you will find it fairly easy to learn and write programs in REXX.
Start by reading just the basics of each chapter in sequence.

When you have read all of the basics, go back and read the remainder of each chapter to learn more about
specific topics.

If You Are Already Familiar with Another Language…
Even if you are already an expert programmer, you might want to skim the basics just to get an overview of
the REXX language. Or, you may prefer to read about individual topics, one at a time. Here are some areas
you might want to investigate:

• If you are skilled in BASIC, you will want to note in particular the ways that REXX differs from BASIC:

– There is no line numbering
– There are no GOSUB or GOTO statements; use CALL and SIGNAL instead
– REXX variables have no data type.

• If you are familiar with development languages like C and Pascal, you will find REXX somewhat similar.
Again, the main difference is that a REXX program is interpreted; that is, the source code of the program
is processed line by line. There is no compiling process (unless you purchase the compiler).

Exercises and Examples
As with any other language, you do not learn a programming language just by reading about it. You learn it
by using it, by trying it out. That is why this book will devote a good deal of space to hands-on exercises
and examples. To get the most out of this book, set it down next to your computer and:

• Test yourself with the exercises as you read.
• Examine the sample programs in the text. Type them in just as you find them here.
• Try out your own variations of each program. See if you can find a different—or better—way to do what

the sample program does.

The REXX Reference
The z/VM: REXX/VM Reference contains the most complete description of the grammar of the REXX
language. You will need to have your own copy of this book on hand, so you can look up any instruction or
function not completely defined here.

Think of the Reference as your dictionary for REXX and this User's Guide as a kind of cookbook of simple
(and a few fairly sophisticated) recipes and ideas.

Introduction

Introduction 3

Introduction

4 z/VM: REXX/VM User's Guide

Chapter 2. Starting Out with REXX

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

• How a program works
• Conversations
• Typing in a program
• Running a program
• Stopping a program
• What goes into a program
• Comments
• Keyword instructions
• Strings (in quotation marks)
• Lowercase characters (a...z)
• Blanks
• Clauses
• Syntax error.

Reading 2 “Substitution Rules” on page 14, describes:

• Substitution rules.

Reading 3 “Repeated Substitution” on page 14, describes:

• Repeated substitution using

– The VALUE() function
– Compound Symbols
– The INTERPRET instruction.

How a Program Works
 Reading 1

We have described a REXX program as a list of instructions to your computer, something like a recipe. The
program itself is simply a text file that you create with a word processor or text editor.

Sometimes the computer runs a program with no guidance. Other times it may need additional
information from the operator to do its work. One way that a computer can communicate with its user is
to ask questions and then compute results based on the answers typed in. As part of the recipe, then, the
programmer (you) can include instructions that let the computer converse with whomever is using it.

Reading 1

© Copyright IBM Corp. 1991, 2018 5

Conversations
One way that a computer can communicate with a user is to ask questions and then compute results
based on the answers typed in. In other words, the user has a conversation with the computer. You can
easily write a list of REXX instructions that will conduct a conversation. We call such a list of instructions a
program. Figure 1 on page 6 shows a sample REXX program. What it does is ask for the user to give his
or her name. Then the program greets the user by the name given.

For instance, if the user types in the name Jean, the program replies Hello JEAN . Or else, if the user
does not type anything in, the reply Hello stranger! is displayed instead.

First, you will look closely at how this program works; then you can try it for yourself.

/* HELLO EXEC - A conversation */

say "Hello! What is your name?"
pull who
if who = "" then say "Hello stranger!"
else say "Hello" who

Figure 1: HELLO EXEC

This sample program consists of six statements, one to each line, called clauses. Briefly, the various
pieces of the program are:
/* ... */

The first clause is a comment explaining what the program is about. All REXX programs must begin
with a begin-comment delimiter (/*). Apart from this, comments are ignored.

say
The second clause is a keyword instruction, say, that displays text on screen.

"Hello!..."
Anything in quotation marks after say is displayed just as it is. This is called a literal string.

pull
This keyword instruction reads and stores the response entered by the program's user. This is the
third clause.

who
A variable: a name given to the place in storage where the user's response is stored.

if
The fourth clause begins with the if instruction; it tests a given condition.

who = ""
The condition to be tested: whether the variable who is empty.

then
Tells REXX to process the instruction that follows, if the tested condition is true.

say "Hello stranger!"
Displays Hello stranger! on the screen (but only if the condition is true).

else
This final clause gives an alternative direction: process the instruction that follows, if the tested
condition is not true.

say "Hello" who
Displays Hello, followed by whatever data is stored in who (if the tested condition is not true).

That is what the program does.

Typing in a Program
To type in the following program, use the same editor as you use for other work; any editor will do. This
discussion will assume that you use XEDIT, the z/VM editor.

Reading 1

6 z/VM: REXX/VM User's Guide

The name of the program is HELLO EXEC (for now, assume that the file type must be exec).

1. Log on to z/VM and type the command:

xedit hello exec

2. Type in the program, exactly as it is shown in Figure 1 on page 6, beginning with /* HELLO EXEC -
A conversation */. Then file it using the XEDIT command:

====> file

The system will reply with the ready message:

Ready;

Now your program is ready to run.

Running a Program
If you want to run a program that has a file type of EXEC, you just type in its file name. In this case, type
hello on the command line and press Enter. Try it!

Suppose your name is Fred. Type fred and press Enter. Hello FRED is displayed.

Ready;
hello
Hello! What is your name?
fred
Hello FRED
Ready;

Here is what happens:

1. The SAY instruction displays Hello! What is your name?
2. The PULL instruction pauses the program, waiting for a reply.
3. You type fred on the command line and then press Enter.
4. The PULL instruction puts the word FRED into the variable (the place in the computer's storage) called
who.

5. The IF instruction asks, Is who equal to nothing?

who = ""

This means, "is the value stored in who equal to nothing?" To find out, REXX substitutes that stored
value for the variable name. So the question now is: Is FRED equal to nothing?

"FRED" = ""

6. Not true. The instruction after then is not processed. Instead, REXX processes the instruction after
else.

7. The SAY instruction displays "Hello" who, which is evaluated as

Hello FRED

Now, here is what happens if you press Enter without typing a response first.

hello
Hello! What is your name?

Hello stranger!
Ready;

Then again, maybe you did not understand that you had to type in your name. (Perhaps the program
should make your part clearer.) Anyhow, if you just press Enter instead of typing a name:

Reading 1

Starting Out with REXX 7

1. The PULL instruction puts "" (nothing) into the place in the computer's storage called who.
2. Again, the IF instruction tests the variable

who = ""

meaning: Is the value of who equal to nothing? When the value of who is substituted, this scans as:

"" = ""

And this time, it is true.
3. So the instruction after then is processed, and the instruction after else is not.

Stopping a Program
Most of the programs we use in this book run pretty fast. But if you ever need to stop a program from
running further, just enter the CMS immediate command to halt interpretation:

HI

REXX then stops running the program and returns to the CMS prompt.

Test Yourself…
Did you get your version of HELLO EXEC to run on your z/VM system? If not, check that you have correctly
typed it in. If it still does not work and you cannot understand the error messages, ask for help. Usually,
experienced users are happy to help a beginner. At some installations the System Support people will give
help over the telephone.

Do not worry if you did not fully understand how you could use the SAY, PULL, and IF instructions. This
will be explained again later.

What Goes into a Program
You can write a program in any accessed SFS directory for which you have write authority or on any
minidisk accessed read/write.

Use the same editor as you use for other work; any editor will do. In this book, we shall assume that you
use XEDIT, the z/VM editor.

In order to explain what goes on when you run a REXX program, we have introduced a lot of terms. There
will be more, so before we go on, we will define the ones we have used so far.

Comments in Programs
When you write a program, remember that you will almost certainly want to read it over later (before
improving it, for example). Other readers of your program also need to know what the program is for, what
kind of input it can handle, what kind of output it produces, and so on. You may also want to write remarks
about individual instructions themselves. All these things, words that are to be read by humans but are
not to be interpreted, are called comments.

To indicate which things are comments, use:
/*

to mark the start of a comment
*/

to mark the end of a comment.
The /* causes the language processor to stop interpreting; interpreting starts again only after a */ is found,
which may be a few words or several lines later. For example,

/* This is a comment. */
say ... /* This is on the same line as the instruction */

Reading 1

8 z/VM: REXX/VM User's Guide

/* Comments may
 occupy more
 than one line. */

Comments with Special Meaning to CMS

The first line of a REXX program must start with a comment. Why?

Historically, there are three languages that can be used for writing execs for z/VM. The oldest is called
CMS EXEC; the next is EXEC 2; and the latest is REXX. For technical reasons, they all have a file type of
EXEC. Because each type of exec requires its own special processing, CMS must be able to distinguish
one type from another. It does this by looking at the first line of the exec file. So, to tell CMS that your
program is written in REXX, the first line of the file must start with a comment.

/* This is a REXX program. */

Although /* */ is sufficient, a better use for this space is to provide a brief description of your program. You
can even do it this way:

/*************************************
* HELLO EXEC written by Denise B. *
* May 12, 1994 *
* A program to greet a user by name. *
*************************************/

Keyword Instructions
Words like PULL, IF, and SAY are part of the REXX language called instructions. The words themselves are
referred to as keywords. You will notice that they are usually (though not always) verbs. They are the
directions that tell REXX what to do with this or that information at a certain point in the program:

• Say (display on screen) "hello".
• Pull (accept and store) information from the user.
• If this situation true, then perform this action.

When you list these instructions in the order you want REXX to carry them out, you have a program.

Clauses

In a more formal sense, we say that a REXX program is made up of clauses—that is, a complete
instruction, including the information it works on and any options that may be used. REXX reads each
individual clause and then processes it before going on to the next. That is why we say that REXX is an
interpreted language.

In the sample program just given, each line of text corresponds to a single clause. REXX allows exceptions
to this (they are discussed in detail in “When Does a Clause End?” on page 11). For clarity's sake, we will
follow the convention of one clause to a line. This is the case for all the examples in this book, except
where explicitly noted.

Literal Strings
When REXX finds a quotation mark (either " or ') it stops processing and looks ahead for the matching
quotation mark. The string of characters inside the matching quotation marks is used just as it is. Hence,
the name literal string. Examples of literal strings are:

• 'Hello'
• "Final result:"

If you want to use a quotation mark within a literal string, use quotation marks of the other kind to delimit
string as a whole.

• "Don't panic"
• 'He said, "Bother"'

Reading 1

Starting Out with REXX 9

There is another way. Within a literal string, a pair of quotation marks (the same kind that delimits the
string) is interpreted as one of that kind.

• 'Don''t panic' (same as "Don't panic")
• "He said, ""Bother""" (same as 'He said, "Bother"')

Uppercase Translation

When a clause is processed, any letters that are not in quotation marks are translated to uppercase. In
other words, the letters

a, b, c, ... z

get changed to

A, B, C, ... Z

REXX also ignores some of the blanks that you may have written into your program, keeping only one
blank between words. If this is not what you want, you should use quotation marks. Figure 2 on page 10
shows an example.

/* SHAGGY EXEC */

/* Example: cases and spaces */
say a long story /* Result if "a," "long," and */
 /* "story" have not been */
 /* assigned a value. See */
 /* “Example: Setting Variables” on page 20. */

say "A long story" /* Quotation marks mean to */
 /* print exactly as entered. */

say about" "a dog

Figure 2: SHAGGY EXEC

When you run the SHAGGY program, here is what appears on your screen:

shaggy
A LONG STORY
A long story
ABOUT A DOG
Ready;

One more point: Remember in the sample program how the user's input fred got changed to FRED? That
had nothing to do with the process we just described. Rather, that particular translation is a feature of the
pull instruction, which always converts user input to uppercase. The practical value of this is that the
user can type in any combination of uppercase and lowercase letters.

Variables

When we need to work with changeable information (such as the user's name in HELLO EXEC), we can
reserve a place in storage. That memory niche is called a variable.

When REXX processes a clause containing a variable, it substitutes the variable name with the stored
data. That is how the stored entry FRED took the place of the variable name who in our first example.

We will cover variables in more depth in Chapter 3, “Variables,” on page 17.

Clauses
Your REXX program consists of a number of clauses. A clause can be:

1. An instruction that tells the language processor to do something; for example,

say "the word"

In this case, the language processor will display the word on the user's screen.

Reading 1

10 z/VM: REXX/VM User's Guide

2. An assignment; for example,

Message = 'Take care!'

This means that the string Take care! is to be put into a place called MESSAGE in the computer's
storage.

Because MESSAGE can be given different values in different parts of the program, it is called a
variable (discussed in Chapter 3, “Variables,” on page 17).

3. A label, which is a name followed by a colon; for example,

MYSUB:

(Labels are discussed in “The CALL Instruction” on page 148 and “The SIGNAL Instruction” on page
154).

4. A null clause, such as a completely blank line, or

;

Note: Anything that is not one of these (an instruction, an assignment, a label, or a null clause) is taken
to be:

5. A command; for example,

erase hello exec

Commands are passed to CMS (or other environments; discussed in “Issuing Commands to CMS and
CP” on page 97).

When Does a Clause End?

It is sometimes useful to be able to write more than one clause on a line, or to extend a clause over many
lines. The rules are:

• Usually, each clause occupies one line.
• If you want to put more than one clause on a line you must use a semicolon (;) to separate the clauses.
• If you want a clause to span more than one line you must put a comma (,) at the end of the line to

indicate that the clause continues on the next line. The comma cannot, however, be used in the middle
of a string or it will be interpreted as part of the string itself. The same situation holds true for
comments.

What will you see on the screen when this exec is run?

/* RAH EXEC */

/* Example: there are six clauses in this program */
say "Everybody cheer!"
say "2"; say "4"; say "6"; say "8";
say "Who do we",
"appreciate?"

Figure 3: RAH EXEC

(If you are not sure, use XEDIT to create a file called RAH EXEC and try out the program.)

Syntax Errors
The rules governing the arrangement of words and punctuation marks in a language are called its syntax.
The actions we have been describing are part of the syntax for the REXX language. If REXX encounters
something that does not make sense according to its syntax, it stops running your program and returns to
CMS. REXX then displays the incorrect instruction line and an error message saying what is wrong.

Reading 1

Starting Out with REXX 11

We will go back to our sample program. Suppose we alter it to read so:

/* HELLO2 EXEC */

/* A conversation */
say "Hello! What is your name?"
pull who /* Get the answer!
if who = "" then say "Hello stranger"
else say "Hello" who

Figure 4: HELLO2 EXEC with a syntax error

There is a syntax error here. We have forgotten to put a */ at the end of the third comment. When we run
the program, what appears on the screen is:

hello
Hello! What is your name?
 3 +++ pull who /* Get the answer!if who = "" then say "Hello
stranger"else say "Hello" who
DMSREX453E Error 6 running HELLO EXEC, line3: Unmatched "/*" or quotation mark
Ready(20006);

Here is what the error message means:

• 3 +++ means the language processor was interpreting the clause that started on line 3. (The clause
itself is displayed following the +++.)

• Error 6 gives the REXX error number.

The error message gives you a good idea what went wrong. If you need more information, look up
Error 6 in the list of error messages in the back of your z/VM: REXX/VM Reference.

• Ready(20006); is the return code that the language processor returns to CMS.

Leaving out a final quotation mark at the end of a literal string causes REXX to issue a similar error
message.

Test Yourself…
1. Read the following program carefully. Take a pencil and write down what each word is and what REXX

will do with it, depending on how the user responds.

/* WHOAMI EXEC */

/* Who Am I? game */
say "What is my name?"
pull guess
if guess = "REXX" then say "You win!"
else say no but guess "is a good guess."

Now create a file called WHOAMI EXEC and try out the program. Did everything happen as you
expected? If not, read this chapter again and then study the explanation below.

2. This next program has an error in it. Type the program in and run it.

/* TROUBLE EXEC */

/* Example: a syntax error */
say Unfortunately, there is an error here

Use the error number to look up the cause of the error in your z/VM: REXX/VM Reference. Correct the
error and test the program again.

Reading 1

12 z/VM: REXX/VM User's Guide

Answers:

1. The syntax of the program WHOAMI EXEC is:

• /* WHOAMI EXEC */ is a comment describing the program. (The first line of a REXX program must
start with a comment.)

• The say instruction displays, What is my name?
• pull is another instruction. The variable guess gets the value entered by the user.
• The if instruction checks to see if the user entered REXX.

Note: Because pull translates the entry to uppercase, the user can type it in any combination of
uppercase and lowercase letters (rexx, Rexx, rExX, and so on).

• If so (if GUESS = 'REXX'), then You win! is displayed.
• If the user enters something other than REXX, then the clause beginning with else say is

interpreted and the result is displayed.

– no but is changed to uppercase. It is a string, but it is not in quotation marks. It is displayed as:
NO BUT

– guess is the name of a variable. The user's entry, translated to uppercase, is substituted.
– "is a good guess." is a literal string. It is displayed just as it is, even though GUESS is also the

name of a variable.

Here is what actually appears on the screen if the user guesses right:

whoami
What is my name?
rexx
You win!
Ready;

But if the user guesses wrong:

whoami
What is my name?
spot
NO BUT SPOT is a good guess.
Ready;

Now, what happens if the user types nothing, but just presses Enter?

whoami
What is my name?

NO BUT is a good guess.
Ready;

The variable GUESS was empty, so the say instruction displayed nothing. Only two blanks remain—the
ones before and after the variable in the program.

That last response does not make much sense. See if you can think of a way to fix WHOAMI EXEC so
that it does. (A hint: take another look at HELLO EXEC).

2. The error number for the program TROUBLE EXEC is 37. The error message reads Unexpected
","or ")".

Obviously, REXX found a comma where it did not belong. What may not be obvious is what to do about
it. When you get a message like this, turn to the z/VM: REXX/VM Reference. In the back of the book, you
will find a list of error messages and explanation of their causes.

Reading 1

Starting Out with REXX 13

In this case, the comma has a special meaning for REXX when it is used outside of a literal string (this
is described in “When Does a Clause End?” on page 11). For a comma to be used as it is intended here,
it would have to be enclosed in matching quotation marks.

/* TROUBLE2 EXEC */

/* Example: a syntax error fixed */
say "Unfortunately, there is an error here"

Reading 1 continues in Chapter 3, “Variables,” on page 17.

 Reading 2 begins here.

If you would like to review Reading 1 of this section, read Chapter 2, “Starting Out with REXX,” on page 5.

If you wish to start Reading 2, continue on.

Substitution Rules
When replacing the names of variables with their values, the language processor does not look at the
words it substitutes to see if they are also the names of variables.

For example:

food = meat
meat = steak
steak = sirloin
say "Buy us some" food /* says "Buy us some MEAT" */

This rule applies to simple symbols. Compound symbols, discussed in “Compound Symbols” on page 15
(and in more detail in “Compound Symbols” on page 24), provide a further level of substitution.

Reading 2 continues in Chapter 3, “Variables,” on page 17.

Repeated Substitution
 Reading 3 begins here.

For repeated substitution, you can use

• The VALUE() function
• Compound symbols
• The INTERPRET instruction.

The VALUE() Function
To specify a computed value as the name of a variable, use the VALUE() function. The example in
“Substitution Rules” on page 14 could be redesigned like this:

/* ERRAND EXEC */

/* Example: the name of the name of ... */
food = meat
meat = steak
steak = "sirloin"
say "Buy us some" value(food) ||,
 "; I mean some" value(value(food))"."

 /* says "Buy us some STEAK; I mean some sirloin." */

Figure 5: ERRAND EXEC

Reading 2

14 z/VM: REXX/VM User's Guide

Compound Symbols
Many programmers who use REXX are familiar with compound symbols, but only a few have ever used the
VALUE() function. Therefore, when you find a program that can be coded using either method, choose
compound symbols.

/* VENTS EXEC */

/* Part of a ventilation monitor. The user can query */
/* settings of certain ventilators. */

vent.front.door = open; vent.back.door = shut
vent.front.window = open; vent.back.window = open

do until noun ¬= ""
 say "Enter command"
 pull verb adjective noun /* user enters */
end /* "query front door" */

if abbrev("QUERY",verb,1) then
say adjective noun "is" vent.adjective.noun

 /* says "FRONT DOOR is OPEN" */

Figure 6: VENTS EXEC

The same example could have been coded:

frontdoor = open; ...

say adjective noun "is" value(adjective||noun)

This is less familiar, though still readable.

The INTERPRET Instruction
To use a computed value as though it were a line in an exec file, use the INTERPRET instruction.

INTERPRET expression

The specified expression is evaluated and the result is interpreted. (For a complete description, see z/VM:
REXX/VM Reference.)

Here is an example:

/* MATH EXEC */

/* Simple calculator */
say "Please enter an expression to be evaluated."
say "Enter a null line to end:"
do forever
 parse pull expr
 if expr='' then leave
 interpret "Say" expr
end

Figure 7: MATH EXEC

To avoid confusing anyone reading your programs, it is better not to use INTERPRET in situations where a
simple VALUE() or a CALL would do instead.

Reading 3 continues in Chapter 3, “Variables,” on page 17.

Reading 3

Starting Out with REXX 15

Reading 3

16 z/VM: REXX/VM User's Guide

Chapter 3. Variables

Variables are a means of handling changeable information by representing it in terms of symbols. In this
chapter, we will see why that is important when writing programs; then we will describe the basic rules for
using variables.

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

• What a variable is and how to assign values to them.

Reading 2 “Variables as Symbols” on page 23, describes:

• How to use variables as symbols
• How to use compound symbols to build arrays
• How to avoid duplicate names.

Reading 3 “How Much Should You Tell Your Subroutine?” on page 30, describes:

• How to limit the scope of variable names with the PROCEDURE
instruction

• How to find out whether a particular symbol is the name of a variable
• How to DROP a variable
• How to build arrays with more than one dimension.

What Are Variables?
 Reading 1

One basic requirement of any program is that it must work with unknown information—unknown, that is,
when the program is written.

For example, you could write a program that simply totals a fixed list of numbers, like this:

/* TWOPLUS3 EXEC */
/* the sum of two and three */
say "2 + 3 equals" 2 + 3

Figure 8: TWOPLUS3 EXEC

and you would get the result 5 every time you ran it.

But that is all you would get: a reliable program, but not a very useful one. More useful is a program that
can process different information each time it is run. You do this by using variables to stand in for values
to be processed. A variable is a symbol (one or more characters) that represents a value.

Reading 1

© Copyright IBM Corp. 1991, 2018 17

Take as an example this program, the simplest calculator you will ever see:

/* ADD2NUM EXEC */
/* the sum of two numbers */
say "Enter a number:"
pull first /* waits for entry */
say "Enter another number:"
pull second /* waits for entry */
say "The sum is" first + second

Figure 9: ADD2NUM EXEC

Here is what it looks like when you run it:

add2num
Enter a number:
25
Enter another number:
32
The sum is 57
Ready;

We used two PULL instructions to let the user enter the two numbers to be added and then assign (store)
them in the variables first and second. The SAY instruction displays the sum of the two.

You can see for yourself what this program does if the user enters only one number. For this program to be
anywhere as reliable as TWOPLUS3 EXEC, it will have to make certain that the user has entered the input
numbers properly. That is an important topic in itself, but one we will leave for later chapters.

Right now, we will look at how you can use variables to manipulate information.

Names and Values
The information stored in a variable is called its value. The value might be one or more words of text, or it
might be a number. It might be nothing at all.

A variable's value can change any time you want it to. It can be different each time the program is run, or it
may change many times in a single run.

But no matter how the value of a variable changes, the variable's name stays the same. We made up the
names we chose for the variables, first and second. The names need only be meaningful to the
programmer—you.

You can think of a variable, then, as simply the name for the kind of values you want it to hold.

Assignments

An instruction that stores a value in a variable or changes its value is called an assignment.

The simplest form of assignment is the equals sign, a REXX clause of the form

name = value

where:
name

is the name you give the variable
value

is the value it will hold.

Reading 1

18 z/VM: REXX/VM User's Guide

In more formal terms, the syntax of an assignment looks like this:

symbol = expression

where:
symbol

is a valid variable name
expression

is the information to be stored: a number, a string, or some calculation that you want REXX to perform.

We will cover expressions in more detail in the next chapter. For the time being, all you need to know is
that REXX first evaluates (computes) the expression and then puts the result of that evaluation into the
variable called symbol. In plain English, the assignment instruction says:

• "Evaluate the expression and store the result as symbol".

In an assignment, then, you name a variable and give it a value. Here are some examples:

• To give the variable called TOTAL the value 0, use this kind of assignment:

total = 0

• To give another variable, called PRICE, the same value as TOTAL, assign the value this way:

price = total

• To give the variable called TOTAL a new value, namely the old value of TOTAL plus the value of
SOMETHING, use the assignment:

total = total + something

• Here is a different kind of assignment, one we have already used:

pull something

This PULL instruction gives the variable SOMETHING a value that the user enters while the program is
running.

Displaying a Variable's Value
To display a variable's value at any given point in a program, use the SAY instruction.

/* ASSIGN EXEC */
/* some assignments */
amount = 100 /* assigns 100 to AMOUNT */
money = "dollars" /* assigns "dollars" to MONEY */
say amount money /* displays "100 dollars" */
amount = amount + 25 /* adds 25 to AMOUNT */
say amount money /* displays "125 dollars" */

/* Now get some input from the user */

say "Type a line, then press Enter" /* prompts the user to type */
pull anything /* waits for user to press Enter */
say "You typed:" anything /* displays the input on screen */

Figure 10: ASSIGN EXEC

Reading 1

Variables 19

What if you SAY a variable that has not yet been assigned a value? In some languages, you would get an
error. In REXX, the default value of a variable is its own name, converted to uppercase letters.

/* NOASSIGN EXEC */
/* display unassigned variables */
say amount /* displays "AMOUNT" */
say first /* displays "FIRST" */
say price /* displays "PRICE" */
say who /* displays "WHO" */

Figure 11: NOASSIGN EXEC

Note: There is another way to peek at the value of a variable while a program is running—the TRACE
instruction, used for correcting programs. We will look at it in Chapter 4, “Expressions,” on page 35.

Choosing Names for Variables
You can choose any symbol as the name of a variable, with these restrictions:

1. The first character must be one of:

A-Z a-z @ # $ ¢ ! ? _

Note: The language processor translates lowercase characters to uppercase before using them.
2. The rest of the characters may be any of the following:

A-Z a-z @ # $ ¢ ! ? _ . or 0-9

But you should not use a period unless you understand the rules for “Compound Symbols” on page
24, described in Reading 2 of this chapter.

Example: Setting Variables
To make your program easy to understand, use ordinary English words for the names of variables, as in
Figure 12 on page 20.

/* MCDONALD EXEC */
/* Example: farmyard noises explained */
say "What animal?"
pull beast /* user enters name of animal */
select
 when beast = "LAMB" then noise = "Baah! Baah! Baah!"
 when beast = "DONKEY" then noise = "Eeyore!"
 when beast = "PIG" then noise = "Grunt! Grunt!"
 otherwise noise = "I don't exist"
end
say 'The' beast 'says' noise

Figure 12: MCDONALD EXEC

Use XEDIT to create this file called MCDONALD EXEC and try it out. Did it work? If not, study the error
messages and make sure you copied everything correctly.

In the MCDONALD EXEC BEAST and NOISE were the names of variables.
say

displays a string on the screen.
pull

causes the program to pause. The user may now type something in. When the user presses Enter,
whatever the user typed in is put into the variable BEAST and the program continues.

Reading 1

20 z/VM: REXX/VM User's Guide

select
chooses one of four assignment instructions, according to the value of the variable BEAST. The
chosen instruction sets the variable NOISE.

noise = ...

(We shall discuss how to use select, when, then and otherwise later, in “The SELECT
Instruction” on page 131.)

end
indicates that this is the end of the select. (To make the program easier to read, the instructions
between the select and the end are indented three spaces to the right.)

say
uses the symbols BEAST and NOISE to obtain the values of these variables and to display them on
the screen.

When the language processor finds a symbol (a word that is not in quotation marks) it looks to see if the
symbol is the name of a variable; that is, whether it has been given a value. If so, the language processor
substitutes that value for the symbol. If not, it translates the symbol to uppercase and uses that.

The idea of a variable (such as NOISE in Figure 12 on page 20) is very important in computing. However,
before we can make much more use of it we shall have to find out how expressions are handled. This is
the topic of the next chapter.

Test Yourself…
Which of the following could be used as the name of a REXX variable?

1. DOG
2. K9
3. 9T
4. nine_to_five
5. #7

Answers:

1. OK
2. OK
3. Incorrect, because the first character is a numeric digit.
4. OK, same as NINE_TO_FIVE
5. OK

Other Assignments
You can also use variables to store unknown information—unknown, that is, while you are writing the
program.

Assigning User Input

One such use for variables that we have already encountered is as a holding place for information
supplied by the user. Here are two keyword instructions commonly used for this purpose.

The PULL Instruction

This instruction pauses the running of a program to let the user type one or more items of data which are
then assigned to variables. For example we used PULL in Figure 9 on page 18 to get two numbers to add:

say "Enter a number:"
pull first /* waits for entry */
say "Enter another number:"
pull second /* waits for entry */

Reading 1

Variables 21

Each PULL instruction pauses the program so the user can type a number and press Enter. It then assigns
the entry to the variable named in the instruction.

You can also use PULL to collect more than one item in an entry, so long as the items are separated by
spaces. We could replace the four lines above with:

say "Type two numbers (leave a space between) and press Enter"
pull first second

Here too, PULL pauses the program so the user then can then type the two numbers to add. When the
user presses Enter, PULL reads the two numbers and assigns them, in the order they were typed, to the
list of variables (first and second). This process of reading and breaking up information is called
parsing, and we will devote much discussion to that in later chapters.

The ARG Instruction

Another way to assign data from the user is with ARG. It works in the same manner as PULL, except that
items are entered at the command prompt along with the program name. Our mini-calculator in Figure 9
on page 18 could also work this way:

/* ADD EXEC */
/* the sum of two numbers, this time */
/* entered at the command prompt */
arg first second /* collects entries */
say "The sum is" first + second

Figure 13: ADD EXEC

Here is how it looks when you run it:

add 20 33
The sum is 53
Ready;

Notice that with ARG, there is no pause because the numbers are entered along with the command that
starts the program.

Assigning an Expression Result

Take another look at the program ASSIGN EXEC in Figure 10 on page 19. The instruction amount =
amount + 25 demonstrates how variables can represent another kind of unknown information: data that
must be calculated or otherwise manipulated. You can simply assign to a variable the result of a
calculation or expression. Here is another example:

/* AREAS EXEC */
/* area of a 3 by 5 in. rectangle */
area = 3 * 5
say area "sq. in." /* displays "15 sq. in." */

/* area of a 5 in. circle */
diameter = 5
radius = diameter/2
area = 3.14 * radius * radius
say area "sq. in." /* displays "19.6250 sq. in." */

Figure 14: AREAS EXEC

Simple enough. But REXX expressions can have very complex forms as well, and they can work with all
kinds of information. They are our topic for the next chapter.

Reading 1 continues in Chapter 4, “Expressions,” on page 35.

Reading 1

22 z/VM: REXX/VM User's Guide

Variables as Symbols
 Reading 2

Variables are part of a class of REXX language elements called symbols. These include:

• REXX keywords and instructions
• Labels used to call internal subroutines (see the discussion of the CALL instruction in “Subroutines” on

page 146)
• Constants
• Variables.

REXX uses a symbol's context to determine if it is to be taken as a keyword or a label or a variable. For
each symbol it encounters, REXX takes the following steps to determine how it will be handled:

1. Is the symbol the very first token in a clause? If so...

a. If it is followed by an equal sign (=), then the clause is an assignment instruction. The symbol is a
variable, and is assigned the expression that follows the equal sign.

b. If it is followed by a colon (:), then it is a label, signaling the beginning of a subroutine.
c. Is the symbol among the list of REXX keyword instructions?

2. Is the symbol a keyword used in a control structure? (such as WHILE or THEN; see Chapter 8,
“Control,” on page 127). If so, REXX interprets the keyword accordingly.

3. Is it a constant (an unchangeable value)?

If none of these steps determine how the symbol is to be handled, REXX evaluates it as a variable and
substitutes its stored value for the variable name.

Constants and Variables
Symbols that begin with a digit (0-9), a period, or a sign (+ or -) are constants. They cannot be assigned
new values and therefore cannot be used as variables. Here are some examples of constants:
77

a valid number
.0004

begins with a period (decimal point)
1.2e6

Scientific notation (equal to 1,200,000)
42nd

Not a valid number; its value is always 42ND
Note that:

• A symbol that begins with a number cannot be assigned a different value; it cannot be a variable.
• The default value for a symbol is its own name, translated into uppercase letters. A variable that has not

been assigned a value contains this default value.
• All valid numbers are constants, but not all constants are valid numbers. The symbol 3girls is not a

valid number, but neither can it be used as a variable name; its value is always 3GIRLS.

There is a special class of symbols in which variables and constants are combined to create groups of
variables for easy processing. These are called compound symbols.

Reading 2

Variables 23

Compound Symbols
A variable containing a period is treated as a compound symbol. Here are examples of compound
symbols:

fred.3
row.column
array.I.J.
gift.day

Stems and Tails
The stem of a compound symbol is the portion up to and including the first period. That is, it is a valid
variable name that ends with a period.

The stem is followed by a tail comprising one or more valid symbols (constants or variables), separated by
periods.

Derived Names
You can use compound symbols to create an array of variables that can be processed by their derived
names. Take for example this collection:

gift.1 = "A partridge in a pear tree"
gift.2 = "Two turtle doves"
gift.3 = "Three French hens"
gift.4 = "Four calling birds"
...

Now, if we know what day it is, we know what gift will be given. Suppose, we also assign a variable called
DAY a value of 3.

day = 3

Then this instruction:

say gift.day

displays Three French hens on the screen. Sounds a bit tricky, but here is what happens:

• REXX recognizes the symbol gift.day as compound because it contains a period.
• REXX checks to see if the characters following the period form the name of a variable; in this case, it is

the variable name day.
• The value of day is substituted for its name, producing a derived name of GIFT.3.
• And the value of the variable GIFT.3 is the literal string Three French hens.

But note: If day had never been given a value, its value would have been its own name, DAY, and the
derived name of the compound symbol gift.day would have been GIFT.DAY.

A collection of consecutively numbered variables like this is sometimes called an array. Figure 15 on page
25 is an example of our gift-giver's array in action.

Reading 2

24 z/VM: REXX/VM User's Guide

/* TWELVDAY EXEC */
/* What my true love sent ... */

/* First, assign the gifts to the days */
gift.1 = 'A partridge in a pear tree'
gift.2 = 'Two turtle doves'
gift.3 = 'Three French hens'
gift.4 = 'Four calling birds'
gift.5 = 'Five golden rings'
gift.6 = 'Six geese a-laying'
gift.7 = 'Seven swans a-swimming'
gift.8 = 'Eight maids a-milking'
gift.9 = 'Nine ladies dancing'
gift.10 = 'Ten lords a-leaping'
gift.11 = 'Eleven pipers piping'
gift.12 = 'Twelve drummers drumming'

/* list all gifts from the 12th day to */
/* the 1st day Rrefer to the discussion */
/* of loops in “Loops” on page 53. */
do day=12 to 1 by -1
 say gift.day
end

/* now display the gift for a chosen day */
say "Enter a number from 1 to 12."
pull day

/* check for proper input */
/* See “Checking Your Input” on page 57. */
if ¬datatype(day,"n") then /* if the entry is not a number */
 exit /* then exit the program */

if day < 1 | day > 12 then /* same if it is out of range */
 exit

say gift.day

Figure 15: TWELVDAY EXEC

Creating an Array
You can refer to all the variables in an array by using its stem. It is often convenient to set all variables in
an array to zero using their stem.

The example in Figure 16 on page 26 shows how compound symbols can collect and process data. In
the first part of the program, the first player's score is entered into SCORE.1, the second player's into
SCORE.2, and so on. Thus, using compound symbols, the array of SCOREs is processed to give the result
in the required form.

Reading 2

Variables 25

/* GAME EXEC */
/* This is a scoreboard for a game. Any number of */
/* players can play. The rules for scoring are these: */
/* */
/* Each player has one turn and can score any number of */
/* points; fractions of a point are not allowed. The */
/* scores are entered into the computer and the program */
/* replies with */
/* */
/* the average score (to the nearest hundredth of */
/* a point) */
/* the highest score */
/* the winner (or, in the case of a tie, */
/* the winners) */
/*--*/
/* Obtain scores from players */
/*--*/
say "Enter the score for each player in turn. When all"
say "have been entered, enter a blank line!"
say
n=1
do forever
 say "Please enter the score for player "n
 pull score.n
 select
 when datatype(score.n,"whole") then n=n+1
 when score.n="" then leave
 otherwise say "The score must be a whole number."
 end
end
n = n - 1 /* now n = number of players */
if n = 0 then exit
/*--*/
/* compute average score */
/*--*/
total = 0
do player = 1 to n
 total = total + score.player
end
 /* continued ... */

Figure 16: GAME EXEC (Part 1 of 2)

Reading 2

26 z/VM: REXX/VM User's Guide

say "Average score is",
 format(total/n,,2,0) /* format "total/n" with */
 /* no leading blanks, */
 /* round to 2 decimal places,*/
 /* do not use exponential */
 /* notation */
/*--*/
/* compute highest score */
/*--*/
highest = 0
do player = 1 to n
 highest = max(highest,score.player)
end
say "Highest score is" highest
/*--*/
/* Now compute: */
/* * W, the total number of players that have a score */
/* equal to HIGHEST */
/* * WINNER.1, WINNER.2 ... WINNER.W, the id-numbers */
/* of these players */
/*--*/
w = 0 /* number of winners */
do player = 1 to n
 if score.player = highest then do
 w = w + 1
 winner.w = player
 end
end
/*--*/
/* announce winners */
/*--*/
if w = 1
 then say "The winner is Player #"winner.1
else do
 say "There is a draw for top place. The winners are"
 do p = 1 to w
 say " Player #"winner.p
 end
end
exit

Figure 17: GAME EXEC (Part 2 of 2)

Test Yourself…
1. Write a program to say the days of the week repeatedly, as:

• Sunday
• Monday
• Tuesday
• Wednesday
• Thursday
• Friday
• Saturday
• Sunday
• Monday
• ...

You can use the CMS command, HI or HX, to stop it.
2. Extend this program to say the days of the month, as:

• Sunday 1st January
• Monday 2nd January

Reading 2

Variables 27

• ...

Answers:

1. The simplest solution is:

/* DAYS1 EXEC */

/* to say the days of the week indefinitely */
do forever
 say "Sunday"
 say "Monday"
 say "Tuesday"
 say "Wednesday"
 say "Thursday"
 say "Friday"
 say "Saturday"
end

Note: To stop this exec, type HX. This is the immediate command to halt execution.

But, in view of the next question, consider a solution that uses compound variables, like this:

/* DAYS2 EXEC */

/* to say the days of the week indefinitely */
day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"
j=0
do forever
 j = j + 1
 say day.j
 if j = 7 then j = 0
end

2. This idea can be extended, like this:

/* MONTH1 EXEC */

/* to say the days of the month for January */
day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"
do dayofmonth = 1 to 31
 dayofweek = (dayofmonth+6)//7 + 1
 select
 when dayofmonth = 1 then th = "st"
 when dayofmonth = 2 then th = "nd"
 when dayofmonth = 3 then th = "rd"
 when dayofmonth = 21 then th = "st"
 when dayofmonth = 22 then th = "nd"
 when dayofmonth = 23 then th = "rd"
 when dayofmonth = 31 then th = "st"
 otherwise th = "th"
 end
 say day.dayofweek dayofmonth||th "January"
end

Reading 2

28 z/VM: REXX/VM User's Guide

Avoiding Duplicate Names
In any program, it is important not to use a symbol in more than one way. Here is an extreme example.
The SAY expressions show how the values of the variables LINE and DATA change, during execution.

/* MESSY EXEC */
/* NOT a good example */
do line = 1 to 10
 say line
 say Enter a line of data
 pull line
 say line
 data = data line
 say data
 line = length(data)
 say line
end line
say Done

Figure 18: MESSY EXEC

Looking at some sample input to this exec will help in understanding why you should not use a symbol in
more than one way. If you enter

melvin

as input to this exec, the following will be displayed:

messy
1
ENTER A 1 OF DATA
melvin
MELVIN
DATA MELVIN
11
DONE
Ready;

Notice how the values of the variables LINE and DATA change. Try running the exec again but with
different input.

From this horrid mess you can learn that:

• It is safer and neater to put what you want to SAY in quotation marks.

A good example of this can be seen in the result from MESSY EXEC. Because the expression

Enter a line of data

is not enclosed in quotation marks, the symbol, LINE, is evaluated and its value is displayed instead.
For example,

Enter a 1 of data

• Each symbol should be used for only one purpose.

In the MESSY EXEC, the language processor cannot keep track of all the different uses of the symbols
LINE and DATA. Thus, the program does not run correctly.

For small programs it is fairly easy to limit the use of a symbol to one purpose; however, it is more
difficult to do this for large programs. We shall return to this subject in the next reading of this chapter.

Reading 2 continues in Chapter 4, “Expressions,” on page 35.

Reading 2

Variables 29

How Much Should You Tell Your Subroutine?
 Reading 3

When you are writing a subroutine, you may not be aware of the names of all the variables in the main
program. Of course, you could check by reading through the whole program every time you wanted to
invent a new name. But this is tedious and prone to error.

The PROCEDURE Instruction
To make the language processor forget, for the time being, all the variables it knows, use the PROCEDURE
instruction.

After this instruction has been run, new variables can be created that will be regarded as different, even if
some of them have the same names as variables that existed before the PROCEDURE instruction was run.

When a RETURN instruction is executed, the new variables are forgotten and the original variables are
remembered.

A PROCEDURE instruction can only be used within an internal routine; within that routine, it can only be
used one time. If the PROCEDURE instruction is used in an internal routine, it must be the first instruction
in the routine. For further details on the PROCEDURE instruction, see z/VM: REXX/VM Reference.

In this next example, COUNT is used for two separate purposes.

Reading 3

30 z/VM: REXX/VM User's Guide

Figure 19: COUNT Used for Two Different Purposes

The PROCEDURE EXPOSE Instruction
To share a limited set of variables between the main routine and the subroutine (leaving all the other
variables protected) use:

PROCEDURE

EXPOSE name

;

where:
name

is the name of a variable to be shared. For further details, see the PROCEDURE instruction in your
z/VM: REXX/VM Reference.

Reading 3

Variables 31

For more information about sharing variables, see the GLOBALV command in the z/VM: CMS Commands
and Utilities Reference.

The Existence of Variable Names
You can find out if a symbol already exists with the SYMBOL() function or unassign a variable with the
DROP instruction.

The SYMBOL() Function
It is sometimes useful to know whether a symbol has already been used as a name of a variable. The
SYMBOL() function returns:
BAD

if the argument is not a valid symbol
VAR

if the variable exists
LIT

if the variable does not exist, or if the argument is a constant symbol, such as 3D.
This example shows how to make sure that payment is never added to an empty string, which would
cause a syntax error.

if symbol("CASH") = "LIT" then cash = 0
cash = cash + payment

Notice what happens if the argument of SYMBOL() is not in quotation marks.

cash = 100
say symbol(CASH) /* says "LIT", because 100 is */
 /* a literal */
say symbol("CASH") /* says "VAR", because CASH is */
 /* the name of a variable */

Without the enclosing quotation marks CASH is treated as a variable, and its value is substituted before
the function is performed.

Finally, an example:

/* TICKETS EXEC */
/* Example: the SYMBOL() function */
firstclass = 120
secondclass = 80
do until symbol(ans||class) = "VAR"
 say "What class? First or second."
 pull ans
end
say "That will be" value(ans||class) "dollars, please."

Figure 20: TICKETS EXEC

The DROP Instruction
Usually, the place where you want the language processor to temporarily hide variables is at the beginning
of subroutines. For this you can use the PROCEDURE instruction (described earlier). But in other
situations, you may want the language processor to forget about a variable altogether. In this case, use
the DROP instruction.

DROP name ;

Reading 3

32 z/VM: REXX/VM User's Guide

where:
name

is name of a variable to be dropped.
You can drop more than one variable using a single DROP instruction. You can also drop all the elements
of an array by specifying the stem of the array. For example:

DROP player.

Once dropped in this way, the old values of the variables cannot be remembered.

Arrays with More Than One Dimension
You can have more than one period in a compound symbol. For example, here is the beginning of a
program that sets up a board for playing checkers. BOARD is a 2-dimensional array, 8 squares by 8
squares. The squares on the board are called BOARD.ROW.COL and there are 64 of them altogether. The
picture shows how the "men" are set out at the start of the game.

Reading 3

Variables 33

/* CHECKERS EXEC */
/* This program segment sets up a board on which the */
/* game of checkers can be played. */
/* In the internal representation, Red's "men" are */
/* represented by the character "r" and red's "kings" */
/* by the character "R". Similarly, Black's "men" and */
/* "kings" are represented by "b" and "B". */
/*--*/
/* Clear the board */
/*--*/
board. = " "
/*--*/
/* Set out the men */
/*--*/
do col = 1 by 2 to 7
 board.1.col = "r"
 board.3.col = "r"
 board.7.col = "b"
end
do col = 2 by 2 to 8
 board.2.col = "r"
 board.6.col = "b"
 board.8.col = "b"
end /* Now the board is set up. */

Figure 21: CHECKERS EXEC

Reading 3 continues in Chapter 4, “Expressions,” on page 35.

Reading 3

34 z/VM: REXX/VM User's Guide

Chapter 4. Expressions

An expression is something that can be computed. In your z/VM: REXX/VM Reference, you will find model
instructions like:

symbol = expression
SAY expression
IF expression THEN ...

When you are writing instructions in one of your programs, you can replace the word expression with
any expression that can be evaluated. Here are some expressions:
2 + 2

/* Its value is "4" */

"A" "B" "C"

/* Its value is "A B C" */

5 < 7

/* Its value is "1", because */

/* the comparison is true */
In this chapter we discuss how to write expressions that the language processor can compute. The rules
that the language processor uses for evaluating an expression (that is, finding its value) will be explained.
The chapter is divided into sections, namely:

• Operators
• True and False
• Functions
• Loops (see note below)
• Arithmetic
• Groups (see note below)
• Text
• Comparisons
• Conversion and translation.

Each section has its own introduction describing what is in it and advising you what to leave until Reading
2 or Reading 3.

Note: This chapter includes brief discussions on "Loops" and "Groups of Instructions". These topics are
included here so that you will be able to understand some of the examples given later in this chapter.
There are further discussions on both topics later in the book (“Loops” on page 135, Groups of
Instructions in “Selection” on page 127).

Operators
In this section:

© Copyright IBM Corp. 1991, 2018 35

Reading Describes

Reading 1 immediately following, describes:

• Operators and Terms
• Order of evaluation
• Parentheses.

Reading 2 “Tracing” on page 38, describes:

• Using the TRACE instruction to see how expressions are being evaluated
• Data types
• Prefix operators
• Priority of operators
• Using parentheses.

Reading 3 skips this section.

• Continue Reading 3 in “Functions” on page 46.

Operators and Terms
 Reading 1

An expression can include operators that operate on the adjacent terms. Here are some operators:
+

Add
*

Multiply
||

Concatenate (join together).
In this example, the operators act on the terms 4 and 3.

say 4 + 3 /* says "7" */
say 4 * 3 /* says "12" */
say 4 || 3 /* says "43" */

The terms that the operators work on can be numbers, strings in quotation marks, variables, the results
obtained from a function call, or the result that has been obtained by evaluating the expression so far.

Order of Evaluation
Expressions are usually evaluated from left to right.

For example,

 10 - 3 + 2
 └───┬───┘
 │
 │
 7 + 2
 └──────┬───┘
 │
 │
 9

In other words, the value of: 10 - 3 + 2 is: 9.

But some operations are given priority over others. The rules are generally the same as in ordinary
algebra. For example, multiply (*) has a higher priority than subtract (-).

Reading 1

36 z/VM: REXX/VM User's Guide

 10 - 3 * 2
 └───┬───┘
 │
 10 - 6
 └─────┬────┘
 │
 4

In other words, the value of: 10 - 3 * 2 is: 4.

We shall discuss the rules of priority again in Reading 2 in “Priority of Operators” on page 40.

Parentheses
When the language processor finds an expression in parentheses, it evaluates the value of the expression
inside the parentheses first.

For example:

• The value of 10 * (3 + 4) is: 70
• The value of 10 * (3 || 4) is: 340.

Note, however, that if there is a symbol or a string immediately to the left of the left parenthesis, this
denotes a function. This concept is discussed later in “Functions” on page 46.

Test Yourself…
You probably remember that if the name of a variable is found in an expression, the value of that variable
will be substituted for its name.

For example:

/* After the instructions */
something = "mice"
a = 7
say "Cats chase" something /* says "Cats chase mice" */
say a + 3 /* says "10" */

1. What will this program display on the screen?

/* PERSONS EXEC */

/* Example: simple arithmetic using variables */
pa = 1
ma = 1
kids = 3
say "There are" pa+ma+kids "people in this family"

2. What will this program display on the screen?

/* COUNTING EXEC */

/* Example: simple arithmetic using variables */
thumbs = 1
fingers = 4
hands = 2
say "It's easy to count up to",
 hands * (thumbs + fingers)

Answers:

1. There are 5 people in this family
2. It's easy to count up to 10

Reading 1 continues in “True and False” on page 42.

Reading 1

Expressions 37

Tracing

 Reading 2

To find out how the language processor will evaluate an expression, use the TRACE instruction. Some
useful forms of this instruction are:
TRACE Intermediates

As each expression is evaluated, the result of each operation (that is, Intermediate results) is
displayed on the screen.

TRACE Results
When each expression has been evaluated, the final result is displayed on the screen.

TRACE Normal
Only commands that are rejected by the environment are displayed on the screen.

When a TRACE instruction is being interpreted, the first letter of the second word determines what type of
tracing will be switched on, and the rest of the word is ignored.

For example, to trace intermediate results for an expression, you could write:

TRACE I
... expression
TRACE N

Here is a practical example:

/* TTRACE EXEC */
/* Example: to show how an expression is evaluated, */
/* operation by operation */
x = 9
y = 2
trace I
if x + 1 > 5 * y
then say "x is big enough"
trace N

Figure 22: TTRACE EXEC

This would cause the following to be displayed on your screen:

ttrace
 6 *-* if x + 1 > 5 * y
 >V> "9"
 >L> "1"
 >O> "10"
 >L> "5"
 >V> "2"
 >O> "10"
 >O> "0"
 8 *-* trace N
Ready;

where:
-

This is the instruction being traced. The number on the left is the line number in your program.
>V>

Value of a Variable.
>L>

Value of a Literal.
>O>

Result of an Operation.

Reading 2

38 z/VM: REXX/VM User's Guide

For Figure 22 on page 38, you can see that the final result is 0 (false). And because the IF expression is
false, the THEN clause is not executed.

To display only the final results use TRACE Results:

TRACE R
...
TRACE N

For example:

/* RTRACE EXEC */
/* Example: to show how an expression is evaluated, */
/* operation by operation using TRACE R */
x = 9
y = 2
trace R
if x + 1 > 5 * y
then say "x is big enough"
trace N

Figure 23: RTRACE EXEC

When used in the same program, this would give:

ttrace
 6 *-* if x + 1 > 5 * y
 >>> "0"
 8 *-* trace N
Ready;

where:
>>>

This is the final result.
Again, you can see that the final result is 0 (false). And because the IF expression is false, the THEN
clause is not executed.

Here is a suggested order for tracing your programs that will make it easier for you to find errors:

1. TRACE SCAN—shows unmatched DO/ENDs, quotation marks, missing commas, and so on.
2. TRACE !RESULTS—(use only if there are host commands)—separates host command errors from REXX

instruction errors.
3. TRACE RESULTS—checks host and REXX commands.
4. TRACE INTERMEDIATES—looks at each step.

Data Types
The values of REXX variables and expressions are always character strings.

So it is possible to write, for example:

dollars = 5
cents = 95
...
if cents < 10 then price = dollars".0"cents
else price = dollars"."cents
say "Price =" price /* says "Price = 5.95" */

Reading 2

Expressions 39

A string of digits is like any other character string but, when an arithmetical operation is performed on a
string, the result is rounded. (The default is to round to nine significant digits.)

/* DICEY EXEC */
/* Example: an arithmetical operation on a string of */
/* digits results in a number (rounded if necessary) */
dicey = 123456.123456 /* Assigns the 13-character */
 /* string to DICEY */
say dicey /* Says "123456.123456" */
say dicey + 0 /* The expression is evaluated */
 /* with an accuracy of 9 */
 /* significant digits (The */
 /* default). The result is */
 /* "123456.123"; and this is */
 /* what is displayed. */

Figure 24: DICEY EXEC

Prefix Operators
Most operators work on the terms of the expression on both sides of the operator. If you omit either term,
an error occurs. However, three operators work only on the term that follows them:
+

Take (a number) as is
–

Negate (a number)
\ ¬

Logical NOT; negates, 1 becomes 0 and 0 becomes 1.
These three operators are called prefix operators. (Notice that the characters “+” and “–” can represent
both ordinary operators and prefix operators.)

Priority of Operators
When evaluating an expression, the language processor usually works from left to right. But some
operators are given a higher priority than others.

The complete order of precedence of the operators is (highest at the top):

Operator Description

\ ¬ – + (prefix operators)

** (exponentiation)

* / % // (multiply and divide)

+ – (add and subtract)

" " || abuttal (concatenation, with/without blank)

== = \== ¬==

⁄== \= ¬= ⁄=

> < >> << ><

<> >= \< ¬<

>>= \<< ¬<<

<= \> ¬> <<=

\>> ¬>>

(comparison operators)

& (and)

Reading 2

40 z/VM: REXX/VM User's Guide

Operator Description

| && (or, exclusive or)

For any expression, you can discover the sequence that will be used from the preceding list of priorities.
For example:

Say 3 + 2*5 /* says "13" */

Because multiply (*) has a higher priority than add (+), the multiply operation is done before the operation
on its left.

Similarly, because add (+) has a higher priority than concatenate (blank),

Say 3 2+2 5 /* says "3 4 5" */

For full details see z/VM: REXX/VM Reference.

Using Parentheses
You can use parentheses to force evaluation in a different order, because expressions inside parentheses
are evaluated first. For example:

• The value of 6 – 4 + 1 is 3.
• The value of 6 –(4 + 1) is 1.

• The value of 3 + 2||2 + 3 is 55.
• The value of 3 +(2||2)+ 3 is 28.

For full details on the use and priority of operators, see z/VM: REXX/VM Reference.

Test Yourself…
What is the value of:

1. 4 + 20 "tailors"
2. 24 = 4 + 20
3. "eggs" = "eggs" & 2*2 = 4
4. 3 / 2*5
5. 3 || 7+7
6. 3(2+2)
7. (2+2)3.

Answers:

1. 24 tailors (add before concatenate)
2. 1 (add before comparison)
3. 1 (comparison before AND, multiply before AND, comparison before AND)
4. 7.5 (operators that have the same priority are processed left to right)
5. 314 (add before concatenate)
6. calls the function 3 with the argument 4 (or gives a syntax error if 3 does not exist)
7. 43 (evaluate expression in parentheses first; then abut).

Reading 2 continues in “True and False” on page 42.

Reading 2

Expressions 41

True and False
In this section:

Reading Describes

Reading 1 immediately following, describes:

• Comparisons
• Using TRUE and FALSE
• The Equal Sign
• The AND operator
• The OR operator.

Reading 2 “Logical Operators” on page 44, describes:

• The logical operators: NOT, AND and OR.

Comparisons
 Reading 1

Comparisons are performed using the operators
>

Greater than
=

Equal
<

Less than.
These operators can be combined with each other and with the not character (\ or ¬). The result of these
comparisons is either TRUE or FALSE. For more information see z/VM: REXX/VM Reference.

Using True and False
If the expression is:

TRUE, the computed result is 1
FALSE, the computed result is 0.

For example:

say 4 < 7 /* says "1", meaning TRUE */
say "Chalk" = "Cheese" /* says "0", meaning FALSE */

Instructions like:

IF expression THEN

must be given an expression that computes to 0 or 1.

The following two fragments will give the same result.

ready = "YES"
...
if ready = "YES" then ...
...

Reading 2

42 z/VM: REXX/VM User's Guide

or

ready = 1
...
if ready then ...
...

You can use whichever form you prefer.

The Equal Sign (=)
Notice that the equal sign (=) can have two meanings in REXX depending on its position in a clause.

For example:

amount = 5 /* The variable AMOUNT gets the value 5 */
say amount = 5 /* Compare the value of AMOUNT with 5 */
 /* If they are the same, says "1" */
 /* Otherwise, says "0" */

The rule is, a clause beginning

symbol = ...

is an assignment. An equal sign appearing anywhere else in a clause stands for the comparison operator.
(In a comment or a string, the equal sign is simply a character; it is not an operator.)

The AND (&) Operator
To write an expression that is only true when every one of a set of comparisons is true, use the AND (&)
operator:

If ready = "YES" & steady = "RIGHT"
then say "GO"

This means "If READY has a value of YES and STEADY has a value of RIGHT, then say GO. Otherwise, do
nothing".

The OR (|) Operator
To write an expression that is true when any one of a set of comparisons is true, use the inclusive OR (|)
operator:

If ready = "YES" | steady = "RIGHT"
then say "GO"

This means "If either READY has a value of YES or STEADY has a value of RIGHT, then say GO. Otherwise,
do nothing".

Test Yourself…
1. What appears on the screen when the following program is run?

/* FAIR EXEC */

/* A fair comparison */
say "Apples" = "Apples"

Reading 2

Expressions 43

2. What appears on the screen when the following program is run?

/* MEASURES EXEC */

/* Example: comparing numbers */
dozen = 12
score = 20
say score = dozen + 8
/* Using the AND operator */
say dozen = 12 & score = 21

Answers:

1. What is displayed is:

fair
1
Ready;

This is because Apples is equal to Apples, so the result is 1 (true).
2. What is displayed is:

measures
1
0
Ready;

The last line of output may need some explanation. The first comparison (dozen = 12) gives 1 (true);
but the second comparison (score = 21) gives 0 (false). So the result is 0 (false).

Remember, the AND operation gives a result of 1 (true) only if both operands are 1.

Reading 1 continues in “Functions” on page 46.

Logical Operators

 Reading 2

The three most frequently used logical operators are:

Logical Operator Description

¬ NOT

& (ampersand) AND

| (vertical bar) OR

(There is also an Exclusive OR operator (&&), but it is not often used.)

Logical operators can only process the values 1 or 0.

The NOT (¬, \) Operator

The not operator (¬, \), is placed in front of a term and changes its value from true to false or from false to
true.

say ¬ 0 /* says "1" */
say ¬ 1 /* says "0" */
say ¬ 2 /* gives a syntax error */
say \ (3 = 3) /* says "0" */

Reading 2

44 z/VM: REXX/VM User's Guide

The AND (&) Operator

The and operator (&), is placed between two terms. It gives a value of true only if both terms are true.

say (3 = 3) & (5 = 5) /* says "1" */
say (3 = 4) & (5 = 5) /* says "0" */
say (3 = 3) & (4 = 5) /* says "0" */
say (3 = 4) & (4 = 5) /* says "0" */

The OR (|) Operator

The or operator (|), is placed between two terms. It gives a value of true unless both terms are false.

say (3 = 3) | (5 = 5) /* says "1" */
say (3 = 4) | (5 = 5) /* says "1" */
say (3 = 3) | (4 = 5) /* says "1" */
say (3 = 4) | (4 = 5) /* says "0" */

Test Yourself…
1. Suggest suitable values for X and Y in this program fragment:

a. if month = "DECEMBER" & day of month = 25 then say X
b. if command = "STOP" | message = "WATCH OUT" then color of flag = Y

2. In the preceding program fragment, what happens if:

a. month = JUNE but day of month = 25?
b. command = GO but message = WATCH OUT?

3. Suitors may be TALL (or not), DARK (or not), HANDSOME (or not), and RICH (or not). A certain princess
specifies:

If TALL & DARK | HANDSOME & RICH
then say "I will marry him"

A certain prince has the following attributes:

• TALL—yes
• DARK—yes
• HANDSOME—no
• RICH—no.

If he asks for her hand (and half the kingdom, of course) what will she say? You may need to review
“Priority of Operators” on page 40.

Answers:

1. The answers are:

a. X could be Merry Christmas.
b. Y could be RED.

2. If so,

a. Nothing is said
b. COLOR OF FLAG is set to the value of Y.

3. I will marry him

The AND operator (&) has priority over the OR operator (|). In other words, REXX computes the
expression as

(TALL & DARK) | (HANDSOME & RICH)

Reading 2 continues in “Functions” on page 46.

Reading 2

Expressions 45

Functions
A function call can be written anywhere in an expression. It performs the computation named by the
function and returns a result, which is then used in the expression in place of the function call.

In this section:

Reading Describes

Reading 1 immediately following, describes:

• The idea of a function
• REXX built-in functions
• User-written functions.

Reading 2 “Writing Your Own Functions” on page 48, describes:

• Writing your own functions

– The ARG instruction and the ARG function
– The RETURN instruction.

Reading 3 “A Square Root Function” on page 51, describes:

• Including your own functions in the exec file of the program that uses
them

• Functions written in Assembler Language.

The Idea of a Function
 Reading 1

To help explain the idea of a function, think about the fictitious function:

HALF()

For example:

• The value of HALF(6) is 3.
• The value of HALF(3+5) is 4.
• The value of 7 + HALF(5-3) is 8.

(The full specification and code for the HALF() function will be discussed later, in Figure 26 on page 50.)

Generally, if the language processor finds

symbol(expression ...)

in an expression, with no space between the last character of the symbol and the left parenthesis, it
assumes that symbol is the name of a function and that this is a call to the function symbol().

The value of a function call depends on what is inside the parentheses. (It is an error to leave out the right
parenthesis). When the value of the function has been calculated, the result is put back into the
expression in place of the function call.

For example:

say 7 + HALF(6) /* becomes 7 + 3 which says "10" */
x = HALF(4 + 6) - 1 /* becomes x = 5 - 1 */
say x /* says "4" */

Reading 1

46 z/VM: REXX/VM User's Guide

The expression inside the parentheses is called an argument. As you can see, an argument can itself be an
expression; the language processor computes the value of this expression before passing it to the
function.

If a function requires more than one argument, they must be separated by commas. For instance, to
obtain the greatest of a set of numbers you can use the REXX function:

MAX (

,

number)

For example:

• The value of MAX(2,3,7,4) is 7.
• The value of MAX(-9,3+4,5) is 7.

Remember that a function call, like any other expression, does not usually appear in a clause by itself.

x = 12
y = half(x) /* makes y equal to half(x) */
half(x) /* calls "6 EXEC" if it */
 /* exists! */
 /* See Chapter 6, “Commands,” on page 97. */
x = half(x) /* halves x */

Built-in Functions
Over 50 functions (like the MAX() function, shown previously), are built-in to REXX. In this book, they will
be introduced where you are most likely to want to use them. For example, arithmetical functions like
FORMAT() and TRUNC() appear in the section on arithmetic. You will find a dictionary of built-in functions
in your z/VM: REXX/VM Reference. From now on, if we refer to a function without saying where to find it,
assume that it is a REXX built-in function.

User-Written Functions
You can also write your own functions. And you can use functions written by other people in your
organization.

If a function is in the same file as the program that uses it, it is called an internal function. If it is in a
separate file it is called an external function. Later, we shall see that HALF() is an external function.

Test Yourself…
1. What is the value of:

a. HALF(HALF(26) + HALF(6))
b. MAX(3, HALF(8))
c. HALF(100)
d. HALF (100)

2. The RANDOM() function can be used for games and for statistical models. For example, to obtain a
number, chosen at random from the range 1 through 6, you could write:

random(1,6)

Write a program called TOSS that will display either the word Heads or (just as likely) the word Tails.
Run your program a number of times. Are the results like those you could obtain by tossing a coin?

Answers:

1. If used as an expression (for example, as part of a SAY instruction) the result would be:

a. 8
b. 4

Reading 1

Expressions 47

c. 50
d. HALF 100 (Not a function, because there is no name immediately to the left of the left parenthesis.)

2. A simple solution would be:

/* TOSS EXEC */

/* Simulates tossing a coin */
if random(1,2) = 1
then say "Heads"
else say "Tails"

If you needed to make a lot of two-way decisions, you might make use of this program. The CP
command

set pf6 immed toss

would let you reach a decision quickly, just by pressing the Program Function key.

Reading 1 continues in “Loops” on page 53.

Writing Your Own Functions
 Reading 2

If you find you need a function that is not provided by REXX, you can easily write one of your own. You will
need:

• The ARG instruction (or the PARSE ARG instruction, or the ARG() function) to obtain the arguments
• The RETURN instruction to return the result.

ARG Instruction
To obtain the arguments (that is, the computed values of the expression or expressions inside the
parentheses of the function call), use:

ARG myarg ;

where:

myarg are the names you choose for the variables that will be given the values of the arguments.

These values will be translated to uppercase. If you want to assign them without translating them to
uppercase, use

PARSE ARG myarg ;

The ARG() Function
If you do not want to give names to the arguments, you can use the function:

ARG (

n

,option

)

In this way you can refer to the nth argument.

Reading 2

48 z/VM: REXX/VM User's Guide

RETURN Instruction
To use the result from a function call, the data must be returned from the function call to the main
program. To return the result, use the following instruction:

RETURN

expression

;

The language processor computes the value of expression and returns the value to the main program.

A function must return some data.

In this next example, the expression in the main program is a string of words. One of the words is
computed by a function.

Figure 25: SQUARE EXEC

The RETURN instruction must specify some data when returning from a function. If the RETURN
instruction does not do so, you will receive a syntax error. You can intentionally leave out the data on the
RETURN instruction if you want to warn the user that the input arguments, if any, are incorrect.

For example, you can write:

return /* error message */

When the function is called with incorrect arguments, the RETURN instruction, including the comment, is
displayed on the screen (Error 45) followed by the line containing the function call (Error 40).

It might be wise to check that the right number of arguments has been submitted. This can be done using
the ARG() function.

if arg() ¬= 1
then return /* wrong number of arguments */

See the ARG() function in your z/VM: REXX/VM Reference for other ways of using this function.

Reading 2

Expressions 49

Test Yourself…
Here is the specification and code for the HALF() function that we discussed in “The Idea of a Function”
on page 46.

/* HALF EXEC */

/* HALF(number) */
/* */
/* This function returns half of "number". If "number" */
/* is not even, the "big half" is returned. That is, */
/* integer division by 2 is performed and, if there is */
/* a remainder, it is added to the result. */
/* */
/* The value of HALF(6) is 3 */
/* The value of HALF(7) is 4 */
/* */
/* If "number" is not a whole number, nothing is */
/* returned. This will cause a syntax error to be */
/* raised in this program and in the calling program. */
/* */
arg number
if datatype(number,whole)
then return number%2 + number//2
else return /* first argument is not a whole number */

Figure 26: HALF EXEC

1. Use XEDIT to create a file containing the last five lines of HALF EXEC. Write an exec called TESTHALF
that uses HALF and displays the result of:

a. Half(3) Half(4) Half(5)
b. Half(4.5)

2. Alter HALF EXEC so that it signals an error if more than one argument is supplied. Alter TESTHALF so
that it contains:

say "Testing" HALF(5,7)

Write an exec that will give you a simple set of error messages.

Answers:

1. A possible answer is:

/* TESTHALF EXEC */

/* Test cases for HALF EXEC */
say "Case 1(a)"
say half(3) half(4) half(5)
say
say "Case 1(b)"
say half(4.5)

When run, the TESTHALF EXEC gives the result:

testhalf
Case 1(a)
2 2 3
Case 1(b)
 18 +++ return /* first argument is not a whole number */
DMSREX480E Error 45 running HALF EXEC, line 18: No data specified
on function RETURN
 6 +++ say half(4.5)
DMSREX475E Error 40 running TESTHALF EXEC, line 6: Incorrect call
to routine
Ready(20040);

Reading 2

50 z/VM: REXX/VM User's Guide

2. A possible answer is:

/* TESTHAL2 EXEC */

/* Test case for modified HALF EXEC (See Question 2) */
say "Testing" half2(5,7)

The TESTHAL2 EXEC calls a modified version of HALF EXEC, named HALF2 EXEC.

/* HALF2 EXEC */

/* */
if arg() ¬= 1
then return /* wrong number of arguments */
arg number
if datatype(number,whole)
then return number%2 + number//2
else return /* first argument is not a whole number */

When run, the HALF2 EXEC results in:

testhal2
 3 +++ return /* wrong number of arguments */
DMSREX480E Error 45 running HALF2 EXEC, line 3: No data specified
on function RETURN
 2 +++ say "Testing" half2(5,7)
DMSREX475E Error 40 running TESTHAL2 EXEC, line 2: Incorrect call
to routine
Ready(20040);

Reading 2 continues in “Arithmetic” on page 56.

A Square Root Function
 Reading 3

Reading 3

Expressions 51

This is an example of a function that you could code for yourself.

/* SQRT EXEC */
/* The SQUARE ROOT function. */
/* */
/* A function to calculate the square root of a number */
/* using the Newton-Raphson method. */
/* */
/* SQRT(number) */
/* */
/* where "number" is a nonnegative REXX number, */
/* returns the square root of "number". If the number */
/* is negative or not a decimal number, then this function will */
/* return a null character and report the error. */
arg num /* get the number */
null = ''

if ¬datatype(num,'Number') /* valid number? */
 then do
 say 'Invalid input argument:' Num'. Must be a positive decimal number.'
 return null
 end

if num < 0 /* check for negative */
 then do
 say 'Invalid input argument:' Num'. Must be a positive decimal number.'
 return null
 end
 else if num = 0 then
 return 0 /* check for 0 */

xnew = num /* initialize answer */

 /* calculate maximum */
eps = 0.5 * 10**(1+fuzz()-digits()) /* accuracy */

/* Loop until a sufficiently accurate answer is obtained. */

do until abs(xold-xnew) < (eps*xnew)
 xold = xnew /* save the old value */
 xnew = 0.5 * (xold + num / xold) /* calculate the new */
end

xnew = xnew / 1 /* strip unnecessary zeros */

return xnew

Figure 27: SQRT EXEC

Internal Functions
Instead of writing a function as a separate file, you may prefer to include it in your main program. If the
function is called many times by your main program, there will be a perceptible improvement in
performance.

Reading 3

52 z/VM: REXX/VM User's Guide

Begin your function with a label. To avoid problems with duplicate names, use the PROCEDURE
instruction (see “The PROCEDURE Instruction” on page 30).

/* ROOTS EXEC */
/* This program tabulates the square roots of the */
/* whole numbers in the range 1 to 100. */
/* */
/* The output is stored in the file ROOTS TABLE A. */
/* The previous version of that file, if any, is */
/* overwritten. */
"ERASE ROOTS TABLE A"
do j = 1 to 100 until rc ¬= 0
 "EXECIO 1 DISKW ROOTS TABLE A (STRING",
 format(j,3,0) format(sqrt(j),3,8)
end
if rc ¬= 0
then say "Unexpected return code" rc,
 "from EXECIO 1 DISKW command in ROOTS EXEC"
exit
/*--*/
/* square root function */
/*--*/
SQRT: procedure
...
 /* From here on, the code */
 /* is the same as that shown in */
 /* SQRT EXEC Figure 27 on page 52. */

Figure 28: ROOTS EXEC

Functions Written in Assembler Language
A further improvement in performance can be obtained by writing your function in assembler language.
However, this is only likely to be worthwhile for a function used very frequently, and by many programs.

Consult your System Support specialist or z/VM: REXX/VM Reference for more information.

Reading 3 continues in “Arithmetic” on page 56.

Loops
 Reading 1

This whole section, "Loops" is covered in Reading 1.

A loop is a part of a program in which the same sequence of instructions are executed repeatedly. This is a
good point to interrupt our discussion on expressions and take a look at one or two things about loops:

• How to write a loop that keeps asking for input until a valid answer is keyed in
• How to stop a program that is in an endless loop.

The DO Instruction
To build loops, you should use the REXX instruction DO. This is described fully in a later section, “Loops”
on page 135.

A DO UNTIL Loop
There is one particular kind of loop that we shall need to use in our examples in the next two sections. It is
the one where, when all the instructions inside the loop have been executed, a decision is made either to
go on or to go back and repeat the instruction again.

The diagram shows why this is called a loop. The diamond represents a decision about which way to go.

Reading 1

Expressions 53

In REXX programs, this should be written:

DO UNTIL expression
 instruction1
 instruction2
 instruction3
 ... /* and so on */
END

where:

expression is any expression that evaluates to give 1 (true) or 0 (false). The value of expression is
computed every time the language processor reaches the keyword END; if the result is 0, the language
processor loops back to instruction1. Otherwise, execution continues with the instruction following
the END instruction.

For example, the program in Figure 29 on page 54 will go on asking the same question until the user
answers 12.

/* DOZEN EXEC */
/* Just testing you */
DO UNTIL answer = 12
 say "What is three times four?"
 pull answer
END

Figure 29: DOZEN EXEC

Getting Out of Loops
This program will never finish.

/* NEVER EXEC */
/* This program never ends */
DO UNTIL moon = blue
 say "We are still waiting"
 moon = silver
END

Figure 30: NEVER EXEC

You can recognize this situation because, when you type in another command, CMS does not run it. If by
any chance you find that you are running such a program and your screen fills with "We are still waiting",
enter the CMS immediate command to halt interpretation:

HI

Reading 1

54 z/VM: REXX/VM User's Guide

Sooner or later, you will return to CMS.

On the other hand, the program in Figure 31 on page 55 is nearly impossible to get out of if you do not
know what the answer is.

/* ABRACADA EXEC */
/* Guess the secret password! */
DO UNTIL answer = "I QUIT"
 say "What is your answer"
 pull answer
END

Figure 31: ABRACADA EXEC

You can recognize this situation because, whatever you do, the words VM READ continue to appear in the
bottom right hand corner of your screen. And typing in HI is no good. It just gets compared with I
QUIT.

If you do not know the answer, the simplest way out is to enter CP mode and re-IPL CMS. Enter:

#cp i cms

This will cause CP to take over and issue an IPL CMS command.

Test Yourself…
1. Write a program called WHATDAY EXEC that keeps on asking what day of the week it is. Your program

should finish as soon as the user gives the right answer. You can use the function DATE(WEEKDAY) to
find out what the date really is.

2. Write a program called TESTS EXEC that keeps on asking simple arithmetical questions until the user
has given five correct answers. You can use the RANDOM() function to generate some numbers at
random, and ask the user to add them together.

For example:

RANDOM(1,9)

Gives a whole number in the range 1 through 9.

Answers:

1. A possible answer is:

/* WHATDAY EXEC */

/* Example: to make the user say what day of the */
/* week it is today. */
do until reply = date(weekday)
 say "What day of the week is it?"
 say "(The first letter of your response should be in"
 say "uppercase, the rest of the word should be in"
 say "lowercase.)"
 parse pull reply
 if reply ¬= date(weekday)
 then say "No, it is" date(weekday)
end
say "Correct!"

Figure 32: WHATDAY EXEC

Reading 1

Expressions 55

2. A possible answer is:

/* TESTS EXEC */

/* Arithmetical test */
credits = 0
do until credits = 5
 a = random(1,9) /* Choose a whole number */
 /* between 1 and 9. Choose */
 /* at random. */
 b = random(1,9)
 say "What is" a "+" b "?"
 pull answer
 if answer = a + b
 then credits = credits + 1
 else say a "+" b "is" a+b
end

That is enough about loops for now. Let us return to the subject of expressions by discussing “Arithmetic”
on page 56.

Reading 1 continues in “Arithmetic” on page 56.

Arithmetic
In this section:

Reading Describes

Reading 1 immediately following, describes:

• Numbers
• Checking your input
• Addition, subtraction, multiplication
• Division
• Range of numbers allowed
• Exponential notation.

Reading 2 “Formatting Numeric Output” on page 61, describes:

• Formatting numeric output
• Specifying conventional and exponential notation.

Reading 3 “Exponentiation” on page 63, describes:

• Using the ** operator to compute the nth power of a number
• Using the NUMERIC DIGITS instruction
• Using the SIGN() function
• Rounding and truncation.

Numbers
 Reading 1

We begin this section with some examples of numbers:
12

This is a whole number or integer.

Reading 1

56 z/VM: REXX/VM User's Guide

0.5
This is a decimal fraction or decimal (one half).

3.5E6
This is a floating point number (three and a half million). It uses exponential notation. The portion that
follows the E says how many places the decimal point must be moved to the right to make it into an
ordinary number.

This notation is useful when dealing with very large or very small numbers.

–5
This is a signed number (minus five).

Checking Your Input
Before attempting to do arithmetic on data entered from the keyboard, you should check that the data is
valid. You can do this using the DATATYPE() function.

In its simplest form, this function returns the word, NUM, if the argument (the expression inside the
parentheses) would be accepted by the language processor as a number that could be used in
arithmetical operations. Otherwise, it returns the word, CHAR.

• The value of datatype(49) is NUM.
• The value of datatype(5.5) is NUM.
• The value of datatype(5.5.5) is CHAR.
• The value of datatype(5,000) is CHAR.
• The value of datatype(5 4 3 2) is CHAR.

So, if you want the user to keep trying until entering a valid number you could write:

/* VALNUM EXEC */
/* Example requiring numeric input */
do until datatype(howmuch) = "NUM"
 say "Enter a number"
 pull howmuch
 if datatype(howmuch) = "CHAR"
 then say "That was not a number. Try again!"
end
say "The number you entered was" howmuch

Figure 33: VALNUM EXEC

If you were interested only in whole numbers you could use the alternative form of the DATATYPE()
function. This form requires two arguments:

1. The data to be tested
2. The type of data to be tested for, for example, a whole number.

Only the first character is inspected. Thus, to test for whole numbers it would be sufficient to write W
or w. But in this book we shall write whole to remind you of the meaning of this argument.

This form of the function:

DATATYPE(number,"whole")

returns 1 (true) if number is a whole number, 0 (false) otherwise.

For example:

do until datatype(howmany,"whole")
 ...
 pull howmany
 ...
end

Reading 1

Expressions 57

And if you also wanted to restrict the input to numbers greater than zero you could write:

do until datatype(howmany,"whole") & howmany > 0
 ...
 pull howmany
 ...
end

(The & is the AND operator. See “The AND (&) Operator” on page 43.)

By the way, the DATATYPE() function can test for other types of data, as well. See the DATATYPE function
in your z/VM: REXX/VM Reference for further details.

Addition, Subtraction, Multiplication
These operations are performed in the usual way. You can use both whole numbers and decimal fractions.

Operand Operation Example

+ (plus sign) Add Say 7 + 2 /* says "9" */

- (minus sign) Subtract Say 7 - 2 /* says "5" */

* (asterisk) Multiply Say .7 * .2 /* says ".14" */

Division
When it comes to division, you can say whether or not you want the answer expressed as a whole number
(integer). The operators you can use are:

Operator Description

% (percent sign) Integer divide. The result will be a whole number. Any remainder is
ignored.

For example:

Say 7 % 2 /* says "3" */

// (two slashes) Remainder after integer division.

For example:

Say 7 // 2 /* says "1" */

/ (one slash) Divide.

For example:

Say 7 / 2 /* says "3.5" */

Reading 1

58 z/VM: REXX/VM User's Guide

Notice which of these operators is used here:

/* SHARE EXEC */
/* This program works out how to share zero or more */
/* sweets between one or more children, assuming that */
/* a single sweet cannot be split. */
/*--*/
/* Get input from user */
/*--*/
do until datatype(sweets,"whole") & sweets >= 0
 say "How many sweets"
 pull sweets
end
do until datatype(children,"whole") & children > 0
 say "How many children"
 pull children
end
/*--*/
/* Compute result */
/*--*/
say "Each child will get" sweets%children "sweets",
 "and there will be" sweets//children "left over."

Figure 34: SHARE EXEC

You should be careful not to divide by zero. If you do, a syntax error will result. That is why in Figure 34 on
page 59 the user was not allowed to answer 0 to the question "How many children."

Because apples and oranges can be cut into pieces, you can use the other kind of division operator.

children = 5; apples = 7;
say "Each child gets" apples/children "apples."
/* says "Each child gets 1.4 apples." */

Fractions are usually computed with an accuracy of nine significant digits:

children = 3; oranges = 7;
say "Each child gets" oranges/children "oranges."
/* says "Each child gets 2.33333333 oranges." */

To summarize:

• The result of a % operation is always a whole number. There may be a remainder; to compute the
remainder, write out the expression again, using the // operator.

• The result of a / operation can be a decimal.

Range of Numbers
Like a good quality hand-held calculator, the language processor works out the result correct to nine digits
if necessary. This means nine significant digits, not counting the zeros that come just after the decimal
point in very small decimal fractions.

say 1*2*3*4*5*6*7*8*9*10*11*12 /* says "479001600" */
say 7/30000000000 /* says: ".000000000233333333" */

The accuracy of computed results can be changed using the NUMERIC DIGITS instruction. This
instruction is described in “The NUMERIC DIGITS Instruction” on page 64.

Exponential Notation
Numbers much bigger or smaller than these are difficult to read and write, because it is easy to make a
mistake counting the zeros. It is simpler to use exponential notation. Very big numbers can be written as
an ordinary (fixed point) number, followed by a letter E, followed by a whole number. The whole number
says how many places to the right the decimal point of the fixed point number would have to be moved to
obtain the same value as an ordinary number. So:

• 4.5E6 is the same as 4500000 (four and a half million).

Reading 1

Expressions 59

• 23E6 is the same as 23000000 (twenty-three million).
• 1E12 is the same as 1000000000000 (a million million).

The number to the right of the E is called the exponent. If the exponent is negative, this means that the
decimal point is to be shifted to the left, instead of to the right. So:

• 4.5E–3 is the same as 0.0045 (four and a half thousandths).
• 1E–6 is the same as 0.000001 (one millionth).

You can write numbers like this in expressions, and also when entering numeric data requested by REXX
programs. The language processor will use this notation when displaying results that are too big or too
small to be expressed conveniently as ordinary numbers or decimals. When the language processor uses
this notation, the part of the number that comes before the E (the mantissa) will usually be a number
between 1 and 9.99999999.

For example:

j = 1
do until j > 1e12
 say j /* says "1" */
 j = j * 11 /* "11" */
end /* "121" */
 /* "1331" */
 /* "14641" */
 /* "161051" */
 /* "1771561" */
 /* "19487171" */
 /* "214358881" */
 /* "2.35794769E+9" */
 /* "2.59374246E+10" */
 /* "2.85311671E+11" */

Numbers written in exponential notation (for example, 1.5e9) are sometimes called floating point
numbers. Conversely, ordinary numbers (for example, 3.14) are sometimes called fixed point numbers.

Test Yourself…
What is displayed on the screen when this program is run?

/* ARITHOPS EXEC */

/* Example: arithmetical operations */
quarter = 25
deuce = 2
say quarter+deuce
say quarter-deuce
say quarter*deuce
say quarter/deuce
say quarter%deuce
say quarter//deuce
x = quarter"E"deuce
say x + 0

Answer:

The following is displayed:

arithops
27
23
50
12.5
12
1
2500
Ready;

Reading 1

60 z/VM: REXX/VM User's Guide

The last two lines of the program require some explanation. First, x gets the value 25E2. This is the same
as 25.00 with the decimal point moved two places to the right (in other words, 2500). When x is used in
the arithmetical expression, the number 25E2 is added to zero, giving a result of 2500.

Reading 1 continues in “Groups of Instructions” on page 66.

Formatting Numeric Output
 Reading 2

Columns of figures are easier to read if the numbers are all lined up with the units in the same column.
The FORMAT() function will help you to do this. The first three arguments are:

1. The number to be formatted
2. The number of character positions before the decimal point
3. The number of character positions after the decimal point.

Here is an example:

/* INVOICE EXEC */
/* Example showing how columns of figures are formatted */
qty.1 = 101; unitprice.1 = 0.73; remark.1 = OK
qty.2 = 500; unitprice.2 = 1995; remark.2 = OK
qty.3 = 60000; unitprice.3 = 70000; remark.3 = OK
qty.4 = 500; unitprice.4 = 400/12; remark.4 = OK
say "Quantity Unit Price Total Price Observations"
do item = 1 to 4
 say format(qty.item,5,0),
 format(unitprice.item,11,2),
 format(qty.item * unitprice.item,12,2),
 " " remark.item
end

Figure 35: INVOICE EXEC

It displays the data formatted like this:

invoice
Quantity Unit Price Total Price Observations
 101 0.73 73.73 OK
 500 1995.00 997500.00 OK
60000 70000.00 4.20E+9 OK
 500 33.33 16666.67 OK
Ready;

The numbers to be formatted should always be small enough to fit into the space you have reserved for
them with FORMAT().

• A simple rule is: always specify at least 9 for the "before the decimal point" argument. If you do,
numbers with more than nine digits will be displayed in Exponential Notation, and the extra characters
required will cause fields to the right of the number to be shifted right, thus drawing attention to the
exception.

• If you do not, the person using your program may be faced with a syntax error that is difficult to
understand.

Look at item 3 in the preceding example. The quantity times the unit price (60,000 times 70,000) gives a
total price of 4,200,000,000, which is too big for the nine-digit field that was specified. The result has
therefore been displayed in exponential notation. This in turn has caused OK to be shifted right.

On the other hand, suppose we add the following:

qty.5 = 880000; unitprice.5 = 1; remark.5 = "Big deal"

and change the 4 to a 5 in the DO instruction.

Reading 2

Expressions 61

Then the display reads:

invoice
Quantity Unit Price Total Price Observations
 101 0.73 73.73 OK
 500 1995.00 997500.00 OK
 60000 70000.00 4.20E+9 OK
 500 33.33 16666.67 OK
 12 +++ say format(qty.item,5,0), format(unitprice.item, 11,2),
 format(qty.item * unitprice.item,12,2), " " remark.item
DMSREX475E Error 40 running INVOICE EXEC, line 12: Incorrect call to routine
Ready(20040);

This error could have been avoided:

1. In a real program, by testing the input values for a maximum number of 99999, or
2. By allowing space enough for at least nine digits for the integer part.

say format(qty.item,9,0),
 format(unitprice.item,9,2),
 format(qty.item * unitprice.item,11,2),
 " " remark.item

Where the formatted data is:

invoice
Quantity Unit Price Total Price Observations
 101 0.73 73.73 OK
 500 1995.00 997500.00 OK
 60000 70000.00 4.20E+9 OK
 500 33.33 16666.67 OK
 880000 1.00 880000.00 Big deal
Ready;

Specifying Conventional (Fixed Point) Notation
To stop FORMAT() from returning floating point numbers (when results would usually be expressed in
floating point numbers) use the fourth argument of FORMAT(). This argument specifies the number of
character positions reserved for the exponent. Exponential notation will not be used if you write:

FORMAT(number,before,after,0)

Be quite sure that the space you have allowed for before and after is sufficient.

Specifying Exponential (Floating Point) Notation
To make FORMAT() return floating point numbers (when results would usually be expressed in fixed point
numbers) use the fifth argument of FORMAT(). This argument specifies the threshold for expressing the
result in exponential notation. Exponential notation will be used if you write:

FORMAT(number,before,after,,0)

For other uses of the FORMAT() function, see z/VM: REXX/VM Reference.

A Special Case

When a floating point number has an absolute value between 1 and 9.99999999 (that is, when the
exponent is zero) the characters E+0 are always omitted even when floating point has been specified.

Test Yourself…
1. Write an exec called REFORMAT that expresses numbers entered by the user in both fixed point and

exponential notation.
2. Test your program with the numbers:

• 123456789

Reading 2

62 z/VM: REXX/VM User's Guide

• 0.0000000000012345
• 999999999999e-6
• 1.2e10
• 1.2
• 1.2e+0

Or, use any other numbers you can think of.

Answers:

1. A possible answer would be:

/* REFORMAT EXEC */

/* Example: to change the format of a number */
do forever
 say "Enter a number"
 pull answer
 if ¬ datatype(answer,number) then exit
 say "Fixed point equivalent:" format(answer,,,0)
 say "Exponential equivalent:" format(answer,,,,0)
end

2. The following table lists the results you should get when using the test numbers with the REFORMAT
EXEC.

Table 2: Results from the REFORMAT EXEC

Number entered: Fixed point equivalent: Exponential equivalent:

123456789 123456789 1.23456789E+8

0.0000000000012345 0.0000000000012345 1.2345E-12

999999999999e-6 1000000.00 1.00000000E+6

1.2e10 12000000000 1.2E+10

1.2 1.2 1.2

1.2e+0 1.2 1.2

Reading 2 continues in “Text” on page 66.

Exponentiation
 Reading 3

The operator ** means "raised to the whole-number power of". So:

• 2**1 = 2 = 2 (2 to the power of 1)
• 2**2 = 2*2 = 4 (2 to the power of 2, or 2 squared)
• 2**3 = 2*2*2 = 8 (2 to the power of 3, or 2 cubed)
• 2**4 = 2*2*2*2 = 16 (2 to the power of 4).

And, as in ordinary algebra:

2**0 = 1
2**–1 = 1/(2**1) = 0.5 (2 to the power of minus 1)
2**–2 = 1/(2**2) = 0.25 (2 to the power of minus 2).

The number on the right of the ** must be a whole number.

Reading 3

Expressions 63

In the order of precedence, the exponentiation (**) operator comes below the prefix operators and above
the multiply and divide operators.

For example:

say -5**2 /* Says "25". Same as (-5)**2 */
say 10**3/2**2 /* Says "250". Same as (10**3)/(2**2) */

The NUMERIC DIGITS Instruction
If you want to avoid using exponential notation, or simply want to increase the accuracy of your
calculations, you can use the NUMERIC DIGITS instruction to change the number of significant digits.
(The default setting for NUMERIC DIGITS is 9.)

For example:

/* ACCURATE EXEC */
/* examples of numbers with unusually high precision */
numeric digits 10
say "The largest signed number that can be held"
say "in a general register is" 2**31 - 1 "exactly."
say
numeric digits 48
say "1/7 =" 1/7

Figure 36: ACCURATE EXEC

The sample program results in the display of:

accurate
The largest signed number that can be held
in a general register is 2147483647 exactly.
1/7 = 0.142857142857142857142857142857142857142857142857
Ready;

To check the current setting of the NUMERIC DIGITS instruction use the DIGITS() function. For example,
if no setting was specified for NUMERIC DIGITS:

DIGITS()

would return 9 because the default setting for NUMERIC DIGITS is nine significant digits.

The SIGN() Function
You can determine whether a number is positive, negative, or zero by using the SIGN() function.

First the number inside the parentheses is rounded according to the current NUMERIC DIGITS setting. If
this number is <0, =0, or >0, the value returned by the SIGN() function is -1, 0, 1, respectively.

For example:

say sign(1/7) /* says "1" */

Rounding and Truncation
Each arithmetical operation is carried out in such a way that no errors are introduced, except during final
rounding.

For example:

numeric digits 3
say 100.3 + 100.3 /* gives 200.6, which is rounded */
 /* to "201" */

For a complete description of rounding, see the z/VM: REXX/VM Reference.

Reading 3

64 z/VM: REXX/VM User's Guide

When your program performs a series of arithmetical operations, you may inadvertently introduce
additional errors. Look at the fourth item in INVOICE EXEC in Figure 35 on page 61. The customer appears
to have been overcharged by $1.67! The price was $400 a dozen. FORMAT() has rounded this to 33.33
each. But Total Price was not rounded until after it had been multiplied by 500.

For rounding numbers, use FORMAT() at the point in your calculations where you want rounding to occur.
For rounding down, use TRUNC().

/* TTRUNC EXEC */
/* An example of rounding. */
qty.1 = 500; unitprice.1 = 400/12
qty.2 = 500; unitprice.2 = 200/12
say
say "Quantity Unit price Total price Remarks"
say copies("-",58)
do item = 1 to 2
 unitprice = FORMAT(unitprice.item,9,2)
 say format(qty.item,6,0),
 format(unitprice,7,2),
 format(qty.item * unitprice,10,2),
 " Rounding conventionally"
 unitprice = TRUNC(unitprice.item,2)
 say format(qty.item,6,0),
 format(unitprice,7,2),
 format(qty.item * unitprice,10,2),
 " Rounding down"
end

Figure 37: TTRUNC EXEC

When run, the following is displayed:

ttrunc
Quantity Unit price Total price Remarks
--
 500 33.33 16665.00 Rounding conventionally
 500 33.33 16665.00 Rounding down
 500 16.67 8335.00 Rounding conventionally
 500 16.66 8330.00 Rounding down
Ready;

Test Yourself…
1. In this program:

/* EXPONENT EXEC */

/* Example of a negative exponent */
if 2 ** -3 = 1/(2**3) then say "True"
else say "False"

a. What is displayed on the screen?
b. Are the parentheses in this expression really necessary?

2. What value will be computed for the expression:

say 9 ** (1/2)

Answers:

1. The answers are:

a. True
b. No. The ** operator has a higher priority than the / operator, so the language processor would

evaluate the expression in the same way if the parentheses were removed.

Reading 3

Expressions 65

2. Syntax error! The ** operator must be followed by a whole number (or an expression which, when
evaluated, gives a whole number).

In mathematics, x ** (1/2) means "the square root of x". There is an example of a SQRT() function
in “A Square Root Function” on page 51.

Reading 3 continues in “Text” on page 66.

Groups of Instructions
 Reading 1

This whole section, "Groups of Instructions", is covered in Reading 1.

We are interrupting our discussion of expressions to explain how instructions can be grouped together.

Instructions can be grouped together using:

DO
 instruction1
 instruction2
 instruction3
 ...
END

If the keyword DO is in a clause by itself, the list of instructions is executed one time (no loop is implied).

The DO instruction and the END keyword make the whole group into a single instruction, which can be
used after a THEN or ELSE keyword.

IF sun = shining
THEN
 DO
 say "Get up!"
 say "Get out!"
 say "Meet the sun half way!"
 END

In this example, if sun = shining, all three SAY instructions will be executed. But if sun ¬=
shining, none of them will.

We shall be using DO in this way in the sections that follow.

Reading 1 continues in “Text” on page 66.

Text
In this section:

Reading Describes

Reading 1 immediately following, describes:

• How to concatenate
• How to use the SUBSTR(), LENGTH(), COPIES(), LEFT(), and RIGHT()

built-in functions for string manipulation.

Reading 2 “Using a Subroutine to Simplify Tabulation” on page 69, describes:

• How to use a subroutine to simplify tabulation
• How to search for a string of characters using the POS() and

WORDPOS() functions.
• How to display lines from your own program using SOURCELINE().

Reading 1

66 z/VM: REXX/VM User's Guide

Reading Describes

Reading 3 “The OVERLAY() Function” on page 75, describes:

• How to use the OVERLAY(), WORD(), and WORDS() functions.

Concatenation
 Reading 1

To concatenate two terms means to join them together to make a string. The concatenate operators are:
|| (two vertical bars)

concatenate with no blanks in between
 (blank)

concatenate with one blank in between
abuttal

concatenate with no blank in between (as long as the two terms can be recognized separately).
Here are some examples:

say "slow"||"coach" /* says "slowcoach" */
say "slow" "coach" /* says "slow coach" */
/* And */
adjective = "slow"
say adjective"coach" /* says "slowcoach", This is */
 /* an example of an abuttal. */
say adjective "coach" /* says "slow coach" */
say "("adjective")" /* says "(slow)" */

The SUBSTR() Function
The value of any REXX variable is a string of characters. To select a part of a string, use the SUBSTR()
function. SUBSTR is an abbreviation for substring. The first three arguments are:

1. The string from which a part will be taken
2. The position of the first character that is to appear in the result (Characters in a string are numbered

1,2,3, ...)
3. The length of the result.

(For a complete definition, see z/VM: REXX/VM Reference.)

Here is a simple example:

S = "reveal"
say substr(S,2,3) /* says "eve" */
say substr(S,3,4) /* says "veal" */

The LENGTH() Function
To find out the length of a REXX variable, use the LENGTH() function.

S = "reveal"
say length(S) /* says "6" */

Here is an example that uses these two functions:

say "Enter a file name"
pull fn . /* The period ensures that */
 /* FN is assigned only one */
 /* word. */
if length(fn) > 8
then
 do /* A group. See */
 /* “Groups of Instructions” on page 66. */
 fn = substr(fn,1,8)

Reading 1

Expressions 67

 say "The file name you entered was too long. ",
 fn "will be used."
 end

The COPIES() Function
To produce a number of copies of a string, use the COPIES() function. The arguments are:

1. The string to be copied
2. The number of copies required.

For example:

say COPIES("Ha ",3)! /* says "Ha Ha Ha !" */

The LEFT() Function
To obtain a string that is always length characters long, with string at the left hand end of it, use the
LEFT() function.

LEFT(string,length)

If string is too short, the result will be padded with blanks; if string is too long, the extra characters will be
truncated.

For example:

say "|"left("Long",6)"|" /* says "|Long |" */

say "|"left("Longer",6)"|" /* says "|Longer|" */

say "|"left("Longest",6)"|" /* says "|Longes|" */

The RIGHT() Function
The RIGHT() function works the same as the LEFT() function, except the returned string is padded or
truncated on the left.

Arranging Your Output in Columns
You can use the LEFT() function to arrange your output in columns:

/* TABLE1 EXEC */
/* Example: tabulated output */
c1 = 14 /* Width of column 1 */
c2 = 20 /* Width of column 2 */
ruler = c1 + c2 + 16 /* Width of ruled line */
say left("First Name",c1)Left("Last Name",c2)"Occupation"
say copies("-",ruler)
say left("Bill",c1)Left("Brewer",c2)"Innkeeper"
say left("Jan",c1)Left("Stewer",c2)"Cook"
say left("Peter",c1)Left("Gurney",c2)"Farmer"
say left("Peter",c1)Left("Davey",c2)"Laborer"
say left("Daniel",c1)Left("Whiddon",c2)"Gamekeeper"
say left("Harry",c1)Left("Hawke",c2)"Exciseman"
say left("Tom",c1)Left("Cobley",c2)"Sailor (retired)"

Figure 38: TABLE1 EXEC

And you can vary the tab settings by changing the values of C1 and C2. The output looks like this:

table1
First Name Last Name Occupation
--
Bill Brewer Innkeeper
Jan Stewer Cook

Reading 1

68 z/VM: REXX/VM User's Guide

Peter Gurney Farmer
Peter Davey Laborer
Daniel Whiddon Gamekeeper
Harry Hawke Exciseman
Tom Cobley Sailor (retired)
Ready;

Test Yourself…
Given that C = "Continent", what is the value of:

1. C "of America"
2. C || "al"
3. C"al"
4. LENGTH("Continent")
5. LENGTH(C)
6. LENGTH("C")
7. Substr(c,1,4)substr(c,7,3)
8. Substr(c,1,2)substr(c,5,2)
9. LEFT("Q",8)"QUERY"

10. LEFT("COPY",8)"COPYFILE"

Answers:

1. Continent of America
2. Continental
3. Continental
4. 9
5. 9
6. 1
7. Content
8. Coin

│---+----+----+----│
(This scale can help you check the number of blanks in the following answers.)

9. Q QUERY
10. COPY COPYFILE

Reading 1 continues in “Comparisons” on page 78.

Using a Subroutine to Simplify Tabulation
 Reading 2

To make your main program easier to read, leave formatting of output to a subroutine. For example, the
exec in Figure 39 on page 70 shows how a subroutine can be used several times in order to create a
table.

Reading 2

Expressions 69

For example:

/* TABLE2 EXEC */
/* Example: a simpler way to obtain tabulated output */
call tabout "First Name", "Last Name", "Occupation"
say copies("-",50)
call tabout "Bill", "Brewer", "Innkeeper"
call tabout "Jan", "Stewer", "Cook"
call tabout "Peter", "Gurney", "Farmer"
call tabout "Peter", "Davey", "Laborer"
call tabout "Daniel", "Whiddon", "Gamekeeper"
call tabout "Harry", "Hawke", "Exciseman"
call tabout "Tom", "Cobley", "Sailor (retired)"
exit
/*--*/
/* Subroutine to tabulate the output */
/* ================================= */
/* Input format: CALL TABOUT arg1,arg2,arg3 */
/* (number of arguments is not checked) */
/* */
/* Output to screen: arg1 in Column 1 */
/* arg2 in Column 15 */
/* arg3 in Column 35 */
/*--*/
TABOUT:
say left(arg(1),14),
|| left(arg(2),20),
|| arg(3)
return

Figure 39: TABLE2 EXEC

The output will be the same as Figure 38 on page 68.

For the CALL instructions in Figure 39 on page 70, the arguments are separated by commas. In general,
each argument could be an expression.

The expression, arg(1), refers to the first argument passed to the called subroutine. arg(2) refers to the
second argument passed to the called subroutine, and arg(3) refers to the third argument passed to the
called subroutine. For example, in the TABLE2 EXEC, the first time TABOUT is called, arg(1) is First
Name, arg(2) is Last Name, and arg(3) is Occupation.

For example:

/* TABLE3 EXEC */
/* Example: arguments can be expressions */
call tabout "First Name", "Last Name", "Occupation"
say copies("-",50)
r = "(retired)"
firstname = "Tom"
nickname = "Uncle"
lastname = "Cobley"
call tabout firstname "("nickname")", lastname, "Sailor" r
exit
/*--*/
/* Subroutine to tabulate the output */
 ... (See Note 1)

Note:

1. Same as TABLE2 EXEC in Figure 39 on page 70.

Figure 40: TABLE3 EXEC

When run, the following is displayed:

table3
First Name Last Name Occupation
--

Reading 2

70 z/VM: REXX/VM User's Guide

Tom (Uncle) Cobley Sailor (retired)
Ready;

The POS() Function
To find the position of a string in another string, use the POS() function. The first two arguments are:

1. The needle to be found
2. The haystack to be searched.

For a complete definition, see z/VM: REXX/VM Reference.

Here is a simple example:

S = "reveal"
say pos("eve",S) /* says "2" */
say pos("revel",S) /* says "0" /* not found */ */

Other useful functions of this type are LASTPOS() and COMPARE().

Example
The next example uses some of the functions that you have just been reading about.

Reading 2

Expressions 71

/* VALIDFN EXEC */
/* VALIDATE FILE NAME */
/* This program checks that names conform to a set of */
/* defined standards. The names must have the form: */
/* */
/* namddiii */
/* */
/* where "nam" stands for one of the components (INP, */
/* PRO, or OUT); "dd" are two decimal digits; and */
/* "iii" are the author's initials (from one to three */
/* letters). For example, the fifth module that */
/* Joe Bloggs writes for the INPut component would be */
/* */
/* INP05JB */
/* */
do until good /* assume the name is good */
 good = 1
 Say "Enter file name"
 pull fn .
 if length(fn) > 8 then do /* length */
 say "File name must not be more",
 "than 8 characters long"
 good = 0 /* bad file name */
 end
 componentname = left(fn,3) /* component */
 select
 when componentname = "INP" then nop /* valid names */
 when componentname = "PRO" then nop
 when componentname = "OUT" then nop
 otherwise
 say "First three characters must be",
 "a valid component name"
 good = 0 /* bad file name */
 end
 /*continued ...*/
 serial = substr(fn,4,2)
 if datatype(serial,whole) & pos(".",serial) = 0
 then nop
 else do
 say "Fourth and fifth characters must be numeric"
 good = 0 /* bad file name */
 end
 author = substr(fn,6) /* author */
 if ¬ datatype(author,upper)
 then do
 say "Sixth and remaining characters",
 "must be alphabetic"
 good = 0 /* bad file name */
 end
 if good = 0 then say "Try again"
 end

Figure 41: VALIDFN EXEC

Words
In REXX, a word is defined as a string of characters delimited by blanks. To process words, rather than
characters, use any of the following REXX functions:

• DELWORD
• FIND
• SUBWORD
• WORD
• WORDINDEX
• WORDLENGTH
• WORDPOS
• WORDS.

Reading 2

72 z/VM: REXX/VM User's Guide

The following description highlights the WORDPOS function; all functions are described fully in the z/VM:
REXX/VM Reference.

(Also see the PULL, ARG and PARSE instructions, starting in “The PULL Instruction” on page 88).

The WORDPOS() Function
To find a phrase (of one or more words) in a string, use the WORDPOS() function.

WORDPOS (phrase ,string

,start

)

The arguments are:

1. The phrase to be found.
2. The string be searched.
3. The start point of the search (must be a positive number). The default is the first word in the string.

The language processor searches string for the sequence of word(s), phrase. The result is the word-
number of the first word in string that matches the first word in phrase. But, if phrase is not found, zero is
returned.

By default the search starts at the first word in string. By specifying start you can begin the search for
phrase on any word in string.

For example:

/* REVERE EXEC */
/* "The British are coming!" */
text = "Listen, my children, and you shall hear",
 "Of the midnight ride of Paul Revere"
name = "Paul Revere"
say WORDPOS(name,text) /* says "13" */
say WORDPOS("my children",text) /* says "0", because the */
 /* Word in TEXT is */
 /* "children," */
 /* (Notice the comma) */

Figure 42: REVERE EXEC

Providing Help
You may have noticed that CMS commands and REXX instructions are provided with a HELP command, so
that if you forget how to use them you can always get a definition displayed on the screen.

If you are writing programs that other people will use, it will help your users if you do the same. You can
either write a separate HELP file for your program or, more informally, you can provide information from
within your program file.

Reading 2

Expressions 73

Here is a program that provides its own HELP, using the SOURCELINE() function to simplify the job of
displaying whole lines. SOURCELINE(n) returns the nth line of the source file. If n is omitted,
SOURCELINE() returns the line number of the final line in the source file.

/* MYPROG EXEC */
/*
This program processes the input file to give ...

Correct format is:
 MYPROG
Function performed is:
Rhubarb, rhubarb, rhubarb.
*/
say "Enter file ID of file to be processed"
pull fn ft fm
if fn = ? | fn = "" | ft = ""
then do
 /* Display lines until comment-end delimiter alone */
 line = 2
 do while sourceline(line) ¬= "*/"
 say sourceline(line)
 line = line + 1
 end
 exit
end
/*--*/
/* Main program starts here. */
/*--*/
say "This is the program"

Figure 43: MYPROG EXEC

Note: Notice that the comment delimiters must be on a separate line in order for the exec to work
properly.

Test Yourself…
Write a subroutine to display data on the screen in the following format:

• The first argument occupies columns 1 to 20. The text is left justified.
• The second argument is an amount of dollars and cents (or pounds and pence, or francs and centimes,

or marks and pfennigs) with the units position of the cents in column 34.
• The third argument occupies columns 37 to 80.
• As a further refinement, extend your program so that, when the third argument is too long to fit onto one

line, it can be extended into columns 37 to 80 of as many lines as necessary.

Reading 2

74 z/VM: REXX/VM User's Guide

Answers:

Here is the answer to the fourth item, with some test cases.

/* 4MAT EXEC */

/* Example: a subroutine for formatting text, and a */
/* main routine for testing it. */
call formatter "whole number", 12, "An easy case"
call formatter "expression",2000/6, "Rounded up"
call formatter "abcdefghijklmnopqrstuvwxyz",,
 12345678888,,
 "Precision of this number is that",
 "specified by NUMERIC DIGITS"
call formatter "Small number", 1/201,,
 "After rounding, this number is",
 " less than .005"
exit
/*---*/
/* Subroutine to format data and display it. */
/* (For specification, see “Test Yourself…” on page 74.) */
/*---*/
FORMATTER:
len = 80 - 37 + 1 /* length of */
 /* remark field */
parse arg name, value, remark
do j = 1 while length(remark) > len /* slice REMARK */
 remark.j = substr(remark,1,len)
 remark = substr(remark,len+1)
end
remark.j = remark /* last slice */
say left(name,20), /* say first line */
 || format(value,11,2,0),
 || " "remark.1
 /* say others */
do line = 2 to j
 say copies(" ",36)||remark.line
end
return

Note: Notice the double commas in two of the CALL statements in the 4MAT EXEC. The first comma
indicates that the clause is extended to the next line. The second comma indicates the end of the
argument.

When this program is run, this is what is displayed:

4mat
whole number 12.00 An easy case
expression 333.33 Rounded up
abcdefghijklmnopqrst12345678900.00 Precision of this number is that specified b
 y NUMERIC DIGITS
Small number 0.00 After rounding, this number is
 less than .005
Ready;

Reading 2 continues in “Comparisons” on page 78.

The OVERLAY() Function
 Reading 3

To overlay one string onto another string, use:
OVERLAY (new ,target ,position ,length)

The arguments are:

• The string to be overlaid
• The target onto which it is to be overlaid
• The position in the target where overlaying is to start
• The number of characters to be overlaid.

Reading 3

Expressions 75

For example:

say overlay("abc","123456",3,2) /* says "12ab56" */

(For a complete definition, see z/VM: REXX/VM Reference.)

Here is a useful example.

/* ORDCHARS EXEC */
/* This program will help you understand how */
/* comparisons are made. The characters typed in by */
/* the user will be sorted into ascending order. */
say "Please type in all the characters you would",
 "like to have sorted."
parse pull S /* Do not translate */
 /* to uppercase. */
do until swap = 0
swap = 0
 do p = 1 to (length(S) - 1)
 c1 = substr(S,p,1)
 c2 = substr(S,p+1,1)
 if c1 > c2 then do /* If out of order, */
 S = overlay(c2||c1,S,p,2) /* swap them. */
 swap = 1 /* Remember the swap */
 end
 end
end
say
say "Here are the same characters,",
 "arranged in ascending order:"
say
say S

Figure 44: ORDCHARS EXEC

This is not the fastest way of sorting things, but it is one of the simplest.

The WORDS() and WORD() Functions
A word is a string of characters, delimited by blanks. To obtain the number of words in a string, use the
WORDS() function.

For example:

necessity = "the mother of invention."
say words(necessity) /* says "4" */

To obtain a particular word from a string, use the WORD() function. The arguments are:

• The string
• The number of the word to be extracted from it.

For example:

necessity = "the mother of invention."
say word(necessity,2) /* says "mother" */

This next example demonstrates how the WORD and WORDS functions can be used to search for a word
(in this case, a file type) that matches one of a given list of words.

Reading 3

76 z/VM: REXX/VM User's Guide

/* XE EXEC */
/* This exec helps you select files to be edited by */
/* the XEDIT editor. Use the command */
/* */
/* XE filename [filetype [filemode]] [(options] */
/* */
/* You need not specify a file type. If you do not, */
/* XE will search for a file in the following order: */
/* */
/* filename SCRIPT on any filemode */
/* filename EXEC on any filemode */
/* filename PLIOPT on any filemode */
/* filename DOC on any filemode */
/* filename LISTING on any filemode */
/* */
/* If none of these can be found, it will select */
/* */
/* filename SCRIPT A */
/* */
/* However, if you do specify a file type, XEDIT will */
/* use the file type that you have specified on the */
/* command line. */
/* */
/* When the file has been chosen, XEDIT will be called */
/* and any options that you have specified on the */
/* XE command line will be passed to XEDIT */
 /* continued ... */

Figure 45: XE EXEC (Part 1 of 2)

Reading 3

Expressions 77

types = "SCRIPT EXEC PLIOPT DOC LISTING"
/*--*/
/* check arguments */
/*--*/
arg filename filetype filemode "(" options
 /* Coding note: */
 /* See Figure 58 on page 93. */
if filename = "" | filename = "?" /* Help needed */
then do
 do line = 1 while substr(sourceline(line),1,2) = "/*"
 say sourceline(line)
 end
 exit
end

/*--*/
/* compute file type */
/*--*/
if filetype = "" then do
 do p = 1 to words(types)
 filetype = word(types,p)
 "SET CMSTYPE HT"
 "STATE" filename filetype /* does file exist? */
 rcs = rc
 "SET CMSTYPE RT"
 select
 when rcs = 28 then nop /* no */
 when rcs = 0 then leave p /* yes */
 /* Coding note: */
 /* See “Leaving a Specified Loop” on page 143. */
 otherwise
 say "Unexpected return code" rcs,
 "from STATE command in XE EXEC"
 exit rcs
 end /* select */
 end p
 if rcs = 28 /* not found yet */
 then filetype = SCRIPT
end
/*--*/
/* call xedit */
/*--*/
"XEDIT" filename filetype filemode "("options
exit rc

Figure 46: XE EXEC (Part 2 of 2)

Reading 3 continues in “Comparisons” on page 78.

Comparisons
In this section:

Reading Describes

Reading 1 immediately following, describes:

• Comparing numbers
• Comparing character strings.

Reading 2 “The COMPARE() Function” on page 80, describes:

• Finding the first character that does not match
• Comparing data without regard to case
• Recognizing abbreviations.

Reading 3 “Exact Comparisons” on page 82, describes:

Reading 3

78 z/VM: REXX/VM User's Guide

Reading Describes

• Exact comparisons
• Fuzzy arithmetical comparisons.

General
 Reading 1

Comparisons are performed using the operators:
>

Greater than
=

Equal to
<

Less than.
These characters can also be combined with each other and with the not character (¬). (For full details,
see z/VM: REXX/VM Reference.)

Numbers
If both the terms being compared are numbers, comparison is numeric, rather than character by
character.

• The value of 5 > 3 is 1 /* true */
• The value of 2.0 = 002 is 1 /* true */
• The value of 3E2 < 299 is 0 /* false */

Characters
If either of the terms is not a number, leading and trailing blanks are ignored; the shorter string is padded
on the right with blanks; and then the strings are compared from left to right, character by character. If the
strings are not equal, the first pair of characters that do not match determine the result.

For example, if " Chalk" is compared with "Cheese "

Figure 47: Comparing Character by Character

A character is less than another character if it comes earlier in the sequence:

Reading 3

Expressions 79

• (lowest)
• blank
• special characters
• a ... z
• A ... Z
• 0 ... 9
• (highest).

There may be exceptions to this for some of the special characters, depending on the features of the
keyboard you are using. You can use the program ORDCHARS EXEC in Figure 44 on page 76 to discover
the sequence of characters for your keyboard.

Test Yourself…
What is the value of each of the following expressions?

1. "3" > "five"
2. "Kilogram" > "kilogram"
3. "a" > "#"
4. "q" > "?"
5. "9a" > "9"
6. "?" > " "

Answers:

All are "1" (true).

Reading 1 continues in “Translation” on page 83.

The COMPARE() Function
 Reading 2

To compare two strings and find the position of the first character in the first string that does not match
the second string, use the COMPARE() function.

COMPARE (string1,string2)

For example:

/* Given that */
a = "Berry"; b = "Beryl"; c = " Bert"; d = "BEST"

• The value of compare(a,b) is 4.
• The value of compare(a,c) is 1.
• The value of compare(a,d) is 2.

In that last example, notice that e is not the same as E. When you would like your comparisons to be
independent of case, translate everything to uppercase first. Of course, if you obtained your data using
ARG or PULL, this will have been done for you. If not, you can use the UPPER instruction to change one or
more variables to uppercase.

/* Given that */
a = "Berry"; b = "Beryl"; c = " Bert"; d = "BEST"
UPPER a b c d

• The value of compare(a,d) is 3.

Reading 2

80 z/VM: REXX/VM User's Guide

The ABBREV() Function
In a friendly environment, the user might expect to be allowed to use abbreviations, just as you can with
CMS commands. To specify what abbreviations you will accept, use the ABBREV() function.

ABBREV (information ,info

,length

)

The arguments are:

1. The keyword in full.
2. The user's answer.
3. The minimum number of characters in the user's answer. If you leave this argument out, the minimum

number is assumed to be the same as the actual length of the user's answer. A null answer is also
accepted.

The result is 1 (true) if info (the user's answer) is at least length characters long and all the characters of
info match the corresponding characters of information (the keyword in full).

For example,

/* YEP EXEC */
/* Example: accepting abbreviations */
do until yes ¬= "YES" /* until YES is set */
 say " ... answer Yes or No"
 pull answer
 select
 when abbrev("YES",answer,1) /* accepts "YES", */
 /* "YE" or "Y" */
 then yes = 1
 when abbrev("NO",answer) /* accepts "NO", "N" */
 /* or '' */
 then yes = 0
 otherwise say "Try again!"
 end /* select */
end
if yes then say "I take that to mean YES"
else say "I take that to mean NO"

Figure 48: YEP EXEC

Test Yourself…
Given that:

• Q2 = "COPY"
• Q3 = "PRT"

What is the value of:

1. COMPARE(SUBSTR(Q2,3),Q3)
2. ABBREV("COPYFILE",Q2,4)
3. ABBREV("PRINT",Q3,2).

Answers:

1. 2
2. 1
3. 0 ("PRT" is not equal to the first 3 letters of "PRINT".)

Reading 2 continues in “Translation” on page 83.

Reading 2

Expressions 81

Exact Comparisons
 Reading 3

Strict comparison operators carry out simple character-by-character comparisons, with no padding of
either of the strings. They do not try to perform numeric comparisons because they test for an exact
match between the two strings.

To find out whether two strings are exactly equal (that is, identical) use the == operator.

Given that:

 x = "2"; y = "+2"
 The value of x = y is 1 /* true */
 The value of x \= y, x ¬= y or x /= y is 0 /* false */
 The value of x == y is 0 /* false */
 The value of x \== y, x ¬== y or x /== y is 1 /* true */

You can also find out whether two strings are exactly greater than or exactly less than using the >> and <<
operators. (Remember, a character is less than another character if it comes earlier in the sequence. Refer
to “Characters” on page 79.)

For example:

The value of "cookies" >> "carrots" is 1 /* true */
The value of "$10" >> "nine" is 0 /* false */
The value of "steak" << "fish" is 0 /* false */
The value of " steak" << "steak" is 1 /* true */

In the last example, " steak" is strictly less than "steak" since the blank is lower in the sequence of
characters.

The strict comparison operators would be especially useful if you were interested in leading and trailing
blanks, nonsignificant zeros and so on.

For more information on exact comparison operators, see z/VM: REXX/VM Reference.

Fuzzy Arithmetical Comparisons
There are times when an accurate comparison is inconvenient, for instance:

/* NOFUZZ EXEC */
/* Example: no approximation here */
say 1 + 1/3 /* says "1.33333333" */
say 1 + 1/3 + 1/3 + 1/3 /* says "1.99999999" */
say 1 + 1/3 + 1/3 + 1/3 = 2 /* says "0" (false) */

Figure 49: NOFUZZ EXEC

To make comparisons less accurate than ordinary REXX arithmetic, use the NUMERIC FUZZ instruction.
(For full details, see z/VM: REXX/VM Reference.)

For example:

/* FUZZ EXEC */
/* Example: allowing approximation */
say 1 + 1/3 + 1/3 + 1/3 = 2 /* says "0" (false) */
numeric fuzz 1
say 1 + 1/3 + 1/3 + 1/3 = 2 /* says "1" (true) */

Figure 50: FUZZ EXEC

To check the current setting of the NUMERIC FUZZ instruction use the FUZZ () function. For example:

FUZZ()

Reading 3

82 z/VM: REXX/VM User's Guide

will return 0 by default. This means that 0 digits will be ignored during a comparison operation.

Reading 3 continues in “Translation” on page 83.

Translation
In z/VM, each character or byte contains 8 bits. There are two possible values for each bit, and so there
are 2**8 or 256 possible characters in the character set.

If you need to translate from one character set to another, or if you are dealing with output from programs
that work in binary or hexadecimal, you should study this section.

In this section:

Reading Describes

Reading 1 skips this section.

• Continue Reading 1 in Chapter 5, “Conversations,” on page 87.

Reading 2 “Hexadecimal” on page 83, describes:

• Conversion between Character, Hexadecimal and Decimal.

Reading 3 “Character Sets” on page 85, describes:

• Translation from one character set to another
• The VERIFY() function.

Hexadecimal
 Reading 2

In z/VM, each character occupies 8 bits. Each bit can have one of two values, 0 or 1. For example, the
character + has the value:

0100 1110 (binary)

But, because binary is difficult for humans to read, we might write it as a pair of hexadecimal digits. There
are 16 possible hex digits. They are:

0 1 2 3 4 5 6 7 8 9 A B C D E F

So the hexadecimal equivalent of + is 4E.

Finally, we could also write the value of the character + as its decimal equivalent, which is 78.

The language processor will accept strings expressed in either character or hexadecimal form.
Hexadecimal numbers are usually expressed with the X in front of the number like X'18'. But REXX only
accepts hexadecimal numbers with the X after the number. So, to indicate that a string is expressed in
hex, write the letter X after the closing quotation mark like '18'X.

The value of + is the same as the value of '4E'X.

Conversion
To convert from one form to another, you can use various built-in functions.
2

means translate to
C

means characters
X

means hexadecimal

Reading 2

Expressions 83

D
means decimal

• The value of C2X(+) is 4E
• The value of X2C(4E) is +
• The value of C2D(+) is 78
• The value of D2C(78) is +
• The value of D2X(78) is 4E
• The value of X2D(4E) is 78

All these functions will accept strings more than 1-byte long.

To understand the conversion functions, let's look at the input to and the output from the functions in
hexadecimal. The following chart shows example hexadecimal input, the conversion function performed,
and the resultant hexadecimal output. Also shown is another way to remember what the function does.

Table 3: Inputs and Outputs of Hexadecimal Functions

Input Function Result What the function does

0F C2D F1F5 binary in, EBCDIC out (represents a decimal value)

0F C2X F0C6 binary in, EBCDIC out (represents a hexadecimal value)

F1F5 D2C 0F EBCDIC representing decimal in, binary out

F1F5 D2X C6 EBCDIC representing decimal in, EBCDIC representing hexadecimal out

F1C6 X2C 1F EBCDIC representing hexadecimal in, binary out

F1C6 X2D F3F1 EBCDIC representing hexadecimal in, EBCDIC representing decimal out

The input to C2D and C2X can be any hexadecimal value. Hexadecimal input is typically referred to as
binary or character input. The hexadecimal value does not represent an EBCDIC string. Usually the input
to C2D or C2X is generated by another program or a function, such as the REXX DIAG function, that
returns a binary value.

You would use C2X or C2D to convert this binary value into a form that could be displayed on an EBCDIC
terminal, or that could be used in other REXX instructions.

In the first function, C2D, the input is hexadecimal '0F'. C2D tells REXX to convert the input into a decimal
value and then to convert that decimal value into its EBCDIC representation. Hexadecimal '0F' has a
decimal value of 15. The EBCDIC representation of 15 is 'F1F5'. If you were to display hexadecimal 'F1F5'
on an EBCDIC terminal, what you would see is the character string 15.

Try executing:

say c2d('0F'x)

You should see a 15 displayed on your terminal. Notice that we use the notation '0F'x for input. This is
because there is not a key on most EBCDIC terminals that causes a hexadecimal '0F' to be generated.

For the C2X function, the input is, again, hexadecimal '0F'. C2X tells REXX to convert the hexadecimal
value into an EBCDIC form. The hexadecimal value is '0F'. The EBCDIC representation of that value is
'F0C6'. If you were to display hexadecimal 'F0C6' on an EBCDIC terminal, you would see the character
string 0F. Try executing:

say c2x('0F'x)

You should see 0F on your terminal.

Reading 2

84 z/VM: REXX/VM User's Guide

The input to the next two functions, D2C and D2X must be the EBCDIC representation of a decimal value.
The output of D2C is binary, and hence may be nondisplayable, while the output of D2X is an EBCDIC
representation of a hexadecimal value.

In the preceding chart, the input to D2C is hexadecimal 'F1F5'. By definition, the input to the D2C function
is an EBCDIC string that represents some decimal value. D2C tells REXX to take the decimal value
represented by the input and convert it to a hexadecimal value. The EBCDIC string 'F1F5' represents a
decimal value of 15. Hexadecimal notation for decimal 15 is '0F'. Try executing both of these instructions:

say d2c('f1f5'x)
say d2c(15)

They both mean the same thing. In the first instruction, we supply the hexadecimal string as input. In the
second, we type the characters, which are internally represented as hexadecimal 'F1F5'.

Both instructions attempt to display hexadecimal '0F' on your terminal. On most EBCDIC terminals, '0F'
does not mean anything. You will either see a blank or, on some models, you might see an unusual
character.

In the chart, Table 3 on page 84, hexadecimal 'F1F5' is also the input to D2X. Again, by definition, the
input to D2X must be an EBCDIC string that represents some decimal value. D2X tells REXX to convert the
EBCDIC representation of the decimal value into the EBCDIC representation of its equivalent hexadecimal
value. EBCDIC 'F1F5' represents a decimal value of 15, which is the hexadecimal value F. The EBCDIC
representation of the character F is 'C6'. Try:

say d2x('f1f5'x)
say d2x(15)

Again, the instructions mean the same thing. Both attempt to display hexadecimal 'C6' on your terminal.
In EBCDIC, 'C6' represents the character F, which is what you will see on your terminal.

The last two functions, X2C and X2D, accept as input EBCDIC strings that represent hexadecimal values.
The output of X2C is binary, while the output of X2D is an EBCDIC string that represents a decimal value.

The input to both functions is hexadecimal 'F1C6'. X2C tells REXX to convert the EBCDIC string into its
binary hexadecimal form. The EBCDIC string 'F1C6' represents the hexadecimal value '1F'. The output,
then, is '1F'. Try executing:

say x2c('f1c6'x)
say x2c(1F)

Both instructions mean the same thing. By now you can probably predict what will happen: because the
output is binary, either a blank or an odd character will be displayed.

X2D tells REXX to convert the EBCDIC input of a hexadecimal value into the EBCDIC representation of its
decimal equivalent. The EBCDIC string 'F1C6' represents a hexadecimal value of 1F. Decimal notation for
hexadecimal '1F' is 31. The EBCDIC representation of '31' is 'F3F1'. Try:

say x2d('f1c6'x)
say x2d(1F)

Both instructions mean the same thing. The output is EBCDIC, so you will see the characters 31 displayed
on your terminal.

Reading 2 continues in Chapter 5, “Conversations,” on page 87.

Character Sets
 Reading 3

To translate from one character set to another (for example, to translate data before sending it from an
EBCDIC computer to an ASCII printer) use the TRANSLATE() function.

Reading 3

Expressions 85

Another use would be for changing punctuation, as in this example.

/* NOPUNCT EXEC */
/* Example: using the TRANSLATE() function to change */
/* unwanted characters to BLANK */
text = "Listen, my children, and you shall hear",
 "Of the midnight ride of Paul Revere"
say wordpos("my children",text) /* says "0", because the */
 /* word in TEXT is */
 /* "children," */
/*---*/
/* Say whether "my children" can be found in TEXT */
/*---*/
 /* remove punctuation */
nopunct = translate(text," ",".;:!,?")
say sign(wordpos("my children",nopunct))
 /* says "1" */
say sign(wordpos("kids",nopunct))
 /* says "0" */

Figure 51: NOPUNCT EXEC

To help make up strings to put in translation tables use the XRANGE() function. For more information on
this function see to the z/VM: REXX/VM Reference.

The VERIFY() Function
To find out whether a string contains only characters of a given character set, use the VERIFY() function.

VERIFY (string ,reference)

returns the position of the first character in string that is not also in reference. If all the characters in string
are also in reference, zero is returned. For example:

/* DIGITS EXEC */
/* Example: testing that all input characters are valid */
say "Please enter the serial number"
say "(eight digits, no imbedded blanks or periods)"
pull serial rest
if verify(serial,"0123456789") = 0,
 & length(serial) = 8,
 & rest = ""
then say "Accepted"
else say "Incorrect serial number. Please start again"

Figure 52: DIGITS EXEC

Reading 3 continues in Chapter 5, “Conversations,” on page 87.

Reading 3

86 z/VM: REXX/VM User's Guide

Chapter 5. Conversations

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

• How to write lines to the user's screen using the SAY instruction
• How to obtain data from the user's keyboard using the PULL instruction
• How to translate values to uppercase using the UPPER instruction
• How to parse this data; that is, to separate it into words and to assign

each word or group of words to a different REXX variable.

Reading 2 “Getting Data from the Command Line” on page 92, describes:

• How to obtain data from the command line using the PARSE instruction
• How to parse options using the ARG instruction
• How to parse variables and expressions.

Reading 3 “Parsing Using Patterns” on page 95, describes:

• How to parse using patterns.

The SAY Instruction
 Reading 1

To display data on your screen use:
SAY

expression

;

The expression is computed and the result is displayed as a new line on the screen. For example, the
instruction:

say 3 * 4 "= twelve"

causes this to be displayed:

12 = twelve

If you want to display a clause that occupies more than one line in your program, use a comma at the end
of a line to indicate that the expression continues on the next line. For example, the instruction:

say "What can't be done today, will have to be put off",
 "until tomorrow."

causes this to be displayed:

What can't be done today, will have to be put off until tomorrow.

Notice that the continuation comma is replaced by a blank when the expression is displayed. (Remember
that the continuation comma cannot be enclosed in quotation marks or the language processor will
consider it part of the string.)

Reading 1

© Copyright IBM Corp. 1991, 2018 87

The PULL Instruction
Having asked the user a question using SAY, you can collect the answer using PULL. When the instruction

PULL

symbol

;

is executed the program pauses; VM READ appears on the bottom right of the user's screen; the user
should enter some data on the command line and press Enter. Whatever the user enters is translated to
uppercase and then assigned to the variable SYMBOL.

To get the data just as it is, without having the lowercase letters translated to uppercase, use:
PARSE PULL

symbol

;

This example uses both PULL and PARSE PULL.

/* CHITCHAT EXEC */
/* Another conversation */
say "Hello! What's your name?"
parse pull name
say "Say," name", are you going to the party?"
pull answer
if answer = "YES"
then say "Good. See you there!"

Figure 53: CHITCHAT EXEC

The user's name will be repeated exactly as it was entered. But ANSWER will be translated to uppercase.
This ensures that whether the user replies yes, or Yes, or YES, the same action is taken.

The UPPER Instruction
To translate the values of one or more variables to uppercase, use the UPPER instruction.

UPPER variable ;

For example, this might have been used in WHATDAY EXEC, Figure 32 on page 55, to let the user reply in
mixed case.

/* WHATDAY2 EXEC */
/* Example: to make the user say what day of the */
/* week it is today. The user's reply may be in */
/* mixed case. */
today = date(weekday)
upper today /* uppercase */
do until reply = today
 say "What day of the week is it?"
 pull reply /* uppercase */
 if reply ¬= today
 then say "No, it is" today
end
say "Correct!"

Figure 54: WHATDAY2 EXEC

Reading 1

88 z/VM: REXX/VM User's Guide

Test Yourself…
1. The following program asks a question:

/* RIDDLE EXEC */

/* Simple question (?) */
say "Mary, Mary, quite contrary"
say "How many letters in that?"
pull ans
if ans = length(that)
then say "Quite right!"
else say "Oh!"

What happens if the user replies:

a. 21
b. 4
c. Four

2. What would be displayed by:

/* NOAH EXEC */

/* Example: expressions that continue for more */
/* than one line. */
x = 3
say "x =" x
say
say "Ham,",
 "Shem",
 "and Japheth"
say "Silly"
 "Billy"

3. Use XEDIT to create a file called PULLIN EXEC containing the following program, then try to run the
program!

/* PULLIN EXEC */

/* Example: appending input, using PULL, */
/* to a REXX variable */
text = ""
do until input = "QUIT"
 say "Text so far is:"
 say text
 say "Would you like to add to that?",
 " If so, type your message.",
 " If not, type QUIT."
 pull input
 text = text||input
end

Answers:

1. What appears on the screen is:

a. Oh!
b. Quite right!
c. Oh!

Each of these are, of course, followed by Ready;.

Reading 1

Conversations 89

2. What appears on the screen is:

noah
x = 3
Ham, Shem and Japheth
Silly
 10 *-* "Billy"
 +++ RC(-3) +++
Ready;

As there is no comma after Silly, Billy is treated as a command. If no such command exists CMS
sets the return code to minus three. So the language processor displays the line that caused the error
and the return code.

3. Did it work? If not, study the error messages and make sure you copied everything correctly.

a. Notice that:

• When you run the exec, everything you type in gets changed to uppercase (capital) letters.
• You are not given any blanks between the old TEXT and the new INPUT.

b. Now alter pull input to parse pull input. Alter the concatenate operator "||" to a single
blank and try again. Notice that:

• Your input does not get changed to uppercase.
• You are always given one blank between the old TEXT and the new INPUT.
• You cannot get out of the program by entering quit. But you can get out by entering QUIT.

Parsing Words
PULL can also fetch each word into a different variable. In the following example FIRST, SECOND, THIRD,
and REST have been chosen as the names of variables:

/* PARSWORD EXEC */
/* An exec that parses words. */
say "Please enter three or more words:"
pull first second third rest
say first second third rest

Figure 55: PARSWORD EXEC

If you type "three wise men on camels" after the prompt (with five spaces between "men" and "on"),
you will see this:

parsword
Please enter three or more words:
three wise men on camels
THREE WISE MEN ON CAMELS
Ready;

As usual, the program pauses and the user can type something on the command line. When the user
presses Enter, the program continues. The variables are given the values as follows:

Variable Value

FIRST "THREE"

SECOND "WISE"

THIRD "MEN"

REST " ON CAMELS"

In general, each variable gets a word (without blanks) and the last variable gets the rest of the input, if any
(with blanks). If there are more variables than words, the extra variables are assigned the null value.

Reading 1

90 z/VM: REXX/VM User's Guide

To make sure that the user types in the right number of words, provide one extra variable and test that it is
empty. Also, test the variable that holds the last word the user is expected to enter. By testing both
variables for a null value, you can be sure that each of your variables contains exactly one word.

/* FUSSY EXEC */
/* Example: getting the number of words that you want */
good = 0
do until good
 say "Please enter exactly three words"
 pull first second third rest
 select
 when third = "" then say "Not enough words"
 when rest ¬= "" then say "Too many words"
 otherwise good = 1
 end
end

Figure 56: FUSSY EXEC

The Period as a Placeholder
The symbol "." (a period by itself) may not be used as a name but it may be used as a placeholder with the
PULL instruction. For example,

pull . . lastname .

would discard the first two words, assign the third word into LASTNAME, and discard the remainder of the
input.

Test Yourself…
1. What will be displayed on the screen when this program is run?

/* PULLING EXEC */

/* Example: the PULL instruction */
Say "Where did Jack and Jill go?"
parse pull one two three four five six .
 /* User replies "To fetch a pail of water" */
say one two six
say
Say "Will you buy me a diamond ring?"
pull reply .
 /* User replies "Yes, if I can afford it" */
say reply

2. Write a program that asks the user for his name and greets him by his first name. Your program should
ignore any other names.

Answers:

1. What appears on the screen is:

pulling
Where did Jack and Jill go?
To fetch a pail of water
To fetch water
Will you buy me a diamond ring?
Yes, if I can afford it
YES,
Ready;

Reading 1

Conversations 91

2. A possible answer would be:

/* HOWDY EXEC */

/* Example: selecting a single word */
say "Howdy! Say, what's your name?"
pull reply . /* The period causes second */
 /* and subsequent words to */
 /* be ignored */
say "Pleased to meet you," reply

Reading 1 continues in Chapter 6, “Commands,” on page 97.

Getting Data from the Command Line
 Reading 2

When you want to run your exec, type its file name on the command line. This can be followed by more
data, called arguments.

To obtain the data that the user entered on the command line when starting your program, use the ARG
instruction. ARG will parse the arguments in the same way that PULL parses data from the keyboard,
except that the first word entered on the command line (the name of the exec) is not parsed. (The ARG
instruction gives the same results as the PARSE UPPER ARG instruction.)

In the following program FIRST, SECOND, THIRD, and REST are the variable names:

/* MIX EXEC */
/* Example: this program starts by assigning the words */
/* from the command line to REXX variables */
arg first second third rest
say first second third rest

Figure 57: MIX EXEC

If you type "fresh green salad and olives" (with three spaces between "salad" and "and"), after the exec
name, you will see this:

mix fresh green salad and olives
FRESH GREEN SALAD AND OLIVES
Ready;

When the ARG instruction is executed, the variables are given the values as follows:

Variable Value

FIRST "FRESH"

SECOND "GREEN"

THIRD "SALAD"

REST " AND OLIVES"

Mixed Case
To obtain the data that the user entered on the command line when starting your program, without
translating alphabetic characters in the data to uppercase, use the PARSE ARG instruction.

Reading 1

92 z/VM: REXX/VM User's Guide

Recognizing Options
In CMS, the ordinary arguments of a command are separated from the options by a left parenthesis.
Optionally you can mark the end of the options with a right parenthesis if you wish.

For example,

SCRIPT myfile (TWOPASS CONTINUE)

tells SCRIPT to process MYFILE SCRIPT with the options TWOPASS and CONTINUE.

Your REXX program can handle data from the command line in a similar way, by using string patterns.

String Patterns
To split up the data being parsed, use string patterns. If your PARSE instruction specifies a string (that is,
one or more characters enclosed in quotation marks) the data being parsed will be split at the point where
the string is found. In this next example, the first pattern is "(" and the second pattern is ")". The ARG
instruction parses the data from the command line.

/* TAKE EXEC */
/* Example: recognizing options */
arg drink type shelf "(" opt1 opt2 opt3 ")" rest
say drink type shelf opt1 opt2 opt3 rest

Figure 58: TAKE EXEC

If you type "coffee beans (fresh roasted" after the exec name, you will see this:

take coffee beans (fresh roasted
COFFEE BEANS FRESH ROASTED
Ready;

When the ARG instruction is executed:

• The words in front of the first pattern will be parsed in the usual way, into DRINK, TYPE, and SHELF. For
this example, SHELF will be set to null.

• The words between the first pattern and the second pattern (if there is one) will be parsed in the usual
way, into OPT1, OPT2, and OPT3. For this example, OPT3 will be set to null.

• If there is a second pattern, the words that followed it will be parsed into REST. For this example, REST
will be set to null.

This technique of parsing using string patterns can be used with any of the parsing instructions.

Parsing Variables and Expressions
As well as parsing replies from the user and the data from the command line, you can parse variables and
expressions.

PARSE VAR name

VALUE

expression

WITH argument

;

Reading 1

Conversations 93

For example:

/* PARSING EXEC */
/* Examples: parsing variables and expressions */
phrase = "Three blind mice "
PARSE VAR phrase number adjective noun
say number /* says "Three" */
say adjective /* says "blind" */
say noun /* says "mice" */
PARSE VALUE copies(phrase,2) WITH . a . b . c
say b a c /* says "Three blind mice" */
/* and, finally, a very useful trick for taking the */
/* first word away from a sentence */
PARSE VAR phrase first phrase
say first /* says "Three" */
say phrase /* says "blind mice" */

Figure 59: PARSING EXEC

Test Yourself…
Modify MYPROG EXEC in Figure 43 on page 74 to use the ARG instruction. Make a further modification to
test for a CONTINUE option. Allow any abbreviation of COntinue that is two or more letters long. Test for
incorrect options.

Answer:

A possible solution is:

/* MYPROG2 EXEC */

/*
This program processes the input file to give ...

Correct format is:
 MYPROG2 filename filetype [filemode] [(COntinue [)]]
Function performed is:
Rhubarb, rhubarb, rhubarb.
*/
arg fn ft fm "("option")" rest
if fn = ? | fn = "" | ft = "",
 | option ¬= "" & ¬ abbrev(CONTINUE,option,2),
 | rest ¬= ""
then do
 do line = 2 by 1 while sourceline(line) ¬= "*/"
 say sourceline(line)
 end
 exit
end
/*--*/
/* Main program starts here. */
/*--*/
say "This is the program"
if abbrev(CONTINUE,option,2)
then say "If an error is detected, processing",
 "will continue"

Figure 60: MYPROG2 EXEC

When run, the following is displayed:

myprog2
This program processes the input file to give ...

Correct format is:

Reading 1

94 z/VM: REXX/VM User's Guide

MYPROG2 filename filetype

filemode (COntinue)

Function performed is:
Rhubarb, rhubarb, rhubarb.
Ready;

Reading 2 continues in Chapter 6, “Commands,” on page 97.

Parsing Using Patterns
 Reading 3

The idea of parsing using patterns is fully explained in your z/VM: REXX/VM Reference; however, we will
briefly describe parsing here.

Data can be parsed using patterns. A pattern is part of the template of a PULL, ARG or PARSE instruction
and is recognized if it is:

• In quotation marks, like '(' and ')' in the MYPROG2 EXEC Figure 60 on page 94.
• In parentheses (meaning that it is the name of a variable)
• An unsigned number (meaning that parsing is to continue at the specified character position)
• A signed number (meaning that parsing is to continue at the specified character position, relative to the
first character of the last match).

Here is a useful function, in which the second PARSE instruction uses a variable as a pattern.

/* CHANGE EXEC */
/* Function: CHANGE(string,old,new) */
/* */
/* Like XEDIT's “C/old/new/1 *” */
/* */
/* Changes all occurrences of “old” in “string” */
/* to "new". If “old” == “”, then “new” is attached */
/* to the beginning of “string”. */
parse arg string, old, new
if old==“” then return new||string
out=“”
do while pos(old,string)¬=0
 parse var string prepart (old) string
 out=out||prepart||new
end
return out||string

Figure 61: CHANGE EXEC

Reading 3 continues in Chapter 6, “Commands,” on page 97.

Reading 3

Conversations 95

Reading 3

96 z/VM: REXX/VM User's Guide

Chapter 6. Commands

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

• How to issue commands to CMS and CP from within your exec
• What are return codes from commands
• The REXX special variable, RC.

Reading 2 “Debugging Individual Commands” on page 102, describes:

• How to debug commands
• How to write a common routine to handle nonzero return codes
• How to access messages from a repository file
• How to suppress messages issued by CMS commands.

Reading 3 “CP Commands” on page 112, describes:

• How to suppress messages issued by CP commands
• How to obtain a reply from a CP command
• Using the COMMAND environment as an alternative environment for

issuing CMS and CP commands.

Issuing Commands to CMS and CP
 Reading 1

The language processor can operate in a number of environments (for example, CMS or XEDIT). The way
the language processor handles commands depends on the environment it is operating in. For the
moment, to keep things simple, let us assume that your program was started by typing its name on the
CMS command line. In this case, your program is in the CMS environment.

Clauses That Become Commands
Any clause in your program that the language processor does not recognize as an instruction, an
assignment, a label, or a null clause will be evaluated and passed to the appropriate environment for
execution. For example, if the environment is CMS, CMS and CP commands will be handled in the same
way as if they had been entered on the CMS command line.

/* Example: a CMS command in a REXX program */
"ERASE OLDSTUFF SCRIPT A"

The clause that has been recognized as a command is treated as an expression. The language processor
will compute the value of the expression in the usual way, and will pass the result to the environment. The
expression is always evaluated first.

This rule is extremely useful, but you must be careful how you use REXX operators and special characters.
Also, look out for use of duplicate names.

© Copyright IBM Corp. 1991, 2018 97

• In this example, the value of a variable is substituted in an expression, before the expression is passed
to CMS.

/* ERASER EXEC */
/* Example: to erase a number of SCRIPT files. */
do until fn = "
 say "Enter file name of file to be erased"
 say " (To return to CMS, enter a null line)"
 pull fn
 /* The user replies "myfile", */
 /* FN = MYFILE */
 if fn ¬= " then
 "ERASE" FN "SCRIPT" /* This clause is treated as */
 /* an expression. The result,*/
 /* which (in this example) is */
 /* ERASE MYFILE SCRIPT */
 /* is passed to CMS */
end

Figure 62: ERASER EXEC

• If you want to use a REXX operator or special character as an ordinary character, then you must put it in
quotation marks. This is because expressions are evaluated before they are passed to an environment.
Therefore, any part of the expression that is not to be evaluated should be written in quotation marks.

For example:

/* ELIST EXEC */
/* Example: to erase all the files on file mode A */
/* that have a file type of LIST */
"ERASE * LIST" /* This clause is treated as */
 /* an expression. The result */
 /* ERASE * LIST */
 /* is passed to CMS */

Figure 63: ELIST EXEC

In Figure 63 on page 98, if the asterisk was not in quotation marks, the language processor would
attempt to multiply ERASE by LIST!

Note: Remember to put quotation marks around all operators and parentheses unless already enclosed
in quotation marks. Either of the following examples is correct. The last example is better, since nothing
has to be evaluated by REXX.

"COPYFILE" MYFILE SCRIPT A "=" BACKUP A "(REPLACE"

COPYFILE MYFILE SCRIPT A "=" BACKUP A "("REPLACE

"COPYFILE MYFILE SCRIPT A = BACKUP A (REPLACE"

Refer to “When to Use Quotation Marks” on page 99 for more information.

98 z/VM: REXX/VM User's Guide

• Another difficulty is the use of duplicate names. In Figure 64 on page 99, the programmer has
chosen A as the name of a variable. In the COPYFILE instruction, A is used as the file mode and must
be enclosed in quotation marks; otherwise, the current value of A would be substituted.

/* BACKUP EXEC */
/* Example: to save copies of a number of SCRIPT */
/* files. Each copy is given the same file name */
/* as the original, and a file type of BACKUP. */
do until a = "
 say "Enter file name of file to be backed up"
 say " (To return to CMS, enter a null line)"
 pull a
 /* The user replies "myfile", */
 /* A = MYFILE */
 if a ¬= " then
 "COPYFILE" a "SCRIPT A = BACKUP A (REP"
 /* This clause is treated as an */
 /* expression. The result, which in */
 /* this example is */
 /* COPYFILE MYFILE SCRIPT A = BACKUP A (REP */
 /* is passed to CMS */
end

Figure 64: BACKUP EXEC

This example leads on to a more general question.

When to Use Quotation Marks
The syntax for REXX expressions is very flexible. If a symbol, that is not the name of a variable, is written
without quotation marks, no error is signaled. The value used in the result is the symbol itself, translated
to uppercase. This makes it easier to write simple programs in REXX than in some other languages.
However, you must be careful never to use a symbol to stand for itself, when a variable of the same name
exists. (In Figure 64 on page 99, A is the name of a variable, so it must not be used as the literal name of a
file mode without putting quotation marks around it.)

In large programs, or programs that are intended to be very reliable, you can voluntarily adopt the rule
that every symbol that is not the name of a variable should be in quotation marks. In the example
BACKUP EXEC in Figure 64 on page 99, the COPYFILE command would be written:

"COPYFILE" a "SCRIPT A = BACKUP A (REP"
Here, everything is in quotation marks except the symbol "a",
which is the name of a variable.

CP Commands
You can write CP commands in a REXX program. Our example is a program that lets you use files that are
on another user's disk. The CP command LINK makes another user's disk available to you.

LINK

TO

userid hisdisk mydisk

mode password

where:
userid

is the user ID of the person the disk belongs to.
hisdisk

is the virtual address of his disk.
mydisk

is the virtual address that the disk will have on your system. Choose any number that you do not
already use.

mode, password
may be required in some installations but are not used in the example found in Figure 65 on page 100.

Commands 99

(For an introduction to this subject, see "LINK" in the z/VM: CMS User's Guide. For full details, see z/VM:
CP Commands and Utilities Reference.)

After LINKing to the other user's disk, you can use the CMS command ACCESS to make the files on his
disk accessible to you.

ACCESS mydisk filemode

For mydisk, use the same 3-digit number as you used in the link command. For filemode, choose any
letter that you do not already use.

Now for the example, suppose someone in your support organization has a number of useful programs
that you would like to use. You know that:

• His user ID is HELPDESK.
• The programs are on his disk 196.
• You will not need to use a disk password.

Here is a REXX program that you can use to make everything on his disk available to you.

/* LINKHELP EXEC */
/* For linking to Disk 196 belonging to HELPDESK */
"LINK HELPDESK 196 200" /* a CP command */
"ACCESS 200 B" /* a CMS command */

Figure 65: LINKHELP EXEC

To run the program, type in the command LINKHELP.

Summary
A clause that is an expression by itself will be evaluated, and the result will be passed to the specified
environment. By default the result will be passed to CMS; if the result is not known to CMS, it will be
passed to CP.

Return Codes
When you write a CMS or CP command in your exec, you should consider what would happen if the
command failed to process correctly. For example, a COPYFILE command might result with an error
because the user's disk was full. After such an error, you should at least EXIT from your program. You may
also want to issue a warning message to the user.

Here is how you discover such an error. When commands have finished executing, they always provide a
return code. A return code of zero nearly always means "all's well". Any other number usually means that
something is wrong. You can see these codes on your screen when you enter CMS commands from the
command line, as in these examples:

copyfile profile exec a profile backup a

 Ready;

link fred 591 591

 FRED not in CP directory
 Ready(00053);

access 591 b

 DMSACC113S B(591) not attached or invalid device address
 Ready(00100);

copyfile profile exec a = = b (for luck

 Invalid parameter LUCK in the option FOR field.
 Ready(00024);

100 z/VM: REXX/VM User's Guide

erase junk exec

 File JUNK EXEC A not found
 Ready(00028);

The first COPYFILE command worked correctly so the return code was zero and CMS displayed the
Ready; message on the screen. (When the return code is zero, CMS does not display the return code.) All
the other commands failed so CMS displayed their return codes as part of the Ready; message. For
instance, the return code from the LINK command was 53.

Now that you understand how CMS handles commands and return codes, let us see how the language
processor handles them.

Any command that would be valid on the CMS command line is valid as a clause in a REXX program. The
language processor treats the clause like any other expression, substituting the values of variables, and
so on. The language processor takes the result and passes it to CMS or CP. (The rules are the same as for
commands on the CMS command line; for details, see "The CMS Environment" in the z/VM: REXX/VM
Reference.)

When the language processor has issued a command and CMS or CP has finished executing it, the
language processor gets the return code and stores it in the REXX special variable RC. In your program,
you should test this variable to see what happened when the command was executed.

For example:

"COPYFILE PROFILE EXEC A PROFILE BACKUP A"
if rc ¬= 0
then do
 say "Unexpected return code" rc "from COPYFILE command"
 exit
end

The EXIT instruction causes your exec to finish. The language processor gives control back to CMS. This
will be explained later in “The EXIT Instruction” on page 145.

To find out what return codes can be expected from a CMS command, look up the command in the z/VM:
CMS Commands and Utilities Reference. Return codes are listed in the last paragraph of the description of
each command.

The return codes associated with CP commands directly correspond to the message numbers. For
example, if you received a return code of 22 when executing the LINK command, you could look at the
description for message number 022:

HCPLNM022E Virtual device number was not supplied or it was invalid

The CP commands are described in the z/VM: CP Commands and Utilities Reference.

Special Variables
RC is one of the REXX special variables. The other special variables are RESULT and SIGL. You may use
RC, RESULT, and SIGL as the names of your own variables, but you should always remember that any of
them may be assigned new values by the language processor. For example, the special variable RC is
assigned a new value when a command has been executed. (For full details, see z/VM: REXX/VM
Reference.)

Test Yourself…
A program is required that will create a file called PR ALL. In this file there is to be a list of all the files on
file mode A (a directory in your file space or a R/W minidisk) whose names begin with "PR".

• Study the CMS command LISTFILE. You will find it in the z/VM: CMS Commands and Utilities Reference,
or you can get a short description displayed on your screen by entering HELP LISTFILE. Use the
LISTFILE command to display the required list of files on your screen.

• Study the EXEC option of the LISTFILE command. Write a REXX program that issues a command to
generate the required file.

Commands 101

• At the end of the description of LISTFILE in the z/VM: CMS Commands and Utilities Reference, you will
find a list of possible return codes. Modify your program to handle all possible errors.

• Add to your program a command that RENAMEs the file that has been created as PR ALL A.
• Test your program by running it twice.

Answer:

/* LISTPR EXEC */
/* Lists all the files on file mode A whose file names */
/* begin with "PR". The result is written into the */
/* file PR ALL A. Any previous version of that file */
/* is overwritten. */
/* */
/* CMS EXEC A is used as a work file, then destroyed. */
"LISTFILE PR* * A (EXEC"
if rc ¬= 0
 then do
 say "Unexpected return code" rc "from LISTFILE command"
 exit
end
"ERASE PR ALL A"
"RENAME CMS EXEC A PR ALL A"
if rc ¬= 0
then
 say "Unexpected return code" rc "from RENAME command"

Reading 1 continues in Chapter 7, “XEDIT,” on page 119.

Debugging Individual Commands
 Reading 2

If you cannot understand what is happening when you enter a command, it is possible that your program
did not issue the command correctly. To be sure about this, trace the command that is behaving
mysteriously.

mad = "Delirious"
...
trace r
"SCRIPT MAD"
trace n

Debugging Execs That Contain Commands
As you know, a program that issues a command should always test the return code immediately afterward
to see if all is well. One way of doing this is to write:

if rc ¬= 0 then

Also, for programs that are still being tested (or redesigned, or debugged), use the TRACE Errors
instruction

TRACE E

at the beginning of your exec. A nonzero return code will cause the language processor to display the line
number of the command in your program, the command, and the return code.

Making a Common Routine for Handling Return Codes
The third way, suitable for programs that can be used by other people, is to use the SIGNAL ON ERROR
instruction. This instruction switches on a detector in the language processor that tests the return code

Reading 2

102 z/VM: REXX/VM User's Guide

from every command. If a nonzero return code is detected, the usual sequence of clauses is abandoned.
Instead, the language processor searches through your program for the label

ERROR:

Processing continues from there. (This label must be the symbol ERROR followed by a colon.) The line
number of the command is stored in the REXX special variable SIGL. For more information, see “The CALL
ON Condition” on page 155 and “The SIGNAL ON Condition” on page 155.

You can use SIGL to tell the user which command caused typical processing to be interrupted:

...
signal on error
COPYFILE
"RENAME"
exit /* End of main program */
/*--*/
/* Error handler: common exit for nonzero return codes */
/*--*/
ERROR:
say "Unexpected Return Code" rc "from command:"
say " " sourceline(sigl)
say "at line" sigl"."

The EXIT instruction is put there to stop the main program from running on into the error handling routine.

To switch off the detector, use the instruction:

SIGNAL OFF ERROR

If you know that one of your commands can give a nonzero return code, you must switch off for that one
command. For example, if you do not know whether OLD LISTING exists, but need to erase it if it does,
this series of instructions will do.

signal off error
"ERASE" old listing a
signal on error

Getting Messages from a Repository File
You can store message texts in a single file that is separate from your program. The CMS XMITMSG
command lets you then access and display these messages from a REXX EXEC. See z/VM: CMS
Commands and Utilities Reference for a complete description of XMITMSG.

Reading 2

Commands 103

When using XMITMSG in a REXX EXEC, variables are enclosed in quotation marks. For example:

/* In these examples we use message number 3, */
/* which has one substitution. */

buffer = 'bufferit' /* Variable with the name of buffer. */

XMITMSG 003 BUFFER /* This will not work because the */
 /* variable buffer resolves to */
 /* bufferit, which is itself not a */
 /* variable, so no substitution */
 /* takes place. */

'XMITMSG 003 BUFFER' /* This example will work because */
 /* the variable buffer is in */
 /* quotation marks and gets passed */
 /* to XMITMSG. */
 /* bufferit is substituted. */
 /* continued ... */
'XMITMSG 003 "BUFFER"' /* Here we substitute the literal */
 /* string BUFFER, which will be */
 /* taken as the substitution. */

'XMITMSG 003 8002' /* This example shows the use of a */
 /* dictionary item, (8002). */
 /* The value of 8002 as a dictionary */
 /* item is the literal string BUFFER.*/

'XMITMSG 003 "8002"' /* This example is another example */
 /* of passing literal strings. */
 /* In this case, the number 8002 */
 /* gets passed as a substitution */
 /* instead of resolving to BUFFER */
 /* because 8002 is in quotation */
 /* marks.

Note: This is not a complete program and cannot be executed by itself.

How to Suppress Messages Issued by CMS Commands
To suppress all output (except Severe and Terminating messages from CMS commands), use the Halt
Typing command.

SET CMSTYPE HT

To resume typical output, use the Resume Typing command.

SET CMSTYPE RT

Be sure that your program processes SET CMSTYPE RT before you need to process a SAY instruction.
Also, remember that SET CMSTYPE RT will change the special variable RC. If the old value will be needed,
it must be saved. In this example, the return code we are interested in is saved in RCSAVE (RC is
overlayed by the second SET command).

oldtype = CMSFLAG("CMSTYPE")

if oldtype=1
then oldtype=RT
else oldtype=HT

"SET CMSTYPE HT"
"STATE" fn ft fm /* Does the file exist? */
rcsave = rc
"SET CMSTYPE" oldtype /* Assigns another value to RC */
if rcsave = 28 /* Is the return code from the */
then ... /* STATE command 28 (not found)? */

Reading 2

104 z/VM: REXX/VM User's Guide

A Useful Subroutine
All of the preceding code makes your program rather difficult to read. So it would be better to use a
subroutine, like this:

...
signal on error
...
call quiet "STATE" fn ft fm /* Does the file exist? */
if RESULT = 28 then ... /* Set by subroutine's */
 /* RETURN instruction */
...
exit /* End of main program */
/*--*/
/* QUIET */
/* ===== */
/* Subroutine to issue a CMS command without displaying */
/* a message on the screen and without jumping to ERROR */
/* if the return code is nonzero. */
/* */
/* The first argument is the command to be executed. */
/* On returning to the caller, the REXX special */
/* variable RESULT contains the return code from */
/* this command. */
/*--*/
QUIET:
signal off error /* Coding note: the null string */
"SET CMSTYPE HT" /* prevents ARG from being */
""arg(1) /* treated as an instruction. */
rcsave = rc
"SET CMSTYPE RT"
return rcsave
/*--*/
/* Error handler: common exit for nonzero return codes */
/*--*/
ERROR:
say "Unexpected Return Code" rc "from command:"
say " " sourceline(sigl)
say át line" sigl…"

Figure 66: Example Subroutine

Note: This is not a complete program and cannot be executed by itself.

Test Yourself…
Review the following program. Make sure that you understand what it is supposed to do. Will it always
work correctly?

Reading 2

Commands 105

/* PAIRS EXEC */
/* This program requests the user to supply a list of */
/* files (file name file type only) and replies, for */
/* each file: */
/* */
/* * whether it is on the user's directory or minidisk */
/* accessed as file mode A. */
/* */
/* * whether it is on the directory or minidisk */
/* accessed as file mode L. */
/* */
/* * if there is a copy on each file mode, whether */
/* these copies are the same. */
/* */
/* To end the list, the user returns a null line. */
/* */
/* Command format: PAIRS */
if arg() ¬= 0 /* help needed */
then do n = 1 until LEFT(line,2) ¬= "/*"
 line = sourceline(n)
 say line
 end
 else do forever
 .
 .
 .
 do until ft ¬= " & rest = "" /* Get fn ft */
 say "Enter file name and file type",
 "(or null line to exit)"
 pull fn ft rest
 if fn = "" then exit
 end
 home = ""
 call quiet "STATE" fn ft "A" /* Compute Home, a */

 if result = 0 then home = "A" /* list of file modes */
 call quiet "STATE" fn ft "L" /* where the file */
 if result=0 then home = home "L" /* can be found */
 select
 when words(home) = 0
 then say "No files found"
 when words(home) = 1
 then say "Only one file found (on file mode "home")"
 otherwise
 call quiet "COMPARE" fn ft "A" fn ft "L"
 /* continued ... */

Figure 67: PAIRS EXEC (Part 1 of 2)

Reading 2

106 z/VM: REXX/VM User's Guide

 select
 when result = 0
 then say "Same file found on both file modes",
 "(A and L)"
 when result = 4, /* files do not match */
 | result = 32, /* files have different */
 , /* formats or LRECLs */
 | result = 40 /* files not the same length */
 then say "Files on file modes A and L",
 "are not the same"
 otherwise say "Unexpected return code" result,
 "from COMPARE command"
 end /* select result */
 end /* select words() */
end /* end do foreever */
exit /* end of main program */
/*--*/
/* Subroutine to issue a CMS command WITHOUT displaying */
/* a message on the screen and WITHOUT jumping to ERROR */
/* if the return code is nonzero. */
/* */
/* The first argument is the command to be executed. */
/* On returning to the caller, RESULT contains the */
/* return code from this command. */
/*--*/
QUIET:
signal off error
"SET CMSTYPE HT"
""arg(1)
rcsave = rc
"SET CMSTYPE RT"
return rcsave

Figure 68: PAIRS EXEC (Part 2 of 2)

Answer:

The program will run correctly.

Using the Program Stack
The program stack passes data to certain CMS commands, or to obtain data from them.

• We begin with a careful description of the program stack; this will make it easier for you to use later.
• This is followed by a cookbook list of things to do when using the program stack in a REXX program.
• Next comes an example of a command putting data into the program stack. Some commands that can

do this are:
LINEIN/CHARIN

to read lines or characters from a directory or minidisk
IDENTIFY

to obtain the node ID, rscs ID, and so on
LISTDIR

to find out about directories
LISTFILE

to find out about files
NAMEFIND

to obtain information from a NAMES file
QUERY

to find out about your CMS virtual machine

Reading 2

Commands 107

RECEIVE
to read in files and notes

RDR
to find out what files are in your reader.

• And finally, an example of a command that takes data from the program stack. Some commands that
can do this are:
LINEOUT/CHAROUT

to write lines or characters to a directory or minidisk
COPYFILE

to copy files (using the SPECS option)
FORMAT

to format a minidisk
SORT

to sort a file.

Definitions
In computer science, a stack is a list of items that you can work with from only one end, the top. You can
PUSH an item onto the stack or PULL an item off from it. The item you PULL off will always be the last item
you (or somebody else) PUSHed on. This method is called LIFO—last in, first out.

Figure 69: A Stack Using Push and Pull

A queue, on the other hand, is a list of items which you can work with from both ends. You can QUEUE (or
add) items only at the back and you can PULL items only off at the front. This method is called FIFO—first
in, first out.

Figure 70: A Stack Using Queue and Pull

Reading 2

108 z/VM: REXX/VM User's Guide

The CMS program stack can be used both as a stack and as a queue.

Figure 71: A Stack Using Queue, Push, and Pull

You can use the program stack as a kind of mailbox. CMS commands, for example, can put data in and a
REXX instruction can retrieve it for you. Or, a REXX instruction can put data in and a CMS command can
retrieve it.

In fact, the program stack can be accessed using REXX instructions, CMS commands, CMS EXEC control
words, Callable Services Library routines, and Assembler language macros. But we shall only discuss the
first two of these. The table gives you the keywords used in the different languages.

Table 4: Keywords Used in Programming Languages

REXX Instruction QUEUE PUSH PULL

CMS command option (STACK FIFO (FIFO (STACK LIFO (LIFO Depends on command

CMS EXEC or EXEC 2 control
word

&STACK FIFO &STACK LIFO &READ

Assembler macro CMSSTACK FIFO CMSSTACK LIFO LINERD

Callable Services Library
routines

StackWrite StackWrite StackRead

where:
FIFO

means First In, First Out (as in a queue).
LIFO

means Last In, First Out (as in a stack).

Buffers
A buffer is a general term for a part of the computer's storage that is used for input or output.

You can build extensions to the program stack, which are called buffers. Usually there is only one buffer in
the program stack.

• You can create new buffers using the MAKEBUF command.
• QUEUE, PUSH and their equivalents put data into the last buffer created.
• PULL and its equivalents remove data from the last buffer created until it is empty, then from the

previous buffer until it is empty, and so on.
• When the program stack is completely empty, data is taken from the terminal input buffer.

This is what you might call a stack of buffers. The entire stack is called the console stack.

Reading 2

Commands 109

You may have noticed the terminal input buffer already. The buffer stores data from the CMS command
line when you type ahead and press enter while a previous command is still executing.

• If there is nothing in the program stack or the terminal input buffer when a PULL or its equivalent is
executed, the program stops, the words VM READ appear in the bottom right-hand corner of your
screen, and nothing happens until you press Enter, a Program Function key, or certain other keys,
depending on the type of terminal you are using.

How to Use the Program Stack
Using the program stack is not quite as complicated as it looks, (as you will see when you read the
examples which follow.) The safest way to use the program stack is this:

1. Begin the stack-processing portion of your program with the CMS command MAKEBUF. This will set up
your own buffer in the program stack.

2. Find out how many entries are already on the stack using the QUEUED() function. For example:

theirs = queued()

3. Use the QUEUE instruction or an equivalent CMS command to put data onto the program stack.

Reading 2

110 z/VM: REXX/VM User's Guide

4. Use the PULL instruction or an equivalent CMS command to take data off the stack. If you issue too
many PULL instructions the user might see, on the bottom right of the screen:

 VM READ

To continue, you must press Enter.
5. It is important to avoid removing items that your program did not place on the program stack. Remove

the items one at a time, first checking that what you are about to remove is yours. For example:

do while queued() > theirs /* THEIRS are not ours */
 pull ... /* (see the preceding
 information) */
 ...
end

6. Be sure that you have removed all your data from the program stack before you return to CMS. You can
use the CMS command DROPBUF to do this.

Each line left in the program stack, when your REXX program has finished and CMS gets control, will be
treated by CMS as a command. Perhaps the user will see the message:

Unknown CP/CMS command

Or, perhaps something quite unexpected will happen!

This can be simplified slightly. If you are sure that your program will never try to remove items belonging
to other programs from the program stack, you can omit Steps 2 and 5.

You might also leave out the commands MAKEBUF and DROPBUF, and nothing would appear to go wrong.
But you could have trouble one day, if your exec is called by a program that also uses the program stack.
So it is best to use MAKEBUF and DROPBUF in all programs that use the program stack.

Example: A CMS Command That Puts Data onto the Program Stack
This simple program issues a warning message when your primary minidisk, file mode A, is more than 80
percent full. This means that it is time to get a bigger minidisk, or else erase some files you will never
need again! You could call this program from your PROFILE EXEC.

Note: This program does not work for a directory. Although the QUERY DISK command provides
information about accessed minidisks and accessed directories, the line that describes a directory is
different from the line that describes a minidisk.

Before reading this example, try out the CMS command

QUERY DISK A

Notice that two lines appear on the screen. In a REXX program, to make QUERY put these two lines into
the program stack, use the STACK option of the QUERY command.

/* NEARFULL EXEC */
/* Gives a warning when the user's primary minidisk */
/* (file mode A) is more than eighty percent full */
"MAKEBUF"
"QUERY DISK A (STACK"
if rc = 0 then do
 pull /* Discard header */
 parse pull "-" percentage .
 if percentage > 80
 then say "Warning: Your disk",
 "is" percentage"% full"
end
else say "NEARFULL EXEC: unexpected return code" rc
"DROPBUF"

Figure 72: NEARFULL EXEC

Reading 2

Commands 111

Example: A CMS Command That Requires Data from the Program Stack
There are several CMS commands that ask questions and require answers from the user. To provide these
answers from your program, use the program stack.

Here is an example. The file PR ALL A is to be copied into a new file, PR EVERYONE A, moving all the data
seven positions to the left.

The COPYFILE command with the SPECS option asks the user to specify the fields in each line of the input
file that are to appear in each line of the output file, and where in that line they are to appear. For details,
see "COPYFILE" in the z/VM: CMS Commands and Utilities Reference.

In this program, the answer is provided by the language processor; it is QUEUEd onto the program stack
before the COPYFILE command is issued.

/* LEFT7 EXEC */
/* This program will copy the file PR ALL A into a */
/* new file PR EVERYONE A, shifting the data in */
/* columns 8 through 80 into column 1, discarding */
/* columns 1 through 7 and making columns 74 through */
/* 80 blank. If the file PR EVERYONE A already */
/* exists it will be overwritten. */
"MAKEBUF"
queue "8-80 1"
"COPYFILE PR ALL A PR EVERYONE A (SPECS NOPROMPT REPLACE"
if rc ¬= 0 then say "Unexpected return code",
 rc "from COPYFILE command."
"DROPBUF"

Figure 73: LEFT7 EXEC

Reading 2 continues in Chapter 7, “XEDIT,” on page 119.

CP Commands
 Reading 3

You will sometimes need to use CP commands in your programs. The following explains how to suppress
messages and obtain replies from CP commands.

How to Suppress Messages Issued by CP Commands
To issue a command to CP, suppressing messages and obtaining only the return code, use either the CMS
command EXECIO (see z/VM: CMS Commands and Utilities Reference) or the CMS command PIPE:

"PIPE CP" cp_command

Reading 3

112 z/VM: REXX/VM User's Guide

where:
PIPE

is a CMS command.
CP

is a CMS Pipelines stage command specifying that the remainder of the command text is the CP
command to be issued. When used in a REXX program, this can be followed by an expression.

Our example is about a temporary minidisk. If you need to compile something and there is not enough
room for the output files in your file space or on your primary minidisk (file mode A), you can obtain a
temporary minidisk from CP and put the output files on that minidisk. (Do not put files containing original
information on temporary minidisks; if VM has an error, your files could be lost forever.) To obtain a
temporary minidisk, with the physical characteristics of an IBM* 3380, a virtual address (vdev) of 192 and
an extent of five cylinders, you could type on the CMS command line:

define t3380 as 192 cyl 5

CP would reply:

DASD 192 DEFINED 0005 CYL

DASD means Direct Access Storage Device; in this case, the reply refers to a virtual DASD (a minidisk).

To issue the same command from a REXX program suppressing the reply, use:

"PIPE CP DEFINE t3380 as 192 cyl 5"
if rc ¬= 0 then ...

How to Obtain the Response from a CP Command
To obtain the response from a CP command in a REXX program, use:

"PIPE CP" cp_command "| STEM RESPONSE."

where:
|

the CMS Pipelines stage separator that indicates that the output from the first stage (the reply from
the CP command) will be the input to the next stage (the stem).

STEM
a CMS Pipelines stage command that places the input to the stage into a named stem variable (in this
case, RESPONSE.). STEM.0 will contain the number of lines put in the stem, starting with STEM.1.

In our example, RESPONSE.0 will be the number of lines that would usually be displayed on your
terminal. RESPONSE.1 will be the first line, RESPONSE.2 will be the second line, and so on. You can also
use more advanced features of CMS Pipelines to process the CP output data before building the stem
variable.

Note: The null lines in the response are suppressed by CMS Pipelines. Where there is nothing but a null
line, there will be no output and the number of lines will be 0. When using a VAR stage, the variable would
be dropped.

Another method of obtaining a reply from a CP command is to use the EXECIO CMS command (see z/VM:
CMS Commands and Utilities Reference for more information).

Before reading this next example, try out the command:

Q DASD

CP replies with a list of the minidisks defined for your virtual machine. The TDISK program in the next
example reads this list. It then looks through the list for a vaddr (virtual address) and a file mode that are
not on the list, and which can, therefore, be used as the vaddr and file mode of a temporary minidisk.

Reading 3

Commands 113

/* TDISK EXEC */
/* This program obtains a temporary minidisk, using */
/* a virtual address (vaddr) and a file mode that are */
/* not already in use. The number of cylinders may */
/* be specified as the first and only argument. The */
/* default is 5. */
/* */
/* If the program was called from the command line and */
/* is successful, the virtual address and file mode are */
/* displayed. Otherwise an error message is displayed. */
/* */
/* If the program was called as a SUBROUTINE (that is, */
/* by a CALL instruction in a REXX program) or as a */
/* REXX function, no messages are displayed. */
/* */
/* If the program is successful, the return code is */
/* zero. If the argument is present and not numeric, */
/* the return code is 16. If all 26 file modes are in */
/* use, the return code is 27. Otherwise, the return */
/* code is that of the CMS or CP command that prevented */
/* success. */

Figure 74: TDISK EXEC (Part 1 of 3)

Reading 3

114 z/VM: REXX/VM User's Guide

/*--*/
/* Check argument */
/*--*/
if arg() = 0 /* argument supplied? */
then cylinders = 5
else do
 arg cylinders .
 if ¬ datatype(cylinders,whole)
 then do /* help needed */
 do n = 1 while LEFT(line,2) = "/*"
 line = sourceline(n)
 say line
 end
 return 16
 end
end
/*--*/
/* How was this program called */
/*--*/
parse source . howcalled . /* See the REXX/VM */
 /* Reference */
/*--*/
/* Find unused virtual address */
/*--*/

 /* continued ... */
"MAKEBUF"
signal on error
"PIPE CP QUERY VIRTUAL DASD", /* Query attached dasd. */
 "| SPECS WORD 2 1", /* Keep only the virtual addresses.*/
 "| JOIN * / /", /* Join them all into one line. */
 "| VAR USED" /* Load them into variable USED. */
do newcuu = 200 while pos(newcuu,used) ¬= 0 end
/*--*/
/* Find unused file mode */
/*--*/
alphabet = "ABCDEFGHIJKLMNOPQRTUVWXYZ"
do letter = 1 to 25 until response = "NOT ACCESSED"
 "QUERY DISK" substr(alphabet,letter,1) "(LIFO" /* PUSH
*/
 pull . . response /* get last line of last reply */
 /* pull instruction puts "not */
 /* accessed" in uppercase */
end
signal off error; "DROPBUF" /* clear our buffer */

Figure 75: TDISK EXEC (Part 2 of 3)

Reading 3

Commands 115

"MAKEBUF"; signal on error
if letter = 27 then do
 if howcalled = "COMMAND"
 then say "All file modes in use"
 return 27
end
newfm = substr(alphabet,letter,1)
/*--*/
/* Obtain and format minidisk */
/*--*/
"PIPE CP DEFINE T3380 AS" newcuu "CYL" cylinders
push "TEMP"
push "YES"
"SET CMSTYPE HT"
"FORMAT" newcuu newfm
"SET CMSTYPE RT"
signal off error
"DROPBUF"
exit

 /* continued ... */
/*--*/
/* Non-zero return codes */
/*--*/
ERROR:
rcsave = rc
"SET CMSTYPE RT"
"DROPBUF"
if howcalled = "COMMAND"
then do
 say "Unexpected return code" rcsave
 say "from command" sourceline(sigl)
 say "at line" sigl
end
exit rcsave

Figure 76: TDISK EXEC (Part 3 of 3)

The COMMAND Environment
So far, we have said that the language processor handles CMS and CP commands in exactly the same way
as if they had been entered from the CMS command line. This is called the CMS environment; it was
chosen as the default because it is the one that most programmers will want to use, most of the time. But
there is an alternative environment, the COMMAND environment, which has some advantages.

You should use the COMMAND environment:

1. To avoid calling a user's exec, which happens to have the same name as a CMS command. For
example, suppose you send a copy of your program to another user, or put your program in a directory
or on a minidisk that other users can access. Your program contains the clause "sort ... "; you are
telling the language processor to process the CMS command SORT.

When this command is executed from your program using the usual CMS search order, there might be
a file called SORT EXEC in the directory or minidisk that the user has accessed as A. If so, CMS will call
the user's exec instead of the command! As far as you are concerned, the result is unpredictable. But
to have CMS search for a SORT MODULE—CMS commands are stored in files with a file type of MODULE
—write:

ADDRESS COMMAND SORT ...

And, so long as the SORT MODULE is not on the user's disks, your program will run as you expect.
2. To suppress messages from certain commands. For example, the commands ERASE, LISTFILE,

RENAME and STATE issue the message FILE NOT FOUND when the specified file is not found and the

Reading 3

116 z/VM: REXX/VM User's Guide

command was entered from the command line or from a REXX program. If you think a person using
your program would find this message confusing, write

ADDRESS COMMAND "STATE" fn ft

(for example) and the message will be suppressed.

To suppress nearly all messages, use SET CMSTYPE HT. (See “How to Suppress Messages Issued by
CMS Commands” on page 104 for details.)

3. To reduce system overhead. This can be important if the user has a large number of directories or
minidisks accessed. Each time your program issues a command, CMS searches these directories and
minidisks for an exec file of that name before it searches for a MODULE file. (CMS commands are
stored in files with a file type of MODULE.)

Instead of writing ADDRESS COMMAND in front of each clause, you can write

ADDRESS COMMAND

at the beginning of your program. This has the same effect as if all commands have a prefix of ADDRESS
COMMAND. If you have done this, and you want to switch back to the CMS environment, use:

ADDRESS CMS

For more information, see the ADDRESS command in the z/VM: REXX/VM Reference.

Reading 3 continues in Chapter 7, “XEDIT,” on page 119.

Reading 3

Commands 117

Reading 3

118 z/VM: REXX/VM User's Guide

Chapter 7. XEDIT

XEDIT is the editor supplied with z/VM. You can customize XEDIT for your own purposes by writing special
REXX programs called macros. This chapter introduces some important ideas about these programs.

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

• How your program can be called from the XEDIT command line
• How to enter subcommands to XEDIT from your REXX program
• Names for XEDIT macros
• Return codes from XEDIT subcommands
• How to display messages in the XEDIT message area.

Reading 2 “The EXTRACT Subcommand” on page 121, describes:

• Note: You should not attempt this reading until you have a working
knowledge of XEDIT.

• How the private variables of XEDIT can be made available to your REXX
program, using the EXTRACT command

• The current line of a file
• An example XEDIT profile.

Reading 3 “Menus Using XEDIT” on page 124, describes:

• How to construct a menu.

XEDIT Subcommands and Macros
 Reading 1

Commands to XEDIT are usually called subcommands to avoid any possible confusion with commands to
CMS.

When you are using XEDIT and you type a word on the XEDIT command line and press Enter, XEDIT will
treat this as a:
Subcommand

If the first word on the command line is one of the XEDIT subcommands (defined in the z/VM: XEDIT
Commands and Macros Reference), XEDIT will obey it.

Macro
If the word is not a subcommand, XEDIT will look for a file of the same name with a file type of XEDIT
and execute that. This type of file is called a macro.

For example, if the file TEN XEDIT, shown in Figure 77 on page 120, exists in a directory or on a
minidisk that you have accessed, and you type the word

ten

on the XEDIT command line, XEDIT will try to execute TEN XEDIT.

Note: To find a file in a directory, read authority is required on both the file and the directory. If the file
is locked, the execution will result in an error and give you an error message.

Reading 1

© Copyright IBM Corp. 1991, 2018 119

CMS or CP command
If a macro does not exist, XEDIT will try to execute what is typed in as a CMS or CP command.

XEDIT Macros
A REXX program that issues subcommands to XEDIT is called a macro. It must have a file type of XEDIT.
To indicate that your program is written in the REXX language, it must begin with a REXX comment, as
usual.

Because the file type of your program is XEDIT, the language processor will assume that the environment
is XEDIT. And, therefore, any clause in the program that the language processor does not recognize as an
instruction, an assignment, a label, or a null clause will be evaluated in the usual way and the result will
be passed to XEDIT for execution.

Naming of XEDIT Macros
XEDIT macros, like other CMS files, can have file names from one-to-eight characters long. The file names
of XEDIT macros should not contain numeric digits. (This is because XEDIT treats the number as an
argument. For example, MYMAC5 is the same as MYMAC 5.)

Example: Changing the Settings of the Scroll Keys
When you are looking through a file, you will usually want to move forward or backward a page at a time.
Sometimes you may prefer to move forward or backward half a page at a time. For example, you can use
this when checking a program. This forward and backward movement through your file is called scrolling.

Use XEDIT to create the following file called TEN XEDIT.

/* TEN XEDIT */
/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backward or forward 10 lines */
/* at a time. */
"SET PF7 UP 10"
"SET PF8 NEXT 10"

Figure 77: TEN XEDIT

Now use XEDIT to display any large file. Type TEN on the XEDIT command line, and press Enter. Press PF8
to scroll down the file. Each time you press PF8 you will advance 10 lines down the file. Similarly, each
time you press PF7 you will move 10 lines nearer the top of the file.

To restore the setting that XEDIT usually provides, you could use this program.

/* PAGE XEDIT */
/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backward or forward one page */
/* at a time. */
"SET PF7 BACKWARD"
"SET PF8 FORWARD"

Figure 78: PAGE XEDIT

Return Codes
Your REXX program should be able to handle nonzero return codes from XEDIT subcommands.

To find out what return codes can be expected from an XEDIT subcommand, look up the subcommand in
the z/VM: XEDIT Commands and Macros Reference. Return codes are listed in the last paragraph of the
description of each command. For example, the XEDIT subcommand

NEXT

Reading 1

120 z/VM: REXX/VM User's Guide

will give a return code of 1 when end of file is reached.

When you are first learning to write XEDIT macros, you should put the instruction TRACE Errors at the top
of your program. This will cause a trace to be displayed if any XEDIT command gives a nonzero return
code. For example:

/* DENTAL XEDIT */
/* Example: tracing a syntax error */
trace errors
"EXTRACT" tooth /* EXTRACT is a valid command, but */
 /* "tooth" is not a valid operand */

Figure 79: DENTAL XEDIT

Executing the command DENTAL from the XEDIT command line would cause the following to be
displayed:

3 *-* "EXTRACT" tooth /* EXTRACT is a valid command, but */
 +++ RC(5) ++++

Messages
To display messages in the XEDIT message area, use the XEDIT MSG subcommand:

MSG text of message

For example:

"NEXT"
if rc = 1 then "MSG" "End of file reached"

Reading 1 continues in Chapter 8, “Control,” on page 127.

The EXTRACT Subcommand
 Reading 2

To obtain almost any variable known to XEDIT, use the EXTRACT subcommand.

For example, the physical size of your screen might be 24 lines or 32 lines; and you could find out the size
of your screen by entering QUERY SCREEN on the XEDIT command line.

To obtain the same information for use in your REXX program, enter:

EXTRACT /SCREEN/

The EXTRACT subcommand requires a delimiter to separate the operands. In this book, we shall use / as
the delimiter. Notice how / is used in the preceding EXTRACT command. For this example, it would also be
correct to enter:

EXTRACT /SCREEN

The EXTRACT /SCREEN subcommand assigns values to an array of REXX variables:
SCREEN.0

The number of other variables in the array. (That is, 1 in this case.)
SCREEN.1

Two words, namely the word SIZE followed by the number of lines on the screen.

Reading 2

XEDIT 121

We could use this subcommand to extend the program TEN XEDIT, described above, to handle any size
screen:

/* HALF XEDIT */
/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backward or forward half a */
/* screen at a time. */
"EXTRACT /SCREEN"
amount = (substr(screen.1,6) - 4) % 2
"SET PF7 UP" amount
"SET PF8 NEXT" amount

Figure 80: HALF XEDIT

EXTRACT /SCREEN assigns SIZE 24 or SIZE 32 to SCREEN.1; the SUBSTR() function returns the number
from this; and the value that amount gets will be either 10 (for 24-line screens) or 14 (for 32-line
screens).

The Current Line
The current line of a file is used as the starting-point for many XEDIT subcommands. You can change its
physical position on the screen by using the SET CURLINE subcommand. The default position is the line
above the middle of the screen.

To obtain information about the current line, use the XEDIT subcommand:

EXTRACT /CURLINE

This command assigns values to an array of REXX variables:
CURLINE.0

The number of other variables in the array
CURLINE.1

The operand that positioned the current line on the screen (see z/VM: XEDIT Commands and Macros
Reference)

CURLINE.2
The line number of the current line on the screen

CURLINE.3
The contents of the current line

CURLINE.4
ON if the current line has been changed or inserted in this editing session; OFF otherwise.

Here, the most interesting variable is CURLINE.3 (the file data that is displayed on the current line). We
shall use it in the next example.

Reading 2

122 z/VM: REXX/VM User's Guide

An Example: Moving through a File a Paragraph at a Time
In some files (like the example programs in this book) the writer leaves a blank line between one
paragraph and the next. This next program lets you scroll through the file a paragraph at a time.

/* PARA XEDIT */
/* This program scrolls forward until the line above */
/* the current line is blank. If end of file is */
/* reached, or if there is an unexpected error, an */
/* audible warning is given. */
do until curline.3 = ""
 "EXTRACT /CURLINE"
 "NEXT"
 if rc ¬= 0 then do
 "SOS ALARM" /* an XEDIT subcommand: sound */
 /* audible alarm. (bleep) */
 exit
 end
end

Figure 81: PARA XEDIT

Reading 2

XEDIT 123

Your XEDIT Profile
The program PROFILE XEDIT is automatically executed every time you start to edit a new file. Following is
an example of a profile that you can use in XEDIT. For more information on creating XEDIT profiles, refer
to the z/VM: XEDIT User's Guide.

/* PROFILE XEDIT */
/* Profile XEDIT to customize XEDIT environment */
signal on error
/* */
/* set desired pf keys not defaulted */
/* */
"SET PF13 FILE"
"SET PF16 LEFT 20"; "SET PF17 RIGHT 20"
/* */
/* tailor XEDIT to my specifications */
/* */
"SET VERIFY 1 72"
"SET NULLS ON"
"SET FULLREAD ON"
"SET CASE MIXED IGNORE"
"SET WRAP ON"
"SET HEX ON"
"SET AUTOSAVE 10"
"SET MSGLINE ON 3 OVERLAY"
"SET SCALE ON 2"
"SET CURLINE ON 8"
"SET NUM ON"
"SET PREFIX NULL LEFT"
/* */
/* set color for 3279 terminal */
/* */
SC = "SET COLOR"
SC "ARROW PINK" ; SC "CMDLINE RED"
SC "CURLINE WHITE REV" ; SC "FILEAREA TURQ REV"
SC "IDLINE BLUE REV" ; SC "MSGLINE RED BLINK"
SC "PENDING WHITE REV" ; SC "PREFIX YELLOW"
SC "SCALE GREEN REV" ; SC "SHADOW YELLOW BLINK"
SC "STATAREA PINK REV" ; SC "TABLINE RED"
SC "TOFEOF RED REV"
/* */
/* set TRUNC and SERIAL for special files */
/* */
"EXTRACT /RECFM /FTYPE"
if (ftype.1='DIR-UPDT') | (ftype.1='DIRECT')
 then SET TRUNC 72
 "EXTRACT /TRUNC/"
if (recfm.1='F') & (trunc.1<=72) then SET SERIAL ALL
 return
ERROR:
 "SOS ALARM"
 "MSG" "Unexpected return code" rc "from line" sigl,
 "of XEDIT profile"
 return

Figure 82: PROFILE XEDIT

Reading 2 continues in Chapter 8, “Control,” on page 127.

Menus Using XEDIT
 Reading 3

XEDIT can be used with REXX to generate full-screen menus. A short example of a full-screen menu is
shown in Figure 84 on page 125. It shows the user the name of the last file edited, lets the user select this
file or another, and then calls XEDIT on the selected file. This example is presented here for the concept
only, and explanations of the technical details are not given. Please refer to the z/VM: XEDIT Commands
and Macros Reference for information on the XEDIT subcommands and macros.

Reading 3

124 z/VM: REXX/VM User's Guide

The TESTMENU program, following, calls XEDIT using SAMPMENU as a profile. To try this, create the
TESTMENU program and then enter testmenu on the CMS command line.

/* TESTMENU EXEC */
/* sample exec to show use of an XEDIT full screen menu */
"XEDIT" lastfile edited "(PROF" sampmenu

Figure 83: TESTMENU EXEC

/* SAMPMENU XEDIT */
/* Sample XEDIT full screen menu */
/* First set up control characters needed for the screen */
"COMMAND SET CTLCHAR % ESCAPE"
"COMMAND SET CTLCHAR @ PROTECT RED HIGH"
"COMMAND SET CTLCHAR ¢ PROTECT YELLOW NOHIGH"
"COMMAND SET CTLCHAR ! PROTECT BLUE NOHIGH"
"COMMAND SET CTLCHAR $ NOPROTECT TURQ HIGH"
"COMMAND SET CTLCHAR & PROTECT PINK REV NOHIGH"
/* Get old file ID and screen length */
':1'
"COMMAND EXTRACT /CURLINE/LSCREEN"
parse var curline.3 oldname oldtype oldmode .
"COMMAND SET MSGLINE ON" LSCREEN.1-2 "2 OVERLAY"
message = ""
/* Loop, reading the user response. If ENTER, leave the loop */
do forever
 call display_screen /* display the current screen */
 ADDRESS CMS 'MAKEBUF'
 "COMMAND READ NOCHANGE TAG" /* allow user input, read it */
 do queued() /* process stacked lines */
 pull key line column string
 select
 when key="RES" /* reserved line input? */
 then select /* yes, reset file ID items */
 when line = 8 then oldname = string
 when line = 10 then oldtype = string
 when line = 12 then oldmode = string
 end
 when key="CMD" then line column string /* commands go to host*/
 when key="ETK" then nop
 when key="PFK" /* PF key pressed? */
 then if line=3 | line=15 /* yes, 3 or 15? */
 then do /* yes, */
 ADDRESS CMS 'DROPBUF' /* clear stack */
 ADDRESS CMS 'MAKEBUF' /* and quit */
 exit
 end
 else message = "Unsupported PF key" /* wrong PF key used */
 otherwise message = "Unsupported function" /* unknown func. */
 end
 end
 if (message = "") & (words(oldname oldtype)=2) then leave
end

Figure 84: SAMPMENU XEDIT (Part 1 of 2)

Reading 3

XEDIT 125

 /* continued... */
/* replace the last file edited with the new file to be edited, */
/* stack the XEDIT command, and quit */
"REPLACE" oldname oldtype oldmode
push "XEDIT" oldname oldtype oldmode
"COMMAND FILE"
exit
/* routine to display the screen */
display_screen:
 "SET RESERVED 1 NOH"
 "SET RESERVED 2 NOH" '%@ ***%&',
 center('Sample XEDIT full screen menu',35),
 '%@*** '
 "SET RESERVED 3 NOH"
 "SET RESERVED 4 NOH"
 "SET RESERVED 5 NOH" '%¢ The following file was the last one',
 'edited. Press enter to'
 "SET RESERVED 6 NOH" '%¢ edit the same file, or key in a new file',
 'ID and press enter.'
 "SET RESERVED 7 NOH"
 "SET RESERVED 8 NOH" '%! File name: %$'left(oldname,8)'%¢ '
 "SET RESERVED 9 NOH"
 "SET RESERVED 10 NOH" '%! File type: %$'left(oldtype,8)'%¢ '
 "SET RESERVED 11 NOH"
 "SET RESERVED 12 NOH" '%! File mode: %$'left(oldmode,2)'%¢ '
 do i = 13 to lscreen.1-2
 "SET RESERVED" i "NOH" /* reserve the rest of the screen */
 end
 if message ¬= ""
 then do
 "EMSG" message
 message=''
 end
 "CURSOR SCREEN 8 23"
 return

Figure 85: SAMPMENU XEDIT (Part 2 of 2)

Reading 3 continues in Chapter 8, “Control,” on page 127.

Reading 3

126 z/VM: REXX/VM User's Guide

Chapter 8. Control

A program can be:

• A single list of instructions
• A number of short lists connected by instructions indicating which list is to be executed next.

In this chapter we discuss how you can steer a course from one short list of instructions to another.

The chapter is divided into five sections, one for each of the maneuvers that you might want to
accomplish. They are:
Selection

To tell the language processor to select for execution one of a number of lists of instructions, use the
IF instruction or the SELECT instruction.

Loops
To tell the language processor to repeat a list of instructions, either for a specified number of times or
so long as some condition is satisfied, use the DO instruction.

EXIT
To tell the language processor to finish executing your program, use the EXIT instruction.

Calls to subroutines
To tell the language processor to execute a subroutine, then return and execute the next sequential
instruction, use the CALL instruction. Subroutines usually perform a separate, well-defined task; and
they can be called from more than one place in the main program.

Jumps
To tell the language processor to continue from a different point in the same file, use the SIGNAL
instruction.

Note: Some languages allow GOTO to transfer control to any instruction in a program. In practice it was
found that this permitted too many programming errors and thus, in modern languages the use of GOTO is
restricted. In REXX, the nearest equivalent to GOTO is SIGNAL. Never use SIGNAL for constructing loops;
always use DO.

Selection
To tell the language processor how to decide which instructions are to be executed next, you can use the
IF instruction or the SELECT instruction.

In this chapter:

Reading Describes

Reading 1 immediately following describes:

• The IF instruction and its keywords THEN and ELSE

– How to specify a group of instructions as the object of a THEN or ELSE
keyword

– How to avoid the dangling ELSE
• The SELECT instruction and its keywords WHEN, THEN, OTHERWISE and

END
• The NOP instruction.

Reading 2 skips this section.

• Continue Reading 2 in “Loops” on page 135.

© Copyright IBM Corp. 1991, 2018 127

Reading Describes

Reading 3 skips this section.

• Continue Reading 3 in “Loops” on page 135.

The IF Instruction
 Reading 1

To tell the language processor how to make a decision about a single instruction use:

IF expression
THEN instruction

The language processor will execute instruction only if expression is true. For example:

if answer = "YES"
then say "OK!"

The SAY instruction will be executed, only if ANSWER has the value YES.

To tell the language processor to execute a group of instructions use:

DO
 instruction1
 instruction2
 instruction3
 ⋮
END

This form of the DO instruction and the END keyword associated with it tell the language processor to
treat the enclosed instructions as a single instruction. You should indent the enclosed instructions three
spaces to the right. This will help a person reading the program to see that they belong together.

For example:

if answer = "YES"
then do
 say "OK. Please enter the file name and file type",
 "of your input file"
 pull fn ft .
 "STATE" fn ft /* A CMS command to verify */
 /* that file exists. (It */
 /* returns zero if it does.) */
 if rc = 0 then say "Processing" fn ft
 ...

Reading 1

128 z/VM: REXX/VM User's Guide

end
say "What next?"

If ANSWER is equal to YES, all the instructions will be executed; if not, only the last instruction will be
executed.

The ELSE Keyword
The ELSE keyword looks like this when represented in a flowchart:

When you want the language processor to select from one of two possible instructions use:

IF expression
THEN instruction1
ELSE instruction2

The language processor will execute instruction2 only if expression is false. For example, if you wanted:

you could code:

if answer = "YES"
then say "OK!"
else say "Why not?"

The language processor will display OK! if ANSWER has the value YES; but display Why not? if ANSWER
does not have the value YES.

As before, when selecting a list of instructions, you must use DO ... END to mark the beginning and end of
the list.

if answer = "YES"
then say "OK!"
else do
 say "Why not?"
 pull excuse
 if pos("SORRY",excuse) ¬= 0 /* The REXX function */
 /* POS() returns '0' */
 /* if 'SORRY' does not */
 /* appear in EXCUSE */
 /* (see “The POS() Function” on page 71).*/
 then say "I see"
 else say "I just don't understand you"
end

More complicated situations can be handled using a series of IFs. The next chart shows two successive
decisions leading to one of four possible outcomes.

Reading 1

Control 129

The best way to code this is:

if weather = fine
then do
 if tenniscourt = free
 then say "Shall we play tennis?"
 else say "Shall we take a stroll?"
end
else do
 if players = 2
 then say "Shall we play chess?"
 else say "Shall we play poker?"
end

As before, indenting the secondary decisions to the right makes it easier for someone reading the
program to see the structure of the program. If you look carefully, you can see that the preceding program
has the same structure as the chart above.

The Dangling ELSE
The DO ...; ...; ENDs also help the language processor to keep the ELSEs tied to the right IFs. Look at this
fragment:

/* The dangling ELSE */
/* -------- */
if weather = fine
then
 if tenniscourt = free
 then say "Shall we play tennis?"
 ...
 else say "Shall we take our raincoats?"
 /* The language processor will take this ELSE to belong */
 /* to the nearest preceding IF, but a person */
 /* reading the program might easily assume that it */
 /* belonged to the first IF. */

Avoid writing code like the preceding example. It is too error-prone. Programs that have IFs within IFs
should use DO ... END. This example pairs THEN DO with END and THEN with ELSE.

if ...
 then do
 if ...
 then do
 ...
 ...
 end
 else do
 ...
 ...
 end
 end
 else ...

Reading 1

130 z/VM: REXX/VM User's Guide

Test Yourself…
What will the following program do?

/* WHATODO EXEC */

/* input data */
weather = "FINE"
tenniscourt = "FREE"
players = 2
/* example of a program that does not use DO ... END */
/* as recommended previously */
trace results
if weather = fine
then
 if tenniscourt = free
 then say "Shall we play tennis?"
 /* else say "Shall we take a stroll?" DELETED */
else
 if players = 2
 then say "Shall we play chess?"
 else say "Shall we play poker?"

Try it! The REXX instruction TRACE Results will help you to see what is happening.

Answers:

Do not be deceived by the indentation! The ELSE is associated with the nearest preceding IF. The
following table can help you determine what happens when certain values are given to weather,
tenniscourt, and players.

For the values given in the WHATODO EXEC, the following will result:

whatodo
 10 *-* if weather = fine
 >>> "1"
 11 *-* then
 12 *-* if tenniscourt = free
 >>> "1"
 13 *-* then
 - say "Shall we play tennis?"
 >>> "Shall we play tennis?"
Shall we play tennis?
 14 *-* /* else say "Shall we take a stroll?" DELETED */
Ready;

The SELECT Instruction
The SELECT instruction looks like this when represented in a flowchart:

Reading 1

Control 131

If you want the language processor to select one of any number of instructions, use:

SELECT
 WHEN expression1 THEN instruction1
 WHEN expression2 THEN instruction2
 WHEN expression3 THEN instruction3
 ⋮
 OTHERWISE
 instruction
 instruction
 instruction
 ⋮
END

• If expression1 is true, instruction1 is executed. After this, processing continues with the instruction
following the END.

• But if expression1 is false, expression2 is tested. Then, if expression2 is true, instruction2 is executed
and processing continues with the instruction following the END.

• If all of expression1, expression2, and so forth, are false, an OTHERWISE keyword must be present.
Then,

• Processing continues with the instruction following the OTHERWISE.

As before, to tell the language processor to execute a list of instructions following the THEN keyword, use:

DO
 instruction1
 instruction2
 instruction3
 ⋮
END

This form of the DO instruction and the END keyword associated with it tell the language processor to
treat the enclosed instructions as a single instruction.

Reading 1

132 z/VM: REXX/VM User's Guide

A DO; ... ; END; group is not required after the OTHERWISE keyword.

Example
Here is a short program that uses SELECT:

/* CENSUS EXEC */
/* This program requests the user to provide a person's */
/* age and sex. In reply, it displays a person's */
/* status. Persons under the age of 5 are BABIES. */
/* Those aged 5 through 12 are BOYS or GIRLS. */
/* Those aged 13 through 19 are TEENAGERS. */
/* The rest are MEN or WOMEN. */
/*--*/
/* Get input from user */
/*--*/
do until datatype(age,NUMBER) & age >= 0
 say "What is the person's age?"
 pull age
end
do until sex = "M" | sex = "F"
 say "What is the person's sex (M or F)?"
 pull sex
end
/*--*/
/* COMPUTE STATUS */
/* */
/* Input: */
/* AGE Assumed to be 0 or a positive number. */
/* SEX "M" is taken to be male; */
/* anything else is taken to be female. */
/* */
/* Result: */
/* STATUS Possible values: BABY, BOY, GIRL, TEENAGER */
/* MAN, WOMAN. */
/*--*/
Select
 when age < 5 then status = "BABY"
 when age < 13 then do
 if sex = "M"
 then status = "BOY"
 else status = "GIRL"
 end
 when age < 20 then status = "TEENAGER"
 otherwise
 if sex = "M"
 then status = "MAN"
 else status = "WOMAN"
end
say "This person should be counted as a" status

Figure 86: CENSUS EXEC

Each SELECT has a corresponding END. To make your program easier for people to read, you should
indent everything between the SELECT and the END three spaces to the right.

The NOP Instruction
A THEN or ELSE keyword must be followed by an instruction. In cases where you intend that nothing
should be done, use a NOP (no operation) instruction.

Reading 1

Control 133

Here are two examples:

/* PILOT EXEC */
/* Example: steering a course */
Say "Where is the harbor?"
pull where
select
 when where = "AHEAD" then nop
 when where = "PORT BOW" then say "Turn left"
 when where = "STARBOARD BOW" then say "Turn right"
 otherwise say "Not understood"
end

Figure 87: PILOT EXEC

/* TRUCKER EXEC */
/* Example: using NOP to simplify the presentation of */
/* a set of conditions. */
If gas = "FULL" & oil = "SAFE" & window = "CLEAN"
then nop
else say "Find a gas station!"

Figure 88: TRUCKER EXEC

Test Yourself…
1. Write a program that asks the user to enter two words (on the same line) and computes whether:

• The words are the same (or numerically equal)
• The first word is higher
• The second word is higher.

The comparison must ignore differences in case. For example, A will count as equal to a.
2. "Thirty days hath September, April, June, and November; all the rest have thirty-one, excepting

February alone"

Write a program that asks the user to specify the month as a number between 1 and 12 and gives the
number of days in the month in reply. For month 2, the reply can be 28 or 29.

Answers:

1. A possible answer is:

/* COMPARE1 EXEC */
/* This program requests the user to supply two */
/* words and says which is higher. */
say "Enter two words"
pull word1 word2 .
select
 when word1 = word2
 then say "The words are the same",
 "or numerically equal"
 when word1 > word2
 then say "The first word is higher"
 otherwise
 say "The second word is higher"
end

Reading 1

134 z/VM: REXX/VM User's Guide

An alternative answer is:

/* COMPARE2 EXEC */
/* This program requests the user to supply two */
/* words and says which is higher. */
say "Enter two words"
pull word1 word2 .
if word1 = word2
then say "The words are the same",
 "or numerically equal"
else do
 if word1 > word2
 then say "The first word is higher"
 else say "The second word is higher"
end

Some people would consider the first solution better, because it is slightly easier to understand.
2. To say how many days in the month:

/* CALENDAR EXEC */
/* This program requests the user to enter a whole */
/* number from 1 through 12 and replies giving the */
/* number of days in that month. */
/*--*/
/* Get input from user */
/*--*/
do until datatype(month,WHOLE),
 & month >= 1 & month <= 12
 say "Enter the month as a number from 1 through 12"
 pull month
end
/*--*/
/* Compute days in month */
/*--*/
select
 when month = 9 then days = 30
 when month = 4 then days = 30
 when month = 6 then days = 30
 when month = 11 then days = 30
 when month = 2 then days = "28 or 29"
 otherwise
 days = 31
end
say "There are" days "days in Month" month

Reading 1 continues in “Loops” on page 135.

Loops
A loop is a group of instructions that may have to be executed more than one time.

In this section:

Reading Describes

Reading 1 immediately following, describes:

Reading 1

Control 135

Reading Describes

• Repetitive DO loops

– Control variables
– The BY expression

• Conditional DO loops

– DO FOREVER and LEAVE instructions
– DO WHILE instruction
– DO UNTIL instruction.

Reading 2 “Compound DO Instructions” on page 143, describes:

• Compound DO instructions
• Leaving a specified loop.

Reading 3 “The ITERATE Instruction” on page 144, describes:

• The ITERATE instruction.

Simple Repetitive Loops
 Reading 1

To repeat a loop a number of times, use:

DO exprr
 instruction1
 instruction2
 instruction3
 ⋮
END

where:
exprr

(the expression for repetitor) gives a whole number, which is the number of times the loop is to be
executed.

To make your program easier for people to read, you should indent the instructions between the DO and
the END three spaces to the right.

Here are two examples of repetitive loops, see Figure 89 on page 136 and Figure 90 on page 137. The
first is about preparing for a meeting. Each person attending will require three documents.

The program that prints the documents is:

/* HANDOUTS EXEC */
/* To print documents for a meeting: for each person, */
/* the agenda, minutes and accounts are printed one */
/* after the other. Between sets, the CP output */
/* header appears. */
"CP SPOOL PRINT CONT" /* See the following note */
do 5
 "PRINT AGENDA DOCUMENT"
 "PRINT MINUTES DOCUMENT"
 "PRINT ACCOUNTS DOCUMENT"
 "SPOOL PRINT CLOSE" /* See the following note */
end
"CP SPOOL PRINT NOCONT"

Figure 89: HANDOUTS EXEC

The program in Figure 89 on page 136 prints five sets of documents.

Reading 1

136 z/VM: REXX/VM User's Guide

Note: The following command, which is used in the HANDOUTS EXEC, tells CP to collect any files that it is
asked to PRINT into a batch.

SPOOL PRINT CONT

The batch accumulates until the command SPOOL PRINT CLOSE is issued. SPOOL PRINT CLOSE causes
the batch to be printed, but leaves CONT in effect. See the z/VM: CP Commands and Utilities Reference for
details.

In this next program, the instruction between the DO and the END will be executed HEIGHT times.

/* RECTANGL EXEC */
/* The user is asked to specify the height of a */
/* rectangle (within certain limits). The rectangle */
/* is then displayed on the screen. */
say "Enter the height of the rectangle",
 " (a whole number between 3 and 15)."
pull height
select
 when ¬datatype(height,WHOLE) then say "Rubbish!"
 when height < 3 then say "Too small!"
 when height > 15 then say "Too big!"
 otherwise
 /* draw rectangle */
 do height
 say copies("*",2*height)
 end
 say "What a pretty box!"
end

Figure 90: RECTANGL EXEC

Using a Control Variable
To number each pass through the loop, in such a way that you can use that number as a variable in your
program, use:

DO name = expri [TO exprt]
 instruction1
 instruction2
 instruction3
 ⋮
END

where:
name

is the control variable. You can use it in the body of the loop. Its value is changed (in this example,
increased by 1) each time you pass through the loop.

expri
(the expression for the initial value) gives the value you want the control variable to have the first time
through the loop.

exprt
(the expression for the TO value) gives the value you want the control variable to have the last time
through the loop.

The next diagram shows exactly how the control variable is changed, and how the decision to leave the
loop is made.

Reading 1

Control 137

You can use the control variable to compute something different each time through the loop. In this
example, the control variable is called COUNT, and it computes the width of each row of stars.

/* TRIANGLE EXEC */
/* This program displays a triangle on the screen. */
/* The user is asked to specify the height of the */
/* triangle. */
say "Enter the height of the triangle",
 " (a whole number between 3 and 15)."
pull height
select
 when ¬datatype(height,WHOLE) then say "Rubbish!"
 when height < 3 then say "Too small!"
 when height > 15 then say "Too big!"
 otherwise
 /* draw triangle */
 do count = 1 to height
 say copies("*",2*count - 1)
 end
 say "What an ugly triangle!"
end

Figure 91: TRIANGLE EXEC

After you have left the loop, you can still refer to the control variable. It will always exceed the value of the
TO expression (exprt).

The BY Expression
So far, we have assumed that the control variable will be incremented by 1 each time through the loop.
This is the default. To specify some other value, write:

DO name = expri

BY exprb TO exprt

where:
exprb

(the expression for BY) gives the number that is to be added to name at the bottom of the loop.

Reading 1

138 z/VM: REXX/VM User's Guide

Test Yourself…
1. Using the flowchart in “Using a Control Variable” on page 137, you should be able to predict what this

program will "say".

/* 1MORE EXEC */

/* Example: use of a control variable */
do digit = 1 to 3
 say digit
end
say "Now we have reached" digit

2. What about this program?

/* 2LESS EXEC */

/* Example: use of a control variable */
do count = 10 by -2 to 6
 say count
end
say "Now we have reached" count

3. How many lines will this program "say"?

/* 3HUP EXEC */

/* Example: use of a control variable */
do j = 10 to 8
 say "Hup! Hup! Hup!"
end

4. How many lines will this program "say"?

/* 4NOW EXEC */

/* Example: use of a control variable */
do NOW = 1
 if NOW = 9 then exit
 say NOW
end

Answers:

1. The control variable is changed at the bottom of the loop. The test for leaving is made after this. So the
control variable will be beyond the limit value.

• 1
• 2
• 3
• Now we have reached 4

2. If exprb is negative, count down:

• 10
• 8
• 6
• Now we have reached 4

3. None (10 already exceeds 8).
4. Eight (on the ninth pass, the EXIT instruction ends the program before the SAY instruction is reached).

Reading 1

Control 139

Conditional Loops: The LEAVE Instruction
Conditional loops continue to be executed so long as some condition is satisfied. The simplest way to
code these loops is to use DO FOREVER and LEAVE.

The instruction

LEAVE

causes processing to continue with the instruction following the END keyword. For example, the SUM
EXEC in Figure 92 on page 140 will continue executing as long as the user enters a number. If you do not
enter a number, the LEAVE instruction is executed and processing continues with the SAY instruction.

/* SUM EXEC */
/* This program adds up the numbers that the user is */
/* invited to enter. When the user enters something */
/* that is not a number, a message is displayed and */
/* the program ends */
total = 0
do forever
 say "Enter a number"
 pull n
 if ¬datatype(n,NUMBER) then leave
 total = total + n
 say "Total = " total
end
say "'"n"' is not a number. Returning to CMS."

Figure 92: SUM EXEC

Conditional Loops: The DO WHILE Instruction

Reading 1

140 z/VM: REXX/VM User's Guide

To build a conditional loop with the test at the top, use:

DO WHILE exprw
 instruction1
 instruction2
 instruction3
END

where:
exprw

(expression for while) is an expression that, when evaluated, must give a result of 0 or 1.
In some cases, it is easiest to design with the test at the top. If so, you should use the DO WHILE
instruction.

These two fragments will produce the same results.

DO WHILE ¬ finished
 instruction1
 instruction2
 instruction3
END

or

DO FOREVER
 if finished then LEAVE
 instruction1
 instruction2
 instruction3
END

Conditional Loops: The DO UNTIL Instruction

To build a conditional loop with the test at the bottom, use:

DO UNTIL expru
 instruction1
 instruction2
 instruction3
 ⋮
END

where:
expru

(expression for until) is an expression that, when evaluated, must give a result of 0 or 1.
Using the DO UNTIL loop allows all instructions to be executed at least once. In some cases, it is easiest
to design with the test at the bottom. If so, you should use the DO UNTIL instruction.

Reading 1

Control 141

These two fragments will produce the same results.

DO UNTIL finished
 instruction1
 instruction2
 instruction3
END

or

DO FOREVER
 instruction1
 instruction2
 instruction3
 if finished then LEAVE
END

Conditional Loops: The Choice
There are three kinds of conditional loops:

1. The decision is made before processing starts. For example, this program will fill BATH. But if BATH is
already full, the body of the loop will not be executed and no water will be added.

DO WHILE bath < full
 bath = bath + bucket
end

2. The decision is made after the first pass through the loop and again after every subsequent pass. For
instance, requesting valid data from a user.

DO UNTIL datatype(input,NUMBER)
 say "Enter a number"
 pull input
end

3. The decision is made during each pass. For instance, the decision to leave might depend on
information obtained during the loop.

DO FOREVER
 say "Enter an item of data. When there is",
 " no more data, enter QUIT"
 pull answer
 if answer = "QUIT" then leave
 ... /* process the data */
end

Later, we shall see that a program that reads data from a file should also be programmed using DO
FOREVER and LEAVE.

Note: Be careful about the condition for repeating the loop. For WHILE, the condition must be TRUE; for
UNTIL, it must be FALSE.

Test Yourself…
1. What kind of DO instruction would you use to code the sequence:

• Job done?

instruction1
instruction2
instruction3

• Job done?

instruction1
instruction2
instruction3

Reading 1

142 z/VM: REXX/VM User's Guide

• Job done?
• ...
• Job done?

2. What kind of DO instruction would you use to code the sequence:

• instruction1
instruction2
instruction3

• Job done?

instruction1
instruction2
instruction3

• Job done?
• ...
• Job done?

Answers:

1. DO WHILE job ¬= done (The first operation is to test "Is job done?")
2. DO UNTIL job = done (The first operation is to execute the list of instructions.)

Reading 1 continues in “The EXIT Instruction” on page 145.

Compound DO Instructions
 Reading 2

You can combine one repetitive phrase and one conditional phrase in a single DO instruction. You should
know where in the loop the counters are updated and where the tests for leaving the loop will be made.
This is explained in a diagram in your z/VM: REXX/VM Reference. (You can find it under the description of
the DO instruction.)

Compound DO instructions can do a lot of useful work. This next example shows how a simplified version
of the POS() function might be implemented as a REXX function.

/* POSN EXEC */
/* Example: the POSN() function is similar to the */
/* POS(), except that the third argument ("start") */
/* is not allowed */
if arg() ¬= 2
then return /* wrong number of arguments */
if arg(1,omitted) | arg(2,omitted)
then return /* argument was omitted */
parse arg needle,haystack
last = length(haystack), /* compute the rightmost */
 -length(needle)+1 /* position that needle could */
 /* be found in */
do result = 1 to last, /* Search for needle */
 until substr(haystack,result,length(needle)) = needle
end
if result > last then result = 0
return result

Figure 93: POSN EXEC

Leaving a Specified Loop
Sometimes a program is constructed of loops within loops. When you leave a loop, you would like to tell
the language processor which loop you want to leave. To do this, give a DO loop a name (that is, specify a

Reading 2

Control 143

control variable in the DO instruction). If the loop does not contain a control variable already, invent one.
For example

DO outer = 1
 ...
 ...
END

is the same, for all practical purposes, as DO FOREVER. In this example, outer is the control variable for
the loop.

Now, to leave a specific loop, put the name of its control variable after the keyword LEAVE. For example:

DO outer = 1
 ...
 do until datatype(answer,WHOLE)
 say "Enter a number. ",
 "When you have no more data, enter a blank line"
 pull answer
 if answer = "" then leave outer
 end
 ...
 /* process answer */
end
/* come here when there is no more data */

Reading 2 continues in “Subroutines” on page 146.

The ITERATE Instruction
 Reading 3

To bypass all remaining instructions in the loop and test the ending conditions, use the ITERATE
instruction. Like LEAVE, ITERATE can be introduced by a THEN or ELSE keyword. But, instead of leaving
the loop altogether, the language processor proceeds with the operations usually done at the bottom of
the loop. If an UNTIL condition has been specified, it is tested; if a control variable has been specified, it is
incremented and tested; and if a WHILE condition has been specified, it is tested.

If tests indicate that the loop is still active, typical processing then continues from the top of the loop.

For example:

DO j = 1 to limit by delta
 instruction1
 instruction2
 if ...
 then do
 instruction3
 instruction4
 ITERATE j
 end
 instruction5
 instruction6
END;

Reading 3

144 z/VM: REXX/VM User's Guide

Reading 3 continues in “Jumps” on page 154.

The EXIT Instruction
In this section:

Reading Describes

Reading 1 is the entire "EXIT Instruction" section, describing:

• How to leave your program by using the EXIT instruction.

 Reading 1

To tell the language processor to leave your exec use:
EXIT

expression

If your exec was started by typing its name on the command line:

• EXIT will take you back to CMS.
• expression must result in a whole number, which CMS will display as a return code in the Ready

message.

Reading 1

Control 145

For example:

/* FADE EXEC */
/* Example: using EXIT with a return code */
say "Returning to CMS"
exit 22

Figure 94: FADE EXEC

When run, the program in Figure 94 on page 146 will cause this to be displayed:

fade
Returning to CMS
Ready(00022);

Reading 1 continues in “Subroutines” on page 146.

Subroutines
In this section:

Reading Describes

Reading 1 immediately following, describes:

• The idea of a subroutine
• The CALL instruction
• How to obtain the arguments passed to a subroutine:

– Using the ARG() function
– Using the ARG instruction
– Using the PARSE ARG instruction

• The RETURN instruction.

Reading 2 “Subroutines and Functions” on page 151, describes:

• Subroutines and functions

– What are the differences
– What are the similarities

• Parsing the arguments
• External subroutines.

The Idea of a Subroutine
 Reading 1

A subroutine is a separate piece of code that can be called from more than one place in your main
program.

Subroutines can be in the same file as the main program, or they can be in a separate EXEC file. The
diagram shows a subroutine that is in the same file as the main program.

Reading 1

146 z/VM: REXX/VM User's Guide

A CALL instruction will cause the language processor to look through your program until it finds the label
that marks the start of the subroutine. Processing continues from there until the language processor finds
a RETURN instruction that causes the language processor to return to the main program.

A subroutine can be called from more than one place in a program. The language processor always
returns to the clause following the CALL instruction from which it came.

Reading 1

Control 147

Each CALL instruction can supply data, called arguments, which the subroutine can use when called. In
the subroutine, you can find out what data has been supplied by using the ARG() function or the ARG
instruction.

The CALL Instruction
To direct the language processor to execute a subroutine use:

CALL name

argument
1

Notes:
1 A maximum of 20 arguments.

where:
name

is the name of the subroutine. The language processor will first search for the corresponding label in
your program. A label consists of a symbol followed by a colon (:), for example:

name:

If no such label is found, the language processor looks for a built-in function, exec file, or module file
of that name. (To be discussed later, in “Abnormal Changes of Control” on page 154.)

argument
is an expression. The value of each is computed, and can be obtained in the subroutine by using the
ARG() function.

ARG(1) returns the first argument
ARG(2) returns the second argument
...

You can have up to 20 arguments on a CALL instruction.

You can also obtain the arguments by using the ARG or PARSE ARG instructions, discussed later.

For example:

/* CHEER EXEC */
/* Example: calling a subroutine */
do 3
 call triple "R"
 call triple "E"
 call triple "X"
 call triple "X"
 say
end
say "R...!"
say "E...!"
say "X...!"
say "X...!"
say
say "REXX!"
exit /* end of main program */
/*--*/
/* Subroutine to repeat a shout three times */
/* == */
/* The first argument is displayed on the screen, three */
/* times on one line, with suitable punctuation. */
/*--*/
TRIPLE:
say arg(1)", "arg(1)", "arg(1)"!"
return

Figure 95: CHEER EXEC

Reading 1

148 z/VM: REXX/VM User's Guide

This is what appears on the screen:

cheer
R, R, R!
E, E, E!
X, X, X!
X, X, X!
R, R, R!
E, E, E!
X, X, X!
X, X, X!
R, R, R!
E, E, E!
X, X, X!
X, X, X!
R...!
E...!
X...!
X...!
REXX!
Ready;

The EXIT instruction causes a return to CMS. In the program shown in Figure 95 on page 148, the EXIT
instruction stops the main program from running on into the subroutine.

The ARG Instruction
In your subroutine, you may want to refer to an argument many times; if so, it would make your program
easier to read if the argument had a memorable name, rather than just ARG(1). To assign the arguments
to variables, use the PARSE ARG instruction or the PARSE UPPER ARG instruction.

For example, if you want the results of the four expressions on the call instruction to be assigned FLOUR,
BUTTER, SUGAR, and COOKIES, you could write:

PARSE ARG flour, butter, sugar, cookies

The other form of the instruction, PARSE UPPER ARG, can be shortened to ARG. If you wanted the four
arguments to be translated to uppercase you could write:

ARG flour, butter, sugar, cookies

Notice that, just as there are commas between the expressions in the CALL instruction, so there are
commas between the symbols in the PARSE ARG or ARG instruction when it is used in this way.

The RETURN Instruction
The RETURN instruction takes you back to the main routine. Processing continues with the instruction
following the CALL. The full form of the instruction is

RETURN

expression

where, if expression is specified, it will be assigned to the REXX special variable, RESULT. (But
if expression is omitted, RESULT is dropped.) That is, RESULT is not assigned a value and thus, when
used in an expression, takes on the value of itself, translated to uppercase (RESULT).

The variable RESULT can be used in an expression by the calling program when it resumes.

Example
This example shows how CALL passes arguments to a subroutine; ARG assigns the arguments' values to
variables; RETURN assigns a value to RESULT; and the main program uses this data.

Reading 1

Control 149

When to Leave Out the Arguments
If program variables are referred to by the same names both outside and inside an internal routine (a
routine that exists in the same file as the CALL instruction), it is not necessary to include them as
arguments on the CALL or ARG instructions.

However, not including them could make it more difficult for a person reading your program to understand
what your subroutine does. So it will be especially important in this case to give a list of the arguments in
the comments that introduce the subroutine.

Test Yourself…
This program simulates a children's race game, of the kind that used to be played with dice.

Reading 1

150 z/VM: REXX/VM User's Guide

Write the subroutine TELL to tell who is winning.

/* RACEGAME EXEC */

/* Example of a subroutine: a child's race game */
a = 0 /* Arthur starts from zero */
b = 3 /* Barry gets a headstart of 3 */
do 15
 a = a + random(1,6) /* Arthur gets first turn */
 b = b + random(1,6) /* Now it is Barry's turn */
 call tell /* Who's ahead now */
end
exit /* End of main program */

Copy the main program and your subroutine into an exec file and test your program.

Answer:

A possible solution is:

/* RACEGAME EXEC */

/* Example of a subroutine: a child's race game */
a = 0 /* Arthur starts from zero */
b = 3 /* Barry gets a headstart of 3 */
do 15
 a = a + random(1,6) /* Arthur gets first turn */
 b = b + random(1,6) /* Now it is Barry's turn */
 call tell /* Who's ahead now */
end
exit /* End of main program */
/*--*/
/* Subroutine to display the position */
/* ================================== */
/* INPUT: a (Arthur's score) */
/* b (Barry's score) */
/* RESULT: displayed on user's screen */
/*--*/
TELL:
values = "Arthur =" a"; Barry =" b"; "
select
 when a > b then say values "Arthur is ahead"
 when b > a then say values "Barry is ahead"
 otherwise say values "Neck and neck!"
end
return

In this sample solution, there are no arguments on the CALL instruction. Nevertheless, a person reading
the program will still need to know what data the subroutine is using.

A well-designed subroutine will operate on a clearly defined set of data. To make your program more
readable, you should define this data in comments at the beginning of the subroutine.

Reading 1 continues in “Jumps” on page 154.

Subroutines and Functions
 Reading 2

You can write your own subroutines (described earlier) and your own functions. You can also use
subroutines and functions written by other people.

What are the differences between subroutines and functions, and what do they have in common?

The differences are:

• To call a subroutine, you use a CALL instruction:

Reading 2

Control 151

CALL routine

,

argument
1

Notes:
1 A maximum of 20 arguments.

But to call a function, you use a function call:
routine (

,

argument
1

)

Notes:
1 A maximum of 20 arguments.

• A subroutine need not return a result, but a function must return a result. In a subroutine, you can write:

RETURN

But in a function you must at least write:

RETURN "" /* This returns a null string */

• A subroutine sets the value of the special variable RESULT. But the result returned by a function is used
in the expression where the function call appeared.

The similarities are:

• Both use the ARG and PARSE ARG instructions, and the ARG() function, for obtaining the values of their
arguments.

• Both can be either internal (that is, starting with a label in the same file as the CALL instruction or the
function call) or external (that is, in a different file).

• Both have the same search order. When a call to routine is recognized, the language processor searches
for:

1. The label routine: in the same file
2. A REXX function called routine
3. An external routine.

(For full details, see the z/VM: REXX/VM Reference.)
• Both, when they are internal, can use the PROCEDURE instruction (described in Reading 3, “The

PROCEDURE Instruction” on page 30).
• Where it is reasonable to do so, functions can be used as subroutines. Subroutines that return a result

can be used as functions.

Using a Call of the Other Kind
Where convenient, programs designed as functions can be called as subroutines. And, if they always
return a result, programs designed as subroutines can be called as functions.

For example, the subroutine QUIET, which we discussed in Figure 66 on page 105, could be called as a
function:

if quiet("STATE" fn ft) = 0
then ...

Reading 2

152 z/VM: REXX/VM User's Guide

and the POS() function could be called as a routine:

/* to remove NEEDLEs from haystack */
do forever
 call pos needle,haystack
 if result = 0
 then leave
 else haystack = delstr(haystack,result,length(needle))
end

Note: DELSTR() is a REXX built-in function. See z/VM: REXX/VM Reference for details.

Parsing the Arguments
Each of the arguments passed by a CALL instruction can be parsed using the PARSE ARG instruction or the
ARG instruction. For example, the instruction:

CALL words "a string of words",5

might be parsed using:

WORDS:
PARSE ARG first second third fourth rest, number

The result would be that:

FIRST gets "a"
SECOND gets "string"
THIRD gets "of"
FOURTH gets "words"
REST gets ""
NUMBER gets "5"

External Subroutines
When we first discussed subroutines, we mentioned only the internal routines. But subroutines can also
exist as a separate exec file.

In an external routine, the variables belonging to the caller are not available to the subroutine. All the data
must be formally passed, using arguments on the CALL instruction, and all the data must be returned
using the RETURN instruction. (If necessary, the calling routine can PARSE the variable RESULT into a
number of variables.)

Reading 2

Control 153

For more information about sharing variables, see the GLOBALV command in the z/VM: CMS Commands
and Utilities Reference.

Reading 2 continues in “Jumps” on page 154.

Jumps
In this section we discuss instructions that cause the language processor to continue processing at a
different point in your program.

In this section:

Reading Describes

Reading 1 immediately following, describes:

• Using the SIGNAL instruction for jumps.

Reading 2 “Abnormal Changes of Control” on page 154, describes:

• How to use the SIGNAL instruction for abnormal changes of control.

Reading 3 “Conditions and Condition Traps” on page 155, describes:

• How to set a condition trap.
• How to set a condition trap using the CALL instruction.
• How to use the SIGNAL instruction to set "ON-conditions".

– SIGNAL ON FAILURE
– SIGNAL ON HALT
– SIGNAL ON NOVALUE
– SIGNAL ON SYNTAX.

• How to obtain information about a current trapped condition.

The SIGNAL Instruction
 Reading 1

The SIGNAL instruction can jump (that is, transfer control) to another part of your program.

If your SIGNAL instruction is in the middle of a program, the language processor forgets all about the
SELECT constructs and DO loops you were in; therefore, you cannot jump back into or jump around within
a DO loop. This usually means that you can only use SIGNAL for an abnormal end. For other purposes, it is
better to construct your jumps using IF, SELECT, or DO, as described earlier.

Reading 1 continues in Chapter 9, “Input and Output,” on page 159.

Abnormal Changes of Control
 Reading 2

To tell the language processor to go to another part of the same file, use the SIGNAL instruction:

SIGNAL label

This causes a jump to the specified label. A label consists of a symbol followed by a colon (:). The
language processor searches from the top of the file for the clause:

LABEL:

Processing continues from there.

Reading 2

154 z/VM: REXX/VM User's Guide

Here is an example of an abnormal end using SIGNAL. The SIGNAL instruction always stores its own line
number in the REXX special variable SIGL.

SIGNAL abend
...

EXIT /* end of ordinary code */
/*--*/
/* This code handles abnormal ends */
/*--*/
ABEND:
say "Abnormal end signaled at line" sigl,
 ||". Cannot continue."
exit

The first EXIT instruction is put there to stop the normal program from running on into the abnormal end
routine.

Reading 2 continues in Chapter 9, “Input and Output,” on page 159.

Conditions and Condition Traps
 Reading 3

The CALL ON|OFF and SIGNAL ON|OFF instructions modify the flow of execution in a REXX program by
using condition traps. Condition traps are turned on or off using the ON or OFF subkeywords of the
SIGNAL and CALL instructions (see “The CALL Instruction” on page 148 and “Abnormal Changes of
Control” on page 154).

Following one of these instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The
initial setting for all condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to the routine or label
trapname, which is described later. SIGNAL or CALL is used, depending on whether the most recent trap
for the condition was set using SIGNAL ON or CALL ON respectively.

Condition traps can be set using the CALL ON Condition and SIGNAL ON Condition syntax described
below.

The CALL ON Condition

For information about the CALL Instruction, see “The CALL Instruction” on page 148.

The CALL ON instruction will turn on trapping of the condition you specify. The format is:
CALL ON ERROR

FAILURE

HALT

NOTREADY

NAME trapname

The CALL OFF instruction will turn off any trapping of the condition you specified. The format is:
CALL OFF ERROR

FAILURE

HALT

NOTREADY

The SIGNAL ON Condition
For information about the SIGNAL Instruction, see “Abnormal Changes of Control” on page 154.

The SIGNAL ON instruction will turn on trapping of the condition you specify. The format is:

Reading 3

Control 155

SIGNAL ON ERROR

FAILURE

HALT

NOTREADY

NOVALUE

SYNTAX

NAME trapname

The SIGNAL OFF instruction will turn off any trapping of the condition you specified. The format is:
SIGNAL OFF ERROR

FAILURE

HALT

NOTREADY

NOVALUE

SYNTAX

Condition Trap Explanations

The conditions and their corresponding events which can be trapped are:

ERROR
raised if any host command indicates an error condition upon return. It is also raised if any host
command indicates failure and neither CALL ON FAILURE nor SIGNAL ON FAILURE are set. The
condition is raised at the end of the clause that called the command, but will be ignored if the ERROR
condition trap is already in the delayed state.

CALL ON ERROR and SIGNAL ON ERROR trap all positive return codes; and will trap negative return
codes if neither CALL ON FAILURE nor SIGNAL ON FAILURE are set.

FAILURE
raised if any host command indicates a failure condition upon return, but will be ignored if the
FAILURE condition trap is already in the delayed state; that is, a failure is currently being handled.

CALL ON FAILURE and SIGNAL ON FAILURE trap all negative return codes from commands.

HALT
raised if an external attempt is made to interrupt execution of the program. The condition is raised at
the end of the clause that was being interpreted when the interruption took place.

NOTREADY
raised if an error occurs during an input or output operation. This condition is ignored if the
NOTREADY condition trap is already in the delayed state.

NOVALUE
raised if an uninitialized variable is used:

• As a term in an expression
• As the name following the VAR subkeyword of the PARSE instruction
• As an unassigned variable pattern in a parsing template.

This condition may only be specified for SIGNAL ON.

SYNTAX
raised if an interpretation error is detected. This condition may only be specified for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON or OFF, and any trap name) of
that condition trap. Thus, a SIGNAL ON HALT replaces any current CALL ON HALT, and so on.

Reading 3

156 z/VM: REXX/VM User's Guide

Action Taken When a Condition is Trapped
When a condition trap is currently enabled (ON has been specified), the trap is in effect. So, when the
specified condition occurs, control is passed to the label corresponding to the trapped condition.

If no explicit trapname was specified, control is passed to the label or routine that matches the name of
the condition itself (ERROR, FAILURE, HALT, NOVALUE, or SYNTAX).

If trapname was specified following the NAME subkeyword of the CALL ON or SIGNAL ON instruction,
control is passed to the label or routine specified, rather than the name of the condition.

The sequence of events, once a condition has been trapped, varies depending on whether a SIGNAL or
CALL is executed:

• If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the condition is
disabled (set to OFF), and the SIGNAL takes place in exactly the same way as usual (see “Abnormal
Changes of Control” on page 154).

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction for the
condition is required to reenable it once the label is reached. For example, if SIGNAL ON SYNTAX is
enabled when a SYNTAX condition occurs, then if the SIGNAL ON SYNTAX label name is not found a
normal syntax error termination will occur.

• If the action taken is a CALL, the CALL is made in the usual way (see “The CALL Instruction” on page
148) except that the special variable RESULT is not affected by the call. If the routine should RETURN
any data, then the returned character string is ignored.

Before the CALL is made, the condition trap is put into a delayed state. This state persists until the
RETURN from the CALL, or until an explicit CALL (or SIGNAL) ON (or OFF) is made for the condition. This
delayed state prevents a premature condition trap at the start of the routine called to process a
condition trap.

On RETURN from the CALL, the original flow of execution is resumed (that is, the flow is not affected by
the CALL).

The CONDITION Function
The CONDITION function returns the condition information associated with the current trapped condition.
See the CALL ON Condition and the SIGNAL ON Condition just described for a description of condition
traps. Four pieces of information can be requested:

• The name of the current trapped condition
• Any descriptive string associated with that condition
• The instruction executed as a result of the condition trap (SIGNAL or CALL)
• The status of the trapped condition.

The following parameters can be supplied to select the requested information. Only the first letter is
significant.
Condition name

returns the name of the current trapped condition.
Description

returns any descriptive string associated with the current trapped condition. If no description is
available, a null string is returned.

The descriptive string varies, depending on the condition trapped. In the case of SIGNAL or CALL, the
descriptive string that is passed to the external environment as command results in one of the
following:
ERROR

The string that was processed and resulted in the error condition.

Reading 3

Control 157

FAILURE
The string that was processed and resulted in the failure condition.

HALT
Any string associated with the halt request. This can be the null string if no string was provided.

NOTREADY
The fully-qualified name of the stream being manipulated when the error occurred and the
NOTREADY condition was raised.

NOVALUE
The derived name of the variable whose attempted reference caused the NOVALUE condition.

SYNTAX
Any string associated with the error by the language processor. This can be the null string if no
specific string is provided. Note that the special variable RC and SIGL provide information on the
nature and position of the processing error.

Instruction
returns the keyword for the instruction executed when the current condition was trapped, being either
CALL or SIGNAL. This is the default if option is not specified.

Status
returns the status of the current trapped condition. This can change during execution, and is either:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed.

If no condition has been trapped (that is, there is no current trapped condition), then the CONDITION
function returns a null string in all four cases.

Here are some examples:

CONDITION() -> 'CALL' /* perhaps */
CONDITION('C') -> 'FAILURE'
CONDITION('I') -> 'CALL'
CONDITION('D') -> 'FailureTest'
CONDITION('S') -> 'OFF' /* perhaps */

Note: The condition information returned by the CONDITION function is saved and restored across
subroutine calls (including those caused by a CALL ON condition trap). Therefore, once a subroutine
called because of a CALL ON trap has returned, the current trapped condition reverts to the current
condition before the CALL took place. CONDITION returns the values it returned before the condition was
trapped.

Congratulations! You have successfully completed Reading 3. Now you can put your REXX skills into
action.

If you want more practice with writing REXX programs, you can review Chapter 10, “Programming Style
and Techniques,” on page 177.

Reading 3

158 z/VM: REXX/VM User's Guide

Chapter 9. Input and Output

 Reading 1

REXX can do more than manipulate the information that you have typed at the keyboard and then process
it for display on the screen. REXX can store, access, print, and organize data outside the program.

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

• A stream of information
• File processing
• Writing data to a stream
• Reading data from a stream
• Counting the data remaining
• Handling streams.

Reading 2 “Additional Stream I/O Information” on page 169, describes:

• Data streams
• Default streams
• The STREAM function
• Accessing data within a stream
• Techniques for using the I/O functions.

A Stream of Information
In computing, the form of the information is often as important as its content.

A script file, for example contains not only text information, but other information that you never see, such
as details about the structure of the file. This additional data describes how the data if formatted and
printed. The structure of an exec file is very different from that of a script file—the information takes on
other forms. A command in an exec lets you perform a specific function.

The goal of the REXX language is to keep things as simple as possible. Therefore, REXX takes the simplest
possible view of the information it receives. The simplest way to look at information is one line at a time.

For example, in a REXX program that reads from a file and then sends the file to a virtual printer, both the
file and the virtual printer are character streams:

In the preceding diagram:

© Copyright IBM Corp. 1991, 2018 159

• The text being read, It was a dark and gloomy night., is the input stream.
• The virtual printer device written to (VIRTUAL PRINTER) is the output stream.

In this discussion, a stream means any source or destination of external information a REXX program
uses. A stream can be a:

• reader file
• punch
• printer
• SFS file
• minidisk file
• program stack (or external data queue)
• default stream (terminal input buffer and the display).

(For the names of these streams that the input and output functions use, see the "Input and Output
Streams" chapter of the z/VM: REXX/VM Reference.)

The input and output operations of REXX fall into these broad categories:

• Streams of characters
• Lines, or segments of a stream, separated by line end characters.

The way you use data streams in a program depends upon the kind of information you are working with
and what you want to do with it.

File Processing
You begin file processing by putting line data into a more or less permanent form, such as in simple files
on a disk. You already know some ways to create, read, and write disk files using XEDIT.

In REXX, a set of stream functions that read and write data a single character at a time or line by line
perform stream processing. The first function you will try is one that writes lines to a file.

Writing Data to a Stream
You can write line or character data to a stream using the LINEOUT and CHAROUT functions.

LINEOUT (Line Output) Function
To write a line to a file, use the LINEOUT function. The format is:

LINEOUT (

name ,

string ,line

)

where:
name

is the name of the file (that REXX regards as a stream) to which the data is written.
string

is a line of data to be written.
line

a line number to set the write position.

The first time a program uses LINEOUT in this way, the file (name) is opened for writing and the line
(string) is written to the end of the stream.

The stream remains open, and each subsequent LINEOUT call writes a new line to the end of the file
(name).

160 z/VM: REXX/VM User's Guide

When the program ends, REXX automatically closes name unless you close it explicitly with the STREAM
function or specific forms of CHAROUT and LINEOUT. Or, you can close name explicitly at any time by
omitting the string argument. For example:

LINEOUT(name)

A LINEOUT Example

Figure 96 on page 161 shows an example of a simple text editor. It writes new text to a file. Look closely
at the use of the LINEOUT function.

/* EDDY EXEC */
/* World's smallest editor for CMS minidisk file */
say 'Enter a file name and file type.'
pull fileid
say 'Enter as many lines as you like.',
 'To finish, press Enter.'
do forever
 parse pull line

 if line = '' then /* empty line? */
 do
 call LINEOUT /* if so, close the file */
 exit /* and end the program */
 end

 /* otherwise, write LINE to the end of the file */
 call LINEOUT fileid, line
 if result = 1 then leave
end
say 'Error, return code' result
exit

Figure 96: EDDY EXEC

You enter a file name, which the PULL instruction then parses and stores in the variable fileid. As each line
is typed:

• The PARSE PULL instruction stores it as a string in the variable line.
• The LINEOUT function (called as a subroutine) writes the string contained in line to the file name stored

in the variable fileid.
• The DO loop continues until you press Enter twice, thereby entering a null string.
• The program then calls LINEOUT with only the file name (closing the file), and exits.

Calling LINEOUT

LINEOUT is a function call rather than a keyword instruction. That means that it not only performs a given
task (writing data to a file, in this example), but that it also returns a value of:

• 0 if string was successfully written to name.
• 1 if for any reason string could not be written, for example, if you try to write to a read-only file.

Your program can use the return value to detect whether something has gone wrong in the course of
writing to a stream.

Note: If you use LINEOUT without the string argument, the return value tells you if name was successfully
closed.

LINEOUT is a function call; therefore, you have a choice about how you can use it. You can call LINEOUT:

• As part of a REXX instruction. For example, with the keyword SAY:

say LINEOUT("mybook text","Chapter 1.") /* displays "0" */
 /* if successful */

Input and Output 161

or as a variable assignment:

ready = LINEOUT("mybook text","Chapter 1.") /* assigns "0" to READY */
 /* if successful */

• As a subroutine with arguments (this is true of all function calls). For example:

call LINEOUT "mybook script", "Chapter 1." /* Result=0 if successful */

When you use LINEOUT (or any function call) in this way, the return value of the function is automatically
assigned to the REXX special variable RESULT.

Resetting the Write Position

You can specify a line number to set the write position to the start of a particular line in a file. This line
number must be positive and within the bounds of the file (although you can specify the line number
immediately after the end of the file). A value of 1 for line refers to the first line in the stream. For
example:

LINEOUT(myfile,,1) -> 0 /* now at line 1 */
LINEOUT(myfile,,6) -> 0 /* now at line 6 */

CHAROUT (Character Output) Function
The CHAROUT function writes single-byte characters. The format is:

CHAROUT (

name ,

string ,start

)

where:
name

is the name of the stream to which the character is written
string

is a string of characters to write
start

is the starting position of a stream of characters.

Like the LINEOUT function, CHAROUT returns 0 if all the characters in the string (string) are successfully
written to the file (name). Unlike LINEOUT, if for any reason CHAROUT cannot write to the named file
(name), it returns the number of characters that remain unwritten.

CHAROUT is also similar to LINEOUT in that it is more convenient to call it as a subroutine.

The first time a program uses CHAROUT, the named stream is opened for writing and the characters are
written to the end of the stream. If the write pointer is moved (using LINEOUT or STREAM), CHAROUT will
write over existing data in the line. The start value for CHAROUT must be 1 (default value). CHAROUT will
always start with the first character in the line.

162 z/VM: REXX/VM User's Guide

A CHAROUT Example

The following exec will write out the variable in a do loop using CHAROUT. This example shows how
multiple uses of CHAROUT will continue to write to the same line. The output of this exec will be one line.
If LINEOUT was used, the output would be 12 separate lines, each with one character.

/* CHAROUT1 EXEC */
file = 'TEST FILE A1' /* File name */
do i=1 to 3 /* First Do Loop */
 z = CHAROUT(file,i) /* Write value for i */
 do j=9 to 7 by -1 /* Second Do Loop */
 y = CHAROUT(file,j) /* Write value for j */
 end /* End second Do Loop */
end /* End first Do Loop */
exit

Figure 97: CHAROUT1 EXEC

Reading Data from a Stream
If a stream supports reading, you can read characters or lines from a stream using the LINEIN and
CHARIN functions.

LINEIN (Line Input) Function
To read a line from a stream into a REXX program, use the LINEIN function. The format is:

LINEIN (

name ,

line ,count

)

where:
name

is name of the data stream (such as a file) from which the line is read.
line

the read position of the string.
count

the number of lines read from the character input stream.

The first time a program calls LINEIN, it opens the named file (name) for reading and returns the first line
of data. The second call to LINEIN, reads the second line and returns the second line of data, and so on
until the program ends (or you close the stream with LINEOUT). In other words, LINEIN keeps track of its
place in the stream with a kind of "bookmark", called the read pointer. LINEOUT uses a similar marker, the
write pointer. For more information, see “Accessing Data within a Stream” on page 174.

Resetting the Read Position

You can select how many lines are displayed. If you type a number larger than the number of lines in the
file, the program cycles back to the beginning. To do this, use LINEIN with its second and third arguments.
For example:

LINEIN(stream,line,count)

The options for line are:

• no argument (the default)—to leave the read position where it is.
• 1—to set the read pointer to the beginning of the stream (line 1).
• n—to point to a line within the bounds of the file

The options for count are:

Input and Output 163

• 1 (the default)—to read one line and advance the read position.
• 0—to read no lines and not advance the read position.

The first time a program calls LINEIN, it opens the named file:

LINEIN(filename)

So far, LINEIN has included the default values for the second and third arguments to simply read the next
line. By setting 1 for the line and 0 for the count, LINEIN can reset the read position to the beginning of the
stream without reading a line (or advancing the read position). For example:

LINEIN(filename,1,0)

Because you are not interested in the return value (which would be empty anyway), you can call LINEIN
as a subroutine:

call LINEIN filename,1,0

Figure 98 on page 164 shows an example calling LINEIN as a subroutine to reset the read position.

/* SHOLIN1 EXEC */
/* Displays a given number of lines in a text file */
/* If the given number exceeds the number of lines */
/* in the file then the read position is reset back */
/* to the beginning of the file */
say "Type a file name and file type"
pull fileid
say "Type number of lines to display"
pull howmany
lineno = 1
do howmany
 say lineno LINEIN(fileid)
 lineno = lineno + 1

 if LINES(fileid) = 0 then /* if the end of file is reached */
 do
 call LINEIN fileid,1,0 /* reset the read position */
 say ">>> End of File <<<" /* display end-of-file marker */
 lineno = 1 /* reset line counter */
 end
 end
exit

Figure 98: SHOLIN1 EXEC

CHARIN (Character Input) Function
You can read characters from a stream into a REXX program with CHARIN. The format is:

CHARIN (

name ,

start ,length

)

where:
name

is the name of the data stream (such as a file) from which the characters are read.
start

the starting position of the character in the stream.
length

the number of single-byte characters to read from the character input stream.
CHARIN works very much the same as LINEIN, except that CHARIN reads characters instead of lines.

164 z/VM: REXX/VM User's Guide

The start value for CHARIN must always be 1 (the default). Figure 99 on page 165 shows one way to find a
specific character in the line by using CHARIN. The exec will loop until the correct character is located,
and the position will be written to the screen.

/* SHOCHAR1 EXEC */
/* */
/* Shows one way to find a specific character in */
/* a line by using CHARIN. The exec will loop */
/* until the correct character is located, and */
/* the position will be written to the screen. */
/* */
/* Assume a file, CHARIN1 TESTDATA A, exists and */
/* contains all of the keyboard characters. */

fileid = 'CHARIN1 TESTDATA A'
char_count = 0
done = 0
say "Type character to locate"
parse pull char
do until done
 if chars(fileid) ¬= 0 then
 do
 in_char = charin(fileid,,1)
 char_count = char_count + 1
 if in_char = char then done = 1
 end
 else done = 1
end
if chars(fileid) = 0 then
 do
 say 'Selected character was not found in the file'
 end
 else say 'Character' char 'was found in character position' char_count
exit

Figure 99: SHOCHAR1 EXEC

Counting the Data Remaining
You can count the number of lines or characters remaining in your file using LINES and CHARS.

LINES (Lines Remaining) Function
To find out if any lines remain between the read position and the end of a stream, use LINES. The format
is:

LINES (

name

)

where:
name

is the character input stream
The LINES function returns the following:
0

if no complete lines remain to be read
n

if any lines remain, the number remaining.

Figure 100 on page 166 shows an example, where name is a text file, so LINES would return 0 when the
end of the file has been reached.

Input and Output 165

LINEIN has no way of knowing when there are no more lines to read in a stream, such as when it gets to
the end of a file. To know when the read position has reached the end of the file, use the LINES function
before LINEIN.

/* SHOLIN2 EXEC */
/* Program to display an entire file */
/* exits when end-of-file is reached */

say "Type a file name and file type"
 /* get the name of the file */
pull fileid /* from the user */

lineno = 1 /* initialize a counter to display */
 /* the line number

do until LINES(fileid) = 0 /* repeat this loop until no lines */
 /* remain in the selected file... */

 say lineno LINEIN(fileid) /* display the line number, and then */
 /* read and display a line of text, */
 /* advancing the read position */
 /* with each pass though the loop */

 lineno = lineno + 1 /* increment the line-number counter */

 end
exit /* end the program */

Figure 100: SHOLIN2 EXEC

CHARS (Characters Remaining) Function
To find out if any characters remain in the input stream, user CHARS. The format is:

CHARS (

name

)

where:
name

is the character input stream.
The CHARS function returns the following:
0

if no characters remain in the stream
1

if at least one character remains in the stream.

CHARS is similar to LINES with respect to reaching the end of the file. CHARS will return a 0 when the
read pointer has reached the end of the file.

Handling Streams
Sometimes you will need to do things with the streams you are using, such as opening and closing them.
These streams can be several things: minidisk files, SFS files, spool files (reader, printer, and punch), or
the program stack. For this discussion, we will assume that input and output are communicating with a
human user. A character stream might, in fact, have a variety of sources or destinations, such as files or
displays.

A character stream can be transient or persistent. Transient (also referred to as dynamic) means that it is
considered temporary, for example, the default input stream or the program stack. Persistent means it is a
static form or more permanent form, for example, a file or data object.

The STREAM function is provided to help you handle streams.

166 z/VM: REXX/VM User's Guide

Opening and Closing Files
The STREAM function (see “STREAM Function” on page 171) lets you explicitly open or close a stream.
However, as you have already learned, there are other ways of opening or closing a stream. Any line or
character I/O function implicitly opens a stream if it is not already open:

• CHARS and LINES implicitly open the stream for writing if possible, reading otherwise.
• CHARIN and LINEIN implicitly open the stream for reading.
• CHAROUT and LINEOUT implicitly open the stream for writing.
• The STREAM function explicitly opens a stream for reading or writing.

Each time an SFS file is opened, it is associated with a new work unit ID. This also applies to multiple
opens of the same file. The stream then remains open for subsequent I/O as long as an explicit close is
not issued. You can close a stream with the STREAM function or specific forms of CHAROUT and LINEOUT.
If you do not explicitly close the stream, it remains open until the completion of the last active REXX
program, at which time it is automatically closed. Before closing the stream, any remaining buffered data
from character output operations is written out.

Note: Only SFS and minidisk files can be opened multiple times.

To Summarize
Here is a review of the input and output functions that have been discussed so far.

Use this function To do this

LINEOUT(name,string) To open name and append string (write it to the end
of name). Returns 0 if successful; 1 if otherwise.

LINEOUT(name,string,line) To open file name, and write string to line. The
existing line will be overwritten.

LINEOUT(name) To close name when writing is completed. Returns
0 if successful; 1 if otherwise.

CHAROUT(name,string,start) To open file name, and write characters in string to
end of the file starting in position 1.

CHAROUT(name) To close name.

LINEIN(name) or
LINEIN(name,,1)

To open name, read the first line and advance the
read pointer to the second line.

If name is already open, then LINEIN reads the
current line and advances the read pointer one line
ahead.

Input and Output 167

Use this function To do this

LINEIN(name,1,0) To put the read pointer at the beginning of the
name without reading a line or advancing the read
pointer.

LINEIN(name,1,1) To put the read pointer at the beginning of the
name and specifically read the first line (advancing
the read pointer to the second line). The action is
the same whether or not name is already open.

LINEIN(name,,0) To open name without reading the first line or
advancing the read pointer. No action is taken if
name is already open.

CHARIN(name,start,length) To open file name and read length number of
characters beginning with the first character in the
line.

CHARIN(name,1,0) To place the read pointer to the beginning of name
without reading a character.

CHARIN(name) To close name.

CHARS(name) To find out if any characters remain in the stream.

LINES(name) To find out how many lines remain in the stream.

Table 5 on page 168 shows the REXX functions that read from and write to a data stream.

Table 5: Read and Write Functions

Characters / Lines Read Data Write Data Check for Lines or
Characters Remaining

Characters CHARIN() CHAROUT() CHARS()

168 z/VM: REXX/VM User's Guide

Table 5: Read and Write Functions (continued)

Characters / Lines Read Data Write Data Check for Lines or
Characters Remaining

Lines LINEIN() LINEOUT() LINES()

Reading 1 continues in Chapter 10, “Programming Style and Techniques,” on page 177.

Additional Stream I/O Information
 Reading 2

In this section you will learn more about:

• Data streams
• Default streams
• STREAM function
• Accessing data within a stream
• Techniques for using the I/O functions.

More about Data Streams
REXX regards all information from any file or device as a continuous stream of single characters. Data read
into a REXX program (whether from a disk file, the keyboard, a device, or another program) is also
processed as a character stream. The same is true for output data that a REXX program writes to a file or
other device. All of these are streams.

Your program can work with the information in a stream one character at a time; or if the data is in line
form, you can manipulate the information from the stream (or put information into it) line by line.

As shown earlier in this chapter, your REXX programs can access and manipulate text files by using:
LINEIN()

to read a line
LINEOUT()

to write a line
LINES()

to count the lines remaining in the stream
CHARIN()

to read one or more characters
CHAROUT()

to write one or more characters
CHARS()

to count the characters remaining in the stream.

Default Streams
Each of the I/O functions listed here has as its first argument the name of a stream that is read or written
to. Each of these functions also has a default stream that is used if you omit the name of a specific stream.
The default input stream (for LINEIN and CHARIN functions) is the terminal input buffer or user input if
the terminal buffer is empty. The default output stream is your terminal.

This means that you can use the LINEIN function to pause processing and read a line entered at the
keyboard, as you can with the PARSE PULL instruction. But note these differences:

• Unlike PARSE PULL, the LINEIN function reads only keyboard entries, regardless of whether there are
outstanding items on the default data queue.

Reading 2

Input and Output 169

• LINEIN would cause a VM READ if no string is available in the default input stream.

To understand how this works, use the first file-reading program, SHOLIN2 EXEC (see Figure 100 on page
166) and add an instruction as shown in Figure 101 on page 170.

/* SHOLIN3 EXEC */
/* Displays a file one line at a time */
/* as you press Enter; program */
/* ends when the end-of-file is reached */
/* OR if user types any character. */
say "Type a file name and file type"
pull fileid
lineno= 1
do until LINES(fileid) = 0
 say lineno LINEIN(fileid)
 if LINEIN() \= "" then leave /* waits for user to press Enter */
 /* if anything else is typed */
 /* (if LINEIN() does not return */
 /* an empty string), then the */
 /* loop (and the program) ends */
 lineno = lineno + 1
 end
exit

Figure 101: SHOLIN3 EXEC

Or, you could modify the cycling version of this program, SHOLIN1 EXEC (see Figure 98 on page 164) to
let you choose the number of lines to display. To do this, put the display routine inside a DO FOREVER
loop, as shown in Figure 102 on page 170.

/* SHOLIN4 EXEC */
/* Displays a file one line at a time */
/* as you press Enter, or */
/* displays a given number of lines. */
/* Cycles back to the beginning of the */
/* file when the end-of-file is reached */
/* Program ends only when user types */
/* any non-numeric character. */
say "Type a file name and file type"
pull fileid
say "Type a number of lines to display"
say "or press Enter to advance one line"
say "Type any other character to end."
lineno = 1
do forever
 howmany = LINEIN() /* pause for user entry and store */
 /* it in the variable HOWMANY */

 if howmany = "" then howmany = 1 /* pressing Enter */
 /* is the same as entering '1' */

 if \datatype(howmany,n) then leave /* entering any non-numeric */
 /* character ends the program */

 do howmany
 say lineno LINEIN(fileid)
 lineno = lineno + 1

 if LINES(fileid) = 0 then
 do
 call LINEIN fileid,1,0
 say ">>> End of File <<<"
 lineno = 1
 end
 end

 end
exit

Figure 102: SHOLIN4 EXEC

Reading 2

170 z/VM: REXX/VM User's Guide

Parsing Default Input

You can parse the input for individual words, either by using the instruction:

PARSE VALUE LINEIN() WITH var1 var2 …

For more information about the PARSE instruction and its options, see “Parsing Variables and
Expressions” on page 93. Also, see z/VM: REXX/VM Reference.

Performing Stream Tasks
You can use the STREAM function to get the following information about a stream:

• To determine if a stream exists
• To determine if a stream is ready for input or output
• To get characteristics of the stream.

You can also use STREAM for more complex input and output tasks:

• Open a stream for reading and writing.
• Close a stream at the end of the operation.
• Query the stream.
• Move the pointer.

See “STREAM Function” on page 171 for examples of STREAM.

STREAM Function
For more intricate and specialized input and output tasks, REXX provides another function called
STREAM. The format is:

STREAM (name

,

State

Command ,stream_command

Description

where:
name

is the stream you want to work on. You must specify the stream name.
S

the state of the stream
C

a command or action to be taken
D

a more detailed description
stream_command

is an action to perform. You must use this argument when and only when you specify C.

The syntax may look a bit complicated at first, because STREAM has a wide variety of applications, such
as:

• The C (Command) operation lets your program select and gain access to a named stream.
• The S and D (State and Description) operations report the current status of a stream; that is, whether:

– the stream is READY or NOTREADY for input or output
– it is UNKNOWN (not yet identified)

Reading 2

Input and Output 171

– an input or output ERROR has occurred.

The following exec will open a file with an LRECL of 80 and fixed format. After the file is open, the stream
is queried (with STREAM OPEN) to verify the file has been created with the correct parameters. The LRECL
and RECFM parameters on the STREAM OPEN command should only be used with NEW or REPLACE (or
non-existent files). If the file already exists, the LRECL and RECFM will not change the characteristics of
the file. The values on the STREAM OPEN are ignored.

/* STREAM EXEC */
SIGNAL ON NOTREADY /* Setup for any problems */
filename = 'OPENTEST FILE A' /* filename */
parse value stream(filename,'C','OPEN LRECL 80 RECFM F') with ok handle
 /* Open file with specific format */

say stream(handle,'C','QUERY FORMAT') /* Query to ensure file created */
c = stream(handle,'C','close 2') /* Close the stream */
exit /* End the program */

NOTREADY: /* If a NOTREADY condition occurs */
say stream('STREAM FILE A','D'); /* return description */

Figure 103: STREAM EXEC

Another use of the STREAM command is to move the read or write pointer to a particular line. In Figure
104 on page 172 an existing file (with more than two lines) is opened. The write pointer position will be
queried. The STREAM command moves the write pointer to the second line in the file. (See z/VM:
REXX/VM Reference for different ways to move the pointer.) The second query should return a 2 to show
the write pointer is now pointing at the second line.

/* STREAMLP EXEC */
CALL ON NOTREADY
file = 'TESTIT FILE A' /*File with > 2 lines */
parse value stream(file,'C','OPEN WRITE')with ok handle
 /* Open file for write */
say stream(handle,'C','query linepos write') /* Query write pointer */
a = stream(handle,'C','linepos 2 WRITE') /* Move write pointer to */
 /* second line of file */
say stream(handle,'C','query linepos write') /* Query write pointer */
 /* Should = 2 */
c = stream(handle,'C','close') /* Close the stream */
exit /* End of program */
NOTREADY: /* NOTREADY trap */
say stream('TESTIT FILE A','D'); /* Stream Description */

Figure 104: STREAMLP EXEC

Note: The STREAM LINEPOS should be used with care, especially if the write pointer is moved. Data may
be lost if the wrong line is written over.

For the full syntax of STREAM and the other REXX input and output functions, see z/VM: REXX/VM
Reference.

Getting Information about a Stream

To determine if a particular stream exists, use the stream command QUERY EXIST with the STREAM
function call. For example:

stream(name,C,'query exists')

Note that the stream command is enclosed in matching quotation marks.

If the stream name exists, then this function call returns the name of the stream. For example:

test file a1

If the stream name does not exist, then the result is a null string.

Reading 2

172 z/VM: REXX/VM User's Guide

Figure 105 on page 173 shows an example of a program that reads a file.

/* QRYFILE1 EXEC */
/* For a program that reads a file */
say "Type a file name and file type (or press Enter to exit): "
pull fileid
if fileid = "" then exit
/* Check that the file exists: */
/* if STREAM() returns a null string, */
/* then report the stream not found */
/* and exit.... */
call stream fileid, C, 'query exists'
if result = "" then
 do
 say "Cannot find" fileid"."
 exit
 end
/* ...else store the fully-qualified name */
/* (in RESULT) to the variable FILEID. */
else fileid = result
say "Full name is" fileid

Figure 105: QRYFILE1 EXEC

You can also query the size of a stream and the date and time of the last edit; see Figure 106 on page 173.

/* QRYFILE2 EXEC */
/* How big and when last changed? */
say "Type a file name and file type (or press Enter to exit): "
pull fileid
⋮
LINECOUNT = stream(fileid,c,'query size')
ledit = stream(fileid,c,'query datetime')
say fileid "is" lines "lines."
say "Last edit of" fileid "was" ledit"."

Figure 106: QRYFILE2 EXEC

Opening and Closing Streams

The functions LINEOUT, LINEIN, CHARIN and CHAROUT do much of their own housekeeping. They
automatically open the streams they work on and leave REXX to close the stream at the end of a program
unless you explicitly close the stream with the STREAM function or CHAROUT or LINEOUT.

However, there are cases where it is necessary (or at least more prudent) to explicitly open and close a
stream, such as in a program that reads from more than one device or one that writes to the middle of a
file.

You can do this with the STREAM function:

stream(name,c,"open")

This default form opens a stream name for both reading and writing text. To open a stream for:

• Reading only, add the word read. For example:

/* Open the file for read. */
parse value stream('TEST FILE A','C','OPEN READ') with ok file_handle
if ok ¬= 'READY:' then signal open_error
number_of_lines = lines(file_handle)

• Reading and writing, add the word write. For example:

/* Open the file for write. */
parse value stream('TEST FILE A','C','OPEN WRITE') with ok file_handle

Reading 2

Input and Output 173

if ok ¬= 'READY:' then signal open_error
number_of_lines = lines(file_handle)

When you open a stream in this way, STREAM returns the string READY: if the stream has been
successfully opened. It returns an error message if for any reason it was unable to open the stream.

The variable returned on the stream opened in file_handle is a unique identifier for that particular
opening of the stream. This is especially important when a named data stream can be opened more than
one time, and a unique identifier is needed to reference the different stream openings. When the stream is
opened implicitly (by LINEIN or CHARIN, for example), the user is unable to obtain the unique identifier.
In the previous examples, the unique identifier is used for the LINES function. The unique identifier may
be used for any I/O functions other than stream(filename,'c',open). By using the unique identifier,
performance will be increased.

To explicitly close a stream, use:

stream(name,c,"close")

In this form, STREAM returns the string READY: if the operation is successful, the string ERROR: if the
operation fails.

Accessing Data within a Stream

REXX regards all external data as streams of information. Nonetheless, these streams can take different
forms. A minidisk file, for example, differs from a spool file in that it has a static, physical form. A minidisk
file is one example of a persistent stream. This means a program can read from or write to anywhere in the
file.

As a program reads a file, REXX keeps a place marker, called the read position, that points to the next
character (or line).

The same is true when writing. REXX maintains a write position that marks the next place to write.

You can specify another position for the read or write positions by giving additional arguments on the
stream functions LINEIN, LINEOUT, CHARIN, CHAROUT, or by using the LINEPOS option of the STREAM
function (see "STREAM" in the z/VM: REXX/VM Reference.)

For more information about these functions, see z/VM: REXX/VM Reference.

A stream of data may be a string of characters separated by line end (LINEEND) characters. When you
open a stream, you can specify the type of file and if LINEEND characters are important. If the opened
stream specified BINARY, it means that all character codes may be present in the data stream, and no
indication of LINEEND characters will be provided or searched for. If the TEXT option is specified, it
means LINEEND characters are appended to the end of each line when passing data to the user on
character input operations. These LINEEND characters are never written to the data stream. Line
operations are not affected by this parameter, only character operations. Figure 107 on page 175 shows
how a LINEEND character is inserted:

Reading 2

174 z/VM: REXX/VM User's Guide

/* CHAROUT2 EXEC */
lend= '15'x /* line end character = 15'x' */
file = 'TESTIT FILE A' /* file name */
Z = stream(file,C,'OPEN TEXT lineend 15')/* open with TEXT and lineend */
g = charout(file,'abc'lend'def') /* write abc on one line */
 /* write def on next line */
Z = stream(file,C,'CLOSE') /* close the file */
exit /* end the program */

/* Output file would look like: */
/* . */
/* . */
/* abc */
/* def */

Figure 107: CHAROUT2 EXEC

For more information on LINEEND and TEXT files, see "STREAM" in z/VM: REXX/VM Reference.

Techniques For Using REXX I/O Functions
This section addresses some techniques to considered when writing a REXX program using the REXX I/O
functions. Some questions you may have are:

• When should I explicitly open and close streams?
• How do the REXX functions interact with existing CMS I/O facilities such as EXECIO, XEDIT, and CMS

Pipelines?
• How can I code my programs to tolerate errors encountered while performing an I/O operation?

The following sections address these and other questions.

To Open or not To Open
As you have seen, functions such as LINEIN and LINEOUT allow the REXX programmer to implicitly open
a stream. That is, the functions open the stream on behalf of the programmer using defaults as
appropriate. However, the defaults sometimes do not satisfy the needs of your program. What if you want
to create a fixed format file? The default creates a variable format file. In this case, you would need to
code the following before writing any lines or characters to the file:

Call STREAM name,'C','OPEN WRITE RECFM F'

It is recommended that you use explicit calls to the STREAM function to open a stream before doing any
I/O.

Note: The exception is the default stream, where an explicit open or close is not recommended. Explicit
opens enhance the logical flow of the program. They also let the programmer use the "handle" the OPEN
command returns in subsequent I/O operations.

In addition, the program should close any stream it opens before the REXX program ends. The stream
command CLOSE is the recommended way to close a stream.

REXX I/O and CMS
Your program should do input and output to a given stream exclusively with REXX or exclusively with the
CMS supplied routines. REXX needs to maintain its own control blocks that are different from the ones
CMS maintains. Mixing types of I/O can cause unpredictable results. One situation in particular, however,
could happen under usual circumstances. CMS should close a stream while REXX is actively doing I/O on
the stream. This would occur when the program is using a shared file system file, and a rollback happens.
The file will no longer be open to REXX, and any attempted I/O on that file generates an error with a

Reading 2

Input and Output 175

special reason code. In this case, REXX releases the control block for that file and considers the file
closed.

Error Handling
Any REXX program that uses the built-in I/O functions should enable a NOTREADY condition trap. This
lets the program provide more detailed diagnosis information in the event that one of the I/O functions
encounters an error. A sample NOTREADY condition trap follows:

/* A sample REXX program
Call on NOTREADY
.

NOTREADY:
Say "I/O Error:" CONDITION('D')
Return

Alternate Techniques
For alternate techniques for doing I/O in your programs using CSL, EXECIO, and PIPE commands, see the
following books:

• z/VM: CMS Application Development Guide
• z/VM: CMS Commands and Utilities Reference
• z/VM: CMS Pipelines User's Guide and Reference.

Reading 2 continues in Chapter 10, “Programming Style and Techniques,” on page 177.

For more complete information about using input and output streams, see z/VM: REXX/VM Reference.

Reading 2

176 z/VM: REXX/VM User's Guide

Chapter 10. Programming Style and Techniques

The method you use for constructing your programs is just as important as the language you use to write
them.

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

• Consider the data
• Happy hour with a real program.

Reading 2 “Designing a Program” on page 180, describes:

• Designing a program: stepwise refinement
• Correcting your program
• Coding style.

Consider the Data
 Reading 1

When you are faced with the task of writing a program, the first thing to consider is the data you are
required to process. Make a list of the input data—what are the items and what are the possible values of
each? If the items have a kind of structure or pattern, draw a diagram to illustrate it. Then do the same for
the output data. Study your two diagrams and try to see if they fit together. If they do, you are well on the
way to designing your program.

Next, write the specification that the user will use. This might be a written specification, a HELP file or
both.

Last of all, write your program.

Here is a little example:

You are required to write an interactive program that invites the user to play "Heads or tails". The game
can be played as long as the user likes. To end the game the user should reply Quit in answer to the
question "Heads or tails?" The program is arranged so that the computer always wins.

Think about how you would write this program.

The computer starts off with:

Let's play a game! Type "Heads", "Tails",
or "Quit"
and press ENTER.

This means that there are four possible inputs:

• HEADS
• TAILS
• QUIT
• None of these three.

And so the corresponding outputs should be:

• Sorry. It was TAILS. Hard luck!

Reading 1

© Copyright IBM Corp. 1991, 2018 177

• Sorry. It was HEADS. Hard luck!
• Ready;
• That's not a valid answer. Try again!

And this sequence must be repeated indefinitely, ending with the return to CMS (Ready;).

Now that you understand the specification, the input data and the output data, you are ready to write the
program.

If you had started off by writing down some instructions without considering the data, it would have taken
you longer.

Test Yourself…
Write the program. If you are careful, it should run the first time!

Answer:

/* CON EXEC */

/* Tossing a coin. The machine is lucky, not the user */
do forever
 say "Let's play a game! Type 'Heads', 'Tails'",
 "or 'Quit' and press ENTER."
 pull answer
 select
 when answer = "HEADS"
 then say "Sorry! It was TAILS. Hard luck!"
 when answer = "TAILS"
 then say "Sorry! It was HEADS. Hard luck!"
 when answer = "QUIT"
 then exit
 otherwise
 say "That's not a valid answer. Try again!"
 end
 say
end

Happy Hour
As this is the end of Reading 1, here is a chance to have some fun.

This is a very simple arcade game. Type it in and play it with your friends. Later on, you may want to
improve it. (We shall discuss this at the end of the second reading.)

Reading 1

178 z/VM: REXX/VM User's Guide

/* CATMOUSE EXEC */
/* The user says where the mouse is to go. But where */
/* will the cat jump? */
say "This is the mouse ----------> @"
say "These are the cat's paws ---> ()"
say "This is the mousehole ------> O"
say "This is a wall -------------> |"
say
say "You are the mouse. You win if you reach",
 "the mousehole. You cannot go past"
say "the cat. Wait for him to jump over you.",
 "If you bump into him you're caught!"
say
say "The cat always jumps towards you, but he's not",
 "very good at judging distances."
say "If either player hits the wall he misses a turn."
say
say "Enter a number between 0 and 2 to say how far to",
 "the right you want to run."
say "Be careful, if you enter a number greater than 2 then",
 "the mouse will freeze and the cat will move!"
say
/*--*/
/* Parameters that can be changed to make a different */
/* game */
/*--*/
len = 14 /* length of corridor */
hole = 14 /* position of hole */
spring = 5 /* maximum distance cat can jump */
mouse = 1 /* mouse starts on left */
cat = len /* cat starts on right */
/*--*/
/* Main program */
/*--*/
do forever
 call display
 /*---*/
 /* Mouse's turn */
 /*---*/
 pull move
 IF DATATYPE(move,whole) & move >= 0 & move <= 2
 then select
 when mouse + move > len then nop /* hits wall */
 when cat > mouse,
 & mouse + move >= cat /* hits cat */
 /* continued ... */

Figure 108: CATMOUSE EXEC (Part 1 of 2)

Reading 1

Programming Style and Techniques 179

 then mouse = cat
 otherwise /* moves */
 mouse = mouse + move
 end
 IF mouse = hole then leave /* reaches hole */
 IF mouse = cat then leave /* hits cat */
 /*---*/
 /* Cat's turn */
 /*---*/
 jump = random(1,spring)
 IF cat > mouse then do /* cat tries to jump left */
 Temp = cat - jump
 IF Temp < 1 then nop /* hits wall */
 else cat = Temp
 end
 else do /* cat tries to jump right */
 IF cat + jump > len then nop /* hits wall */
 else cat = cat + jump
 end
 IF cat = mouse then leave
end
/*--*/
/* Conclusion */
/*--*/
call display
IF cat = mouse then say "Cat wins"
else say "Mouse wins"
exit
/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/* Design note: each position in the corridor occupies */
/* three character positions on the screen. */
/*--*/
display:
corridor = copies(" ",3*len) /* corridor */
corridor = overlay("O",corridor,3*hole-1) /* hole */
IF mouse ¬= len /* mouse in hole? */
then corridor = overlay("@",corridor,3*mouse-1)/* mouse */
corridor = overlay("(",corridor,3*cat-2) /* cat */
corridor = overlay(")",corridor,3*cat)
say " |"corridor"|"
return

Figure 109: CATMOUSE EXEC (Part 2 of 2)

Congratulations! You have successfully completed Reading 1. Now, maybe you want to take a while to
put your new skills into action, or maybe you want to start right in with the second reading.

Reading 2 begins in Chapter 2, “Starting Out with REXX,” on page 5.

Designing a Program
 Reading 2

Still thinking about method, which is just as important as language, let us take another look at
CATMOUSE EXEC.

The program is about a cat and a mouse and their positions in a corridor. At some stage their positions will
have to be pictured on the screen. The whole thing is too complicated to think about all at once; the first
step is to break it down into:

• Main program: calculate their positions
• Display subroutine: display their positions.

Reading 2

180 z/VM: REXX/VM User's Guide

Now let us look at main program. The user (who plays the mouse) will want to see where everybody is
before making a move. The cat will not. The next step is to break the main program down further, into:

Do forever
 call Display
 Mouse's move
 Cat's move
end
Conclusion

Methods for Designing Loops
The method for designing loops is to ask two questions:

• Will it always end?
• Whenever it terminates, will the data meet the conditions required?

Well, the loop terminates (and the game ends) when:

1. The mouse runs to the hole.
2. The mouse runs into the cat.
3. The cat catches the mouse.

The Conclusion
At the end of the program, the user must be told what happened.

call display
say who won

What Do We Have So Far?
Putting all this together, we have:

/*--*/
/* Main program */
/*--*/
do forever
 call display
 /*---*/
 /* Mouse's turn */
 /*---*/
 ...
 IF mouse = hole then leave /* reaches hole */
 IF mouse = cat then leave /* hits cat */
 /*---*/
 /* Cat's turn */
 /*---*/
 ...
 IF cat = mouse then leave
end
/*--*/
/* Conclusion */
/*--*/
call display
IF cat = mouse then say "Cat wins"
else say "Mouse wins"
exit
/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/*--*/
display:
 ...

Reading 2

Programming Style and Techniques 181

The method that we have just discussed is sometimes called stepwise refinement. You start with a
specification (which may be incomplete). Then you divide the proposed program into routines, such that
each routine will be easier to code than the program as a whole. Then you repeat the process for each of
these routines until you reach routines that you are sure you can code correctly at the first attempt.

While you are doing this, keep asking yourself two questions:

• What data does this routine handle?
• Is the specification complete?

Stepwise Refinement: An Example
Granny is going to knit you a warm woolen garment to wear when you go sailing. This is what she might
do.

1. Knit front
2. Knit back
3. Knit left arm
4. Knit right arm
5. Sew pieces together.

Each of these jobs is simpler to describe than the job of knitting a pullover. In computer jargon, breaking a
job down into simpler jobs is called stepwise refinement.

At this stage, look at the specification again. A sailor might need to put on the pullover in the dark, quickly,
without worrying about the front or back. Therefore, the front should be the same as the back; and the
two sleeves should also be the same. This could be programmed:

do 2
 CALL Knit_body_panel
end
do 2
 CALL Knit_sleeve
end
CALL sew_pieces_together

In programming, the best method is to go on refining your program, working from the top, until you get
down to something that is easy to code.

Top down is the best approach.

Reconsider the Data
When you are refining your program, your objective is to make each piece simpler. This almost certainly
means:

• Simpler input data for each segment or routine
• Simpler output data for each segment or routine
• Simpler processing
• And, therefore, simpler code.

If your pieces really are simpler, they will probably have simpler names, too. For instance:

• Knit cuff

rather than

• Make ribbing for cuffs and waistband.

Correcting Your Program
If you cannot understand why your program is giving wrong results, you can:

Reading 2

182 z/VM: REXX/VM User's Guide

• Modify your program so that it tells you what it is doing
• Use some of the REXX interactive trace facilities (See “Tracing” on page 38).

You will gradually learn which of these techniques suits you better.

Modifying Your Program
You can put extra instructions into your program, such as:

 ...
say "Checkpoint A. x =" x
 ...
say "End of first routine"
 ...

Another debug method is:

 PIPE rexxvars toload | > rexx vars a

This will put into file REXX VARS A all the values of the variables at the point when the PIPE command is
inserted into the file. See z/VM: CMS Pipelines User's Guide and Reference for more information.

Tracing Your Program
Or you can use the TRACE instruction, described in your z/VM: REXX/VM Reference.

• To find out where your program is going, use TRACE Labels. The example shows a program and the
trace it gives on the screen.

/* ROTATE EXEC */
/* Example: two iterations of wheel, six iterations */
/* of cog. On the first three iterations, "x < 2" */
/* is true. On the next three, it is false. */
trace L
do x = 1 to 2
wheel:
 do 3
cog:
 if x < 2 then do
true:
 end
 else do
false:
 end
 end
end
done:

Figure 110: ROTATE EXEC

This gives the trace:

rotate
 6 *-* wheel:
 8 *-* cog:
 10 *-* true:
 8 *-* cog:
 10 *-* true:
 8 *-* cog:
 10 *-* true:
 6 *-* wheel:
 8 *-* cog:
 13 *-* false:
 8 *-* cog:
 13 *-* false:
 8 *-* cog:
 13 *-* false:
 17 *-* done:
Ready;

Reading 2

Programming Style and Techniques 183

• To see how the language processor is computing expressions, use TRACE Intermediates.
• To find out whether you are passing the right data to a command or subroutine, use TRACE Results.
• To make sure that you get to see nonzero return codes from commands, use TRACE Errors.

Coding Style
The only sure way of finding out whether a program is correct is to read it. Therefore, programs must be
easy to read. Naturally, easy to read means different things to different programmers. All we can do here
is to give examples of different styles, and leave you to choose the style you prefer.

A very good way to get your program checked is to ask a coworker to read it. Be sure to choose a coding
style that your coworkers find easy to read.

Most people would find the following program fragment difficult to read.

/**/
/* SAMPLE #1: A portion of CATMOUSE EXEC */
/* (Figure 108 on page 179), */
/* not divided into segments and written with no */
/* indentation, and no comments. This style is not */
/* recommended. */
/**/
do forever
call display
pull move
IF datatype(move,whole) & move >= 0 & move <=2
then select
when mouse+move > len then nop
when cat > mouse,
& mouse+move >= cat,
then mouse = cat
otherwise
mouse = mouse + move
end
IF mouse = hole then leave
IF mouse = cat then leave
jump = random(1,spring)
IF cat > mouse then do
IF cat-jump < 1 then nop
else cat = cat-jump
end
else do
IF cat+jump > len then nop
else cat = cat+jump
end
IF cat = mouse then leave
end
call display
IF cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

Reading 2

184 z/VM: REXX/VM User's Guide

This next example is easier to read. It is divided into segments, each with its own heading. The comments
on the right are sometimes called remarks. They can help the reader get a general idea of what is going
on.

/**/
/* SAMPLE #2: A portion of CATMOUSE EXEC */
/* (Figure 108 on page 179), */
/* divided into segments and written with 'some' */
/* indentation and 'some' comments. */
/**/
/**/
/* Main program */
/**/
do forever
 call display
 /***/
 /* Mouse's turn */
 /***/
 pull move
 IF datatype(move,whole) & move >= 0 & move <=2
 then select
 when mouse+move > len then nop /* hits wall */
 when cat > mouse,
 & mouse + move >= cat, /* hits cat */
 then mouse = cat
 otherwise /* moves */
 mouse = mouse + move
 end
 IF mouse = hole then leave /* reaches hole */
 IF mouse = cat then leave /* hits cat */
 /**/
 /* Cat's turn */
 /**/
 jump = random(1,spring)
 IF cat > mouse then do /* cat tries to jump left */
 IF cat - jump < 1 then nop /* hits wall */
 else cat = cat - jump
 end
 else do /* cat tries to jump right */
 IF cat + jump > len then nop /* hits wall */
 else cat = cat + jump
 end
 IF cat = mouse then leave
end
/**/
/* Conclusion */
/**/
call display
IF cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

Reading 2

Programming Style and Techniques 185

This next example has additional features that are popular with some programmers. Keywords written in
uppercase and a different indentation style highlight the structure of the code; the abundant comments
recall the detail of the specification.

/**/
/* SAMPLE #3: A portion of CATMOUSE EXEC */
/* (Figure 108 on page 179), */
/* divided into segments and written with 'more' */
/* indentation and 'more' comments. */
/* Note commands in uppercase (to highlight logic) */
/**/
/**/
/* Main program */
/**/
DO FOREVER
 CALL display
 /**********************************/
 /* Mouse's turn */
 /**********************************/
 PULL move
 IF DATATYPE(move,whole) & move >= 0 & move <=2
 THEN SELECT
 WHEN mouse+move > len /* mouse hits wall */
 THEN nop /* and loses turn */
 WHEN cat > mouse,
 & mouse+move >= cat, /* mouse hits cat */
 THEN mouse = cat /* and loses game */
 OTHERWISE mouse = mouse + move /* mouse ... */
 END /* moves to new location */
 IF mouse = hole THEN LEAVE /* mouse is home safely */
 IF mouse = cat THEN LEAVE /* mouse hits cat (ouch) */
 /**********************************/
 /* Cat's turn */
 /**********************************/
 jump = RANDOM(1,spring) /* determine cat's move */
 IF cat > mouse /* cat must jump left */
 THEN DO
 IF cat-jump < 1 /* cat hits wall */
 THEN nop /* misses turn */
 ELSE cat = cat-jump /* cat jumps left */
 END
 ELSE DO /* cat must jump right */
 IF cat+jump > len /* cat hits wall */
 THEN nop /* misses turn */
 ELSE cat = cat+jump /* cat jumps right */
 END
 IF cat = mouse THEN LEAVE /* cat catches mouse */
END
/**/
/* Conclusion */
/**/
CALL display /* on final display */
 IF cat = mouse /* who won? */
 THEN say "Cat wins" /* ... the cat */
 ELSE say "Mouse wins" /* ... the mouse */
EXIT

Congratulations! You have successfully completed Reading 2. Now, maybe you want to take a while to
put your new skills into action, or maybe you want to start right in with Reading 3.

Reading 3 begins in Chapter 2, “Starting Out with REXX,” on page 5.

Reading 2

186 z/VM: REXX/VM User's Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1991, 2018 187

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to write programs to
obtain services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at IBM
copyright and trademark information - United States (www.ibm.com/legal/us/en/copytrade.shtml).

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

188 z/VM: REXX/VM User's Guide

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Online Privacy Statement Highlights at http://www.ibm.com/privacy and the IBM Online Privacy
Statement at http://www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and
Other Technologies", and the IBM Software Products and Software-as-a-Service Privacy Statement at
http://www.ibm.com/software/info/product-privacy.

Notices 189

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

190 z/VM: REXX/VM User's Guide

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Knowledge Center - z/VM (www.ibm.com/
support/knowledgecenter/SSB27U).

z/VM Base Library

Overview

• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service

• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration

• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/OS and z/VM: Hardware Configuration Manager User's Guide (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3sc342670/$file/eequ100_v2r3.pdf), SC34-2670

Customization and Tuning

• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

© Copyright IBM Corp. 1991, 2018 191

http://www.ibm.com/support/knowledgecenter/SSB27U
http://www.ibm.com/support/knowledgecenter/SSB27U
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sc342670/$file/eequ100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sc342670/$file/eequ100_v2r3.pdf

Operation and Use

• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268
• z/VM: System Operation, SC24-6326
• z/VM: TCP/IP User's Guide, SC24-6333
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming

• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• CPI Communications Reference, SC26-4399
• Common Programming Interface Resource Recovery Reference, SC31-6821
• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3sa760169/$file/glpa300_v2r3.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r3sa380687/$file/ceea800_v2r3.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r3ga320908/$file/ceea100_v2r3.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r3sa380682/$file/ceea200_v2r3.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3sa380683/$file/ceea300_v2r3.pdf), SA38-0683

192 z/VM: REXX/VM User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa760169/$file/glpa3100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa760169/$file/glpa3100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380687/$file/ceea800_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380687/$file/ceea800_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3ga320908/$file/ceea100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3ga320908/$file/ceea100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380682/$file/ceea200_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380682/$file/ceea200_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380683/$file/ceea300_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380683/$file/ceea300_v2r3.pdf

• z/OS: Language Environment Runtime Messages (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r3sa380686/$file/ceea900_v2r3.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380684/$file/ceea400_v2r3.pdf), SA38-0684

• z/OS: MVS Program Management Advanced Facilities (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3sa231392/$file/ieab200_v2r3.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3sa231393/$file/ieab100_v2r3.pdf), SA23-1393

Diagnosis

• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: VM Dump Tool, GC24-6335
• z/OS and z/VM: Hardware Configuration Definition Messages (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3sc342668/$file/cbdm100_v2r3.pdf), SC34-2668

z/VM Facilities and Features

Data Facility Storage Management Subsystem for VM

• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277
• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM

• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter

• Open Systems Adapter-Express Customer's Guide and Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3sa227935/$file/ioaz100_v2r3.pdf), SA22-7935

• Open Systems Adapter-Express Integrated Console Controller User's Guide (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r3sc279003/$file/ioaq100_v2r3.pdf), SC27-9003

• Open Systems Adapter-Express Integrated Console Controller 3215 Support (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r3sa232247/$file/ioan100_v2r3.pdf), SA23-2247

• Open Systems Adapter/Support Facility on the Hardware Management Console (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r3sc147580/$file/ioas100_v2r3.pdf), SC14-7580

Bibliography 193

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380686/$file/ceea900_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380686/$file/ceea900_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380684/$file/ceea400_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa380684/$file/ceea400_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa231392/$file/ieab200_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa231392/$file/ieab200_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa231393/$file/ieab100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa231393/$file/ieab100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sc342668/$file/cbdm100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sc342668/$file/cbdm100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa227935/$file/ioaz100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa227935/$file/ioaz100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sc279003/$file/ioaq100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sc279003/$file/ioaq100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa232247/$file/ioan100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa232247/$file/ioan100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sc147580/$file/ioas100_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sc147580/$file/ioas100_v2r3.pdf

Performance Toolkit for VM

• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM

• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM

• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320
• z/OS: Network Job Entry (NJE) Formats and Protocols (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3sa320988/$file/hasa600_v2r3.pdf), SA32-0988

Prerequisite Products

Device Support Facilities

• Device Support Facilities (ICKDSF): User's Guide and Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r3gc350033/$file/ickug00_v2r3.pdf), GC35-0033

Environmental Record Editing and Printing Program

• Environmental Record Editing and Printing Program (EREP): Reference (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r3gc350152/$file/ifc2000_v2r3.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r3gc350151/$file/ifc1000_v2r3.pdf), GC35-0151

REXX Compiler
• IBM Compiler and Library for REXX on zSeries: Diagnosis Guide, SH19-8179.
• IBM Compiler and Library for REXX on zSeries: User’s Guide and Reference, SH19-8160.

194 z/VM: REXX/VM User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa320988/$file/hasa600_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3sa320988/$file/hasa600_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3gc350033/$file/ickug00_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3gc350033/$file/ickug00_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3gc350151/$file/ifc2000_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3gc350151/$file/ifc2000_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3gc350151/$file/ifc1000_v2r3.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r3gc350151/$file/ifc1000_v2r3.pdf

Index

Special Characters
. (as a placeholder) 91
. (in compound symbols) 24
* (multiplication operator) 40, 58
** (exponentiation operator) 40, 63
*/ comment delimiter 8
/ (division operator) 40, 58
/* comment delimiter 8
// (remainder operator) 40, 58
\< (not less than operator) 40
\<< (strictly not less than operator) 40
\= (not equal operator) 40, 82
\== (not exactly equal operator) 40, 82
\> (not greater than operator) 40
\>> (strictly not greater than operator) 40
& (AND operator) 43, 45
&& (exclusive OR operator) 40
#CP I CMS 55
% (integer division operator) 40, 58
+ (addition operator) 40, 58
+ (prefix operator) 40
< (less than operator) 40
<< (strictly less than operator) 40
<<= (strictly less than or equal to operator) 40
<= (less than or equal to operator) 40
= (equal operator) 40, 43
== (exactly equal operator) 40, 82
> (greater than operator) 40
>= (greater than or equal to operator) 40
>> (strictly greater than operator) 40
>>= (strictly greater than or equal to operator) 40
¬ (NOT operator) 40
¬< (not less than operator) 40
¬<< (strictly not less than operator) 40
¬= (not equal operator) 40, 82
¬== (not exactly equal operator) 40, 82
¬> (not greater than operator) 40
¬>> (strictly not greater than operator) 40
| (inclusive OR operator) 43, 44
|| (concatenation operator) 40, 67
⁄= (not equal operator) 40, 82
⁄== (not exactly equal operator) 40, 82

Numerics
1MORE EXEC (exercise) 139
2LESS EXEC (exercise) 139
3HUP EXEC (exercise) 139
4MAT EXEC (exercise) 75
4NOW EXEC (exercise) 139

A
ABBREV function 81
abbreviation of information 81
About This Document xv

ABRACADA EXEC 55
abuttal 40, 67
accuracy in calculations, changing 64
ACCURATE EXEC 64
action taken when a condition is trapped 157
ADD EXEC 22
ADD2NUM EXEC 18
addition operator 40, 58
ADDRESS instruction 116
alternate techniques for I/O 176
AND operator 43, 45
AREAS EXEC 22
ARG instruction

example 92
explanation 22, 92, 149
function 49
instruction 48
string patterns 93

ARG() function 48
argument

assigning at command prompt 22
CALL instruction 146
function 47, 48
parsing 48, 92, 153
separated by commas 70
subroutine 148
use without names 48
when to leave out 150

arithmetic
checking data 57
explanation 56

ARITHOPS EXEC (exercise) 60
arrangement of words, syntax 11
array

explanation 24, 25
using compound symbols 24
with more than one dimension 33

assembler language functions 53
ASSIGN EXEC 19
assigning

an expression result 22
arguments at command prompt 22
data from a user 21

assignment
examples 19
explanation 11, 18

assumption, XEDIT 6

B
BACKUP EXEC 99
backward movement in a file 120
basic programming concepts 2
beginners 3
blank (concatenation operator) 40, 67
blanks removed 10
buffers 109

 195

built-in functions 1, 47
BY expression 138

C
CALENDAR EXEC (exercise) 135
CALL

instruction 146
ON Condition 155

calls, using other kinds 152
CATMOUSE EXEC 178
caution, dividing by zero 59
CENSUS EXEC 133
CHANGE EXEC 95
changing scroll key settings 120
character

comparing 79
conversion 83
priority

explanation 36
when comparing 79

sorting 76
strings 9, 39

character strings, manipulating 1
CHARIN (Character Input) function 164
CHAROUT (Character Output) function 162
CHAROUT1 EXEC 163
CHAROUT2 EXEC 174
CHARS (Characters Remaining) function 166
CHECKERS EXEC 34
checking data 57
CHEER EXEC 148
CHITCHAT EXEC 88
clause

and instructions 9
delimiter 11
explanation 6, 10
more than one on a line 11
null 11
one per line 9
separating 11
spanning more than one line 11
that becomes a command 97

closing and opening a stream 173
coding style 184
column formatting 68
comma to indicate continuation of a clause 11
command

clause that becomes 97
debugging 102
halt interpretation 54
HI 54
issuing to CP 99
SET CMSTYPE HT 104

COMMAND environment 116
command line, getting data from 92
comment

explanation 8
special meaning to CMS 9

communicating with the computer 6
COMPARE function 71, 80
COMPARE1 EXEC (exercise) 134
COMPARE2 EXEC (exercise) 135
comparison

comparison (continued)
allowing approximation 82
characters 79
exact 82
fuzzy arithmetical 82
numbers 79
operators 40, 42
priority of characters 79
strings 80

compound DO instructions 143
compound symbols

explanation 24
for repeated substitution 15
in an array 24
more than one period 33
stems and tails 24
use of a period 24

computer communicating with user 6
CON EXEC (exercise) 178
concatenation

explanation 67
operator 40, 67

condition
action taken when trapped 157
CALL ON 155
ERROR 156, 157
FAILURE 156, 158
HALT 156, 158
NOTREADY 156, 158
NOVALUE 156, 158
SIGNAL ON 155
SYNTAX 156, 158
traps 155

CONDITION function parameters 157
conditional loops

DO
compound 143
FOREVER instruction 140, 142
UNTIL instruction 141, 142
WHILE instruction 140, 142

explanation 140
LEAVE instruction 140, 144

console stack 109
constants and variables 23
contents of a program 8
contents of this document xv
continuation

clause 11
expression in SAY instruction 87

Control Program (CP)
commands

obtaining a response from 113
SPOOL PRINT 137
suppressing messages from 112
using 99

environment 99
explanation 55

control variable 137, 143
conventional notation, specifying 62
Conversational Monitor System (CMS)

commands
DROFBUF 111
halt interpretation 8
HI 8, 54

196

Conversational Monitor System (CMS) (continued)
commands (continued)

MAKEBUF 111
PIPE 112
SET CMSTYPE HT 104

environment 97
issuing commands to 97
Primer xv
putting data onto a program stack 107, 111
REXX I/O with 175
suppressing messages from 104
taking data from a program stack 108, 112
using 97

conversations 6
conversion between hexadecimal and decimal characters 83
COPIES function 68
COPY, XEDIT subcommand 112
copying a string 68
correcting your program 182
COUNT subroutine 30
counting

characters from a stream, CHARS 166
lines from a stream, LINES 165

COUNTING EXEC (exercise) 37
current line, changing 122

D
dangling ELSE 130
data

counting remaining lines or characters 165
prompting user for 88
putting onto a program stack 107
reading from a stream 163
taking from a program stack 108
types 39, 57
writing to a stream 160

DATATYPE () function 57
DAYS1 EXEC (exercise) 28
DAYS2 EXEC (exercise) 28
debugging

commands 102
execs that contain commands 102

decimal number
converting 83
explanation 57

decision making 128
default input stream (STDIN) 169
default input, parsing 171
default output stream (STDOUT) 169
delimiters

clause 11
comment 8

DELWORD function 72
DENTAL XEDIT (macro) 121
derived name 24
designing

a program 180
loops, methods for 181

determining how to handle a symbol 23
DICEY EXEC 40
DIGITS

explanation 64
option of NUMERIC instruction 64

DIGITS EXEC 86
Direct Access Storage Device (DASD) 113
displaying

a variable's value 19
dividing by zero, caution 59
division operator 40, 58
DO instruction

BY expression 138
conditional loop 140
control variable 137, 143
END keyword 54
FOREVER instruction 140, 142
ITERATE instruction 144
LEAVE instruction 140, 144
non-looping 66, 128
repetitive loops 136
UNTIL instruction 53, 142
WHILE instruction 140, 142

document, purpose xv
documents to read xv
DOZEN EXEC 54
DROP instruction 32
DROPBUF command 112
dropping variables 32
duplicate

names 29
strings 68

E
E (exponent symbol) 59
EDDY EXEC 161
editor

for creating a program 6
ELIST EXEC 98
ELSE keyword

dangling 130
IF instruction 129
NOP instruction 133

END keyword
DO instruction 54
SELECT instruction 131

environments
CMS 97, 116
COMMAND 116
CP 99

equal operator 40, 82
ERASER EXEC 98
ERRAND EXEC 14
ERROR condition 156, 157
error handling with I/O 176
error message 11
evaluating expressions

order 36, 40
TRACE instruction 38
using parentheses 37, 41

exact comparison operators 40, 82
exactly equal operator 40, 82
examples and exercises 3
exclusive OR operator 40
exec

1MORE (exercise) 139
2LESS (exercise) 139
3HUP (exercise) 139

 197

exec (continued)
4MAT (exercise) 75
4NOW (exercise) 139
ABRACADA 55
ACCURATE 64
ADD 22
ADD2NUM 18
AREAS 22
ARITHOPS 60
ASSIGN 19
BACKUP 99
CALENDAR (exercise) 135
CATMOUSE 178
CENSUS 133
CHANGE 95
CHAROUT1 163
CHAROUT2 174
CHECKERS 34
CHEER 148
CHITCHAT 88
COMPARE1 (exercise) 134
COMPARE2 (exercise) 135
CON (exercise) 178
COUNTING 37
DAYS1 28
DAYS2 28
debugging, that contain commands 102
DENTAL XEDIT (macro) 121
description of your program 9
DICEY 40
DIGITS 86
DOZEN 54
EDDY 161
ELIST 98
ERASER 98
ERRAND 14
EXPONENT (exercise) 65
FADE 146
FAIR 43
file type 9
FUSSY 91
FUZZ 82
GAME 25
HALF 50
HALF XEDIT (macro) 122
HALF2 51
HANDOUTS 136
HELLO 6
HELLO with syntax error 12
HOWDY (exercise) 92
INVOICE 61
LEFT7 112
LINKHELP 100
LISTPR (exercise) 102
MAKEBOX (partial program) 149
MATH 15
MCDONALD 20
MEASURES 44
MESSY 29
MIX 92
MONTH1 28
MYPROG 74
MYPROG2 (exercise) 94
NEARFULL 111

exec (continued)
NEVER 54
NOAH (exercise) 89
NOASSIGN 20
NOFUZZ 82
NOPUNCT 86
ORDCHARS 76
PAGE XEDIT (macro) 120
PAIRS (exercise) 105
PARA XEDIT (macro) 123
PARSING 94
PARSWORD 90
PERSONS 37
PILOT 134
POSN 143
PROFILE XEDIT (macro) 124
PULLIN (exercise) 89
PULLING (exercise) 91
QRYFILE1 173
QRYFILE2 173
RACEGAME (exercise) 151
RAH 11
RECTANGL 137
REFORMAT (exercise) 63
REVERE 73
ROOTS 53
ROTATE 183
RTRACE 39
SAMPMENU XEDIT (macro) 125
SHAGGY 10
SHARE 59
SHOCHAR1 165
SHOLIN1 164
SHOLIN2 166
SHOLIN3 170
SHOLIN4 170
SQRT 52
SQUARE 49
STREAM 172
STREAMLP 172
SUM 140
TABLE1 68
TABLE2 70
TABLE3 70
TAKE 93
TDISK 113
TEN XEDIT (macro) 120
TESTHAL2 51
TESTHALF 50
TESTMENU 125
TESTS 56
TICKETS 32
TOSS 48
TRIANGLE 138
TRUCKER 134
TTRACE 38
TTRUNC 65
TWELVDAY 24
TWOPLUS3 17
VALIDFN 72
VALNUM 57
VENTS 15
WHATDAY 55
WHATDAY2 88

198

exec (continued)
WHATDAY2 (exercise) 89
WHATODO (exercise) 131
WHOAMI (exercise) 12
XE 76
YEP 81

exercise
1MORE EXEC 139
2LESS EXEC 139
3HUP EXEC 139
4MAT EXEC 75
4NOW EXEC 139
ARITHOPS EXEC 60
CALENDAR EXEC 135
COMPARE1 EXEC 134
COMPARE2 EXEC 135
CON 178
COUNTING EXEC 37
DAYS1 EXEC 28
DAYS2 EXEC 28
EXPONENT 65
FAIR EXEC 43
HALF EXEC 50
HALF2 EXEC 51
HOWDY 92
LISTPR 102
MEASURES EXEC 44
MONTH1 EXEC 28
MYPROG2 94
NOAH 89
PAIRS 105
PERSONS EXEC 37
PULLIN 89
PULLING 91
RACEGAME EXEC 151
REFORMAT EXEC 63
running HELLO EXEC 8
TESTHAL2 EXEC 51
TESTHALF EXEC 50
TESTS EXEC 56
TOSS EXEC 48
WHATDAY EXEC 55
WHATDAY2 89
WHATODO EXEC 131
WHOAMI EXEC 12

exercises and examples 3
EXIT instruction 101, 145
experienced programmers 3
explaining a program 73
explanation of REXX 1
exponent 60
EXPONENT EXEC (exercise) 65
exponential notation

explanation 59
NUMERIC DIGITS instruction 64
significant digits 64
specifying 62

exponentiation
explanation 63
operator 40

EXPOSE keyword of PROCEDURE instruction 30, 31
expressions

assignment 19
evaluating

expressions (continued)
evaluating (continued)

order 36, 40
using parentheses 37, 41
using the TRACE instruction 38

explanation 35
IF clause 128
parsing 93
result, assigning 22
text 66
TRUE and FALSE 42

external routines
functions 47, 152
subroutines 152, 153

EXTRACT, XEDIT subcommand 121

F
FADE EXEC 146
FAILURE condition 156, 158
FAIR EXEC (exercise) 43
FALSE expression 42
Features of REXX 1
FIFO (first-in/first-out) 109
figuring out errors 1
file

processing 160
file type of exec 9
finding

phrase in a string 73
string in another string 71

fixed point number
explanation 60
specifying 62

floating-point number
explanation 57, 60
special case 62
specifying 62

FORMAT function 61, 65
formatting output

lining up numbers 61
putting in columns 68

forward movement in a file 120
full screen menus 124
function

ABBREV 81
ARG 49
arguments for 47, 48
built-in 47
call 46
calling as a subroutine 161
CHARIN (Character Input) 164
CHAROUT (Character Output) 162
CHARS (Characters Remaining) 166
COMPARE 80
CONDITION 157
COPIES 68
DATATYPE () 57
DELWORD 72
differences with subroutines 151
DIGITS 64
example 49
explanation 46
external 47, 152

 199

function (continued)
FORMAT 61
FUZZ 82
HALF 46
internal 52, 152
LASTPOS 71
LEFT 68
LENGTH 67
LINEIN (Line Input) 163
LINEOUT (Line Output) 160
LINES (Lines Remaining) 165
MAX 47
OVERLAY 75
POS 71
RANDOM 47
returning from 49
RIGHT 68
search order 152
SIGN 64
similarities with subroutines 152
SOURCELINE 73
STREAM 167, 171
SUBSTR 67
SUBWORD 72
SYMBOL 32
techniques for I/O 175
TRANSLATE 85
TRUNC 65
user-written 47, 48
using the ARG instruction 48
VALUE 14
VERIFY 86
WORD 72
WORDINDEX 72
WORDLENGTH 72
WORDPOS 73, 86
WORDS 72
written in Assembler language 53

FUSSY EXEC 91
FUZZ

explanation 82
NUMERIC instruction 82

FUZZ EXEC 82
fuzzy arithmetical comparison 82

G
GAME EXEC 25
general-use programming interface 188
getting

arguments for a function or routine 47, 48
data from the command line 48, 92
data when you are prompted 88
out of loops 54, 143

GLOBALV command, sharing variables 32, 154
GOTO considered harmful 127
greater than

operator 40
or equal to operator 40

groups of instructions 66

H
HALF EXEC (exercise) 50
HALF function 46
HALF XEDIT (macro) 122
HALF2 EXEC (exercise) 51
HALT condition 156, 158
halt interpretation (HI) command 8, 54
halt type (HT) command 104
handling streams 166, 171
HANDOUTS EXEC 136
HELLO EXEC 6
HELLO2 EXEC with syntax error 12
help, providing, to explain a program 73
hexadecimal

converting 83
explanation 83
how to code in REXX 83

HI (halt interpretation) command 54
how to use this book 2
HOWDY EXEC (exercise) 92
HT (halt type) command 104

I
I/O

additional stream information 169
alternate techniques 176
default streams 169
error handling 176
functions

CHARIN (Character Input) 164
CHAROUT (Character Output) 162
CHARS (Characters Remaining) 166
LINEIN (Line Input) 163
LINEOUT (Line Output) 160
LINES (Lines Remaining) 165
STREAM 171

parsing default input 171
summary 167
techniques for using 175
with CMS 175

IF instruction
ELSE keyword 129
explanation 128
THEN keyword 128
using 7

increasing accuracy in calculations 64
information

abbreviated 81
on a trapped condition 157
where to find xviii

instruction
ADDRESS 116
ARG 48
CALL 146
clause 9
compound DO 143
DO

FOREVER 140
instruction 66
UNTIL 141
WHILE 140

DROP 32

200

instruction (continued)
EXIT 145
explanation 10
groups 66
IF 9, 128
INTERPRET 15
ITERATE 144
keyword 9
LEAVE 140
list of, makes a program 6
NOP 133
NUMERIC

DIGITS 64
FUZZ 82

PARSE
ARG 92
PULL 88
VALUE 93
VAR 93

PROCEDURE 30
PULL 9, 88
PUSH 108
QUEUE 108
repeating, loops 53
RETURN 49
SAY 9, 87
SELECT 127, 131
SIGNAL 154
TRACE 38
UPPER 88

integer
division operator 40
explanation 56

intended audience xv
internal routines

functions 52, 152
subroutines 69, 152

INTERPRET instruction 15
INVOICE EXEC 61
issuing commands

DO instruction
END 54

IF instruction
ELSE 129
THEN 128

SELECT instruction
END 131
OTHERWISE 131
THEN 131
WHEN 131

to CMS 97
to CP 99

ITERATE instruction 144

J
jumping through your program 144, 154
justify

left 68
right 68

K
keep blanks between words using quotation marks 10
keyboard input (STDIN) 169
keyword

instructions 6, 9
to manipulate program stack 109

L
label

explanation 11
in a CALL instruction 148

language
CMS 9
EXEC 2 9
for writing execs 9

language processor 1, 5
LASTPOS function 71
leaving

loops 54, 143
your program 145

LEFT function 68
left justified 68
LEFT7 EXEC 112
LENGTH function 67
less than

operator 40
or equal to operator 40

LIFO (last-in/first-out) 109
line, current, changing 122
LINEIN (Line Input) function 163
LINEOUT (Line Output) function 160
LINES (Lines Remaining) function 165
lining up numbers, formatting output 61
LINKHELP EXEC 100
LISTPR EXEC (exercise) 102
literal

string 6, 9
logical operator 44
loops

conditional 140
control variable 137, 143
DO FOREVER instruction 140, 142
DO UNTIL instruction 53, 141
DO WHILE instruction 140, 142
explanation 53, 135
ITERATE instruction 144
LEAVE instruction 140, 144
leaving 54, 143
methods for designing 181
repetitive 136
skipping instructions 144, 154

lowercase to uppercase with PULL instruction 10

M
macro

DENTAL XEDIT 121
HALF XEDIT 122
PAGE XEDIT 120
PARA XEDIT 123
PROFILE XEDIT 124

 201

macro (continued)
SAMPMENU XEDIT 125
TEN XEDIT 120

macros 119
MAKEBOX EXEC (partial program) 149
MAKEBUF command 112
manipulating

character strings 1
program stack 109

mantissa 59
MATH EXEC 15
MAX function 47
MCDONALD EXEC 20
MEASURES EXEC (exercise) 44
menu, full screen 124
message examples, notation used in xviii
messages

XEDIT, displaying 121
MESSY EXEC 29
minus operator 40, 58
MIX EXEC 92
MONTH1 EXEC (exercise) 28
moving

backward and forward in a file 120
through a file paragraph by paragraph 123

multiple clauses on a line 11
multiplication operator 40, 58
MYPROG EXEC 74
MYPROG2 EXEC (exercise) 94

N
names and values 18
naming variables 20
NEARFUL EXEC 111
NEVER EXEC 54
NEXT subcommand 120
NOAH EXEC (exercise) 89
NOASSIGN EXEC 20
NOFUZZ EXEC 82
NOP instruction 133
NOPUNCT EXEC 86
not

equal operator 40, 82
exactly equal operator 40, 82
greater than operator 40
less than operator 40

NOT operator 40, 44
notation used in message and response examples xviii
NOTREADY condition 156, 158
NOVALUE condition 156, 158
null

clauses 11
response 7

numbers
comparing 79
determining the sign 64
exponential notation 59
fixed point 60
floating point 60
power 63
range 59
rounding 64
truncating 65

numbers (continued)
types 56
whole 56

NUMERIC
DIGITS instruction 64
FUZZ instruction 82

O
opening and closing a stream 173
operator

comparison 40
explanation 36
list 40
logical 44
prefix 40
priority 36, 40
using parentheses 37, 41

OR operator 43–45
ORDCHARS EXEC 76
order of

evaluation 36, 37, 40
precedence 36

OTHERWISE keyword 131
output format 61, 68
OVERLAY function 75
overlaying one string onto another 75

P
PAGE XEDIT (macro) 120
PAIRS EXEC (exercise) 105
PARA XEDIT (macro) 123
parameters, CONDITION function 157
parentheses 37, 41
PARSE

ARG instruction 92
PULL 88
VALUE instruction 93
VAR instruction 93

parsing
arguments 48, 92, 153
data when you are prompted 88
default input 171
expressions 93
patterns 95
string patterns 93
use of a period 91
variables 93
words 90

PARSING EXEC 94
PARSWORD EXEC 90
patterns used in parsing 95
pausing a program 21
period

as a placeholder in parsing 91
in compound symbols 24

PERSONS EXEC (exercise) 37
phrase 73
PILOT EXEC 134
PIPE command 112
placeholder, period, in parsing 91
plus operator 40, 58

202

POS function 71
position

read and write 174
resetting read 163
resetting write 162
write and read 174

POSN EXEC 143
power of a number 63
precedence

characters 79
operators 36, 40

prefix operators 40
Primer

CMS xv
priority

characters 79
operators 36, 40

PROCEDURE instruction
explanation 30
EXPOSE keyword 30

processing
file 160

PROFILE XEDIT 124
PROFILE XEDIT (macro) 124
program

comments 8
contents 8
correcting 182
designing 180
directions, list of 2
editor 6
explanation 127
functions called as subroutines 152
how it works 5
instructions, list of 6
leaving 145
pausing 21
recipe, like a 2, 5
running 7
stack

explanation 107, 108
extensions (buffers) 109
keywords to manipulate 109
putting data onto 107, 111
queue 108
taking data from 108, 112
using 110
with SFS sources 111

stopping 8
typing in 6

programming
style and techniques

coding style 184
concluding the program 181
considering the data 177
correcting the program 182
designing a program 180
I/O 175
methods for designing loops 181

prompting user for data 88
PULL instruction

converts lowercase to uppercase 10
explanation 21, 88
to enter two numbers 18

PULL instruction (continued)
using 7, 90

PULLIN EXEC (exercise) 89
PULLING EXEC (exercise) 91
purpose of this document xv
PUSH instruction 108
putting

data onto the program stack 107, 111
words into variables 90

Q
QRYFILE1 EXEC 173
QRYFILE2 EXEC 173
qualifications for learning REXX xv
queue described 108
QUEUE instruction 108, 112
quotation marks

literal string 9
to keep blanks between words 10
when to use 99

R
RACEGAME EXEC (exercise) 151
RAH EXEC 11
RANDOM function 47
range of numbers 59
RC special variable 101
read position, resetting 163
reading

characters from a stream, CHARIN 164
data from a stream 163
levels 2
lines from a stream, LINEIN 163
plan 2

Ready; message 7
recipe, program is like a 5
RECTANGL EXEC 137
REFORMAT EXEC (exercise) 63
remainder operator 40, 58
repeated substitution 14
repeating

instructions, loops 53
variable names in subroutines 30

repetitive loops 136
reserve place in storage with variables 10
resetting

read position 163
write position 162

response examples, notation used in xviii
REstructured eXtended eXecutor/Virtual Machine

(REXX/VM)
and z/VM 2
built-in functions 1
calling CMS commands 2
compared to

BASIC language 3
C language 3
Pascal language 3

debugging 1
for beginners 1
for experienced users 1

 203

REstructured eXtended eXecutor/Virtual Machine (REXX/VM) (continued)
format 1
GCS, in xv
instructions 1
language processor 1
manipulating character strings 1
reference book 3
similarity to

EXEC 2 1
PL/I 1

RESULT reserved symbol 149
return codes

CMS and CP 100
explanation 120
REXX 12

RETURN instruction 49, 149
returning from a function or routine 49, 149
REVERE EXEC 73
RIDDLE EXEC (exercise) 89
RIGHT function 68
right justified 68
ROOTS EXEC 53
ROTATE EXEC 183
rounding numbers 39, 64
RTRACE EXEC 39
rules

avoiding duplicate names 29
comments 9
exponentiation 63
starting a REXX program 9
substitution 14

running a program 7

S
SAMPMENU XEDIT (macro) 125
SAY instruction 7, 87
scroll key settings, changing 120
scrolling paragraph by paragraph 123
search order for subroutines and functions 152
SELECT instruction

END keyword 132
example 21, 133
explanation 127, 131
OTHERWISE keyword 132
THEN keyword 132
WHEN keyword 132

separated by commas, arguments 70
separating clauses 11
SET CMSTYPE HT command 104
SET CURLINE subcommand 122
setting variables 20
SHAGGY EXEC 10
SHARE EXEC 59
Shared File System(SFS)

program stack, use with 111
writing programs with 8

sharing variables 32, 154
SHOCHAR1 EXEC 165
SHOLIN1 EXEC 164
SHOLIN2 EXEC 166
SHOLIN3 EXEC 170
SHOLIN4 EXEC 170
SIGL

SIGL (continued)
special variable 101
storing line numbers 103, 155

SIGN function 64, 86
SIGNAL instruction

example 105
explanation 102, 154
ON condition 155
restrictions 154
usage 154

signed number 57
significant digits 64
skipping instructions in a loop 144, 154
sorting

characters 75
SOURCELINE function 73
special variables

RC 101
Result 101
SIGL 101

specifying
conventional (fixed point) notation 62
exponential (floating point) notation 62

splitting
clauses 11
data 90

SPOOL PRINT, CP command 137
SQRT EXEC 52
SQUARE EXEC 49
square root function 51
stack described 108
STDIN (default input stream) 169
STDOUT (default output stream) 169
stem

and tails of compound symbols 24
stopping a program 8
storage

consideration xv
reserve place with variables 10

stream
getting information about 171, 172
handling 166
of information 159
opening and closing 173
reading data from 163
tasks to perform 171
writing data to 160

STREAM EXEC 172
STREAM function 167, 171
STREAMLP EXEC 172
streams 159
streams, handling 171
strictly

greater than operator 40
greater than or equal to operator 40
less than operator 40
less than or equal to operator 40
not greater than operator 40
not less operator 40

string
comparing 80
copying 68
duplicating 68
examples 9

204

string (continued)
explanation 9
literal 9
overlaying 75
patterns in parsing 93

style, coding 184
subcommands in XEDIT 119
subroutines

ARG instruction 149
arguments for 148
COUNT 30
differences with functions 151
example 30, 69
explanation 146
external 152, 153
formatting output 69
internal 69, 152
PROCEDURE instruction 30
protecting variables 30
repeating variable names 30
RETURN instruction 149
search order 152
sharing variables 31
similarities with functions 152

substituting
compound symbols 15
suppressing

FILE NOT FOUND 116
from CMS commands 104
from CP commands 112

symbols 14
variables 14

substitution
repeated 14
rules 14

SUBSTR function 67
substring 67
subtraction operator 40, 58
SUBWORD function 72
SUM EXEC 140
suppressing

messages from CMS commands 104
messages from CP commands 112

symbol
compound 24
determining

how to handle 23
if it is a variable 32

duplicate names of 29
explanation 18
substituting 15
variables as 23

SYMBOL function 32
SYNTAX condition 156, 158
syntax diagrams, how to read xv
syntax error

example 12
explanation 11
FORMAT function 61

T
TABLE1 EXEC 68
TABLE2 EXEC 70

TABLE3 EXEC 70
tables 68
tabulating text output 68, 69
TAKE EXEC 93
taking data from a program stack 108, 112
TDISK EXEC 113
techniques for using I/O functions 175
TEN XEDIT (macro) 120
term 36
terminal input buffer 109
TESTHAL2 EXEC (exercise) 51
TESTHALF EXEC (exercise) 50
TESTMENU EXEC 125
TESTS EXEC (exercise) 56
text expressions 66
THEN keyword

IF instruction 128
NOP instruction 133
SELECT instruction 131

things you need xv
TICKETS EXEC 32
TOSS EXEC (exercise) 48
TRACE

Errors 102
instruction 38
Intermediate results 38
Normal 38
Results 38

tracing
example 38
explanation 38
order 39

TRANSLATE function 85
translating

between character, hexadecimal, decimal 83
character sets 83, 85
examples 84
to uppercase 10, 88
TRANSLATE function 85
VERIFY function 86

traps, condition 155, 156
TRIANGLE EXEC 138
TRUCKER EXEC 134
TRUE expression 42
TRUNC function 64
truncating numbers 64
TTRACE EXEC 38
TTRUNC EXEC 65
TWELVDAY EXEC 24
TWOPLUS3 EXEC 17
types of data 39
typing in a program 6

U
UPPER instruction 80, 88
uppercase translation 10, 88
user-written functions 47, 48

V
VALIDFN EXEC 72
VALNUM EXEC 57

 205

VALUE function 14
values and names 18
variable

as symbols 23
constants 23
dropping 32
example 20
explanation 6, 10, 11, 17, 18
length 67
naming conventions 20
parsing 93
protecting 30
setting 20, 90
sharing between routines 31
special

RC 101
Result 101
SIGL 101

substituting 14
value, displaying 19
XEDIT, known to 121

VENTS EXEC 15
VERIFY function 86

W
warning, dividing by zero 59
what

this document contains xv
you should know xv

WHATDAY EXEC (exercise) 55
WHATDAY2 EXEC 88
WHATODO EXEC (exercise) 131
WHEN keyword 131
where to find more information xviii
WHOAMI EXEC exercise 12
whole numbers 56
word

explanation 76
functions using 76
parsing 90

WORD() function 72, 76
WORDINDEX function 72
WORDLENGTH function 72
WORDPOS function 73
words not interpreted 8
WORDS() function 72, 76
write position, resetting 162
writing

a line to a file, LINEOUT 160
characters to a file, CHAROUT 162
data to a stream 160
execs, languages for 9
lines to the screen 87

X
XE EXEC 76
XEDIT

assumption 6
EXTRACT subcommand 121
generating full screen menus 124
macros

XEDIT (continued)
macros (continued)

DENTAL XEDIT 121
examples 120
explanation 120
HALF XEDIT 122
naming 120
PAGE XEDIT 120
PARA XEDIT 123
PROFILE XEDIT 124
return codes 120
SAMPMENU XEDIT 125
TEN XEDIT 120

messages 121
NEXT subcommand 120
profile 124
SET CURLINE subcommand 122
subcommands 119

Y
YEP EXEC 81

206

IBM®

Printed in USA - Product Number: 5741-A09

SC24-6315-00

	Contents
	List of Figures
	List of Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM REXX/VM User's Guide
	SC24-6315-00, z/VM Version 7 Release 1

	Chapter 1. Introduction
	What is REXX?
	Features of REXX
	REXX and z/VM

	About Programming
	The Reading Plan
	If You Have Never Written a Computer Program…
	If You Are Already Familiar with Another Language…
	Exercises and Examples
	The REXX Reference

	Chapter 2. Starting Out with REXX
	How a Program Works
	Conversations
	Typing in a Program
	Running a Program
	Stopping a Program
	Test Yourself…

	What Goes into a Program
	Comments in Programs
	Comments with Special Meaning to CMS

	Keyword Instructions
	Clauses

	Literal Strings
	Uppercase Translation
	Variables

	Clauses
	When Does a Clause End?

	Syntax Errors
	Test Yourself…
	Answers:

	Substitution Rules

	Repeated Substitution
	The VALUE() Function
	Compound Symbols
	The INTERPRET Instruction

	Chapter 3. Variables
	What Are Variables?
	Names and Values

	Assignments
	Displaying a Variable's Value
	Choosing Names for Variables
	Example: Setting Variables
	Test Yourself…
	Answers:

	Other Assignments
	Assigning User Input
	The PULL Instruction
	The ARG Instruction

	Assigning an Expression Result

	Variables as Symbols
	Constants and Variables

	Compound Symbols
	Stems and Tails
	Derived Names
	Creating an Array
	Test Yourself…
	Answers:

	Avoiding Duplicate Names
	How Much Should You Tell Your Subroutine?
	The PROCEDURE Instruction
	The PROCEDURE EXPOSE Instruction

	The Existence of Variable Names
	The SYMBOL() Function
	The DROP Instruction

	Arrays with More Than One Dimension

	Chapter 4. Expressions
	Operators
	Operators and Terms
	Order of Evaluation
	Parentheses
	Test Yourself…
	Answers:

	Tracing
	Data Types
	Prefix Operators
	Priority of Operators
	Using Parentheses
	Test Yourself…
	Answers:

	True and False
	Comparisons
	Using True and False
	The Equal Sign (=)
	The AND (&) Operator
	The OR (|) Operator
	Test Yourself…
	Answers:

	Logical Operators
	The NOT (¬, \) Operator
	The AND (&) Operator
	The OR (|) Operator

	Test Yourself…
	Answers:

	Functions
	The Idea of a Function
	Built-in Functions
	User-Written Functions
	Test Yourself…
	Answers:

	Writing Your Own Functions
	ARG Instruction
	The ARG() Function
	RETURN Instruction
	Test Yourself…
	Answers:

	A Square Root Function
	Internal Functions
	Functions Written in Assembler Language

	Loops
	The DO Instruction
	A DO UNTIL Loop
	Getting Out of Loops
	Test Yourself…
	Answers:

	Arithmetic
	Numbers
	Checking Your Input
	Addition, Subtraction, Multiplication
	Division
	Range of Numbers
	Exponential Notation
	Test Yourself…
	Answer:

	Formatting Numeric Output
	Specifying Conventional (Fixed Point) Notation
	Specifying Exponential (Floating Point) Notation
	A Special Case

	Test Yourself…
	Answers:

	Exponentiation
	The NUMERIC DIGITS Instruction
	The SIGN() Function
	Rounding and Truncation
	Test Yourself…
	Answers:

	Groups of Instructions
	Text
	Concatenation
	The SUBSTR() Function
	The LENGTH() Function
	The COPIES() Function
	The LEFT() Function
	The RIGHT() Function
	Arranging Your Output in Columns
	Test Yourself…
	Answers:

	Using a Subroutine to Simplify Tabulation
	The POS() Function
	Example
	Words
	The WORDPOS() Function
	Providing Help
	Test Yourself…
	Answers:

	The OVERLAY() Function
	The WORDS() and WORD() Functions

	Comparisons
	General
	Numbers
	Characters
	Test Yourself…
	Answers:

	The COMPARE() Function
	The ABBREV() Function
	Test Yourself…
	Answers:

	Exact Comparisons
	Fuzzy Arithmetical Comparisons

	Translation
	Hexadecimal
	Conversion
	Character Sets
	The VERIFY() Function

	Chapter 5. Conversations
	The SAY Instruction
	The PULL Instruction
	The UPPER Instruction
	Test Yourself…
	Answers:

	Parsing Words
	The Period as a Placeholder
	Test Yourself…
	Answers:

	Getting Data from the Command Line
	Mixed Case
	Recognizing Options
	String Patterns
	Parsing Variables and Expressions
	Test Yourself…
	Answer:

	Parsing Using Patterns

	Chapter 6. Commands
	Issuing Commands to CMS and CP
	Clauses That Become Commands
	When to Use Quotation Marks
	CP Commands
	Summary
	Return Codes
	Special Variables
	Test Yourself…
	Answer:

	Debugging Individual Commands
	Debugging Execs That Contain Commands
	Making a Common Routine for Handling Return Codes
	Getting Messages from a Repository File
	How to Suppress Messages Issued by CMS Commands
	A Useful Subroutine
	Test Yourself…
	Answer:

	Using the Program Stack
	Definitions
	Buffers
	How to Use the Program Stack
	Example: A CMS Command That Puts Data onto the Program Stack
	Example: A CMS Command That Requires Data from the Program Stack

	CP Commands
	How to Suppress Messages Issued by CP Commands
	How to Obtain the Response from a CP Command

	The COMMAND Environment

	Chapter 7. XEDIT
	XEDIT Subcommands and Macros
	XEDIT Macros
	Naming of XEDIT Macros
	Example: Changing the Settings of the Scroll Keys
	Return Codes
	Messages

	The EXTRACT Subcommand
	The Current Line
	An Example: Moving through a File a Paragraph at a Time

	Your XEDIT Profile
	Menus Using XEDIT

	Chapter 8. Control
	Selection
	The IF Instruction
	The ELSE Keyword
	The Dangling ELSE
	Test Yourself…
	Answers:

	The SELECT Instruction
	Example
	The NOP Instruction
	Test Yourself…
	Answers:

	Loops
	Simple Repetitive Loops
	Using a Control Variable
	The BY Expression
	Test Yourself…
	Answers:

	Conditional Loops: The LEAVE Instruction
	Conditional Loops: The DO WHILE Instruction
	Conditional Loops: The DO UNTIL Instruction
	Conditional Loops: The Choice
	Test Yourself…
	Answers:

	Compound DO Instructions
	Leaving a Specified Loop
	The ITERATE Instruction

	The EXIT Instruction
	Subroutines
	The Idea of a Subroutine
	The CALL Instruction
	The ARG Instruction
	The RETURN Instruction
	Example
	When to Leave Out the Arguments
	Test Yourself…
	Answer:

	Subroutines and Functions
	Using a Call of the Other Kind
	Parsing the Arguments
	External Subroutines

	Jumps
	The SIGNAL Instruction
	Abnormal Changes of Control

	Conditions and Condition Traps
	The CALL ON Condition
	The SIGNAL ON Condition
	Condition Trap Explanations

	Action Taken When a Condition is Trapped

	The CONDITION Function

	Chapter 9. Input and Output
	A Stream of Information
	File Processing
	Writing Data to a Stream
	LINEOUT (Line Output) Function
	A LINEOUT Example
	Calling LINEOUT
	Resetting the Write Position

	CHAROUT (Character Output) Function
	A CHAROUT Example

	Reading Data from a Stream
	LINEIN (Line Input) Function
	Resetting the Read Position

	CHARIN (Character Input) Function
	Counting the Data Remaining
	LINES (Lines Remaining) Function
	CHARS (Characters Remaining) Function

	Handling Streams
	Opening and Closing Files

	To Summarize
	Additional Stream I/O Information
	More about Data Streams
	Default Streams
	Parsing Default Input

	Performing Stream Tasks
	STREAM Function
	Getting Information about a Stream
	Opening and Closing Streams

	Accessing Data within a Stream

	Techniques For Using REXX I/O Functions
	To Open or not To Open
	REXX I/O and CMS
	Error Handling
	Alternate Techniques

	Chapter 10. Programming Style and Techniques
	Consider the Data
	Test Yourself…
	Answer:

	Happy Hour
	Designing a Program
	Methods for Designing Loops
	The Conclusion
	What Do We Have So Far?
	Stepwise Refinement: An Example
	Reconsider the Data

	Correcting Your Program
	Modifying Your Program
	Tracing Your Program

	Coding Style

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	REXX Compiler

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

